Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame^] | 1 | // Copyright (c) 2018 Google LLC |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "source/opt/const_folding_rules.h" |
| 16 | |
| 17 | #include "source/opt/ir_context.h" |
| 18 | |
| 19 | namespace spvtools { |
| 20 | namespace opt { |
| 21 | namespace { |
| 22 | |
| 23 | const uint32_t kExtractCompositeIdInIdx = 0; |
| 24 | |
| 25 | // Returns true if |type| is Float or a vector of Float. |
| 26 | bool HasFloatingPoint(const analysis::Type* type) { |
| 27 | if (type->AsFloat()) { |
| 28 | return true; |
| 29 | } else if (const analysis::Vector* vec_type = type->AsVector()) { |
| 30 | return vec_type->element_type()->AsFloat() != nullptr; |
| 31 | } |
| 32 | |
| 33 | return false; |
| 34 | } |
| 35 | |
| 36 | // Folds an OpcompositeExtract where input is a composite constant. |
| 37 | ConstantFoldingRule FoldExtractWithConstants() { |
| 38 | return [](IRContext* context, Instruction* inst, |
| 39 | const std::vector<const analysis::Constant*>& constants) |
| 40 | -> const analysis::Constant* { |
| 41 | const analysis::Constant* c = constants[kExtractCompositeIdInIdx]; |
| 42 | if (c == nullptr) { |
| 43 | return nullptr; |
| 44 | } |
| 45 | |
| 46 | for (uint32_t i = 1; i < inst->NumInOperands(); ++i) { |
| 47 | uint32_t element_index = inst->GetSingleWordInOperand(i); |
| 48 | if (c->AsNullConstant()) { |
| 49 | // Return Null for the return type. |
| 50 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 51 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 52 | return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), {}); |
| 53 | } |
| 54 | |
| 55 | auto cc = c->AsCompositeConstant(); |
| 56 | assert(cc != nullptr); |
| 57 | auto components = cc->GetComponents(); |
| 58 | c = components[element_index]; |
| 59 | } |
| 60 | return c; |
| 61 | }; |
| 62 | } |
| 63 | |
| 64 | ConstantFoldingRule FoldVectorShuffleWithConstants() { |
| 65 | return [](IRContext* context, Instruction* inst, |
| 66 | const std::vector<const analysis::Constant*>& constants) |
| 67 | -> const analysis::Constant* { |
| 68 | assert(inst->opcode() == SpvOpVectorShuffle); |
| 69 | const analysis::Constant* c1 = constants[0]; |
| 70 | const analysis::Constant* c2 = constants[1]; |
| 71 | if (c1 == nullptr || c2 == nullptr) { |
| 72 | return nullptr; |
| 73 | } |
| 74 | |
| 75 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 76 | const analysis::Type* element_type = c1->type()->AsVector()->element_type(); |
| 77 | |
| 78 | std::vector<const analysis::Constant*> c1_components; |
| 79 | if (const analysis::VectorConstant* vec_const = c1->AsVectorConstant()) { |
| 80 | c1_components = vec_const->GetComponents(); |
| 81 | } else { |
| 82 | assert(c1->AsNullConstant()); |
| 83 | const analysis::Constant* element = |
| 84 | const_mgr->GetConstant(element_type, {}); |
| 85 | c1_components.resize(c1->type()->AsVector()->element_count(), element); |
| 86 | } |
| 87 | std::vector<const analysis::Constant*> c2_components; |
| 88 | if (const analysis::VectorConstant* vec_const = c2->AsVectorConstant()) { |
| 89 | c2_components = vec_const->GetComponents(); |
| 90 | } else { |
| 91 | assert(c2->AsNullConstant()); |
| 92 | const analysis::Constant* element = |
| 93 | const_mgr->GetConstant(element_type, {}); |
| 94 | c2_components.resize(c2->type()->AsVector()->element_count(), element); |
| 95 | } |
| 96 | |
| 97 | std::vector<uint32_t> ids; |
| 98 | const uint32_t undef_literal_value = 0xffffffff; |
| 99 | for (uint32_t i = 2; i < inst->NumInOperands(); ++i) { |
| 100 | uint32_t index = inst->GetSingleWordInOperand(i); |
| 101 | if (index == undef_literal_value) { |
| 102 | // Don't fold shuffle with undef literal value. |
| 103 | return nullptr; |
| 104 | } else if (index < c1_components.size()) { |
| 105 | Instruction* member_inst = |
| 106 | const_mgr->GetDefiningInstruction(c1_components[index]); |
| 107 | ids.push_back(member_inst->result_id()); |
| 108 | } else { |
| 109 | Instruction* member_inst = const_mgr->GetDefiningInstruction( |
| 110 | c2_components[index - c1_components.size()]); |
| 111 | ids.push_back(member_inst->result_id()); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 116 | return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids); |
| 117 | }; |
| 118 | } |
| 119 | |
| 120 | ConstantFoldingRule FoldVectorTimesScalar() { |
| 121 | return [](IRContext* context, Instruction* inst, |
| 122 | const std::vector<const analysis::Constant*>& constants) |
| 123 | -> const analysis::Constant* { |
| 124 | assert(inst->opcode() == SpvOpVectorTimesScalar); |
| 125 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 126 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 127 | |
| 128 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 129 | if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) { |
| 130 | return nullptr; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | const analysis::Constant* c1 = constants[0]; |
| 135 | const analysis::Constant* c2 = constants[1]; |
| 136 | |
| 137 | if (c1 && c1->IsZero()) { |
| 138 | return c1; |
| 139 | } |
| 140 | |
| 141 | if (c2 && c2->IsZero()) { |
| 142 | // Get or create the NullConstant for this type. |
| 143 | std::vector<uint32_t> ids; |
| 144 | return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids); |
| 145 | } |
| 146 | |
| 147 | if (c1 == nullptr || c2 == nullptr) { |
| 148 | return nullptr; |
| 149 | } |
| 150 | |
| 151 | // Check result type. |
| 152 | const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); |
| 153 | const analysis::Vector* vector_type = result_type->AsVector(); |
| 154 | assert(vector_type != nullptr); |
| 155 | const analysis::Type* element_type = vector_type->element_type(); |
| 156 | assert(element_type != nullptr); |
| 157 | const analysis::Float* float_type = element_type->AsFloat(); |
| 158 | assert(float_type != nullptr); |
| 159 | |
| 160 | // Check types of c1 and c2. |
| 161 | assert(c1->type()->AsVector() == vector_type); |
| 162 | assert(c1->type()->AsVector()->element_type() == element_type && |
| 163 | c2->type() == element_type); |
| 164 | |
| 165 | // Get a float vector that is the result of vector-times-scalar. |
| 166 | std::vector<const analysis::Constant*> c1_components = |
| 167 | c1->GetVectorComponents(const_mgr); |
| 168 | std::vector<uint32_t> ids; |
| 169 | if (float_type->width() == 32) { |
| 170 | float scalar = c2->GetFloat(); |
| 171 | for (uint32_t i = 0; i < c1_components.size(); ++i) { |
| 172 | utils::FloatProxy<float> result(c1_components[i]->GetFloat() * scalar); |
| 173 | std::vector<uint32_t> words = result.GetWords(); |
| 174 | const analysis::Constant* new_elem = |
| 175 | const_mgr->GetConstant(float_type, words); |
| 176 | ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); |
| 177 | } |
| 178 | return const_mgr->GetConstant(vector_type, ids); |
| 179 | } else if (float_type->width() == 64) { |
| 180 | double scalar = c2->GetDouble(); |
| 181 | for (uint32_t i = 0; i < c1_components.size(); ++i) { |
| 182 | utils::FloatProxy<double> result(c1_components[i]->GetDouble() * |
| 183 | scalar); |
| 184 | std::vector<uint32_t> words = result.GetWords(); |
| 185 | const analysis::Constant* new_elem = |
| 186 | const_mgr->GetConstant(float_type, words); |
| 187 | ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); |
| 188 | } |
| 189 | return const_mgr->GetConstant(vector_type, ids); |
| 190 | } |
| 191 | return nullptr; |
| 192 | }; |
| 193 | } |
| 194 | |
| 195 | ConstantFoldingRule FoldCompositeWithConstants() { |
| 196 | // Folds an OpCompositeConstruct where all of the inputs are constants to a |
| 197 | // constant. A new constant is created if necessary. |
| 198 | return [](IRContext* context, Instruction* inst, |
| 199 | const std::vector<const analysis::Constant*>& constants) |
| 200 | -> const analysis::Constant* { |
| 201 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 202 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 203 | const analysis::Type* new_type = type_mgr->GetType(inst->type_id()); |
| 204 | Instruction* type_inst = |
| 205 | context->get_def_use_mgr()->GetDef(inst->type_id()); |
| 206 | |
| 207 | std::vector<uint32_t> ids; |
| 208 | for (uint32_t i = 0; i < constants.size(); ++i) { |
| 209 | const analysis::Constant* element_const = constants[i]; |
| 210 | if (element_const == nullptr) { |
| 211 | return nullptr; |
| 212 | } |
| 213 | |
| 214 | uint32_t component_type_id = 0; |
| 215 | if (type_inst->opcode() == SpvOpTypeStruct) { |
| 216 | component_type_id = type_inst->GetSingleWordInOperand(i); |
| 217 | } else if (type_inst->opcode() == SpvOpTypeArray) { |
| 218 | component_type_id = type_inst->GetSingleWordInOperand(0); |
| 219 | } |
| 220 | |
| 221 | uint32_t element_id = |
| 222 | const_mgr->FindDeclaredConstant(element_const, component_type_id); |
| 223 | if (element_id == 0) { |
| 224 | return nullptr; |
| 225 | } |
| 226 | ids.push_back(element_id); |
| 227 | } |
| 228 | return const_mgr->GetConstant(new_type, ids); |
| 229 | }; |
| 230 | } |
| 231 | |
| 232 | // The interface for a function that returns the result of applying a scalar |
| 233 | // floating-point binary operation on |a| and |b|. The type of the return value |
| 234 | // will be |type|. The input constants must also be of type |type|. |
| 235 | using UnaryScalarFoldingRule = std::function<const analysis::Constant*( |
| 236 | const analysis::Type* result_type, const analysis::Constant* a, |
| 237 | analysis::ConstantManager*)>; |
| 238 | |
| 239 | // The interface for a function that returns the result of applying a scalar |
| 240 | // floating-point binary operation on |a| and |b|. The type of the return value |
| 241 | // will be |type|. The input constants must also be of type |type|. |
| 242 | using BinaryScalarFoldingRule = std::function<const analysis::Constant*( |
| 243 | const analysis::Type* result_type, const analysis::Constant* a, |
| 244 | const analysis::Constant* b, analysis::ConstantManager*)>; |
| 245 | |
| 246 | // Returns a |ConstantFoldingRule| that folds unary floating point scalar ops |
| 247 | // using |scalar_rule| and unary float point vectors ops by applying |
| 248 | // |scalar_rule| to the elements of the vector. The |ConstantFoldingRule| |
| 249 | // that is returned assumes that |constants| contains 1 entry. If they are |
| 250 | // not |nullptr|, then their type is either |Float| or |Integer| or a |Vector| |
| 251 | // whose element type is |Float| or |Integer|. |
| 252 | ConstantFoldingRule FoldFPUnaryOp(UnaryScalarFoldingRule scalar_rule) { |
| 253 | return [scalar_rule](IRContext* context, Instruction* inst, |
| 254 | const std::vector<const analysis::Constant*>& constants) |
| 255 | -> const analysis::Constant* { |
| 256 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 257 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 258 | const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); |
| 259 | const analysis::Vector* vector_type = result_type->AsVector(); |
| 260 | |
| 261 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 262 | return nullptr; |
| 263 | } |
| 264 | |
| 265 | if (constants[0] == nullptr) { |
| 266 | return nullptr; |
| 267 | } |
| 268 | |
| 269 | if (vector_type != nullptr) { |
| 270 | std::vector<const analysis::Constant*> a_components; |
| 271 | std::vector<const analysis::Constant*> results_components; |
| 272 | |
| 273 | a_components = constants[0]->GetVectorComponents(const_mgr); |
| 274 | |
| 275 | // Fold each component of the vector. |
| 276 | for (uint32_t i = 0; i < a_components.size(); ++i) { |
| 277 | results_components.push_back(scalar_rule(vector_type->element_type(), |
| 278 | a_components[i], const_mgr)); |
| 279 | if (results_components[i] == nullptr) { |
| 280 | return nullptr; |
| 281 | } |
| 282 | } |
| 283 | |
| 284 | // Build the constant object and return it. |
| 285 | std::vector<uint32_t> ids; |
| 286 | for (const analysis::Constant* member : results_components) { |
| 287 | ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id()); |
| 288 | } |
| 289 | return const_mgr->GetConstant(vector_type, ids); |
| 290 | } else { |
| 291 | return scalar_rule(result_type, constants[0], const_mgr); |
| 292 | } |
| 293 | }; |
| 294 | } |
| 295 | |
| 296 | // Returns a |ConstantFoldingRule| that folds floating point scalars using |
| 297 | // |scalar_rule| and vectors of floating point by applying |scalar_rule| to the |
| 298 | // elements of the vector. The |ConstantFoldingRule| that is returned assumes |
| 299 | // that |constants| contains 2 entries. If they are not |nullptr|, then their |
| 300 | // type is either |Float| or a |Vector| whose element type is |Float|. |
| 301 | ConstantFoldingRule FoldFPBinaryOp(BinaryScalarFoldingRule scalar_rule) { |
| 302 | return [scalar_rule](IRContext* context, Instruction* inst, |
| 303 | const std::vector<const analysis::Constant*>& constants) |
| 304 | -> const analysis::Constant* { |
| 305 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 306 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 307 | const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); |
| 308 | const analysis::Vector* vector_type = result_type->AsVector(); |
| 309 | |
| 310 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 311 | return nullptr; |
| 312 | } |
| 313 | |
| 314 | if (constants[0] == nullptr || constants[1] == nullptr) { |
| 315 | return nullptr; |
| 316 | } |
| 317 | |
| 318 | if (vector_type != nullptr) { |
| 319 | std::vector<const analysis::Constant*> a_components; |
| 320 | std::vector<const analysis::Constant*> b_components; |
| 321 | std::vector<const analysis::Constant*> results_components; |
| 322 | |
| 323 | a_components = constants[0]->GetVectorComponents(const_mgr); |
| 324 | b_components = constants[1]->GetVectorComponents(const_mgr); |
| 325 | |
| 326 | // Fold each component of the vector. |
| 327 | for (uint32_t i = 0; i < a_components.size(); ++i) { |
| 328 | results_components.push_back(scalar_rule(vector_type->element_type(), |
| 329 | a_components[i], |
| 330 | b_components[i], const_mgr)); |
| 331 | if (results_components[i] == nullptr) { |
| 332 | return nullptr; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Build the constant object and return it. |
| 337 | std::vector<uint32_t> ids; |
| 338 | for (const analysis::Constant* member : results_components) { |
| 339 | ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id()); |
| 340 | } |
| 341 | return const_mgr->GetConstant(vector_type, ids); |
| 342 | } else { |
| 343 | return scalar_rule(result_type, constants[0], constants[1], const_mgr); |
| 344 | } |
| 345 | }; |
| 346 | } |
| 347 | |
| 348 | // This macro defines a |UnaryScalarFoldingRule| that performs float to |
| 349 | // integer conversion. |
| 350 | // TODO(greg-lunarg): Support for 64-bit integer types. |
| 351 | UnaryScalarFoldingRule FoldFToIOp() { |
| 352 | return [](const analysis::Type* result_type, const analysis::Constant* a, |
| 353 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 354 | assert(result_type != nullptr && a != nullptr); |
| 355 | const analysis::Integer* integer_type = result_type->AsInteger(); |
| 356 | const analysis::Float* float_type = a->type()->AsFloat(); |
| 357 | assert(float_type != nullptr); |
| 358 | assert(integer_type != nullptr); |
| 359 | if (integer_type->width() != 32) return nullptr; |
| 360 | if (float_type->width() == 32) { |
| 361 | float fa = a->GetFloat(); |
| 362 | uint32_t result = integer_type->IsSigned() |
| 363 | ? static_cast<uint32_t>(static_cast<int32_t>(fa)) |
| 364 | : static_cast<uint32_t>(fa); |
| 365 | std::vector<uint32_t> words = {result}; |
| 366 | return const_mgr->GetConstant(result_type, words); |
| 367 | } else if (float_type->width() == 64) { |
| 368 | double fa = a->GetDouble(); |
| 369 | uint32_t result = integer_type->IsSigned() |
| 370 | ? static_cast<uint32_t>(static_cast<int32_t>(fa)) |
| 371 | : static_cast<uint32_t>(fa); |
| 372 | std::vector<uint32_t> words = {result}; |
| 373 | return const_mgr->GetConstant(result_type, words); |
| 374 | } |
| 375 | return nullptr; |
| 376 | }; |
| 377 | } |
| 378 | |
| 379 | // This function defines a |UnaryScalarFoldingRule| that performs integer to |
| 380 | // float conversion. |
| 381 | // TODO(greg-lunarg): Support for 64-bit integer types. |
| 382 | UnaryScalarFoldingRule FoldIToFOp() { |
| 383 | return [](const analysis::Type* result_type, const analysis::Constant* a, |
| 384 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 385 | assert(result_type != nullptr && a != nullptr); |
| 386 | const analysis::Integer* integer_type = a->type()->AsInteger(); |
| 387 | const analysis::Float* float_type = result_type->AsFloat(); |
| 388 | assert(float_type != nullptr); |
| 389 | assert(integer_type != nullptr); |
| 390 | if (integer_type->width() != 32) return nullptr; |
| 391 | uint32_t ua = a->GetU32(); |
| 392 | if (float_type->width() == 32) { |
| 393 | float result_val = integer_type->IsSigned() |
| 394 | ? static_cast<float>(static_cast<int32_t>(ua)) |
| 395 | : static_cast<float>(ua); |
| 396 | utils::FloatProxy<float> result(result_val); |
| 397 | std::vector<uint32_t> words = {result.data()}; |
| 398 | return const_mgr->GetConstant(result_type, words); |
| 399 | } else if (float_type->width() == 64) { |
| 400 | double result_val = integer_type->IsSigned() |
| 401 | ? static_cast<double>(static_cast<int32_t>(ua)) |
| 402 | : static_cast<double>(ua); |
| 403 | utils::FloatProxy<double> result(result_val); |
| 404 | std::vector<uint32_t> words = result.GetWords(); |
| 405 | return const_mgr->GetConstant(result_type, words); |
| 406 | } |
| 407 | return nullptr; |
| 408 | }; |
| 409 | } |
| 410 | |
| 411 | // This macro defines a |BinaryScalarFoldingRule| that applies |op|. The |
| 412 | // operator |op| must work for both float and double, and use syntax "f1 op f2". |
| 413 | #define FOLD_FPARITH_OP(op) \ |
| 414 | [](const analysis::Type* result_type, const analysis::Constant* a, \ |
| 415 | const analysis::Constant* b, \ |
| 416 | analysis::ConstantManager* const_mgr_in_macro) \ |
| 417 | -> const analysis::Constant* { \ |
| 418 | assert(result_type != nullptr && a != nullptr && b != nullptr); \ |
| 419 | assert(result_type == a->type() && result_type == b->type()); \ |
| 420 | const analysis::Float* float_type_in_macro = result_type->AsFloat(); \ |
| 421 | assert(float_type_in_macro != nullptr); \ |
| 422 | if (float_type_in_macro->width() == 32) { \ |
| 423 | float fa = a->GetFloat(); \ |
| 424 | float fb = b->GetFloat(); \ |
| 425 | utils::FloatProxy<float> result_in_macro(fa op fb); \ |
| 426 | std::vector<uint32_t> words_in_macro = result_in_macro.GetWords(); \ |
| 427 | return const_mgr_in_macro->GetConstant(result_type, words_in_macro); \ |
| 428 | } else if (float_type_in_macro->width() == 64) { \ |
| 429 | double fa = a->GetDouble(); \ |
| 430 | double fb = b->GetDouble(); \ |
| 431 | utils::FloatProxy<double> result_in_macro(fa op fb); \ |
| 432 | std::vector<uint32_t> words_in_macro = result_in_macro.GetWords(); \ |
| 433 | return const_mgr_in_macro->GetConstant(result_type, words_in_macro); \ |
| 434 | } \ |
| 435 | return nullptr; \ |
| 436 | } |
| 437 | |
| 438 | // Define the folding rule for conversion between floating point and integer |
| 439 | ConstantFoldingRule FoldFToI() { return FoldFPUnaryOp(FoldFToIOp()); } |
| 440 | ConstantFoldingRule FoldIToF() { return FoldFPUnaryOp(FoldIToFOp()); } |
| 441 | |
| 442 | // Define the folding rules for subtraction, addition, multiplication, and |
| 443 | // division for floating point values. |
| 444 | ConstantFoldingRule FoldFSub() { return FoldFPBinaryOp(FOLD_FPARITH_OP(-)); } |
| 445 | ConstantFoldingRule FoldFAdd() { return FoldFPBinaryOp(FOLD_FPARITH_OP(+)); } |
| 446 | ConstantFoldingRule FoldFMul() { return FoldFPBinaryOp(FOLD_FPARITH_OP(*)); } |
| 447 | ConstantFoldingRule FoldFDiv() { return FoldFPBinaryOp(FOLD_FPARITH_OP(/)); } |
| 448 | |
| 449 | bool CompareFloatingPoint(bool op_result, bool op_unordered, |
| 450 | bool need_ordered) { |
| 451 | if (need_ordered) { |
| 452 | // operands are ordered and Operand 1 is |op| Operand 2 |
| 453 | return !op_unordered && op_result; |
| 454 | } else { |
| 455 | // operands are unordered or Operand 1 is |op| Operand 2 |
| 456 | return op_unordered || op_result; |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | // This macro defines a |BinaryScalarFoldingRule| that applies |op|. The |
| 461 | // operator |op| must work for both float and double, and use syntax "f1 op f2". |
| 462 | #define FOLD_FPCMP_OP(op, ord) \ |
| 463 | [](const analysis::Type* result_type, const analysis::Constant* a, \ |
| 464 | const analysis::Constant* b, \ |
| 465 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { \ |
| 466 | assert(result_type != nullptr && a != nullptr && b != nullptr); \ |
| 467 | assert(result_type->AsBool()); \ |
| 468 | assert(a->type() == b->type()); \ |
| 469 | const analysis::Float* float_type = a->type()->AsFloat(); \ |
| 470 | assert(float_type != nullptr); \ |
| 471 | if (float_type->width() == 32) { \ |
| 472 | float fa = a->GetFloat(); \ |
| 473 | float fb = b->GetFloat(); \ |
| 474 | bool result = CompareFloatingPoint( \ |
| 475 | fa op fb, std::isnan(fa) || std::isnan(fb), ord); \ |
| 476 | std::vector<uint32_t> words = {uint32_t(result)}; \ |
| 477 | return const_mgr->GetConstant(result_type, words); \ |
| 478 | } else if (float_type->width() == 64) { \ |
| 479 | double fa = a->GetDouble(); \ |
| 480 | double fb = b->GetDouble(); \ |
| 481 | bool result = CompareFloatingPoint( \ |
| 482 | fa op fb, std::isnan(fa) || std::isnan(fb), ord); \ |
| 483 | std::vector<uint32_t> words = {uint32_t(result)}; \ |
| 484 | return const_mgr->GetConstant(result_type, words); \ |
| 485 | } \ |
| 486 | return nullptr; \ |
| 487 | } |
| 488 | |
| 489 | // Define the folding rules for ordered and unordered comparison for floating |
| 490 | // point values. |
| 491 | ConstantFoldingRule FoldFOrdEqual() { |
| 492 | return FoldFPBinaryOp(FOLD_FPCMP_OP(==, true)); |
| 493 | } |
| 494 | ConstantFoldingRule FoldFUnordEqual() { |
| 495 | return FoldFPBinaryOp(FOLD_FPCMP_OP(==, false)); |
| 496 | } |
| 497 | ConstantFoldingRule FoldFOrdNotEqual() { |
| 498 | return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, true)); |
| 499 | } |
| 500 | ConstantFoldingRule FoldFUnordNotEqual() { |
| 501 | return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, false)); |
| 502 | } |
| 503 | ConstantFoldingRule FoldFOrdLessThan() { |
| 504 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<, true)); |
| 505 | } |
| 506 | ConstantFoldingRule FoldFUnordLessThan() { |
| 507 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<, false)); |
| 508 | } |
| 509 | ConstantFoldingRule FoldFOrdGreaterThan() { |
| 510 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>, true)); |
| 511 | } |
| 512 | ConstantFoldingRule FoldFUnordGreaterThan() { |
| 513 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>, false)); |
| 514 | } |
| 515 | ConstantFoldingRule FoldFOrdLessThanEqual() { |
| 516 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, true)); |
| 517 | } |
| 518 | ConstantFoldingRule FoldFUnordLessThanEqual() { |
| 519 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, false)); |
| 520 | } |
| 521 | ConstantFoldingRule FoldFOrdGreaterThanEqual() { |
| 522 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, true)); |
| 523 | } |
| 524 | ConstantFoldingRule FoldFUnordGreaterThanEqual() { |
| 525 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, false)); |
| 526 | } |
| 527 | |
| 528 | // Folds an OpDot where all of the inputs are constants to a |
| 529 | // constant. A new constant is created if necessary. |
| 530 | ConstantFoldingRule FoldOpDotWithConstants() { |
| 531 | return [](IRContext* context, Instruction* inst, |
| 532 | const std::vector<const analysis::Constant*>& constants) |
| 533 | -> const analysis::Constant* { |
| 534 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 535 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 536 | const analysis::Type* new_type = type_mgr->GetType(inst->type_id()); |
| 537 | assert(new_type->AsFloat() && "OpDot should have a float return type."); |
| 538 | const analysis::Float* float_type = new_type->AsFloat(); |
| 539 | |
| 540 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 541 | return nullptr; |
| 542 | } |
| 543 | |
| 544 | // If one of the operands is 0, then the result is 0. |
| 545 | bool has_zero_operand = false; |
| 546 | |
| 547 | for (int i = 0; i < 2; ++i) { |
| 548 | if (constants[i]) { |
| 549 | if (constants[i]->AsNullConstant() || |
| 550 | constants[i]->AsVectorConstant()->IsZero()) { |
| 551 | has_zero_operand = true; |
| 552 | break; |
| 553 | } |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | if (has_zero_operand) { |
| 558 | if (float_type->width() == 32) { |
| 559 | utils::FloatProxy<float> result(0.0f); |
| 560 | std::vector<uint32_t> words = result.GetWords(); |
| 561 | return const_mgr->GetConstant(float_type, words); |
| 562 | } |
| 563 | if (float_type->width() == 64) { |
| 564 | utils::FloatProxy<double> result(0.0); |
| 565 | std::vector<uint32_t> words = result.GetWords(); |
| 566 | return const_mgr->GetConstant(float_type, words); |
| 567 | } |
| 568 | return nullptr; |
| 569 | } |
| 570 | |
| 571 | if (constants[0] == nullptr || constants[1] == nullptr) { |
| 572 | return nullptr; |
| 573 | } |
| 574 | |
| 575 | std::vector<const analysis::Constant*> a_components; |
| 576 | std::vector<const analysis::Constant*> b_components; |
| 577 | |
| 578 | a_components = constants[0]->GetVectorComponents(const_mgr); |
| 579 | b_components = constants[1]->GetVectorComponents(const_mgr); |
| 580 | |
| 581 | utils::FloatProxy<double> result(0.0); |
| 582 | std::vector<uint32_t> words = result.GetWords(); |
| 583 | const analysis::Constant* result_const = |
| 584 | const_mgr->GetConstant(float_type, words); |
| 585 | for (uint32_t i = 0; i < a_components.size(); ++i) { |
| 586 | if (a_components[i] == nullptr || b_components[i] == nullptr) { |
| 587 | return nullptr; |
| 588 | } |
| 589 | |
| 590 | const analysis::Constant* component = FOLD_FPARITH_OP(*)( |
| 591 | new_type, a_components[i], b_components[i], const_mgr); |
| 592 | result_const = |
| 593 | FOLD_FPARITH_OP(+)(new_type, result_const, component, const_mgr); |
| 594 | } |
| 595 | return result_const; |
| 596 | }; |
| 597 | } |
| 598 | |
| 599 | // This function defines a |UnaryScalarFoldingRule| that subtracts the constant |
| 600 | // from zero. |
| 601 | UnaryScalarFoldingRule FoldFNegateOp() { |
| 602 | return [](const analysis::Type* result_type, const analysis::Constant* a, |
| 603 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 604 | assert(result_type != nullptr && a != nullptr); |
| 605 | assert(result_type == a->type()); |
| 606 | const analysis::Float* float_type = result_type->AsFloat(); |
| 607 | assert(float_type != nullptr); |
| 608 | if (float_type->width() == 32) { |
| 609 | float fa = a->GetFloat(); |
| 610 | utils::FloatProxy<float> result(-fa); |
| 611 | std::vector<uint32_t> words = result.GetWords(); |
| 612 | return const_mgr->GetConstant(result_type, words); |
| 613 | } else if (float_type->width() == 64) { |
| 614 | double da = a->GetDouble(); |
| 615 | utils::FloatProxy<double> result(-da); |
| 616 | std::vector<uint32_t> words = result.GetWords(); |
| 617 | return const_mgr->GetConstant(result_type, words); |
| 618 | } |
| 619 | return nullptr; |
| 620 | }; |
| 621 | } |
| 622 | |
| 623 | ConstantFoldingRule FoldFNegate() { return FoldFPUnaryOp(FoldFNegateOp()); } |
| 624 | |
| 625 | ConstantFoldingRule FoldFClampFeedingCompare(uint32_t cmp_opcode) { |
| 626 | return [cmp_opcode](IRContext* context, Instruction* inst, |
| 627 | const std::vector<const analysis::Constant*>& constants) |
| 628 | -> const analysis::Constant* { |
| 629 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 630 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
| 631 | |
| 632 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 633 | return nullptr; |
| 634 | } |
| 635 | |
| 636 | uint32_t non_const_idx = (constants[0] ? 1 : 0); |
| 637 | uint32_t operand_id = inst->GetSingleWordInOperand(non_const_idx); |
| 638 | Instruction* operand_inst = def_use_mgr->GetDef(operand_id); |
| 639 | |
| 640 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 641 | const analysis::Type* operand_type = |
| 642 | type_mgr->GetType(operand_inst->type_id()); |
| 643 | |
| 644 | if (!operand_type->AsFloat()) { |
| 645 | return nullptr; |
| 646 | } |
| 647 | |
| 648 | if (operand_type->AsFloat()->width() != 32 && |
| 649 | operand_type->AsFloat()->width() != 64) { |
| 650 | return nullptr; |
| 651 | } |
| 652 | |
| 653 | if (operand_inst->opcode() != SpvOpExtInst) { |
| 654 | return nullptr; |
| 655 | } |
| 656 | |
| 657 | if (operand_inst->GetSingleWordInOperand(1) != GLSLstd450FClamp) { |
| 658 | return nullptr; |
| 659 | } |
| 660 | |
| 661 | if (constants[1] == nullptr && constants[0] == nullptr) { |
| 662 | return nullptr; |
| 663 | } |
| 664 | |
| 665 | uint32_t max_id = operand_inst->GetSingleWordInOperand(4); |
| 666 | const analysis::Constant* max_const = |
| 667 | const_mgr->FindDeclaredConstant(max_id); |
| 668 | |
| 669 | uint32_t min_id = operand_inst->GetSingleWordInOperand(3); |
| 670 | const analysis::Constant* min_const = |
| 671 | const_mgr->FindDeclaredConstant(min_id); |
| 672 | |
| 673 | bool found_result = false; |
| 674 | bool result = false; |
| 675 | |
| 676 | switch (cmp_opcode) { |
| 677 | case SpvOpFOrdLessThan: |
| 678 | case SpvOpFUnordLessThan: |
| 679 | case SpvOpFOrdGreaterThanEqual: |
| 680 | case SpvOpFUnordGreaterThanEqual: |
| 681 | if (constants[0]) { |
| 682 | if (min_const) { |
| 683 | if (constants[0]->GetValueAsDouble() < |
| 684 | min_const->GetValueAsDouble()) { |
| 685 | found_result = true; |
| 686 | result = (cmp_opcode == SpvOpFOrdLessThan || |
| 687 | cmp_opcode == SpvOpFUnordLessThan); |
| 688 | } |
| 689 | } |
| 690 | if (max_const) { |
| 691 | if (constants[0]->GetValueAsDouble() >= |
| 692 | max_const->GetValueAsDouble()) { |
| 693 | found_result = true; |
| 694 | result = !(cmp_opcode == SpvOpFOrdLessThan || |
| 695 | cmp_opcode == SpvOpFUnordLessThan); |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | if (constants[1]) { |
| 701 | if (max_const) { |
| 702 | if (max_const->GetValueAsDouble() < |
| 703 | constants[1]->GetValueAsDouble()) { |
| 704 | found_result = true; |
| 705 | result = (cmp_opcode == SpvOpFOrdLessThan || |
| 706 | cmp_opcode == SpvOpFUnordLessThan); |
| 707 | } |
| 708 | } |
| 709 | |
| 710 | if (min_const) { |
| 711 | if (min_const->GetValueAsDouble() >= |
| 712 | constants[1]->GetValueAsDouble()) { |
| 713 | found_result = true; |
| 714 | result = !(cmp_opcode == SpvOpFOrdLessThan || |
| 715 | cmp_opcode == SpvOpFUnordLessThan); |
| 716 | } |
| 717 | } |
| 718 | } |
| 719 | break; |
| 720 | case SpvOpFOrdGreaterThan: |
| 721 | case SpvOpFUnordGreaterThan: |
| 722 | case SpvOpFOrdLessThanEqual: |
| 723 | case SpvOpFUnordLessThanEqual: |
| 724 | if (constants[0]) { |
| 725 | if (min_const) { |
| 726 | if (constants[0]->GetValueAsDouble() <= |
| 727 | min_const->GetValueAsDouble()) { |
| 728 | found_result = true; |
| 729 | result = (cmp_opcode == SpvOpFOrdLessThanEqual || |
| 730 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 731 | } |
| 732 | } |
| 733 | if (max_const) { |
| 734 | if (constants[0]->GetValueAsDouble() > |
| 735 | max_const->GetValueAsDouble()) { |
| 736 | found_result = true; |
| 737 | result = !(cmp_opcode == SpvOpFOrdLessThanEqual || |
| 738 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 739 | } |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | if (constants[1]) { |
| 744 | if (max_const) { |
| 745 | if (max_const->GetValueAsDouble() <= |
| 746 | constants[1]->GetValueAsDouble()) { |
| 747 | found_result = true; |
| 748 | result = (cmp_opcode == SpvOpFOrdLessThanEqual || |
| 749 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 750 | } |
| 751 | } |
| 752 | |
| 753 | if (min_const) { |
| 754 | if (min_const->GetValueAsDouble() > |
| 755 | constants[1]->GetValueAsDouble()) { |
| 756 | found_result = true; |
| 757 | result = !(cmp_opcode == SpvOpFOrdLessThanEqual || |
| 758 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 759 | } |
| 760 | } |
| 761 | } |
| 762 | break; |
| 763 | default: |
| 764 | return nullptr; |
| 765 | } |
| 766 | |
| 767 | if (!found_result) { |
| 768 | return nullptr; |
| 769 | } |
| 770 | |
| 771 | const analysis::Type* bool_type = |
| 772 | context->get_type_mgr()->GetType(inst->type_id()); |
| 773 | const analysis::Constant* result_const = |
| 774 | const_mgr->GetConstant(bool_type, {static_cast<uint32_t>(result)}); |
| 775 | assert(result_const); |
| 776 | return result_const; |
| 777 | }; |
| 778 | } |
| 779 | |
| 780 | } // namespace |
| 781 | |
| 782 | ConstantFoldingRules::ConstantFoldingRules() { |
| 783 | // Add all folding rules to the list for the opcodes to which they apply. |
| 784 | // Note that the order in which rules are added to the list matters. If a rule |
| 785 | // applies to the instruction, the rest of the rules will not be attempted. |
| 786 | // Take that into consideration. |
| 787 | |
| 788 | rules_[SpvOpCompositeConstruct].push_back(FoldCompositeWithConstants()); |
| 789 | |
| 790 | rules_[SpvOpCompositeExtract].push_back(FoldExtractWithConstants()); |
| 791 | |
| 792 | rules_[SpvOpConvertFToS].push_back(FoldFToI()); |
| 793 | rules_[SpvOpConvertFToU].push_back(FoldFToI()); |
| 794 | rules_[SpvOpConvertSToF].push_back(FoldIToF()); |
| 795 | rules_[SpvOpConvertUToF].push_back(FoldIToF()); |
| 796 | |
| 797 | rules_[SpvOpDot].push_back(FoldOpDotWithConstants()); |
| 798 | rules_[SpvOpFAdd].push_back(FoldFAdd()); |
| 799 | rules_[SpvOpFDiv].push_back(FoldFDiv()); |
| 800 | rules_[SpvOpFMul].push_back(FoldFMul()); |
| 801 | rules_[SpvOpFSub].push_back(FoldFSub()); |
| 802 | |
| 803 | rules_[SpvOpFOrdEqual].push_back(FoldFOrdEqual()); |
| 804 | |
| 805 | rules_[SpvOpFUnordEqual].push_back(FoldFUnordEqual()); |
| 806 | |
| 807 | rules_[SpvOpFOrdNotEqual].push_back(FoldFOrdNotEqual()); |
| 808 | |
| 809 | rules_[SpvOpFUnordNotEqual].push_back(FoldFUnordNotEqual()); |
| 810 | |
| 811 | rules_[SpvOpFOrdLessThan].push_back(FoldFOrdLessThan()); |
| 812 | rules_[SpvOpFOrdLessThan].push_back( |
| 813 | FoldFClampFeedingCompare(SpvOpFOrdLessThan)); |
| 814 | |
| 815 | rules_[SpvOpFUnordLessThan].push_back(FoldFUnordLessThan()); |
| 816 | rules_[SpvOpFUnordLessThan].push_back( |
| 817 | FoldFClampFeedingCompare(SpvOpFUnordLessThan)); |
| 818 | |
| 819 | rules_[SpvOpFOrdGreaterThan].push_back(FoldFOrdGreaterThan()); |
| 820 | rules_[SpvOpFOrdGreaterThan].push_back( |
| 821 | FoldFClampFeedingCompare(SpvOpFOrdGreaterThan)); |
| 822 | |
| 823 | rules_[SpvOpFUnordGreaterThan].push_back(FoldFUnordGreaterThan()); |
| 824 | rules_[SpvOpFUnordGreaterThan].push_back( |
| 825 | FoldFClampFeedingCompare(SpvOpFUnordGreaterThan)); |
| 826 | |
| 827 | rules_[SpvOpFOrdLessThanEqual].push_back(FoldFOrdLessThanEqual()); |
| 828 | rules_[SpvOpFOrdLessThanEqual].push_back( |
| 829 | FoldFClampFeedingCompare(SpvOpFOrdLessThanEqual)); |
| 830 | |
| 831 | rules_[SpvOpFUnordLessThanEqual].push_back(FoldFUnordLessThanEqual()); |
| 832 | rules_[SpvOpFUnordLessThanEqual].push_back( |
| 833 | FoldFClampFeedingCompare(SpvOpFUnordLessThanEqual)); |
| 834 | |
| 835 | rules_[SpvOpFOrdGreaterThanEqual].push_back(FoldFOrdGreaterThanEqual()); |
| 836 | rules_[SpvOpFOrdGreaterThanEqual].push_back( |
| 837 | FoldFClampFeedingCompare(SpvOpFOrdGreaterThanEqual)); |
| 838 | |
| 839 | rules_[SpvOpFUnordGreaterThanEqual].push_back(FoldFUnordGreaterThanEqual()); |
| 840 | rules_[SpvOpFUnordGreaterThanEqual].push_back( |
| 841 | FoldFClampFeedingCompare(SpvOpFUnordGreaterThanEqual)); |
| 842 | |
| 843 | rules_[SpvOpVectorShuffle].push_back(FoldVectorShuffleWithConstants()); |
| 844 | rules_[SpvOpVectorTimesScalar].push_back(FoldVectorTimesScalar()); |
| 845 | |
| 846 | rules_[SpvOpFNegate].push_back(FoldFNegate()); |
| 847 | } |
| 848 | } // namespace opt |
| 849 | } // namespace spvtools |