Restore webrtc/base/move.h, because it's used in Windows Chromium builds

Presumably there's a cleaner way to fix the problem than having a file
in WebRTC that isn't used by WebRTC, but that'll be a later CL.

TBR=tommi@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/46099004

Cr-Commit-Position: refs/heads/master@{#9064}
diff --git a/webrtc/base/move.h b/webrtc/base/move.h
new file mode 100644
index 0000000..198badf
--- /dev/null
+++ b/webrtc/base/move.h
@@ -0,0 +1,237 @@
+/*
+ *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+// Borrowed from Chromium's src/base/move.h.
+
+#ifndef WEBRTC_BASE_MOVE_H_
+#define WEBRTC_BASE_MOVE_H_
+
+#include "webrtc/typedefs.h"
+
+// Macro with the boilerplate that makes a type move-only in C++03.
+//
+// USAGE
+//
+// This macro should be used instead of DISALLOW_COPY_AND_ASSIGN to create
+// a "move-only" type.  Unlike DISALLOW_COPY_AND_ASSIGN, this macro should be
+// the first line in a class declaration.
+//
+// A class using this macro must call .Pass() (or somehow be an r-value already)
+// before it can be:
+//
+//   * Passed as a function argument
+//   * Used as the right-hand side of an assignment
+//   * Returned from a function
+//
+// Each class will still need to define their own "move constructor" and "move
+// operator=" to make this useful.  Here's an example of the macro, the move
+// constructor, and the move operator= from the scoped_ptr class:
+//
+//  template <typename T>
+//  class scoped_ptr {
+//     RTC_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
+//   public:
+//    scoped_ptr(RValue& other) : ptr_(other.release()) { }
+//    scoped_ptr& operator=(RValue& other) {
+//      swap(other);
+//      return *this;
+//    }
+//  };
+//
+// Note that the constructor must NOT be marked explicit.
+//
+// For consistency, the second parameter to the macro should always be RValue
+// unless you have a strong reason to do otherwise.  It is only exposed as a
+// macro parameter so that the move constructor and move operator= don't look
+// like they're using a phantom type.
+//
+//
+// HOW THIS WORKS
+//
+// For a thorough explanation of this technique, see:
+//
+//   http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Move_Constructor
+//
+// The summary is that we take advantage of 2 properties:
+//
+//   1) non-const references will not bind to r-values.
+//   2) C++ can apply one user-defined conversion when initializing a
+//      variable.
+//
+// The first lets us disable the copy constructor and assignment operator
+// by declaring private version of them with a non-const reference parameter.
+//
+// For l-values, direct initialization still fails like in
+// DISALLOW_COPY_AND_ASSIGN because the copy constructor and assignment
+// operators are private.
+//
+// For r-values, the situation is different. The copy constructor and
+// assignment operator are not viable due to (1), so we are trying to call
+// a non-existent constructor and non-existing operator= rather than a private
+// one.  Since we have not committed an error quite yet, we can provide an
+// alternate conversion sequence and a constructor.  We add
+//
+//   * a private struct named "RValue"
+//   * a user-defined conversion "operator RValue()"
+//   * a "move constructor" and "move operator=" that take the RValue& as
+//     their sole parameter.
+//
+// Only r-values will trigger this sequence and execute our "move constructor"
+// or "move operator=."  L-values will match the private copy constructor and
+// operator= first giving a "private in this context" error.  This combination
+// gives us a move-only type.
+//
+// For signaling a destructive transfer of data from an l-value, we provide a
+// method named Pass() which creates an r-value for the current instance
+// triggering the move constructor or move operator=.
+//
+// Other ways to get r-values is to use the result of an expression like a
+// function call.
+//
+// Here's an example with comments explaining what gets triggered where:
+//
+//    class Foo {
+//      RTC_MOVE_ONLY_TYPE_FOR_CPP_03(Foo, RValue);
+//
+//     public:
+//       ... API ...
+//       Foo(RValue other);           // Move constructor.
+//       Foo& operator=(RValue rhs);  // Move operator=
+//    };
+//
+//    Foo MakeFoo();  // Function that returns a Foo.
+//
+//    Foo f;
+//    Foo f_copy(f);  // ERROR: Foo(Foo&) is private in this context.
+//    Foo f_assign;
+//    f_assign = f;   // ERROR: operator=(Foo&) is private in this context.
+//
+//
+//    Foo f(MakeFoo());      // R-value so alternate conversion executed.
+//    Foo f_copy(f.Pass());  // R-value so alternate conversion executed.
+//    f = f_copy.Pass();     // R-value so alternate conversion executed.
+//
+//
+// IMPLEMENTATION SUBTLETIES WITH RValue
+//
+// The RValue struct is just a container for a pointer back to the original
+// object. It should only ever be created as a temporary, and no external
+// class should ever declare it or use it in a parameter.
+//
+// It is tempting to want to use the RValue type in function parameters, but
+// excluding the limited usage here for the move constructor and move
+// operator=, doing so would mean that the function could take both r-values
+// and l-values equially which is unexpected.  See COMPARED To Boost.Move for
+// more details.
+//
+// An alternate, and incorrect, implementation of the RValue class used by
+// Boost.Move makes RValue a fieldless child of the move-only type. RValue&
+// is then used in place of RValue in the various operators.  The RValue& is
+// "created" by doing *reinterpret_cast<RValue*>(this).  This has the appeal
+// of never creating a temporary RValue struct even with optimizations
+// disabled.  Also, by virtue of inheritance you can treat the RValue
+// reference as if it were the move-only type itself.  Unfortunately,
+// using the result of this reinterpret_cast<> is actually undefined behavior
+// due to C++98 5.2.10.7. In certain compilers (e.g., NaCl) the optimizer
+// will generate non-working code.
+//
+// In optimized builds, both implementations generate the same assembly so we
+// choose the one that adheres to the standard.
+//
+//
+// WHY HAVE typedef void MoveOnlyTypeForCPP03
+//
+// Callback<>/Bind() needs to understand movable-but-not-copyable semantics
+// to call .Pass() appropriately when it is expected to transfer the value.
+// The cryptic typedef MoveOnlyTypeForCPP03 is added to make this check
+// easy and automatic in helper templates for Callback<>/Bind().
+// See IsMoveOnlyType template and its usage in base/callback_internal.h
+// for more details.
+//
+//
+// COMPARED TO C++11
+//
+// In C++11, you would implement this functionality using an r-value reference
+// and our .Pass() method would be replaced with a call to std::move().
+//
+// This emulation also has a deficiency where it uses up the single
+// user-defined conversion allowed by C++ during initialization.  This can
+// cause problems in some API edge cases.  For instance, in scoped_ptr, it is
+// impossible to make a function "void Foo(scoped_ptr<Parent> p)" accept a
+// value of type scoped_ptr<Child> even if you add a constructor to
+// scoped_ptr<> that would make it look like it should work.  C++11 does not
+// have this deficiency.
+//
+//
+// COMPARED TO Boost.Move
+//
+// Our implementation similar to Boost.Move, but we keep the RValue struct
+// private to the move-only type, and we don't use the reinterpret_cast<> hack.
+//
+// In Boost.Move, RValue is the boost::rv<> template.  This type can be used
+// when writing APIs like:
+//
+//   void MyFunc(boost::rv<Foo>& f)
+//
+// that can take advantage of rv<> to avoid extra copies of a type.  However you
+// would still be able to call this version of MyFunc with an l-value:
+//
+//   Foo f;
+//   MyFunc(f);  // Uh oh, we probably just destroyed |f| w/o calling Pass().
+//
+// unless someone is very careful to also declare a parallel override like:
+//
+//   void MyFunc(const Foo& f)
+//
+// that would catch the l-values first.  This was declared unsafe in C++11 and
+// a C++11 compiler will explicitly fail MyFunc(f).  Unfortunately, we cannot
+// ensure this in C++03.
+//
+// Since we have no need for writing such APIs yet, our implementation keeps
+// RValue private and uses a .Pass() method to do the conversion instead of
+// trying to write a version of "std::move()." Writing an API like std::move()
+// would require the RValue struct to be public.
+//
+//
+// CAVEATS
+//
+// If you include a move-only type as a field inside a class that does not
+// explicitly declare a copy constructor, the containing class's implicit
+// copy constructor will change from Containing(const Containing&) to
+// Containing(Containing&).  This can cause some unexpected errors.
+//
+//   http://llvm.org/bugs/show_bug.cgi?id=11528
+//
+// The workaround is to explicitly declare your copy constructor.
+//
+#define RTC_MOVE_ONLY_TYPE_FOR_CPP_03(type, rvalue_type) \
+ private: \
+  struct rvalue_type { \
+    explicit rvalue_type(type* object) : object(object) {} \
+    type* object; \
+  }; \
+  type(type&); \
+  void operator=(type&); \
+ public: \
+  operator rvalue_type() { return rvalue_type(this); } \
+  type Pass() WARN_UNUSED_RESULT { return type(rvalue_type(this)); } \
+  typedef void MoveOnlyTypeForCPP03; \
+ private:
+
+#define RTC_MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(type) \
+ private: \
+  type(type&); \
+  void operator=(type&); \
+ public: \
+  type&& Pass() WARN_UNUSED_RESULT { return static_cast<type&&>(*this); } \
+  typedef void MoveOnlyTypeForCPP03; \
+ private:
+
+#endif  // WEBRTC_BASE_MOVE_H_