blob: 9c467ab0abda79fed42b55015e22f1031c3c50dc [file] [log] [blame]
Nicolas Capens0bac2852016-05-07 06:09:58 -04001// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#include "OutputASM.h"
16#include "Common/Math.hpp"
17
18#include "common/debug.h"
19#include "InfoSink.h"
20
21#include "libGLESv2/Shader.h"
22
23#include <GLES2/gl2.h>
24#include <GLES2/gl2ext.h>
25#include <GLES3/gl3.h>
26
27namespace glsl
28{
29 // Integer to TString conversion
30 TString str(int i)
31 {
32 char buffer[20];
33 sprintf(buffer, "%d", i);
34 return buffer;
35 }
36
37 class Temporary : public TIntermSymbol
38 {
39 public:
40 Temporary(OutputASM *assembler) : TIntermSymbol(TSymbolTableLevel::nextUniqueId(), "tmp", TType(EbtFloat, EbpHigh, EvqTemporary, 4, 1, false)), assembler(assembler)
41 {
42 }
43
44 ~Temporary()
45 {
46 assembler->freeTemporary(this);
47 }
48
49 private:
50 OutputASM *const assembler;
51 };
52
53 class Constant : public TIntermConstantUnion
54 {
55 public:
56 Constant(float x, float y, float z, float w) : TIntermConstantUnion(constants, TType(EbtFloat, EbpHigh, EvqConstExpr, 4, 1, false))
57 {
58 constants[0].setFConst(x);
59 constants[1].setFConst(y);
60 constants[2].setFConst(z);
61 constants[3].setFConst(w);
62 }
63
64 Constant(bool b) : TIntermConstantUnion(constants, TType(EbtBool, EbpHigh, EvqConstExpr, 1, 1, false))
65 {
66 constants[0].setBConst(b);
67 }
68
69 Constant(int i) : TIntermConstantUnion(constants, TType(EbtInt, EbpHigh, EvqConstExpr, 1, 1, false))
70 {
71 constants[0].setIConst(i);
72 }
73
74 ~Constant()
75 {
76 }
77
78 private:
79 ConstantUnion constants[4];
80 };
81
82 Uniform::Uniform(GLenum type, GLenum precision, const std::string &name, int arraySize, int registerIndex, int blockId, const BlockMemberInfo& blockMemberInfo) :
83 type(type), precision(precision), name(name), arraySize(arraySize), registerIndex(registerIndex), blockId(blockId), blockInfo(blockMemberInfo)
84 {
85 }
86
87 UniformBlock::UniformBlock(const std::string& name, unsigned int dataSize, unsigned int arraySize,
88 TLayoutBlockStorage layout, bool isRowMajorLayout, int registerIndex, int blockId) :
89 name(name), dataSize(dataSize), arraySize(arraySize), layout(layout),
90 isRowMajorLayout(isRowMajorLayout), registerIndex(registerIndex), blockId(blockId)
91 {
92 }
93
94 BlockLayoutEncoder::BlockLayoutEncoder(bool rowMajor)
95 : mCurrentOffset(0), isRowMajor(rowMajor)
96 {
97 }
98
99 BlockMemberInfo BlockLayoutEncoder::encodeType(const TType &type)
100 {
101 int arrayStride;
102 int matrixStride;
103
104 getBlockLayoutInfo(type, type.getArraySize(), isRowMajor, &arrayStride, &matrixStride);
105
106 const BlockMemberInfo memberInfo(static_cast<int>(mCurrentOffset * BytesPerComponent),
107 static_cast<int>(arrayStride * BytesPerComponent),
108 static_cast<int>(matrixStride * BytesPerComponent),
109 (matrixStride > 0) && isRowMajor);
110
111 advanceOffset(type, type.getArraySize(), isRowMajor, arrayStride, matrixStride);
112
113 return memberInfo;
114 }
115
116 // static
117 size_t BlockLayoutEncoder::getBlockRegister(const BlockMemberInfo &info)
118 {
119 return (info.offset / BytesPerComponent) / ComponentsPerRegister;
120 }
121
122 // static
123 size_t BlockLayoutEncoder::getBlockRegisterElement(const BlockMemberInfo &info)
124 {
125 return (info.offset / BytesPerComponent) % ComponentsPerRegister;
126 }
127
128 void BlockLayoutEncoder::nextRegister()
129 {
130 mCurrentOffset = sw::align(mCurrentOffset, ComponentsPerRegister);
131 }
132
133 Std140BlockEncoder::Std140BlockEncoder(bool rowMajor) : BlockLayoutEncoder(rowMajor)
134 {
135 }
136
137 void Std140BlockEncoder::enterAggregateType()
138 {
139 nextRegister();
140 }
141
142 void Std140BlockEncoder::exitAggregateType()
143 {
144 nextRegister();
145 }
146
147 void Std140BlockEncoder::getBlockLayoutInfo(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int *arrayStrideOut, int *matrixStrideOut)
148 {
149 size_t baseAlignment = 0;
150 int matrixStride = 0;
151 int arrayStride = 0;
152
153 if(type.isMatrix())
154 {
155 baseAlignment = ComponentsPerRegister;
156 matrixStride = ComponentsPerRegister;
157
158 if(arraySize > 0)
159 {
160 const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize();
161 arrayStride = ComponentsPerRegister * numRegisters;
162 }
163 }
164 else if(arraySize > 0)
165 {
166 baseAlignment = ComponentsPerRegister;
167 arrayStride = ComponentsPerRegister;
168 }
169 else
170 {
171 const size_t numComponents = type.getElementSize();
172 baseAlignment = (numComponents == 3 ? 4u : numComponents);
173 }
174
175 mCurrentOffset = sw::align(mCurrentOffset, baseAlignment);
176
177 *matrixStrideOut = matrixStride;
178 *arrayStrideOut = arrayStride;
179 }
180
181 void Std140BlockEncoder::advanceOffset(const TType &type, unsigned int arraySize, bool isRowMajorMatrix, int arrayStride, int matrixStride)
182 {
183 if(arraySize > 0)
184 {
185 mCurrentOffset += arrayStride * arraySize;
186 }
187 else if(type.isMatrix())
188 {
189 ASSERT(matrixStride == ComponentsPerRegister);
190 const int numRegisters = isRowMajorMatrix ? type.getSecondarySize() : type.getNominalSize();
191 mCurrentOffset += ComponentsPerRegister * numRegisters;
192 }
193 else
194 {
195 mCurrentOffset += type.getElementSize();
196 }
197 }
198
199 Attribute::Attribute()
200 {
201 type = GL_NONE;
202 arraySize = 0;
203 registerIndex = 0;
204 }
205
206 Attribute::Attribute(GLenum type, const std::string &name, int arraySize, int location, int registerIndex)
207 {
208 this->type = type;
209 this->name = name;
210 this->arraySize = arraySize;
211 this->location = location;
212 this->registerIndex = registerIndex;
213 }
214
215 sw::PixelShader *Shader::getPixelShader() const
216 {
217 return 0;
218 }
219
220 sw::VertexShader *Shader::getVertexShader() const
221 {
222 return 0;
223 }
224
225 OutputASM::TextureFunction::TextureFunction(const TString& nodeName) : method(IMPLICIT), proj(false), offset(false)
226 {
227 TString name = TFunction::unmangleName(nodeName);
228
229 if(name == "texture2D" || name == "textureCube" || name == "texture" || name == "texture3D")
230 {
231 method = IMPLICIT;
232 }
233 else if(name == "texture2DProj" || name == "textureProj")
234 {
235 method = IMPLICIT;
236 proj = true;
237 }
238 else if(name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod")
239 {
240 method = LOD;
241 }
242 else if(name == "texture2DProjLod" || name == "textureProjLod")
243 {
244 method = LOD;
245 proj = true;
246 }
247 else if(name == "textureSize")
248 {
249 method = SIZE;
250 }
251 else if(name == "textureOffset")
252 {
253 method = IMPLICIT;
254 offset = true;
255 }
256 else if(name == "textureProjOffset")
257 {
258 method = IMPLICIT;
259 offset = true;
260 proj = true;
261 }
262 else if(name == "textureLodOffset")
263 {
264 method = LOD;
265 offset = true;
266 }
267 else if(name == "textureProjLodOffset")
268 {
269 method = LOD;
270 proj = true;
271 offset = true;
272 }
273 else if(name == "texelFetch")
274 {
275 method = FETCH;
276 }
277 else if(name == "texelFetchOffset")
278 {
279 method = FETCH;
280 offset = true;
281 }
282 else if(name == "textureGrad")
283 {
284 method = GRAD;
285 }
286 else if(name == "textureGradOffset")
287 {
288 method = GRAD;
289 offset = true;
290 }
291 else if(name == "textureProjGrad")
292 {
293 method = GRAD;
294 proj = true;
295 }
296 else if(name == "textureProjGradOffset")
297 {
298 method = GRAD;
299 proj = true;
300 offset = true;
301 }
302 else UNREACHABLE(0);
303 }
304
305 OutputASM::OutputASM(TParseContext &context, Shader *shaderObject) : TIntermTraverser(true, true, true), shaderObject(shaderObject), mContext(context)
306 {
307 shader = 0;
308 pixelShader = 0;
309 vertexShader = 0;
310
311 if(shaderObject)
312 {
313 shader = shaderObject->getShader();
314 pixelShader = shaderObject->getPixelShader();
315 vertexShader = shaderObject->getVertexShader();
316 }
317
318 functionArray.push_back(Function(0, "main(", 0, 0));
319 currentFunction = 0;
320 outputQualifier = EvqOutput; // Set outputQualifier to any value other than EvqFragColor or EvqFragData
321 }
322
323 OutputASM::~OutputASM()
324 {
325 }
326
327 void OutputASM::output()
328 {
329 if(shader)
330 {
331 emitShader(GLOBAL);
332
333 if(functionArray.size() > 1) // Only call main() when there are other functions
334 {
335 Instruction *callMain = emit(sw::Shader::OPCODE_CALL);
336 callMain->dst.type = sw::Shader::PARAMETER_LABEL;
337 callMain->dst.index = 0; // main()
338
339 emit(sw::Shader::OPCODE_RET);
340 }
341
342 emitShader(FUNCTION);
343 }
344 }
345
346 void OutputASM::emitShader(Scope scope)
347 {
348 emitScope = scope;
349 currentScope = GLOBAL;
350 mContext.getTreeRoot()->traverse(this);
351 }
352
353 void OutputASM::freeTemporary(Temporary *temporary)
354 {
355 free(temporaries, temporary);
356 }
357
358 sw::Shader::Opcode OutputASM::getOpcode(sw::Shader::Opcode op, TIntermTyped *in) const
359 {
360 TBasicType baseType = in->getType().getBasicType();
361
362 switch(op)
363 {
364 case sw::Shader::OPCODE_NEG:
365 switch(baseType)
366 {
367 case EbtInt:
368 case EbtUInt:
369 return sw::Shader::OPCODE_INEG;
370 case EbtFloat:
371 default:
372 return op;
373 }
374 case sw::Shader::OPCODE_ABS:
375 switch(baseType)
376 {
377 case EbtInt:
378 return sw::Shader::OPCODE_IABS;
379 case EbtFloat:
380 default:
381 return op;
382 }
383 case sw::Shader::OPCODE_SGN:
384 switch(baseType)
385 {
386 case EbtInt:
387 return sw::Shader::OPCODE_ISGN;
388 case EbtFloat:
389 default:
390 return op;
391 }
392 case sw::Shader::OPCODE_ADD:
393 switch(baseType)
394 {
395 case EbtInt:
396 case EbtUInt:
397 return sw::Shader::OPCODE_IADD;
398 case EbtFloat:
399 default:
400 return op;
401 }
402 case sw::Shader::OPCODE_SUB:
403 switch(baseType)
404 {
405 case EbtInt:
406 case EbtUInt:
407 return sw::Shader::OPCODE_ISUB;
408 case EbtFloat:
409 default:
410 return op;
411 }
412 case sw::Shader::OPCODE_MUL:
413 switch(baseType)
414 {
415 case EbtInt:
416 case EbtUInt:
417 return sw::Shader::OPCODE_IMUL;
418 case EbtFloat:
419 default:
420 return op;
421 }
422 case sw::Shader::OPCODE_DIV:
423 switch(baseType)
424 {
425 case EbtInt:
426 return sw::Shader::OPCODE_IDIV;
427 case EbtUInt:
428 return sw::Shader::OPCODE_UDIV;
429 case EbtFloat:
430 default:
431 return op;
432 }
433 case sw::Shader::OPCODE_IMOD:
434 return baseType == EbtUInt ? sw::Shader::OPCODE_UMOD : op;
435 case sw::Shader::OPCODE_ISHR:
436 return baseType == EbtUInt ? sw::Shader::OPCODE_USHR : op;
437 case sw::Shader::OPCODE_MIN:
438 switch(baseType)
439 {
440 case EbtInt:
441 return sw::Shader::OPCODE_IMIN;
442 case EbtUInt:
443 return sw::Shader::OPCODE_UMIN;
444 case EbtFloat:
445 default:
446 return op;
447 }
448 case sw::Shader::OPCODE_MAX:
449 switch(baseType)
450 {
451 case EbtInt:
452 return sw::Shader::OPCODE_IMAX;
453 case EbtUInt:
454 return sw::Shader::OPCODE_UMAX;
455 case EbtFloat:
456 default:
457 return op;
458 }
459 default:
460 return op;
461 }
462 }
463
464 void OutputASM::visitSymbol(TIntermSymbol *symbol)
465 {
466 // Vertex varyings don't have to be actively used to successfully link
467 // against pixel shaders that use them. So make sure they're declared.
468 if(symbol->getQualifier() == EvqVaryingOut || symbol->getQualifier() == EvqInvariantVaryingOut || symbol->getQualifier() == EvqVertexOut)
469 {
470 if(symbol->getBasicType() != EbtInvariant) // Typeless declarations are not new varyings
471 {
472 declareVarying(symbol, -1);
473 }
474 }
475
476 TInterfaceBlock* block = symbol->getType().getInterfaceBlock();
477 // OpenGL ES 3.0.4 spec, section 2.12.6 Uniform Variables:
478 // "All members of a named uniform block declared with a shared or std140 layout qualifier
479 // are considered active, even if they are not referenced in any shader in the program.
480 // The uniform block itself is also considered active, even if no member of the block is referenced."
481 if(block && ((block->blockStorage() == EbsShared) || (block->blockStorage() == EbsStd140)))
482 {
483 uniformRegister(symbol);
484 }
485 }
486
487 bool OutputASM::visitBinary(Visit visit, TIntermBinary *node)
488 {
489 if(currentScope != emitScope)
490 {
491 return false;
492 }
493
494 TIntermTyped *result = node;
495 TIntermTyped *left = node->getLeft();
496 TIntermTyped *right = node->getRight();
497 const TType &leftType = left->getType();
498 const TType &rightType = right->getType();
Nicolas Capens0bac2852016-05-07 06:09:58 -0400499
500 if(isSamplerRegister(result))
501 {
502 return false; // Don't traverse, the register index is determined statically
503 }
504
505 switch(node->getOp())
506 {
507 case EOpAssign:
508 if(visit == PostVisit)
509 {
510 assignLvalue(left, right);
511 copy(result, right);
512 }
513 break;
514 case EOpInitialize:
515 if(visit == PostVisit)
516 {
517 copy(left, right);
518 }
519 break;
520 case EOpMatrixTimesScalarAssign:
521 if(visit == PostVisit)
522 {
523 for(int i = 0; i < leftType.getNominalSize(); i++)
524 {
525 emit(sw::Shader::OPCODE_MUL, result, i, left, i, right);
526 }
527
528 assignLvalue(left, result);
529 }
530 break;
531 case EOpVectorTimesMatrixAssign:
532 if(visit == PostVisit)
533 {
534 int size = leftType.getNominalSize();
535
536 for(int i = 0; i < size; i++)
537 {
538 Instruction *dot = emit(sw::Shader::OPCODE_DP(size), result, 0, left, 0, right, i);
539 dot->dst.mask = 1 << i;
540 }
541
542 assignLvalue(left, result);
543 }
544 break;
545 case EOpMatrixTimesMatrixAssign:
546 if(visit == PostVisit)
547 {
548 int dim = leftType.getNominalSize();
549
550 for(int i = 0; i < dim; i++)
551 {
552 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
553 mul->src[1].swizzle = 0x00;
554
555 for(int j = 1; j < dim; j++)
556 {
557 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i);
558 mad->src[1].swizzle = j * 0x55;
559 }
560 }
561
562 assignLvalue(left, result);
563 }
564 break;
565 case EOpIndexDirect:
566 if(visit == PostVisit)
567 {
568 int index = right->getAsConstantUnion()->getIConst(0);
569
570 if(result->isMatrix() || result->isStruct() || result->isInterfaceBlock())
571 {
572 ASSERT(left->isArray());
573 copy(result, left, index * left->elementRegisterCount());
574 }
575 else if(result->isRegister())
576 {
577 int srcIndex = 0;
578 if(left->isRegister())
579 {
580 srcIndex = 0;
581 }
582 else if(left->isArray())
583 {
584 srcIndex = index * left->elementRegisterCount();
585 }
586 else if(left->isMatrix())
587 {
588 ASSERT(index < left->getNominalSize()); // FIXME: Report semantic error
589 srcIndex = index;
590 }
591 else UNREACHABLE(0);
592
593 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, 0, left, srcIndex);
594
595 if(left->isRegister())
596 {
597 mov->src[0].swizzle = index;
598 }
599 }
600 else UNREACHABLE(0);
601 }
602 break;
603 case EOpIndexIndirect:
604 if(visit == PostVisit)
605 {
606 if(left->isArray() || left->isMatrix())
607 {
608 for(int index = 0; index < result->totalRegisterCount(); index++)
609 {
610 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, index, left, index);
611 mov->dst.mask = writeMask(result, index);
612
613 if(left->totalRegisterCount() > 1)
614 {
615 sw::Shader::SourceParameter relativeRegister;
616 argument(relativeRegister, right);
617
618 mov->src[0].rel.type = relativeRegister.type;
619 mov->src[0].rel.index = relativeRegister.index;
620 mov->src[0].rel.scale = result->totalRegisterCount();
621 mov->src[0].rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
622 }
623 }
624 }
625 else if(left->isRegister())
626 {
627 emit(sw::Shader::OPCODE_EXTRACT, result, left, right);
628 }
629 else UNREACHABLE(0);
630 }
631 break;
632 case EOpIndexDirectStruct:
633 case EOpIndexDirectInterfaceBlock:
634 if(visit == PostVisit)
635 {
636 ASSERT(leftType.isStruct() || (leftType.isInterfaceBlock()));
637
638 const TFieldList& fields = (node->getOp() == EOpIndexDirectStruct) ?
639 leftType.getStruct()->fields() :
640 leftType.getInterfaceBlock()->fields();
641 int index = right->getAsConstantUnion()->getIConst(0);
642 int fieldOffset = 0;
643
644 for(int i = 0; i < index; i++)
645 {
646 fieldOffset += fields[i]->type()->totalRegisterCount();
647 }
648
649 copy(result, left, fieldOffset);
650 }
651 break;
652 case EOpVectorSwizzle:
653 if(visit == PostVisit)
654 {
655 int swizzle = 0;
656 TIntermAggregate *components = right->getAsAggregate();
657
658 if(components)
659 {
660 TIntermSequence &sequence = components->getSequence();
661 int component = 0;
662
663 for(TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
664 {
665 TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
666
667 if(element)
668 {
669 int i = element->getUnionArrayPointer()[0].getIConst();
670 swizzle |= i << (component * 2);
671 component++;
672 }
673 else UNREACHABLE(0);
674 }
675 }
676 else UNREACHABLE(0);
677
678 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, left);
679 mov->src[0].swizzle = swizzle;
680 }
681 break;
682 case EOpAddAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, left, right); break;
683 case EOpAdd: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ADD, result), result, left, right); break;
684 case EOpSubAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, left, right); break;
685 case EOpSub: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_SUB, result), result, left, right); break;
686 case EOpMulAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, left, right); break;
687 case EOpMul: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_MUL, result), result, left, right); break;
688 case EOpDivAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, left, right); break;
689 case EOpDiv: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_DIV, result), result, left, right); break;
690 case EOpIModAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, left, right); break;
691 case EOpIMod: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_IMOD, result), result, left, right); break;
692 case EOpBitShiftLeftAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_SHL, result, left, left, right); break;
693 case EOpBitShiftLeft: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_SHL, result, left, right); break;
694 case EOpBitShiftRightAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, left, right); break;
695 case EOpBitShiftRight: if(visit == PostVisit) emitBinary(getOpcode(sw::Shader::OPCODE_ISHR, result), result, left, right); break;
696 case EOpBitwiseAndAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_AND, result, left, left, right); break;
697 case EOpBitwiseAnd: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_AND, result, left, right); break;
698 case EOpBitwiseXorAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_XOR, result, left, left, right); break;
699 case EOpBitwiseXor: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_XOR, result, left, right); break;
700 case EOpBitwiseOrAssign: if(visit == PostVisit) emitAssign(sw::Shader::OPCODE_OR, result, left, left, right); break;
701 case EOpBitwiseOr: if(visit == PostVisit) emitBinary(sw::Shader::OPCODE_OR, result, left, right); break;
702 case EOpEqual:
703 if(visit == PostVisit)
704 {
705 emitBinary(sw::Shader::OPCODE_EQ, result, left, right);
706
707 for(int index = 1; index < left->totalRegisterCount(); index++)
708 {
709 Temporary equal(this);
710 emit(sw::Shader::OPCODE_EQ, &equal, 0, left, index, right, index);
711 emit(sw::Shader::OPCODE_AND, result, result, &equal);
712 }
713 }
714 break;
715 case EOpNotEqual:
716 if(visit == PostVisit)
717 {
718 emitBinary(sw::Shader::OPCODE_NE, result, left, right);
719
720 for(int index = 1; index < left->totalRegisterCount(); index++)
721 {
722 Temporary notEqual(this);
723 emit(sw::Shader::OPCODE_NE, &notEqual, 0, left, index, right, index);
724 emit(sw::Shader::OPCODE_OR, result, result, &notEqual);
725 }
726 }
727 break;
728 case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, left, right); break;
729 case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, left, right); break;
730 case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, left, right); break;
731 case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, left, right); break;
732 case EOpVectorTimesScalarAssign: if(visit == PostVisit) emitAssign(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, left, right); break;
733 case EOpVectorTimesScalar: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MUL, left), result, left, right); break;
734 case EOpMatrixTimesScalar:
735 if(visit == PostVisit)
736 {
737 if(left->isMatrix())
738 {
739 for(int i = 0; i < leftType.getNominalSize(); i++)
740 {
741 emit(sw::Shader::OPCODE_MUL, result, i, left, i, right, 0);
742 }
743 }
744 else if(right->isMatrix())
745 {
746 for(int i = 0; i < rightType.getNominalSize(); i++)
747 {
748 emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
749 }
750 }
751 else UNREACHABLE(0);
752 }
753 break;
754 case EOpVectorTimesMatrix:
755 if(visit == PostVisit)
756 {
757 sw::Shader::Opcode dpOpcode = sw::Shader::OPCODE_DP(leftType.getNominalSize());
758
759 int size = rightType.getNominalSize();
760 for(int i = 0; i < size; i++)
761 {
762 Instruction *dot = emit(dpOpcode, result, 0, left, 0, right, i);
763 dot->dst.mask = 1 << i;
764 }
765 }
766 break;
767 case EOpMatrixTimesVector:
768 if(visit == PostVisit)
769 {
770 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, left, right);
771 mul->src[1].swizzle = 0x00;
772
773 int size = rightType.getNominalSize();
774 for(int i = 1; i < size; i++)
775 {
776 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, 0, left, i, right, 0, result);
777 mad->src[1].swizzle = i * 0x55;
778 }
779 }
780 break;
781 case EOpMatrixTimesMatrix:
782 if(visit == PostVisit)
783 {
784 int dim = leftType.getNominalSize();
785
786 int size = rightType.getNominalSize();
787 for(int i = 0; i < size; i++)
788 {
789 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, left, 0, right, i);
790 mul->src[1].swizzle = 0x00;
791
792 for(int j = 1; j < dim; j++)
793 {
794 Instruction *mad = emit(sw::Shader::OPCODE_MAD, result, i, left, j, right, i, result, i);
795 mad->src[1].swizzle = j * 0x55;
796 }
797 }
798 }
799 break;
800 case EOpLogicalOr:
801 if(trivial(right, 6))
802 {
803 if(visit == PostVisit)
804 {
805 emit(sw::Shader::OPCODE_OR, result, left, right);
806 }
807 }
808 else // Short-circuit evaluation
809 {
810 if(visit == InVisit)
811 {
812 emit(sw::Shader::OPCODE_MOV, result, left);
813 Instruction *ifnot = emit(sw::Shader::OPCODE_IF, 0, result);
814 ifnot->src[0].modifier = sw::Shader::MODIFIER_NOT;
815 }
816 else if(visit == PostVisit)
817 {
818 emit(sw::Shader::OPCODE_MOV, result, right);
819 emit(sw::Shader::OPCODE_ENDIF);
820 }
821 }
822 break;
823 case EOpLogicalXor: if(visit == PostVisit) emit(sw::Shader::OPCODE_XOR, result, left, right); break;
824 case EOpLogicalAnd:
825 if(trivial(right, 6))
826 {
827 if(visit == PostVisit)
828 {
829 emit(sw::Shader::OPCODE_AND, result, left, right);
830 }
831 }
832 else // Short-circuit evaluation
833 {
834 if(visit == InVisit)
835 {
836 emit(sw::Shader::OPCODE_MOV, result, left);
837 emit(sw::Shader::OPCODE_IF, 0, result);
838 }
839 else if(visit == PostVisit)
840 {
841 emit(sw::Shader::OPCODE_MOV, result, right);
842 emit(sw::Shader::OPCODE_ENDIF);
843 }
844 }
845 break;
846 default: UNREACHABLE(node->getOp());
847 }
848
849 return true;
850 }
851
852 void OutputASM::emitDeterminant(TIntermTyped *result, TIntermTyped *arg, int size, int col, int row, int outCol, int outRow)
853 {
854 switch(size)
855 {
856 case 1: // Used for cofactor computation only
857 {
858 // For a 2x2 matrix, the cofactor is simply a transposed move or negate
859 bool isMov = (row == col);
860 sw::Shader::Opcode op = isMov ? sw::Shader::OPCODE_MOV : sw::Shader::OPCODE_NEG;
861 Instruction *mov = emit(op, result, outCol, arg, isMov ? 1 - row : row);
862 mov->src[0].swizzle = 0x55 * (isMov ? 1 - col : col);
863 mov->dst.mask = 1 << outRow;
864 }
865 break;
866 case 2:
867 {
868 static const unsigned int swizzle[3] = { 0x99, 0x88, 0x44 }; // xy?? : yzyz, xzxz, xyxy
869
870 bool isCofactor = (col >= 0) && (row >= 0);
871 int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
872 int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
873 bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
874
875 Instruction *det = emit(sw::Shader::OPCODE_DET2, result, outCol, arg, negate ? col1 : col0, arg, negate ? col0 : col1);
876 det->src[0].swizzle = det->src[1].swizzle = swizzle[isCofactor ? row : 2];
877 det->dst.mask = 1 << outRow;
878 }
879 break;
880 case 3:
881 {
882 static const unsigned int swizzle[4] = { 0xF9, 0xF8, 0xF4, 0xE4 }; // xyz? : yzww, xzww, xyww, xyzw
883
884 bool isCofactor = (col >= 0) && (row >= 0);
885 int col0 = (isCofactor && (col <= 0)) ? 1 : 0;
886 int col1 = (isCofactor && (col <= 1)) ? 2 : 1;
887 int col2 = (isCofactor && (col <= 2)) ? 3 : 2;
888 bool negate = isCofactor && ((col & 0x01) ^ (row & 0x01));
889
890 Instruction *det = emit(sw::Shader::OPCODE_DET3, result, outCol, arg, col0, arg, negate ? col2 : col1, arg, negate ? col1 : col2);
891 det->src[0].swizzle = det->src[1].swizzle = det->src[2].swizzle = swizzle[isCofactor ? row : 3];
892 det->dst.mask = 1 << outRow;
893 }
894 break;
895 case 4:
896 {
897 Instruction *det = emit(sw::Shader::OPCODE_DET4, result, outCol, arg, 0, arg, 1, arg, 2, arg, 3);
898 det->dst.mask = 1 << outRow;
899 }
900 break;
901 default:
902 UNREACHABLE(size);
903 break;
904 }
905 }
906
907 bool OutputASM::visitUnary(Visit visit, TIntermUnary *node)
908 {
909 if(currentScope != emitScope)
910 {
911 return false;
912 }
913
914 TIntermTyped *result = node;
915 TIntermTyped *arg = node->getOperand();
916 TBasicType basicType = arg->getType().getBasicType();
917
918 union
919 {
920 float f;
921 int i;
922 } one_value;
923
924 if(basicType == EbtInt || basicType == EbtUInt)
925 {
926 one_value.i = 1;
927 }
928 else
929 {
930 one_value.f = 1.0f;
931 }
932
933 Constant one(one_value.f, one_value.f, one_value.f, one_value.f);
934 Constant rad(1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f, 1.74532925e-2f);
935 Constant deg(5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f, 5.72957795e+1f);
936
937 switch(node->getOp())
938 {
939 case EOpNegative:
940 if(visit == PostVisit)
941 {
942 sw::Shader::Opcode negOpcode = getOpcode(sw::Shader::OPCODE_NEG, arg);
943 for(int index = 0; index < arg->totalRegisterCount(); index++)
944 {
945 emit(negOpcode, result, index, arg, index);
946 }
947 }
948 break;
949 case EOpVectorLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
950 case EOpLogicalNot: if(visit == PostVisit) emit(sw::Shader::OPCODE_NOT, result, arg); break;
951 case EOpPostIncrement:
952 if(visit == PostVisit)
953 {
954 copy(result, arg);
955
956 sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
957 for(int index = 0; index < arg->totalRegisterCount(); index++)
958 {
959 emit(addOpcode, arg, index, arg, index, &one);
960 }
961
962 assignLvalue(arg, arg);
963 }
964 break;
965 case EOpPostDecrement:
966 if(visit == PostVisit)
967 {
968 copy(result, arg);
969
970 sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
971 for(int index = 0; index < arg->totalRegisterCount(); index++)
972 {
973 emit(subOpcode, arg, index, arg, index, &one);
974 }
975
976 assignLvalue(arg, arg);
977 }
978 break;
979 case EOpPreIncrement:
980 if(visit == PostVisit)
981 {
982 sw::Shader::Opcode addOpcode = getOpcode(sw::Shader::OPCODE_ADD, arg);
983 for(int index = 0; index < arg->totalRegisterCount(); index++)
984 {
985 emit(addOpcode, result, index, arg, index, &one);
986 }
987
988 assignLvalue(arg, result);
989 }
990 break;
991 case EOpPreDecrement:
992 if(visit == PostVisit)
993 {
994 sw::Shader::Opcode subOpcode = getOpcode(sw::Shader::OPCODE_SUB, arg);
995 for(int index = 0; index < arg->totalRegisterCount(); index++)
996 {
997 emit(subOpcode, result, index, arg, index, &one);
998 }
999
1000 assignLvalue(arg, result);
1001 }
1002 break;
1003 case EOpRadians: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &rad); break;
1004 case EOpDegrees: if(visit == PostVisit) emit(sw::Shader::OPCODE_MUL, result, arg, &deg); break;
1005 case EOpSin: if(visit == PostVisit) emit(sw::Shader::OPCODE_SIN, result, arg); break;
1006 case EOpCos: if(visit == PostVisit) emit(sw::Shader::OPCODE_COS, result, arg); break;
1007 case EOpTan: if(visit == PostVisit) emit(sw::Shader::OPCODE_TAN, result, arg); break;
1008 case EOpAsin: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASIN, result, arg); break;
1009 case EOpAcos: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOS, result, arg); break;
1010 case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN, result, arg); break;
1011 case EOpSinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_SINH, result, arg); break;
1012 case EOpCosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_COSH, result, arg); break;
1013 case EOpTanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_TANH, result, arg); break;
1014 case EOpAsinh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ASINH, result, arg); break;
1015 case EOpAcosh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ACOSH, result, arg); break;
1016 case EOpAtanh: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATANH, result, arg); break;
1017 case EOpExp: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP, result, arg); break;
1018 case EOpLog: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG, result, arg); break;
1019 case EOpExp2: if(visit == PostVisit) emit(sw::Shader::OPCODE_EXP2, result, arg); break;
1020 case EOpLog2: if(visit == PostVisit) emit(sw::Shader::OPCODE_LOG2, result, arg); break;
1021 case EOpSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_SQRT, result, arg); break;
1022 case EOpInverseSqrt: if(visit == PostVisit) emit(sw::Shader::OPCODE_RSQ, result, arg); break;
1023 case EOpAbs: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_ABS, result), result, arg); break;
1024 case EOpSign: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_SGN, result), result, arg); break;
1025 case EOpFloor: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOOR, result, arg); break;
1026 case EOpTrunc: if(visit == PostVisit) emit(sw::Shader::OPCODE_TRUNC, result, arg); break;
1027 case EOpRound: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUND, result, arg); break;
1028 case EOpRoundEven: if(visit == PostVisit) emit(sw::Shader::OPCODE_ROUNDEVEN, result, arg); break;
1029 case EOpCeil: if(visit == PostVisit) emit(sw::Shader::OPCODE_CEIL, result, arg, result); break;
1030 case EOpFract: if(visit == PostVisit) emit(sw::Shader::OPCODE_FRC, result, arg); break;
1031 case EOpIsNan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISNAN, result, arg); break;
1032 case EOpIsInf: if(visit == PostVisit) emit(sw::Shader::OPCODE_ISINF, result, arg); break;
1033 case EOpLength: if(visit == PostVisit) emit(sw::Shader::OPCODE_LEN(dim(arg)), result, arg); break;
1034 case EOpNormalize: if(visit == PostVisit) emit(sw::Shader::OPCODE_NRM(dim(arg)), result, arg); break;
1035 case EOpDFdx: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDX, result, arg); break;
1036 case EOpDFdy: if(visit == PostVisit) emit(sw::Shader::OPCODE_DFDY, result, arg); break;
1037 case EOpFwidth: if(visit == PostVisit) emit(sw::Shader::OPCODE_FWIDTH, result, arg); break;
1038 case EOpAny: if(visit == PostVisit) emit(sw::Shader::OPCODE_ANY, result, arg); break;
1039 case EOpAll: if(visit == PostVisit) emit(sw::Shader::OPCODE_ALL, result, arg); break;
1040 case EOpFloatBitsToInt: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOINT, result, arg); break;
1041 case EOpFloatBitsToUint: if(visit == PostVisit) emit(sw::Shader::OPCODE_FLOATBITSTOUINT, result, arg); break;
1042 case EOpIntBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_INTBITSTOFLOAT, result, arg); break;
1043 case EOpUintBitsToFloat: if(visit == PostVisit) emit(sw::Shader::OPCODE_UINTBITSTOFLOAT, result, arg); break;
1044 case EOpPackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKSNORM2x16, result, arg); break;
1045 case EOpPackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKUNORM2x16, result, arg); break;
1046 case EOpPackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_PACKHALF2x16, result, arg); break;
1047 case EOpUnpackSnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKSNORM2x16, result, arg); break;
1048 case EOpUnpackUnorm2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKUNORM2x16, result, arg); break;
1049 case EOpUnpackHalf2x16: if(visit == PostVisit) emit(sw::Shader::OPCODE_UNPACKHALF2x16, result, arg); break;
1050 case EOpTranspose:
1051 if(visit == PostVisit)
1052 {
1053 int numCols = arg->getNominalSize();
1054 int numRows = arg->getSecondarySize();
1055 for(int i = 0; i < numCols; ++i)
1056 {
1057 for(int j = 0; j < numRows; ++j)
1058 {
1059 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, j, arg, i);
1060 mov->src[0].swizzle = 0x55 * j;
1061 mov->dst.mask = 1 << i;
1062 }
1063 }
1064 }
1065 break;
1066 case EOpDeterminant:
1067 if(visit == PostVisit)
1068 {
1069 int size = arg->getNominalSize();
1070 ASSERT(size == arg->getSecondarySize());
1071
1072 emitDeterminant(result, arg, size);
1073 }
1074 break;
1075 case EOpInverse:
1076 if(visit == PostVisit)
1077 {
1078 int size = arg->getNominalSize();
1079 ASSERT(size == arg->getSecondarySize());
1080
1081 // Compute transposed matrix of cofactors
1082 for(int i = 0; i < size; ++i)
1083 {
1084 for(int j = 0; j < size; ++j)
1085 {
1086 // For a 2x2 matrix, the cofactor is simply a transposed move or negate
1087 // For a 3x3 or 4x4 matrix, the cofactor is a transposed determinant
1088 emitDeterminant(result, arg, size - 1, j, i, i, j);
1089 }
1090 }
1091
1092 // Compute 1 / determinant
1093 Temporary invDet(this);
1094 emitDeterminant(&invDet, arg, size);
1095 Constant one(1.0f, 1.0f, 1.0f, 1.0f);
1096 Instruction *div = emit(sw::Shader::OPCODE_DIV, &invDet, &one, &invDet);
1097 div->src[1].swizzle = 0x00; // xxxx
1098
1099 // Divide transposed matrix of cofactors by determinant
1100 for(int i = 0; i < size; ++i)
1101 {
1102 emit(sw::Shader::OPCODE_MUL, result, i, result, i, &invDet);
1103 }
1104 }
1105 break;
1106 default: UNREACHABLE(node->getOp());
1107 }
1108
1109 return true;
1110 }
1111
1112 bool OutputASM::visitAggregate(Visit visit, TIntermAggregate *node)
1113 {
1114 if(currentScope != emitScope && node->getOp() != EOpFunction && node->getOp() != EOpSequence)
1115 {
1116 return false;
1117 }
1118
1119 Constant zero(0.0f, 0.0f, 0.0f, 0.0f);
1120
1121 TIntermTyped *result = node;
1122 const TType &resultType = node->getType();
1123 TIntermSequence &arg = node->getSequence();
1124 size_t argumentCount = arg.size();
1125
1126 switch(node->getOp())
1127 {
1128 case EOpSequence: break;
1129 case EOpDeclaration: break;
1130 case EOpInvariantDeclaration: break;
1131 case EOpPrototype: break;
1132 case EOpComma:
1133 if(visit == PostVisit)
1134 {
1135 copy(result, arg[1]);
1136 }
1137 break;
1138 case EOpFunction:
1139 if(visit == PreVisit)
1140 {
1141 const TString &name = node->getName();
1142
1143 if(emitScope == FUNCTION)
1144 {
1145 if(functionArray.size() > 1) // No need for a label when there's only main()
1146 {
1147 Instruction *label = emit(sw::Shader::OPCODE_LABEL);
1148 label->dst.type = sw::Shader::PARAMETER_LABEL;
1149
1150 const Function *function = findFunction(name);
1151 ASSERT(function); // Should have been added during global pass
1152 label->dst.index = function->label;
1153 currentFunction = function->label;
1154 }
1155 }
1156 else if(emitScope == GLOBAL)
1157 {
1158 if(name != "main(")
1159 {
1160 TIntermSequence &arguments = node->getSequence()[0]->getAsAggregate()->getSequence();
1161 functionArray.push_back(Function(functionArray.size(), name, &arguments, node));
1162 }
1163 }
1164 else UNREACHABLE(emitScope);
1165
1166 currentScope = FUNCTION;
1167 }
1168 else if(visit == PostVisit)
1169 {
1170 if(emitScope == FUNCTION)
1171 {
1172 if(functionArray.size() > 1) // No need to return when there's only main()
1173 {
1174 emit(sw::Shader::OPCODE_RET);
1175 }
1176 }
1177
1178 currentScope = GLOBAL;
1179 }
1180 break;
1181 case EOpFunctionCall:
1182 if(visit == PostVisit)
1183 {
1184 if(node->isUserDefined())
1185 {
1186 const TString &name = node->getName();
1187 const Function *function = findFunction(name);
1188
1189 if(!function)
1190 {
1191 mContext.error(node->getLine(), "function definition not found", name.c_str());
1192 return false;
1193 }
1194
1195 TIntermSequence &arguments = *function->arg;
1196
1197 for(size_t i = 0; i < argumentCount; i++)
1198 {
1199 TIntermTyped *in = arguments[i]->getAsTyped();
1200
1201 if(in->getQualifier() == EvqIn ||
1202 in->getQualifier() == EvqInOut ||
1203 in->getQualifier() == EvqConstReadOnly)
1204 {
1205 copy(in, arg[i]);
1206 }
1207 }
1208
1209 Instruction *call = emit(sw::Shader::OPCODE_CALL);
1210 call->dst.type = sw::Shader::PARAMETER_LABEL;
1211 call->dst.index = function->label;
1212
1213 if(function->ret && function->ret->getType().getBasicType() != EbtVoid)
1214 {
1215 copy(result, function->ret);
1216 }
1217
1218 for(size_t i = 0; i < argumentCount; i++)
1219 {
1220 TIntermTyped *argument = arguments[i]->getAsTyped();
1221 TIntermTyped *out = arg[i]->getAsTyped();
1222
1223 if(argument->getQualifier() == EvqOut ||
1224 argument->getQualifier() == EvqInOut)
1225 {
1226 copy(out, argument);
1227 }
1228 }
1229 }
1230 else
1231 {
1232 const TextureFunction textureFunction(node->getName());
1233 TIntermTyped *t = arg[1]->getAsTyped();
1234
1235 Temporary coord(this);
1236
1237 if(textureFunction.proj)
1238 {
1239 TIntermConstantUnion* constant = arg[1]->getAsConstantUnion();
1240 if(constant)
1241 {
1242 float projFactor = 1.0f / constant->getFConst(t->getNominalSize() - 1);
1243 Constant projCoord(constant->getFConst(0) * projFactor,
1244 constant->getFConst(1) * projFactor,
1245 constant->getFConst(2) * projFactor,
1246 0.0f);
1247 emit(sw::Shader::OPCODE_MOV, &coord, &projCoord);
1248 }
1249 else
1250 {
1251 Instruction *rcp = emit(sw::Shader::OPCODE_RCPX, &coord, arg[1]);
1252 rcp->src[0].swizzle = 0x55 * (t->getNominalSize() - 1);
1253 rcp->dst.mask = 0x7;
1254
1255 Instruction *mul = emit(sw::Shader::OPCODE_MUL, &coord, arg[1], &coord);
1256 mul->dst.mask = 0x7;
1257 }
1258 }
1259 else
1260 {
1261 emit(sw::Shader::OPCODE_MOV, &coord, arg[1]);
1262 }
1263
1264 switch(textureFunction.method)
1265 {
1266 case TextureFunction::IMPLICIT:
1267 {
1268 TIntermNode* offset = textureFunction.offset ? arg[2] : 0;
1269
1270 if(argumentCount == 2 || (textureFunction.offset && argumentCount == 3))
1271 {
Alexis Hetu7208e932016-06-02 11:19:24 -04001272 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
1273 result, &coord, arg[0], offset);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001274 }
1275 else if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4)) // bias
1276 {
1277 Instruction *bias = emit(sw::Shader::OPCODE_MOV, &coord, arg[textureFunction.offset ? 3 : 2]);
1278 bias->dst.mask = 0x8;
1279
1280 Instruction *tex = emit(textureFunction.offset ? sw::Shader::OPCODE_TEXOFFSET : sw::Shader::OPCODE_TEX,
1281 result, &coord, arg[0], offset); // FIXME: Implement an efficient TEXLDB instruction
1282 tex->bias = true;
1283 }
1284 else UNREACHABLE(argumentCount);
1285 }
1286 break;
1287 case TextureFunction::LOD:
1288 {
1289 Instruction *lod = emit(sw::Shader::OPCODE_MOV, &coord, arg[2]);
1290 lod->dst.mask = 0x8;
1291
1292 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXLDLOFFSET : sw::Shader::OPCODE_TEXLDL,
1293 result, &coord, arg[0], textureFunction.offset ? arg[3] : nullptr);
1294 }
1295 break;
1296 case TextureFunction::FETCH:
1297 {
1298 if(argumentCount == 3 || (textureFunction.offset && argumentCount == 4))
1299 {
1300 TIntermNode *offset = textureFunction.offset ? arg[3] : nullptr;
1301
1302 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXELFETCHOFFSET : sw::Shader::OPCODE_TEXELFETCH,
1303 result, arg[1], arg[0], arg[2], offset);
1304 }
1305 else UNREACHABLE(argumentCount);
1306 }
1307 break;
1308 case TextureFunction::GRAD:
1309 {
1310 if(argumentCount == 4 || (textureFunction.offset && argumentCount == 5))
1311 {
1312 TIntermNode *offset = textureFunction.offset ? arg[4] : nullptr;
1313
1314 emit(textureFunction.offset ? sw::Shader::OPCODE_TEXGRADOFFSET : sw::Shader::OPCODE_TEXGRAD,
1315 result, &coord, arg[0], arg[2], arg[3], offset);
1316 }
1317 else UNREACHABLE(argumentCount);
1318 }
1319 break;
1320 case TextureFunction::SIZE:
1321 emit(sw::Shader::OPCODE_TEXSIZE, result, arg[1], arg[0]);
1322 break;
1323 default:
1324 UNREACHABLE(textureFunction.method);
1325 }
1326 }
1327 }
1328 break;
1329 case EOpParameters:
1330 break;
1331 case EOpConstructFloat:
1332 case EOpConstructVec2:
1333 case EOpConstructVec3:
1334 case EOpConstructVec4:
1335 case EOpConstructBool:
1336 case EOpConstructBVec2:
1337 case EOpConstructBVec3:
1338 case EOpConstructBVec4:
1339 case EOpConstructInt:
1340 case EOpConstructIVec2:
1341 case EOpConstructIVec3:
1342 case EOpConstructIVec4:
1343 case EOpConstructUInt:
1344 case EOpConstructUVec2:
1345 case EOpConstructUVec3:
1346 case EOpConstructUVec4:
1347 if(visit == PostVisit)
1348 {
1349 int component = 0;
1350
1351 for(size_t i = 0; i < argumentCount; i++)
1352 {
1353 TIntermTyped *argi = arg[i]->getAsTyped();
1354 int size = argi->getNominalSize();
1355
1356 if(!argi->isMatrix())
1357 {
1358 Instruction *mov = emitCast(result, argi);
1359 mov->dst.mask = (0xF << component) & 0xF;
1360 mov->src[0].swizzle = readSwizzle(argi, size) << (component * 2);
1361
1362 component += size;
1363 }
1364 else // Matrix
1365 {
1366 int column = 0;
1367
1368 while(component < resultType.getNominalSize())
1369 {
1370 Instruction *mov = emitCast(result, 0, argi, column);
1371 mov->dst.mask = (0xF << component) & 0xF;
1372 mov->src[0].swizzle = readSwizzle(argi, size) << (component * 2);
1373
1374 column++;
1375 component += size;
1376 }
1377 }
1378 }
1379 }
1380 break;
1381 case EOpConstructMat2:
1382 case EOpConstructMat2x3:
1383 case EOpConstructMat2x4:
1384 case EOpConstructMat3x2:
1385 case EOpConstructMat3:
1386 case EOpConstructMat3x4:
1387 case EOpConstructMat4x2:
1388 case EOpConstructMat4x3:
1389 case EOpConstructMat4:
1390 if(visit == PostVisit)
1391 {
1392 TIntermTyped *arg0 = arg[0]->getAsTyped();
1393 const int outCols = result->getNominalSize();
1394 const int outRows = result->getSecondarySize();
1395
1396 if(arg0->isScalar() && arg.size() == 1) // Construct scale matrix
1397 {
1398 for(int i = 0; i < outCols; i++)
1399 {
Alexis Hetu7208e932016-06-02 11:19:24 -04001400 emit(sw::Shader::OPCODE_MOV, result, i, &zero);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001401 Instruction *mov = emitCast(result, i, arg0, 0);
1402 mov->dst.mask = 1 << i;
1403 ASSERT(mov->src[0].swizzle == 0x00);
1404 }
1405 }
1406 else if(arg0->isMatrix())
1407 {
1408 const int inCols = arg0->getNominalSize();
1409 const int inRows = arg0->getSecondarySize();
1410
1411 for(int i = 0; i < outCols; i++)
1412 {
1413 if(i >= inCols || outRows > inRows)
1414 {
1415 // Initialize to identity matrix
1416 Constant col((i == 0 ? 1.0f : 0.0f), (i == 1 ? 1.0f : 0.0f), (i == 2 ? 1.0f : 0.0f), (i == 3 ? 1.0f : 0.0f));
Alexis Hetu7208e932016-06-02 11:19:24 -04001417 emitCast(result, i, &col, 0);
Nicolas Capens0bac2852016-05-07 06:09:58 -04001418 }
1419
1420 if(i < inCols)
1421 {
1422 Instruction *mov = emitCast(result, i, arg0, i);
1423 mov->dst.mask = 0xF >> (4 - inRows);
1424 }
1425 }
1426 }
1427 else
1428 {
1429 int column = 0;
1430 int row = 0;
1431
1432 for(size_t i = 0; i < argumentCount; i++)
1433 {
1434 TIntermTyped *argi = arg[i]->getAsTyped();
1435 int size = argi->getNominalSize();
1436 int element = 0;
1437
1438 while(element < size)
1439 {
1440 Instruction *mov = emitCast(result, column, argi, 0);
1441 mov->dst.mask = (0xF << row) & 0xF;
1442 mov->src[0].swizzle = (readSwizzle(argi, size) << (row * 2)) + 0x55 * element;
1443
1444 int end = row + size - element;
1445 column = end >= outRows ? column + 1 : column;
1446 element = element + outRows - row;
1447 row = end >= outRows ? 0 : end;
1448 }
1449 }
1450 }
1451 }
1452 break;
1453 case EOpConstructStruct:
1454 if(visit == PostVisit)
1455 {
1456 int offset = 0;
1457 for(size_t i = 0; i < argumentCount; i++)
1458 {
1459 TIntermTyped *argi = arg[i]->getAsTyped();
1460 int size = argi->totalRegisterCount();
1461
1462 for(int index = 0; index < size; index++)
1463 {
1464 Instruction *mov = emit(sw::Shader::OPCODE_MOV, result, index + offset, argi, index);
1465 mov->dst.mask = writeMask(result, offset + index);
1466 }
1467
1468 offset += size;
1469 }
1470 }
1471 break;
1472 case EOpLessThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LT, result, arg[0], arg[1]); break;
1473 case EOpGreaterThan: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GT, result, arg[0], arg[1]); break;
1474 case EOpLessThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_LE, result, arg[0], arg[1]); break;
1475 case EOpGreaterThanEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_GE, result, arg[0], arg[1]); break;
1476 case EOpVectorEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_EQ, result, arg[0], arg[1]); break;
1477 case EOpVectorNotEqual: if(visit == PostVisit) emitCmp(sw::Shader::CONTROL_NE, result, arg[0], arg[1]); break;
1478 case EOpMod: if(visit == PostVisit) emit(sw::Shader::OPCODE_MOD, result, arg[0], arg[1]); break;
1479 case EOpModf:
1480 if(visit == PostVisit)
1481 {
1482 TIntermTyped* arg1 = arg[1]->getAsTyped();
1483 emit(sw::Shader::OPCODE_TRUNC, arg1, arg[0]);
1484 assignLvalue(arg1, arg1);
1485 emitBinary(sw::Shader::OPCODE_SUB, result, arg[0], arg1);
1486 }
1487 break;
1488 case EOpPow: if(visit == PostVisit) emit(sw::Shader::OPCODE_POW, result, arg[0], arg[1]); break;
1489 case EOpAtan: if(visit == PostVisit) emit(sw::Shader::OPCODE_ATAN2, result, arg[0], arg[1]); break;
1490 case EOpMin: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, arg[0], arg[1]); break;
1491 case EOpMax: if(visit == PostVisit) emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]); break;
1492 case EOpClamp:
1493 if(visit == PostVisit)
1494 {
1495 emit(getOpcode(sw::Shader::OPCODE_MAX, result), result, arg[0], arg[1]);
1496 emit(getOpcode(sw::Shader::OPCODE_MIN, result), result, result, arg[2]);
1497 }
1498 break;
1499 case EOpMix: if(visit == PostVisit) emit(sw::Shader::OPCODE_LRP, result, arg[2], arg[1], arg[0]); break;
1500 case EOpStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_STEP, result, arg[0], arg[1]); break;
1501 case EOpSmoothStep: if(visit == PostVisit) emit(sw::Shader::OPCODE_SMOOTH, result, arg[0], arg[1], arg[2]); break;
1502 case EOpDistance: if(visit == PostVisit) emit(sw::Shader::OPCODE_DIST(dim(arg[0])), result, arg[0], arg[1]); break;
1503 case EOpDot: if(visit == PostVisit) emit(sw::Shader::OPCODE_DP(dim(arg[0])), result, arg[0], arg[1]); break;
1504 case EOpCross: if(visit == PostVisit) emit(sw::Shader::OPCODE_CRS, result, arg[0], arg[1]); break;
1505 case EOpFaceForward: if(visit == PostVisit) emit(sw::Shader::OPCODE_FORWARD(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
1506 case EOpReflect: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFLECT(dim(arg[0])), result, arg[0], arg[1]); break;
1507 case EOpRefract: if(visit == PostVisit) emit(sw::Shader::OPCODE_REFRACT(dim(arg[0])), result, arg[0], arg[1], arg[2]); break;
1508 case EOpMul:
1509 if(visit == PostVisit)
1510 {
1511 TIntermTyped *arg0 = arg[0]->getAsTyped();
1512 TIntermTyped *arg1 = arg[1]->getAsTyped();
1513 ASSERT((arg0->getNominalSize() == arg1->getNominalSize()) && (arg0->getSecondarySize() == arg1->getSecondarySize()));
1514
1515 int size = arg0->getNominalSize();
1516 for(int i = 0; i < size; i++)
1517 {
1518 emit(sw::Shader::OPCODE_MUL, result, i, arg[0], i, arg[1], i);
1519 }
1520 }
1521 break;
1522 case EOpOuterProduct:
1523 if(visit == PostVisit)
1524 {
1525 for(int i = 0; i < dim(arg[1]); i++)
1526 {
1527 Instruction *mul = emit(sw::Shader::OPCODE_MUL, result, i, arg[0], 0, arg[1]);
1528 mul->src[1].swizzle = 0x55 * i;
1529 }
1530 }
1531 break;
1532 default: UNREACHABLE(node->getOp());
1533 }
1534
1535 return true;
1536 }
1537
1538 bool OutputASM::visitSelection(Visit visit, TIntermSelection *node)
1539 {
1540 if(currentScope != emitScope)
1541 {
1542 return false;
1543 }
1544
1545 TIntermTyped *condition = node->getCondition();
1546 TIntermNode *trueBlock = node->getTrueBlock();
1547 TIntermNode *falseBlock = node->getFalseBlock();
1548 TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
1549
1550 condition->traverse(this);
1551
1552 if(node->usesTernaryOperator())
1553 {
1554 if(constantCondition)
1555 {
1556 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
1557
1558 if(trueCondition)
1559 {
1560 trueBlock->traverse(this);
1561 copy(node, trueBlock);
1562 }
1563 else
1564 {
1565 falseBlock->traverse(this);
1566 copy(node, falseBlock);
1567 }
1568 }
1569 else if(trivial(node, 6)) // Fast to compute both potential results and no side effects
1570 {
1571 trueBlock->traverse(this);
1572 falseBlock->traverse(this);
1573 emit(sw::Shader::OPCODE_SELECT, node, condition, trueBlock, falseBlock);
1574 }
1575 else
1576 {
1577 emit(sw::Shader::OPCODE_IF, 0, condition);
1578
1579 if(trueBlock)
1580 {
1581 trueBlock->traverse(this);
1582 copy(node, trueBlock);
1583 }
1584
1585 if(falseBlock)
1586 {
1587 emit(sw::Shader::OPCODE_ELSE);
1588 falseBlock->traverse(this);
1589 copy(node, falseBlock);
1590 }
1591
1592 emit(sw::Shader::OPCODE_ENDIF);
1593 }
1594 }
1595 else // if/else statement
1596 {
1597 if(constantCondition)
1598 {
1599 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
1600
1601 if(trueCondition)
1602 {
1603 if(trueBlock)
1604 {
1605 trueBlock->traverse(this);
1606 }
1607 }
1608 else
1609 {
1610 if(falseBlock)
1611 {
1612 falseBlock->traverse(this);
1613 }
1614 }
1615 }
1616 else
1617 {
1618 emit(sw::Shader::OPCODE_IF, 0, condition);
1619
1620 if(trueBlock)
1621 {
1622 trueBlock->traverse(this);
1623 }
1624
1625 if(falseBlock)
1626 {
1627 emit(sw::Shader::OPCODE_ELSE);
1628 falseBlock->traverse(this);
1629 }
1630
1631 emit(sw::Shader::OPCODE_ENDIF);
1632 }
1633 }
1634
1635 return false;
1636 }
1637
1638 bool OutputASM::visitLoop(Visit visit, TIntermLoop *node)
1639 {
1640 if(currentScope != emitScope)
1641 {
1642 return false;
1643 }
1644
1645 unsigned int iterations = loopCount(node);
1646
1647 if(iterations == 0)
1648 {
1649 return false;
1650 }
1651
1652 bool unroll = (iterations <= 4);
1653
1654 if(unroll)
1655 {
1656 LoopUnrollable loopUnrollable;
1657 unroll = loopUnrollable.traverse(node);
1658 }
1659
1660 TIntermNode *init = node->getInit();
1661 TIntermTyped *condition = node->getCondition();
1662 TIntermTyped *expression = node->getExpression();
1663 TIntermNode *body = node->getBody();
1664 Constant True(true);
1665
1666 if(node->getType() == ELoopDoWhile)
1667 {
1668 Temporary iterate(this);
1669 emit(sw::Shader::OPCODE_MOV, &iterate, &True);
1670
1671 emit(sw::Shader::OPCODE_WHILE, 0, &iterate); // FIXME: Implement real do-while
1672
1673 if(body)
1674 {
1675 body->traverse(this);
1676 }
1677
1678 emit(sw::Shader::OPCODE_TEST);
1679
1680 condition->traverse(this);
1681 emit(sw::Shader::OPCODE_MOV, &iterate, condition);
1682
1683 emit(sw::Shader::OPCODE_ENDWHILE);
1684 }
1685 else
1686 {
1687 if(init)
1688 {
1689 init->traverse(this);
1690 }
1691
1692 if(unroll)
1693 {
1694 for(unsigned int i = 0; i < iterations; i++)
1695 {
1696 // condition->traverse(this); // Condition could contain statements, but not in an unrollable loop
1697
1698 if(body)
1699 {
1700 body->traverse(this);
1701 }
1702
1703 if(expression)
1704 {
1705 expression->traverse(this);
1706 }
1707 }
1708 }
1709 else
1710 {
1711 if(condition)
1712 {
1713 condition->traverse(this);
1714 }
1715 else
1716 {
1717 condition = &True;
1718 }
1719
1720 emit(sw::Shader::OPCODE_WHILE, 0, condition);
1721
1722 if(body)
1723 {
1724 body->traverse(this);
1725 }
1726
1727 emit(sw::Shader::OPCODE_TEST);
1728
1729 if(expression)
1730 {
1731 expression->traverse(this);
1732 }
1733
1734 if(condition)
1735 {
1736 condition->traverse(this);
1737 }
1738
1739 emit(sw::Shader::OPCODE_ENDWHILE);
1740 }
1741 }
1742
1743 return false;
1744 }
1745
1746 bool OutputASM::visitBranch(Visit visit, TIntermBranch *node)
1747 {
1748 if(currentScope != emitScope)
1749 {
1750 return false;
1751 }
1752
1753 switch(node->getFlowOp())
1754 {
1755 case EOpKill: if(visit == PostVisit) emit(sw::Shader::OPCODE_DISCARD); break;
1756 case EOpBreak: if(visit == PostVisit) emit(sw::Shader::OPCODE_BREAK); break;
1757 case EOpContinue: if(visit == PostVisit) emit(sw::Shader::OPCODE_CONTINUE); break;
1758 case EOpReturn:
1759 if(visit == PostVisit)
1760 {
1761 TIntermTyped *value = node->getExpression();
1762
1763 if(value)
1764 {
1765 copy(functionArray[currentFunction].ret, value);
1766 }
1767
1768 emit(sw::Shader::OPCODE_LEAVE);
1769 }
1770 break;
1771 default: UNREACHABLE(node->getFlowOp());
1772 }
1773
1774 return true;
1775 }
1776
Alexis Hetu9aa83a92016-05-02 17:34:46 -04001777 bool OutputASM::visitSwitch(Visit visit, TIntermSwitch *node)
1778 {
1779 if(currentScope != emitScope)
1780 {
1781 return false;
1782 }
1783
1784 TIntermTyped* switchValue = node->getInit();
1785 TIntermAggregate* opList = node->getStatementList();
1786
1787 if(!switchValue || !opList)
1788 {
1789 return false;
1790 }
1791
1792 switchValue->traverse(this);
1793
1794 emit(sw::Shader::OPCODE_SWITCH);
1795
1796 TIntermSequence& sequence = opList->getSequence();
1797 TIntermSequence::iterator it = sequence.begin();
1798 TIntermSequence::iterator defaultIt = sequence.end();
1799 int nbCases = 0;
1800 for(; it != sequence.end(); ++it)
1801 {
1802 TIntermCase* currentCase = (*it)->getAsCaseNode();
1803 if(currentCase)
1804 {
1805 TIntermSequence::iterator caseIt = it;
1806
1807 TIntermTyped* condition = currentCase->getCondition();
1808 if(condition) // non default case
1809 {
1810 if(nbCases != 0)
1811 {
1812 emit(sw::Shader::OPCODE_ELSE);
1813 }
1814
1815 condition->traverse(this);
1816 Temporary result(this);
1817 emitBinary(sw::Shader::OPCODE_EQ, &result, switchValue, condition);
1818 emit(sw::Shader::OPCODE_IF, 0, &result);
1819 nbCases++;
1820
1821 for(++caseIt; caseIt != sequence.end(); ++caseIt)
1822 {
1823 (*caseIt)->traverse(this);
1824 if((*caseIt)->getAsBranchNode()) // Kill, Break, Continue or Return
1825 {
1826 break;
1827 }
1828 }
1829 }
1830 else
1831 {
1832 defaultIt = it; // The default case might not be the last case, keep it for last
1833 }
1834 }
1835 }
1836
1837 // If there's a default case, traverse it here
1838 if(defaultIt != sequence.end())
1839 {
1840 emit(sw::Shader::OPCODE_ELSE);
1841 for(++defaultIt; defaultIt != sequence.end(); ++defaultIt)
1842 {
1843 (*defaultIt)->traverse(this);
1844 if((*defaultIt)->getAsBranchNode()) // Kill, Break, Continue or Return
1845 {
1846 break;
1847 }
1848 }
1849 }
1850
1851 for(int i = 0; i < nbCases; ++i)
1852 {
1853 emit(sw::Shader::OPCODE_ENDIF);
1854 }
1855
1856 emit(sw::Shader::OPCODE_ENDSWITCH);
1857
1858 return false;
1859 }
1860
Nicolas Capens0bac2852016-05-07 06:09:58 -04001861 Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2, TIntermNode *src3, TIntermNode *src4)
1862 {
1863 return emit(op, dst, 0, src0, 0, src1, 0, src2, 0, src3, 0, src4, 0);
1864 }
1865
1866 Instruction *OutputASM::emit(sw::Shader::Opcode op, TIntermTyped *dst, int dstIndex, TIntermNode *src0, int index0, TIntermNode *src1, int index1,
1867 TIntermNode *src2, int index2, TIntermNode *src3, int index3, TIntermNode *src4, int index4)
1868 {
1869 Instruction *instruction = new Instruction(op);
1870
1871 if(dst)
1872 {
1873 instruction->dst.type = registerType(dst);
1874 instruction->dst.index = registerIndex(dst) + dstIndex;
1875 instruction->dst.mask = writeMask(dst);
1876 instruction->dst.integer = (dst->getBasicType() == EbtInt);
1877 }
1878
1879 argument(instruction->src[0], src0, index0);
1880 argument(instruction->src[1], src1, index1);
1881 argument(instruction->src[2], src2, index2);
1882 argument(instruction->src[3], src3, index3);
1883 argument(instruction->src[4], src4, index4);
1884
1885 shader->append(instruction);
1886
1887 return instruction;
1888 }
1889
1890 Instruction *OutputASM::emitCast(TIntermTyped *dst, TIntermTyped *src)
1891 {
1892 return emitCast(dst, 0, src, 0);
1893 }
1894
1895 Instruction *OutputASM::emitCast(TIntermTyped *dst, int dstIndex, TIntermTyped *src, int srcIndex)
1896 {
1897 switch(src->getBasicType())
1898 {
1899 case EbtBool:
1900 switch(dst->getBasicType())
1901 {
1902 case EbtInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex);
1903 case EbtUInt: return emit(sw::Shader::OPCODE_B2I, dst, dstIndex, src, srcIndex);
1904 case EbtFloat: return emit(sw::Shader::OPCODE_B2F, dst, dstIndex, src, srcIndex);
1905 default: break;
1906 }
1907 break;
1908 case EbtInt:
1909 switch(dst->getBasicType())
1910 {
1911 case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex);
1912 case EbtFloat: return emit(sw::Shader::OPCODE_I2F, dst, dstIndex, src, srcIndex);
1913 default: break;
1914 }
1915 break;
1916 case EbtUInt:
1917 switch(dst->getBasicType())
1918 {
1919 case EbtBool: return emit(sw::Shader::OPCODE_I2B, dst, dstIndex, src, srcIndex);
1920 case EbtFloat: return emit(sw::Shader::OPCODE_U2F, dst, dstIndex, src, srcIndex);
1921 default: break;
1922 }
1923 break;
1924 case EbtFloat:
1925 switch(dst->getBasicType())
1926 {
1927 case EbtBool: return emit(sw::Shader::OPCODE_F2B, dst, dstIndex, src, srcIndex);
1928 case EbtInt: return emit(sw::Shader::OPCODE_F2I, dst, dstIndex, src, srcIndex);
1929 case EbtUInt: return emit(sw::Shader::OPCODE_F2U, dst, dstIndex, src, srcIndex);
1930 default: break;
1931 }
1932 break;
1933 default:
1934 break;
1935 }
1936
1937 ASSERT((src->getBasicType() == dst->getBasicType()) ||
1938 ((src->getBasicType() == EbtInt) && (dst->getBasicType() == EbtUInt)) ||
1939 ((src->getBasicType() == EbtUInt) && (dst->getBasicType() == EbtInt)));
1940
1941 return emit(sw::Shader::OPCODE_MOV, dst, dstIndex, src, srcIndex);
1942 }
1943
1944 void OutputASM::emitBinary(sw::Shader::Opcode op, TIntermTyped *dst, TIntermNode *src0, TIntermNode *src1, TIntermNode *src2)
1945 {
1946 for(int index = 0; index < dst->elementRegisterCount(); index++)
1947 {
1948 emit(op, dst, index, src0, index, src1, index, src2, index);
1949 }
1950 }
1951
1952 void OutputASM::emitAssign(sw::Shader::Opcode op, TIntermTyped *result, TIntermTyped *lhs, TIntermTyped *src0, TIntermTyped *src1)
1953 {
1954 emitBinary(op, result, src0, src1);
1955 assignLvalue(lhs, result);
1956 }
1957
1958 void OutputASM::emitCmp(sw::Shader::Control cmpOp, TIntermTyped *dst, TIntermNode *left, TIntermNode *right, int index)
1959 {
1960 sw::Shader::Opcode opcode;
1961 switch(left->getAsTyped()->getBasicType())
1962 {
1963 case EbtBool:
1964 case EbtInt:
1965 opcode = sw::Shader::OPCODE_ICMP;
1966 break;
1967 case EbtUInt:
1968 opcode = sw::Shader::OPCODE_UCMP;
1969 break;
1970 default:
1971 opcode = sw::Shader::OPCODE_CMP;
1972 break;
1973 }
1974
1975 Instruction *cmp = emit(opcode, dst, 0, left, index, right, index);
1976 cmp->control = cmpOp;
1977 }
1978
1979 int componentCount(const TType &type, int registers)
1980 {
1981 if(registers == 0)
1982 {
1983 return 0;
1984 }
1985
1986 if(type.isArray() && registers >= type.elementRegisterCount())
1987 {
1988 int index = registers / type.elementRegisterCount();
1989 registers -= index * type.elementRegisterCount();
1990 return index * type.getElementSize() + componentCount(type, registers);
1991 }
1992
1993 if(type.isStruct() || type.isInterfaceBlock())
1994 {
1995 const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
1996 int elements = 0;
1997
1998 for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
1999 {
2000 const TType &fieldType = *((*field)->type());
2001
2002 if(fieldType.totalRegisterCount() <= registers)
2003 {
2004 registers -= fieldType.totalRegisterCount();
2005 elements += fieldType.getObjectSize();
2006 }
2007 else // Register within this field
2008 {
2009 return elements + componentCount(fieldType, registers);
2010 }
2011 }
2012 }
2013 else if(type.isMatrix())
2014 {
2015 return registers * type.registerSize();
2016 }
2017
2018 UNREACHABLE(0);
2019 return 0;
2020 }
2021
2022 int registerSize(const TType &type, int registers)
2023 {
2024 if(registers == 0)
2025 {
2026 if(type.isStruct())
2027 {
2028 return registerSize(*((*(type.getStruct()->fields().begin()))->type()), 0);
2029 }
2030 else if(type.isInterfaceBlock())
2031 {
2032 return registerSize(*((*(type.getInterfaceBlock()->fields().begin()))->type()), 0);
2033 }
2034
2035 return type.registerSize();
2036 }
2037
2038 if(type.isArray() && registers >= type.elementRegisterCount())
2039 {
2040 int index = registers / type.elementRegisterCount();
2041 registers -= index * type.elementRegisterCount();
2042 return registerSize(type, registers);
2043 }
2044
2045 if(type.isStruct() || type.isInterfaceBlock())
2046 {
2047 const TFieldList& fields = type.getStruct() ? type.getStruct()->fields() : type.getInterfaceBlock()->fields();
2048 int elements = 0;
2049
2050 for(TFieldList::const_iterator field = fields.begin(); field != fields.end(); field++)
2051 {
2052 const TType &fieldType = *((*field)->type());
2053
2054 if(fieldType.totalRegisterCount() <= registers)
2055 {
2056 registers -= fieldType.totalRegisterCount();
2057 elements += fieldType.getObjectSize();
2058 }
2059 else // Register within this field
2060 {
2061 return registerSize(fieldType, registers);
2062 }
2063 }
2064 }
2065 else if(type.isMatrix())
2066 {
2067 return registerSize(type, 0);
2068 }
2069
2070 UNREACHABLE(0);
2071 return 0;
2072 }
2073
2074 int OutputASM::getBlockId(TIntermTyped *arg)
2075 {
2076 if(arg)
2077 {
2078 const TType &type = arg->getType();
2079 TInterfaceBlock* block = type.getInterfaceBlock();
2080 if(block && (type.getQualifier() == EvqUniform))
2081 {
2082 // Make sure the uniform block is declared
2083 uniformRegister(arg);
2084
2085 const char* blockName = block->name().c_str();
2086
2087 // Fetch uniform block index from array of blocks
2088 for(ActiveUniformBlocks::const_iterator it = shaderObject->activeUniformBlocks.begin(); it != shaderObject->activeUniformBlocks.end(); ++it)
2089 {
2090 if(blockName == it->name)
2091 {
2092 return it->blockId;
2093 }
2094 }
2095
2096 ASSERT(false);
2097 }
2098 }
2099
2100 return -1;
2101 }
2102
2103 OutputASM::ArgumentInfo OutputASM::getArgumentInfo(TIntermTyped *arg, int index)
2104 {
2105 const TType &type = arg->getType();
2106 int blockId = getBlockId(arg);
2107 ArgumentInfo argumentInfo(BlockMemberInfo::getDefaultBlockInfo(), type, -1, -1);
2108 if(blockId != -1)
2109 {
2110 argumentInfo.bufferIndex = 0;
2111 for(int i = 0; i < blockId; ++i)
2112 {
2113 int blockArraySize = shaderObject->activeUniformBlocks[i].arraySize;
2114 argumentInfo.bufferIndex += blockArraySize > 0 ? blockArraySize : 1;
2115 }
2116
2117 const BlockDefinitionIndexMap& blockDefinition = blockDefinitions[blockId];
2118
2119 BlockDefinitionIndexMap::const_iterator itEnd = blockDefinition.end();
2120 BlockDefinitionIndexMap::const_iterator it = itEnd;
2121
2122 argumentInfo.clampedIndex = index;
2123 if(type.isInterfaceBlock())
2124 {
2125 // Offset index to the beginning of the selected instance
2126 int blockRegisters = type.elementRegisterCount();
2127 int bufferOffset = argumentInfo.clampedIndex / blockRegisters;
2128 argumentInfo.bufferIndex += bufferOffset;
2129 argumentInfo.clampedIndex -= bufferOffset * blockRegisters;
2130 }
2131
2132 int regIndex = registerIndex(arg);
2133 for(int i = regIndex + argumentInfo.clampedIndex; i >= regIndex; --i)
2134 {
2135 it = blockDefinition.find(i);
2136 if(it != itEnd)
2137 {
2138 argumentInfo.clampedIndex -= (i - regIndex);
2139 break;
2140 }
2141 }
2142 ASSERT(it != itEnd);
2143
2144 argumentInfo.typedMemberInfo = it->second;
2145
2146 int registerCount = argumentInfo.typedMemberInfo.type.totalRegisterCount();
2147 argumentInfo.clampedIndex = (argumentInfo.clampedIndex >= registerCount) ? registerCount - 1 : argumentInfo.clampedIndex;
2148 }
2149 else
2150 {
2151 argumentInfo.clampedIndex = (index >= arg->totalRegisterCount()) ? arg->totalRegisterCount() - 1 : index;
2152 }
2153
2154 return argumentInfo;
2155 }
2156
2157 void OutputASM::argument(sw::Shader::SourceParameter &parameter, TIntermNode *argument, int index)
2158 {
2159 if(argument)
2160 {
2161 TIntermTyped *arg = argument->getAsTyped();
2162 Temporary unpackedUniform(this);
2163
2164 const TType& srcType = arg->getType();
2165 TInterfaceBlock* srcBlock = srcType.getInterfaceBlock();
2166 if(srcBlock && (srcType.getQualifier() == EvqUniform))
2167 {
2168 const ArgumentInfo argumentInfo = getArgumentInfo(arg, index);
2169 const TType &memberType = argumentInfo.typedMemberInfo.type;
2170
2171 if(memberType.getBasicType() == EbtBool)
2172 {
2173 int arraySize = (memberType.isArray() ? memberType.getArraySize() : 1);
2174 ASSERT(argumentInfo.clampedIndex < arraySize);
2175
2176 // Convert the packed bool, which is currently an int, to a true bool
2177 Instruction *instruction = new Instruction(sw::Shader::OPCODE_I2B);
2178 instruction->dst.type = sw::Shader::PARAMETER_TEMP;
2179 instruction->dst.index = registerIndex(&unpackedUniform);
2180 instruction->src[0].type = sw::Shader::PARAMETER_CONST;
2181 instruction->src[0].bufferIndex = argumentInfo.bufferIndex;
2182 instruction->src[0].index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * argumentInfo.typedMemberInfo.arrayStride;
2183
2184 shader->append(instruction);
2185
2186 arg = &unpackedUniform;
2187 index = 0;
2188 }
2189 else if((srcBlock->matrixPacking() == EmpRowMajor) && memberType.isMatrix())
2190 {
2191 int numCols = memberType.getNominalSize();
2192 int numRows = memberType.getSecondarySize();
2193 int arraySize = (memberType.isArray() ? memberType.getArraySize() : 1);
2194
2195 ASSERT(argumentInfo.clampedIndex < (numCols * arraySize));
2196
2197 unsigned int dstIndex = registerIndex(&unpackedUniform);
2198 unsigned int srcSwizzle = (argumentInfo.clampedIndex % numCols) * 0x55;
2199 int arrayIndex = argumentInfo.clampedIndex / numCols;
2200 int matrixStartOffset = argumentInfo.typedMemberInfo.offset + arrayIndex * argumentInfo.typedMemberInfo.arrayStride;
2201
2202 for(int j = 0; j < numRows; ++j)
2203 {
2204 // Transpose the row major matrix
2205 Instruction *instruction = new Instruction(sw::Shader::OPCODE_MOV);
2206 instruction->dst.type = sw::Shader::PARAMETER_TEMP;
2207 instruction->dst.index = dstIndex;
2208 instruction->dst.mask = 1 << j;
2209 instruction->src[0].type = sw::Shader::PARAMETER_CONST;
2210 instruction->src[0].bufferIndex = argumentInfo.bufferIndex;
2211 instruction->src[0].index = matrixStartOffset + j * argumentInfo.typedMemberInfo.matrixStride;
2212 instruction->src[0].swizzle = srcSwizzle;
2213
2214 shader->append(instruction);
2215 }
2216
2217 arg = &unpackedUniform;
2218 index = 0;
2219 }
2220 }
2221
2222 const ArgumentInfo argumentInfo = getArgumentInfo(arg, index);
2223 const TType &type = argumentInfo.typedMemberInfo.type;
2224
2225 int size = registerSize(type, argumentInfo.clampedIndex);
2226
2227 parameter.type = registerType(arg);
2228 parameter.bufferIndex = argumentInfo.bufferIndex;
2229
2230 if(arg->getAsConstantUnion() && arg->getAsConstantUnion()->getUnionArrayPointer())
2231 {
2232 int component = componentCount(type, argumentInfo.clampedIndex);
2233 ConstantUnion *constants = arg->getAsConstantUnion()->getUnionArrayPointer();
2234
2235 for(int i = 0; i < 4; i++)
2236 {
2237 if(size == 1) // Replicate
2238 {
2239 parameter.value[i] = constants[component + 0].getAsFloat();
2240 }
2241 else if(i < size)
2242 {
2243 parameter.value[i] = constants[component + i].getAsFloat();
2244 }
2245 else
2246 {
2247 parameter.value[i] = 0.0f;
2248 }
2249 }
2250 }
2251 else
2252 {
2253 parameter.index = registerIndex(arg) + argumentInfo.clampedIndex;
2254
2255 if(parameter.bufferIndex != -1)
2256 {
2257 int stride = (argumentInfo.typedMemberInfo.matrixStride > 0) ? argumentInfo.typedMemberInfo.matrixStride : argumentInfo.typedMemberInfo.arrayStride;
2258 parameter.index = argumentInfo.typedMemberInfo.offset + argumentInfo.clampedIndex * stride;
2259 }
2260 }
2261
2262 if(!IsSampler(arg->getBasicType()))
2263 {
2264 parameter.swizzle = readSwizzle(arg, size);
2265 }
2266 }
2267 }
2268
2269 void OutputASM::copy(TIntermTyped *dst, TIntermNode *src, int offset)
2270 {
2271 for(int index = 0; index < dst->totalRegisterCount(); index++)
2272 {
2273 Instruction *mov = emit(sw::Shader::OPCODE_MOV, dst, index, src, offset + index);
2274 mov->dst.mask = writeMask(dst, index);
2275 }
2276 }
2277
2278 int swizzleElement(int swizzle, int index)
2279 {
2280 return (swizzle >> (index * 2)) & 0x03;
2281 }
2282
2283 int swizzleSwizzle(int leftSwizzle, int rightSwizzle)
2284 {
2285 return (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 0)) << 0) |
2286 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 1)) << 2) |
2287 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 2)) << 4) |
2288 (swizzleElement(leftSwizzle, swizzleElement(rightSwizzle, 3)) << 6);
2289 }
2290
2291 void OutputASM::assignLvalue(TIntermTyped *dst, TIntermTyped *src)
2292 {
2293 if(src &&
2294 ((src->isVector() && (!dst->isVector() || (src->getNominalSize() != dst->getNominalSize()))) ||
2295 (src->isMatrix() && (!dst->isMatrix() || (src->getNominalSize() != dst->getNominalSize()) || (src->getSecondarySize() != dst->getSecondarySize())))))
2296 {
2297 return mContext.error(src->getLine(), "Result type should match the l-value type in compound assignment", src->isVector() ? "vector" : "matrix");
2298 }
2299
2300 TIntermBinary *binary = dst->getAsBinaryNode();
2301
2302 if(binary && binary->getOp() == EOpIndexIndirect && binary->getLeft()->isVector() && dst->isScalar())
2303 {
2304 Instruction *insert = new Instruction(sw::Shader::OPCODE_INSERT);
2305
2306 Temporary address(this);
2307 lvalue(insert->dst, address, dst);
2308
2309 insert->src[0].type = insert->dst.type;
2310 insert->src[0].index = insert->dst.index;
2311 insert->src[0].rel = insert->dst.rel;
2312 argument(insert->src[1], src);
2313 argument(insert->src[2], binary->getRight());
2314
2315 shader->append(insert);
2316 }
2317 else
2318 {
2319 for(int offset = 0; offset < dst->totalRegisterCount(); offset++)
2320 {
2321 Instruction *mov = new Instruction(sw::Shader::OPCODE_MOV);
2322
2323 Temporary address(this);
2324 int swizzle = lvalue(mov->dst, address, dst);
2325 mov->dst.index += offset;
2326
2327 if(offset > 0)
2328 {
2329 mov->dst.mask = writeMask(dst, offset);
2330 }
2331
2332 argument(mov->src[0], src, offset);
2333 mov->src[0].swizzle = swizzleSwizzle(mov->src[0].swizzle, swizzle);
2334
2335 shader->append(mov);
2336 }
2337 }
2338 }
2339
2340 int OutputASM::lvalue(sw::Shader::DestinationParameter &dst, Temporary &address, TIntermTyped *node)
2341 {
2342 TIntermTyped *result = node;
2343 TIntermBinary *binary = node->getAsBinaryNode();
2344 TIntermSymbol *symbol = node->getAsSymbolNode();
2345
2346 if(binary)
2347 {
2348 TIntermTyped *left = binary->getLeft();
2349 TIntermTyped *right = binary->getRight();
2350
2351 int leftSwizzle = lvalue(dst, address, left); // Resolve the l-value of the left side
2352
2353 switch(binary->getOp())
2354 {
2355 case EOpIndexDirect:
2356 {
2357 int rightIndex = right->getAsConstantUnion()->getIConst(0);
2358
2359 if(left->isRegister())
2360 {
2361 int leftMask = dst.mask;
2362
2363 dst.mask = 1;
2364 while((leftMask & dst.mask) == 0)
2365 {
2366 dst.mask = dst.mask << 1;
2367 }
2368
2369 int element = swizzleElement(leftSwizzle, rightIndex);
2370 dst.mask = 1 << element;
2371
2372 return element;
2373 }
2374 else if(left->isArray() || left->isMatrix())
2375 {
2376 dst.index += rightIndex * result->totalRegisterCount();
2377 return 0xE4;
2378 }
2379 else UNREACHABLE(0);
2380 }
2381 break;
2382 case EOpIndexIndirect:
2383 {
2384 if(left->isRegister())
2385 {
2386 // Requires INSERT instruction (handled by calling function)
2387 }
2388 else if(left->isArray() || left->isMatrix())
2389 {
2390 int scale = result->totalRegisterCount();
2391
2392 if(dst.rel.type == sw::Shader::PARAMETER_VOID) // Use the index register as the relative address directly
2393 {
2394 if(left->totalRegisterCount() > 1)
2395 {
2396 sw::Shader::SourceParameter relativeRegister;
2397 argument(relativeRegister, right);
2398
2399 dst.rel.index = relativeRegister.index;
2400 dst.rel.type = relativeRegister.type;
2401 dst.rel.scale = scale;
2402 dst.rel.deterministic = !(vertexShader && left->getQualifier() == EvqUniform);
2403 }
2404 }
2405 else if(dst.rel.index != registerIndex(&address)) // Move the previous index register to the address register
2406 {
2407 if(scale == 1)
2408 {
2409 Constant oldScale((int)dst.rel.scale);
2410 Instruction *mad = emit(sw::Shader::OPCODE_IMAD, &address, &address, &oldScale, right);
2411 mad->src[0].index = dst.rel.index;
2412 mad->src[0].type = dst.rel.type;
2413 }
2414 else
2415 {
2416 Constant oldScale((int)dst.rel.scale);
2417 Instruction *mul = emit(sw::Shader::OPCODE_IMUL, &address, &address, &oldScale);
2418 mul->src[0].index = dst.rel.index;
2419 mul->src[0].type = dst.rel.type;
2420
2421 Constant newScale(scale);
2422 emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
2423 }
2424
2425 dst.rel.type = sw::Shader::PARAMETER_TEMP;
2426 dst.rel.index = registerIndex(&address);
2427 dst.rel.scale = 1;
2428 }
2429 else // Just add the new index to the address register
2430 {
2431 if(scale == 1)
2432 {
2433 emit(sw::Shader::OPCODE_IADD, &address, &address, right);
2434 }
2435 else
2436 {
2437 Constant newScale(scale);
2438 emit(sw::Shader::OPCODE_IMAD, &address, right, &newScale, &address);
2439 }
2440 }
2441 }
2442 else UNREACHABLE(0);
2443 }
2444 break;
2445 case EOpIndexDirectStruct:
2446 case EOpIndexDirectInterfaceBlock:
2447 {
2448 const TFieldList& fields = (binary->getOp() == EOpIndexDirectStruct) ?
2449 left->getType().getStruct()->fields() :
2450 left->getType().getInterfaceBlock()->fields();
2451 int index = right->getAsConstantUnion()->getIConst(0);
2452 int fieldOffset = 0;
2453
2454 for(int i = 0; i < index; i++)
2455 {
2456 fieldOffset += fields[i]->type()->totalRegisterCount();
2457 }
2458
2459 dst.type = registerType(left);
2460 dst.index += fieldOffset;
2461 dst.mask = writeMask(right);
2462
2463 return 0xE4;
2464 }
2465 break;
2466 case EOpVectorSwizzle:
2467 {
2468 ASSERT(left->isRegister());
2469
2470 int leftMask = dst.mask;
2471
2472 int swizzle = 0;
2473 int rightMask = 0;
2474
2475 TIntermSequence &sequence = right->getAsAggregate()->getSequence();
2476
2477 for(unsigned int i = 0; i < sequence.size(); i++)
2478 {
2479 int index = sequence[i]->getAsConstantUnion()->getIConst(0);
2480
2481 int element = swizzleElement(leftSwizzle, index);
2482 rightMask = rightMask | (1 << element);
2483 swizzle = swizzle | swizzleElement(leftSwizzle, i) << (element * 2);
2484 }
2485
2486 dst.mask = leftMask & rightMask;
2487
2488 return swizzle;
2489 }
2490 break;
2491 default:
2492 UNREACHABLE(binary->getOp()); // Not an l-value operator
2493 break;
2494 }
2495 }
2496 else if(symbol)
2497 {
2498 dst.type = registerType(symbol);
2499 dst.index = registerIndex(symbol);
2500 dst.mask = writeMask(symbol);
2501 return 0xE4;
2502 }
2503
2504 return 0xE4;
2505 }
2506
2507 sw::Shader::ParameterType OutputASM::registerType(TIntermTyped *operand)
2508 {
2509 if(isSamplerRegister(operand))
2510 {
2511 return sw::Shader::PARAMETER_SAMPLER;
2512 }
2513
2514 const TQualifier qualifier = operand->getQualifier();
2515 if((EvqFragColor == qualifier) || (EvqFragData == qualifier))
2516 {
2517 if(((EvqFragData == qualifier) && (EvqFragColor == outputQualifier)) ||
2518 ((EvqFragColor == qualifier) && (EvqFragData == outputQualifier)))
2519 {
2520 mContext.error(operand->getLine(), "static assignment to both gl_FragData and gl_FragColor", "");
2521 }
2522 outputQualifier = qualifier;
2523 }
2524
2525 if(qualifier == EvqConstExpr && (!operand->getAsConstantUnion() || !operand->getAsConstantUnion()->getUnionArrayPointer()))
2526 {
2527 return sw::Shader::PARAMETER_TEMP;
2528 }
2529
2530 switch(qualifier)
2531 {
2532 case EvqTemporary: return sw::Shader::PARAMETER_TEMP;
2533 case EvqGlobal: return sw::Shader::PARAMETER_TEMP;
2534 case EvqConstExpr: return sw::Shader::PARAMETER_FLOAT4LITERAL; // All converted to float
2535 case EvqAttribute: return sw::Shader::PARAMETER_INPUT;
2536 case EvqVaryingIn: return sw::Shader::PARAMETER_INPUT;
2537 case EvqVaryingOut: return sw::Shader::PARAMETER_OUTPUT;
2538 case EvqVertexIn: return sw::Shader::PARAMETER_INPUT;
2539 case EvqFragmentOut: return sw::Shader::PARAMETER_COLOROUT;
2540 case EvqVertexOut: return sw::Shader::PARAMETER_OUTPUT;
2541 case EvqFragmentIn: return sw::Shader::PARAMETER_INPUT;
2542 case EvqInvariantVaryingIn: return sw::Shader::PARAMETER_INPUT; // FIXME: Guarantee invariance at the backend
2543 case EvqInvariantVaryingOut: return sw::Shader::PARAMETER_OUTPUT; // FIXME: Guarantee invariance at the backend
2544 case EvqSmooth: return sw::Shader::PARAMETER_OUTPUT;
2545 case EvqFlat: return sw::Shader::PARAMETER_OUTPUT;
2546 case EvqCentroidOut: return sw::Shader::PARAMETER_OUTPUT;
2547 case EvqSmoothIn: return sw::Shader::PARAMETER_INPUT;
2548 case EvqFlatIn: return sw::Shader::PARAMETER_INPUT;
2549 case EvqCentroidIn: return sw::Shader::PARAMETER_INPUT;
2550 case EvqUniform: return sw::Shader::PARAMETER_CONST;
2551 case EvqIn: return sw::Shader::PARAMETER_TEMP;
2552 case EvqOut: return sw::Shader::PARAMETER_TEMP;
2553 case EvqInOut: return sw::Shader::PARAMETER_TEMP;
2554 case EvqConstReadOnly: return sw::Shader::PARAMETER_TEMP;
2555 case EvqPosition: return sw::Shader::PARAMETER_OUTPUT;
2556 case EvqPointSize: return sw::Shader::PARAMETER_OUTPUT;
2557 case EvqInstanceID: return sw::Shader::PARAMETER_MISCTYPE;
2558 case EvqFragCoord: return sw::Shader::PARAMETER_MISCTYPE;
2559 case EvqFrontFacing: return sw::Shader::PARAMETER_MISCTYPE;
2560 case EvqPointCoord: return sw::Shader::PARAMETER_INPUT;
2561 case EvqFragColor: return sw::Shader::PARAMETER_COLOROUT;
2562 case EvqFragData: return sw::Shader::PARAMETER_COLOROUT;
2563 case EvqFragDepth: return sw::Shader::PARAMETER_DEPTHOUT;
2564 default: UNREACHABLE(qualifier);
2565 }
2566
2567 return sw::Shader::PARAMETER_VOID;
2568 }
2569
Alexis Hetu12b00502016-05-20 13:01:11 -04002570 bool OutputASM::hasFlatQualifier(TIntermTyped *operand)
2571 {
2572 const TQualifier qualifier = operand->getQualifier();
2573 return qualifier == EvqFlat || qualifier == EvqFlatOut || qualifier == EvqFlatIn;
2574 }
2575
Nicolas Capens0bac2852016-05-07 06:09:58 -04002576 unsigned int OutputASM::registerIndex(TIntermTyped *operand)
2577 {
2578 if(isSamplerRegister(operand))
2579 {
2580 return samplerRegister(operand);
2581 }
2582
2583 switch(operand->getQualifier())
2584 {
2585 case EvqTemporary: return temporaryRegister(operand);
2586 case EvqGlobal: return temporaryRegister(operand);
2587 case EvqConstExpr: return temporaryRegister(operand); // Unevaluated constant expression
2588 case EvqAttribute: return attributeRegister(operand);
2589 case EvqVaryingIn: return varyingRegister(operand);
2590 case EvqVaryingOut: return varyingRegister(operand);
2591 case EvqVertexIn: return attributeRegister(operand);
2592 case EvqFragmentOut: return fragmentOutputRegister(operand);
2593 case EvqVertexOut: return varyingRegister(operand);
2594 case EvqFragmentIn: return varyingRegister(operand);
2595 case EvqInvariantVaryingIn: return varyingRegister(operand);
2596 case EvqInvariantVaryingOut: return varyingRegister(operand);
2597 case EvqSmooth: return varyingRegister(operand);
2598 case EvqFlat: return varyingRegister(operand);
2599 case EvqCentroidOut: return varyingRegister(operand);
2600 case EvqSmoothIn: return varyingRegister(operand);
2601 case EvqFlatIn: return varyingRegister(operand);
2602 case EvqCentroidIn: return varyingRegister(operand);
2603 case EvqUniform: return uniformRegister(operand);
2604 case EvqIn: return temporaryRegister(operand);
2605 case EvqOut: return temporaryRegister(operand);
2606 case EvqInOut: return temporaryRegister(operand);
2607 case EvqConstReadOnly: return temporaryRegister(operand);
2608 case EvqPosition: return varyingRegister(operand);
2609 case EvqPointSize: return varyingRegister(operand);
2610 case EvqInstanceID: vertexShader->instanceIdDeclared = true; return 0;
2611 case EvqFragCoord: pixelShader->vPosDeclared = true; return 0;
2612 case EvqFrontFacing: pixelShader->vFaceDeclared = true; return 1;
2613 case EvqPointCoord: return varyingRegister(operand);
2614 case EvqFragColor: return 0;
2615 case EvqFragData: return fragmentOutputRegister(operand);
2616 case EvqFragDepth: return 0;
2617 default: UNREACHABLE(operand->getQualifier());
2618 }
2619
2620 return 0;
2621 }
2622
2623 int OutputASM::writeMask(TIntermTyped *destination, int index)
2624 {
2625 if(destination->getQualifier() == EvqPointSize)
2626 {
2627 return 0x2; // Point size stored in the y component
2628 }
2629
2630 return 0xF >> (4 - registerSize(destination->getType(), index));
2631 }
2632
2633 int OutputASM::readSwizzle(TIntermTyped *argument, int size)
2634 {
2635 if(argument->getQualifier() == EvqPointSize)
2636 {
2637 return 0x55; // Point size stored in the y component
2638 }
2639
2640 static const unsigned char swizzleSize[5] = {0x00, 0x00, 0x54, 0xA4, 0xE4}; // (void), xxxx, xyyy, xyzz, xyzw
2641
2642 return swizzleSize[size];
2643 }
2644
2645 // Conservatively checks whether an expression is fast to compute and has no side effects
2646 bool OutputASM::trivial(TIntermTyped *expression, int budget)
2647 {
2648 if(!expression->isRegister())
2649 {
2650 return false;
2651 }
2652
2653 return cost(expression, budget) >= 0;
2654 }
2655
2656 // Returns the remaining computing budget (if < 0 the expression is too expensive or has side effects)
2657 int OutputASM::cost(TIntermNode *expression, int budget)
2658 {
2659 if(budget < 0)
2660 {
2661 return budget;
2662 }
2663
2664 if(expression->getAsSymbolNode())
2665 {
2666 return budget;
2667 }
2668 else if(expression->getAsConstantUnion())
2669 {
2670 return budget;
2671 }
2672 else if(expression->getAsBinaryNode())
2673 {
2674 TIntermBinary *binary = expression->getAsBinaryNode();
2675
2676 switch(binary->getOp())
2677 {
2678 case EOpVectorSwizzle:
2679 case EOpIndexDirect:
2680 case EOpIndexDirectStruct:
2681 case EOpIndexDirectInterfaceBlock:
2682 return cost(binary->getLeft(), budget - 0);
2683 case EOpAdd:
2684 case EOpSub:
2685 case EOpMul:
2686 return cost(binary->getLeft(), cost(binary->getRight(), budget - 1));
2687 default:
2688 return -1;
2689 }
2690 }
2691 else if(expression->getAsUnaryNode())
2692 {
2693 TIntermUnary *unary = expression->getAsUnaryNode();
2694
2695 switch(unary->getOp())
2696 {
2697 case EOpAbs:
2698 case EOpNegative:
2699 return cost(unary->getOperand(), budget - 1);
2700 default:
2701 return -1;
2702 }
2703 }
2704 else if(expression->getAsSelectionNode())
2705 {
2706 TIntermSelection *selection = expression->getAsSelectionNode();
2707
2708 if(selection->usesTernaryOperator())
2709 {
2710 TIntermTyped *condition = selection->getCondition();
2711 TIntermNode *trueBlock = selection->getTrueBlock();
2712 TIntermNode *falseBlock = selection->getFalseBlock();
2713 TIntermConstantUnion *constantCondition = condition->getAsConstantUnion();
2714
2715 if(constantCondition)
2716 {
2717 bool trueCondition = constantCondition->getUnionArrayPointer()->getBConst();
2718
2719 if(trueCondition)
2720 {
2721 return cost(trueBlock, budget - 0);
2722 }
2723 else
2724 {
2725 return cost(falseBlock, budget - 0);
2726 }
2727 }
2728 else
2729 {
2730 return cost(trueBlock, cost(falseBlock, budget - 2));
2731 }
2732 }
2733 }
2734
2735 return -1;
2736 }
2737
2738 const Function *OutputASM::findFunction(const TString &name)
2739 {
2740 for(unsigned int f = 0; f < functionArray.size(); f++)
2741 {
2742 if(functionArray[f].name == name)
2743 {
2744 return &functionArray[f];
2745 }
2746 }
2747
2748 return 0;
2749 }
2750
2751 int OutputASM::temporaryRegister(TIntermTyped *temporary)
2752 {
2753 return allocate(temporaries, temporary);
2754 }
2755
2756 int OutputASM::varyingRegister(TIntermTyped *varying)
2757 {
2758 int var = lookup(varyings, varying);
2759
2760 if(var == -1)
2761 {
2762 var = allocate(varyings, varying);
2763 int componentCount = varying->registerSize();
2764 int registerCount = varying->totalRegisterCount();
2765
2766 if(pixelShader)
2767 {
Nicolas Capens3b4c93f2016-05-18 12:51:37 -04002768 if((var + registerCount) > sw::MAX_FRAGMENT_INPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002769 {
2770 mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "fragment shader");
2771 return 0;
2772 }
2773
2774 if(varying->getQualifier() == EvqPointCoord)
2775 {
2776 ASSERT(varying->isRegister());
2777 if(componentCount >= 1) pixelShader->semantic[var][0] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
2778 if(componentCount >= 2) pixelShader->semantic[var][1] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
2779 if(componentCount >= 3) pixelShader->semantic[var][2] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
2780 if(componentCount >= 4) pixelShader->semantic[var][3] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, var);
2781 }
2782 else
2783 {
2784 for(int i = 0; i < varying->totalRegisterCount(); i++)
2785 {
Alexis Hetu12b00502016-05-20 13:01:11 -04002786 bool flat = hasFlatQualifier(varying);
2787
2788 if(componentCount >= 1) pixelShader->semantic[var + i][0] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i, flat);
2789 if(componentCount >= 2) pixelShader->semantic[var + i][1] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i, flat);
2790 if(componentCount >= 3) pixelShader->semantic[var + i][2] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i, flat);
2791 if(componentCount >= 4) pixelShader->semantic[var + i][3] = sw::Shader::Semantic(sw::Shader::USAGE_COLOR, var + i, flat);
Nicolas Capens0bac2852016-05-07 06:09:58 -04002792 }
2793 }
2794 }
2795 else if(vertexShader)
2796 {
Nicolas Capensec0936c2016-05-18 12:32:02 -04002797 if((var + registerCount) > sw::MAX_VERTEX_OUTPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002798 {
2799 mContext.error(varying->getLine(), "Varyings packing failed: Too many varyings", "vertex shader");
2800 return 0;
2801 }
2802
2803 if(varying->getQualifier() == EvqPosition)
2804 {
2805 ASSERT(varying->isRegister());
2806 vertexShader->output[var][0] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
2807 vertexShader->output[var][1] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
2808 vertexShader->output[var][2] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
2809 vertexShader->output[var][3] = sw::Shader::Semantic(sw::Shader::USAGE_POSITION, 0);
2810 vertexShader->positionRegister = var;
2811 }
2812 else if(varying->getQualifier() == EvqPointSize)
2813 {
2814 ASSERT(varying->isRegister());
2815 vertexShader->output[var][0] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
2816 vertexShader->output[var][1] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
2817 vertexShader->output[var][2] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
2818 vertexShader->output[var][3] = sw::Shader::Semantic(sw::Shader::USAGE_PSIZE, 0);
2819 vertexShader->pointSizeRegister = var;
2820 }
2821 else
2822 {
2823 // Semantic indexes for user varyings will be assigned during program link to match the pixel shader
2824 }
2825 }
2826 else UNREACHABLE(0);
2827
2828 declareVarying(varying, var);
2829 }
2830
2831 return var;
2832 }
2833
2834 void OutputASM::declareVarying(TIntermTyped *varying, int reg)
2835 {
2836 if(varying->getQualifier() != EvqPointCoord) // gl_PointCoord does not need linking
2837 {
2838 const TType &type = varying->getType();
2839 const char *name = varying->getAsSymbolNode()->getSymbol().c_str();
2840 VaryingList &activeVaryings = shaderObject->varyings;
2841
2842 // Check if this varying has been declared before without having a register assigned
2843 for(VaryingList::iterator v = activeVaryings.begin(); v != activeVaryings.end(); v++)
2844 {
2845 if(v->name == name)
2846 {
2847 if(reg >= 0)
2848 {
2849 ASSERT(v->reg < 0 || v->reg == reg);
2850 v->reg = reg;
2851 }
2852
2853 return;
2854 }
2855 }
2856
2857 activeVaryings.push_back(glsl::Varying(glVariableType(type), name, varying->getArraySize(), reg, 0));
2858 }
2859 }
2860
2861 int OutputASM::uniformRegister(TIntermTyped *uniform)
2862 {
2863 const TType &type = uniform->getType();
2864 ASSERT(!IsSampler(type.getBasicType()));
2865 TInterfaceBlock *block = type.getAsInterfaceBlock();
2866 TIntermSymbol *symbol = uniform->getAsSymbolNode();
2867 ASSERT(symbol || block);
2868
2869 if(symbol || block)
2870 {
2871 TInterfaceBlock* parentBlock = type.getInterfaceBlock();
2872 bool isBlockMember = (!block && parentBlock);
2873 int index = isBlockMember ? lookup(uniforms, parentBlock) : lookup(uniforms, uniform);
2874
2875 if(index == -1 || isBlockMember)
2876 {
2877 if(index == -1)
2878 {
2879 index = allocate(uniforms, uniform);
2880 }
2881
2882 // Verify if the current uniform is a member of an already declared block
2883 const TString &name = symbol ? symbol->getSymbol() : block->name();
2884 int blockMemberIndex = blockMemberLookup(type, name, index);
2885 if(blockMemberIndex == -1)
2886 {
2887 declareUniform(type, name, index);
2888 }
2889 else
2890 {
2891 index = blockMemberIndex;
2892 }
2893 }
2894
2895 return index;
2896 }
2897
2898 return 0;
2899 }
2900
2901 int OutputASM::attributeRegister(TIntermTyped *attribute)
2902 {
2903 ASSERT(!attribute->isArray());
2904
2905 int index = lookup(attributes, attribute);
2906
2907 if(index == -1)
2908 {
2909 TIntermSymbol *symbol = attribute->getAsSymbolNode();
2910 ASSERT(symbol);
2911
2912 if(symbol)
2913 {
2914 index = allocate(attributes, attribute);
2915 const TType &type = attribute->getType();
2916 int registerCount = attribute->totalRegisterCount();
2917
Nicolas Capensf0aef1a2016-05-18 14:44:21 -04002918 if(vertexShader && (index + registerCount) <= sw::MAX_VERTEX_INPUTS)
Nicolas Capens0bac2852016-05-07 06:09:58 -04002919 {
2920 for(int i = 0; i < registerCount; i++)
2921 {
2922 vertexShader->input[index + i] = sw::Shader::Semantic(sw::Shader::USAGE_TEXCOORD, index + i);
2923 }
2924 }
2925
2926 ActiveAttributes &activeAttributes = shaderObject->activeAttributes;
2927
2928 const char *name = symbol->getSymbol().c_str();
2929 activeAttributes.push_back(Attribute(glVariableType(type), name, type.getArraySize(), type.getLayoutQualifier().location, index));
2930 }
2931 }
2932
2933 return index;
2934 }
2935
2936 int OutputASM::fragmentOutputRegister(TIntermTyped *fragmentOutput)
2937 {
2938 return allocate(fragmentOutputs, fragmentOutput);
2939 }
2940
2941 int OutputASM::samplerRegister(TIntermTyped *sampler)
2942 {
2943 const TType &type = sampler->getType();
2944 ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers
2945
2946 TIntermSymbol *symbol = sampler->getAsSymbolNode();
2947 TIntermBinary *binary = sampler->getAsBinaryNode();
2948
2949 if(symbol && type.getQualifier() == EvqUniform)
2950 {
2951 return samplerRegister(symbol);
2952 }
2953 else if(binary)
2954 {
2955 TIntermTyped *left = binary->getLeft();
2956 TIntermTyped *right = binary->getRight();
2957 const TType &leftType = left->getType();
2958 int index = right->getAsConstantUnion() ? right->getAsConstantUnion()->getIConst(0) : 0;
2959 int offset = 0;
2960
2961 switch(binary->getOp())
2962 {
2963 case EOpIndexDirect:
2964 ASSERT(left->isArray());
2965 offset = index * leftType.elementRegisterCount();
2966 break;
2967 case EOpIndexDirectStruct:
2968 ASSERT(leftType.isStruct());
2969 {
2970 const TFieldList &fields = leftType.getStruct()->fields();
2971
2972 for(int i = 0; i < index; i++)
2973 {
2974 offset += fields[i]->type()->totalRegisterCount();
2975 }
2976 }
2977 break;
2978 case EOpIndexIndirect: // Indirect indexing produces a temporary, not a sampler register
2979 return -1;
2980 case EOpIndexDirectInterfaceBlock: // Interface blocks can't contain samplers
2981 default:
2982 UNREACHABLE(binary->getOp());
2983 return -1;
2984 }
2985
2986 int base = samplerRegister(left);
2987
2988 if(base < 0)
2989 {
2990 return -1;
2991 }
2992
2993 return base + offset;
2994 }
2995
2996 UNREACHABLE(0);
2997 return -1; // Not a sampler register
2998 }
2999
3000 int OutputASM::samplerRegister(TIntermSymbol *sampler)
3001 {
3002 const TType &type = sampler->getType();
3003 ASSERT(IsSampler(type.getBasicType()) || type.isStruct()); // Structures can contain samplers
3004
3005 int index = lookup(samplers, sampler);
3006
3007 if(index == -1)
3008 {
3009 index = allocate(samplers, sampler);
3010
3011 if(sampler->getQualifier() == EvqUniform)
3012 {
3013 const char *name = sampler->getSymbol().c_str();
3014 declareUniform(type, name, index);
3015 }
3016 }
3017
3018 return index;
3019 }
3020
3021 bool OutputASM::isSamplerRegister(TIntermTyped *operand)
3022 {
3023 return operand && IsSampler(operand->getBasicType()) && samplerRegister(operand) >= 0;
3024 }
3025
3026 int OutputASM::lookup(VariableArray &list, TIntermTyped *variable)
3027 {
3028 for(unsigned int i = 0; i < list.size(); i++)
3029 {
3030 if(list[i] == variable)
3031 {
3032 return i; // Pointer match
3033 }
3034 }
3035
3036 TIntermSymbol *varSymbol = variable->getAsSymbolNode();
3037 TInterfaceBlock *varBlock = variable->getType().getAsInterfaceBlock();
3038
3039 if(varBlock)
3040 {
3041 for(unsigned int i = 0; i < list.size(); i++)
3042 {
3043 if(list[i])
3044 {
3045 TInterfaceBlock *listBlock = list[i]->getType().getAsInterfaceBlock();
3046
3047 if(listBlock)
3048 {
3049 if(listBlock->name() == varBlock->name())
3050 {
3051 ASSERT(listBlock->arraySize() == varBlock->arraySize());
3052 ASSERT(listBlock->fields() == varBlock->fields());
3053 ASSERT(listBlock->blockStorage() == varBlock->blockStorage());
3054 ASSERT(listBlock->matrixPacking() == varBlock->matrixPacking());
3055
3056 return i;
3057 }
3058 }
3059 }
3060 }
3061 }
3062 else if(varSymbol)
3063 {
3064 for(unsigned int i = 0; i < list.size(); i++)
3065 {
3066 if(list[i])
3067 {
3068 TIntermSymbol *listSymbol = list[i]->getAsSymbolNode();
3069
3070 if(listSymbol)
3071 {
3072 if(listSymbol->getId() == varSymbol->getId())
3073 {
3074 ASSERT(listSymbol->getSymbol() == varSymbol->getSymbol());
3075 ASSERT(listSymbol->getType() == varSymbol->getType());
3076 ASSERT(listSymbol->getQualifier() == varSymbol->getQualifier());
3077
3078 return i;
3079 }
3080 }
3081 }
3082 }
3083 }
3084
3085 return -1;
3086 }
3087
3088 int OutputASM::lookup(VariableArray &list, TInterfaceBlock *block)
3089 {
3090 for(unsigned int i = 0; i < list.size(); i++)
3091 {
3092 if(list[i] && (list[i]->getType().getInterfaceBlock() == block))
3093 {
3094 return i; // Pointer match
3095 }
3096 }
3097 return -1;
3098 }
3099
3100 int OutputASM::allocate(VariableArray &list, TIntermTyped *variable)
3101 {
3102 int index = lookup(list, variable);
3103
3104 if(index == -1)
3105 {
3106 unsigned int registerCount = variable->blockRegisterCount();
3107
3108 for(unsigned int i = 0; i < list.size(); i++)
3109 {
3110 if(list[i] == 0)
3111 {
3112 unsigned int j = 1;
3113 for( ; j < registerCount && (i + j) < list.size(); j++)
3114 {
3115 if(list[i + j] != 0)
3116 {
3117 break;
3118 }
3119 }
3120
3121 if(j == registerCount) // Found free slots
3122 {
3123 for(unsigned int j = 0; j < registerCount; j++)
3124 {
3125 list[i + j] = variable;
3126 }
3127
3128 return i;
3129 }
3130 }
3131 }
3132
3133 index = list.size();
3134
3135 for(unsigned int i = 0; i < registerCount; i++)
3136 {
3137 list.push_back(variable);
3138 }
3139 }
3140
3141 return index;
3142 }
3143
3144 void OutputASM::free(VariableArray &list, TIntermTyped *variable)
3145 {
3146 int index = lookup(list, variable);
3147
3148 if(index >= 0)
3149 {
3150 list[index] = 0;
3151 }
3152 }
3153
3154 int OutputASM::blockMemberLookup(const TType &type, const TString &name, int registerIndex)
3155 {
3156 const TInterfaceBlock *block = type.getInterfaceBlock();
3157
3158 if(block)
3159 {
3160 ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks;
3161 const TFieldList& fields = block->fields();
3162 const TString &blockName = block->name();
3163 int fieldRegisterIndex = registerIndex;
3164
3165 if(!type.isInterfaceBlock())
3166 {
3167 // This is a uniform that's part of a block, let's see if the block is already defined
3168 for(size_t i = 0; i < activeUniformBlocks.size(); ++i)
3169 {
3170 if(activeUniformBlocks[i].name == blockName.c_str())
3171 {
3172 // The block is already defined, find the register for the current uniform and return it
3173 for(size_t j = 0; j < fields.size(); j++)
3174 {
3175 const TString &fieldName = fields[j]->name();
3176 if(fieldName == name)
3177 {
3178 return fieldRegisterIndex;
3179 }
3180
3181 fieldRegisterIndex += fields[j]->type()->totalRegisterCount();
3182 }
3183
3184 ASSERT(false);
3185 return fieldRegisterIndex;
3186 }
3187 }
3188 }
3189 }
3190
3191 return -1;
3192 }
3193
3194 void OutputASM::declareUniform(const TType &type, const TString &name, int registerIndex, int blockId, BlockLayoutEncoder* encoder)
3195 {
3196 const TStructure *structure = type.getStruct();
3197 const TInterfaceBlock *block = (type.isInterfaceBlock() || (blockId == -1)) ? type.getInterfaceBlock() : nullptr;
3198
3199 if(!structure && !block)
3200 {
3201 ActiveUniforms &activeUniforms = shaderObject->activeUniforms;
3202 const BlockMemberInfo blockInfo = encoder ? encoder->encodeType(type) : BlockMemberInfo::getDefaultBlockInfo();
3203 if(blockId >= 0)
3204 {
3205 blockDefinitions[blockId][registerIndex] = TypedMemberInfo(blockInfo, type);
3206 shaderObject->activeUniformBlocks[blockId].fields.push_back(activeUniforms.size());
3207 }
3208 int fieldRegisterIndex = encoder ? shaderObject->activeUniformBlocks[blockId].registerIndex + BlockLayoutEncoder::getBlockRegister(blockInfo) : registerIndex;
3209 activeUniforms.push_back(Uniform(glVariableType(type), glVariablePrecision(type), name.c_str(), type.getArraySize(),
3210 fieldRegisterIndex, blockId, blockInfo));
3211 if(IsSampler(type.getBasicType()))
3212 {
3213 for(int i = 0; i < type.totalRegisterCount(); i++)
3214 {
3215 shader->declareSampler(fieldRegisterIndex + i);
3216 }
3217 }
3218 }
3219 else if(block)
3220 {
3221 ActiveUniformBlocks &activeUniformBlocks = shaderObject->activeUniformBlocks;
3222 const TFieldList& fields = block->fields();
3223 const TString &blockName = block->name();
3224 int fieldRegisterIndex = registerIndex;
3225 bool isUniformBlockMember = !type.isInterfaceBlock() && (blockId == -1);
3226
3227 blockId = activeUniformBlocks.size();
3228 bool isRowMajor = block->matrixPacking() == EmpRowMajor;
3229 activeUniformBlocks.push_back(UniformBlock(blockName.c_str(), 0, block->arraySize(),
3230 block->blockStorage(), isRowMajor, registerIndex, blockId));
3231 blockDefinitions.push_back(BlockDefinitionIndexMap());
3232
3233 Std140BlockEncoder currentBlockEncoder(isRowMajor);
3234 currentBlockEncoder.enterAggregateType();
3235 for(size_t i = 0; i < fields.size(); i++)
3236 {
3237 const TType &fieldType = *(fields[i]->type());
3238 const TString &fieldName = fields[i]->name();
3239 if(isUniformBlockMember && (fieldName == name))
3240 {
3241 registerIndex = fieldRegisterIndex;
3242 }
3243
3244 const TString uniformName = block->hasInstanceName() ? blockName + "." + fieldName : fieldName;
3245
3246 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, &currentBlockEncoder);
3247 fieldRegisterIndex += fieldType.totalRegisterCount();
3248 }
3249 currentBlockEncoder.exitAggregateType();
3250 activeUniformBlocks[blockId].dataSize = currentBlockEncoder.getBlockSize();
3251 }
3252 else
3253 {
3254 int fieldRegisterIndex = registerIndex;
3255
3256 const TFieldList& fields = structure->fields();
3257 if(type.isArray() && (structure || type.isInterfaceBlock()))
3258 {
3259 for(int i = 0; i < type.getArraySize(); i++)
3260 {
3261 if(encoder)
3262 {
3263 encoder->enterAggregateType();
3264 }
3265 for(size_t j = 0; j < fields.size(); j++)
3266 {
3267 const TType &fieldType = *(fields[j]->type());
3268 const TString &fieldName = fields[j]->name();
3269 const TString uniformName = name + "[" + str(i) + "]." + fieldName;
3270
3271 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, encoder);
3272 fieldRegisterIndex += fieldType.totalRegisterCount();
3273 }
3274 if(encoder)
3275 {
3276 encoder->exitAggregateType();
3277 }
3278 }
3279 }
3280 else
3281 {
3282 if(encoder)
3283 {
3284 encoder->enterAggregateType();
3285 }
3286 for(size_t i = 0; i < fields.size(); i++)
3287 {
3288 const TType &fieldType = *(fields[i]->type());
3289 const TString &fieldName = fields[i]->name();
3290 const TString uniformName = name + "." + fieldName;
3291
3292 declareUniform(fieldType, uniformName, fieldRegisterIndex, blockId, encoder);
3293 fieldRegisterIndex += fieldType.totalRegisterCount();
3294 }
3295 if(encoder)
3296 {
3297 encoder->exitAggregateType();
3298 }
3299 }
3300 }
3301 }
3302
3303 GLenum OutputASM::glVariableType(const TType &type)
3304 {
3305 switch(type.getBasicType())
3306 {
3307 case EbtFloat:
3308 if(type.isScalar())
3309 {
3310 return GL_FLOAT;
3311 }
3312 else if(type.isVector())
3313 {
3314 switch(type.getNominalSize())
3315 {
3316 case 2: return GL_FLOAT_VEC2;
3317 case 3: return GL_FLOAT_VEC3;
3318 case 4: return GL_FLOAT_VEC4;
3319 default: UNREACHABLE(type.getNominalSize());
3320 }
3321 }
3322 else if(type.isMatrix())
3323 {
3324 switch(type.getNominalSize())
3325 {
3326 case 2:
3327 switch(type.getSecondarySize())
3328 {
3329 case 2: return GL_FLOAT_MAT2;
3330 case 3: return GL_FLOAT_MAT2x3;
3331 case 4: return GL_FLOAT_MAT2x4;
3332 default: UNREACHABLE(type.getSecondarySize());
3333 }
3334 case 3:
3335 switch(type.getSecondarySize())
3336 {
3337 case 2: return GL_FLOAT_MAT3x2;
3338 case 3: return GL_FLOAT_MAT3;
3339 case 4: return GL_FLOAT_MAT3x4;
3340 default: UNREACHABLE(type.getSecondarySize());
3341 }
3342 case 4:
3343 switch(type.getSecondarySize())
3344 {
3345 case 2: return GL_FLOAT_MAT4x2;
3346 case 3: return GL_FLOAT_MAT4x3;
3347 case 4: return GL_FLOAT_MAT4;
3348 default: UNREACHABLE(type.getSecondarySize());
3349 }
3350 default: UNREACHABLE(type.getNominalSize());
3351 }
3352 }
3353 else UNREACHABLE(0);
3354 break;
3355 case EbtInt:
3356 if(type.isScalar())
3357 {
3358 return GL_INT;
3359 }
3360 else if(type.isVector())
3361 {
3362 switch(type.getNominalSize())
3363 {
3364 case 2: return GL_INT_VEC2;
3365 case 3: return GL_INT_VEC3;
3366 case 4: return GL_INT_VEC4;
3367 default: UNREACHABLE(type.getNominalSize());
3368 }
3369 }
3370 else UNREACHABLE(0);
3371 break;
3372 case EbtUInt:
3373 if(type.isScalar())
3374 {
3375 return GL_UNSIGNED_INT;
3376 }
3377 else if(type.isVector())
3378 {
3379 switch(type.getNominalSize())
3380 {
3381 case 2: return GL_UNSIGNED_INT_VEC2;
3382 case 3: return GL_UNSIGNED_INT_VEC3;
3383 case 4: return GL_UNSIGNED_INT_VEC4;
3384 default: UNREACHABLE(type.getNominalSize());
3385 }
3386 }
3387 else UNREACHABLE(0);
3388 break;
3389 case EbtBool:
3390 if(type.isScalar())
3391 {
3392 return GL_BOOL;
3393 }
3394 else if(type.isVector())
3395 {
3396 switch(type.getNominalSize())
3397 {
3398 case 2: return GL_BOOL_VEC2;
3399 case 3: return GL_BOOL_VEC3;
3400 case 4: return GL_BOOL_VEC4;
3401 default: UNREACHABLE(type.getNominalSize());
3402 }
3403 }
3404 else UNREACHABLE(0);
3405 break;
3406 case EbtSampler2D:
3407 return GL_SAMPLER_2D;
3408 case EbtISampler2D:
3409 return GL_INT_SAMPLER_2D;
3410 case EbtUSampler2D:
3411 return GL_UNSIGNED_INT_SAMPLER_2D;
3412 case EbtSamplerCube:
3413 return GL_SAMPLER_CUBE;
3414 case EbtISamplerCube:
3415 return GL_INT_SAMPLER_CUBE;
3416 case EbtUSamplerCube:
3417 return GL_UNSIGNED_INT_SAMPLER_CUBE;
3418 case EbtSamplerExternalOES:
3419 return GL_SAMPLER_EXTERNAL_OES;
3420 case EbtSampler3D:
3421 return GL_SAMPLER_3D_OES;
3422 case EbtISampler3D:
3423 return GL_INT_SAMPLER_3D;
3424 case EbtUSampler3D:
3425 return GL_UNSIGNED_INT_SAMPLER_3D;
3426 case EbtSampler2DArray:
3427 return GL_SAMPLER_2D_ARRAY;
3428 case EbtISampler2DArray:
3429 return GL_INT_SAMPLER_2D_ARRAY;
3430 case EbtUSampler2DArray:
3431 return GL_UNSIGNED_INT_SAMPLER_2D_ARRAY;
3432 case EbtSampler2DShadow:
3433 return GL_SAMPLER_2D_SHADOW;
3434 case EbtSamplerCubeShadow:
3435 return GL_SAMPLER_CUBE_SHADOW;
3436 case EbtSampler2DArrayShadow:
3437 return GL_SAMPLER_2D_ARRAY_SHADOW;
3438 default:
3439 UNREACHABLE(type.getBasicType());
3440 break;
3441 }
3442
3443 return GL_NONE;
3444 }
3445
3446 GLenum OutputASM::glVariablePrecision(const TType &type)
3447 {
3448 if(type.getBasicType() == EbtFloat)
3449 {
3450 switch(type.getPrecision())
3451 {
3452 case EbpHigh: return GL_HIGH_FLOAT;
3453 case EbpMedium: return GL_MEDIUM_FLOAT;
3454 case EbpLow: return GL_LOW_FLOAT;
3455 case EbpUndefined:
3456 // Should be defined as the default precision by the parser
3457 default: UNREACHABLE(type.getPrecision());
3458 }
3459 }
3460 else if(type.getBasicType() == EbtInt)
3461 {
3462 switch(type.getPrecision())
3463 {
3464 case EbpHigh: return GL_HIGH_INT;
3465 case EbpMedium: return GL_MEDIUM_INT;
3466 case EbpLow: return GL_LOW_INT;
3467 case EbpUndefined:
3468 // Should be defined as the default precision by the parser
3469 default: UNREACHABLE(type.getPrecision());
3470 }
3471 }
3472
3473 // Other types (boolean, sampler) don't have a precision
3474 return GL_NONE;
3475 }
3476
3477 int OutputASM::dim(TIntermNode *v)
3478 {
3479 TIntermTyped *vector = v->getAsTyped();
3480 ASSERT(vector && vector->isRegister());
3481 return vector->getNominalSize();
3482 }
3483
3484 int OutputASM::dim2(TIntermNode *m)
3485 {
3486 TIntermTyped *matrix = m->getAsTyped();
3487 ASSERT(matrix && matrix->isMatrix() && !matrix->isArray());
3488 return matrix->getSecondarySize();
3489 }
3490
3491 // Returns ~0u if no loop count could be determined
3492 unsigned int OutputASM::loopCount(TIntermLoop *node)
3493 {
3494 // Parse loops of the form:
3495 // for(int index = initial; index [comparator] limit; index += increment)
3496 TIntermSymbol *index = 0;
3497 TOperator comparator = EOpNull;
3498 int initial = 0;
3499 int limit = 0;
3500 int increment = 0;
3501
3502 // Parse index name and intial value
3503 if(node->getInit())
3504 {
3505 TIntermAggregate *init = node->getInit()->getAsAggregate();
3506
3507 if(init)
3508 {
3509 TIntermSequence &sequence = init->getSequence();
3510 TIntermTyped *variable = sequence[0]->getAsTyped();
3511
3512 if(variable && variable->getQualifier() == EvqTemporary)
3513 {
3514 TIntermBinary *assign = variable->getAsBinaryNode();
3515
3516 if(assign->getOp() == EOpInitialize)
3517 {
3518 TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
3519 TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
3520
3521 if(symbol && constant)
3522 {
3523 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3524 {
3525 index = symbol;
3526 initial = constant->getUnionArrayPointer()[0].getIConst();
3527 }
3528 }
3529 }
3530 }
3531 }
3532 }
3533
3534 // Parse comparator and limit value
3535 if(index && node->getCondition())
3536 {
3537 TIntermBinary *test = node->getCondition()->getAsBinaryNode();
Alexis Hetu7be70cf2016-05-11 10:56:43 -04003538 TIntermSymbol *left = test ? test->getLeft()->getAsSymbolNode() : nullptr;
Nicolas Capens0bac2852016-05-07 06:09:58 -04003539
Alexis Hetu7be70cf2016-05-11 10:56:43 -04003540 if(left && (left->getId() == index->getId()))
Nicolas Capens0bac2852016-05-07 06:09:58 -04003541 {
3542 TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
3543
3544 if(constant)
3545 {
3546 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3547 {
3548 comparator = test->getOp();
3549 limit = constant->getUnionArrayPointer()[0].getIConst();
3550 }
3551 }
3552 }
3553 }
3554
3555 // Parse increment
3556 if(index && comparator != EOpNull && node->getExpression())
3557 {
3558 TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
3559 TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
3560
3561 if(binaryTerminal)
3562 {
3563 TOperator op = binaryTerminal->getOp();
3564 TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
3565
3566 if(constant)
3567 {
3568 if(constant->getBasicType() == EbtInt && constant->getNominalSize() == 1)
3569 {
3570 int value = constant->getUnionArrayPointer()[0].getIConst();
3571
3572 switch(op)
3573 {
3574 case EOpAddAssign: increment = value; break;
3575 case EOpSubAssign: increment = -value; break;
3576 default: UNIMPLEMENTED();
3577 }
3578 }
3579 }
3580 }
3581 else if(unaryTerminal)
3582 {
3583 TOperator op = unaryTerminal->getOp();
3584
3585 switch(op)
3586 {
3587 case EOpPostIncrement: increment = 1; break;
3588 case EOpPostDecrement: increment = -1; break;
3589 case EOpPreIncrement: increment = 1; break;
3590 case EOpPreDecrement: increment = -1; break;
3591 default: UNIMPLEMENTED();
3592 }
3593 }
3594 }
3595
3596 if(index && comparator != EOpNull && increment != 0)
3597 {
3598 if(comparator == EOpLessThanEqual)
3599 {
3600 comparator = EOpLessThan;
3601 limit += 1;
3602 }
3603
3604 if(comparator == EOpLessThan)
3605 {
3606 int iterations = (limit - initial) / increment;
3607
3608 if(iterations <= 0)
3609 {
3610 iterations = 0;
3611 }
3612
3613 return iterations;
3614 }
3615 else UNIMPLEMENTED(); // Falls through
3616 }
3617
3618 return ~0u;
3619 }
3620
3621 bool LoopUnrollable::traverse(TIntermNode *node)
3622 {
3623 loopDepth = 0;
3624 loopUnrollable = true;
3625
3626 node->traverse(this);
3627
3628 return loopUnrollable;
3629 }
3630
3631 bool LoopUnrollable::visitLoop(Visit visit, TIntermLoop *loop)
3632 {
3633 if(visit == PreVisit)
3634 {
3635 loopDepth++;
3636 }
3637 else if(visit == PostVisit)
3638 {
3639 loopDepth++;
3640 }
3641
3642 return true;
3643 }
3644
3645 bool LoopUnrollable::visitBranch(Visit visit, TIntermBranch *node)
3646 {
3647 if(!loopUnrollable)
3648 {
3649 return false;
3650 }
3651
3652 if(!loopDepth)
3653 {
3654 return true;
3655 }
3656
3657 switch(node->getFlowOp())
3658 {
3659 case EOpKill:
3660 case EOpReturn:
3661 break;
3662 case EOpBreak:
3663 case EOpContinue:
3664 loopUnrollable = false;
3665 break;
3666 default: UNREACHABLE(node->getFlowOp());
3667 }
3668
3669 return loopUnrollable;
3670 }
3671
3672 bool LoopUnrollable::visitAggregate(Visit visit, TIntermAggregate *node)
3673 {
3674 return loopUnrollable;
3675 }
3676}