Alexis Hetu | 1b90087 | 2020-02-24 12:09:16 -0500 | [diff] [blame] | 1 | // SPDX-License-Identifier: Apache-2.0 |
| 2 | // ---------------------------------------------------------------------------- |
| 3 | // Copyright 2011-2020 Arm Limited |
| 4 | // |
| 5 | // Licensed under the Apache License, Version 2.0 (the "License"); you may not |
| 6 | // use this file except in compliance with the License. You may obtain a copy |
| 7 | // of the License at: |
| 8 | // |
| 9 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | // |
| 11 | // Unless required by applicable law or agreed to in writing, software |
| 12 | // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 13 | // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 14 | // License for the specific language governing permissions and limitations |
| 15 | // under the License. |
| 16 | // ---------------------------------------------------------------------------- |
| 17 | |
| 18 | /** |
| 19 | * @brief Functions for generating partition tables on demand. |
| 20 | */ |
| 21 | |
| 22 | #include "astc_codec_internals.h" |
| 23 | |
| 24 | /* |
| 25 | Produce a canonicalized representation of a partition pattern |
| 26 | |
| 27 | The largest possible such representation is 432 bits, equal to 7 uint64_t values. |
| 28 | */ |
| 29 | static void gen_canonicalized_partition_table( |
| 30 | int texel_count, |
| 31 | const uint8_t* partition_table, |
| 32 | uint64_t canonicalized[7] |
| 33 | ) { |
| 34 | int i; |
| 35 | for (i = 0; i < 7; i++) |
| 36 | canonicalized[i] = 0; |
| 37 | |
| 38 | int mapped_index[4]; |
| 39 | int map_weight_count = 0; |
| 40 | for (i = 0; i < 4; i++) |
| 41 | mapped_index[i] = -1; |
| 42 | |
| 43 | for (i = 0; i < texel_count; i++) |
| 44 | { |
| 45 | int index = partition_table[i]; |
| 46 | if (mapped_index[index] == -1) |
| 47 | mapped_index[index] = map_weight_count++; |
| 48 | uint64_t xlat_index = mapped_index[index]; |
| 49 | canonicalized[i >> 5] |= xlat_index << (2 * (i & 0x1F)); |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | static int compare_canonicalized_partition_tables( |
| 54 | const uint64_t part1[7], |
| 55 | const uint64_t part2[7] |
| 56 | ) { |
| 57 | if (part1[0] != part2[0]) |
| 58 | return 0; |
| 59 | if (part1[1] != part2[1]) |
| 60 | return 0; |
| 61 | if (part1[2] != part2[2]) |
| 62 | return 0; |
| 63 | if (part1[3] != part2[3]) |
| 64 | return 0; |
| 65 | if (part1[4] != part2[4]) |
| 66 | return 0; |
| 67 | if (part1[5] != part2[5]) |
| 68 | return 0; |
| 69 | if (part1[6] != part2[6]) |
| 70 | return 0; |
| 71 | return 1; |
| 72 | } |
| 73 | |
| 74 | /* |
| 75 | For a partition table, detect partitionss that are equivalent, then mark them as invalid. This reduces the number of partitions that the codec has to consider and thus improves encode |
| 76 | performance. */ |
| 77 | static void partition_table_zap_equal_elements( |
| 78 | int texel_count, |
| 79 | partition_info* pi |
| 80 | ) { |
| 81 | int partition_tables_zapped = 0; |
| 82 | int i, j; |
| 83 | uint64_t *canonicalizeds = new uint64_t[PARTITION_COUNT * 7]; |
| 84 | |
| 85 | |
| 86 | for (i = 0; i < PARTITION_COUNT; i++) |
| 87 | { |
| 88 | gen_canonicalized_partition_table(texel_count, pi[i].partition_of_texel, canonicalizeds + i * 7); |
| 89 | } |
| 90 | |
| 91 | for (i = 0; i < PARTITION_COUNT; i++) |
| 92 | { |
| 93 | for (j = 0; j < i; j++) |
| 94 | { |
| 95 | if (compare_canonicalized_partition_tables(canonicalizeds + 7 * i, canonicalizeds + 7 * j)) |
| 96 | { |
| 97 | pi[i].partition_count = 0; |
| 98 | partition_tables_zapped++; |
| 99 | break; |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | delete[]canonicalizeds; |
| 104 | } |
| 105 | |
| 106 | static uint32_t hash52(uint32_t inp) |
| 107 | { |
| 108 | inp ^= inp >> 15; |
| 109 | |
| 110 | inp *= 0xEEDE0891; // (2^4+1)*(2^7+1)*(2^17-1) |
| 111 | inp ^= inp >> 5; |
| 112 | inp += inp << 16; |
| 113 | inp ^= inp >> 7; |
| 114 | inp ^= inp >> 3; |
| 115 | inp ^= inp << 6; |
| 116 | inp ^= inp >> 17; |
| 117 | return inp; |
| 118 | } |
| 119 | |
| 120 | static int select_partition( |
| 121 | int seed, |
| 122 | int x, |
| 123 | int y, |
| 124 | int z, |
| 125 | int partitioncount, |
| 126 | int small_block |
| 127 | ) { |
| 128 | if (small_block) |
| 129 | { |
| 130 | x <<= 1; |
| 131 | y <<= 1; |
| 132 | z <<= 1; |
| 133 | } |
| 134 | |
| 135 | seed += (partitioncount - 1) * 1024; |
| 136 | |
| 137 | uint32_t rnum = hash52(seed); |
| 138 | |
| 139 | uint8_t seed1 = rnum & 0xF; |
| 140 | uint8_t seed2 = (rnum >> 4) & 0xF; |
| 141 | uint8_t seed3 = (rnum >> 8) & 0xF; |
| 142 | uint8_t seed4 = (rnum >> 12) & 0xF; |
| 143 | uint8_t seed5 = (rnum >> 16) & 0xF; |
| 144 | uint8_t seed6 = (rnum >> 20) & 0xF; |
| 145 | uint8_t seed7 = (rnum >> 24) & 0xF; |
| 146 | uint8_t seed8 = (rnum >> 28) & 0xF; |
| 147 | uint8_t seed9 = (rnum >> 18) & 0xF; |
| 148 | uint8_t seed10 = (rnum >> 22) & 0xF; |
| 149 | uint8_t seed11 = (rnum >> 26) & 0xF; |
| 150 | uint8_t seed12 = ((rnum >> 30) | (rnum << 2)) & 0xF; |
| 151 | |
| 152 | // squaring all the seeds in order to bias their distribution |
| 153 | // towards lower values. |
| 154 | seed1 *= seed1; |
| 155 | seed2 *= seed2; |
| 156 | seed3 *= seed3; |
| 157 | seed4 *= seed4; |
| 158 | seed5 *= seed5; |
| 159 | seed6 *= seed6; |
| 160 | seed7 *= seed7; |
| 161 | seed8 *= seed8; |
| 162 | seed9 *= seed9; |
| 163 | seed10 *= seed10; |
| 164 | seed11 *= seed11; |
| 165 | seed12 *= seed12; |
| 166 | |
| 167 | int sh1, sh2, sh3; |
| 168 | if (seed & 1) |
| 169 | { |
| 170 | sh1 = (seed & 2 ? 4 : 5); |
| 171 | sh2 = (partitioncount == 3 ? 6 : 5); |
| 172 | } |
| 173 | else |
| 174 | { |
| 175 | sh1 = (partitioncount == 3 ? 6 : 5); |
| 176 | sh2 = (seed & 2 ? 4 : 5); |
| 177 | } |
| 178 | sh3 = (seed & 0x10) ? sh1 : sh2; |
| 179 | |
| 180 | seed1 >>= sh1; |
| 181 | seed2 >>= sh2; |
| 182 | seed3 >>= sh1; |
| 183 | seed4 >>= sh2; |
| 184 | seed5 >>= sh1; |
| 185 | seed6 >>= sh2; |
| 186 | seed7 >>= sh1; |
| 187 | seed8 >>= sh2; |
| 188 | |
| 189 | seed9 >>= sh3; |
| 190 | seed10 >>= sh3; |
| 191 | seed11 >>= sh3; |
| 192 | seed12 >>= sh3; |
| 193 | |
| 194 | int a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14); |
| 195 | int b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10); |
| 196 | int c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6); |
| 197 | int d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2); |
| 198 | |
| 199 | // apply the saw |
| 200 | a &= 0x3F; |
| 201 | b &= 0x3F; |
| 202 | c &= 0x3F; |
| 203 | d &= 0x3F; |
| 204 | |
| 205 | // remove some of the components if we are to output < 4 partitions. |
| 206 | if (partitioncount <= 3) |
| 207 | d = 0; |
| 208 | if (partitioncount <= 2) |
| 209 | c = 0; |
| 210 | if (partitioncount <= 1) |
| 211 | b = 0; |
| 212 | |
| 213 | int partition; |
| 214 | if (a >= b && a >= c && a >= d) |
| 215 | partition = 0; |
| 216 | else if (b >= c && b >= d) |
| 217 | partition = 1; |
| 218 | else if (c >= d) |
| 219 | partition = 2; |
| 220 | else |
| 221 | partition = 3; |
| 222 | return partition; |
| 223 | } |
| 224 | |
| 225 | static void generate_one_partition_table( |
| 226 | const block_size_descriptor* bsd, |
| 227 | int partition_count, |
| 228 | int partition_index, |
| 229 | partition_info* pt |
| 230 | ) { |
| 231 | int texels_per_block = bsd->texel_count; |
| 232 | int small_block = texels_per_block < 32; |
| 233 | |
| 234 | uint8_t *partition_of_texel = pt->partition_of_texel; |
| 235 | int x, y, z, i; |
| 236 | |
| 237 | for (z = 0; z < bsd->zdim; z++) |
| 238 | for (y = 0; y < bsd->ydim; y++) |
| 239 | for (x = 0; x < bsd->xdim; x++) |
| 240 | { |
| 241 | uint8_t part = select_partition(partition_index, x, y, z, partition_count, small_block); |
| 242 | *partition_of_texel++ = part; |
| 243 | } |
| 244 | |
| 245 | int counts[4]; |
| 246 | for (i = 0; i < 4; i++) |
| 247 | counts[i] = 0; |
| 248 | |
| 249 | for (i = 0; i < texels_per_block; i++) |
| 250 | { |
| 251 | int partition = pt->partition_of_texel[i]; |
| 252 | pt->texels_of_partition[partition][counts[partition]++] = i; |
| 253 | } |
| 254 | |
| 255 | for (i = 0; i < 4; i++) |
| 256 | pt->texels_per_partition[i] = counts[i]; |
| 257 | |
| 258 | if (counts[0] == 0) |
| 259 | pt->partition_count = 0; |
| 260 | else if (counts[1] == 0) |
| 261 | pt->partition_count = 1; |
| 262 | else if (counts[2] == 0) |
| 263 | pt->partition_count = 2; |
| 264 | else if (counts[3] == 0) |
| 265 | pt->partition_count = 3; |
| 266 | else |
| 267 | pt->partition_count = 4; |
| 268 | |
| 269 | for (i = 0; i < 4; i++) |
| 270 | pt->coverage_bitmaps[i] = 0ULL; |
| 271 | |
| 272 | int texels_to_process = bsd->texelcount_for_bitmap_partitioning; |
| 273 | for (i = 0; i < texels_to_process; i++) |
| 274 | { |
| 275 | int idx = bsd->texels_for_bitmap_partitioning[i]; |
| 276 | pt->coverage_bitmaps[pt->partition_of_texel[idx]] |= 1ULL << i; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /* Public function, see header file for detailed documentation */ |
| 281 | void init_partition_tables( |
| 282 | block_size_descriptor* bsd |
| 283 | ) { |
| 284 | partition_info *par_tab2 = bsd->partitions; |
| 285 | partition_info *par_tab3 = par_tab2 + PARTITION_COUNT; |
| 286 | partition_info *par_tab4 = par_tab3 + PARTITION_COUNT; |
| 287 | partition_info *par_tab1 = par_tab4 + PARTITION_COUNT; |
| 288 | |
| 289 | generate_one_partition_table(bsd, 1, 0, par_tab1); |
| 290 | for (int i = 0; i < 1024; i++) |
| 291 | { |
| 292 | generate_one_partition_table(bsd, 2, i, par_tab2 + i); |
| 293 | generate_one_partition_table(bsd, 3, i, par_tab3 + i); |
| 294 | generate_one_partition_table(bsd, 4, i, par_tab4 + i); |
| 295 | } |
| 296 | |
| 297 | partition_table_zap_equal_elements(bsd->texel_count, par_tab2); |
| 298 | partition_table_zap_equal_elements(bsd->texel_count, par_tab3); |
| 299 | partition_table_zap_equal_elements(bsd->texel_count, par_tab4); |
| 300 | } |