Rename neteq4 folder to neteq

Keep the old neteq4/audio_decoder_unittests.isolate while waiting for
a hard-coded reference to change.

This CL effectively reverts r6257 "Rename neteq4 folder to neteq".

BUG=2996
TBR=tina.legrand@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/21629004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@6367 4adac7df-926f-26a2-2b94-8c16560cd09d
diff --git a/webrtc/modules/audio_coding/neteq/delay_manager.cc b/webrtc/modules/audio_coding/neteq/delay_manager.cc
new file mode 100644
index 0000000..a935561
--- /dev/null
+++ b/webrtc/modules/audio_coding/neteq/delay_manager.cc
@@ -0,0 +1,425 @@
+/*
+ *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
+ *
+ *  Use of this source code is governed by a BSD-style license
+ *  that can be found in the LICENSE file in the root of the source
+ *  tree. An additional intellectual property rights grant can be found
+ *  in the file PATENTS.  All contributing project authors may
+ *  be found in the AUTHORS file in the root of the source tree.
+ */
+
+#include "webrtc/modules/audio_coding/neteq/delay_manager.h"
+
+#include <assert.h>
+#include <math.h>
+
+#include <algorithm>  // max, min
+
+#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
+#include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
+#include "webrtc/modules/interface/module_common_types.h"
+#include "webrtc/system_wrappers/interface/logging.h"
+
+namespace webrtc {
+
+DelayManager::DelayManager(int max_packets_in_buffer,
+                           DelayPeakDetector* peak_detector)
+    : first_packet_received_(false),
+      max_packets_in_buffer_(max_packets_in_buffer),
+      iat_vector_(kMaxIat + 1, 0),
+      iat_factor_(0),
+      packet_iat_count_ms_(0),
+      base_target_level_(4),  // In Q0 domain.
+      target_level_(base_target_level_ << 8),  // In Q8 domain.
+      packet_len_ms_(0),
+      streaming_mode_(false),
+      last_seq_no_(0),
+      last_timestamp_(0),
+      minimum_delay_ms_(0),
+      least_required_delay_ms_(target_level_),
+      maximum_delay_ms_(target_level_),
+      iat_cumulative_sum_(0),
+      max_iat_cumulative_sum_(0),
+      max_timer_ms_(0),
+      peak_detector_(*peak_detector),
+      last_pack_cng_or_dtmf_(1) {
+  assert(peak_detector);  // Should never be NULL.
+  Reset();
+}
+
+DelayManager::~DelayManager() {}
+
+const DelayManager::IATVector& DelayManager::iat_vector() const {
+  return iat_vector_;
+}
+
+// Set the histogram vector to an exponentially decaying distribution
+// iat_vector_[i] = 0.5^(i+1), i = 0, 1, 2, ...
+// iat_vector_ is in Q30.
+void DelayManager::ResetHistogram() {
+  // Set temp_prob to (slightly more than) 1 in Q14. This ensures that the sum
+  // of iat_vector_ is 1.
+  uint16_t temp_prob = 0x4002;  // 16384 + 2 = 100000000000010 binary.
+  IATVector::iterator it = iat_vector_.begin();
+  for (; it < iat_vector_.end(); it++) {
+    temp_prob >>= 1;
+    (*it) = temp_prob << 16;
+  }
+  base_target_level_ = 4;
+  target_level_ = base_target_level_ << 8;
+}
+
+int DelayManager::Update(uint16_t sequence_number,
+                         uint32_t timestamp,
+                         int sample_rate_hz) {
+  if (sample_rate_hz <= 0) {
+    return -1;
+  }
+
+  if (!first_packet_received_) {
+    // Prepare for next packet arrival.
+    packet_iat_count_ms_ = 0;
+    last_seq_no_ = sequence_number;
+    last_timestamp_ = timestamp;
+    first_packet_received_ = true;
+    return 0;
+  }
+
+  // Try calculating packet length from current and previous timestamps.
+  int packet_len_ms;
+  if (!IsNewerTimestamp(timestamp, last_timestamp_) ||
+      !IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
+    // Wrong timestamp or sequence order; use stored value.
+    packet_len_ms = packet_len_ms_;
+  } else {
+    // Calculate timestamps per packet and derive packet length in ms.
+    int packet_len_samp =
+        static_cast<uint32_t>(timestamp - last_timestamp_) /
+        static_cast<uint16_t>(sequence_number - last_seq_no_);
+    packet_len_ms = (1000 * packet_len_samp) / sample_rate_hz;
+  }
+
+  if (packet_len_ms > 0) {
+    // Cannot update statistics unless |packet_len_ms| is valid.
+    // Calculate inter-arrival time (IAT) in integer "packet times"
+    // (rounding down). This is the value used as index to the histogram
+    // vector |iat_vector_|.
+    int iat_packets = packet_iat_count_ms_ / packet_len_ms;
+
+    if (streaming_mode_) {
+      UpdateCumulativeSums(packet_len_ms, sequence_number);
+    }
+
+    // Check for discontinuous packet sequence and re-ordering.
+    if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) {
+      // Compensate for gap in the sequence numbers. Reduce IAT with the
+      // expected extra time due to lost packets, but ensure that the IAT is
+      // not negative.
+      iat_packets -= static_cast<uint16_t>(sequence_number - last_seq_no_ - 1);
+      iat_packets = std::max(iat_packets, 0);
+    } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
+      iat_packets += static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number);
+    }
+
+    // Saturate IAT at maximum value.
+    const int max_iat = kMaxIat;
+    iat_packets = std::min(iat_packets, max_iat);
+    UpdateHistogram(iat_packets);
+    // Calculate new |target_level_| based on updated statistics.
+    target_level_ = CalculateTargetLevel(iat_packets);
+    if (streaming_mode_) {
+      target_level_ = std::max(target_level_, max_iat_cumulative_sum_);
+    }
+
+    LimitTargetLevel();
+  }  // End if (packet_len_ms > 0).
+
+  // Prepare for next packet arrival.
+  packet_iat_count_ms_ = 0;
+  last_seq_no_ = sequence_number;
+  last_timestamp_ = timestamp;
+  return 0;
+}
+
+void DelayManager::UpdateCumulativeSums(int packet_len_ms,
+                                        uint16_t sequence_number) {
+  // Calculate IAT in Q8, including fractions of a packet (i.e., more
+  // accurate than |iat_packets|.
+  int iat_packets_q8 = (packet_iat_count_ms_ << 8) / packet_len_ms;
+  // Calculate cumulative sum IAT with sequence number compensation. The sum
+  // is zero if there is no clock-drift.
+  iat_cumulative_sum_ += (iat_packets_q8 -
+      (static_cast<int>(sequence_number - last_seq_no_) << 8));
+  // Subtract drift term.
+  iat_cumulative_sum_ -= kCumulativeSumDrift;
+  // Ensure not negative.
+  iat_cumulative_sum_ = std::max(iat_cumulative_sum_, 0);
+  if (iat_cumulative_sum_ > max_iat_cumulative_sum_) {
+    // Found a new maximum.
+    max_iat_cumulative_sum_ = iat_cumulative_sum_;
+    max_timer_ms_ = 0;
+  }
+  if (max_timer_ms_ > kMaxStreamingPeakPeriodMs) {
+    // Too long since the last maximum was observed; decrease max value.
+    max_iat_cumulative_sum_ -= kCumulativeSumDrift;
+  }
+}
+
+// Each element in the vector is first multiplied by the forgetting factor
+// |iat_factor_|. Then the vector element indicated by |iat_packets| is then
+// increased (additive) by 1 - |iat_factor_|. This way, the probability of
+// |iat_packets| is slightly increased, while the sum of the histogram remains
+// constant (=1).
+// Due to inaccuracies in the fixed-point arithmetic, the histogram may no
+// longer sum up to 1 (in Q30) after the update. To correct this, a correction
+// term is added or subtracted from the first element (or elements) of the
+// vector.
+// The forgetting factor |iat_factor_| is also updated. When the DelayManager
+// is reset, the factor is set to 0 to facilitate rapid convergence in the
+// beginning. With each update of the histogram, the factor is increased towards
+// the steady-state value |kIatFactor_|.
+void DelayManager::UpdateHistogram(size_t iat_packets) {
+  assert(iat_packets < iat_vector_.size());
+  int vector_sum = 0;  // Sum up the vector elements as they are processed.
+  // Multiply each element in |iat_vector_| with |iat_factor_|.
+  for (IATVector::iterator it = iat_vector_.begin();
+      it != iat_vector_.end(); ++it) {
+    *it = (static_cast<int64_t>(*it) * iat_factor_) >> 15;
+    vector_sum += *it;
+  }
+
+  // Increase the probability for the currently observed inter-arrival time
+  // by 1 - |iat_factor_|. The factor is in Q15, |iat_vector_| in Q30.
+  // Thus, left-shift 15 steps to obtain result in Q30.
+  iat_vector_[iat_packets] += (32768 - iat_factor_) << 15;
+  vector_sum += (32768 - iat_factor_) << 15;  // Add to vector sum.
+
+  // |iat_vector_| should sum up to 1 (in Q30), but it may not due to
+  // fixed-point rounding errors.
+  vector_sum -= 1 << 30;  // Should be zero. Compensate if not.
+  if (vector_sum != 0) {
+    // Modify a few values early in |iat_vector_|.
+    int flip_sign = vector_sum > 0 ? -1 : 1;
+    IATVector::iterator it = iat_vector_.begin();
+    while (it != iat_vector_.end() && abs(vector_sum) > 0) {
+      // Add/subtract 1/16 of the element, but not more than |vector_sum|.
+      int correction = flip_sign * std::min(abs(vector_sum), (*it) >> 4);
+      *it += correction;
+      vector_sum += correction;
+      ++it;
+    }
+  }
+  assert(vector_sum == 0);  // Verify that the above is correct.
+
+  // Update |iat_factor_| (changes only during the first seconds after a reset).
+  // The factor converges to |kIatFactor_|.
+  iat_factor_ += (kIatFactor_ - iat_factor_ + 3) >> 2;
+}
+
+// Enforces upper and lower limits for |target_level_|. The upper limit is
+// chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some
+// headroom for natural fluctuations around the target, and ii) equivalent of
+// |maximum_delay_ms_| in packets. Note that in practice, if no
+// |maximum_delay_ms_| is specified, this does not have any impact, since the
+// target level is far below the buffer capacity in all reasonable cases.
+// The lower limit is equivalent of |minimum_delay_ms_| in packets. We update
+// |least_required_level_| while the above limits are applied.
+// TODO(hlundin): Move this check to the buffer logistics class.
+void DelayManager::LimitTargetLevel() {
+  least_required_delay_ms_ = (target_level_ * packet_len_ms_) >> 8;
+
+  if (packet_len_ms_ > 0 && minimum_delay_ms_ > 0) {
+    int minimum_delay_packet_q8 =  (minimum_delay_ms_ << 8) / packet_len_ms_;
+    target_level_ = std::max(target_level_, minimum_delay_packet_q8);
+  }
+
+  if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) {
+    int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_;
+    target_level_ = std::min(target_level_, maximum_delay_packet_q8);
+  }
+
+  // Shift to Q8, then 75%.;
+  int max_buffer_packets_q8 = (3 * (max_packets_in_buffer_ << 8)) / 4;
+  target_level_ = std::min(target_level_, max_buffer_packets_q8);
+
+  // Sanity check, at least 1 packet (in Q8).
+  target_level_ = std::max(target_level_, 1 << 8);
+}
+
+int DelayManager::CalculateTargetLevel(int iat_packets) {
+  int limit_probability = kLimitProbability;
+  if (streaming_mode_) {
+    limit_probability = kLimitProbabilityStreaming;
+  }
+
+  // Calculate target buffer level from inter-arrival time histogram.
+  // Find the |iat_index| for which the probability of observing an
+  // inter-arrival time larger than or equal to |iat_index| is less than or
+  // equal to |limit_probability|. The sought probability is estimated using
+  // the histogram as the reverse cumulant PDF, i.e., the sum of elements from
+  // the end up until |iat_index|. Now, since the sum of all elements is 1
+  // (in Q30) by definition, and since the solution is often a low value for
+  // |iat_index|, it is more efficient to start with |sum| = 1 and subtract
+  // elements from the start of the histogram.
+  size_t index = 0;  // Start from the beginning of |iat_vector_|.
+  int sum = 1 << 30;  // Assign to 1 in Q30.
+  sum -= iat_vector_[index];  // Ensure that target level is >= 1.
+
+  do {
+    // Subtract the probabilities one by one until the sum is no longer greater
+    // than limit_probability.
+    ++index;
+    sum -= iat_vector_[index];
+  } while ((sum > limit_probability) && (index < iat_vector_.size() - 1));
+
+  // This is the base value for the target buffer level.
+  int target_level = static_cast<int>(index);
+  base_target_level_ = static_cast<int>(index);
+
+  // Update detector for delay peaks.
+  bool delay_peak_found = peak_detector_.Update(iat_packets, target_level);
+  if (delay_peak_found) {
+    target_level = std::max(target_level, peak_detector_.MaxPeakHeight());
+  }
+
+  // Sanity check. |target_level| must be strictly positive.
+  target_level = std::max(target_level, 1);
+  // Scale to Q8 and assign to member variable.
+  target_level_ = target_level << 8;
+  return target_level_;
+}
+
+int DelayManager::SetPacketAudioLength(int length_ms) {
+  if (length_ms <= 0) {
+    LOG_F(LS_ERROR) << "length_ms = " << length_ms;
+    return -1;
+  }
+  packet_len_ms_ = length_ms;
+  peak_detector_.SetPacketAudioLength(packet_len_ms_);
+  packet_iat_count_ms_ = 0;
+  last_pack_cng_or_dtmf_ = 1;  // TODO(hlundin): Legacy. Remove?
+  return 0;
+}
+
+
+void DelayManager::Reset() {
+  packet_len_ms_ = 0;  // Packet size unknown.
+  streaming_mode_ = false;
+  peak_detector_.Reset();
+  ResetHistogram();  // Resets target levels too.
+  iat_factor_ = 0;  // Adapt the histogram faster for the first few packets.
+  packet_iat_count_ms_ = 0;
+  max_timer_ms_ = 0;
+  iat_cumulative_sum_ = 0;
+  max_iat_cumulative_sum_ = 0;
+  last_pack_cng_or_dtmf_ = 1;
+}
+
+int DelayManager::AverageIAT() const {
+  int32_t sum_q24 = 0;
+  // Using an int for the upper limit of the following for-loop so the
+  // loop-counter can be int. Otherwise we need a cast where |sum_q24| is
+  // updated.
+  const int iat_vec_size = static_cast<int>(iat_vector_.size());
+  assert(iat_vector_.size() == 65);  // Algorithm is hard-coded for this size.
+  for (int i = 0; i < iat_vec_size; ++i) {
+    // Shift 6 to fit worst case: 2^30 * 64.
+    sum_q24 += (iat_vector_[i] >> 6) * i;
+  }
+  // Subtract the nominal inter-arrival time 1 = 2^24 in Q24.
+  sum_q24 -= (1 << 24);
+  // Multiply with 1000000 / 2^24 = 15625 / 2^18 to get in parts-per-million.
+  // Shift 7 to Q17 first, then multiply with 15625 and shift another 11.
+  return ((sum_q24 >> 7) * 15625) >> 11;
+}
+
+bool DelayManager::PeakFound() const {
+  return peak_detector_.peak_found();
+}
+
+void DelayManager::UpdateCounters(int elapsed_time_ms) {
+  packet_iat_count_ms_ += elapsed_time_ms;
+  peak_detector_.IncrementCounter(elapsed_time_ms);
+  max_timer_ms_ += elapsed_time_ms;
+}
+
+void DelayManager::ResetPacketIatCount() { packet_iat_count_ms_ = 0; }
+
+// Note that |low_limit| and |higher_limit| are not assigned to
+// |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this
+// class. They are computed from |target_level_| and used for decision making.
+void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const {
+  if (!lower_limit || !higher_limit) {
+    LOG_F(LS_ERROR) << "NULL pointers supplied as input";
+    assert(false);
+    return;
+  }
+
+  int window_20ms = 0x7FFF;  // Default large value for legacy bit-exactness.
+  if (packet_len_ms_ > 0) {
+    window_20ms = (20 << 8) / packet_len_ms_;
+  }
+
+  // |target_level_| is in Q8 already.
+  *lower_limit = (target_level_ * 3) / 4;
+  // |higher_limit| is equal to |target_level_|, but should at
+  // least be 20 ms higher than |lower_limit_|.
+  *higher_limit = std::max(target_level_, *lower_limit + window_20ms);
+}
+
+int DelayManager::TargetLevel() const {
+  return target_level_;
+}
+
+void DelayManager::LastDecoderType(NetEqDecoder decoder_type) {
+  if (decoder_type == kDecoderAVT ||
+      decoder_type == kDecoderCNGnb ||
+      decoder_type == kDecoderCNGwb ||
+      decoder_type == kDecoderCNGswb32kHz ||
+      decoder_type == kDecoderCNGswb48kHz) {
+    last_pack_cng_or_dtmf_ = 1;
+  } else if (last_pack_cng_or_dtmf_ != 0) {
+    last_pack_cng_or_dtmf_ = -1;
+  }
+}
+
+bool DelayManager::SetMinimumDelay(int delay_ms) {
+  // Minimum delay shouldn't be more than maximum delay, if any maximum is set.
+  // Also, if possible check |delay| to less than 75% of
+  // |max_packets_in_buffer_|.
+  if ((maximum_delay_ms_ > 0 && delay_ms > maximum_delay_ms_) ||
+      (packet_len_ms_ > 0 &&
+          delay_ms > 3 * max_packets_in_buffer_ * packet_len_ms_ / 4)) {
+    return false;
+  }
+  minimum_delay_ms_ = delay_ms;
+  return true;
+}
+
+bool DelayManager::SetMaximumDelay(int delay_ms) {
+  if (delay_ms == 0) {
+    // Zero input unsets the maximum delay.
+    maximum_delay_ms_ = 0;
+    return true;
+  } else if (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_) {
+    // Maximum delay shouldn't be less than minimum delay or less than a packet.
+    return false;
+  }
+  maximum_delay_ms_ = delay_ms;
+  return true;
+}
+
+int DelayManager::least_required_delay_ms() const {
+  return least_required_delay_ms_;
+}
+
+int DelayManager::base_target_level() const { return base_target_level_; }
+void DelayManager::set_streaming_mode(bool value) { streaming_mode_ = value; }
+int DelayManager::last_pack_cng_or_dtmf() const {
+  return last_pack_cng_or_dtmf_;
+}
+
+void DelayManager::set_last_pack_cng_or_dtmf(int value) {
+  last_pack_cng_or_dtmf_ = value;
+}
+}  // namespace webrtc