blob: 6e2e6e8708c82c836e42e6a7bf3de6c0baa35b1b [file] [log] [blame]
Nicolas Capens0bac2852016-05-07 06:09:58 -04001// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "OutputASM.h"
16#include "Common/Math.hpp"
17
18#include "common/debug.h"
19#include "InfoSink.h"
20
21#include "libGLESv2/Shader.h"
22
23#include <GLES2/gl2.h>
24#include <GLES2/gl2ext.h>
25#include <GLES3/gl3.h>
26
Nicolas Capens930b7002017-01-06 17:22:13 -050027#include <stdlib.h>
28
Nicolas Capens0bac2852016-05-07 06:09:58 -040029namespace glsl
30{
31 // Integer to TString conversion
32 TString str(int i)
33 {
34 char buffer[20];
35 sprintf(buffer, "%d", i);
36 return buffer;
37 }
38
39 class Temporary : public TIntermSymbol
40 {
41 public:
42 Temporary(OutputASM *assembler) : TIntermSymbol(TSymbolTableLevel::nextUniqueId(), "tmp", TType(EbtFloat, EbpHigh, EvqTemporary, 4, 1, false)), assembler(assembler)
43 {
44 }
45
46 ~Temporary()
47 {
48 assembler->freeTemporary(this);
49 }
50
51 private:
52 OutputASM *const assembler;
53 };
54
55 class Constant : public TIntermConstantUnion
56 {
57 public:
58 Constant(float x, float y, float z, float w) : TIntermConstantUnion(constants, TType(EbtFloat, EbpHigh, EvqConstExpr, 4, 1, false))
59 {
60 constants[0].setFConst(x);
61 constants[1].setFConst(y);
62 constants[2].setFConst(z);
63 constants[3].setFConst(w);
64 }
65
66 Constant(bool b) : TIntermConstantUnion(constants, TType(EbtBool, EbpHigh, EvqConstExpr, 1, 1, false))
67 {
68 constants[0].setBConst(b);
69 }
70
71 Constant(int i) : TIntermConstantUnion(constants, TType(EbtInt, EbpHigh, EvqConstExpr, 1, 1, false))
72 {
73 constants[0].setIConst(i);
74 }
75
76 ~Constant()
77 {
78 }
79
80 private:
81 ConstantUnion constants[4];
82 };
83
84 Uniform::Uniform(GLenum type, GLenum precision, const std::string &name, int arraySize, int registerIndex, int blockId, const BlockMemberInfo& blockMemberInfo) :
85 type(type), precision(precision), name(name), arraySize(arraySize), registerIndex(registerIndex), blockId(blockId), blockInfo(blockMemberInfo)
86 {
87 }
88
89 UniformBlock::UniformBlock(const std::string& name, unsigned int dataSize, unsigned int arraySize,
90 TLayoutBlockStorage layout, bool isRowMajorLayout, int registerIndex, int blockId) :
91 name(name), dataSize(dataSize), arraySize(arraySize), layout(layout),
92 isRowMajorLayout(isRowMajorLayout), registerIndex(registerIndex), blockId(blockId)
93 {
94 }
95
96 BlockLayoutEncoder::BlockLayoutEncoder(bool rowMajor)
97 : mCurrentOffset(0), isRowMajor(rowMajor)
98 {
99 }
100
101 BlockMemberInfo BlockLayoutEncoder::encodeType(const TType &type)
102 {
103 int arrayStride;
104 int matrixStride;
105
106 getBlockLayoutInfo(type, type.getArraySize(), isRowMajor, &arrayStride, &matrixStride);
107
108 const BlockMemberInfo memberInfo(static_cast<int>(mCurrentOffset * BytesPerComponent),
109 static_cast<int>(arrayStride * BytesPerComponent),
110 static_cast<int>(matrixStride * BytesPerComponent),
111 (matrixStride > 0) && isRowMajor);
112
113 advanceOffset(type, type.getArraySize(), isRowMajor, arrayStride, matrixStride);
114
115 return memberInfo;
116 }
117
118 // static
119 size_t BlockLayoutEncoder::getBlockRegister(const BlockMemberInfo &info)
120 {
121 return (info.offset / BytesPerComponent) / ComponentsPerRegister;
122 }
123
124 // static
125 size_t BlockLayoutEncoder::getBlockRegisterElement(const BlockMemberInfo &info)
126 {
127 return (info.offset / BytesPerComponent) % ComponentsPerRegister;
128 }
129
130 void BlockLayoutEncoder::nextRegister()
131 {
132 mCurrentOffset = sw::align(mCurrentOffset, ComponentsPerRegister);
133 }
134
135 Std140BlockEncoder::Std140BlockEncoder(bool rowMajor) : BlockLayoutEncoder(rowMajor)
136 {
137 }
138
139 void Std140BlockEncoder::enterAggregateType()
140 {
141 nextRegister();
142 }
143
144 void Std140BlockEncoder::exitAggregateType()
145 {
146 nextRegister();
147 }
148
149 void Std140BlockEncoder::getBlockLayoutInfo(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int *arrayStrideOut, int *matrixStrideOut)
150 {
151 size_t baseAlignment = 0;
152 int matrixStride = 0;
153 int arrayStride = 0;
154
155 if(type.isMatrix())
156 {
157 baseAlignment = ComponentsPerRegister;
158 matrixStride = ComponentsPerRegister;
159
160 if(arraySize > 0)
161 {
162 const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize();
163 arrayStride = ComponentsPerRegister * numRegisters;
164 }
165 }
166 else if(arraySize > 0)
167 {
168 baseAlignment = ComponentsPerRegister;
169 arrayStride = ComponentsPerRegister;
170 }
171 else
172 {
173 const size_t numComponents = type.getElementSize();
174 baseAlignment = (numComponents == 3 ? 4u : numComponents);
175 }
176
177 mCurrentOffset = sw::align(mCurrentOffset, baseAlignment);
178
179 *matrixStrideOut = matrixStride;
180 *arrayStrideOut = arrayStride;
181 }
182
183 void Std140BlockEncoder::advanceOffset(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int arrayStride, int matrixStride)
184 {
185 if(arraySize > 0)
186 {
187 mCurrentOffset += arrayStride * arraySize;
188 }
189 else if(type.isMatrix())
190 {
191 ASSERT(matrixStride == ComponentsPerRegister);
192 const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize();
193 mCurrentOffset += ComponentsPerRegister * numRegisters;
194 }
195 else
196 {
197 mCurrentOffset += type.getElementSize();
198 }
199 }
200
201 Attribute::Attribute()
202 {
203 type = GL_NONE;
204 arraySize = 0;
205 registerIndex = 0;
206 }
207
208 Attribute::Attribute(GLenum type, const std::string &name, int arraySize, int location, int registerIndex)
209 {
210 this->type = type;
211 this->name = name;
212 this->arraySize = arraySize;
213 this->location = location;
214 this->registerIndex = registerIndex;
215 }
216
217 sw::PixelShader *Shader::getPixelShader() const
218 {
219 return 0;
220 }
221
222 sw::VertexShader *Shader::getVertexShader() const
223 {
224 return 0;
225 }
226
227 OutputASM::TextureFunction::TextureFunction(const TString& nodeName) : method(IMPLICIT), proj(false), offset(false)
228 {
229 TString name = TFunction::unmangleName(nodeName);
230
231 if(name == "texture2D" || name == "textureCube" || name == "texture" || name == "texture3D")
232 {
233 method = IMPLICIT;
234 }
235 else if(name == "texture2DProj" || name == "textureProj")
236 {
237 method = IMPLICIT;
238 proj = true;
239 }
240 else if(name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod")
241 {
242 method = LOD;
243 }
244 else if(name == "texture2DProjLod" || name == "textureProjLod")
245 {
246 method = LOD;
247 proj = true;
248 }
249 else if(name == "textureSize")
250 {
251 method = SIZE;
252 }
253 else if(name == "textureOffset")
254 {
255 method = IMPLICIT;
256 offset = true;
257 }
258 else if(name == "textureProjOffset")
259 {
260 method = IMPLICIT;
261 offset = true;
262 proj = true;
263 }
264 else if(name == "textureLodOffset")
265 {
266 method = LOD;
267 offset = true;
268 }
269 else if(name == "textureProjLodOffset")
270 {
271 method = LOD;
272 proj = true;
273 offset = true;
274 }
275 else if(name == "texelFetch")
276 {
277 method = FETCH;
278 }
279 else if(name == "texelFetchOffset")
280 {
281 method = FETCH;
282 offset = true;
283 }
284 else if(name == "textureGrad")
285 {
286 method = GRAD;
287 }
288 else if(name == "textureGradOffset")
289 {
290 method = GRAD;
291 offset = true;
292 }
293 else if(name == "textureProjGrad")
294 {
295 method = GRAD;
296 proj = true;
297 }
298 else if(name == "textureProjGradOffset")
299 {
300 method = GRAD;
301 proj = true;
302 offset = true;
303 }
304 else UNREACHABLE(0);
305 }
306
307 OutputASM::OutputASM(TParseContext &context, Shader *shaderObject) : TIntermTraverser(true, true, true), shaderObject(shaderObject), mContext(context)
308 {
309 shader = 0;
310 pixelShader = 0;
311 vertexShader = 0;
312
313 if(shaderObject)
314 {
315 shader = shaderObject->getShader();
316 pixelShader = shaderObject->getPixelShader();
317 vertexShader = shaderObject->getVertexShader();
318 }
319
320 functionArray.push_back(Function(0, "main(", 0, 0));
321 currentFunction = 0;
322 outputQualifier = EvqOutput; // Set outputQualifier to any value other than EvqFragColor or EvqFragData
323 }
324
325 OutputASM::~OutputASM()
326 {
327 }
328
329 void OutputASM::output()
330 {
331 if(shader)
332 {
333 emitShader(GLOBAL);
334
335 if(functionArray.size() > 1) // Only call main() when there are other functions
336 {
337 Instruction *callMain = emit(sw::Shader::OPCODE_CALL);
338 callMain->dst.type = sw::Shader::PARAMETER_LABEL;
339 callMain->dst.index = 0; // main()
340
341 emit(sw::Shader::OPCODE_RET);
342 }
343
344 emitShader(FUNCTION);
345 }
346 }
347
348 void OutputASM::emitShader(Scope scope)
349 {
350 emitScope = scope;
351 currentScope = GLOBAL;
352 mContext.getTreeRoot()->traverse(this);
353 }
354
355 void OutputASM::freeTemporary(Temporary *temporary)
356 {
357 free(temporaries, temporary);
358 }
359
360 sw::Shader::Opcode OutputASM::getOpcode(sw::Shader::Opcode op, TIntermTyped *in) const
361 {
362 TBasicType baseType = in->getType().getBasicType();
363
364 switch(op)
365 {
366 case sw::Shader::OPCODE_NEG:
367 switch(baseType)
368 {
369 case EbtInt:
370 case EbtUInt:
371 return sw::Shader::OPCODE_INEG;
372 case EbtFloat:
373 default:
374 return op;
375 }
376 case sw::Shader::OPCODE_ABS:
377 switch(baseType)
378 {
379 case EbtInt:
380 return sw::Shader::OPCODE_IABS;
381 case EbtFloat:
382 default:
383 return op;
384 }
385 case sw::Shader::OPCODE_SGN:
386 switch(baseType)
387 {
388 case EbtInt:
389 return sw::Shader::OPCODE_ISGN;
390 case EbtFloat:
391 default:
392 return op;
393 }
394 case sw::Shader::OPCODE_ADD:
395 switch(baseType)
396 {
397 case EbtInt:
398 case EbtUInt:
399 return sw::Shader::OPCODE_IADD;
400 case EbtFloat:
401 default:
402 return op;
403 }
404 case sw::Shader::OPCODE_SUB:
405 switch(baseType)
406 {
407 case EbtInt:
408 case EbtUInt:
409 return sw::Shader::OPCODE_ISUB;
410 case EbtFloat:
411 default:
412 return op;
413 }
414 case sw::Shader::OPCODE_MUL:
415 switch(baseType)
416 {
417 case EbtInt:
418 case EbtUInt:
419 return sw::Shader::OPCODE_IMUL;
420 case EbtFloat:
421 default:
422 return op;
423 }
424 case sw::Shader::OPCODE_DIV:
425 switch(baseType)
426 {
427 case EbtInt:
428 return sw::Shader::OPCODE_IDIV;
429 case EbtUInt:
430 return sw::Shader::OPCODE_UDIV;
431 case EbtFloat:
432 default:
433 return op;
434 }
435 case sw::Shader::OPCODE_IMOD:
436 return baseType == EbtUInt ? sw::Shader::OPCODE_UMOD : op;
437 case sw::Shader::OPCODE_ISHR:
438 return baseType == EbtUInt ? sw::Shader::OPCODE_USHR : op;
439 case sw::Shader::OPCODE_MIN:
440 switch(baseType)
441 {
442 case EbtInt:
443 return sw::Shader::OPCODE_IMIN;
444 case EbtUInt:
445 return sw::Shader::OPCODE_UMIN;
446 case EbtFloat:
447 default:
448 return op;
449 }
450 case sw::Shader::OPCODE_MAX:
451 switch(baseType)
452 {
453 case EbtInt:
454 return sw::Shader::OPCODE_IMAX;
455 case EbtUInt:
456 return sw::Shader::OPCODE_UMAX;
457 case EbtFloat:
458 default:
459 return op;
460 }
461 default:
462 return op;
463 }
464 }
465
466 void OutputASM::visitSymbol(TIntermSymbol *symbol)
467 {
468 // Vertex varyings don't have to be actively used to successfully link
469 // against pixel shaders that use them. So make sure they're declared.
470 if(symbol->getQualifier() == EvqVaryingOut || symbol->getQualifier() == EvqInvariantVaryingOut || symbol->getQualifier() == EvqVertexOut)
471 {
472 if(symbol->getBasicType() != EbtInvariant) // Typeless declarations are not new varyings
473 {
474 declareVarying(symbol, -1);
475 }
476 }
477
478 TInterfaceBlock* block = symbol->getType().getInterfaceBlock();
479 // OpenGL ES 3.0.4 spec, section 2.12.6 Uniform Variables:
480 // "All members of a named uniform block declared with a shared or std140 layout qualifier
481 // are considered active, even if they are not referenced in any shader in the program.
482 // The uniform block itself is also considered active, even if no member of the block is referenced."
483 if(block && ((block->blockStorage() == EbsShared) || (block->blockStorage() == EbsStd140)))
484 {
485 uniformRegister(symbol);
486 }
487 }
488
489 bool OutputASM::visitBinary(Visit visit, TIntermBinary *node)
490 {
491 if(currentScope != emitScope)
492 {
493 return false;
494 }
495
496 TIntermTyped *result = node;
497 TIntermTyped *left = node->getLeft();
498 TIntermTyped *right = node->getRight();
499 const TType &leftType = left->getType();
500 const TType &rightType = right->getType();
Nicolas Capens0bac2852016-05-07 06:09:58 -0400501
502 if(isSamplerRegister(result))
503 {
504 return false; // Don't traverse, the register index is determined statically
505 }
506
507 switch(node->getOp())
508 {
509 case EOpAssign:
510 if(visit == PostVisit)
511 {
512 assignLvalue(left, right);
513 copy(result, right);
514 }
515 break;
516 case EOpInitialize:
517 if(visit == PostVisit)
518 {
519 copy(left, right);
520 }
521 break;
522 case EOpMatrixTimesScalarAssign:
523 if(visit == PostVisit)
524 {
525 for(int i = 0; i < leftType.getNominalSize(); i++)
526 {
527 emit(sw::Shader::OPCODE_MUL, result, i, left, i, right);
528 }
529
530 assignLvalue(left, result);
531 }
532 break;
533 case EOpVectorTimesMatrixAssign:
534 if(visit == PostVisit)
535 {
536 int size = leftType.getNominalSize();
537
538 for(int i = 0; i < size; i++)
539 {
540 Instruction *dot = emit(sw::Shader::OPCODE_DP(size), result, 0, left, 0, right, i);
541 dot->dst.mask = 1 << i;
542 }
543
544 assignLvalue(left, result);
545 }
546 break;
547 case EOpMatrixTimesMatrixAssign:
548 if(visit == PostVisit)
549 {
550 int dim = leftType.getNominalSize();
551
552 for(int i = 0; i < dim; i++)
553 {
554 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
555 mul->src[1].swizzle = 0x00;
556
557 for(int j = 1; j < dim; j++)
558 {
559 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i);
560 mad->src[1].swizzle = j * 0x55;
561 }
562 }
563
564 assignLvalue(left, result);
565 }
566 break;
567 case EOpIndexDirect:
568 if(visit == PostVisit)
569 {
570 int index = right->getAsConstantUnion()->getIConst(0);
571
572 if(result->isMatrix() || result->isStruct() || result->isInterfaceBlock())
573 {
574 ASSERT(left->isArray());
575 copy(result, left, index * left->elementRegisterCount());
576 }
577 else if(result->isRegister())
578 {
579 int srcIndex = 0;
580 if(left->isRegister())
581 {
582 srcIndex = 0;
583 }
584 else if(left->isArray())
585 {
586 srcIndex = index * left->elementRegisterCount();
587 }
588 else if(left->isMatrix())
589 {
590 ASSERT(index < left->getNominalSize()); // FIXME: Report semantic error
591 srcIndex = index;
592 }
593 else UNREACHABLE(0);
594
595 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, 0, left, srcIndex);
596
597 if(left->isRegister())
598 {
599 mov->src[0].swizzle = index;
600 }
601 }
602 else UNREACHABLE(0);
603 }
604 break;
605 case EOpIndexIndirect:
606 if(visit == PostVisit)
607 {
608 if(left->isArray() || left->isMatrix())
609 {
610 for(int index = 0; index < result->totalRegisterCount(); index++)
611 {
612 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, index, left, index);
613 mov->dst.mask = writeMask(result, index);
614
615 if(left->totalRegisterCount() > 1)
616 {
617 sw::Shader::SourceParameter relativeRegister;
618 argument(relativeRegister, right);
619
620 mov->src[0].rel.type = relativeRegister.type;
621 mov->src[0].rel.index = relativeRegister.index;
622 mov->src[0].rel.scale = result->totalRegisterCount();
623 mov->src[0].rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
624 }
625 }
626 }
627 else if(left->isRegister())
628 {
629 emit(sw::Shader::OPCODE_EXTRACT, result, left, right);
630 }
631 else UNREACHABLE(0);
632 }
633 break;
634 case EOpIndexDirectStruct:
635 case EOpIndexDirectInterfaceBlock:
636 if(visit == PostVisit)
637 {
638 ASSERT(leftType.isStruct() || (leftType.isInterfaceBlock()));
639
640 const TFieldList& fields = (node->getOp() == EOpIndexDirectStruct) ?
641 leftType.getStruct()->fields() :
642 leftType.getInterfaceBlock()->fields();
643 int index = right->getAsConstantUnion()->getIConst(0);
644 int fieldOffset = 0;
645
646 for(int i = 0; i < index; i++)
647 {
648 fieldOffset += fields[i]->type()->totalRegisterCount();
649 }
650
651 copy(result, left, fieldOffset);
652 }
653 break;
654 case EOpVectorSwizzle:
655 if(visit == PostVisit)
656 {
657 int swizzle = 0;
658 TIntermAggregate *components = right->getAsAggregate();
659
660 if(components)
661 {
662 TIntermSequence &sequence = components->getSequence();
663 int component = 0;
664
665 for(TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
666 {
667 TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
668
669 if(element)
670 {
671 int i = element->getUnionArrayPointer()[0].getIConst();
672 swizzle |= i << (component * 2);
673 component++;
674 }
675 else UNREACHABLE(0);
676 }
677 }
678 else UNREACHABLE(0);
679
680 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, left);
681 mov->src[0].swizzle = swizzle;
682 }
683 break;
684 case EOpAddAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, left, right); break;
685 case EOpAdd: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, right); break;
686 case EOpSubAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, left, right); break;
687 case EOpSub: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, right); break;
688 case EOpMulAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, left, right); break;
689 case EOpMul: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, right); break;
690 case EOpDivAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, left, right); break;
691 case EOpDiv: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, right); break;
692 case EOpIModAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, left, right); break;
693 case EOpIMod: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, right); break;
694 case EOpBitShiftLeftAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_SHL, result, left, left, right); break;
695 case EOpBitShiftLeft: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_SHL, result, left, right); break;
696 case EOpBitShiftRightAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, left, right); break;
697 case EOpBitShiftRight: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, right); break;
698 case EOpBitwiseAndAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_AND, result, left, left, right); break;
699 case EOpBitwiseAnd: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_AND, result, left, right); break;
700 case EOpBitwiseXorAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_XOR, result, left, left, right); break;
701 case EOpBitwiseXor: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_XOR, result, left, right); break;
702 case EOpBitwiseOrAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_OR, result, left, left, right); break;
703 case EOpBitwiseOr: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_OR, result, left, right); break;
704 case EOpEqual:
705 if(visit == PostVisit)
706 {
707 emitBinary(sw::Shader::OPCODE_EQ, result, left, right);
708
709 for(int index = 1; index < left->totalRegisterCount(); index++)
710 {
711 Temporary equal(this);
712 emit(sw::Shader::OPCODE_EQ, &equal, 0, left, index, right, index);
713 emit(sw::Shader::OPCODE_AND, result, result, &equal);
714 }
715 }
716 break;
717 case EOpNotEqual:
718 if(visit == PostVisit)
719 {
720 emitBinary(sw::Shader::OPCODE_NE, result, left, right);
721
722 for(int index = 1; index < left->totalRegisterCount(); index++)
723 {
724 Temporary notEqual(this);
725 emit(sw::Shader::OPCODE_NE, &notEqual, 0, left, index, right, index);
726 emit(sw::Shader::OPCODE_OR, result, result, &notEqual);
727 }
728 }
729 break;
730 case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, left, right); break;
731 case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, left, right); break;
732 case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, left, right); break;
733 case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, left, right); break;
734 case EOpVectorTimesScalarAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, left, right); break;
735 case EOpVectorTimesScalar: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, right); break;
736 case EOpMatrixTimesScalar:
737 if(visit == PostVisit)
738 {
739 if(left->isMatrix())
740 {
741 for(int i = 0; i < leftType.getNominalSize(); i++)
742 {
743 emit(sw::Shader::OPCODE_MUL, result, i, left, i, right, 0);
744 }
745 }
746 else if(right->isMatrix())
747 {
748 for(int i = 0; i < rightType.getNominalSize(); i++)
749 {
750 emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
751 }
752 }
753 else UNREACHABLE(0);
754 }
755 break;
756 case EOpVectorTimesMatrix:
757 if(visit == PostVisit)
758 {
759 sw::Shader::Opcode dpOpcode = sw::Shader::OPCODE_DP(leftType.getNominalSize());
760
761 int size = rightType.getNominalSize();
762 for(int i = 0; i < size; i++)
763 {
764 Instruction *dot = emit(dpOpcode, result, 0, left, 0, right, i);
765 dot->dst.mask = 1 << i;
766 }
767 }
768 break;
769 case EOpMatrixTimesVector:
770 if(visit == PostVisit)
771 {
772 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
773 mul->src[1].swizzle = 0x00;
774
775 int size = rightType.getNominalSize();
776 for(int i = 1; i < size; i++)
777 {
778 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, 0, left, i, right, 0, result);
779 mad->src[1].swizzle = i * 0x55;
780 }
781 }
782 break;
783 case EOpMatrixTimesMatrix:
784 if(visit == PostVisit)
785 {
786 int dim = leftType.getNominalSize();
787
788 int size = rightType.getNominalSize();
789 for(int i = 0; i < size; i++)
790 {
791 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
792 mul->src[1].swizzle = 0x00;
793
794 for(int j = 1; j < dim; j++)
795 {
796 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i);
797 mad->src[1].swizzle = j * 0x55;
798 }
799 }
800 }
801 break;
802 case EOpLogicalOr:
803 if(trivial(right, 6))
804 {
805 if(visit == PostVisit)
806 {
807 emit(sw::Shader::OPCODE_OR, result, left, right);
808 }
809 }
810 else // Short-circuit evaluation
811 {
812 if(visit == InVisit)
813 {
814 emit(sw::Shader::OPCODE_MOV, result, left);
815 Instruction *ifnot = emit(sw::Shader::OPCODE_IF, 0, result);
816 ifnot->src[0].modifier = sw::Shader::MODIFIER_NOT;
817 }
818 else if(visit == PostVisit)
819 {
820 emit(sw::Shader::OPCODE_MOV, result, right);
821 emit(sw::Shader::OPCODE_ENDIF);
822 }
823 }
824 break;
825 case EOpLogicalXor: if(visit == PostVisit) emit(sw::Shader::OPCODE_XOR, result, left, right); break;
826 case EOpLogicalAnd:
827 if(trivial(right, 6))
828 {
829 if(visit == PostVisit)
830 {
831 emit(sw::Shader::OPCODE_AND, result, left, right);
832 }
833 }
834 else // Short-circuit evaluation
835 {
836 if(visit == InVisit)
837 {
838 emit(sw::Shader::OPCODE_MOV, result, left);
839 emit(sw::Shader::OPCODE_IF, 0, result);
840 }
841 else if(visit == PostVisit)
842 {
843 emit(sw::Shader::OPCODE_MOV, result, right);
844 emit(sw::Shader::OPCODE_ENDIF);
845 }
846 }
847 break;
848 default: UNREACHABLE(node->getOp());
849 }
850
851 return true;
852 }
853
854 void OutputASM::emitDeterminant(TIntermTyped *result, TIntermTyped *arg, int size, int col, int row, int outCol, int outRow)
855 {
856 switch(size)
857 {
858 case 1: // Used for cofactor computation only
859 {
860 // For a 2x2 matrix, the cofactor is simply a transposed move or negate
861 bool isMov = (row == col);
862 sw::Shader::Opcode op = isMov ? sw::Shader::OPCODE_MOV : sw::Shader::OPCODE_NEG;
863 Instruction *mov = emit(op, result, outCol, arg, isMov ? 1 - row : row);
864 mov->src[0].swizzle = 0x55 * (isMov ? 1 - col : col);
865 mov->dst.mask = 1 << outRow;
866 }
867 break;
868 case 2:
869 {
870 static const unsigned int swizzle[3] = { 0x99, 0x88, 0x44 }; // xy?? : yzyz, xzxz, xyxy
871
872 bool isCofactor = (col >= 0) && (row >= 0);
873 int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
874 int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
875 bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
876
877 Instruction *det = emit(sw::Shader::OPCODE_DET2, result, outCol, arg, negate ? col1 : col0, arg, negate ? col0 : col1);
878 det->src[0].swizzle = det->src[1].swizzle = swizzle[isCofactor ? row : 2];
879 det->dst.mask = 1 << outRow;
880 }
881 break;
882 case 3:
883 {
884 static const unsigned int swizzle[4] = { 0xF9, 0xF8, 0xF4, 0xE4 }; // xyz? : yzww, xzww, xyww, xyzw
885
886 bool isCofactor = (col >= 0) && (row >= 0);
887 int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
888 int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
889 int col2 = (isCofactor && (col <= 2)) ? 3 : 2;
890 bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
891
892 Instruction *det = emit(sw::Shader::OPCODE_DET3, result, outCol, arg, col0, arg, negate ? col2 : col1, arg, negate ? col1 : col2);
893 det->src[0].swizzle = det->src[1].swizzle = det->src[2].swizzle = swizzle[isCofactor ? row : 3];
894 det->dst.mask = 1 << outRow;
895 }
896 break;
897 case 4:
898 {
899 Instruction *det = emit(sw::Shader::OPCODE_DET4, result, outCol, arg, 0, arg, 1, arg, 2, arg, 3);
900 det->dst.mask = 1 << outRow;
901 }
902 break;
903 default:
904 UNREACHABLE(size);
905 break;
906 }
907 }
908
909 bool OutputASM::visitUnary(Visit visit, TIntermUnary *node)
910 {
911 if(currentScope != emitScope)
912 {
913 return false;
914 }
915
916 TIntermTyped *result = node;
917 TIntermTyped *arg = node->getOperand();
918 TBasicType basicType = arg->getType().getBasicType();
919
920 union
921 {
922 float f;
923 int i;
924 } one_value;
925
926 if(basicType == EbtInt || basicType == EbtUInt)
927 {
928 one_value.i = 1;
929 }
930 else
931 {
932 one_value.f = 1.0f;
933 }
934
935 Constant one(one_value.f, one_value.f, one_value.f, one_value.f);
936 Constant rad(1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f);
937 Constant deg(5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f);
938
939 switch(node->getOp())
940 {
941 case EOpNegative:
942 if(visit == PostVisit)
943 {
944 sw::Shader::Opcode negOpcode = getOpcode(sw::Shader::OPCODE_NEG, arg);
945 for(int index = 0; index < arg->totalRegisterCount(); index++)
946 {
947 emit(negOpcode, result, index, arg, index);
948 }
949 }
950 break;
951 case EOpVectorLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
952 case EOpLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
Alexis Hetu18e2a972017-07-28 13:43:25 -0400953 case EOpBitwiseNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
Nicolas Capens0bac2852016-05-07 06:09:58 -0400954 case EOpPostIncrement:
955 if(visit == PostVisit)
956 {
957 copy(result, arg);
958
959 sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
960 for(int index = 0; index < arg->totalRegisterCount(); index++)
961 {
962 emit(addOpcode, arg, index, arg, index, &one);
963 }
964
965 assignLvalue(arg, arg);
966 }
967 break;
968 case EOpPostDecrement:
969 if(visit == PostVisit)
970 {
971 copy(result, arg);
972
973 sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
974 for(int index = 0; index < arg->totalRegisterCount(); index++)
975 {
976 emit(subOpcode, arg, index, arg, index, &one);
977 }
978
979 assignLvalue(arg, arg);
980 }
981 break;
982 case EOpPreIncrement:
983 if(visit == PostVisit)
984 {
985 sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
986 for(int index = 0; index < arg->totalRegisterCount(); index++)
987 {
988 emit(addOpcode, result, index, arg, index, &one);
989 }
990
991 assignLvalue(arg, result);
992 }
993 break;
994 case EOpPreDecrement:
995 if(visit == PostVisit)
996 {
997 sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
998 for(int index = 0; index < arg->totalRegisterCount(); index++)
999 {
1000 emit(subOpcode, result, index, arg, index, &one);
1001 }
1002
1003 assignLvalue(arg, result);
1004 }
1005 break;
1006 case EOpRadians: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &rad); break;
1007 case EOpDegrees: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &deg); break;
1008 case EOpSin: if(visit == PostVisit) emit(sw::Shader::OPCODE_SIN, result, arg); break;
1009 case EOpCos: if(visit == PostVisit) emit(sw::Shader::OPCODE_COS, result, arg); break;
1010 case EOpTan: if(visit == PostVisit) emit(sw::Shader::OPCODE_TAN, result, arg); break;
1011 case EOpAsin: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASIN, result, arg); break;
1012 case EOpAcos: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOS, result, arg); break;
1013 case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN, result, arg); break;
1014 case EOpSinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_SINH, result, arg); break;
1015 case EOpCosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_COSH, result, arg); break;
1016 case EOpTanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_TANH, result, arg); break;
1017 case EOpAsinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASINH, result, arg); break;
1018 case EOpAcosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOSH, result, arg); break;
1019 case EOpAtanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATANH, result, arg); break;
1020 case EOpExp: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP, result, arg); break;
1021 case EOpLog: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG, result, arg); break;
1022 case EOpExp2: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP2, result, arg); break;
1023 case EOpLog2: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG2, result, arg); break;
1024 case EOpSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_SQRT, result, arg); break;
1025 case EOpInverseSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_RSQ, result, arg); break;
1026 case EOpAbs: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_ABS, result), result, arg); break;
1027 case EOpSign: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_SGN, result), result, arg); break;
1028 case EOpFloor: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOOR, result, arg); break;
1029 case EOpTrunc: if(visit == PostVisit) emit(sw::Shader::OPCODE_TRUNC, result, arg); break;
1030 case EOpRound: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUND, result, arg); break;
1031 case EOpRoundEven: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUNDEVEN, result, arg); break;
1032 case EOpCeil: if(visit == PostVisit) emit(sw::Shader::OPCODE_CEIL, result, arg, result); break;
1033 case EOpFract: if(visit == PostVisit) emit(sw::Shader::OPCODE_FRC, result, arg); break;
1034 case EOpIsNan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISNAN, result, arg); break;
1035 case EOpIsInf: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISINF, result, arg); break;
1036 case EOpLength: if(visit == PostVisit) emit(sw::Shader::OPCODE_LEN(dim(arg)), result, arg); break;
1037 case EOpNormalize: if(visit == PostVisit) emit(sw::Shader::OPCODE_NRM(dim(arg)), result, arg); break;
1038 case EOpDFdx: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDX, result, arg); break;
1039 case EOpDFdy: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDY, result, arg); break;
1040 case EOpFwidth: if(visit == PostVisit) emit(sw::Shader::OPCODE_FWIDTH, result, arg); break;
1041 case EOpAny: if(visit == PostVisit) emit(sw::Shader::OPCODE_ANY, result, arg); break;
1042 case EOpAll: if(visit == PostVisit) emit(sw::Shader::OPCODE_ALL, result, arg); break;
1043 case EOpFloatBitsToInt: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOINT, result, arg); break;
1044 case EOpFloatBitsToUint: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOUINT, result, arg); break;
1045 case EOpIntBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_INTBITSTOFLOAT, result, arg); break;
1046 case EOpUintBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_UINTBITSTOFLOAT, result, arg); break;
1047 case EOpPackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKSNORM2x16, result, arg); break;
1048 case EOpPackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKUNORM2x16, result, arg); break;
1049 case EOpPackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKHALF2x16, result, arg); break;
1050 case EOpUnpackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKSNORM2x16, result, arg); break;
1051 case EOpUnpackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKUNORM2x16, result, arg); break;
1052 case EOpUnpackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKHALF2x16, result, arg); break;
1053 case EOpTranspose:
1054 if(visit == PostVisit)
1055 {
1056 int numCols = arg->getNominalSize();
1057 int numRows = arg->getSecondarySize();
1058 for(int i = 0; i < numCols; ++i)
1059 {
1060 for(int j = 0; j < numRows; ++j)
1061 {
1062 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, j, arg, i);
1063 mov->src[0].swizzle = 0x55 * j;
1064 mov->dst.mask = 1 << i;
1065 }
1066 }
1067 }
1068 break;
1069 case EOpDeterminant:
1070 if(visit == PostVisit)
1071 {
1072 int size = arg->getNominalSize();
1073 ASSERT(size == arg->getSecondarySize());
1074
1075 emitDeterminant(result, arg, size);
1076 }
1077 break;
1078 case EOpInverse:
1079 if(visit == PostVisit)
1080 {
1081 int size = arg->getNominalSize();
1082 ASSERT(size == arg->getSecondarySize());
1083
1084 // Compute transposed matrix of cofactors
1085 for(int i = 0; i < size; ++i)
1086 {
1087 for(int j = 0; j < size; ++j)
1088 {
1089 // For a 2x2 matrix, the cofactor is simply a transposed move or negate
1090 // For a 3x3 or 4x4 matrix, the cofactor is a transposed determinant
1091 emitDeterminant(result, arg, size - 1, j, i, i, j);
1092 }
1093 }
1094
1095 // Compute 1 / determinant
1096 Temporary invDet(this);
1097 emitDeterminant(&invDet, arg, size);
1098 Constant one(1.0f, 1.0f, 1.0f, 1.0f);
1099 Instruction *div = emit(sw::Shader::OPCODE_DIV, &invDet, &one, &invDet);
1100 div->src[1].swizzle = 0x00; // xxxx
1101
1102 // Divide transposed matrix of cofactors by determinant
1103 for(int i = 0; i < size; ++i)
1104 {
1105 emit(sw::Shader::OPCODE_MUL, result, i, result, i, &invDet);
1106 }
1107 }
1108 break;
1109 default: UNREACHABLE(node->getOp());
1110 }
1111
1112 return true;
1113 }
1114
1115 bool OutputASM::visitAggregate(Visit visit, TIntermAggregate *node)
1116 {
1117 if(currentScope != emitScope && node->getOp() != EOpFunction && node->getOp() != EOpSequence)
1118 {
1119 return false;
1120 }
1121
1122 Constant zero(0.0f, 0.0f, 0.0f, 0.0f);
1123
1124 TIntermTyped *result = node;
1125 const TType &resultType = node->getType();
1126 TIntermSequence &arg = node->getSequence();
1127 size_t argumentCount = arg.size();
1128
1129 switch(node->getOp())
1130 {
1131 case EOpSequence: break;
1132 case EOpDeclaration: break;
1133 case EOpInvariantDeclaration: break;
1134 case EOpPrototype: break;
1135 case EOpComma:
1136 if(visit == PostVisit)
1137 {
1138 copy(result, arg[1]);
1139 }
1140 break;
1141 case EOpFunction:
1142 if(visit == PreVisit)
1143 {
1144 const TString &name = node->getName();
1145
1146 if(emitScope == FUNCTION)
1147 {
1148 if(functionArray.size() > 1) // No need for a label when there's only main()
1149 {
1150 Instruction *label = emit(sw::Shader::OPCODE_LABEL);
1151 label->dst.type = sw::Shader::PARAMETER_LABEL;
1152
1153 const Function *function = findFunction(name);
1154 ASSERT(function); // Should have been added during global pass
1155 label->dst.index = function->label;
1156 currentFunction = function->label;
1157 }
1158 }
1159 else if(emitScope == GLOBAL)
1160 {
1161 if(name != "main(")
1162 {
1163 TIntermSequence &arguments = node->getSequence()[0]->getAsAggregate()->getSequence();
1164 functionArray.push_back(Function(functionArray.size(), name, &arguments, node));
1165 }
1166 }
1167 else UNREACHABLE(emitScope);
1168
1169 currentScope = FUNCTION;
1170 }
1171 else if(visit == PostVisit)
1172 {
1173 if(emitScope == FUNCTION)
1174 {
1175 if(functionArray.size() > 1) // No need to return when there's only main()
1176 {
1177 emit(sw::Shader::OPCODE_RET);
1178 }
1179 }
1180
1181 currentScope = GLOBAL;
1182 }
1183 break;
1184 case EOpFunctionCall:
1185 if(visit == PostVisit)
1186 {
1187 if(node->isUserDefined())
1188 {
1189 const TString &name = node->getName();
1190 const Function *function = findFunction(name);
1191
1192 if(!function)
1193 {
1194 mContext.error(node->getLine(), "function definition not found", name.c_str());
1195 return false;
1196 }
1197
1198 TIntermSequence &arguments = *function->arg;
1199
1200 for(size_t i = 0; i < argumentCount; i++)
1201 {
1202 TIntermTyped *in = arguments[i]->getAsTyped();
1203
1204 if(in->getQualifier() == EvqIn ||
1205 in->getQualifier() == EvqInOut ||
1206 in->getQualifier() == EvqConstReadOnly)
1207 {
1208 copy(in, arg[i]);
1209 }
1210 }
1211
1212 Instruction *call = emit(sw::Shader::OPCODE_CALL);
1213 call->dst.type = sw::Shader::PARAMETER_LABEL;
1214 call->dst.index = function->label;
1215
1216 if(function->ret && function->ret->getType().getBasicType() != EbtVoid)
1217 {
1218 copy(result, function->ret);
1219 }
1220
1221 for(size_t i = 0; i < argumentCount; i++)
1222 {
1223 TIntermTyped *argument = arguments[i]->getAsTyped();
1224 TIntermTyped *out = arg[i]->getAsTyped();
1225
1226 if(argument->getQualifier() == EvqOut ||
1227 argument->getQualifier() == EvqInOut)
1228 {
Nicolas Capens5da2d3f2016-06-11 00:41:49 -04001229 assignLvalue(out, argument);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001230 }
1231 }
1232 }
1233 else
1234 {
1235 const TextureFunction textureFunction(node->getName());
1236 TIntermTyped *t = arg[1]->getAsTyped();
1237
1238 Temporary coord(this);
1239
1240 if(textureFunction.proj)
1241 {
Nicolas Capens0484c792016-06-13 22:02:36 -04001242 Instruction *rcp = emit(sw::Shader::OPCODE_RCPX, &coord, arg[1]);
1243 rcp->src[0].swizzle = 0x55 * (t->getNominalSize() - 1);
1244 rcp->dst.mask = 0x7;
Nicolas Capens0bac2852016-05-07 06:09:58 -04001245
Nicolas Capens0484c792016-06-13 22:02:36 -04001246 Instruction *mul = emit(sw::Shader::OPCODE_MUL, &coord, arg[1], &coord);
1247 mul->dst.mask = 0x7;
Nicolas Capens0bac2852016-05-07 06:09:58 -04001248 }
1249 else
1250 {
1251 emit(sw::Shader::OPCODE_MOV, &coord, arg[1]);
1252 }
1253
1254 switch(textureFunction.method)
1255 {
1256 case TextureFunction::IMPLICIT:
1257 {
1258 TIntermNode* offset = textureFunction.offset ? arg[2] : 0;
1259
1260 if(argumentCount == 2 || (textureFunction.offset && argumentCount == 3))
1261 {
Alexis Hetu7208e932016-06-02 11:19:24 -04001262 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
1263 result, &coord, arg[0], offset);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001264 }
1265 else if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4)) // bias
1266 {
1267 Instruction *bias = emit(sw::Shader::OPCODE_MOV, &coord, arg[textureFunction.offset ? 3 : 2]);
1268 bias->dst.mask = 0x8;
1269
1270 Instruction *tex = emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
1271 result, &coord, arg[0], offset); // FIXME: Implement an efficient TEXLDB instruction
1272 tex->bias = true;
1273 }
1274 else UNREACHABLE(argumentCount);
1275 }
1276 break;
1277 case TextureFunction::LOD:
1278 {
1279 Instruction *lod = emit(sw::Shader::OPCODE_MOV, &coord, arg[2]);
1280 lod->dst.mask = 0x8;
1281
1282 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXLDLOFFSET : sw::Shader::OPCODE_TEXLDL,
1283 result, &coord, arg[0], textureFunction.offset ? arg[3] : nullptr);
1284 }
1285 break;
1286 case TextureFunction::FETCH:
1287 {
1288 if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4))
1289 {
Meng-Lin Wu9d62c482016-06-14 11:11:25 -04001290 Instruction *lod = emit(sw::Shader::OPCODE_MOV, &coord, arg[2]);
1291 lod->dst.mask = 0x8;
1292
Nicolas Capens0bac2852016-05-07 06:09:58 -04001293 TIntermNode *offset = textureFunction.offset ? arg[3] : nullptr;
1294
1295 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXELFETCHOFFSET : sw::Shader::OPCODE_TEXELFETCH,
Meng-Lin Wu9d62c482016-06-14 11:11:25 -04001296 result, &coord, arg[0], offset);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001297 }
1298 else UNREACHABLE(argumentCount);
1299 }
1300 break;
1301 case TextureFunction::GRAD:
1302 {
1303 if(argumentCount == 4 || (textureFunction.offset && argumentCount == 5))
1304 {
1305 TIntermNode *offset = textureFunction.offset ? arg[4] : nullptr;
1306
1307 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXGRADOFFSET : sw::Shader::OPCODE_TEXGRAD,
1308 result, &coord, arg[0], arg[2], arg[3], offset);
1309 }
1310 else UNREACHABLE(argumentCount);
1311 }
1312 break;
1313 case TextureFunction::SIZE:
1314 emit(sw::Shader::OPCODE_TEXSIZE, result, arg[1], arg[0]);
1315 break;
1316 default:
1317 UNREACHABLE(textureFunction.method);
1318 }
1319 }
1320 }
1321 break;
1322 case EOpParameters:
1323 break;
1324 case EOpConstructFloat:
1325 case EOpConstructVec2:
1326 case EOpConstructVec3:
1327 case EOpConstructVec4:
1328 case EOpConstructBool:
1329 case EOpConstructBVec2:
1330 case EOpConstructBVec3:
1331 case EOpConstructBVec4:
1332 case EOpConstructInt:
1333 case EOpConstructIVec2:
1334 case EOpConstructIVec3:
1335 case EOpConstructIVec4:
1336 case EOpConstructUInt:
1337 case EOpConstructUVec2:
1338 case EOpConstructUVec3:
1339 case EOpConstructUVec4:
1340 if(visit == PostVisit)
1341 {
1342 int component = 0;
Alexis Hetu2a198552016-09-27 20:50:45 -04001343 int arrayMaxIndex = result->isArray() ? result->getArraySize() - 1 : 0;
1344 int arrayComponents = result->getType().getElementSize();
Nicolas Capens0bac2852016-05-07 06:09:58 -04001345 for(size_t i = 0; i < argumentCount; i++)
1346 {
1347 TIntermTyped *argi = arg[i]->getAsTyped();
1348 int size = argi->getNominalSize();
Alexis Hetu2a198552016-09-27 20:50:45 -04001349 int arrayIndex = std::min(component / arrayComponents, arrayMaxIndex);
1350 int swizzle = component - (arrayIndex * arrayComponents);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001351
1352 if(!argi->isMatrix())
1353 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001354 Instruction *mov = emitCast(result, arrayIndex, argi, 0);
1355 mov->dst.mask = (0xF << swizzle) & 0xF;
1356 mov->src[0].swizzle = readSwizzle(argi, size) << (swizzle * 2);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001357
1358 component += size;
1359 }
1360 else // Matrix
1361 {
1362 int column = 0;
1363
1364 while(component < resultType.getNominalSize())
1365 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001366 Instruction *mov = emitCast(result, arrayIndex, argi, column);
1367 mov->dst.mask = (0xF << swizzle) & 0xF;
1368 mov->src[0].swizzle = readSwizzle(argi, size) << (swizzle * 2);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001369
1370 column++;
1371 component += size;
1372 }
1373 }
1374 }
1375 }
1376 break;
1377 case EOpConstructMat2:
1378 case EOpConstructMat2x3:
1379 case EOpConstructMat2x4:
1380 case EOpConstructMat3x2:
1381 case EOpConstructMat3:
1382 case EOpConstructMat3x4:
1383 case EOpConstructMat4x2:
1384 case EOpConstructMat4x3:
1385 case EOpConstructMat4:
1386 if(visit == PostVisit)
1387 {
1388 TIntermTyped *arg0 = arg[0]->getAsTyped();
1389 const int outCols = result->getNominalSize();
1390 const int outRows = result->getSecondarySize();
1391
1392 if(arg0->isScalar() && arg.size() == 1) // Construct scale matrix
1393 {
1394 for(int i = 0; i < outCols; i++)
1395 {
Alexis Hetu7208e932016-06-02 11:19:24 -04001396 emit(sw::Shader::OPCODE_MOV, result, i, &zero);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001397 Instruction *mov = emitCast(result, i, arg0, 0);
1398 mov->dst.mask = 1 << i;
1399 ASSERT(mov->src[0].swizzle == 0x00);
1400 }
1401 }
1402 else if(arg0->isMatrix())
1403 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001404 int arraySize = result->isArray() ? result->getArraySize() : 1;
Nicolas Capens0bac2852016-05-07 06:09:58 -04001405
Alexis Hetu2a198552016-09-27 20:50:45 -04001406 for(int n = 0; n < arraySize; n++)
Nicolas Capens0bac2852016-05-07 06:09:58 -04001407 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001408 TIntermTyped *argi = arg[n]->getAsTyped();
1409 const int inCols = argi->getNominalSize();
1410 const int inRows = argi->getSecondarySize();
Nicolas Capens0bac2852016-05-07 06:09:58 -04001411
Alexis Hetu2a198552016-09-27 20:50:45 -04001412 for(int i = 0; i < outCols; i++)
Nicolas Capens0bac2852016-05-07 06:09:58 -04001413 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001414 if(i >= inCols || outRows > inRows)
1415 {
1416 // Initialize to identity matrix
1417 Constant col((i == 0 ? 1.0f : 0.0f), (i == 1 ? 1.0f : 0.0f), (i == 2 ? 1.0f : 0.0f), (i == 3 ? 1.0f : 0.0f));
1418 emitCast(result, i + n * outCols, &col, 0);
1419 }
1420
1421 if(i < inCols)
1422 {
1423 Instruction *mov = emitCast(result, i + n * outCols, argi, i);
1424 mov->dst.mask = 0xF >> (4 - inRows);
1425 }
Nicolas Capens0bac2852016-05-07 06:09:58 -04001426 }
1427 }
1428 }
1429 else
1430 {
1431 int column = 0;
1432 int row = 0;
1433
1434 for(size_t i = 0; i < argumentCount; i++)
1435 {
1436 TIntermTyped *argi = arg[i]->getAsTyped();
1437 int size = argi->getNominalSize();
1438 int element = 0;
1439
1440 while(element < size)
1441 {
1442 Instruction *mov = emitCast(result, column, argi, 0);
1443 mov->dst.mask = (0xF << row) & 0xF;
1444 mov->src[0].swizzle = (readSwizzle(argi, size) << (row * 2)) + 0x55 * element;
1445
1446 int end = row + size - element;
1447 column = end >= outRows ? column + 1 : column;
1448 element = element + outRows - row;
1449 row = end >= outRows ? 0 : end;
1450 }
1451 }
1452 }
1453 }
1454 break;
1455 case EOpConstructStruct:
1456 if(visit == PostVisit)
1457 {
1458 int offset = 0;
1459 for(size_t i = 0; i < argumentCount; i++)
1460 {
1461 TIntermTyped *argi = arg[i]->getAsTyped();
1462 int size = argi->totalRegisterCount();
1463
1464 for(int index = 0; index < size; index++)
1465 {
1466 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, index + offset, argi, index);
1467 mov->dst.mask = writeMask(result, offset + index);
1468 }
1469
1470 offset += size;
1471 }
1472 }
1473 break;
1474 case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, arg[0], arg[1]); break;
1475 case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, arg[0], arg[1]); break;
1476 case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, arg[0], arg[1]); break;
1477 case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, arg[0], arg[1]); break;
1478 case EOpVectorEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_EQ, result, arg[0], arg[1]); break;
1479 case EOpVectorNotEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_NE, result, arg[0], arg[1]); break;
1480 case EOpMod: if(visit == PostVisit) emit(sw::Shader::OPCODE_MOD, result, arg[0], arg[1]); break;
1481 case EOpModf:
1482 if(visit == PostVisit)
1483 {
1484 TIntermTyped* arg1 = arg[1]->getAsTyped();
1485 emit(sw::Shader::OPCODE_TRUNC, arg1, arg[0]);
1486 assignLvalue(arg1, arg1);
1487 emitBinary(sw::Shader::OPCODE_SUB, result, arg[0], arg1);
1488 }
1489 break;
1490 case EOpPow: if(visit == PostVisit) emit(sw::Shader::OPCODE_POW, result, arg[0], arg[1]); break;
1491 case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN2, result, arg[0], arg[1]); break;
1492 case EOpMin: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, arg[0], arg[1]); break;
1493 case EOpMax: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]); break;
1494 case EOpClamp:
1495 if(visit == PostVisit)
1496 {
1497 emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]);
1498 emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, result, arg[2]);
1499 }
1500 break;
1501 case EOpMix: if(visit == PostVisit) emit(sw::Shader::OPCODE_LRP, result, arg[2], arg[1], arg[0]); break;
1502 case EOpStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_STEP, result, arg[0], arg[1]); break;
1503 case EOpSmoothStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_SMOOTH, result, arg[0], arg[1], arg[2]); break;
1504 case EOpDistance: if(visit == PostVisit) emit(sw::Shader::OPCODE_DIST(dim(arg[0])), result, arg[0], arg[1]); break;
1505 case EOpDot: if(visit == PostVisit) emit(sw::Shader::OPCODE_DP(dim(arg[0])), result, arg[0], arg[1]); break;
1506 case EOpCross: if(visit == PostVisit) emit(sw::Shader::OPCODE_CRS, result, arg[0], arg[1]); break;
1507 case EOpFaceForward: if(visit == PostVisit) emit(sw::Shader::OPCODE_FORWARD(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
1508 case EOpReflect: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFLECT(dim(arg[0])), result, arg[0], arg[1]); break;
1509 case EOpRefract: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFRACT(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
1510 case EOpMul:
1511 if(visit == PostVisit)
1512 {
1513 TIntermTyped *arg0 = arg[0]->getAsTyped();
Alexis Hetue97a31e2016-11-14 14:10:47 -05001514 ASSERT((arg0->getNominalSize() == arg[1]->getAsTyped()->getNominalSize()) &&
1515 (arg0->getSecondarySize() == arg[1]->getAsTyped()->getSecondarySize()));
Nicolas Capens0bac2852016-05-07 06:09:58 -04001516
1517 int size = arg0->getNominalSize();
1518 for(int i = 0; i < size; i++)
1519 {
1520 emit(sw::Shader::OPCODE_MUL, result, i, arg[0], i, arg[1], i);
1521 }
1522 }
1523 break;
1524 case EOpOuterProduct:
1525 if(visit == PostVisit)
1526 {
1527 for(int i = 0; i < dim(arg[1]); i++)
1528 {
1529 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, arg[0], 0, arg[1]);
1530 mul->src[1].swizzle = 0x55 * i;
1531 }
1532 }
1533 break;
1534 default: UNREACHABLE(node->getOp());
1535 }
1536
1537 return true;
1538 }
1539
1540 bool OutputASM::visitSelection(Visit visit, TIntermSelection *node)
1541 {
1542 if(currentScope != emitScope)
1543 {
1544 return false;
1545 }
1546
1547 TIntermTyped *condition = node->getCondition();
1548 TIntermNode *trueBlock = node->getTrueBlock();
1549 TIntermNode *falseBlock = node->getFalseBlock();
1550 TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
1551
1552 condition->traverse(this);
1553
1554 if(node->usesTernaryOperator())
1555 {
1556 if(constantCondition)
1557 {
1558 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
1559
1560 if(trueCondition)
1561 {
1562 trueBlock->traverse(this);
1563 copy(node, trueBlock);
1564 }
1565 else
1566 {
1567 falseBlock->traverse(this);
1568 copy(node, falseBlock);
1569 }
1570 }
1571 else if(trivial(node, 6)) // Fast to compute both potential results and no side effects
1572 {
1573 trueBlock->traverse(this);
1574 falseBlock->traverse(this);
1575 emit(sw::Shader::OPCODE_SELECT, node, condition, trueBlock, falseBlock);
1576 }
1577 else
1578 {
1579 emit(sw::Shader::OPCODE_IF, 0, condition);
1580
1581 if(trueBlock)
1582 {
1583 trueBlock->traverse(this);
1584 copy(node, trueBlock);
1585 }
1586
1587 if(falseBlock)
1588 {
1589 emit(sw::Shader::OPCODE_ELSE);
1590 falseBlock->traverse(this);
1591 copy(node, falseBlock);
1592 }
1593
1594 emit(sw::Shader::OPCODE_ENDIF);
1595 }
1596 }
1597 else // if/else statement
1598 {
1599 if(constantCondition)
1600 {
1601 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
1602
1603 if(trueCondition)
1604 {
1605 if(trueBlock)
1606 {
1607 trueBlock->traverse(this);
1608 }
1609 }
1610 else
1611 {
1612 if(falseBlock)
1613 {
1614 falseBlock->traverse(this);
1615 }
1616 }
1617 }
1618 else
1619 {
1620 emit(sw::Shader::OPCODE_IF, 0, condition);
1621
1622 if(trueBlock)
1623 {
1624 trueBlock->traverse(this);
1625 }
1626
1627 if(falseBlock)
1628 {
1629 emit(sw::Shader::OPCODE_ELSE);
1630 falseBlock->traverse(this);
1631 }
1632
1633 emit(sw::Shader::OPCODE_ENDIF);
1634 }
1635 }
1636
1637 return false;
1638 }
1639
1640 bool OutputASM::visitLoop(Visit visit, TIntermLoop *node)
1641 {
1642 if(currentScope != emitScope)
1643 {
1644 return false;
1645 }
1646
1647 unsigned int iterations = loopCount(node);
1648
1649 if(iterations == 0)
1650 {
1651 return false;
1652 }
1653
1654 bool unroll = (iterations <= 4);
1655
1656 if(unroll)
1657 {
1658 LoopUnrollable loopUnrollable;
1659 unroll = loopUnrollable.traverse(node);
1660 }
1661
1662 TIntermNode *init = node->getInit();
1663 TIntermTyped *condition = node->getCondition();
1664 TIntermTyped *expression = node->getExpression();
1665 TIntermNode *body = node->getBody();
1666 Constant True(true);
1667
1668 if(node->getType() == ELoopDoWhile)
1669 {
1670 Temporary iterate(this);
1671 emit(sw::Shader::OPCODE_MOV, &iterate, &True);
1672
1673 emit(sw::Shader::OPCODE_WHILE, 0, &iterate); // FIXME: Implement real do-while
1674
1675 if(body)
1676 {
1677 body->traverse(this);
1678 }
1679
1680 emit(sw::Shader::OPCODE_TEST);
1681
1682 condition->traverse(this);
1683 emit(sw::Shader::OPCODE_MOV, &iterate, condition);
1684
1685 emit(sw::Shader::OPCODE_ENDWHILE);
1686 }
1687 else
1688 {
1689 if(init)
1690 {
1691 init->traverse(this);
1692 }
1693
1694 if(unroll)
1695 {
1696 for(unsigned int i = 0; i < iterations; i++)
1697 {
1698 // condition->traverse(this); // Condition could contain statements, but not in an unrollable loop
1699
1700 if(body)
1701 {
1702 body->traverse(this);
1703 }
1704
1705 if(expression)
1706 {
1707 expression->traverse(this);
1708 }
1709 }
1710 }
1711 else
1712 {
1713 if(condition)
1714 {
1715 condition->traverse(this);
1716 }
1717 else
1718 {
1719 condition = &True;
1720 }
1721
1722 emit(sw::Shader::OPCODE_WHILE, 0, condition);
1723
1724 if(body)
1725 {
1726 body->traverse(this);
1727 }
1728
1729 emit(sw::Shader::OPCODE_TEST);
1730
1731 if(expression)
1732 {
1733 expression->traverse(this);
1734 }
1735
1736 if(condition)
1737 {
1738 condition->traverse(this);
1739 }
1740
1741 emit(sw::Shader::OPCODE_ENDWHILE);
1742 }
1743 }
1744
1745 return false;
1746 }
1747
1748 bool OutputASM::visitBranch(Visit visit, TIntermBranch *node)
1749 {
1750 if(currentScope != emitScope)
1751 {
1752 return false;
1753 }
1754
1755 switch(node->getFlowOp())
1756 {
1757 case EOpKill: if(visit == PostVisit) emit(sw::Shader::OPCODE_DISCARD); break;
1758 case EOpBreak: if(visit == PostVisit) emit(sw::Shader::OPCODE_BREAK); break;
1759 case EOpContinue: if(visit == PostVisit) emit(sw::Shader::OPCODE_CONTINUE); break;
1760 case EOpReturn:
1761 if(visit == PostVisit)
1762 {
1763 TIntermTyped *value = node->getExpression();
1764
1765 if(value)
1766 {
1767 copy(functionArray[currentFunction].ret, value);
1768 }
1769
1770 emit(sw::Shader::OPCODE_LEAVE);
1771 }
1772 break;
1773 default: UNREACHABLE(node->getFlowOp());
1774 }
1775
1776 return true;
1777 }
1778
Alexis Hetu9aa83a92016-05-02 17:34:46 -04001779 bool OutputASM::visitSwitch(Visit visit, TIntermSwitch *node)
1780 {
1781 if(currentScope != emitScope)
1782 {
1783 return false;
1784 }
1785
1786 TIntermTyped* switchValue = node->getInit();
1787 TIntermAggregate* opList = node->getStatementList();
1788
1789 if(!switchValue || !opList)
1790 {
1791 return false;
1792 }
1793
1794 switchValue->traverse(this);
1795
1796 emit(sw::Shader::OPCODE_SWITCH);
1797
1798 TIntermSequence& sequence = opList->getSequence();
1799 TIntermSequence::iterator it = sequence.begin();
1800 TIntermSequence::iterator defaultIt = sequence.end();
1801 int nbCases = 0;
1802 for(; it != sequence.end(); ++it)
1803 {
1804 TIntermCase* currentCase = (*it)->getAsCaseNode();
1805 if(currentCase)
1806 {
1807 TIntermSequence::iterator caseIt = it;
1808
1809 TIntermTyped* condition = currentCase->getCondition();
1810 if(condition) // non default case
1811 {
1812 if(nbCases != 0)
1813 {
1814 emit(sw::Shader::OPCODE_ELSE);
1815 }
1816
1817 condition->traverse(this);
1818 Temporary result(this);
1819 emitBinary(sw::Shader::OPCODE_EQ, &result, switchValue, condition);
1820 emit(sw::Shader::OPCODE_IF, 0, &result);
1821 nbCases++;
1822
1823 for(++caseIt; caseIt != sequence.end(); ++caseIt)
1824 {
1825 (*caseIt)->traverse(this);
1826 if((*caseIt)->getAsBranchNode()) // Kill, Break, Continue or Return
1827 {
1828 break;
1829 }
1830 }
1831 }
1832 else
1833 {
1834 defaultIt = it; // The default case might not be the last case, keep it for last
1835 }
1836 }
1837 }
1838
1839 // If there's a default case, traverse it here
1840 if(defaultIt != sequence.end())
1841 {
1842 emit(sw::Shader::OPCODE_ELSE);
1843 for(++defaultIt; defaultIt != sequence.end(); ++defaultIt)
1844 {
1845 (*defaultIt)->traverse(this);
1846 if((*defaultIt)->getAsBranchNode()) // Kill, Break, Continue or Return
1847 {
1848 break;
1849 }
1850 }
1851 }
1852
1853 for(int i = 0; i < nbCases; ++i)
1854 {
1855 emit(sw::Shader::OPCODE_ENDIF);
1856 }
1857
1858 emit(sw::Shader::OPCODE_ENDSWITCH);
1859
1860 return false;
1861 }
1862
Nicolas Capens0bac2852016-05-07 06:09:58 -04001863 Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2, TIntermNode *src3, TIntermNode *src4)
1864 {
1865 return emit(op, dst, 0, src0, 0, src1, 0, src2, 0, src3, 0, src4, 0);
1866 }
1867
1868 Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, int dstIndex, TIntermNode *src0, int index0, TIntermNode *src1, int index1,
1869 TIntermNode *src2, int index2, TIntermNode *src3, int index3, TIntermNode *src4, int index4)
1870 {
1871 Instruction *instruction = new Instruction(op);
1872
1873 if(dst)
1874 {
1875 instruction->dst.type = registerType(dst);
1876 instruction->dst.index = registerIndex(dst) + dstIndex;
1877 instruction->dst.mask = writeMask(dst);
1878 instruction->dst.integer = (dst->getBasicType() == EbtInt);
1879 }
1880
1881 argument(instruction->src[0], src0, index0);
1882 argument(instruction->src[1], src1, index1);
1883 argument(instruction->src[2], src2, index2);
1884 argument(instruction->src[3], src3, index3);
1885 argument(instruction->src[4], src4, index4);
1886
1887 shader->append(instruction);
1888
1889 return instruction;
1890 }
1891
1892 Instruction *OutputASM::emitCast(TIntermTyped *dst, TIntermTyped *src)
1893 {
1894 return emitCast(dst, 0, src, 0);
1895 }
1896
1897 Instruction *OutputASM::emitCast(TIntermTyped *dst, int dstIndex, TIntermTyped *src, int srcIndex)
1898 {
1899 switch(src->getBasicType())
1900 {
1901 case EbtBool:
1902 switch(dst->getBasicType())
1903 {
1904 case EbtInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex);
1905 case EbtUInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex);
1906 case EbtFloat: return emit(sw::Shader::OPCODE_B2F, dst, dstIndex, src, srcIndex);
1907 default: break;
1908 }
1909 break;
1910 case EbtInt:
1911 switch(dst->getBasicType())
1912 {
1913 case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex);
1914 case EbtFloat: return emit(sw::Shader::OPCODE_I2F, dst, dstIndex, src, srcIndex);
1915 default: break;
1916 }
1917 break;
1918 case EbtUInt:
1919 switch(dst->getBasicType())
1920 {
1921 case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex);
1922 case EbtFloat: return emit(sw::Shader::OPCODE_U2F, dst, dstIndex, src, srcIndex);
1923 default: break;
1924 }
1925 break;
1926 case EbtFloat:
1927 switch(dst->getBasicType())
1928 {
1929 case EbtBool: return emit(sw::Shader::OPCODE_F2B, dst, dstIndex, src, srcIndex);
1930 case EbtInt: return emit(sw::Shader::OPCODE_F2I, dst, dstIndex, src, srcIndex);
1931 case EbtUInt: return emit(sw::Shader::OPCODE_F2U, dst, dstIndex, src, srcIndex);
1932 default: break;
1933 }
1934 break;
1935 default:
1936 break;
1937 }
1938
1939 ASSERT((src->getBasicType() == dst->getBasicType()) ||
1940 ((src->getBasicType() == EbtInt) && (dst->getBasicType() == EbtUInt)) ||
1941 ((src->getBasicType() == EbtUInt) && (dst->getBasicType() == EbtInt)));
1942
1943 return emit(sw::Shader::OPCODE_MOV, dst, dstIndex, src, srcIndex);
1944 }
1945
1946 void OutputASM::emitBinary(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2)
1947 {
1948 for(int index = 0; index < dst->elementRegisterCount(); index++)
1949 {
1950 emit(op, dst, index, src0, index, src1, index, src2, index);
1951 }
1952 }
1953
1954 void OutputASM::emitAssign(sw::Shader::Opcode op, TIntermTyped *result, TIntermTyped *lhs, TIntermTyped *src0, TIntermTyped *src1)
1955 {
1956 emitBinary(op, result, src0, src1);
1957 assignLvalue(lhs, result);
1958 }
1959
1960 void OutputASM::emitCmp(sw::Shader::Control cmpOp, TIntermTyped *dst, TIntermNode *left, TIntermNode *right, int index)
1961 {
1962 sw::Shader::Opcode opcode;
1963 switch(left->getAsTyped()->getBasicType())
1964 {
1965 case EbtBool:
1966 case EbtInt:
1967 opcode = sw::Shader::OPCODE_ICMP;
1968 break;
1969 case EbtUInt:
1970 opcode = sw::Shader::OPCODE_UCMP;
1971 break;
1972 default:
1973 opcode = sw::Shader::OPCODE_CMP;
1974 break;
1975 }
1976
1977 Instruction *cmp = emit(opcode, dst, 0, left, index, right, index);
1978 cmp->control = cmpOp;
1979 }
1980
1981 int componentCount(const TType &type, int registers)
1982 {
1983 if(registers == 0)
1984 {
1985 return 0;
1986 }
1987
1988 if(type.isArray() && registers >= type.elementRegisterCount())
1989 {
1990 int index = registers / type.elementRegisterCount();
1991 registers -= index * type.elementRegisterCount();
1992 return index * type.getElementSize() + componentCount(type, registers);
1993 }
1994
1995 if(type.isStruct() || type.isInterfaceBlock())
1996 {
1997 const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
1998 int elements = 0;
1999
2000 for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
2001 {
2002 const TType &fieldType = *((*field)->type());
2003
2004 if(fieldType.totalRegisterCount() <= registers)
2005 {
2006 registers -= fieldType.totalRegisterCount();
2007 elements += fieldType.getObjectSize();
2008 }
2009 else // Register within this field
2010 {
2011 return elements + componentCount(fieldType, registers);
2012 }
2013 }
2014 }
2015 else if(type.isMatrix())
2016 {
2017 return registers * type.registerSize();
2018 }
2019
2020 UNREACHABLE(0);
2021 return 0;
2022 }
2023
2024 int registerSize(const TType &type, int registers)
2025 {
2026 if(registers == 0)
2027 {
2028 if(type.isStruct())
2029 {
2030 return registerSize(*((*(type.getStruct()->fields().begin()))->type()), 0);
2031 }
2032 else if(type.isInterfaceBlock())
2033 {
2034 return registerSize(*((*(type.getInterfaceBlock()->fields().begin()))->type()), 0);
2035 }
2036
2037 return type.registerSize();
2038 }
2039
2040 if(type.isArray() && registers >= type.elementRegisterCount())
2041 {
2042 int index = registers / type.elementRegisterCount();
2043 registers -= index * type.elementRegisterCount();
2044 return registerSize(type, registers);
2045 }
2046
2047 if(type.isStruct() || type.isInterfaceBlock())
2048 {
2049 const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
2050 int elements = 0;
2051
2052 for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
2053 {
2054 const TType &fieldType = *((*field)->type());
2055
2056 if(fieldType.totalRegisterCount() <= registers)
2057 {
2058 registers -= fieldType.totalRegisterCount();
2059 elements += fieldType.getObjectSize();
2060 }
2061 else // Register within this field
2062 {
2063 return registerSize(fieldType, registers);
2064 }
2065 }
2066 }
2067 else if(type.isMatrix())
2068 {
2069 return registerSize(type, 0);
2070 }
2071
2072 UNREACHABLE(0);
2073 return 0;
2074 }
2075
2076 int OutputASM::getBlockId(TIntermTyped *arg)
2077 {
2078 if(arg)
2079 {
2080 const TType &type = arg->getType();
2081 TInterfaceBlock* block = type.getInterfaceBlock();
2082 if(block && (type.getQualifier() == EvqUniform))
2083 {
2084 // Make sure the uniform block is declared
2085 uniformRegister(arg);
2086
2087 const char* blockName = block->name().c_str();
2088
2089 // Fetch uniform block index from array of blocks
2090 for(ActiveUniformBlocks::const_iterator it = shaderObject->activeUniformBlocks.begin(); it != shaderObject->activeUniformBlocks.end(); ++it)
2091 {
2092 if(blockName == it->name)
2093 {
2094 return it->blockId;
2095 }
2096 }
2097
2098 ASSERT(false);
2099 }
2100 }
2101
2102 return -1;
2103 }
2104
2105 OutputASM::ArgumentInfo OutputASM::getArgumentInfo(TIntermTyped *arg, int index)
2106 {
2107 const TType &type = arg->getType();
2108 int blockId = getBlockId(arg);
2109 ArgumentInfo argumentInfo(BlockMemberInfo::getDefaultBlockInfo(), type, -1, -1);
2110 if(blockId != -1)
2111 {
2112 argumentInfo.bufferIndex = 0;
2113 for(int i = 0; i < blockId; ++i)
2114 {
2115 int blockArraySize = shaderObject->activeUniformBlocks[i].arraySize;
2116 argumentInfo.bufferIndex += blockArraySize > 0 ? blockArraySize : 1;
2117 }
2118
2119 const BlockDefinitionIndexMap& blockDefinition = blockDefinitions[blockId];
2120
2121 BlockDefinitionIndexMap::const_iterator itEnd = blockDefinition.end();
2122 BlockDefinitionIndexMap::const_iterator it = itEnd;
2123
2124 argumentInfo.clampedIndex = index;
2125 if(type.isInterfaceBlock())
2126 {
2127 // Offset index to the beginning of the selected instance
2128 int blockRegisters = type.elementRegisterCount();
2129 int bufferOffset = argumentInfo.clampedIndex / blockRegisters;
2130 argumentInfo.bufferIndex += bufferOffset;
2131 argumentInfo.clampedIndex -= bufferOffset * blockRegisters;
2132 }
2133
2134 int regIndex = registerIndex(arg);
2135 for(int i = regIndex + argumentInfo.clampedIndex; i >= regIndex; --i)
2136 {
2137 it = blockDefinition.find(i);
2138 if(it != itEnd)
2139 {
2140 argumentInfo.clampedIndex -= (i - regIndex);
2141 break;
2142 }
2143 }
2144 ASSERT(it != itEnd);
2145
2146 argumentInfo.typedMemberInfo = it->second;
2147
2148 int registerCount = argumentInfo.typedMemberInfo.type.totalRegisterCount();
2149 argumentInfo.clampedIndex = (argumentInfo.clampedIndex >= registerCount) ? registerCount - 1 : argumentInfo.clampedIndex;
2150 }
2151 else
2152 {
2153 argumentInfo.clampedIndex = (index >= arg->totalRegisterCount()) ? arg->totalRegisterCount() - 1 : index;
2154 }
2155
2156 return argumentInfo;
2157 }
2158
2159 void OutputASM::argument(sw::Shader::SourceParameter &parameter, TIntermNode *argument, int index)
2160 {
2161 if(argument)
2162 {
2163 TIntermTyped *arg = argument->getAsTyped();
2164 Temporary unpackedUniform(this);
2165
2166 const TType& srcType = arg->getType();
2167 TInterfaceBlock* srcBlock = srcType.getInterfaceBlock();
2168 if(srcBlock && (srcType.getQualifier() == EvqUniform))
2169 {
2170 const ArgumentInfo argumentInfo = getArgumentInfo(arg, index);
2171 const TType &memberType = argumentInfo.typedMemberInfo.type;
2172
2173 if(memberType.getBasicType() == EbtBool)
2174 {
Alexis Hetue97a31e2016-11-14 14:10:47 -05002175 ASSERT(argumentInfo.clampedIndex < (memberType.isArray() ? memberType.getArraySize() : 1)); // index < arraySize
Nicolas Capens0bac2852016-05-07 06:09:58 -04002176
2177 // Convert the packed bool, which is currently an int, to a true bool
2178 Instruction *instruction = new Instruction(sw::Shader::OPCODE_I2B);
2179 instruction->dst.type = sw::Shader::PARAMETER_TEMP;
2180 instruction->dst.index = registerIndex(&unpackedUniform);
2181 instruction->src[0].type = sw::Shader::PARAMETER_CONST;
2182 instruction->src[0].bufferIndex = argumentInfo.bufferIndex;
2183 instruction->src[0].index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * argumentInfo.typedMemberInfo.arrayStride;
2184
2185 shader->append(instruction);
2186
2187 arg = &unpackedUniform;
2188 index = 0;
2189 }
2190 else if((srcBlock->matrixPacking() == EmpRowMajor) && memberType.isMatrix())
2191 {
2192 int numCols = memberType.getNominalSize();
2193 int numRows = memberType.getSecondarySize();
Nicolas Capens0bac2852016-05-07 06:09:58 -04002194
Alexis Hetue97a31e2016-11-14 14:10:47 -05002195 ASSERT(argumentInfo.clampedIndex < (numCols * (memberType.isArray() ? memberType.getArraySize() : 1))); // index < cols * arraySize
Nicolas Capens0bac2852016-05-07 06:09:58 -04002196
2197 unsigned int dstIndex = registerIndex(&unpackedUniform);
2198 unsigned int srcSwizzle = (argumentInfo.clampedIndex % numCols) * 0x55;
2199 int arrayIndex = argumentInfo.clampedIndex / numCols;
2200 int matrixStartOffset = argumentInfo.typedMemberInfo.offset + arrayIndex * argumentInfo.typedMemberInfo.arrayStride;
2201
2202 for(int j = 0; j < numRows; ++j)
2203 {
2204 // Transpose the row major matrix
2205 Instruction *instruction = new Instruction(sw::Shader::OPCODE_MOV);
2206 instruction->dst.type = sw::Shader::PARAMETER_TEMP;
2207 instruction->dst.index = dstIndex;
2208 instruction->dst.mask = 1 << j;
2209 instruction->src[0].type = sw::Shader::PARAMETER_CONST;
2210 instruction->src[0].bufferIndex = argumentInfo.bufferIndex;
2211 instruction->src[0].index = matrixStartOffset + j * argumentInfo.typedMemberInfo.matrixStride;
2212 instruction->src[0].swizzle = srcSwizzle;
2213
2214 shader->append(instruction);
2215 }
2216
2217 arg = &unpackedUniform;
2218 index = 0;
2219 }
2220 }
2221
2222 const ArgumentInfo argumentInfo = getArgumentInfo(arg, index);
2223 const TType &type = argumentInfo.typedMemberInfo.type;
2224
2225 int size = registerSize(type, argumentInfo.clampedIndex);
2226
2227 parameter.type = registerType(arg);
2228 parameter.bufferIndex = argumentInfo.bufferIndex;
2229
2230 if(arg->getAsConstantUnion() && arg->getAsConstantUnion()->getUnionArrayPointer())
2231 {
2232 int component = componentCount(type, argumentInfo.clampedIndex);
2233 ConstantUnion *constants = arg->getAsConstantUnion()->getUnionArrayPointer();
2234
2235 for(int i = 0; i < 4; i++)
2236 {
2237 if(size == 1) // Replicate
2238 {
2239 parameter.value[i] = constants[component + 0].getAsFloat();
2240 }
2241 else if(i < size)
2242 {
2243 parameter.value[i] = constants[component + i].getAsFloat();
2244 }
2245 else
2246 {
2247 parameter.value[i] = 0.0f;
2248 }
2249 }
2250 }
2251 else
2252 {
2253 parameter.index = registerIndex(arg) + argumentInfo.clampedIndex;
2254
2255 if(parameter.bufferIndex != -1)
2256 {
2257 int stride = (argumentInfo.typedMemberInfo.matrixStride > 0) ? argumentInfo.typedMemberInfo.matrixStride : argumentInfo.typedMemberInfo.arrayStride;
2258 parameter.index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * stride;
2259 }
2260 }
2261
2262 if(!IsSampler(arg->getBasicType()))
2263 {
2264 parameter.swizzle = readSwizzle(arg, size);
2265 }
2266 }
2267 }
2268
2269 void OutputASM::copy(TIntermTyped *dst, TIntermNode *src, int offset)
2270 {
2271 for(int index = 0; index < dst->totalRegisterCount(); index++)
2272 {
2273 Instruction *mov = emit(sw::Shader::OPCODE_MOV, dst, index, src, offset + index);
2274 mov->dst.mask = writeMask(dst, index);
2275 }
2276 }
2277
2278 int swizzleElement(int swizzle, int index)
2279 {
2280 return (swizzle >> (index * 2)) & 0x03;
2281 }
2282
2283 int swizzleSwizzle(int leftSwizzle, int rightSwizzle)
2284 {
2285 return (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 0)) << 0) |
2286 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 1)) << 2) |
2287 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 2)) << 4) |
2288 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 3)) << 6);
2289 }
2290
2291 void OutputASM::assignLvalue(TIntermTyped *dst, TIntermTyped *src)
2292 {
2293 if(src &&
2294 ((src->isVector() && (!dst->isVector() || (src->getNominalSize() != dst->getNominalSize()))) ||
2295 (src->isMatrix() && (!dst->isMatrix() || (src->getNominalSize() != dst->getNominalSize()) || (src->getSecondarySize() != dst->getSecondarySize())))))
2296 {
2297 return mContext.error(src->getLine(), "Result type should match the l-value type in compound assignment", src->isVector() ? "vector" : "matrix");
2298 }
2299
2300 TIntermBinary *binary = dst->getAsBinaryNode();
2301
2302 if(binary && binary->getOp() == EOpIndexIndirect && binary->getLeft()->isVector() && dst->isScalar())
2303 {
2304 Instruction *insert = new Instruction(sw::Shader::OPCODE_INSERT);
2305
2306 Temporary address(this);
2307 lvalue(insert->dst, address, dst);
2308
2309 insert->src[0].type = insert->dst.type;
2310 insert->src[0].index = insert->dst.index;
2311 insert->src[0].rel = insert->dst.rel;
2312 argument(insert->src[1], src);
2313 argument(insert->src[2], binary->getRight());
2314
2315 shader->append(insert);
2316 }
2317 else
2318 {
2319 for(int offset = 0; offset < dst->totalRegisterCount(); offset++)
2320 {
2321 Instruction *mov = new Instruction(sw::Shader::OPCODE_MOV);
2322
2323 Temporary address(this);
2324 int swizzle = lvalue(mov->dst, address, dst);
2325 mov->dst.index += offset;
2326
2327 if(offset > 0)
2328 {
2329 mov->dst.mask = writeMask(dst, offset);
2330 }
2331
2332 argument(mov->src[0], src, offset);
2333 mov->src[0].swizzle = swizzleSwizzle(mov->src[0].swizzle, swizzle);
2334
2335 shader->append(mov);
2336 }
2337 }
2338 }
2339
2340 int OutputASM::lvalue(sw::Shader::DestinationParameter &dst, Temporary &address, TIntermTyped *node)
2341 {
2342 TIntermTyped *result = node;
2343 TIntermBinary *binary = node->getAsBinaryNode();
2344 TIntermSymbol *symbol = node->getAsSymbolNode();
2345
2346 if(binary)
2347 {
2348 TIntermTyped *left = binary->getLeft();
2349 TIntermTyped *right = binary->getRight();
2350
2351 int leftSwizzle = lvalue(dst, address, left); // Resolve the l-value of the left side
2352
2353 switch(binary->getOp())
2354 {
2355 case EOpIndexDirect:
2356 {
2357 int rightIndex = right->getAsConstantUnion()->getIConst(0);
2358
2359 if(left->isRegister())
2360 {
2361 int leftMask = dst.mask;
2362
2363 dst.mask = 1;
2364 while((leftMask & dst.mask) == 0)
2365 {
2366 dst.mask = dst.mask << 1;
2367 }
2368
2369 int element = swizzleElement(leftSwizzle, rightIndex);
2370 dst.mask = 1 << element;
2371
2372 return element;
2373 }
2374 else if(left->isArray() || left->isMatrix())
2375 {
2376 dst.index += rightIndex * result->totalRegisterCount();
2377 return 0xE4;
2378 }
2379 else UNREACHABLE(0);
2380 }
2381 break;
2382 case EOpIndexIndirect:
2383 {
2384 if(left->isRegister())
2385 {
2386 // Requires INSERT instruction (handled by calling function)
2387 }
2388 else if(left->isArray() || left->isMatrix())
2389 {
2390 int scale = result->totalRegisterCount();
2391
2392 if(dst.rel.type == sw::Shader::PARAMETER_VOID) // Use the index register as the relative address directly
2393 {
2394 if(left->totalRegisterCount() > 1)
2395 {
2396 sw::Shader::SourceParameter relativeRegister;
2397 argument(relativeRegister, right);
2398
2399 dst.rel.index = relativeRegister.index;
2400 dst.rel.type = relativeRegister.type;
2401 dst.rel.scale = scale;
2402 dst.rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
2403 }
2404 }
2405 else if(dst.rel.index != registerIndex(&address)) // Move the previous index register to the address register
2406 {
2407 if(scale == 1)
2408 {
2409 Constant oldScale((int)dst.rel.scale);
2410 Instruction *mad = emit(sw::Shader::OPCODE_IMAD, &address, &address, &oldScale, right);
2411 mad->src[0].index = dst.rel.index;
2412 mad->src[0].type = dst.rel.type;
2413 }
2414 else
2415 {
2416 Constant oldScale((int)dst.rel.scale);
2417 Instruction *mul = emit(sw::Shader::OPCODE_IMUL, &address, &address, &oldScale);
2418 mul->src[0].index = dst.rel.index;
2419 mul->src[0].type = dst.rel.type;
2420
2421 Constant newScale(scale);
2422 emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
2423 }
2424
2425 dst.rel.type = sw::Shader::PARAMETER_TEMP;
2426 dst.rel.index = registerIndex(&address);
2427 dst.rel.scale = 1;
2428 }
2429 else // Just add the new index to the address register
2430 {
2431 if(scale == 1)
2432 {
2433 emit(sw::Shader::OPCODE_IADD, &address, &address, right);
2434 }
2435 else
2436 {
2437 Constant newScale(scale);
2438 emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
2439 }
2440 }
2441 }
2442 else UNREACHABLE(0);
2443 }
2444 break;
2445 case EOpIndexDirectStruct:
2446 case EOpIndexDirectInterfaceBlock:
2447 {
2448 const TFieldList& fields = (binary->getOp() == EOpIndexDirectStruct) ?
2449 left->getType().getStruct()->fields() :
2450 left->getType().getInterfaceBlock()->fields();
2451 int index = right->getAsConstantUnion()->getIConst(0);
2452 int fieldOffset = 0;
2453
2454 for(int i = 0; i < index; i++)
2455 {
2456 fieldOffset += fields[i]->type()->totalRegisterCount();
2457 }
2458
2459 dst.type = registerType(left);
2460 dst.index += fieldOffset;
Nicolas Capens8157d5c2017-01-04 11:30:45 -05002461 dst.mask = writeMask(result);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002462
2463 return 0xE4;
2464 }
2465 break;
2466 case EOpVectorSwizzle:
2467 {
2468 ASSERT(left->isRegister());
2469
2470 int leftMask = dst.mask;
2471
2472 int swizzle = 0;
2473 int rightMask = 0;
2474
2475 TIntermSequence &sequence = right->getAsAggregate()->getSequence();
2476
2477 for(unsigned int i = 0; i < sequence.size(); i++)
2478 {
2479 int index = sequence[i]->getAsConstantUnion()->getIConst(0);
2480
2481 int element = swizzleElement(leftSwizzle, index);
2482 rightMask = rightMask | (1 << element);
2483 swizzle = swizzle | swizzleElement(leftSwizzle, i) << (element * 2);
2484 }
2485
2486 dst.mask = leftMask & rightMask;
2487
2488 return swizzle;
2489 }
2490 break;
2491 default:
2492 UNREACHABLE(binary->getOp()); // Not an l-value operator
2493 break;
2494 }
2495 }
2496 else if(symbol)
2497 {
2498 dst.type = registerType(symbol);
2499 dst.index = registerIndex(symbol);
2500 dst.mask = writeMask(symbol);
2501 return 0xE4;
2502 }
2503
2504 return 0xE4;
2505 }
2506
2507 sw::Shader::ParameterType OutputASM::registerType(TIntermTyped *operand)
2508 {
2509 if(isSamplerRegister(operand))
2510 {
2511 return sw::Shader::PARAMETER_SAMPLER;
2512 }
2513
2514 const TQualifier qualifier = operand->getQualifier();
2515 if((EvqFragColor == qualifier) || (EvqFragData == qualifier))
2516 {
2517 if(((EvqFragData == qualifier) && (EvqFragColor == outputQualifier)) ||
2518 ((EvqFragColor == qualifier) && (EvqFragData == outputQualifier)))
2519 {
2520 mContext.error(operand->getLine(), "static assignment to both gl_FragData and gl_FragColor", "");
2521 }
2522 outputQualifier = qualifier;
2523 }
2524
2525 if(qualifier == EvqConstExpr && (!operand->getAsConstantUnion() || !operand->getAsConstantUnion()->getUnionArrayPointer()))
2526 {
2527 return sw::Shader::PARAMETER_TEMP;
2528 }
2529
2530 switch(qualifier)
2531 {
2532 case EvqTemporary: return sw::Shader::PARAMETER_TEMP;
2533 case EvqGlobal: return sw::Shader::PARAMETER_TEMP;
2534 case EvqConstExpr: return sw::Shader::PARAMETER_FLOAT4LITERAL; // All converted to float
2535 case EvqAttribute: return sw::Shader::PARAMETER_INPUT;
2536 case EvqVaryingIn: return sw::Shader::PARAMETER_INPUT;
2537 case EvqVaryingOut: return sw::Shader::PARAMETER_OUTPUT;
2538 case EvqVertexIn: return sw::Shader::PARAMETER_INPUT;
2539 case EvqFragmentOut: return sw::Shader::PARAMETER_COLOROUT;
2540 case EvqVertexOut: return sw::Shader::PARAMETER_OUTPUT;
2541 case EvqFragmentIn: return sw::Shader::PARAMETER_INPUT;
2542 case EvqInvariantVaryingIn: return sw::Shader::PARAMETER_INPUT; // FIXME: Guarantee invariance at the backend
2543 case EvqInvariantVaryingOut: return sw::Shader::PARAMETER_OUTPUT; // FIXME: Guarantee invariance at the backend
2544 case EvqSmooth: return sw::Shader::PARAMETER_OUTPUT;
2545 case EvqFlat: return sw::Shader::PARAMETER_OUTPUT;
2546 case EvqCentroidOut: return sw::Shader::PARAMETER_OUTPUT;
2547 case EvqSmoothIn: return sw::Shader::PARAMETER_INPUT;
2548 case EvqFlatIn: return sw::Shader::PARAMETER_INPUT;
2549 case EvqCentroidIn: return sw::Shader::PARAMETER_INPUT;
2550 case EvqUniform: return sw::Shader::PARAMETER_CONST;
2551 case EvqIn: return sw::Shader::PARAMETER_TEMP;
2552 case EvqOut: return sw::Shader::PARAMETER_TEMP;
2553 case EvqInOut: return sw::Shader::PARAMETER_TEMP;
2554 case EvqConstReadOnly: return sw::Shader::PARAMETER_TEMP;
2555 case EvqPosition: return sw::Shader::PARAMETER_OUTPUT;
2556 case EvqPointSize: return sw::Shader::PARAMETER_OUTPUT;
2557 case EvqInstanceID: return sw::Shader::PARAMETER_MISCTYPE;
Alexis Hetu877ddfc2017-07-25 17:48:00 -04002558 case EvqVertexID: return sw::Shader::PARAMETER_MISCTYPE;
Nicolas Capens0bac2852016-05-07 06:09:58 -04002559 case EvqFragCoord: return sw::Shader::PARAMETER_MISCTYPE;
2560 case EvqFrontFacing: return sw::Shader::PARAMETER_MISCTYPE;
2561 case EvqPointCoord: return sw::Shader::PARAMETER_INPUT;
2562 case EvqFragColor: return sw::Shader::PARAMETER_COLOROUT;
2563 case EvqFragData: return sw::Shader::PARAMETER_COLOROUT;
2564 case EvqFragDepth: return sw::Shader::PARAMETER_DEPTHOUT;
2565 default: UNREACHABLE(qualifier);
2566 }
2567
2568 return sw::Shader::PARAMETER_VOID;
2569 }
2570
Alexis Hetu12b00502016-05-20 13:01:11 -04002571 bool OutputASM::hasFlatQualifier(TIntermTyped *operand)
2572 {
2573 const TQualifier qualifier = operand->getQualifier();
2574 return qualifier == EvqFlat || qualifier == EvqFlatOut || qualifier == EvqFlatIn;
2575 }
2576
Nicolas Capens0bac2852016-05-07 06:09:58 -04002577 unsigned int OutputASM::registerIndex(TIntermTyped *operand)
2578 {
2579 if(isSamplerRegister(operand))
2580 {
2581 return samplerRegister(operand);
2582 }
2583
2584 switch(operand->getQualifier())
2585 {
2586 case EvqTemporary: return temporaryRegister(operand);
2587 case EvqGlobal: return temporaryRegister(operand);
2588 case EvqConstExpr: return temporaryRegister(operand); // Unevaluated constant expression
2589 case EvqAttribute: return attributeRegister(operand);
2590 case EvqVaryingIn: return varyingRegister(operand);
2591 case EvqVaryingOut: return varyingRegister(operand);
2592 case EvqVertexIn: return attributeRegister(operand);
2593 case EvqFragmentOut: return fragmentOutputRegister(operand);
2594 case EvqVertexOut: return varyingRegister(operand);
2595 case EvqFragmentIn: return varyingRegister(operand);
2596 case EvqInvariantVaryingIn: return varyingRegister(operand);
2597 case EvqInvariantVaryingOut: return varyingRegister(operand);
2598 case EvqSmooth: return varyingRegister(operand);
2599 case EvqFlat: return varyingRegister(operand);
2600 case EvqCentroidOut: return varyingRegister(operand);
2601 case EvqSmoothIn: return varyingRegister(operand);
2602 case EvqFlatIn: return varyingRegister(operand);
2603 case EvqCentroidIn: return varyingRegister(operand);
2604 case EvqUniform: return uniformRegister(operand);
2605 case EvqIn: return temporaryRegister(operand);
2606 case EvqOut: return temporaryRegister(operand);
2607 case EvqInOut: return temporaryRegister(operand);
2608 case EvqConstReadOnly: return temporaryRegister(operand);
2609 case EvqPosition: return varyingRegister(operand);
2610 case EvqPointSize: return varyingRegister(operand);
Alexis Hetu877ddfc2017-07-25 17:48:00 -04002611 case EvqInstanceID: vertexShader->declareInstanceId(); return sw::Shader::InstanceIDIndex;
2612 case EvqVertexID: vertexShader->declareVertexId(); return sw::Shader::VertexIDIndex;
2613 case EvqFragCoord: pixelShader->declareVPos(); return sw::Shader::VPosIndex;
2614 case EvqFrontFacing: pixelShader->declareVFace(); return sw::Shader::VFaceIndex;
Nicolas Capens0bac2852016-05-07 06:09:58 -04002615 case EvqPointCoord: return varyingRegister(operand);
2616 case EvqFragColor: return 0;
2617 case EvqFragData: return fragmentOutputRegister(operand);
2618 case EvqFragDepth: return 0;
2619 default: UNREACHABLE(operand->getQualifier());
2620 }
2621
2622 return 0;
2623 }
2624
2625 int OutputASM::writeMask(TIntermTyped *destination, int index)
2626 {
2627 if(destination->getQualifier() == EvqPointSize)
2628 {
2629 return 0x2; // Point size stored in the y component
2630 }
2631
2632 return 0xF >> (4 - registerSize(destination->getType(), index));
2633 }
2634
2635 int OutputASM::readSwizzle(TIntermTyped *argument, int size)
2636 {
2637 if(argument->getQualifier() == EvqPointSize)
2638 {
2639 return 0x55; // Point size stored in the y component
2640 }
2641
2642 static const unsigned char swizzleSize[5] = {0x00, 0x00, 0x54, 0xA4, 0xE4}; // (void), xxxx, xyyy, xyzz, xyzw
2643
2644 return swizzleSize[size];
2645 }
2646
2647 // Conservatively checks whether an expression is fast to compute and has no side effects
2648 bool OutputASM::trivial(TIntermTyped *expression, int budget)
2649 {
2650 if(!expression->isRegister())
2651 {
2652 return false;
2653 }
2654
2655 return cost(expression, budget) >= 0;
2656 }
2657
2658 // Returns the remaining computing budget (if < 0 the expression is too expensive or has side effects)
2659 int OutputASM::cost(TIntermNode *expression, int budget)
2660 {
2661 if(budget < 0)
2662 {
2663 return budget;
2664 }
2665
2666 if(expression->getAsSymbolNode())
2667 {
2668 return budget;
2669 }
2670 else if(expression->getAsConstantUnion())
2671 {
2672 return budget;
2673 }
2674 else if(expression->getAsBinaryNode())
2675 {
2676 TIntermBinary *binary = expression->getAsBinaryNode();
2677
2678 switch(binary->getOp())
2679 {
2680 case EOpVectorSwizzle:
2681 case EOpIndexDirect:
2682 case EOpIndexDirectStruct:
2683 case EOpIndexDirectInterfaceBlock:
2684 return cost(binary->getLeft(), budget - 0);
2685 case EOpAdd:
2686 case EOpSub:
2687 case EOpMul:
2688 return cost(binary->getLeft(), cost(binary->getRight(), budget - 1));
2689 default:
2690 return -1;
2691 }
2692 }
2693 else if(expression->getAsUnaryNode())
2694 {
2695 TIntermUnary *unary = expression->getAsUnaryNode();
2696
2697 switch(unary->getOp())
2698 {
2699 case EOpAbs:
2700 case EOpNegative:
2701 return cost(unary->getOperand(), budget - 1);
2702 default:
2703 return -1;
2704 }
2705 }
2706 else if(expression->getAsSelectionNode())
2707 {
2708 TIntermSelection *selection = expression->getAsSelectionNode();
2709
2710 if(selection->usesTernaryOperator())
2711 {
2712 TIntermTyped *condition = selection->getCondition();
2713 TIntermNode *trueBlock = selection->getTrueBlock();
2714 TIntermNode *falseBlock = selection->getFalseBlock();
2715 TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
2716
2717 if(constantCondition)
2718 {
2719 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
2720
2721 if(trueCondition)
2722 {
2723 return cost(trueBlock, budget - 0);
2724 }
2725 else
2726 {
2727 return cost(falseBlock, budget - 0);
2728 }
2729 }
2730 else
2731 {
2732 return cost(trueBlock, cost(falseBlock, budget - 2));
2733 }
2734 }
2735 }
2736
2737 return -1;
2738 }
2739
2740 const Function *OutputASM::findFunction(const TString &name)
2741 {
2742 for(unsigned int f = 0; f < functionArray.size(); f++)
2743 {
2744 if(functionArray[f].name == name)
2745 {
2746 return &functionArray[f];
2747 }
2748 }
2749
2750 return 0;
2751 }
2752
2753 int OutputASM::temporaryRegister(TIntermTyped *temporary)
2754 {
2755 return allocate(temporaries, temporary);
2756 }
2757
Alexis Hetu49351232017-11-02 16:00:32 -04002758 void OutputASM::setPixelShaderInputs(const TType& type, int var, bool flat)
2759 {
2760 if(type.isStruct())
2761 {
2762 const TFieldList &fields = type.getStruct()->fields();
2763 int fieldVar = var;
2764 for(size_t i = 0; i < fields.size(); i++)
2765 {
2766 const TType& fieldType = *(fields[i]->type());
2767 setPixelShaderInputs(fieldType, fieldVar, flat);
2768 fieldVar += fieldType.totalRegisterCount();
2769 }
2770 }
2771 else
2772 {
2773 for(int i = 0; i < type.totalRegisterCount(); i++)
2774 {
2775 pixelShader->setInput(var + i, type.registerSize(), sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i, flat));
2776 }
2777 }
2778 }
2779
Nicolas Capens0bac2852016-05-07 06:09:58 -04002780 int OutputASM::varyingRegister(TIntermTyped *varying)
2781 {
2782 int var = lookup(varyings, varying);
2783
2784 if(var == -1)
2785 {
2786 var = allocate(varyings, varying);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002787 int registerCount = varying->totalRegisterCount();
2788
2789 if(pixelShader)
2790 {
Nicolas Capens3b4c93f2016-05-18 12:51:37 -04002791 if((var + registerCount) > sw::MAX_FRAGMENT_INPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002792 {
2793 mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "fragment shader");
2794 return 0;
2795 }
2796
2797 if(varying->getQualifier() == EvqPointCoord)
2798 {
2799 ASSERT(varying->isRegister());
Alexis Hetu49351232017-11-02 16:00:32 -04002800 pixelShader->setInput(var, varying->registerSize(), sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var));
Nicolas Capens0bac2852016-05-07 06:09:58 -04002801 }
2802 else
2803 {
Alexis Hetu49351232017-11-02 16:00:32 -04002804 setPixelShaderInputs(varying->getType(), var, hasFlatQualifier(varying));
Nicolas Capens0bac2852016-05-07 06:09:58 -04002805 }
2806 }
2807 else if(vertexShader)
2808 {
Nicolas Capensec0936c2016-05-18 12:32:02 -04002809 if((var + registerCount) > sw::MAX_VERTEX_OUTPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002810 {
2811 mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "vertex shader");
2812 return 0;
2813 }
2814
2815 if(varying->getQualifier() == EvqPosition)
2816 {
2817 ASSERT(varying->isRegister());
Alexis Hetu02ad0aa2016-08-02 11:18:14 -04002818 vertexShader->setPositionRegister(var);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002819 }
2820 else if(varying->getQualifier() == EvqPointSize)
2821 {
2822 ASSERT(varying->isRegister());
Alexis Hetu02ad0aa2016-08-02 11:18:14 -04002823 vertexShader->setPointSizeRegister(var);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002824 }
2825 else
2826 {
2827 // Semantic indexes for user varyings will be assigned during program link to match the pixel shader
2828 }
2829 }
2830 else UNREACHABLE(0);
2831
2832 declareVarying(varying, var);
2833 }
2834
2835 return var;
2836 }
2837
2838 void OutputASM::declareVarying(TIntermTyped *varying, int reg)
2839 {
2840 if(varying->getQualifier() != EvqPointCoord) // gl_PointCoord does not need linking
2841 {
Alexis Hetu49351232017-11-02 16:00:32 -04002842 TIntermSymbol *symbol = varying->getAsSymbolNode();
2843 declareVarying(varying->getType(), symbol->getSymbol(), reg);
2844 }
2845 }
Nicolas Capens0bac2852016-05-07 06:09:58 -04002846
Alexis Hetu49351232017-11-02 16:00:32 -04002847 void OutputASM::declareVarying(const TType &type, const TString &varyingName, int registerIndex)
2848 {
2849 const char *name = varyingName.c_str();
2850 VaryingList &activeVaryings = shaderObject->varyings;
2851
2852 TStructure* structure = type.getStruct();
2853 if(structure)
2854 {
2855 int fieldRegisterIndex = registerIndex;
2856
2857 const TFieldList &fields = type.getStruct()->fields();
2858 for(size_t i = 0; i < fields.size(); i++)
2859 {
2860 const TType& fieldType = *(fields[i]->type());
2861 declareVarying(fieldType, varyingName + "." + fields[i]->name(), fieldRegisterIndex);
2862 if(fieldRegisterIndex >= 0)
2863 {
2864 fieldRegisterIndex += fieldType.totalRegisterCount();
2865 }
2866 }
2867 }
2868 else
2869 {
Nicolas Capens0bac2852016-05-07 06:09:58 -04002870 // Check if this varying has been declared before without having a register assigned
2871 for(VaryingList::iterator v = activeVaryings.begin(); v != activeVaryings.end(); v++)
2872 {
2873 if(v->name == name)
2874 {
Alexis Hetu49351232017-11-02 16:00:32 -04002875 if(registerIndex >= 0)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002876 {
Alexis Hetu49351232017-11-02 16:00:32 -04002877 ASSERT(v->reg < 0 || v->reg == registerIndex);
2878 v->reg = registerIndex;
Nicolas Capens0bac2852016-05-07 06:09:58 -04002879 }
2880
2881 return;
2882 }
2883 }
2884
Alexis Hetu49351232017-11-02 16:00:32 -04002885 activeVaryings.push_back(glsl::Varying(glVariableType(type), name, type.getArraySize(), registerIndex, 0));
Nicolas Capens0bac2852016-05-07 06:09:58 -04002886 }
2887 }
2888
2889 int OutputASM::uniformRegister(TIntermTyped *uniform)
2890 {
2891 const TType &type = uniform->getType();
2892 ASSERT(!IsSampler(type.getBasicType()));
2893 TInterfaceBlock *block = type.getAsInterfaceBlock();
2894 TIntermSymbol *symbol = uniform->getAsSymbolNode();
2895 ASSERT(symbol || block);
2896
2897 if(symbol || block)
2898 {
2899 TInterfaceBlock* parentBlock = type.getInterfaceBlock();
2900 bool isBlockMember = (!block && parentBlock);
2901 int index = isBlockMember ? lookup(uniforms, parentBlock) : lookup(uniforms, uniform);
2902
2903 if(index == -1 || isBlockMember)
2904 {
2905 if(index == -1)
2906 {
2907 index = allocate(uniforms, uniform);
2908 }
2909
2910 // Verify if the current uniform is a member of an already declared block
2911 const TString &name = symbol ? symbol->getSymbol() : block->name();
2912 int blockMemberIndex = blockMemberLookup(type, name, index);
2913 if(blockMemberIndex == -1)
2914 {
2915 declareUniform(type, name, index);
2916 }
2917 else
2918 {
2919 index = blockMemberIndex;
2920 }
2921 }
2922
2923 return index;
2924 }
2925
2926 return 0;
2927 }
2928
2929 int OutputASM::attributeRegister(TIntermTyped *attribute)
2930 {
2931 ASSERT(!attribute->isArray());
2932
2933 int index = lookup(attributes, attribute);
2934
2935 if(index == -1)
2936 {
2937 TIntermSymbol *symbol = attribute->getAsSymbolNode();
2938 ASSERT(symbol);
2939
2940 if(symbol)
2941 {
2942 index = allocate(attributes, attribute);
2943 const TType &type = attribute->getType();
2944 int registerCount = attribute->totalRegisterCount();
Alexis Hetub7508b82016-09-22 15:36:45 -04002945 sw::VertexShader::AttribType attribType = sw::VertexShader::ATTRIBTYPE_FLOAT;
2946 switch(type.getBasicType())
2947 {
2948 case EbtInt:
2949 attribType = sw::VertexShader::ATTRIBTYPE_INT;
2950 break;
2951 case EbtUInt:
2952 attribType = sw::VertexShader::ATTRIBTYPE_UINT;
2953 break;
2954 case EbtFloat:
2955 default:
2956 break;
2957 }
Nicolas Capens0bac2852016-05-07 06:09:58 -04002958
Nicolas Capensf0aef1a2016-05-18 14:44:21 -04002959 if(vertexShader && (index + registerCount) <= sw::MAX_VERTEX_INPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002960 {
2961 for(int i = 0; i < registerCount; i++)
2962 {
Alexis Hetub7508b82016-09-22 15:36:45 -04002963 vertexShader->setInput(index + i, sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, index + i, false), attribType);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002964 }
2965 }
2966
2967 ActiveAttributes &activeAttributes = shaderObject->activeAttributes;
2968
2969 const char *name = symbol->getSymbol().c_str();
2970 activeAttributes.push_back(Attribute(glVariableType(type), name, type.getArraySize(), type.getLayoutQualifier().location, index));
2971 }
2972 }
2973
2974 return index;
2975 }
2976
2977 int OutputASM::fragmentOutputRegister(TIntermTyped *fragmentOutput)
2978 {
2979 return allocate(fragmentOutputs, fragmentOutput);
2980 }
2981
2982 int OutputASM::samplerRegister(TIntermTyped *sampler)
2983 {
2984 const TType &type = sampler->getType();
2985 ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers
2986
2987 TIntermSymbol *symbol = sampler->getAsSymbolNode();
2988 TIntermBinary *binary = sampler->getAsBinaryNode();
2989
Nicolas Capensfcb70fd2017-05-17 15:16:51 -04002990 if(symbol)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002991 {
Nicolas Capensfcb70fd2017-05-17 15:16:51 -04002992 switch(type.getQualifier())
2993 {
2994 case EvqUniform:
2995 return samplerRegister(symbol);
2996 case EvqIn:
2997 case EvqConstReadOnly:
2998 // Function arguments are not (uniform) sampler registers
2999 return -1;
3000 default:
3001 UNREACHABLE(type.getQualifier());
3002 }
Nicolas Capens0bac2852016-05-07 06:09:58 -04003003 }
3004 else if(binary)
3005 {
3006 TIntermTyped *left = binary->getLeft();
3007 TIntermTyped *right = binary->getRight();
3008 const TType &leftType = left->getType();
3009 int index = right->getAsConstantUnion() ? right->getAsConstantUnion()->getIConst(0) : 0;
3010 int offset = 0;
3011
3012 switch(binary->getOp())
3013 {
3014 case EOpIndexDirect:
3015 ASSERT(left->isArray());
3016 offset = index * leftType.elementRegisterCount();
3017 break;
3018 case EOpIndexDirectStruct:
3019 ASSERT(leftType.isStruct());
3020 {
3021 const TFieldList &fields = leftType.getStruct()->fields();
3022
3023 for(int i = 0; i < index; i++)
3024 {
3025 offset += fields[i]->type()->totalRegisterCount();
3026 }
3027 }
3028 break;
3029 case EOpIndexIndirect: // Indirect indexing produces a temporary, not a sampler register
3030 return -1;
3031 case EOpIndexDirectInterfaceBlock: // Interface blocks can't contain samplers
3032 default:
3033 UNREACHABLE(binary->getOp());
3034 return -1;
3035 }
3036
3037 int base = samplerRegister(left);
3038
3039 if(base < 0)
3040 {
3041 return -1;
3042 }
3043
3044 return base + offset;
3045 }
3046
3047 UNREACHABLE(0);
Nicolas Capensfcb70fd2017-05-17 15:16:51 -04003048 return -1; // Not a (uniform) sampler register
Nicolas Capens0bac2852016-05-07 06:09:58 -04003049 }
3050
3051 int OutputASM::samplerRegister(TIntermSymbol *sampler)
3052 {
3053 const TType &type = sampler->getType();
3054 ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers
3055
3056 int index = lookup(samplers, sampler);
3057
3058 if(index == -1)
3059 {
3060 index = allocate(samplers, sampler);
3061
3062 if(sampler->getQualifier() == EvqUniform)
3063 {
3064 const char *name = sampler->getSymbol().c_str();
3065 declareUniform(type, name, index);
3066 }
3067 }
3068
3069 return index;
3070 }
3071
3072 bool OutputASM::isSamplerRegister(TIntermTyped *operand)
3073 {
3074 return operand && IsSampler(operand->getBasicType()) && samplerRegister(operand) >= 0;
3075 }
3076
3077 int OutputASM::lookup(VariableArray &list, TIntermTyped *variable)
3078 {
3079 for(unsigned int i = 0; i < list.size(); i++)
3080 {
3081 if(list[i] == variable)
3082 {
3083 return i; // Pointer match
3084 }
3085 }
3086
3087 TIntermSymbol *varSymbol = variable->getAsSymbolNode();
3088 TInterfaceBlock *varBlock = variable->getType().getAsInterfaceBlock();
3089
3090 if(varBlock)
3091 {
3092 for(unsigned int i = 0; i < list.size(); i++)
3093 {
3094 if(list[i])
3095 {
3096 TInterfaceBlock *listBlock = list[i]->getType().getAsInterfaceBlock();
3097
3098 if(listBlock)
3099 {
3100 if(listBlock->name() == varBlock->name())
3101 {
3102 ASSERT(listBlock->arraySize() == varBlock->arraySize());
3103 ASSERT(listBlock->fields() == varBlock->fields());
3104 ASSERT(listBlock->blockStorage() == varBlock->blockStorage());
3105 ASSERT(listBlock->matrixPacking() == varBlock->matrixPacking());
3106
3107 return i;
3108 }
3109 }
3110 }
3111 }
3112 }
3113 else if(varSymbol)
3114 {
3115 for(unsigned int i = 0; i < list.size(); i++)
3116 {
3117 if(list[i])
3118 {
3119 TIntermSymbol *listSymbol = list[i]->getAsSymbolNode();
3120
3121 if(listSymbol)
3122 {
3123 if(listSymbol->getId() == varSymbol->getId())
3124 {
3125 ASSERT(listSymbol->getSymbol() == varSymbol->getSymbol());
3126 ASSERT(listSymbol->getType() == varSymbol->getType());
3127 ASSERT(listSymbol->getQualifier() == varSymbol->getQualifier());
3128
3129 return i;
3130 }
3131 }
3132 }
3133 }
3134 }
3135
3136 return -1;
3137 }
3138
3139 int OutputASM::lookup(VariableArray &list, TInterfaceBlock *block)
3140 {
3141 for(unsigned int i = 0; i < list.size(); i++)
3142 {
3143 if(list[i] && (list[i]->getType().getInterfaceBlock() == block))
3144 {
3145 return i; // Pointer match
3146 }
3147 }
3148 return -1;
3149 }
3150
3151 int OutputASM::allocate(VariableArray &list, TIntermTyped *variable)
3152 {
3153 int index = lookup(list, variable);
3154
3155 if(index == -1)
3156 {
3157 unsigned int registerCount = variable->blockRegisterCount();
3158
3159 for(unsigned int i = 0; i < list.size(); i++)
3160 {
3161 if(list[i] == 0)
3162 {
3163 unsigned int j = 1;
3164 for( ; j < registerCount && (i + j) < list.size(); j++)
3165 {
3166 if(list[i + j] != 0)
3167 {
3168 break;
3169 }
3170 }
3171
3172 if(j == registerCount) // Found free slots
3173 {
3174 for(unsigned int j = 0; j < registerCount; j++)
3175 {
3176 list[i + j] = variable;
3177 }
3178
3179 return i;
3180 }
3181 }
3182 }
3183
3184 index = list.size();
3185
3186 for(unsigned int i = 0; i < registerCount; i++)
3187 {
3188 list.push_back(variable);
3189 }
3190 }
3191
3192 return index;
3193 }
3194
3195 void OutputASM::free(VariableArray &list, TIntermTyped *variable)
3196 {
3197 int index = lookup(list, variable);
3198
3199 if(index >= 0)
3200 {
3201 list[index] = 0;
3202 }
3203 }
3204
3205 int OutputASM::blockMemberLookup(const TType &type, const TString &name, int registerIndex)
3206 {
3207 const TInterfaceBlock *block = type.getInterfaceBlock();
3208
3209 if(block)
3210 {
3211 ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks;
3212 const TFieldList& fields = block->fields();
3213 const TString &blockName = block->name();
3214 int fieldRegisterIndex = registerIndex;
3215
3216 if(!type.isInterfaceBlock())
3217 {
3218 // This is a uniform that's part of a block, let's see if the block is already defined
3219 for(size_t i = 0; i < activeUniformBlocks.size(); ++i)
3220 {
3221 if(activeUniformBlocks[i].name == blockName.c_str())
3222 {
3223 // The block is already defined, find the register for the current uniform and return it
3224 for(size_t j = 0; j < fields.size(); j++)
3225 {
3226 const TString &fieldName = fields[j]->name();
3227 if(fieldName == name)
3228 {
3229 return fieldRegisterIndex;
3230 }
3231
3232 fieldRegisterIndex += fields[j]->type()->totalRegisterCount();
3233 }
3234
3235 ASSERT(false);
3236 return fieldRegisterIndex;
3237 }
3238 }
3239 }
3240 }
3241
3242 return -1;
3243 }
3244
3245 void OutputASM::declareUniform(const TType &type, const TString &name, int registerIndex, int blockId, BlockLayoutEncoder* encoder)
3246 {
3247 const TStructure *structure = type.getStruct();
3248 const TInterfaceBlock *block = (type.isInterfaceBlock() || (blockId == -1)) ? type.getInterfaceBlock() : nullptr;
3249
3250 if(!structure && !block)
3251 {
3252 ActiveUniforms &activeUniforms = shaderObject->activeUniforms;
3253 const BlockMemberInfo blockInfo = encoder ? encoder->encodeType(type) : BlockMemberInfo::getDefaultBlockInfo();
3254 if(blockId >= 0)
3255 {
3256 blockDefinitions[blockId][registerIndex] = TypedMemberInfo(blockInfo, type);
3257 shaderObject->activeUniformBlocks[blockId].fields.push_back(activeUniforms.size());
3258 }
3259 int fieldRegisterIndex = encoder ? shaderObject->activeUniformBlocks[blockId].registerIndex + BlockLayoutEncoder::getBlockRegister(blockInfo) : registerIndex;
3260 activeUniforms.push_back(Uniform(glVariableType(type), glVariablePrecision(type), name.c_str(), type.getArraySize(),
3261 fieldRegisterIndex, blockId, blockInfo));
3262 if(IsSampler(type.getBasicType()))
3263 {
3264 for(int i = 0; i < type.totalRegisterCount(); i++)
3265 {
3266 shader->declareSampler(fieldRegisterIndex + i);
3267 }
3268 }
3269 }
3270 else if(block)
3271 {
3272 ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks;
3273 const TFieldList& fields = block->fields();
3274 const TString &blockName = block->name();
3275 int fieldRegisterIndex = registerIndex;
3276 bool isUniformBlockMember = !type.isInterfaceBlock() && (blockId == -1);
3277
3278 blockId = activeUniformBlocks.size();
3279 bool isRowMajor = block->matrixPacking() == EmpRowMajor;
3280 activeUniformBlocks.push_back(UniformBlock(blockName.c_str(), 0, block->arraySize(),
3281 block->blockStorage(), isRowMajor, registerIndex, blockId));
3282 blockDefinitions.push_back(BlockDefinitionIndexMap());
3283
3284 Std140BlockEncoder currentBlockEncoder(isRowMajor);
3285 currentBlockEncoder.enterAggregateType();
3286 for(size_t i = 0; i < fields.size(); i++)
3287 {
3288 const TType &fieldType = *(fields[i]->type());
3289 const TString &fieldName = fields[i]->name();
3290 if(isUniformBlockMember && (fieldName == name))
3291 {
3292 registerIndex = fieldRegisterIndex;
3293 }
3294
3295 const TString uniformName = block->hasInstanceName() ? blockName + "." + fieldName : fieldName;
3296
3297 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, &currentBlockEncoder);
3298 fieldRegisterIndex += fieldType.totalRegisterCount();
3299 }
3300 currentBlockEncoder.exitAggregateType();
3301 activeUniformBlocks[blockId].dataSize = currentBlockEncoder.getBlockSize();
3302 }
3303 else
3304 {
3305 int fieldRegisterIndex = registerIndex;
3306
3307 const TFieldList& fields = structure->fields();
3308 if(type.isArray() && (structure || type.isInterfaceBlock()))
3309 {
3310 for(int i = 0; i < type.getArraySize(); i++)
3311 {
3312 if(encoder)
3313 {
3314 encoder->enterAggregateType();
3315 }
3316 for(size_t j = 0; j < fields.size(); j++)
3317 {
3318 const TType &fieldType = *(fields[j]->type());
3319 const TString &fieldName = fields[j]->name();
3320 const TString uniformName = name + "[" + str(i) + "]." + fieldName;
3321
3322 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, encoder);
3323 fieldRegisterIndex += fieldType.totalRegisterCount();
3324 }
3325 if(encoder)
3326 {
3327 encoder->exitAggregateType();
3328 }
3329 }
3330 }
3331 else
3332 {
3333 if(encoder)
3334 {
3335 encoder->enterAggregateType();
3336 }
3337 for(size_t i = 0; i < fields.size(); i++)
3338 {
3339 const TType &fieldType = *(fields[i]->type());
3340 const TString &fieldName = fields[i]->name();
3341 const TString uniformName = name + "." + fieldName;
3342
3343 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, encoder);
3344 fieldRegisterIndex += fieldType.totalRegisterCount();
3345 }
3346 if(encoder)
3347 {
3348 encoder->exitAggregateType();
3349 }
3350 }
3351 }
3352 }
3353
3354 GLenum OutputASM::glVariableType(const TType &type)
3355 {
3356 switch(type.getBasicType())
3357 {
3358 case EbtFloat:
3359 if(type.isScalar())
3360 {
3361 return GL_FLOAT;
3362 }
3363 else if(type.isVector())
3364 {
3365 switch(type.getNominalSize())
3366 {
3367 case 2: return GL_FLOAT_VEC2;
3368 case 3: return GL_FLOAT_VEC3;
3369 case 4: return GL_FLOAT_VEC4;
3370 default: UNREACHABLE(type.getNominalSize());
3371 }
3372 }
3373 else if(type.isMatrix())
3374 {
3375 switch(type.getNominalSize())
3376 {
3377 case 2:
3378 switch(type.getSecondarySize())
3379 {
3380 case 2: return GL_FLOAT_MAT2;
3381 case 3: return GL_FLOAT_MAT2x3;
3382 case 4: return GL_FLOAT_MAT2x4;
3383 default: UNREACHABLE(type.getSecondarySize());
3384 }
3385 case 3:
3386 switch(type.getSecondarySize())
3387 {
3388 case 2: return GL_FLOAT_MAT3x2;
3389 case 3: return GL_FLOAT_MAT3;
3390 case 4: return GL_FLOAT_MAT3x4;
3391 default: UNREACHABLE(type.getSecondarySize());
3392 }
3393 case 4:
3394 switch(type.getSecondarySize())
3395 {
3396 case 2: return GL_FLOAT_MAT4x2;
3397 case 3: return GL_FLOAT_MAT4x3;
3398 case 4: return GL_FLOAT_MAT4;
3399 default: UNREACHABLE(type.getSecondarySize());
3400 }
3401 default: UNREACHABLE(type.getNominalSize());
3402 }
3403 }
3404 else UNREACHABLE(0);
3405 break;
3406 case EbtInt:
3407 if(type.isScalar())
3408 {
3409 return GL_INT;
3410 }
3411 else if(type.isVector())
3412 {
3413 switch(type.getNominalSize())
3414 {
3415 case 2: return GL_INT_VEC2;
3416 case 3: return GL_INT_VEC3;
3417 case 4: return GL_INT_VEC4;
3418 default: UNREACHABLE(type.getNominalSize());
3419 }
3420 }
3421 else UNREACHABLE(0);
3422 break;
3423 case EbtUInt:
3424 if(type.isScalar())
3425 {
3426 return GL_UNSIGNED_INT;
3427 }
3428 else if(type.isVector())
3429 {
3430 switch(type.getNominalSize())
3431 {
3432 case 2: return GL_UNSIGNED_INT_VEC2;
3433 case 3: return GL_UNSIGNED_INT_VEC3;
3434 case 4: return GL_UNSIGNED_INT_VEC4;
3435 default: UNREACHABLE(type.getNominalSize());
3436 }
3437 }
3438 else UNREACHABLE(0);
3439 break;
3440 case EbtBool:
3441 if(type.isScalar())
3442 {
3443 return GL_BOOL;
3444 }
3445 else if(type.isVector())
3446 {
3447 switch(type.getNominalSize())
3448 {
3449 case 2: return GL_BOOL_VEC2;
3450 case 3: return GL_BOOL_VEC3;
3451 case 4: return GL_BOOL_VEC4;
3452 default: UNREACHABLE(type.getNominalSize());
3453 }
3454 }
3455 else UNREACHABLE(0);
3456 break;
3457 case EbtSampler2D:
3458 return GL_SAMPLER_2D;
3459 case EbtISampler2D:
3460 return GL_INT_SAMPLER_2D;
3461 case EbtUSampler2D:
3462 return GL_UNSIGNED_INT_SAMPLER_2D;
3463 case EbtSamplerCube:
3464 return GL_SAMPLER_CUBE;
3465 case EbtISamplerCube:
3466 return GL_INT_SAMPLER_CUBE;
3467 case EbtUSamplerCube:
3468 return GL_UNSIGNED_INT_SAMPLER_CUBE;
3469 case EbtSamplerExternalOES:
3470 return GL_SAMPLER_EXTERNAL_OES;
3471 case EbtSampler3D:
3472 return GL_SAMPLER_3D_OES;
3473 case EbtISampler3D:
3474 return GL_INT_SAMPLER_3D;
3475 case EbtUSampler3D:
3476 return GL_UNSIGNED_INT_SAMPLER_3D;
3477 case EbtSampler2DArray:
3478 return GL_SAMPLER_2D_ARRAY;
3479 case EbtISampler2DArray:
3480 return GL_INT_SAMPLER_2D_ARRAY;
3481 case EbtUSampler2DArray:
3482 return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY;
3483 case EbtSampler2DShadow:
3484 return GL_SAMPLER_2D_SHADOW;
3485 case EbtSamplerCubeShadow:
3486 return GL_SAMPLER_CUBE_SHADOW;
3487 case EbtSampler2DArrayShadow:
3488 return GL_SAMPLER_2D_ARRAY_SHADOW;
3489 default:
3490 UNREACHABLE(type.getBasicType());
3491 break;
3492 }
3493
3494 return GL_NONE;
3495 }
3496
3497 GLenum OutputASM::glVariablePrecision(const TType &type)
3498 {
3499 if(type.getBasicType() == EbtFloat)
3500 {
3501 switch(type.getPrecision())
3502 {
3503 case EbpHigh: return GL_HIGH_FLOAT;
3504 case EbpMedium: return GL_MEDIUM_FLOAT;
3505 case EbpLow: return GL_LOW_FLOAT;
3506 case EbpUndefined:
3507 // Should be defined as the default precision by the parser
3508 default: UNREACHABLE(type.getPrecision());
3509 }
3510 }
3511 else if(type.getBasicType() == EbtInt)
3512 {
3513 switch(type.getPrecision())
3514 {
3515 case EbpHigh: return GL_HIGH_INT;
3516 case EbpMedium: return GL_MEDIUM_INT;
3517 case EbpLow: return GL_LOW_INT;
3518 case EbpUndefined:
3519 // Should be defined as the default precision by the parser
3520 default: UNREACHABLE(type.getPrecision());
3521 }
3522 }
3523
3524 // Other types (boolean, sampler) don't have a precision
3525 return GL_NONE;
3526 }
3527
3528 int OutputASM::dim(TIntermNode *v)
3529 {
3530 TIntermTyped *vector = v->getAsTyped();
3531 ASSERT(vector && vector->isRegister());
3532 return vector->getNominalSize();
3533 }
3534
3535 int OutputASM::dim2(TIntermNode *m)
3536 {
3537 TIntermTyped *matrix = m->getAsTyped();
3538 ASSERT(matrix && matrix->isMatrix() && !matrix->isArray());
3539 return matrix->getSecondarySize();
3540 }
3541
3542 // Returns ~0u if no loop count could be determined
3543 unsigned int OutputASM::loopCount(TIntermLoop *node)
3544 {
3545 // Parse loops of the form:
3546 // for(int index = initial; index [comparator] limit; index += increment)
3547 TIntermSymbol *index = 0;
3548 TOperator comparator = EOpNull;
3549 int initial = 0;
3550 int limit = 0;
3551 int increment = 0;
3552
3553 // Parse index name and intial value
3554 if(node->getInit())
3555 {
3556 TIntermAggregate *init = node->getInit()->getAsAggregate();
3557
3558 if(init)
3559 {
3560 TIntermSequence &sequence = init->getSequence();
3561 TIntermTyped *variable = sequence[0]->getAsTyped();
3562
Nicolas Capense3f05552017-05-24 10:45:56 -04003563 if(variable && variable->getQualifier() == EvqTemporary && variable->getBasicType() == EbtInt)
Nicolas Capens0bac2852016-05-07 06:09:58 -04003564 {
3565 TIntermBinary *assign = variable->getAsBinaryNode();
3566
Nicolas Capensd0bfd912017-05-24 10:20:24 -04003567 if(assign && assign->getOp() == EOpInitialize)
Nicolas Capens0bac2852016-05-07 06:09:58 -04003568 {
3569 TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
3570 TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
3571
3572 if(symbol && constant)
3573 {
3574 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3575 {
3576 index = symbol;
3577 initial = constant->getUnionArrayPointer()[0].getIConst();
3578 }
3579 }
3580 }
3581 }
3582 }
3583 }
3584
3585 // Parse comparator and limit value
3586 if(index && node->getCondition())
3587 {
3588 TIntermBinary *test = node->getCondition()->getAsBinaryNode();
Alexis Hetu7be70cf2016-05-11 10:56:43 -04003589 TIntermSymbol *left = test ? test->getLeft()->getAsSymbolNode() : nullptr;
Nicolas Capens0bac2852016-05-07 06:09:58 -04003590
Alexis Hetu7be70cf2016-05-11 10:56:43 -04003591 if(left && (left->getId() == index->getId()))
Nicolas Capens0bac2852016-05-07 06:09:58 -04003592 {
3593 TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
3594
3595 if(constant)
3596 {
3597 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3598 {
3599 comparator = test->getOp();
3600 limit = constant->getUnionArrayPointer()[0].getIConst();
3601 }
3602 }
3603 }
3604 }
3605
3606 // Parse increment
3607 if(index && comparator != EOpNull && node->getExpression())
3608 {
3609 TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
3610 TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
3611
3612 if(binaryTerminal)
3613 {
3614 TOperator op = binaryTerminal->getOp();
3615 TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
3616
3617 if(constant)
3618 {
3619 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3620 {
3621 int value = constant->getUnionArrayPointer()[0].getIConst();
3622
3623 switch(op)
3624 {
3625 case EOpAddAssign: increment = value; break;
3626 case EOpSubAssign: increment = -value; break;
3627 default: UNIMPLEMENTED();
3628 }
3629 }
3630 }
3631 }
3632 else if(unaryTerminal)
3633 {
3634 TOperator op = unaryTerminal->getOp();
3635
3636 switch(op)
3637 {
3638 case EOpPostIncrement: increment = 1; break;
3639 case EOpPostDecrement: increment = -1; break;
3640 case EOpPreIncrement: increment = 1; break;
3641 case EOpPreDecrement: increment = -1; break;
3642 default: UNIMPLEMENTED();
3643 }
3644 }
3645 }
3646
3647 if(index && comparator != EOpNull && increment != 0)
3648 {
3649 if(comparator == EOpLessThanEqual)
3650 {
3651 comparator = EOpLessThan;
3652 limit += 1;
3653 }
Nicolas Capense3f05552017-05-24 10:45:56 -04003654 else if(comparator == EOpGreaterThanEqual)
3655 {
3656 comparator = EOpLessThan;
3657 limit -= 1;
3658 std::swap(initial, limit);
3659 increment = -increment;
3660 }
3661 else if(comparator == EOpGreaterThan)
3662 {
3663 comparator = EOpLessThan;
3664 std::swap(initial, limit);
3665 increment = -increment;
3666 }
Nicolas Capens0bac2852016-05-07 06:09:58 -04003667
3668 if(comparator == EOpLessThan)
3669 {
Nicolas Capens930b7002017-01-06 17:22:13 -05003670 if(!(initial < limit)) // Never loops
Nicolas Capens0bac2852016-05-07 06:09:58 -04003671 {
Nicolas Capens930b7002017-01-06 17:22:13 -05003672 return 0;
3673 }
3674
3675 int iterations = (limit - initial + abs(increment) - 1) / increment; // Ceiling division
3676
3677 if(iterations < 0)
3678 {
3679 return ~0u;
Nicolas Capens0bac2852016-05-07 06:09:58 -04003680 }
3681
3682 return iterations;
3683 }
3684 else UNIMPLEMENTED(); // Falls through
3685 }
3686
3687 return ~0u;
3688 }
3689
3690 bool LoopUnrollable::traverse(TIntermNode *node)
3691 {
3692 loopDepth = 0;
3693 loopUnrollable = true;
3694
3695 node->traverse(this);
3696
3697 return loopUnrollable;
3698 }
3699
3700 bool LoopUnrollable::visitLoop(Visit visit, TIntermLoop *loop)
3701 {
3702 if(visit == PreVisit)
3703 {
3704 loopDepth++;
3705 }
3706 else if(visit == PostVisit)
3707 {
3708 loopDepth++;
3709 }
3710
3711 return true;
3712 }
3713
3714 bool LoopUnrollable::visitBranch(Visit visit, TIntermBranch *node)
3715 {
3716 if(!loopUnrollable)
3717 {
3718 return false;
3719 }
3720
3721 if(!loopDepth)
3722 {
3723 return true;
3724 }
3725
3726 switch(node->getFlowOp())
3727 {
3728 case EOpKill:
3729 case EOpReturn:
3730 break;
3731 case EOpBreak:
3732 case EOpContinue:
3733 loopUnrollable = false;
3734 break;
3735 default: UNREACHABLE(node->getFlowOp());
3736 }
3737
3738 return loopUnrollable;
3739 }
3740
3741 bool LoopUnrollable::visitAggregate(Visit visit, TIntermAggregate *node)
3742 {
3743 return loopUnrollable;
3744 }
3745}