Add max pre-decode queue size threshold for pacing

When pacing is enabled for the low latency rendering path,
frames are sent to the decoder in regular intervals. In case of a
jitter, these frames intervals could add up to create a large latency.
Hence, disable frame pacing if the pre-decode queue grows beyond the
threshold. The threshold for when to disable frame pacing is set
through a field trial. The default value is high enough so that
the behavior is not changed unless the field trial is specified.

Bug: chromium:1237402
Change-Id: I901fd579f68da286eca3d654118f60d3c55e21ce
Reviewed-on: https://webrtc-review.googlesource.com/c/src/+/228241
Reviewed-by: Ilya Nikolaevskiy <ilnik@webrtc.org>
Commit-Queue: Johannes Kron <kron@webrtc.org>
Cr-Commit-Position: refs/heads/master@{#34705}
diff --git a/modules/video_coding/timing_unittest.cc b/modules/video_coding/timing_unittest.cc
index 988e55f..cc87a3b 100644
--- a/modules/video_coding/timing_unittest.cc
+++ b/modules/video_coding/timing_unittest.cc
@@ -36,7 +36,7 @@
   timing.set_render_delay(0);
   uint32_t wait_time_ms = timing.MaxWaitingTime(
       timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
-      clock.TimeInMilliseconds());
+      clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
   // First update initializes the render time. Since we have no decode delay
   // we get wait_time_ms = renderTime - now - renderDelay = jitter.
   EXPECT_EQ(jitter_delay_ms, wait_time_ms);
@@ -48,7 +48,7 @@
   timing.UpdateCurrentDelay(timestamp);
   wait_time_ms = timing.MaxWaitingTime(
       timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
-      clock.TimeInMilliseconds());
+      clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
   // Since we gradually increase the delay we only get 100 ms every second.
   EXPECT_EQ(jitter_delay_ms - 10, wait_time_ms);
 
@@ -57,7 +57,7 @@
   timing.UpdateCurrentDelay(timestamp);
   wait_time_ms = timing.MaxWaitingTime(
       timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
-      clock.TimeInMilliseconds());
+      clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
   EXPECT_EQ(jitter_delay_ms, wait_time_ms);
 
   // Insert frames without jitter, verify that this gives the exact wait time.
@@ -70,7 +70,7 @@
   timing.UpdateCurrentDelay(timestamp);
   wait_time_ms = timing.MaxWaitingTime(
       timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
-      clock.TimeInMilliseconds());
+      clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
   EXPECT_EQ(jitter_delay_ms, wait_time_ms);
 
   // Add decode time estimates for 1 second.
@@ -85,7 +85,7 @@
   timing.UpdateCurrentDelay(timestamp);
   wait_time_ms = timing.MaxWaitingTime(
       timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
-      clock.TimeInMilliseconds());
+      clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
   EXPECT_EQ(jitter_delay_ms, wait_time_ms);
 
   const int kMinTotalDelayMs = 200;
@@ -97,7 +97,7 @@
   timing.set_render_delay(kRenderDelayMs);
   wait_time_ms = timing.MaxWaitingTime(
       timing.RenderTimeMs(timestamp, clock.TimeInMilliseconds()),
-      clock.TimeInMilliseconds());
+      clock.TimeInMilliseconds(), /*too_many_frames_queued=*/false);
   // We should at least have kMinTotalDelayMs - decodeTime (10) - renderTime
   // (10) to wait.
   EXPECT_EQ(kMinTotalDelayMs - kDecodeTimeMs - kRenderDelayMs, wait_time_ms);
@@ -140,16 +140,26 @@
   for (int i = 0; i < 10; ++i) {
     clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
     int64_t now_ms = clock.TimeInMilliseconds();
-    EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
+    EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                    /*too_many_frames_queued=*/false),
+              0);
   }
   // Another frame submitted at the same time also returns a negative max
   // waiting time.
   int64_t now_ms = clock.TimeInMilliseconds();
-  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
+  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            0);
   // MaxWaitingTime should be less than zero even if there's a burst of frames.
-  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
-  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
-  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
+  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            0);
+  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            0);
+  EXPECT_LT(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            0);
 }
 
 TEST(ReceiverTimingTest, MaxWaitingTimeZeroDelayPacingExperiment) {
@@ -168,27 +178,38 @@
   for (int i = 0; i < 10; ++i) {
     clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
     int64_t now_ms = clock.TimeInMilliseconds();
-    EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), 0);
+    EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                    /*too_many_frames_queued=*/false),
+              0);
     timing.SetLastDecodeScheduledTimestamp(now_ms);
   }
   // Another frame submitted at the same time is paced according to the field
   // trial setting.
   int64_t now_ms = clock.TimeInMilliseconds();
-  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            kMinPacingMs);
   // If there's a burst of frames, the wait time is calculated based on next
   // decode time.
-  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
-  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            kMinPacingMs);
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            kMinPacingMs);
   // Allow a few ms to pass, this should be subtracted from the MaxWaitingTime.
   constexpr int64_t kTwoMs = 2;
   clock.AdvanceTimeMilliseconds(kTwoMs);
   now_ms = clock.TimeInMilliseconds();
-  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms),
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
             kMinPacingMs - kTwoMs);
   // A frame is decoded at the current time, the wait time should be restored to
   // pacing delay.
   timing.SetLastDecodeScheduledTimestamp(now_ms);
-  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms), kMinPacingMs);
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            kMinPacingMs);
 }
 
 TEST(ReceiverTimingTest, DefaultMaxWaitingTimeUnaffectedByPacingExperiment) {
@@ -206,16 +227,56 @@
   int64_t render_time_ms = now_ms + 30;
   // Estimate the internal processing delay from the first frame.
   int64_t estimated_processing_delay =
-      (render_time_ms - now_ms) - timing.MaxWaitingTime(render_time_ms, now_ms);
+      (render_time_ms - now_ms) -
+      timing.MaxWaitingTime(render_time_ms, now_ms,
+                            /*too_many_frames_queued=*/false);
   EXPECT_GT(estimated_processing_delay, 0);
 
   // Any other frame submitted at the same time should be scheduled according to
   // its render time.
   for (int i = 0; i < 5; ++i) {
     render_time_ms += kTimeDeltaMs;
-    EXPECT_EQ(timing.MaxWaitingTime(render_time_ms, now_ms),
+    EXPECT_EQ(timing.MaxWaitingTime(render_time_ms, now_ms,
+                                    /*too_many_frames_queued=*/false),
               render_time_ms - now_ms - estimated_processing_delay);
   }
 }
 
+TEST(ReceiverTiminTest, MaxWaitingTimeReturnsZeroIfTooManyFramesQueuedIsTrue) {
+  // The minimum pacing is enabled by a field trial and active if the RTP
+  // playout delay header extension is set to min==0.
+  constexpr int64_t kMinPacingMs = 3;
+  test::ScopedFieldTrials override_field_trials(
+      "WebRTC-ZeroPlayoutDelay/min_pacing:3ms/");
+  constexpr int64_t kStartTimeUs = 3.15e13;  // About one year in us.
+  constexpr int64_t kTimeDeltaMs = 1000.0 / 60.0;
+  constexpr int64_t kZeroRenderTimeMs = 0;
+  SimulatedClock clock(kStartTimeUs);
+  VCMTiming timing(&clock);
+  timing.Reset();
+  // MaxWaitingTime() returns zero for evenly spaced video frames.
+  for (int i = 0; i < 10; ++i) {
+    clock.AdvanceTimeMilliseconds(kTimeDeltaMs);
+    int64_t now_ms = clock.TimeInMilliseconds();
+    EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                    /*too_many_frames_queued=*/false),
+              0);
+    timing.SetLastDecodeScheduledTimestamp(now_ms);
+  }
+  // Another frame submitted at the same time is paced according to the field
+  // trial setting.
+  int64_t now_ms = clock.TimeInMilliseconds();
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/false),
+            kMinPacingMs);
+  // MaxWaitingTime returns 0 even if there's a burst of frames if
+  // too_many_frames_queued is set to true.
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/true),
+            0);
+  EXPECT_EQ(timing.MaxWaitingTime(kZeroRenderTimeMs, now_ms,
+                                  /*too_many_frames_queued=*/true),
+            0);
+}
+
 }  // namespace webrtc