blob: acd8fbf6dcfa919ec8504bb2aa85d8c9ddbf491e [file] [log] [blame]
Nicolas Capens0bac2852016-05-07 06:09:58 -04001// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "OutputASM.h"
16#include "Common/Math.hpp"
17
18#include "common/debug.h"
19#include "InfoSink.h"
20
21#include "libGLESv2/Shader.h"
22
23#include <GLES2/gl2.h>
24#include <GLES2/gl2ext.h>
25#include <GLES3/gl3.h>
26
27namespace glsl
28{
29 // Integer to TString conversion
30 TString str(int i)
31 {
32 char buffer[20];
33 sprintf(buffer, "%d", i);
34 return buffer;
35 }
36
37 class Temporary : public TIntermSymbol
38 {
39 public:
40 Temporary(OutputASM *assembler) : TIntermSymbol(TSymbolTableLevel::nextUniqueId(), "tmp", TType(EbtFloat, EbpHigh, EvqTemporary, 4, 1, false)), assembler(assembler)
41 {
42 }
43
44 ~Temporary()
45 {
46 assembler->freeTemporary(this);
47 }
48
49 private:
50 OutputASM *const assembler;
51 };
52
53 class Constant : public TIntermConstantUnion
54 {
55 public:
56 Constant(float x, float y, float z, float w) : TIntermConstantUnion(constants, TType(EbtFloat, EbpHigh, EvqConstExpr, 4, 1, false))
57 {
58 constants[0].setFConst(x);
59 constants[1].setFConst(y);
60 constants[2].setFConst(z);
61 constants[3].setFConst(w);
62 }
63
64 Constant(bool b) : TIntermConstantUnion(constants, TType(EbtBool, EbpHigh, EvqConstExpr, 1, 1, false))
65 {
66 constants[0].setBConst(b);
67 }
68
69 Constant(int i) : TIntermConstantUnion(constants, TType(EbtInt, EbpHigh, EvqConstExpr, 1, 1, false))
70 {
71 constants[0].setIConst(i);
72 }
73
74 ~Constant()
75 {
76 }
77
78 private:
79 ConstantUnion constants[4];
80 };
81
82 Uniform::Uniform(GLenum type, GLenum precision, const std::string &name, int arraySize, int registerIndex, int blockId, const BlockMemberInfo& blockMemberInfo) :
83 type(type), precision(precision), name(name), arraySize(arraySize), registerIndex(registerIndex), blockId(blockId), blockInfo(blockMemberInfo)
84 {
85 }
86
87 UniformBlock::UniformBlock(const std::string& name, unsigned int dataSize, unsigned int arraySize,
88 TLayoutBlockStorage layout, bool isRowMajorLayout, int registerIndex, int blockId) :
89 name(name), dataSize(dataSize), arraySize(arraySize), layout(layout),
90 isRowMajorLayout(isRowMajorLayout), registerIndex(registerIndex), blockId(blockId)
91 {
92 }
93
94 BlockLayoutEncoder::BlockLayoutEncoder(bool rowMajor)
95 : mCurrentOffset(0), isRowMajor(rowMajor)
96 {
97 }
98
99 BlockMemberInfo BlockLayoutEncoder::encodeType(const TType &type)
100 {
101 int arrayStride;
102 int matrixStride;
103
104 getBlockLayoutInfo(type, type.getArraySize(), isRowMajor, &arrayStride, &matrixStride);
105
106 const BlockMemberInfo memberInfo(static_cast<int>(mCurrentOffset * BytesPerComponent),
107 static_cast<int>(arrayStride * BytesPerComponent),
108 static_cast<int>(matrixStride * BytesPerComponent),
109 (matrixStride > 0) && isRowMajor);
110
111 advanceOffset(type, type.getArraySize(), isRowMajor, arrayStride, matrixStride);
112
113 return memberInfo;
114 }
115
116 // static
117 size_t BlockLayoutEncoder::getBlockRegister(const BlockMemberInfo &info)
118 {
119 return (info.offset / BytesPerComponent) / ComponentsPerRegister;
120 }
121
122 // static
123 size_t BlockLayoutEncoder::getBlockRegisterElement(const BlockMemberInfo &info)
124 {
125 return (info.offset / BytesPerComponent) % ComponentsPerRegister;
126 }
127
128 void BlockLayoutEncoder::nextRegister()
129 {
130 mCurrentOffset = sw::align(mCurrentOffset, ComponentsPerRegister);
131 }
132
133 Std140BlockEncoder::Std140BlockEncoder(bool rowMajor) : BlockLayoutEncoder(rowMajor)
134 {
135 }
136
137 void Std140BlockEncoder::enterAggregateType()
138 {
139 nextRegister();
140 }
141
142 void Std140BlockEncoder::exitAggregateType()
143 {
144 nextRegister();
145 }
146
147 void Std140BlockEncoder::getBlockLayoutInfo(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int *arrayStrideOut, int *matrixStrideOut)
148 {
149 size_t baseAlignment = 0;
150 int matrixStride = 0;
151 int arrayStride = 0;
152
153 if(type.isMatrix())
154 {
155 baseAlignment = ComponentsPerRegister;
156 matrixStride = ComponentsPerRegister;
157
158 if(arraySize > 0)
159 {
160 const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize();
161 arrayStride = ComponentsPerRegister * numRegisters;
162 }
163 }
164 else if(arraySize > 0)
165 {
166 baseAlignment = ComponentsPerRegister;
167 arrayStride = ComponentsPerRegister;
168 }
169 else
170 {
171 const size_t numComponents = type.getElementSize();
172 baseAlignment = (numComponents == 3 ? 4u : numComponents);
173 }
174
175 mCurrentOffset = sw::align(mCurrentOffset, baseAlignment);
176
177 *matrixStrideOut = matrixStride;
178 *arrayStrideOut = arrayStride;
179 }
180
181 void Std140BlockEncoder::advanceOffset(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int arrayStride, int matrixStride)
182 {
183 if(arraySize > 0)
184 {
185 mCurrentOffset += arrayStride * arraySize;
186 }
187 else if(type.isMatrix())
188 {
189 ASSERT(matrixStride == ComponentsPerRegister);
190 const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize();
191 mCurrentOffset += ComponentsPerRegister * numRegisters;
192 }
193 else
194 {
195 mCurrentOffset += type.getElementSize();
196 }
197 }
198
199 Attribute::Attribute()
200 {
201 type = GL_NONE;
202 arraySize = 0;
203 registerIndex = 0;
204 }
205
206 Attribute::Attribute(GLenum type, const std::string &name, int arraySize, int location, int registerIndex)
207 {
208 this->type = type;
209 this->name = name;
210 this->arraySize = arraySize;
211 this->location = location;
212 this->registerIndex = registerIndex;
213 }
214
215 sw::PixelShader *Shader::getPixelShader() const
216 {
217 return 0;
218 }
219
220 sw::VertexShader *Shader::getVertexShader() const
221 {
222 return 0;
223 }
224
225 OutputASM::TextureFunction::TextureFunction(const TString& nodeName) : method(IMPLICIT), proj(false), offset(false)
226 {
227 TString name = TFunction::unmangleName(nodeName);
228
229 if(name == "texture2D" || name == "textureCube" || name == "texture" || name == "texture3D")
230 {
231 method = IMPLICIT;
232 }
233 else if(name == "texture2DProj" || name == "textureProj")
234 {
235 method = IMPLICIT;
236 proj = true;
237 }
238 else if(name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod")
239 {
240 method = LOD;
241 }
242 else if(name == "texture2DProjLod" || name == "textureProjLod")
243 {
244 method = LOD;
245 proj = true;
246 }
247 else if(name == "textureSize")
248 {
249 method = SIZE;
250 }
251 else if(name == "textureOffset")
252 {
253 method = IMPLICIT;
254 offset = true;
255 }
256 else if(name == "textureProjOffset")
257 {
258 method = IMPLICIT;
259 offset = true;
260 proj = true;
261 }
262 else if(name == "textureLodOffset")
263 {
264 method = LOD;
265 offset = true;
266 }
267 else if(name == "textureProjLodOffset")
268 {
269 method = LOD;
270 proj = true;
271 offset = true;
272 }
273 else if(name == "texelFetch")
274 {
275 method = FETCH;
276 }
277 else if(name == "texelFetchOffset")
278 {
279 method = FETCH;
280 offset = true;
281 }
282 else if(name == "textureGrad")
283 {
284 method = GRAD;
285 }
286 else if(name == "textureGradOffset")
287 {
288 method = GRAD;
289 offset = true;
290 }
291 else if(name == "textureProjGrad")
292 {
293 method = GRAD;
294 proj = true;
295 }
296 else if(name == "textureProjGradOffset")
297 {
298 method = GRAD;
299 proj = true;
300 offset = true;
301 }
302 else UNREACHABLE(0);
303 }
304
305 OutputASM::OutputASM(TParseContext &context, Shader *shaderObject) : TIntermTraverser(true, true, true), shaderObject(shaderObject), mContext(context)
306 {
307 shader = 0;
308 pixelShader = 0;
309 vertexShader = 0;
310
311 if(shaderObject)
312 {
313 shader = shaderObject->getShader();
314 pixelShader = shaderObject->getPixelShader();
315 vertexShader = shaderObject->getVertexShader();
316 }
317
318 functionArray.push_back(Function(0, "main(", 0, 0));
319 currentFunction = 0;
320 outputQualifier = EvqOutput; // Set outputQualifier to any value other than EvqFragColor or EvqFragData
321 }
322
323 OutputASM::~OutputASM()
324 {
325 }
326
327 void OutputASM::output()
328 {
329 if(shader)
330 {
331 emitShader(GLOBAL);
332
333 if(functionArray.size() > 1) // Only call main() when there are other functions
334 {
335 Instruction *callMain = emit(sw::Shader::OPCODE_CALL);
336 callMain->dst.type = sw::Shader::PARAMETER_LABEL;
337 callMain->dst.index = 0; // main()
338
339 emit(sw::Shader::OPCODE_RET);
340 }
341
342 emitShader(FUNCTION);
343 }
344 }
345
346 void OutputASM::emitShader(Scope scope)
347 {
348 emitScope = scope;
349 currentScope = GLOBAL;
350 mContext.getTreeRoot()->traverse(this);
351 }
352
353 void OutputASM::freeTemporary(Temporary *temporary)
354 {
355 free(temporaries, temporary);
356 }
357
358 sw::Shader::Opcode OutputASM::getOpcode(sw::Shader::Opcode op, TIntermTyped *in) const
359 {
360 TBasicType baseType = in->getType().getBasicType();
361
362 switch(op)
363 {
364 case sw::Shader::OPCODE_NEG:
365 switch(baseType)
366 {
367 case EbtInt:
368 case EbtUInt:
369 return sw::Shader::OPCODE_INEG;
370 case EbtFloat:
371 default:
372 return op;
373 }
374 case sw::Shader::OPCODE_ABS:
375 switch(baseType)
376 {
377 case EbtInt:
378 return sw::Shader::OPCODE_IABS;
379 case EbtFloat:
380 default:
381 return op;
382 }
383 case sw::Shader::OPCODE_SGN:
384 switch(baseType)
385 {
386 case EbtInt:
387 return sw::Shader::OPCODE_ISGN;
388 case EbtFloat:
389 default:
390 return op;
391 }
392 case sw::Shader::OPCODE_ADD:
393 switch(baseType)
394 {
395 case EbtInt:
396 case EbtUInt:
397 return sw::Shader::OPCODE_IADD;
398 case EbtFloat:
399 default:
400 return op;
401 }
402 case sw::Shader::OPCODE_SUB:
403 switch(baseType)
404 {
405 case EbtInt:
406 case EbtUInt:
407 return sw::Shader::OPCODE_ISUB;
408 case EbtFloat:
409 default:
410 return op;
411 }
412 case sw::Shader::OPCODE_MUL:
413 switch(baseType)
414 {
415 case EbtInt:
416 case EbtUInt:
417 return sw::Shader::OPCODE_IMUL;
418 case EbtFloat:
419 default:
420 return op;
421 }
422 case sw::Shader::OPCODE_DIV:
423 switch(baseType)
424 {
425 case EbtInt:
426 return sw::Shader::OPCODE_IDIV;
427 case EbtUInt:
428 return sw::Shader::OPCODE_UDIV;
429 case EbtFloat:
430 default:
431 return op;
432 }
433 case sw::Shader::OPCODE_IMOD:
434 return baseType == EbtUInt ? sw::Shader::OPCODE_UMOD : op;
435 case sw::Shader::OPCODE_ISHR:
436 return baseType == EbtUInt ? sw::Shader::OPCODE_USHR : op;
437 case sw::Shader::OPCODE_MIN:
438 switch(baseType)
439 {
440 case EbtInt:
441 return sw::Shader::OPCODE_IMIN;
442 case EbtUInt:
443 return sw::Shader::OPCODE_UMIN;
444 case EbtFloat:
445 default:
446 return op;
447 }
448 case sw::Shader::OPCODE_MAX:
449 switch(baseType)
450 {
451 case EbtInt:
452 return sw::Shader::OPCODE_IMAX;
453 case EbtUInt:
454 return sw::Shader::OPCODE_UMAX;
455 case EbtFloat:
456 default:
457 return op;
458 }
459 default:
460 return op;
461 }
462 }
463
464 void OutputASM::visitSymbol(TIntermSymbol *symbol)
465 {
466 // Vertex varyings don't have to be actively used to successfully link
467 // against pixel shaders that use them. So make sure they're declared.
468 if(symbol->getQualifier() == EvqVaryingOut || symbol->getQualifier() == EvqInvariantVaryingOut || symbol->getQualifier() == EvqVertexOut)
469 {
470 if(symbol->getBasicType() != EbtInvariant) // Typeless declarations are not new varyings
471 {
472 declareVarying(symbol, -1);
473 }
474 }
475
476 TInterfaceBlock* block = symbol->getType().getInterfaceBlock();
477 // OpenGL ES 3.0.4 spec, section 2.12.6 Uniform Variables:
478 // "All members of a named uniform block declared with a shared or std140 layout qualifier
479 // are considered active, even if they are not referenced in any shader in the program.
480 // The uniform block itself is also considered active, even if no member of the block is referenced."
481 if(block && ((block->blockStorage() == EbsShared) || (block->blockStorage() == EbsStd140)))
482 {
483 uniformRegister(symbol);
484 }
485 }
486
487 bool OutputASM::visitBinary(Visit visit, TIntermBinary *node)
488 {
489 if(currentScope != emitScope)
490 {
491 return false;
492 }
493
494 TIntermTyped *result = node;
495 TIntermTyped *left = node->getLeft();
496 TIntermTyped *right = node->getRight();
497 const TType &leftType = left->getType();
498 const TType &rightType = right->getType();
Nicolas Capens0bac2852016-05-07 06:09:58 -0400499
500 if(isSamplerRegister(result))
501 {
502 return false; // Don't traverse, the register index is determined statically
503 }
504
505 switch(node->getOp())
506 {
507 case EOpAssign:
508 if(visit == PostVisit)
509 {
510 assignLvalue(left, right);
511 copy(result, right);
512 }
513 break;
514 case EOpInitialize:
515 if(visit == PostVisit)
516 {
517 copy(left, right);
518 }
519 break;
520 case EOpMatrixTimesScalarAssign:
521 if(visit == PostVisit)
522 {
523 for(int i = 0; i < leftType.getNominalSize(); i++)
524 {
525 emit(sw::Shader::OPCODE_MUL, result, i, left, i, right);
526 }
527
528 assignLvalue(left, result);
529 }
530 break;
531 case EOpVectorTimesMatrixAssign:
532 if(visit == PostVisit)
533 {
534 int size = leftType.getNominalSize();
535
536 for(int i = 0; i < size; i++)
537 {
538 Instruction *dot = emit(sw::Shader::OPCODE_DP(size), result, 0, left, 0, right, i);
539 dot->dst.mask = 1 << i;
540 }
541
542 assignLvalue(left, result);
543 }
544 break;
545 case EOpMatrixTimesMatrixAssign:
546 if(visit == PostVisit)
547 {
548 int dim = leftType.getNominalSize();
549
550 for(int i = 0; i < dim; i++)
551 {
552 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
553 mul->src[1].swizzle = 0x00;
554
555 for(int j = 1; j < dim; j++)
556 {
557 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i);
558 mad->src[1].swizzle = j * 0x55;
559 }
560 }
561
562 assignLvalue(left, result);
563 }
564 break;
565 case EOpIndexDirect:
566 if(visit == PostVisit)
567 {
568 int index = right->getAsConstantUnion()->getIConst(0);
569
570 if(result->isMatrix() || result->isStruct() || result->isInterfaceBlock())
571 {
572 ASSERT(left->isArray());
573 copy(result, left, index * left->elementRegisterCount());
574 }
575 else if(result->isRegister())
576 {
577 int srcIndex = 0;
578 if(left->isRegister())
579 {
580 srcIndex = 0;
581 }
582 else if(left->isArray())
583 {
584 srcIndex = index * left->elementRegisterCount();
585 }
586 else if(left->isMatrix())
587 {
588 ASSERT(index < left->getNominalSize()); // FIXME: Report semantic error
589 srcIndex = index;
590 }
591 else UNREACHABLE(0);
592
593 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, 0, left, srcIndex);
594
595 if(left->isRegister())
596 {
597 mov->src[0].swizzle = index;
598 }
599 }
600 else UNREACHABLE(0);
601 }
602 break;
603 case EOpIndexIndirect:
604 if(visit == PostVisit)
605 {
606 if(left->isArray() || left->isMatrix())
607 {
608 for(int index = 0; index < result->totalRegisterCount(); index++)
609 {
610 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, index, left, index);
611 mov->dst.mask = writeMask(result, index);
612
613 if(left->totalRegisterCount() > 1)
614 {
615 sw::Shader::SourceParameter relativeRegister;
616 argument(relativeRegister, right);
617
618 mov->src[0].rel.type = relativeRegister.type;
619 mov->src[0].rel.index = relativeRegister.index;
620 mov->src[0].rel.scale = result->totalRegisterCount();
621 mov->src[0].rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
622 }
623 }
624 }
625 else if(left->isRegister())
626 {
627 emit(sw::Shader::OPCODE_EXTRACT, result, left, right);
628 }
629 else UNREACHABLE(0);
630 }
631 break;
632 case EOpIndexDirectStruct:
633 case EOpIndexDirectInterfaceBlock:
634 if(visit == PostVisit)
635 {
636 ASSERT(leftType.isStruct() || (leftType.isInterfaceBlock()));
637
638 const TFieldList& fields = (node->getOp() == EOpIndexDirectStruct) ?
639 leftType.getStruct()->fields() :
640 leftType.getInterfaceBlock()->fields();
641 int index = right->getAsConstantUnion()->getIConst(0);
642 int fieldOffset = 0;
643
644 for(int i = 0; i < index; i++)
645 {
646 fieldOffset += fields[i]->type()->totalRegisterCount();
647 }
648
649 copy(result, left, fieldOffset);
650 }
651 break;
652 case EOpVectorSwizzle:
653 if(visit == PostVisit)
654 {
655 int swizzle = 0;
656 TIntermAggregate *components = right->getAsAggregate();
657
658 if(components)
659 {
660 TIntermSequence &sequence = components->getSequence();
661 int component = 0;
662
663 for(TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
664 {
665 TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
666
667 if(element)
668 {
669 int i = element->getUnionArrayPointer()[0].getIConst();
670 swizzle |= i << (component * 2);
671 component++;
672 }
673 else UNREACHABLE(0);
674 }
675 }
676 else UNREACHABLE(0);
677
678 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, left);
679 mov->src[0].swizzle = swizzle;
680 }
681 break;
682 case EOpAddAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, left, right); break;
683 case EOpAdd: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, right); break;
684 case EOpSubAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, left, right); break;
685 case EOpSub: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, right); break;
686 case EOpMulAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, left, right); break;
687 case EOpMul: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, right); break;
688 case EOpDivAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, left, right); break;
689 case EOpDiv: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, right); break;
690 case EOpIModAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, left, right); break;
691 case EOpIMod: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, right); break;
692 case EOpBitShiftLeftAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_SHL, result, left, left, right); break;
693 case EOpBitShiftLeft: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_SHL, result, left, right); break;
694 case EOpBitShiftRightAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, left, right); break;
695 case EOpBitShiftRight: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, right); break;
696 case EOpBitwiseAndAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_AND, result, left, left, right); break;
697 case EOpBitwiseAnd: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_AND, result, left, right); break;
698 case EOpBitwiseXorAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_XOR, result, left, left, right); break;
699 case EOpBitwiseXor: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_XOR, result, left, right); break;
700 case EOpBitwiseOrAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_OR, result, left, left, right); break;
701 case EOpBitwiseOr: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_OR, result, left, right); break;
702 case EOpEqual:
703 if(visit == PostVisit)
704 {
705 emitBinary(sw::Shader::OPCODE_EQ, result, left, right);
706
707 for(int index = 1; index < left->totalRegisterCount(); index++)
708 {
709 Temporary equal(this);
710 emit(sw::Shader::OPCODE_EQ, &equal, 0, left, index, right, index);
711 emit(sw::Shader::OPCODE_AND, result, result, &equal);
712 }
713 }
714 break;
715 case EOpNotEqual:
716 if(visit == PostVisit)
717 {
718 emitBinary(sw::Shader::OPCODE_NE, result, left, right);
719
720 for(int index = 1; index < left->totalRegisterCount(); index++)
721 {
722 Temporary notEqual(this);
723 emit(sw::Shader::OPCODE_NE, &notEqual, 0, left, index, right, index);
724 emit(sw::Shader::OPCODE_OR, result, result, &notEqual);
725 }
726 }
727 break;
728 case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, left, right); break;
729 case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, left, right); break;
730 case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, left, right); break;
731 case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, left, right); break;
732 case EOpVectorTimesScalarAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, left, right); break;
733 case EOpVectorTimesScalar: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, right); break;
734 case EOpMatrixTimesScalar:
735 if(visit == PostVisit)
736 {
737 if(left->isMatrix())
738 {
739 for(int i = 0; i < leftType.getNominalSize(); i++)
740 {
741 emit(sw::Shader::OPCODE_MUL, result, i, left, i, right, 0);
742 }
743 }
744 else if(right->isMatrix())
745 {
746 for(int i = 0; i < rightType.getNominalSize(); i++)
747 {
748 emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
749 }
750 }
751 else UNREACHABLE(0);
752 }
753 break;
754 case EOpVectorTimesMatrix:
755 if(visit == PostVisit)
756 {
757 sw::Shader::Opcode dpOpcode = sw::Shader::OPCODE_DP(leftType.getNominalSize());
758
759 int size = rightType.getNominalSize();
760 for(int i = 0; i < size; i++)
761 {
762 Instruction *dot = emit(dpOpcode, result, 0, left, 0, right, i);
763 dot->dst.mask = 1 << i;
764 }
765 }
766 break;
767 case EOpMatrixTimesVector:
768 if(visit == PostVisit)
769 {
770 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
771 mul->src[1].swizzle = 0x00;
772
773 int size = rightType.getNominalSize();
774 for(int i = 1; i < size; i++)
775 {
776 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, 0, left, i, right, 0, result);
777 mad->src[1].swizzle = i * 0x55;
778 }
779 }
780 break;
781 case EOpMatrixTimesMatrix:
782 if(visit == PostVisit)
783 {
784 int dim = leftType.getNominalSize();
785
786 int size = rightType.getNominalSize();
787 for(int i = 0; i < size; i++)
788 {
789 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
790 mul->src[1].swizzle = 0x00;
791
792 for(int j = 1; j < dim; j++)
793 {
794 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i);
795 mad->src[1].swizzle = j * 0x55;
796 }
797 }
798 }
799 break;
800 case EOpLogicalOr:
801 if(trivial(right, 6))
802 {
803 if(visit == PostVisit)
804 {
805 emit(sw::Shader::OPCODE_OR, result, left, right);
806 }
807 }
808 else // Short-circuit evaluation
809 {
810 if(visit == InVisit)
811 {
812 emit(sw::Shader::OPCODE_MOV, result, left);
813 Instruction *ifnot = emit(sw::Shader::OPCODE_IF, 0, result);
814 ifnot->src[0].modifier = sw::Shader::MODIFIER_NOT;
815 }
816 else if(visit == PostVisit)
817 {
818 emit(sw::Shader::OPCODE_MOV, result, right);
819 emit(sw::Shader::OPCODE_ENDIF);
820 }
821 }
822 break;
823 case EOpLogicalXor: if(visit == PostVisit) emit(sw::Shader::OPCODE_XOR, result, left, right); break;
824 case EOpLogicalAnd:
825 if(trivial(right, 6))
826 {
827 if(visit == PostVisit)
828 {
829 emit(sw::Shader::OPCODE_AND, result, left, right);
830 }
831 }
832 else // Short-circuit evaluation
833 {
834 if(visit == InVisit)
835 {
836 emit(sw::Shader::OPCODE_MOV, result, left);
837 emit(sw::Shader::OPCODE_IF, 0, result);
838 }
839 else if(visit == PostVisit)
840 {
841 emit(sw::Shader::OPCODE_MOV, result, right);
842 emit(sw::Shader::OPCODE_ENDIF);
843 }
844 }
845 break;
846 default: UNREACHABLE(node->getOp());
847 }
848
849 return true;
850 }
851
852 void OutputASM::emitDeterminant(TIntermTyped *result, TIntermTyped *arg, int size, int col, int row, int outCol, int outRow)
853 {
854 switch(size)
855 {
856 case 1: // Used for cofactor computation only
857 {
858 // For a 2x2 matrix, the cofactor is simply a transposed move or negate
859 bool isMov = (row == col);
860 sw::Shader::Opcode op = isMov ? sw::Shader::OPCODE_MOV : sw::Shader::OPCODE_NEG;
861 Instruction *mov = emit(op, result, outCol, arg, isMov ? 1 - row : row);
862 mov->src[0].swizzle = 0x55 * (isMov ? 1 - col : col);
863 mov->dst.mask = 1 << outRow;
864 }
865 break;
866 case 2:
867 {
868 static const unsigned int swizzle[3] = { 0x99, 0x88, 0x44 }; // xy?? : yzyz, xzxz, xyxy
869
870 bool isCofactor = (col >= 0) && (row >= 0);
871 int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
872 int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
873 bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
874
875 Instruction *det = emit(sw::Shader::OPCODE_DET2, result, outCol, arg, negate ? col1 : col0, arg, negate ? col0 : col1);
876 det->src[0].swizzle = det->src[1].swizzle = swizzle[isCofactor ? row : 2];
877 det->dst.mask = 1 << outRow;
878 }
879 break;
880 case 3:
881 {
882 static const unsigned int swizzle[4] = { 0xF9, 0xF8, 0xF4, 0xE4 }; // xyz? : yzww, xzww, xyww, xyzw
883
884 bool isCofactor = (col >= 0) && (row >= 0);
885 int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
886 int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
887 int col2 = (isCofactor && (col <= 2)) ? 3 : 2;
888 bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
889
890 Instruction *det = emit(sw::Shader::OPCODE_DET3, result, outCol, arg, col0, arg, negate ? col2 : col1, arg, negate ? col1 : col2);
891 det->src[0].swizzle = det->src[1].swizzle = det->src[2].swizzle = swizzle[isCofactor ? row : 3];
892 det->dst.mask = 1 << outRow;
893 }
894 break;
895 case 4:
896 {
897 Instruction *det = emit(sw::Shader::OPCODE_DET4, result, outCol, arg, 0, arg, 1, arg, 2, arg, 3);
898 det->dst.mask = 1 << outRow;
899 }
900 break;
901 default:
902 UNREACHABLE(size);
903 break;
904 }
905 }
906
907 bool OutputASM::visitUnary(Visit visit, TIntermUnary *node)
908 {
909 if(currentScope != emitScope)
910 {
911 return false;
912 }
913
914 TIntermTyped *result = node;
915 TIntermTyped *arg = node->getOperand();
916 TBasicType basicType = arg->getType().getBasicType();
917
918 union
919 {
920 float f;
921 int i;
922 } one_value;
923
924 if(basicType == EbtInt || basicType == EbtUInt)
925 {
926 one_value.i = 1;
927 }
928 else
929 {
930 one_value.f = 1.0f;
931 }
932
933 Constant one(one_value.f, one_value.f, one_value.f, one_value.f);
934 Constant rad(1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f);
935 Constant deg(5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f);
936
937 switch(node->getOp())
938 {
939 case EOpNegative:
940 if(visit == PostVisit)
941 {
942 sw::Shader::Opcode negOpcode = getOpcode(sw::Shader::OPCODE_NEG, arg);
943 for(int index = 0; index < arg->totalRegisterCount(); index++)
944 {
945 emit(negOpcode, result, index, arg, index);
946 }
947 }
948 break;
949 case EOpVectorLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
950 case EOpLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
951 case EOpPostIncrement:
952 if(visit == PostVisit)
953 {
954 copy(result, arg);
955
956 sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
957 for(int index = 0; index < arg->totalRegisterCount(); index++)
958 {
959 emit(addOpcode, arg, index, arg, index, &one);
960 }
961
962 assignLvalue(arg, arg);
963 }
964 break;
965 case EOpPostDecrement:
966 if(visit == PostVisit)
967 {
968 copy(result, arg);
969
970 sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
971 for(int index = 0; index < arg->totalRegisterCount(); index++)
972 {
973 emit(subOpcode, arg, index, arg, index, &one);
974 }
975
976 assignLvalue(arg, arg);
977 }
978 break;
979 case EOpPreIncrement:
980 if(visit == PostVisit)
981 {
982 sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
983 for(int index = 0; index < arg->totalRegisterCount(); index++)
984 {
985 emit(addOpcode, result, index, arg, index, &one);
986 }
987
988 assignLvalue(arg, result);
989 }
990 break;
991 case EOpPreDecrement:
992 if(visit == PostVisit)
993 {
994 sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
995 for(int index = 0; index < arg->totalRegisterCount(); index++)
996 {
997 emit(subOpcode, result, index, arg, index, &one);
998 }
999
1000 assignLvalue(arg, result);
1001 }
1002 break;
1003 case EOpRadians: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &rad); break;
1004 case EOpDegrees: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &deg); break;
1005 case EOpSin: if(visit == PostVisit) emit(sw::Shader::OPCODE_SIN, result, arg); break;
1006 case EOpCos: if(visit == PostVisit) emit(sw::Shader::OPCODE_COS, result, arg); break;
1007 case EOpTan: if(visit == PostVisit) emit(sw::Shader::OPCODE_TAN, result, arg); break;
1008 case EOpAsin: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASIN, result, arg); break;
1009 case EOpAcos: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOS, result, arg); break;
1010 case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN, result, arg); break;
1011 case EOpSinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_SINH, result, arg); break;
1012 case EOpCosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_COSH, result, arg); break;
1013 case EOpTanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_TANH, result, arg); break;
1014 case EOpAsinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASINH, result, arg); break;
1015 case EOpAcosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOSH, result, arg); break;
1016 case EOpAtanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATANH, result, arg); break;
1017 case EOpExp: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP, result, arg); break;
1018 case EOpLog: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG, result, arg); break;
1019 case EOpExp2: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP2, result, arg); break;
1020 case EOpLog2: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG2, result, arg); break;
1021 case EOpSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_SQRT, result, arg); break;
1022 case EOpInverseSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_RSQ, result, arg); break;
1023 case EOpAbs: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_ABS, result), result, arg); break;
1024 case EOpSign: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_SGN, result), result, arg); break;
1025 case EOpFloor: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOOR, result, arg); break;
1026 case EOpTrunc: if(visit == PostVisit) emit(sw::Shader::OPCODE_TRUNC, result, arg); break;
1027 case EOpRound: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUND, result, arg); break;
1028 case EOpRoundEven: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUNDEVEN, result, arg); break;
1029 case EOpCeil: if(visit == PostVisit) emit(sw::Shader::OPCODE_CEIL, result, arg, result); break;
1030 case EOpFract: if(visit == PostVisit) emit(sw::Shader::OPCODE_FRC, result, arg); break;
1031 case EOpIsNan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISNAN, result, arg); break;
1032 case EOpIsInf: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISINF, result, arg); break;
1033 case EOpLength: if(visit == PostVisit) emit(sw::Shader::OPCODE_LEN(dim(arg)), result, arg); break;
1034 case EOpNormalize: if(visit == PostVisit) emit(sw::Shader::OPCODE_NRM(dim(arg)), result, arg); break;
1035 case EOpDFdx: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDX, result, arg); break;
1036 case EOpDFdy: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDY, result, arg); break;
1037 case EOpFwidth: if(visit == PostVisit) emit(sw::Shader::OPCODE_FWIDTH, result, arg); break;
1038 case EOpAny: if(visit == PostVisit) emit(sw::Shader::OPCODE_ANY, result, arg); break;
1039 case EOpAll: if(visit == PostVisit) emit(sw::Shader::OPCODE_ALL, result, arg); break;
1040 case EOpFloatBitsToInt: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOINT, result, arg); break;
1041 case EOpFloatBitsToUint: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOUINT, result, arg); break;
1042 case EOpIntBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_INTBITSTOFLOAT, result, arg); break;
1043 case EOpUintBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_UINTBITSTOFLOAT, result, arg); break;
1044 case EOpPackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKSNORM2x16, result, arg); break;
1045 case EOpPackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKUNORM2x16, result, arg); break;
1046 case EOpPackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKHALF2x16, result, arg); break;
1047 case EOpUnpackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKSNORM2x16, result, arg); break;
1048 case EOpUnpackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKUNORM2x16, result, arg); break;
1049 case EOpUnpackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKHALF2x16, result, arg); break;
1050 case EOpTranspose:
1051 if(visit == PostVisit)
1052 {
1053 int numCols = arg->getNominalSize();
1054 int numRows = arg->getSecondarySize();
1055 for(int i = 0; i < numCols; ++i)
1056 {
1057 for(int j = 0; j < numRows; ++j)
1058 {
1059 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, j, arg, i);
1060 mov->src[0].swizzle = 0x55 * j;
1061 mov->dst.mask = 1 << i;
1062 }
1063 }
1064 }
1065 break;
1066 case EOpDeterminant:
1067 if(visit == PostVisit)
1068 {
1069 int size = arg->getNominalSize();
1070 ASSERT(size == arg->getSecondarySize());
1071
1072 emitDeterminant(result, arg, size);
1073 }
1074 break;
1075 case EOpInverse:
1076 if(visit == PostVisit)
1077 {
1078 int size = arg->getNominalSize();
1079 ASSERT(size == arg->getSecondarySize());
1080
1081 // Compute transposed matrix of cofactors
1082 for(int i = 0; i < size; ++i)
1083 {
1084 for(int j = 0; j < size; ++j)
1085 {
1086 // For a 2x2 matrix, the cofactor is simply a transposed move or negate
1087 // For a 3x3 or 4x4 matrix, the cofactor is a transposed determinant
1088 emitDeterminant(result, arg, size - 1, j, i, i, j);
1089 }
1090 }
1091
1092 // Compute 1 / determinant
1093 Temporary invDet(this);
1094 emitDeterminant(&invDet, arg, size);
1095 Constant one(1.0f, 1.0f, 1.0f, 1.0f);
1096 Instruction *div = emit(sw::Shader::OPCODE_DIV, &invDet, &one, &invDet);
1097 div->src[1].swizzle = 0x00; // xxxx
1098
1099 // Divide transposed matrix of cofactors by determinant
1100 for(int i = 0; i < size; ++i)
1101 {
1102 emit(sw::Shader::OPCODE_MUL, result, i, result, i, &invDet);
1103 }
1104 }
1105 break;
1106 default: UNREACHABLE(node->getOp());
1107 }
1108
1109 return true;
1110 }
1111
1112 bool OutputASM::visitAggregate(Visit visit, TIntermAggregate *node)
1113 {
1114 if(currentScope != emitScope && node->getOp() != EOpFunction && node->getOp() != EOpSequence)
1115 {
1116 return false;
1117 }
1118
1119 Constant zero(0.0f, 0.0f, 0.0f, 0.0f);
1120
1121 TIntermTyped *result = node;
1122 const TType &resultType = node->getType();
1123 TIntermSequence &arg = node->getSequence();
1124 size_t argumentCount = arg.size();
1125
1126 switch(node->getOp())
1127 {
1128 case EOpSequence: break;
1129 case EOpDeclaration: break;
1130 case EOpInvariantDeclaration: break;
1131 case EOpPrototype: break;
1132 case EOpComma:
1133 if(visit == PostVisit)
1134 {
1135 copy(result, arg[1]);
1136 }
1137 break;
1138 case EOpFunction:
1139 if(visit == PreVisit)
1140 {
1141 const TString &name = node->getName();
1142
1143 if(emitScope == FUNCTION)
1144 {
1145 if(functionArray.size() > 1) // No need for a label when there's only main()
1146 {
1147 Instruction *label = emit(sw::Shader::OPCODE_LABEL);
1148 label->dst.type = sw::Shader::PARAMETER_LABEL;
1149
1150 const Function *function = findFunction(name);
1151 ASSERT(function); // Should have been added during global pass
1152 label->dst.index = function->label;
1153 currentFunction = function->label;
1154 }
1155 }
1156 else if(emitScope == GLOBAL)
1157 {
1158 if(name != "main(")
1159 {
1160 TIntermSequence &arguments = node->getSequence()[0]->getAsAggregate()->getSequence();
1161 functionArray.push_back(Function(functionArray.size(), name, &arguments, node));
1162 }
1163 }
1164 else UNREACHABLE(emitScope);
1165
1166 currentScope = FUNCTION;
1167 }
1168 else if(visit == PostVisit)
1169 {
1170 if(emitScope == FUNCTION)
1171 {
1172 if(functionArray.size() > 1) // No need to return when there's only main()
1173 {
1174 emit(sw::Shader::OPCODE_RET);
1175 }
1176 }
1177
1178 currentScope = GLOBAL;
1179 }
1180 break;
1181 case EOpFunctionCall:
1182 if(visit == PostVisit)
1183 {
1184 if(node->isUserDefined())
1185 {
1186 const TString &name = node->getName();
1187 const Function *function = findFunction(name);
1188
1189 if(!function)
1190 {
1191 mContext.error(node->getLine(), "function definition not found", name.c_str());
1192 return false;
1193 }
1194
1195 TIntermSequence &arguments = *function->arg;
1196
1197 for(size_t i = 0; i < argumentCount; i++)
1198 {
1199 TIntermTyped *in = arguments[i]->getAsTyped();
1200
1201 if(in->getQualifier() == EvqIn ||
1202 in->getQualifier() == EvqInOut ||
1203 in->getQualifier() == EvqConstReadOnly)
1204 {
1205 copy(in, arg[i]);
1206 }
1207 }
1208
1209 Instruction *call = emit(sw::Shader::OPCODE_CALL);
1210 call->dst.type = sw::Shader::PARAMETER_LABEL;
1211 call->dst.index = function->label;
1212
1213 if(function->ret && function->ret->getType().getBasicType() != EbtVoid)
1214 {
1215 copy(result, function->ret);
1216 }
1217
1218 for(size_t i = 0; i < argumentCount; i++)
1219 {
1220 TIntermTyped *argument = arguments[i]->getAsTyped();
1221 TIntermTyped *out = arg[i]->getAsTyped();
1222
1223 if(argument->getQualifier() == EvqOut ||
1224 argument->getQualifier() == EvqInOut)
1225 {
Nicolas Capens5da2d3f2016-06-11 00:41:49 -04001226 assignLvalue(out, argument);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001227 }
1228 }
1229 }
1230 else
1231 {
1232 const TextureFunction textureFunction(node->getName());
1233 TIntermTyped *t = arg[1]->getAsTyped();
1234
1235 Temporary coord(this);
1236
1237 if(textureFunction.proj)
1238 {
Nicolas Capens0484c792016-06-13 22:02:36 -04001239 Instruction *rcp = emit(sw::Shader::OPCODE_RCPX, &coord, arg[1]);
1240 rcp->src[0].swizzle = 0x55 * (t->getNominalSize() - 1);
1241 rcp->dst.mask = 0x7;
Nicolas Capens0bac2852016-05-07 06:09:58 -04001242
Nicolas Capens0484c792016-06-13 22:02:36 -04001243 Instruction *mul = emit(sw::Shader::OPCODE_MUL, &coord, arg[1], &coord);
1244 mul->dst.mask = 0x7;
Nicolas Capens0bac2852016-05-07 06:09:58 -04001245 }
1246 else
1247 {
1248 emit(sw::Shader::OPCODE_MOV, &coord, arg[1]);
1249 }
1250
1251 switch(textureFunction.method)
1252 {
1253 case TextureFunction::IMPLICIT:
1254 {
1255 TIntermNode* offset = textureFunction.offset ? arg[2] : 0;
1256
1257 if(argumentCount == 2 || (textureFunction.offset && argumentCount == 3))
1258 {
Alexis Hetu7208e932016-06-02 11:19:24 -04001259 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
1260 result, &coord, arg[0], offset);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001261 }
1262 else if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4)) // bias
1263 {
1264 Instruction *bias = emit(sw::Shader::OPCODE_MOV, &coord, arg[textureFunction.offset ? 3 : 2]);
1265 bias->dst.mask = 0x8;
1266
1267 Instruction *tex = emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
1268 result, &coord, arg[0], offset); // FIXME: Implement an efficient TEXLDB instruction
1269 tex->bias = true;
1270 }
1271 else UNREACHABLE(argumentCount);
1272 }
1273 break;
1274 case TextureFunction::LOD:
1275 {
1276 Instruction *lod = emit(sw::Shader::OPCODE_MOV, &coord, arg[2]);
1277 lod->dst.mask = 0x8;
1278
1279 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXLDLOFFSET : sw::Shader::OPCODE_TEXLDL,
1280 result, &coord, arg[0], textureFunction.offset ? arg[3] : nullptr);
1281 }
1282 break;
1283 case TextureFunction::FETCH:
1284 {
1285 if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4))
1286 {
Meng-Lin Wu9d62c482016-06-14 11:11:25 -04001287 Instruction *lod = emit(sw::Shader::OPCODE_MOV, &coord, arg[2]);
1288 lod->dst.mask = 0x8;
1289
Nicolas Capens0bac2852016-05-07 06:09:58 -04001290 TIntermNode *offset = textureFunction.offset ? arg[3] : nullptr;
1291
1292 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXELFETCHOFFSET : sw::Shader::OPCODE_TEXELFETCH,
Meng-Lin Wu9d62c482016-06-14 11:11:25 -04001293 result, &coord, arg[0], offset);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001294 }
1295 else UNREACHABLE(argumentCount);
1296 }
1297 break;
1298 case TextureFunction::GRAD:
1299 {
1300 if(argumentCount == 4 || (textureFunction.offset && argumentCount == 5))
1301 {
1302 TIntermNode *offset = textureFunction.offset ? arg[4] : nullptr;
1303
1304 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXGRADOFFSET : sw::Shader::OPCODE_TEXGRAD,
1305 result, &coord, arg[0], arg[2], arg[3], offset);
1306 }
1307 else UNREACHABLE(argumentCount);
1308 }
1309 break;
1310 case TextureFunction::SIZE:
1311 emit(sw::Shader::OPCODE_TEXSIZE, result, arg[1], arg[0]);
1312 break;
1313 default:
1314 UNREACHABLE(textureFunction.method);
1315 }
1316 }
1317 }
1318 break;
1319 case EOpParameters:
1320 break;
1321 case EOpConstructFloat:
1322 case EOpConstructVec2:
1323 case EOpConstructVec3:
1324 case EOpConstructVec4:
1325 case EOpConstructBool:
1326 case EOpConstructBVec2:
1327 case EOpConstructBVec3:
1328 case EOpConstructBVec4:
1329 case EOpConstructInt:
1330 case EOpConstructIVec2:
1331 case EOpConstructIVec3:
1332 case EOpConstructIVec4:
1333 case EOpConstructUInt:
1334 case EOpConstructUVec2:
1335 case EOpConstructUVec3:
1336 case EOpConstructUVec4:
1337 if(visit == PostVisit)
1338 {
1339 int component = 0;
Alexis Hetu2a198552016-09-27 20:50:45 -04001340 int arrayMaxIndex = result->isArray() ? result->getArraySize() - 1 : 0;
1341 int arrayComponents = result->getType().getElementSize();
Nicolas Capens0bac2852016-05-07 06:09:58 -04001342 for(size_t i = 0; i < argumentCount; i++)
1343 {
1344 TIntermTyped *argi = arg[i]->getAsTyped();
1345 int size = argi->getNominalSize();
Alexis Hetu2a198552016-09-27 20:50:45 -04001346 int arrayIndex = std::min(component / arrayComponents, arrayMaxIndex);
1347 int swizzle = component - (arrayIndex * arrayComponents);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001348
1349 if(!argi->isMatrix())
1350 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001351 Instruction *mov = emitCast(result, arrayIndex, argi, 0);
1352 mov->dst.mask = (0xF << swizzle) & 0xF;
1353 mov->src[0].swizzle = readSwizzle(argi, size) << (swizzle * 2);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001354
1355 component += size;
1356 }
1357 else // Matrix
1358 {
1359 int column = 0;
1360
1361 while(component < resultType.getNominalSize())
1362 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001363 Instruction *mov = emitCast(result, arrayIndex, argi, column);
1364 mov->dst.mask = (0xF << swizzle) & 0xF;
1365 mov->src[0].swizzle = readSwizzle(argi, size) << (swizzle * 2);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001366
1367 column++;
1368 component += size;
1369 }
1370 }
1371 }
1372 }
1373 break;
1374 case EOpConstructMat2:
1375 case EOpConstructMat2x3:
1376 case EOpConstructMat2x4:
1377 case EOpConstructMat3x2:
1378 case EOpConstructMat3:
1379 case EOpConstructMat3x4:
1380 case EOpConstructMat4x2:
1381 case EOpConstructMat4x3:
1382 case EOpConstructMat4:
1383 if(visit == PostVisit)
1384 {
1385 TIntermTyped *arg0 = arg[0]->getAsTyped();
1386 const int outCols = result->getNominalSize();
1387 const int outRows = result->getSecondarySize();
1388
1389 if(arg0->isScalar() && arg.size() == 1) // Construct scale matrix
1390 {
1391 for(int i = 0; i < outCols; i++)
1392 {
Alexis Hetu7208e932016-06-02 11:19:24 -04001393 emit(sw::Shader::OPCODE_MOV, result, i, &zero);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001394 Instruction *mov = emitCast(result, i, arg0, 0);
1395 mov->dst.mask = 1 << i;
1396 ASSERT(mov->src[0].swizzle == 0x00);
1397 }
1398 }
1399 else if(arg0->isMatrix())
1400 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001401 int arraySize = result->isArray() ? result->getArraySize() : 1;
Nicolas Capens0bac2852016-05-07 06:09:58 -04001402
Alexis Hetu2a198552016-09-27 20:50:45 -04001403 for(int n = 0; n < arraySize; n++)
Nicolas Capens0bac2852016-05-07 06:09:58 -04001404 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001405 TIntermTyped *argi = arg[n]->getAsTyped();
1406 const int inCols = argi->getNominalSize();
1407 const int inRows = argi->getSecondarySize();
Nicolas Capens0bac2852016-05-07 06:09:58 -04001408
Alexis Hetu2a198552016-09-27 20:50:45 -04001409 for(int i = 0; i < outCols; i++)
Nicolas Capens0bac2852016-05-07 06:09:58 -04001410 {
Alexis Hetu2a198552016-09-27 20:50:45 -04001411 if(i >= inCols || outRows > inRows)
1412 {
1413 // Initialize to identity matrix
1414 Constant col((i == 0 ? 1.0f : 0.0f), (i == 1 ? 1.0f : 0.0f), (i == 2 ? 1.0f : 0.0f), (i == 3 ? 1.0f : 0.0f));
1415 emitCast(result, i + n * outCols, &col, 0);
1416 }
1417
1418 if(i < inCols)
1419 {
1420 Instruction *mov = emitCast(result, i + n * outCols, argi, i);
1421 mov->dst.mask = 0xF >> (4 - inRows);
1422 }
Nicolas Capens0bac2852016-05-07 06:09:58 -04001423 }
1424 }
1425 }
1426 else
1427 {
1428 int column = 0;
1429 int row = 0;
1430
1431 for(size_t i = 0; i < argumentCount; i++)
1432 {
1433 TIntermTyped *argi = arg[i]->getAsTyped();
1434 int size = argi->getNominalSize();
1435 int element = 0;
1436
1437 while(element < size)
1438 {
1439 Instruction *mov = emitCast(result, column, argi, 0);
1440 mov->dst.mask = (0xF << row) & 0xF;
1441 mov->src[0].swizzle = (readSwizzle(argi, size) << (row * 2)) + 0x55 * element;
1442
1443 int end = row + size - element;
1444 column = end >= outRows ? column + 1 : column;
1445 element = element + outRows - row;
1446 row = end >= outRows ? 0 : end;
1447 }
1448 }
1449 }
1450 }
1451 break;
1452 case EOpConstructStruct:
1453 if(visit == PostVisit)
1454 {
1455 int offset = 0;
1456 for(size_t i = 0; i < argumentCount; i++)
1457 {
1458 TIntermTyped *argi = arg[i]->getAsTyped();
1459 int size = argi->totalRegisterCount();
1460
1461 for(int index = 0; index < size; index++)
1462 {
1463 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, index + offset, argi, index);
1464 mov->dst.mask = writeMask(result, offset + index);
1465 }
1466
1467 offset += size;
1468 }
1469 }
1470 break;
1471 case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, arg[0], arg[1]); break;
1472 case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, arg[0], arg[1]); break;
1473 case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, arg[0], arg[1]); break;
1474 case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, arg[0], arg[1]); break;
1475 case EOpVectorEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_EQ, result, arg[0], arg[1]); break;
1476 case EOpVectorNotEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_NE, result, arg[0], arg[1]); break;
1477 case EOpMod: if(visit == PostVisit) emit(sw::Shader::OPCODE_MOD, result, arg[0], arg[1]); break;
1478 case EOpModf:
1479 if(visit == PostVisit)
1480 {
1481 TIntermTyped* arg1 = arg[1]->getAsTyped();
1482 emit(sw::Shader::OPCODE_TRUNC, arg1, arg[0]);
1483 assignLvalue(arg1, arg1);
1484 emitBinary(sw::Shader::OPCODE_SUB, result, arg[0], arg1);
1485 }
1486 break;
1487 case EOpPow: if(visit == PostVisit) emit(sw::Shader::OPCODE_POW, result, arg[0], arg[1]); break;
1488 case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN2, result, arg[0], arg[1]); break;
1489 case EOpMin: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, arg[0], arg[1]); break;
1490 case EOpMax: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]); break;
1491 case EOpClamp:
1492 if(visit == PostVisit)
1493 {
1494 emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]);
1495 emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, result, arg[2]);
1496 }
1497 break;
1498 case EOpMix: if(visit == PostVisit) emit(sw::Shader::OPCODE_LRP, result, arg[2], arg[1], arg[0]); break;
1499 case EOpStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_STEP, result, arg[0], arg[1]); break;
1500 case EOpSmoothStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_SMOOTH, result, arg[0], arg[1], arg[2]); break;
1501 case EOpDistance: if(visit == PostVisit) emit(sw::Shader::OPCODE_DIST(dim(arg[0])), result, arg[0], arg[1]); break;
1502 case EOpDot: if(visit == PostVisit) emit(sw::Shader::OPCODE_DP(dim(arg[0])), result, arg[0], arg[1]); break;
1503 case EOpCross: if(visit == PostVisit) emit(sw::Shader::OPCODE_CRS, result, arg[0], arg[1]); break;
1504 case EOpFaceForward: if(visit == PostVisit) emit(sw::Shader::OPCODE_FORWARD(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
1505 case EOpReflect: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFLECT(dim(arg[0])), result, arg[0], arg[1]); break;
1506 case EOpRefract: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFRACT(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
1507 case EOpMul:
1508 if(visit == PostVisit)
1509 {
1510 TIntermTyped *arg0 = arg[0]->getAsTyped();
Alexis Hetue97a31e2016-11-14 14:10:47 -05001511 ASSERT((arg0->getNominalSize() == arg[1]->getAsTyped()->getNominalSize()) &&
1512 (arg0->getSecondarySize() == arg[1]->getAsTyped()->getSecondarySize()));
Nicolas Capens0bac2852016-05-07 06:09:58 -04001513
1514 int size = arg0->getNominalSize();
1515 for(int i = 0; i < size; i++)
1516 {
1517 emit(sw::Shader::OPCODE_MUL, result, i, arg[0], i, arg[1], i);
1518 }
1519 }
1520 break;
1521 case EOpOuterProduct:
1522 if(visit == PostVisit)
1523 {
1524 for(int i = 0; i < dim(arg[1]); i++)
1525 {
1526 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, arg[0], 0, arg[1]);
1527 mul->src[1].swizzle = 0x55 * i;
1528 }
1529 }
1530 break;
1531 default: UNREACHABLE(node->getOp());
1532 }
1533
1534 return true;
1535 }
1536
1537 bool OutputASM::visitSelection(Visit visit, TIntermSelection *node)
1538 {
1539 if(currentScope != emitScope)
1540 {
1541 return false;
1542 }
1543
1544 TIntermTyped *condition = node->getCondition();
1545 TIntermNode *trueBlock = node->getTrueBlock();
1546 TIntermNode *falseBlock = node->getFalseBlock();
1547 TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
1548
1549 condition->traverse(this);
1550
1551 if(node->usesTernaryOperator())
1552 {
1553 if(constantCondition)
1554 {
1555 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
1556
1557 if(trueCondition)
1558 {
1559 trueBlock->traverse(this);
1560 copy(node, trueBlock);
1561 }
1562 else
1563 {
1564 falseBlock->traverse(this);
1565 copy(node, falseBlock);
1566 }
1567 }
1568 else if(trivial(node, 6)) // Fast to compute both potential results and no side effects
1569 {
1570 trueBlock->traverse(this);
1571 falseBlock->traverse(this);
1572 emit(sw::Shader::OPCODE_SELECT, node, condition, trueBlock, falseBlock);
1573 }
1574 else
1575 {
1576 emit(sw::Shader::OPCODE_IF, 0, condition);
1577
1578 if(trueBlock)
1579 {
1580 trueBlock->traverse(this);
1581 copy(node, trueBlock);
1582 }
1583
1584 if(falseBlock)
1585 {
1586 emit(sw::Shader::OPCODE_ELSE);
1587 falseBlock->traverse(this);
1588 copy(node, falseBlock);
1589 }
1590
1591 emit(sw::Shader::OPCODE_ENDIF);
1592 }
1593 }
1594 else // if/else statement
1595 {
1596 if(constantCondition)
1597 {
1598 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
1599
1600 if(trueCondition)
1601 {
1602 if(trueBlock)
1603 {
1604 trueBlock->traverse(this);
1605 }
1606 }
1607 else
1608 {
1609 if(falseBlock)
1610 {
1611 falseBlock->traverse(this);
1612 }
1613 }
1614 }
1615 else
1616 {
1617 emit(sw::Shader::OPCODE_IF, 0, condition);
1618
1619 if(trueBlock)
1620 {
1621 trueBlock->traverse(this);
1622 }
1623
1624 if(falseBlock)
1625 {
1626 emit(sw::Shader::OPCODE_ELSE);
1627 falseBlock->traverse(this);
1628 }
1629
1630 emit(sw::Shader::OPCODE_ENDIF);
1631 }
1632 }
1633
1634 return false;
1635 }
1636
1637 bool OutputASM::visitLoop(Visit visit, TIntermLoop *node)
1638 {
1639 if(currentScope != emitScope)
1640 {
1641 return false;
1642 }
1643
1644 unsigned int iterations = loopCount(node);
1645
1646 if(iterations == 0)
1647 {
1648 return false;
1649 }
1650
1651 bool unroll = (iterations <= 4);
1652
1653 if(unroll)
1654 {
1655 LoopUnrollable loopUnrollable;
1656 unroll = loopUnrollable.traverse(node);
1657 }
1658
1659 TIntermNode *init = node->getInit();
1660 TIntermTyped *condition = node->getCondition();
1661 TIntermTyped *expression = node->getExpression();
1662 TIntermNode *body = node->getBody();
1663 Constant True(true);
1664
1665 if(node->getType() == ELoopDoWhile)
1666 {
1667 Temporary iterate(this);
1668 emit(sw::Shader::OPCODE_MOV, &iterate, &True);
1669
1670 emit(sw::Shader::OPCODE_WHILE, 0, &iterate); // FIXME: Implement real do-while
1671
1672 if(body)
1673 {
1674 body->traverse(this);
1675 }
1676
1677 emit(sw::Shader::OPCODE_TEST);
1678
1679 condition->traverse(this);
1680 emit(sw::Shader::OPCODE_MOV, &iterate, condition);
1681
1682 emit(sw::Shader::OPCODE_ENDWHILE);
1683 }
1684 else
1685 {
1686 if(init)
1687 {
1688 init->traverse(this);
1689 }
1690
1691 if(unroll)
1692 {
1693 for(unsigned int i = 0; i < iterations; i++)
1694 {
1695 // condition->traverse(this); // Condition could contain statements, but not in an unrollable loop
1696
1697 if(body)
1698 {
1699 body->traverse(this);
1700 }
1701
1702 if(expression)
1703 {
1704 expression->traverse(this);
1705 }
1706 }
1707 }
1708 else
1709 {
1710 if(condition)
1711 {
1712 condition->traverse(this);
1713 }
1714 else
1715 {
1716 condition = &True;
1717 }
1718
1719 emit(sw::Shader::OPCODE_WHILE, 0, condition);
1720
1721 if(body)
1722 {
1723 body->traverse(this);
1724 }
1725
1726 emit(sw::Shader::OPCODE_TEST);
1727
1728 if(expression)
1729 {
1730 expression->traverse(this);
1731 }
1732
1733 if(condition)
1734 {
1735 condition->traverse(this);
1736 }
1737
1738 emit(sw::Shader::OPCODE_ENDWHILE);
1739 }
1740 }
1741
1742 return false;
1743 }
1744
1745 bool OutputASM::visitBranch(Visit visit, TIntermBranch *node)
1746 {
1747 if(currentScope != emitScope)
1748 {
1749 return false;
1750 }
1751
1752 switch(node->getFlowOp())
1753 {
1754 case EOpKill: if(visit == PostVisit) emit(sw::Shader::OPCODE_DISCARD); break;
1755 case EOpBreak: if(visit == PostVisit) emit(sw::Shader::OPCODE_BREAK); break;
1756 case EOpContinue: if(visit == PostVisit) emit(sw::Shader::OPCODE_CONTINUE); break;
1757 case EOpReturn:
1758 if(visit == PostVisit)
1759 {
1760 TIntermTyped *value = node->getExpression();
1761
1762 if(value)
1763 {
1764 copy(functionArray[currentFunction].ret, value);
1765 }
1766
1767 emit(sw::Shader::OPCODE_LEAVE);
1768 }
1769 break;
1770 default: UNREACHABLE(node->getFlowOp());
1771 }
1772
1773 return true;
1774 }
1775
Alexis Hetu9aa83a92016-05-02 17:34:46 -04001776 bool OutputASM::visitSwitch(Visit visit, TIntermSwitch *node)
1777 {
1778 if(currentScope != emitScope)
1779 {
1780 return false;
1781 }
1782
1783 TIntermTyped* switchValue = node->getInit();
1784 TIntermAggregate* opList = node->getStatementList();
1785
1786 if(!switchValue || !opList)
1787 {
1788 return false;
1789 }
1790
1791 switchValue->traverse(this);
1792
1793 emit(sw::Shader::OPCODE_SWITCH);
1794
1795 TIntermSequence& sequence = opList->getSequence();
1796 TIntermSequence::iterator it = sequence.begin();
1797 TIntermSequence::iterator defaultIt = sequence.end();
1798 int nbCases = 0;
1799 for(; it != sequence.end(); ++it)
1800 {
1801 TIntermCase* currentCase = (*it)->getAsCaseNode();
1802 if(currentCase)
1803 {
1804 TIntermSequence::iterator caseIt = it;
1805
1806 TIntermTyped* condition = currentCase->getCondition();
1807 if(condition) // non default case
1808 {
1809 if(nbCases != 0)
1810 {
1811 emit(sw::Shader::OPCODE_ELSE);
1812 }
1813
1814 condition->traverse(this);
1815 Temporary result(this);
1816 emitBinary(sw::Shader::OPCODE_EQ, &result, switchValue, condition);
1817 emit(sw::Shader::OPCODE_IF, 0, &result);
1818 nbCases++;
1819
1820 for(++caseIt; caseIt != sequence.end(); ++caseIt)
1821 {
1822 (*caseIt)->traverse(this);
1823 if((*caseIt)->getAsBranchNode()) // Kill, Break, Continue or Return
1824 {
1825 break;
1826 }
1827 }
1828 }
1829 else
1830 {
1831 defaultIt = it; // The default case might not be the last case, keep it for last
1832 }
1833 }
1834 }
1835
1836 // If there's a default case, traverse it here
1837 if(defaultIt != sequence.end())
1838 {
1839 emit(sw::Shader::OPCODE_ELSE);
1840 for(++defaultIt; defaultIt != sequence.end(); ++defaultIt)
1841 {
1842 (*defaultIt)->traverse(this);
1843 if((*defaultIt)->getAsBranchNode()) // Kill, Break, Continue or Return
1844 {
1845 break;
1846 }
1847 }
1848 }
1849
1850 for(int i = 0; i < nbCases; ++i)
1851 {
1852 emit(sw::Shader::OPCODE_ENDIF);
1853 }
1854
1855 emit(sw::Shader::OPCODE_ENDSWITCH);
1856
1857 return false;
1858 }
1859
Nicolas Capens0bac2852016-05-07 06:09:58 -04001860 Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2, TIntermNode *src3, TIntermNode *src4)
1861 {
1862 return emit(op, dst, 0, src0, 0, src1, 0, src2, 0, src3, 0, src4, 0);
1863 }
1864
1865 Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, int dstIndex, TIntermNode *src0, int index0, TIntermNode *src1, int index1,
1866 TIntermNode *src2, int index2, TIntermNode *src3, int index3, TIntermNode *src4, int index4)
1867 {
1868 Instruction *instruction = new Instruction(op);
1869
1870 if(dst)
1871 {
1872 instruction->dst.type = registerType(dst);
1873 instruction->dst.index = registerIndex(dst) + dstIndex;
1874 instruction->dst.mask = writeMask(dst);
1875 instruction->dst.integer = (dst->getBasicType() == EbtInt);
1876 }
1877
1878 argument(instruction->src[0], src0, index0);
1879 argument(instruction->src[1], src1, index1);
1880 argument(instruction->src[2], src2, index2);
1881 argument(instruction->src[3], src3, index3);
1882 argument(instruction->src[4], src4, index4);
1883
1884 shader->append(instruction);
1885
1886 return instruction;
1887 }
1888
1889 Instruction *OutputASM::emitCast(TIntermTyped *dst, TIntermTyped *src)
1890 {
1891 return emitCast(dst, 0, src, 0);
1892 }
1893
1894 Instruction *OutputASM::emitCast(TIntermTyped *dst, int dstIndex, TIntermTyped *src, int srcIndex)
1895 {
1896 switch(src->getBasicType())
1897 {
1898 case EbtBool:
1899 switch(dst->getBasicType())
1900 {
1901 case EbtInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex);
1902 case EbtUInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex);
1903 case EbtFloat: return emit(sw::Shader::OPCODE_B2F, dst, dstIndex, src, srcIndex);
1904 default: break;
1905 }
1906 break;
1907 case EbtInt:
1908 switch(dst->getBasicType())
1909 {
1910 case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex);
1911 case EbtFloat: return emit(sw::Shader::OPCODE_I2F, dst, dstIndex, src, srcIndex);
1912 default: break;
1913 }
1914 break;
1915 case EbtUInt:
1916 switch(dst->getBasicType())
1917 {
1918 case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex);
1919 case EbtFloat: return emit(sw::Shader::OPCODE_U2F, dst, dstIndex, src, srcIndex);
1920 default: break;
1921 }
1922 break;
1923 case EbtFloat:
1924 switch(dst->getBasicType())
1925 {
1926 case EbtBool: return emit(sw::Shader::OPCODE_F2B, dst, dstIndex, src, srcIndex);
1927 case EbtInt: return emit(sw::Shader::OPCODE_F2I, dst, dstIndex, src, srcIndex);
1928 case EbtUInt: return emit(sw::Shader::OPCODE_F2U, dst, dstIndex, src, srcIndex);
1929 default: break;
1930 }
1931 break;
1932 default:
1933 break;
1934 }
1935
1936 ASSERT((src->getBasicType() == dst->getBasicType()) ||
1937 ((src->getBasicType() == EbtInt) && (dst->getBasicType() == EbtUInt)) ||
1938 ((src->getBasicType() == EbtUInt) && (dst->getBasicType() == EbtInt)));
1939
1940 return emit(sw::Shader::OPCODE_MOV, dst, dstIndex, src, srcIndex);
1941 }
1942
1943 void OutputASM::emitBinary(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2)
1944 {
1945 for(int index = 0; index < dst->elementRegisterCount(); index++)
1946 {
1947 emit(op, dst, index, src0, index, src1, index, src2, index);
1948 }
1949 }
1950
1951 void OutputASM::emitAssign(sw::Shader::Opcode op, TIntermTyped *result, TIntermTyped *lhs, TIntermTyped *src0, TIntermTyped *src1)
1952 {
1953 emitBinary(op, result, src0, src1);
1954 assignLvalue(lhs, result);
1955 }
1956
1957 void OutputASM::emitCmp(sw::Shader::Control cmpOp, TIntermTyped *dst, TIntermNode *left, TIntermNode *right, int index)
1958 {
1959 sw::Shader::Opcode opcode;
1960 switch(left->getAsTyped()->getBasicType())
1961 {
1962 case EbtBool:
1963 case EbtInt:
1964 opcode = sw::Shader::OPCODE_ICMP;
1965 break;
1966 case EbtUInt:
1967 opcode = sw::Shader::OPCODE_UCMP;
1968 break;
1969 default:
1970 opcode = sw::Shader::OPCODE_CMP;
1971 break;
1972 }
1973
1974 Instruction *cmp = emit(opcode, dst, 0, left, index, right, index);
1975 cmp->control = cmpOp;
1976 }
1977
1978 int componentCount(const TType &type, int registers)
1979 {
1980 if(registers == 0)
1981 {
1982 return 0;
1983 }
1984
1985 if(type.isArray() && registers >= type.elementRegisterCount())
1986 {
1987 int index = registers / type.elementRegisterCount();
1988 registers -= index * type.elementRegisterCount();
1989 return index * type.getElementSize() + componentCount(type, registers);
1990 }
1991
1992 if(type.isStruct() || type.isInterfaceBlock())
1993 {
1994 const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
1995 int elements = 0;
1996
1997 for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
1998 {
1999 const TType &fieldType = *((*field)->type());
2000
2001 if(fieldType.totalRegisterCount() <= registers)
2002 {
2003 registers -= fieldType.totalRegisterCount();
2004 elements += fieldType.getObjectSize();
2005 }
2006 else // Register within this field
2007 {
2008 return elements + componentCount(fieldType, registers);
2009 }
2010 }
2011 }
2012 else if(type.isMatrix())
2013 {
2014 return registers * type.registerSize();
2015 }
2016
2017 UNREACHABLE(0);
2018 return 0;
2019 }
2020
2021 int registerSize(const TType &type, int registers)
2022 {
2023 if(registers == 0)
2024 {
2025 if(type.isStruct())
2026 {
2027 return registerSize(*((*(type.getStruct()->fields().begin()))->type()), 0);
2028 }
2029 else if(type.isInterfaceBlock())
2030 {
2031 return registerSize(*((*(type.getInterfaceBlock()->fields().begin()))->type()), 0);
2032 }
2033
2034 return type.registerSize();
2035 }
2036
2037 if(type.isArray() && registers >= type.elementRegisterCount())
2038 {
2039 int index = registers / type.elementRegisterCount();
2040 registers -= index * type.elementRegisterCount();
2041 return registerSize(type, registers);
2042 }
2043
2044 if(type.isStruct() || type.isInterfaceBlock())
2045 {
2046 const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
2047 int elements = 0;
2048
2049 for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
2050 {
2051 const TType &fieldType = *((*field)->type());
2052
2053 if(fieldType.totalRegisterCount() <= registers)
2054 {
2055 registers -= fieldType.totalRegisterCount();
2056 elements += fieldType.getObjectSize();
2057 }
2058 else // Register within this field
2059 {
2060 return registerSize(fieldType, registers);
2061 }
2062 }
2063 }
2064 else if(type.isMatrix())
2065 {
2066 return registerSize(type, 0);
2067 }
2068
2069 UNREACHABLE(0);
2070 return 0;
2071 }
2072
2073 int OutputASM::getBlockId(TIntermTyped *arg)
2074 {
2075 if(arg)
2076 {
2077 const TType &type = arg->getType();
2078 TInterfaceBlock* block = type.getInterfaceBlock();
2079 if(block && (type.getQualifier() == EvqUniform))
2080 {
2081 // Make sure the uniform block is declared
2082 uniformRegister(arg);
2083
2084 const char* blockName = block->name().c_str();
2085
2086 // Fetch uniform block index from array of blocks
2087 for(ActiveUniformBlocks::const_iterator it = shaderObject->activeUniformBlocks.begin(); it != shaderObject->activeUniformBlocks.end(); ++it)
2088 {
2089 if(blockName == it->name)
2090 {
2091 return it->blockId;
2092 }
2093 }
2094
2095 ASSERT(false);
2096 }
2097 }
2098
2099 return -1;
2100 }
2101
2102 OutputASM::ArgumentInfo OutputASM::getArgumentInfo(TIntermTyped *arg, int index)
2103 {
2104 const TType &type = arg->getType();
2105 int blockId = getBlockId(arg);
2106 ArgumentInfo argumentInfo(BlockMemberInfo::getDefaultBlockInfo(), type, -1, -1);
2107 if(blockId != -1)
2108 {
2109 argumentInfo.bufferIndex = 0;
2110 for(int i = 0; i < blockId; ++i)
2111 {
2112 int blockArraySize = shaderObject->activeUniformBlocks[i].arraySize;
2113 argumentInfo.bufferIndex += blockArraySize > 0 ? blockArraySize : 1;
2114 }
2115
2116 const BlockDefinitionIndexMap& blockDefinition = blockDefinitions[blockId];
2117
2118 BlockDefinitionIndexMap::const_iterator itEnd = blockDefinition.end();
2119 BlockDefinitionIndexMap::const_iterator it = itEnd;
2120
2121 argumentInfo.clampedIndex = index;
2122 if(type.isInterfaceBlock())
2123 {
2124 // Offset index to the beginning of the selected instance
2125 int blockRegisters = type.elementRegisterCount();
2126 int bufferOffset = argumentInfo.clampedIndex / blockRegisters;
2127 argumentInfo.bufferIndex += bufferOffset;
2128 argumentInfo.clampedIndex -= bufferOffset * blockRegisters;
2129 }
2130
2131 int regIndex = registerIndex(arg);
2132 for(int i = regIndex + argumentInfo.clampedIndex; i >= regIndex; --i)
2133 {
2134 it = blockDefinition.find(i);
2135 if(it != itEnd)
2136 {
2137 argumentInfo.clampedIndex -= (i - regIndex);
2138 break;
2139 }
2140 }
2141 ASSERT(it != itEnd);
2142
2143 argumentInfo.typedMemberInfo = it->second;
2144
2145 int registerCount = argumentInfo.typedMemberInfo.type.totalRegisterCount();
2146 argumentInfo.clampedIndex = (argumentInfo.clampedIndex >= registerCount) ? registerCount - 1 : argumentInfo.clampedIndex;
2147 }
2148 else
2149 {
2150 argumentInfo.clampedIndex = (index >= arg->totalRegisterCount()) ? arg->totalRegisterCount() - 1 : index;
2151 }
2152
2153 return argumentInfo;
2154 }
2155
2156 void OutputASM::argument(sw::Shader::SourceParameter &parameter, TIntermNode *argument, int index)
2157 {
2158 if(argument)
2159 {
2160 TIntermTyped *arg = argument->getAsTyped();
2161 Temporary unpackedUniform(this);
2162
2163 const TType& srcType = arg->getType();
2164 TInterfaceBlock* srcBlock = srcType.getInterfaceBlock();
2165 if(srcBlock && (srcType.getQualifier() == EvqUniform))
2166 {
2167 const ArgumentInfo argumentInfo = getArgumentInfo(arg, index);
2168 const TType &memberType = argumentInfo.typedMemberInfo.type;
2169
2170 if(memberType.getBasicType() == EbtBool)
2171 {
Alexis Hetue97a31e2016-11-14 14:10:47 -05002172 ASSERT(argumentInfo.clampedIndex < (memberType.isArray() ? memberType.getArraySize() : 1)); // index < arraySize
Nicolas Capens0bac2852016-05-07 06:09:58 -04002173
2174 // Convert the packed bool, which is currently an int, to a true bool
2175 Instruction *instruction = new Instruction(sw::Shader::OPCODE_I2B);
2176 instruction->dst.type = sw::Shader::PARAMETER_TEMP;
2177 instruction->dst.index = registerIndex(&unpackedUniform);
2178 instruction->src[0].type = sw::Shader::PARAMETER_CONST;
2179 instruction->src[0].bufferIndex = argumentInfo.bufferIndex;
2180 instruction->src[0].index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * argumentInfo.typedMemberInfo.arrayStride;
2181
2182 shader->append(instruction);
2183
2184 arg = &unpackedUniform;
2185 index = 0;
2186 }
2187 else if((srcBlock->matrixPacking() == EmpRowMajor) && memberType.isMatrix())
2188 {
2189 int numCols = memberType.getNominalSize();
2190 int numRows = memberType.getSecondarySize();
Nicolas Capens0bac2852016-05-07 06:09:58 -04002191
Alexis Hetue97a31e2016-11-14 14:10:47 -05002192 ASSERT(argumentInfo.clampedIndex < (numCols * (memberType.isArray() ? memberType.getArraySize() : 1))); // index < cols * arraySize
Nicolas Capens0bac2852016-05-07 06:09:58 -04002193
2194 unsigned int dstIndex = registerIndex(&unpackedUniform);
2195 unsigned int srcSwizzle = (argumentInfo.clampedIndex % numCols) * 0x55;
2196 int arrayIndex = argumentInfo.clampedIndex / numCols;
2197 int matrixStartOffset = argumentInfo.typedMemberInfo.offset + arrayIndex * argumentInfo.typedMemberInfo.arrayStride;
2198
2199 for(int j = 0; j < numRows; ++j)
2200 {
2201 // Transpose the row major matrix
2202 Instruction *instruction = new Instruction(sw::Shader::OPCODE_MOV);
2203 instruction->dst.type = sw::Shader::PARAMETER_TEMP;
2204 instruction->dst.index = dstIndex;
2205 instruction->dst.mask = 1 << j;
2206 instruction->src[0].type = sw::Shader::PARAMETER_CONST;
2207 instruction->src[0].bufferIndex = argumentInfo.bufferIndex;
2208 instruction->src[0].index = matrixStartOffset + j * argumentInfo.typedMemberInfo.matrixStride;
2209 instruction->src[0].swizzle = srcSwizzle;
2210
2211 shader->append(instruction);
2212 }
2213
2214 arg = &unpackedUniform;
2215 index = 0;
2216 }
2217 }
2218
2219 const ArgumentInfo argumentInfo = getArgumentInfo(arg, index);
2220 const TType &type = argumentInfo.typedMemberInfo.type;
2221
2222 int size = registerSize(type, argumentInfo.clampedIndex);
2223
2224 parameter.type = registerType(arg);
2225 parameter.bufferIndex = argumentInfo.bufferIndex;
2226
2227 if(arg->getAsConstantUnion() && arg->getAsConstantUnion()->getUnionArrayPointer())
2228 {
2229 int component = componentCount(type, argumentInfo.clampedIndex);
2230 ConstantUnion *constants = arg->getAsConstantUnion()->getUnionArrayPointer();
2231
2232 for(int i = 0; i < 4; i++)
2233 {
2234 if(size == 1) // Replicate
2235 {
2236 parameter.value[i] = constants[component + 0].getAsFloat();
2237 }
2238 else if(i < size)
2239 {
2240 parameter.value[i] = constants[component + i].getAsFloat();
2241 }
2242 else
2243 {
2244 parameter.value[i] = 0.0f;
2245 }
2246 }
2247 }
2248 else
2249 {
2250 parameter.index = registerIndex(arg) + argumentInfo.clampedIndex;
2251
2252 if(parameter.bufferIndex != -1)
2253 {
2254 int stride = (argumentInfo.typedMemberInfo.matrixStride > 0) ? argumentInfo.typedMemberInfo.matrixStride : argumentInfo.typedMemberInfo.arrayStride;
2255 parameter.index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * stride;
2256 }
2257 }
2258
2259 if(!IsSampler(arg->getBasicType()))
2260 {
2261 parameter.swizzle = readSwizzle(arg, size);
2262 }
2263 }
2264 }
2265
2266 void OutputASM::copy(TIntermTyped *dst, TIntermNode *src, int offset)
2267 {
2268 for(int index = 0; index < dst->totalRegisterCount(); index++)
2269 {
2270 Instruction *mov = emit(sw::Shader::OPCODE_MOV, dst, index, src, offset + index);
2271 mov->dst.mask = writeMask(dst, index);
2272 }
2273 }
2274
2275 int swizzleElement(int swizzle, int index)
2276 {
2277 return (swizzle >> (index * 2)) & 0x03;
2278 }
2279
2280 int swizzleSwizzle(int leftSwizzle, int rightSwizzle)
2281 {
2282 return (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 0)) << 0) |
2283 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 1)) << 2) |
2284 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 2)) << 4) |
2285 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 3)) << 6);
2286 }
2287
2288 void OutputASM::assignLvalue(TIntermTyped *dst, TIntermTyped *src)
2289 {
2290 if(src &&
2291 ((src->isVector() && (!dst->isVector() || (src->getNominalSize() != dst->getNominalSize()))) ||
2292 (src->isMatrix() && (!dst->isMatrix() || (src->getNominalSize() != dst->getNominalSize()) || (src->getSecondarySize() != dst->getSecondarySize())))))
2293 {
2294 return mContext.error(src->getLine(), "Result type should match the l-value type in compound assignment", src->isVector() ? "vector" : "matrix");
2295 }
2296
2297 TIntermBinary *binary = dst->getAsBinaryNode();
2298
2299 if(binary && binary->getOp() == EOpIndexIndirect && binary->getLeft()->isVector() && dst->isScalar())
2300 {
2301 Instruction *insert = new Instruction(sw::Shader::OPCODE_INSERT);
2302
2303 Temporary address(this);
2304 lvalue(insert->dst, address, dst);
2305
2306 insert->src[0].type = insert->dst.type;
2307 insert->src[0].index = insert->dst.index;
2308 insert->src[0].rel = insert->dst.rel;
2309 argument(insert->src[1], src);
2310 argument(insert->src[2], binary->getRight());
2311
2312 shader->append(insert);
2313 }
2314 else
2315 {
2316 for(int offset = 0; offset < dst->totalRegisterCount(); offset++)
2317 {
2318 Instruction *mov = new Instruction(sw::Shader::OPCODE_MOV);
2319
2320 Temporary address(this);
2321 int swizzle = lvalue(mov->dst, address, dst);
2322 mov->dst.index += offset;
2323
2324 if(offset > 0)
2325 {
2326 mov->dst.mask = writeMask(dst, offset);
2327 }
2328
2329 argument(mov->src[0], src, offset);
2330 mov->src[0].swizzle = swizzleSwizzle(mov->src[0].swizzle, swizzle);
2331
2332 shader->append(mov);
2333 }
2334 }
2335 }
2336
2337 int OutputASM::lvalue(sw::Shader::DestinationParameter &dst, Temporary &address, TIntermTyped *node)
2338 {
2339 TIntermTyped *result = node;
2340 TIntermBinary *binary = node->getAsBinaryNode();
2341 TIntermSymbol *symbol = node->getAsSymbolNode();
2342
2343 if(binary)
2344 {
2345 TIntermTyped *left = binary->getLeft();
2346 TIntermTyped *right = binary->getRight();
2347
2348 int leftSwizzle = lvalue(dst, address, left); // Resolve the l-value of the left side
2349
2350 switch(binary->getOp())
2351 {
2352 case EOpIndexDirect:
2353 {
2354 int rightIndex = right->getAsConstantUnion()->getIConst(0);
2355
2356 if(left->isRegister())
2357 {
2358 int leftMask = dst.mask;
2359
2360 dst.mask = 1;
2361 while((leftMask & dst.mask) == 0)
2362 {
2363 dst.mask = dst.mask << 1;
2364 }
2365
2366 int element = swizzleElement(leftSwizzle, rightIndex);
2367 dst.mask = 1 << element;
2368
2369 return element;
2370 }
2371 else if(left->isArray() || left->isMatrix())
2372 {
2373 dst.index += rightIndex * result->totalRegisterCount();
2374 return 0xE4;
2375 }
2376 else UNREACHABLE(0);
2377 }
2378 break;
2379 case EOpIndexIndirect:
2380 {
2381 if(left->isRegister())
2382 {
2383 // Requires INSERT instruction (handled by calling function)
2384 }
2385 else if(left->isArray() || left->isMatrix())
2386 {
2387 int scale = result->totalRegisterCount();
2388
2389 if(dst.rel.type == sw::Shader::PARAMETER_VOID) // Use the index register as the relative address directly
2390 {
2391 if(left->totalRegisterCount() > 1)
2392 {
2393 sw::Shader::SourceParameter relativeRegister;
2394 argument(relativeRegister, right);
2395
2396 dst.rel.index = relativeRegister.index;
2397 dst.rel.type = relativeRegister.type;
2398 dst.rel.scale = scale;
2399 dst.rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
2400 }
2401 }
2402 else if(dst.rel.index != registerIndex(&address)) // Move the previous index register to the address register
2403 {
2404 if(scale == 1)
2405 {
2406 Constant oldScale((int)dst.rel.scale);
2407 Instruction *mad = emit(sw::Shader::OPCODE_IMAD, &address, &address, &oldScale, right);
2408 mad->src[0].index = dst.rel.index;
2409 mad->src[0].type = dst.rel.type;
2410 }
2411 else
2412 {
2413 Constant oldScale((int)dst.rel.scale);
2414 Instruction *mul = emit(sw::Shader::OPCODE_IMUL, &address, &address, &oldScale);
2415 mul->src[0].index = dst.rel.index;
2416 mul->src[0].type = dst.rel.type;
2417
2418 Constant newScale(scale);
2419 emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
2420 }
2421
2422 dst.rel.type = sw::Shader::PARAMETER_TEMP;
2423 dst.rel.index = registerIndex(&address);
2424 dst.rel.scale = 1;
2425 }
2426 else // Just add the new index to the address register
2427 {
2428 if(scale == 1)
2429 {
2430 emit(sw::Shader::OPCODE_IADD, &address, &address, right);
2431 }
2432 else
2433 {
2434 Constant newScale(scale);
2435 emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
2436 }
2437 }
2438 }
2439 else UNREACHABLE(0);
2440 }
2441 break;
2442 case EOpIndexDirectStruct:
2443 case EOpIndexDirectInterfaceBlock:
2444 {
2445 const TFieldList& fields = (binary->getOp() == EOpIndexDirectStruct) ?
2446 left->getType().getStruct()->fields() :
2447 left->getType().getInterfaceBlock()->fields();
2448 int index = right->getAsConstantUnion()->getIConst(0);
2449 int fieldOffset = 0;
2450
2451 for(int i = 0; i < index; i++)
2452 {
2453 fieldOffset += fields[i]->type()->totalRegisterCount();
2454 }
2455
2456 dst.type = registerType(left);
2457 dst.index += fieldOffset;
Nicolas Capens8157d5c2017-01-04 11:30:45 -05002458 dst.mask = writeMask(result);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002459
2460 return 0xE4;
2461 }
2462 break;
2463 case EOpVectorSwizzle:
2464 {
2465 ASSERT(left->isRegister());
2466
2467 int leftMask = dst.mask;
2468
2469 int swizzle = 0;
2470 int rightMask = 0;
2471
2472 TIntermSequence &sequence = right->getAsAggregate()->getSequence();
2473
2474 for(unsigned int i = 0; i < sequence.size(); i++)
2475 {
2476 int index = sequence[i]->getAsConstantUnion()->getIConst(0);
2477
2478 int element = swizzleElement(leftSwizzle, index);
2479 rightMask = rightMask | (1 << element);
2480 swizzle = swizzle | swizzleElement(leftSwizzle, i) << (element * 2);
2481 }
2482
2483 dst.mask = leftMask & rightMask;
2484
2485 return swizzle;
2486 }
2487 break;
2488 default:
2489 UNREACHABLE(binary->getOp()); // Not an l-value operator
2490 break;
2491 }
2492 }
2493 else if(symbol)
2494 {
2495 dst.type = registerType(symbol);
2496 dst.index = registerIndex(symbol);
2497 dst.mask = writeMask(symbol);
2498 return 0xE4;
2499 }
2500
2501 return 0xE4;
2502 }
2503
2504 sw::Shader::ParameterType OutputASM::registerType(TIntermTyped *operand)
2505 {
2506 if(isSamplerRegister(operand))
2507 {
2508 return sw::Shader::PARAMETER_SAMPLER;
2509 }
2510
2511 const TQualifier qualifier = operand->getQualifier();
2512 if((EvqFragColor == qualifier) || (EvqFragData == qualifier))
2513 {
2514 if(((EvqFragData == qualifier) && (EvqFragColor == outputQualifier)) ||
2515 ((EvqFragColor == qualifier) && (EvqFragData == outputQualifier)))
2516 {
2517 mContext.error(operand->getLine(), "static assignment to both gl_FragData and gl_FragColor", "");
2518 }
2519 outputQualifier = qualifier;
2520 }
2521
2522 if(qualifier == EvqConstExpr && (!operand->getAsConstantUnion() || !operand->getAsConstantUnion()->getUnionArrayPointer()))
2523 {
2524 return sw::Shader::PARAMETER_TEMP;
2525 }
2526
2527 switch(qualifier)
2528 {
2529 case EvqTemporary: return sw::Shader::PARAMETER_TEMP;
2530 case EvqGlobal: return sw::Shader::PARAMETER_TEMP;
2531 case EvqConstExpr: return sw::Shader::PARAMETER_FLOAT4LITERAL; // All converted to float
2532 case EvqAttribute: return sw::Shader::PARAMETER_INPUT;
2533 case EvqVaryingIn: return sw::Shader::PARAMETER_INPUT;
2534 case EvqVaryingOut: return sw::Shader::PARAMETER_OUTPUT;
2535 case EvqVertexIn: return sw::Shader::PARAMETER_INPUT;
2536 case EvqFragmentOut: return sw::Shader::PARAMETER_COLOROUT;
2537 case EvqVertexOut: return sw::Shader::PARAMETER_OUTPUT;
2538 case EvqFragmentIn: return sw::Shader::PARAMETER_INPUT;
2539 case EvqInvariantVaryingIn: return sw::Shader::PARAMETER_INPUT; // FIXME: Guarantee invariance at the backend
2540 case EvqInvariantVaryingOut: return sw::Shader::PARAMETER_OUTPUT; // FIXME: Guarantee invariance at the backend
2541 case EvqSmooth: return sw::Shader::PARAMETER_OUTPUT;
2542 case EvqFlat: return sw::Shader::PARAMETER_OUTPUT;
2543 case EvqCentroidOut: return sw::Shader::PARAMETER_OUTPUT;
2544 case EvqSmoothIn: return sw::Shader::PARAMETER_INPUT;
2545 case EvqFlatIn: return sw::Shader::PARAMETER_INPUT;
2546 case EvqCentroidIn: return sw::Shader::PARAMETER_INPUT;
2547 case EvqUniform: return sw::Shader::PARAMETER_CONST;
2548 case EvqIn: return sw::Shader::PARAMETER_TEMP;
2549 case EvqOut: return sw::Shader::PARAMETER_TEMP;
2550 case EvqInOut: return sw::Shader::PARAMETER_TEMP;
2551 case EvqConstReadOnly: return sw::Shader::PARAMETER_TEMP;
2552 case EvqPosition: return sw::Shader::PARAMETER_OUTPUT;
2553 case EvqPointSize: return sw::Shader::PARAMETER_OUTPUT;
2554 case EvqInstanceID: return sw::Shader::PARAMETER_MISCTYPE;
2555 case EvqFragCoord: return sw::Shader::PARAMETER_MISCTYPE;
2556 case EvqFrontFacing: return sw::Shader::PARAMETER_MISCTYPE;
2557 case EvqPointCoord: return sw::Shader::PARAMETER_INPUT;
2558 case EvqFragColor: return sw::Shader::PARAMETER_COLOROUT;
2559 case EvqFragData: return sw::Shader::PARAMETER_COLOROUT;
2560 case EvqFragDepth: return sw::Shader::PARAMETER_DEPTHOUT;
2561 default: UNREACHABLE(qualifier);
2562 }
2563
2564 return sw::Shader::PARAMETER_VOID;
2565 }
2566
Alexis Hetu12b00502016-05-20 13:01:11 -04002567 bool OutputASM::hasFlatQualifier(TIntermTyped *operand)
2568 {
2569 const TQualifier qualifier = operand->getQualifier();
2570 return qualifier == EvqFlat || qualifier == EvqFlatOut || qualifier == EvqFlatIn;
2571 }
2572
Nicolas Capens0bac2852016-05-07 06:09:58 -04002573 unsigned int OutputASM::registerIndex(TIntermTyped *operand)
2574 {
2575 if(isSamplerRegister(operand))
2576 {
2577 return samplerRegister(operand);
2578 }
2579
2580 switch(operand->getQualifier())
2581 {
2582 case EvqTemporary: return temporaryRegister(operand);
2583 case EvqGlobal: return temporaryRegister(operand);
2584 case EvqConstExpr: return temporaryRegister(operand); // Unevaluated constant expression
2585 case EvqAttribute: return attributeRegister(operand);
2586 case EvqVaryingIn: return varyingRegister(operand);
2587 case EvqVaryingOut: return varyingRegister(operand);
2588 case EvqVertexIn: return attributeRegister(operand);
2589 case EvqFragmentOut: return fragmentOutputRegister(operand);
2590 case EvqVertexOut: return varyingRegister(operand);
2591 case EvqFragmentIn: return varyingRegister(operand);
2592 case EvqInvariantVaryingIn: return varyingRegister(operand);
2593 case EvqInvariantVaryingOut: return varyingRegister(operand);
2594 case EvqSmooth: return varyingRegister(operand);
2595 case EvqFlat: return varyingRegister(operand);
2596 case EvqCentroidOut: return varyingRegister(operand);
2597 case EvqSmoothIn: return varyingRegister(operand);
2598 case EvqFlatIn: return varyingRegister(operand);
2599 case EvqCentroidIn: return varyingRegister(operand);
2600 case EvqUniform: return uniformRegister(operand);
2601 case EvqIn: return temporaryRegister(operand);
2602 case EvqOut: return temporaryRegister(operand);
2603 case EvqInOut: return temporaryRegister(operand);
2604 case EvqConstReadOnly: return temporaryRegister(operand);
2605 case EvqPosition: return varyingRegister(operand);
2606 case EvqPointSize: return varyingRegister(operand);
Alexis Hetu02ad0aa2016-08-02 11:18:14 -04002607 case EvqInstanceID: vertexShader->declareInstanceId(); return 0;
2608 case EvqFragCoord: pixelShader->declareVPos(); return 0;
2609 case EvqFrontFacing: pixelShader->declareVFace(); return 1;
Nicolas Capens0bac2852016-05-07 06:09:58 -04002610 case EvqPointCoord: return varyingRegister(operand);
2611 case EvqFragColor: return 0;
2612 case EvqFragData: return fragmentOutputRegister(operand);
2613 case EvqFragDepth: return 0;
2614 default: UNREACHABLE(operand->getQualifier());
2615 }
2616
2617 return 0;
2618 }
2619
2620 int OutputASM::writeMask(TIntermTyped *destination, int index)
2621 {
2622 if(destination->getQualifier() == EvqPointSize)
2623 {
2624 return 0x2; // Point size stored in the y component
2625 }
2626
2627 return 0xF >> (4 - registerSize(destination->getType(), index));
2628 }
2629
2630 int OutputASM::readSwizzle(TIntermTyped *argument, int size)
2631 {
2632 if(argument->getQualifier() == EvqPointSize)
2633 {
2634 return 0x55; // Point size stored in the y component
2635 }
2636
2637 static const unsigned char swizzleSize[5] = {0x00, 0x00, 0x54, 0xA4, 0xE4}; // (void), xxxx, xyyy, xyzz, xyzw
2638
2639 return swizzleSize[size];
2640 }
2641
2642 // Conservatively checks whether an expression is fast to compute and has no side effects
2643 bool OutputASM::trivial(TIntermTyped *expression, int budget)
2644 {
2645 if(!expression->isRegister())
2646 {
2647 return false;
2648 }
2649
2650 return cost(expression, budget) >= 0;
2651 }
2652
2653 // Returns the remaining computing budget (if < 0 the expression is too expensive or has side effects)
2654 int OutputASM::cost(TIntermNode *expression, int budget)
2655 {
2656 if(budget < 0)
2657 {
2658 return budget;
2659 }
2660
2661 if(expression->getAsSymbolNode())
2662 {
2663 return budget;
2664 }
2665 else if(expression->getAsConstantUnion())
2666 {
2667 return budget;
2668 }
2669 else if(expression->getAsBinaryNode())
2670 {
2671 TIntermBinary *binary = expression->getAsBinaryNode();
2672
2673 switch(binary->getOp())
2674 {
2675 case EOpVectorSwizzle:
2676 case EOpIndexDirect:
2677 case EOpIndexDirectStruct:
2678 case EOpIndexDirectInterfaceBlock:
2679 return cost(binary->getLeft(), budget - 0);
2680 case EOpAdd:
2681 case EOpSub:
2682 case EOpMul:
2683 return cost(binary->getLeft(), cost(binary->getRight(), budget - 1));
2684 default:
2685 return -1;
2686 }
2687 }
2688 else if(expression->getAsUnaryNode())
2689 {
2690 TIntermUnary *unary = expression->getAsUnaryNode();
2691
2692 switch(unary->getOp())
2693 {
2694 case EOpAbs:
2695 case EOpNegative:
2696 return cost(unary->getOperand(), budget - 1);
2697 default:
2698 return -1;
2699 }
2700 }
2701 else if(expression->getAsSelectionNode())
2702 {
2703 TIntermSelection *selection = expression->getAsSelectionNode();
2704
2705 if(selection->usesTernaryOperator())
2706 {
2707 TIntermTyped *condition = selection->getCondition();
2708 TIntermNode *trueBlock = selection->getTrueBlock();
2709 TIntermNode *falseBlock = selection->getFalseBlock();
2710 TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
2711
2712 if(constantCondition)
2713 {
2714 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
2715
2716 if(trueCondition)
2717 {
2718 return cost(trueBlock, budget - 0);
2719 }
2720 else
2721 {
2722 return cost(falseBlock, budget - 0);
2723 }
2724 }
2725 else
2726 {
2727 return cost(trueBlock, cost(falseBlock, budget - 2));
2728 }
2729 }
2730 }
2731
2732 return -1;
2733 }
2734
2735 const Function *OutputASM::findFunction(const TString &name)
2736 {
2737 for(unsigned int f = 0; f < functionArray.size(); f++)
2738 {
2739 if(functionArray[f].name == name)
2740 {
2741 return &functionArray[f];
2742 }
2743 }
2744
2745 return 0;
2746 }
2747
2748 int OutputASM::temporaryRegister(TIntermTyped *temporary)
2749 {
2750 return allocate(temporaries, temporary);
2751 }
2752
2753 int OutputASM::varyingRegister(TIntermTyped *varying)
2754 {
2755 int var = lookup(varyings, varying);
2756
2757 if(var == -1)
2758 {
2759 var = allocate(varyings, varying);
2760 int componentCount = varying->registerSize();
2761 int registerCount = varying->totalRegisterCount();
2762
2763 if(pixelShader)
2764 {
Nicolas Capens3b4c93f2016-05-18 12:51:37 -04002765 if((var + registerCount) > sw::MAX_FRAGMENT_INPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002766 {
2767 mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "fragment shader");
2768 return 0;
2769 }
2770
2771 if(varying->getQualifier() == EvqPointCoord)
2772 {
2773 ASSERT(varying->isRegister());
Alexis Hetu02ad0aa2016-08-02 11:18:14 -04002774 pixelShader->setInput(var, componentCount, sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var));
Nicolas Capens0bac2852016-05-07 06:09:58 -04002775 }
2776 else
2777 {
2778 for(int i = 0; i < varying->totalRegisterCount(); i++)
2779 {
Alexis Hetu12b00502016-05-20 13:01:11 -04002780 bool flat = hasFlatQualifier(varying);
2781
Alexis Hetu02ad0aa2016-08-02 11:18:14 -04002782 pixelShader->setInput(var + i, componentCount, sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i, flat));
Nicolas Capens0bac2852016-05-07 06:09:58 -04002783 }
2784 }
2785 }
2786 else if(vertexShader)
2787 {
Nicolas Capensec0936c2016-05-18 12:32:02 -04002788 if((var + registerCount) > sw::MAX_VERTEX_OUTPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002789 {
2790 mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "vertex shader");
2791 return 0;
2792 }
2793
2794 if(varying->getQualifier() == EvqPosition)
2795 {
2796 ASSERT(varying->isRegister());
Alexis Hetu02ad0aa2016-08-02 11:18:14 -04002797 vertexShader->setPositionRegister(var);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002798 }
2799 else if(varying->getQualifier() == EvqPointSize)
2800 {
2801 ASSERT(varying->isRegister());
Alexis Hetu02ad0aa2016-08-02 11:18:14 -04002802 vertexShader->setPointSizeRegister(var);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002803 }
2804 else
2805 {
2806 // Semantic indexes for user varyings will be assigned during program link to match the pixel shader
2807 }
2808 }
2809 else UNREACHABLE(0);
2810
2811 declareVarying(varying, var);
2812 }
2813
2814 return var;
2815 }
2816
2817 void OutputASM::declareVarying(TIntermTyped *varying, int reg)
2818 {
2819 if(varying->getQualifier() != EvqPointCoord) // gl_PointCoord does not need linking
2820 {
2821 const TType &type = varying->getType();
2822 const char *name = varying->getAsSymbolNode()->getSymbol().c_str();
2823 VaryingList &activeVaryings = shaderObject->varyings;
2824
2825 // Check if this varying has been declared before without having a register assigned
2826 for(VaryingList::iterator v = activeVaryings.begin(); v != activeVaryings.end(); v++)
2827 {
2828 if(v->name == name)
2829 {
2830 if(reg >= 0)
2831 {
2832 ASSERT(v->reg < 0 || v->reg == reg);
2833 v->reg = reg;
2834 }
2835
2836 return;
2837 }
2838 }
2839
2840 activeVaryings.push_back(glsl::Varying(glVariableType(type), name, varying->getArraySize(), reg, 0));
2841 }
2842 }
2843
2844 int OutputASM::uniformRegister(TIntermTyped *uniform)
2845 {
2846 const TType &type = uniform->getType();
2847 ASSERT(!IsSampler(type.getBasicType()));
2848 TInterfaceBlock *block = type.getAsInterfaceBlock();
2849 TIntermSymbol *symbol = uniform->getAsSymbolNode();
2850 ASSERT(symbol || block);
2851
2852 if(symbol || block)
2853 {
2854 TInterfaceBlock* parentBlock = type.getInterfaceBlock();
2855 bool isBlockMember = (!block && parentBlock);
2856 int index = isBlockMember ? lookup(uniforms, parentBlock) : lookup(uniforms, uniform);
2857
2858 if(index == -1 || isBlockMember)
2859 {
2860 if(index == -1)
2861 {
2862 index = allocate(uniforms, uniform);
2863 }
2864
2865 // Verify if the current uniform is a member of an already declared block
2866 const TString &name = symbol ? symbol->getSymbol() : block->name();
2867 int blockMemberIndex = blockMemberLookup(type, name, index);
2868 if(blockMemberIndex == -1)
2869 {
2870 declareUniform(type, name, index);
2871 }
2872 else
2873 {
2874 index = blockMemberIndex;
2875 }
2876 }
2877
2878 return index;
2879 }
2880
2881 return 0;
2882 }
2883
2884 int OutputASM::attributeRegister(TIntermTyped *attribute)
2885 {
2886 ASSERT(!attribute->isArray());
2887
2888 int index = lookup(attributes, attribute);
2889
2890 if(index == -1)
2891 {
2892 TIntermSymbol *symbol = attribute->getAsSymbolNode();
2893 ASSERT(symbol);
2894
2895 if(symbol)
2896 {
2897 index = allocate(attributes, attribute);
2898 const TType &type = attribute->getType();
2899 int registerCount = attribute->totalRegisterCount();
Alexis Hetub7508b82016-09-22 15:36:45 -04002900 sw::VertexShader::AttribType attribType = sw::VertexShader::ATTRIBTYPE_FLOAT;
2901 switch(type.getBasicType())
2902 {
2903 case EbtInt:
2904 attribType = sw::VertexShader::ATTRIBTYPE_INT;
2905 break;
2906 case EbtUInt:
2907 attribType = sw::VertexShader::ATTRIBTYPE_UINT;
2908 break;
2909 case EbtFloat:
2910 default:
2911 break;
2912 }
Nicolas Capens0bac2852016-05-07 06:09:58 -04002913
Nicolas Capensf0aef1a2016-05-18 14:44:21 -04002914 if(vertexShader && (index + registerCount) <= sw::MAX_VERTEX_INPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002915 {
2916 for(int i = 0; i < registerCount; i++)
2917 {
Alexis Hetub7508b82016-09-22 15:36:45 -04002918 vertexShader->setInput(index + i, sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, index + i, false), attribType);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002919 }
2920 }
2921
2922 ActiveAttributes &activeAttributes = shaderObject->activeAttributes;
2923
2924 const char *name = symbol->getSymbol().c_str();
2925 activeAttributes.push_back(Attribute(glVariableType(type), name, type.getArraySize(), type.getLayoutQualifier().location, index));
2926 }
2927 }
2928
2929 return index;
2930 }
2931
2932 int OutputASM::fragmentOutputRegister(TIntermTyped *fragmentOutput)
2933 {
2934 return allocate(fragmentOutputs, fragmentOutput);
2935 }
2936
2937 int OutputASM::samplerRegister(TIntermTyped *sampler)
2938 {
2939 const TType &type = sampler->getType();
2940 ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers
2941
2942 TIntermSymbol *symbol = sampler->getAsSymbolNode();
2943 TIntermBinary *binary = sampler->getAsBinaryNode();
2944
2945 if(symbol && type.getQualifier() == EvqUniform)
2946 {
2947 return samplerRegister(symbol);
2948 }
2949 else if(binary)
2950 {
2951 TIntermTyped *left = binary->getLeft();
2952 TIntermTyped *right = binary->getRight();
2953 const TType &leftType = left->getType();
2954 int index = right->getAsConstantUnion() ? right->getAsConstantUnion()->getIConst(0) : 0;
2955 int offset = 0;
2956
2957 switch(binary->getOp())
2958 {
2959 case EOpIndexDirect:
2960 ASSERT(left->isArray());
2961 offset = index * leftType.elementRegisterCount();
2962 break;
2963 case EOpIndexDirectStruct:
2964 ASSERT(leftType.isStruct());
2965 {
2966 const TFieldList &fields = leftType.getStruct()->fields();
2967
2968 for(int i = 0; i < index; i++)
2969 {
2970 offset += fields[i]->type()->totalRegisterCount();
2971 }
2972 }
2973 break;
2974 case EOpIndexIndirect: // Indirect indexing produces a temporary, not a sampler register
2975 return -1;
2976 case EOpIndexDirectInterfaceBlock: // Interface blocks can't contain samplers
2977 default:
2978 UNREACHABLE(binary->getOp());
2979 return -1;
2980 }
2981
2982 int base = samplerRegister(left);
2983
2984 if(base < 0)
2985 {
2986 return -1;
2987 }
2988
2989 return base + offset;
2990 }
2991
2992 UNREACHABLE(0);
2993 return -1; // Not a sampler register
2994 }
2995
2996 int OutputASM::samplerRegister(TIntermSymbol *sampler)
2997 {
2998 const TType &type = sampler->getType();
2999 ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers
3000
3001 int index = lookup(samplers, sampler);
3002
3003 if(index == -1)
3004 {
3005 index = allocate(samplers, sampler);
3006
3007 if(sampler->getQualifier() == EvqUniform)
3008 {
3009 const char *name = sampler->getSymbol().c_str();
3010 declareUniform(type, name, index);
3011 }
3012 }
3013
3014 return index;
3015 }
3016
3017 bool OutputASM::isSamplerRegister(TIntermTyped *operand)
3018 {
3019 return operand && IsSampler(operand->getBasicType()) && samplerRegister(operand) >= 0;
3020 }
3021
3022 int OutputASM::lookup(VariableArray &list, TIntermTyped *variable)
3023 {
3024 for(unsigned int i = 0; i < list.size(); i++)
3025 {
3026 if(list[i] == variable)
3027 {
3028 return i; // Pointer match
3029 }
3030 }
3031
3032 TIntermSymbol *varSymbol = variable->getAsSymbolNode();
3033 TInterfaceBlock *varBlock = variable->getType().getAsInterfaceBlock();
3034
3035 if(varBlock)
3036 {
3037 for(unsigned int i = 0; i < list.size(); i++)
3038 {
3039 if(list[i])
3040 {
3041 TInterfaceBlock *listBlock = list[i]->getType().getAsInterfaceBlock();
3042
3043 if(listBlock)
3044 {
3045 if(listBlock->name() == varBlock->name())
3046 {
3047 ASSERT(listBlock->arraySize() == varBlock->arraySize());
3048 ASSERT(listBlock->fields() == varBlock->fields());
3049 ASSERT(listBlock->blockStorage() == varBlock->blockStorage());
3050 ASSERT(listBlock->matrixPacking() == varBlock->matrixPacking());
3051
3052 return i;
3053 }
3054 }
3055 }
3056 }
3057 }
3058 else if(varSymbol)
3059 {
3060 for(unsigned int i = 0; i < list.size(); i++)
3061 {
3062 if(list[i])
3063 {
3064 TIntermSymbol *listSymbol = list[i]->getAsSymbolNode();
3065
3066 if(listSymbol)
3067 {
3068 if(listSymbol->getId() == varSymbol->getId())
3069 {
3070 ASSERT(listSymbol->getSymbol() == varSymbol->getSymbol());
3071 ASSERT(listSymbol->getType() == varSymbol->getType());
3072 ASSERT(listSymbol->getQualifier() == varSymbol->getQualifier());
3073
3074 return i;
3075 }
3076 }
3077 }
3078 }
3079 }
3080
3081 return -1;
3082 }
3083
3084 int OutputASM::lookup(VariableArray &list, TInterfaceBlock *block)
3085 {
3086 for(unsigned int i = 0; i < list.size(); i++)
3087 {
3088 if(list[i] && (list[i]->getType().getInterfaceBlock() == block))
3089 {
3090 return i; // Pointer match
3091 }
3092 }
3093 return -1;
3094 }
3095
3096 int OutputASM::allocate(VariableArray &list, TIntermTyped *variable)
3097 {
3098 int index = lookup(list, variable);
3099
3100 if(index == -1)
3101 {
3102 unsigned int registerCount = variable->blockRegisterCount();
3103
3104 for(unsigned int i = 0; i < list.size(); i++)
3105 {
3106 if(list[i] == 0)
3107 {
3108 unsigned int j = 1;
3109 for( ; j < registerCount && (i + j) < list.size(); j++)
3110 {
3111 if(list[i + j] != 0)
3112 {
3113 break;
3114 }
3115 }
3116
3117 if(j == registerCount) // Found free slots
3118 {
3119 for(unsigned int j = 0; j < registerCount; j++)
3120 {
3121 list[i + j] = variable;
3122 }
3123
3124 return i;
3125 }
3126 }
3127 }
3128
3129 index = list.size();
3130
3131 for(unsigned int i = 0; i < registerCount; i++)
3132 {
3133 list.push_back(variable);
3134 }
3135 }
3136
3137 return index;
3138 }
3139
3140 void OutputASM::free(VariableArray &list, TIntermTyped *variable)
3141 {
3142 int index = lookup(list, variable);
3143
3144 if(index >= 0)
3145 {
3146 list[index] = 0;
3147 }
3148 }
3149
3150 int OutputASM::blockMemberLookup(const TType &type, const TString &name, int registerIndex)
3151 {
3152 const TInterfaceBlock *block = type.getInterfaceBlock();
3153
3154 if(block)
3155 {
3156 ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks;
3157 const TFieldList& fields = block->fields();
3158 const TString &blockName = block->name();
3159 int fieldRegisterIndex = registerIndex;
3160
3161 if(!type.isInterfaceBlock())
3162 {
3163 // This is a uniform that's part of a block, let's see if the block is already defined
3164 for(size_t i = 0; i < activeUniformBlocks.size(); ++i)
3165 {
3166 if(activeUniformBlocks[i].name == blockName.c_str())
3167 {
3168 // The block is already defined, find the register for the current uniform and return it
3169 for(size_t j = 0; j < fields.size(); j++)
3170 {
3171 const TString &fieldName = fields[j]->name();
3172 if(fieldName == name)
3173 {
3174 return fieldRegisterIndex;
3175 }
3176
3177 fieldRegisterIndex += fields[j]->type()->totalRegisterCount();
3178 }
3179
3180 ASSERT(false);
3181 return fieldRegisterIndex;
3182 }
3183 }
3184 }
3185 }
3186
3187 return -1;
3188 }
3189
3190 void OutputASM::declareUniform(const TType &type, const TString &name, int registerIndex, int blockId, BlockLayoutEncoder* encoder)
3191 {
3192 const TStructure *structure = type.getStruct();
3193 const TInterfaceBlock *block = (type.isInterfaceBlock() || (blockId == -1)) ? type.getInterfaceBlock() : nullptr;
3194
3195 if(!structure && !block)
3196 {
3197 ActiveUniforms &activeUniforms = shaderObject->activeUniforms;
3198 const BlockMemberInfo blockInfo = encoder ? encoder->encodeType(type) : BlockMemberInfo::getDefaultBlockInfo();
3199 if(blockId >= 0)
3200 {
3201 blockDefinitions[blockId][registerIndex] = TypedMemberInfo(blockInfo, type);
3202 shaderObject->activeUniformBlocks[blockId].fields.push_back(activeUniforms.size());
3203 }
3204 int fieldRegisterIndex = encoder ? shaderObject->activeUniformBlocks[blockId].registerIndex + BlockLayoutEncoder::getBlockRegister(blockInfo) : registerIndex;
3205 activeUniforms.push_back(Uniform(glVariableType(type), glVariablePrecision(type), name.c_str(), type.getArraySize(),
3206 fieldRegisterIndex, blockId, blockInfo));
3207 if(IsSampler(type.getBasicType()))
3208 {
3209 for(int i = 0; i < type.totalRegisterCount(); i++)
3210 {
3211 shader->declareSampler(fieldRegisterIndex + i);
3212 }
3213 }
3214 }
3215 else if(block)
3216 {
3217 ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks;
3218 const TFieldList& fields = block->fields();
3219 const TString &blockName = block->name();
3220 int fieldRegisterIndex = registerIndex;
3221 bool isUniformBlockMember = !type.isInterfaceBlock() && (blockId == -1);
3222
3223 blockId = activeUniformBlocks.size();
3224 bool isRowMajor = block->matrixPacking() == EmpRowMajor;
3225 activeUniformBlocks.push_back(UniformBlock(blockName.c_str(), 0, block->arraySize(),
3226 block->blockStorage(), isRowMajor, registerIndex, blockId));
3227 blockDefinitions.push_back(BlockDefinitionIndexMap());
3228
3229 Std140BlockEncoder currentBlockEncoder(isRowMajor);
3230 currentBlockEncoder.enterAggregateType();
3231 for(size_t i = 0; i < fields.size(); i++)
3232 {
3233 const TType &fieldType = *(fields[i]->type());
3234 const TString &fieldName = fields[i]->name();
3235 if(isUniformBlockMember && (fieldName == name))
3236 {
3237 registerIndex = fieldRegisterIndex;
3238 }
3239
3240 const TString uniformName = block->hasInstanceName() ? blockName + "." + fieldName : fieldName;
3241
3242 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, &currentBlockEncoder);
3243 fieldRegisterIndex += fieldType.totalRegisterCount();
3244 }
3245 currentBlockEncoder.exitAggregateType();
3246 activeUniformBlocks[blockId].dataSize = currentBlockEncoder.getBlockSize();
3247 }
3248 else
3249 {
3250 int fieldRegisterIndex = registerIndex;
3251
3252 const TFieldList& fields = structure->fields();
3253 if(type.isArray() && (structure || type.isInterfaceBlock()))
3254 {
3255 for(int i = 0; i < type.getArraySize(); i++)
3256 {
3257 if(encoder)
3258 {
3259 encoder->enterAggregateType();
3260 }
3261 for(size_t j = 0; j < fields.size(); j++)
3262 {
3263 const TType &fieldType = *(fields[j]->type());
3264 const TString &fieldName = fields[j]->name();
3265 const TString uniformName = name + "[" + str(i) + "]." + fieldName;
3266
3267 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, encoder);
3268 fieldRegisterIndex += fieldType.totalRegisterCount();
3269 }
3270 if(encoder)
3271 {
3272 encoder->exitAggregateType();
3273 }
3274 }
3275 }
3276 else
3277 {
3278 if(encoder)
3279 {
3280 encoder->enterAggregateType();
3281 }
3282 for(size_t i = 0; i < fields.size(); i++)
3283 {
3284 const TType &fieldType = *(fields[i]->type());
3285 const TString &fieldName = fields[i]->name();
3286 const TString uniformName = name + "." + fieldName;
3287
3288 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, encoder);
3289 fieldRegisterIndex += fieldType.totalRegisterCount();
3290 }
3291 if(encoder)
3292 {
3293 encoder->exitAggregateType();
3294 }
3295 }
3296 }
3297 }
3298
3299 GLenum OutputASM::glVariableType(const TType &type)
3300 {
3301 switch(type.getBasicType())
3302 {
3303 case EbtFloat:
3304 if(type.isScalar())
3305 {
3306 return GL_FLOAT;
3307 }
3308 else if(type.isVector())
3309 {
3310 switch(type.getNominalSize())
3311 {
3312 case 2: return GL_FLOAT_VEC2;
3313 case 3: return GL_FLOAT_VEC3;
3314 case 4: return GL_FLOAT_VEC4;
3315 default: UNREACHABLE(type.getNominalSize());
3316 }
3317 }
3318 else if(type.isMatrix())
3319 {
3320 switch(type.getNominalSize())
3321 {
3322 case 2:
3323 switch(type.getSecondarySize())
3324 {
3325 case 2: return GL_FLOAT_MAT2;
3326 case 3: return GL_FLOAT_MAT2x3;
3327 case 4: return GL_FLOAT_MAT2x4;
3328 default: UNREACHABLE(type.getSecondarySize());
3329 }
3330 case 3:
3331 switch(type.getSecondarySize())
3332 {
3333 case 2: return GL_FLOAT_MAT3x2;
3334 case 3: return GL_FLOAT_MAT3;
3335 case 4: return GL_FLOAT_MAT3x4;
3336 default: UNREACHABLE(type.getSecondarySize());
3337 }
3338 case 4:
3339 switch(type.getSecondarySize())
3340 {
3341 case 2: return GL_FLOAT_MAT4x2;
3342 case 3: return GL_FLOAT_MAT4x3;
3343 case 4: return GL_FLOAT_MAT4;
3344 default: UNREACHABLE(type.getSecondarySize());
3345 }
3346 default: UNREACHABLE(type.getNominalSize());
3347 }
3348 }
3349 else UNREACHABLE(0);
3350 break;
3351 case EbtInt:
3352 if(type.isScalar())
3353 {
3354 return GL_INT;
3355 }
3356 else if(type.isVector())
3357 {
3358 switch(type.getNominalSize())
3359 {
3360 case 2: return GL_INT_VEC2;
3361 case 3: return GL_INT_VEC3;
3362 case 4: return GL_INT_VEC4;
3363 default: UNREACHABLE(type.getNominalSize());
3364 }
3365 }
3366 else UNREACHABLE(0);
3367 break;
3368 case EbtUInt:
3369 if(type.isScalar())
3370 {
3371 return GL_UNSIGNED_INT;
3372 }
3373 else if(type.isVector())
3374 {
3375 switch(type.getNominalSize())
3376 {
3377 case 2: return GL_UNSIGNED_INT_VEC2;
3378 case 3: return GL_UNSIGNED_INT_VEC3;
3379 case 4: return GL_UNSIGNED_INT_VEC4;
3380 default: UNREACHABLE(type.getNominalSize());
3381 }
3382 }
3383 else UNREACHABLE(0);
3384 break;
3385 case EbtBool:
3386 if(type.isScalar())
3387 {
3388 return GL_BOOL;
3389 }
3390 else if(type.isVector())
3391 {
3392 switch(type.getNominalSize())
3393 {
3394 case 2: return GL_BOOL_VEC2;
3395 case 3: return GL_BOOL_VEC3;
3396 case 4: return GL_BOOL_VEC4;
3397 default: UNREACHABLE(type.getNominalSize());
3398 }
3399 }
3400 else UNREACHABLE(0);
3401 break;
3402 case EbtSampler2D:
3403 return GL_SAMPLER_2D;
3404 case EbtISampler2D:
3405 return GL_INT_SAMPLER_2D;
3406 case EbtUSampler2D:
3407 return GL_UNSIGNED_INT_SAMPLER_2D;
3408 case EbtSamplerCube:
3409 return GL_SAMPLER_CUBE;
3410 case EbtISamplerCube:
3411 return GL_INT_SAMPLER_CUBE;
3412 case EbtUSamplerCube:
3413 return GL_UNSIGNED_INT_SAMPLER_CUBE;
3414 case EbtSamplerExternalOES:
3415 return GL_SAMPLER_EXTERNAL_OES;
3416 case EbtSampler3D:
3417 return GL_SAMPLER_3D_OES;
3418 case EbtISampler3D:
3419 return GL_INT_SAMPLER_3D;
3420 case EbtUSampler3D:
3421 return GL_UNSIGNED_INT_SAMPLER_3D;
3422 case EbtSampler2DArray:
3423 return GL_SAMPLER_2D_ARRAY;
3424 case EbtISampler2DArray:
3425 return GL_INT_SAMPLER_2D_ARRAY;
3426 case EbtUSampler2DArray:
3427 return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY;
3428 case EbtSampler2DShadow:
3429 return GL_SAMPLER_2D_SHADOW;
3430 case EbtSamplerCubeShadow:
3431 return GL_SAMPLER_CUBE_SHADOW;
3432 case EbtSampler2DArrayShadow:
3433 return GL_SAMPLER_2D_ARRAY_SHADOW;
3434 default:
3435 UNREACHABLE(type.getBasicType());
3436 break;
3437 }
3438
3439 return GL_NONE;
3440 }
3441
3442 GLenum OutputASM::glVariablePrecision(const TType &type)
3443 {
3444 if(type.getBasicType() == EbtFloat)
3445 {
3446 switch(type.getPrecision())
3447 {
3448 case EbpHigh: return GL_HIGH_FLOAT;
3449 case EbpMedium: return GL_MEDIUM_FLOAT;
3450 case EbpLow: return GL_LOW_FLOAT;
3451 case EbpUndefined:
3452 // Should be defined as the default precision by the parser
3453 default: UNREACHABLE(type.getPrecision());
3454 }
3455 }
3456 else if(type.getBasicType() == EbtInt)
3457 {
3458 switch(type.getPrecision())
3459 {
3460 case EbpHigh: return GL_HIGH_INT;
3461 case EbpMedium: return GL_MEDIUM_INT;
3462 case EbpLow: return GL_LOW_INT;
3463 case EbpUndefined:
3464 // Should be defined as the default precision by the parser
3465 default: UNREACHABLE(type.getPrecision());
3466 }
3467 }
3468
3469 // Other types (boolean, sampler) don't have a precision
3470 return GL_NONE;
3471 }
3472
3473 int OutputASM::dim(TIntermNode *v)
3474 {
3475 TIntermTyped *vector = v->getAsTyped();
3476 ASSERT(vector && vector->isRegister());
3477 return vector->getNominalSize();
3478 }
3479
3480 int OutputASM::dim2(TIntermNode *m)
3481 {
3482 TIntermTyped *matrix = m->getAsTyped();
3483 ASSERT(matrix && matrix->isMatrix() && !matrix->isArray());
3484 return matrix->getSecondarySize();
3485 }
3486
3487 // Returns ~0u if no loop count could be determined
3488 unsigned int OutputASM::loopCount(TIntermLoop *node)
3489 {
3490 // Parse loops of the form:
3491 // for(int index = initial; index [comparator] limit; index += increment)
3492 TIntermSymbol *index = 0;
3493 TOperator comparator = EOpNull;
3494 int initial = 0;
3495 int limit = 0;
3496 int increment = 0;
3497
3498 // Parse index name and intial value
3499 if(node->getInit())
3500 {
3501 TIntermAggregate *init = node->getInit()->getAsAggregate();
3502
3503 if(init)
3504 {
3505 TIntermSequence &sequence = init->getSequence();
3506 TIntermTyped *variable = sequence[0]->getAsTyped();
3507
3508 if(variable && variable->getQualifier() == EvqTemporary)
3509 {
3510 TIntermBinary *assign = variable->getAsBinaryNode();
3511
3512 if(assign->getOp() == EOpInitialize)
3513 {
3514 TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
3515 TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
3516
3517 if(symbol && constant)
3518 {
3519 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3520 {
3521 index = symbol;
3522 initial = constant->getUnionArrayPointer()[0].getIConst();
3523 }
3524 }
3525 }
3526 }
3527 }
3528 }
3529
3530 // Parse comparator and limit value
3531 if(index && node->getCondition())
3532 {
3533 TIntermBinary *test = node->getCondition()->getAsBinaryNode();
Alexis Hetu7be70cf2016-05-11 10:56:43 -04003534 TIntermSymbol *left = test ? test->getLeft()->getAsSymbolNode() : nullptr;
Nicolas Capens0bac2852016-05-07 06:09:58 -04003535
Alexis Hetu7be70cf2016-05-11 10:56:43 -04003536 if(left && (left->getId() == index->getId()))
Nicolas Capens0bac2852016-05-07 06:09:58 -04003537 {
3538 TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
3539
3540 if(constant)
3541 {
3542 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3543 {
3544 comparator = test->getOp();
3545 limit = constant->getUnionArrayPointer()[0].getIConst();
3546 }
3547 }
3548 }
3549 }
3550
3551 // Parse increment
3552 if(index && comparator != EOpNull && node->getExpression())
3553 {
3554 TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
3555 TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
3556
3557 if(binaryTerminal)
3558 {
3559 TOperator op = binaryTerminal->getOp();
3560 TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
3561
3562 if(constant)
3563 {
3564 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3565 {
3566 int value = constant->getUnionArrayPointer()[0].getIConst();
3567
3568 switch(op)
3569 {
3570 case EOpAddAssign: increment = value; break;
3571 case EOpSubAssign: increment = -value; break;
3572 default: UNIMPLEMENTED();
3573 }
3574 }
3575 }
3576 }
3577 else if(unaryTerminal)
3578 {
3579 TOperator op = unaryTerminal->getOp();
3580
3581 switch(op)
3582 {
3583 case EOpPostIncrement: increment = 1; break;
3584 case EOpPostDecrement: increment = -1; break;
3585 case EOpPreIncrement: increment = 1; break;
3586 case EOpPreDecrement: increment = -1; break;
3587 default: UNIMPLEMENTED();
3588 }
3589 }
3590 }
3591
3592 if(index && comparator != EOpNull && increment != 0)
3593 {
3594 if(comparator == EOpLessThanEqual)
3595 {
3596 comparator = EOpLessThan;
3597 limit += 1;
3598 }
3599
3600 if(comparator == EOpLessThan)
3601 {
3602 int iterations = (limit - initial) / increment;
3603
3604 if(iterations <= 0)
3605 {
3606 iterations = 0;
3607 }
3608
3609 return iterations;
3610 }
3611 else UNIMPLEMENTED(); // Falls through
3612 }
3613
3614 return ~0u;
3615 }
3616
3617 bool LoopUnrollable::traverse(TIntermNode *node)
3618 {
3619 loopDepth = 0;
3620 loopUnrollable = true;
3621
3622 node->traverse(this);
3623
3624 return loopUnrollable;
3625 }
3626
3627 bool LoopUnrollable::visitLoop(Visit visit, TIntermLoop *loop)
3628 {
3629 if(visit == PreVisit)
3630 {
3631 loopDepth++;
3632 }
3633 else if(visit == PostVisit)
3634 {
3635 loopDepth++;
3636 }
3637
3638 return true;
3639 }
3640
3641 bool LoopUnrollable::visitBranch(Visit visit, TIntermBranch *node)
3642 {
3643 if(!loopUnrollable)
3644 {
3645 return false;
3646 }
3647
3648 if(!loopDepth)
3649 {
3650 return true;
3651 }
3652
3653 switch(node->getFlowOp())
3654 {
3655 case EOpKill:
3656 case EOpReturn:
3657 break;
3658 case EOpBreak:
3659 case EOpContinue:
3660 loopUnrollable = false;
3661 break;
3662 default: UNREACHABLE(node->getFlowOp());
3663 }
3664
3665 return loopUnrollable;
3666 }
3667
3668 bool LoopUnrollable::visitAggregate(Visit visit, TIntermAggregate *node)
3669 {
3670 return loopUnrollable;
3671 }
3672}