Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 1 | // Copyright (c) 2018 Google LLC |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "source/opt/const_folding_rules.h" |
| 16 | |
| 17 | #include "source/opt/ir_context.h" |
| 18 | |
| 19 | namespace spvtools { |
| 20 | namespace opt { |
| 21 | namespace { |
| 22 | |
| 23 | const uint32_t kExtractCompositeIdInIdx = 0; |
| 24 | |
| 25 | // Returns true if |type| is Float or a vector of Float. |
| 26 | bool HasFloatingPoint(const analysis::Type* type) { |
| 27 | if (type->AsFloat()) { |
| 28 | return true; |
| 29 | } else if (const analysis::Vector* vec_type = type->AsVector()) { |
| 30 | return vec_type->element_type()->AsFloat() != nullptr; |
| 31 | } |
| 32 | |
| 33 | return false; |
| 34 | } |
| 35 | |
| 36 | // Folds an OpcompositeExtract where input is a composite constant. |
| 37 | ConstantFoldingRule FoldExtractWithConstants() { |
| 38 | return [](IRContext* context, Instruction* inst, |
| 39 | const std::vector<const analysis::Constant*>& constants) |
| 40 | -> const analysis::Constant* { |
| 41 | const analysis::Constant* c = constants[kExtractCompositeIdInIdx]; |
| 42 | if (c == nullptr) { |
| 43 | return nullptr; |
| 44 | } |
| 45 | |
| 46 | for (uint32_t i = 1; i < inst->NumInOperands(); ++i) { |
| 47 | uint32_t element_index = inst->GetSingleWordInOperand(i); |
| 48 | if (c->AsNullConstant()) { |
| 49 | // Return Null for the return type. |
| 50 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 51 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 52 | return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), {}); |
| 53 | } |
| 54 | |
| 55 | auto cc = c->AsCompositeConstant(); |
| 56 | assert(cc != nullptr); |
| 57 | auto components = cc->GetComponents(); |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 58 | // Protect against invalid IR. Refuse to fold if the index is out |
| 59 | // of bounds. |
| 60 | if (element_index >= components.size()) return nullptr; |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 61 | c = components[element_index]; |
| 62 | } |
| 63 | return c; |
| 64 | }; |
| 65 | } |
| 66 | |
| 67 | ConstantFoldingRule FoldVectorShuffleWithConstants() { |
| 68 | return [](IRContext* context, Instruction* inst, |
| 69 | const std::vector<const analysis::Constant*>& constants) |
| 70 | -> const analysis::Constant* { |
| 71 | assert(inst->opcode() == SpvOpVectorShuffle); |
| 72 | const analysis::Constant* c1 = constants[0]; |
| 73 | const analysis::Constant* c2 = constants[1]; |
| 74 | if (c1 == nullptr || c2 == nullptr) { |
| 75 | return nullptr; |
| 76 | } |
| 77 | |
| 78 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 79 | const analysis::Type* element_type = c1->type()->AsVector()->element_type(); |
| 80 | |
| 81 | std::vector<const analysis::Constant*> c1_components; |
| 82 | if (const analysis::VectorConstant* vec_const = c1->AsVectorConstant()) { |
| 83 | c1_components = vec_const->GetComponents(); |
| 84 | } else { |
| 85 | assert(c1->AsNullConstant()); |
| 86 | const analysis::Constant* element = |
| 87 | const_mgr->GetConstant(element_type, {}); |
| 88 | c1_components.resize(c1->type()->AsVector()->element_count(), element); |
| 89 | } |
| 90 | std::vector<const analysis::Constant*> c2_components; |
| 91 | if (const analysis::VectorConstant* vec_const = c2->AsVectorConstant()) { |
| 92 | c2_components = vec_const->GetComponents(); |
| 93 | } else { |
| 94 | assert(c2->AsNullConstant()); |
| 95 | const analysis::Constant* element = |
| 96 | const_mgr->GetConstant(element_type, {}); |
| 97 | c2_components.resize(c2->type()->AsVector()->element_count(), element); |
| 98 | } |
| 99 | |
| 100 | std::vector<uint32_t> ids; |
| 101 | const uint32_t undef_literal_value = 0xffffffff; |
| 102 | for (uint32_t i = 2; i < inst->NumInOperands(); ++i) { |
| 103 | uint32_t index = inst->GetSingleWordInOperand(i); |
| 104 | if (index == undef_literal_value) { |
| 105 | // Don't fold shuffle with undef literal value. |
| 106 | return nullptr; |
| 107 | } else if (index < c1_components.size()) { |
| 108 | Instruction* member_inst = |
| 109 | const_mgr->GetDefiningInstruction(c1_components[index]); |
| 110 | ids.push_back(member_inst->result_id()); |
| 111 | } else { |
| 112 | Instruction* member_inst = const_mgr->GetDefiningInstruction( |
| 113 | c2_components[index - c1_components.size()]); |
| 114 | ids.push_back(member_inst->result_id()); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 119 | return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids); |
| 120 | }; |
| 121 | } |
| 122 | |
| 123 | ConstantFoldingRule FoldVectorTimesScalar() { |
| 124 | return [](IRContext* context, Instruction* inst, |
| 125 | const std::vector<const analysis::Constant*>& constants) |
| 126 | -> const analysis::Constant* { |
| 127 | assert(inst->opcode() == SpvOpVectorTimesScalar); |
| 128 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 129 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 130 | |
| 131 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 132 | if (HasFloatingPoint(type_mgr->GetType(inst->type_id()))) { |
| 133 | return nullptr; |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | const analysis::Constant* c1 = constants[0]; |
| 138 | const analysis::Constant* c2 = constants[1]; |
| 139 | |
| 140 | if (c1 && c1->IsZero()) { |
| 141 | return c1; |
| 142 | } |
| 143 | |
| 144 | if (c2 && c2->IsZero()) { |
| 145 | // Get or create the NullConstant for this type. |
| 146 | std::vector<uint32_t> ids; |
| 147 | return const_mgr->GetConstant(type_mgr->GetType(inst->type_id()), ids); |
| 148 | } |
| 149 | |
| 150 | if (c1 == nullptr || c2 == nullptr) { |
| 151 | return nullptr; |
| 152 | } |
| 153 | |
| 154 | // Check result type. |
| 155 | const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); |
| 156 | const analysis::Vector* vector_type = result_type->AsVector(); |
| 157 | assert(vector_type != nullptr); |
| 158 | const analysis::Type* element_type = vector_type->element_type(); |
| 159 | assert(element_type != nullptr); |
| 160 | const analysis::Float* float_type = element_type->AsFloat(); |
| 161 | assert(float_type != nullptr); |
| 162 | |
| 163 | // Check types of c1 and c2. |
| 164 | assert(c1->type()->AsVector() == vector_type); |
| 165 | assert(c1->type()->AsVector()->element_type() == element_type && |
| 166 | c2->type() == element_type); |
| 167 | |
| 168 | // Get a float vector that is the result of vector-times-scalar. |
| 169 | std::vector<const analysis::Constant*> c1_components = |
| 170 | c1->GetVectorComponents(const_mgr); |
| 171 | std::vector<uint32_t> ids; |
| 172 | if (float_type->width() == 32) { |
| 173 | float scalar = c2->GetFloat(); |
| 174 | for (uint32_t i = 0; i < c1_components.size(); ++i) { |
| 175 | utils::FloatProxy<float> result(c1_components[i]->GetFloat() * scalar); |
| 176 | std::vector<uint32_t> words = result.GetWords(); |
| 177 | const analysis::Constant* new_elem = |
| 178 | const_mgr->GetConstant(float_type, words); |
| 179 | ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); |
| 180 | } |
| 181 | return const_mgr->GetConstant(vector_type, ids); |
| 182 | } else if (float_type->width() == 64) { |
| 183 | double scalar = c2->GetDouble(); |
| 184 | for (uint32_t i = 0; i < c1_components.size(); ++i) { |
| 185 | utils::FloatProxy<double> result(c1_components[i]->GetDouble() * |
| 186 | scalar); |
| 187 | std::vector<uint32_t> words = result.GetWords(); |
| 188 | const analysis::Constant* new_elem = |
| 189 | const_mgr->GetConstant(float_type, words); |
| 190 | ids.push_back(const_mgr->GetDefiningInstruction(new_elem)->result_id()); |
| 191 | } |
| 192 | return const_mgr->GetConstant(vector_type, ids); |
| 193 | } |
| 194 | return nullptr; |
| 195 | }; |
| 196 | } |
| 197 | |
| 198 | ConstantFoldingRule FoldCompositeWithConstants() { |
| 199 | // Folds an OpCompositeConstruct where all of the inputs are constants to a |
| 200 | // constant. A new constant is created if necessary. |
| 201 | return [](IRContext* context, Instruction* inst, |
| 202 | const std::vector<const analysis::Constant*>& constants) |
| 203 | -> const analysis::Constant* { |
| 204 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 205 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 206 | const analysis::Type* new_type = type_mgr->GetType(inst->type_id()); |
| 207 | Instruction* type_inst = |
| 208 | context->get_def_use_mgr()->GetDef(inst->type_id()); |
| 209 | |
| 210 | std::vector<uint32_t> ids; |
| 211 | for (uint32_t i = 0; i < constants.size(); ++i) { |
| 212 | const analysis::Constant* element_const = constants[i]; |
| 213 | if (element_const == nullptr) { |
| 214 | return nullptr; |
| 215 | } |
| 216 | |
| 217 | uint32_t component_type_id = 0; |
| 218 | if (type_inst->opcode() == SpvOpTypeStruct) { |
| 219 | component_type_id = type_inst->GetSingleWordInOperand(i); |
| 220 | } else if (type_inst->opcode() == SpvOpTypeArray) { |
| 221 | component_type_id = type_inst->GetSingleWordInOperand(0); |
| 222 | } |
| 223 | |
| 224 | uint32_t element_id = |
| 225 | const_mgr->FindDeclaredConstant(element_const, component_type_id); |
| 226 | if (element_id == 0) { |
| 227 | return nullptr; |
| 228 | } |
| 229 | ids.push_back(element_id); |
| 230 | } |
| 231 | return const_mgr->GetConstant(new_type, ids); |
| 232 | }; |
| 233 | } |
| 234 | |
| 235 | // The interface for a function that returns the result of applying a scalar |
| 236 | // floating-point binary operation on |a| and |b|. The type of the return value |
| 237 | // will be |type|. The input constants must also be of type |type|. |
| 238 | using UnaryScalarFoldingRule = std::function<const analysis::Constant*( |
| 239 | const analysis::Type* result_type, const analysis::Constant* a, |
| 240 | analysis::ConstantManager*)>; |
| 241 | |
| 242 | // The interface for a function that returns the result of applying a scalar |
| 243 | // floating-point binary operation on |a| and |b|. The type of the return value |
| 244 | // will be |type|. The input constants must also be of type |type|. |
| 245 | using BinaryScalarFoldingRule = std::function<const analysis::Constant*( |
| 246 | const analysis::Type* result_type, const analysis::Constant* a, |
| 247 | const analysis::Constant* b, analysis::ConstantManager*)>; |
| 248 | |
| 249 | // Returns a |ConstantFoldingRule| that folds unary floating point scalar ops |
| 250 | // using |scalar_rule| and unary float point vectors ops by applying |
| 251 | // |scalar_rule| to the elements of the vector. The |ConstantFoldingRule| |
| 252 | // that is returned assumes that |constants| contains 1 entry. If they are |
| 253 | // not |nullptr|, then their type is either |Float| or |Integer| or a |Vector| |
| 254 | // whose element type is |Float| or |Integer|. |
| 255 | ConstantFoldingRule FoldFPUnaryOp(UnaryScalarFoldingRule scalar_rule) { |
| 256 | return [scalar_rule](IRContext* context, Instruction* inst, |
| 257 | const std::vector<const analysis::Constant*>& constants) |
| 258 | -> const analysis::Constant* { |
| 259 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 260 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 261 | const analysis::Type* result_type = type_mgr->GetType(inst->type_id()); |
| 262 | const analysis::Vector* vector_type = result_type->AsVector(); |
| 263 | |
| 264 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 265 | return nullptr; |
| 266 | } |
| 267 | |
Ben Clayton | dc6b76a | 2020-02-24 14:53:40 +0000 | [diff] [blame] | 268 | const analysis::Constant* arg = |
| 269 | (inst->opcode() == SpvOpExtInst) ? constants[1] : constants[0]; |
| 270 | |
| 271 | if (arg == nullptr) { |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 272 | return nullptr; |
| 273 | } |
| 274 | |
| 275 | if (vector_type != nullptr) { |
| 276 | std::vector<const analysis::Constant*> a_components; |
| 277 | std::vector<const analysis::Constant*> results_components; |
| 278 | |
Ben Clayton | dc6b76a | 2020-02-24 14:53:40 +0000 | [diff] [blame] | 279 | a_components = arg->GetVectorComponents(const_mgr); |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 280 | |
| 281 | // Fold each component of the vector. |
| 282 | for (uint32_t i = 0; i < a_components.size(); ++i) { |
| 283 | results_components.push_back(scalar_rule(vector_type->element_type(), |
| 284 | a_components[i], const_mgr)); |
| 285 | if (results_components[i] == nullptr) { |
| 286 | return nullptr; |
| 287 | } |
| 288 | } |
| 289 | |
| 290 | // Build the constant object and return it. |
| 291 | std::vector<uint32_t> ids; |
| 292 | for (const analysis::Constant* member : results_components) { |
| 293 | ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id()); |
| 294 | } |
| 295 | return const_mgr->GetConstant(vector_type, ids); |
| 296 | } else { |
Ben Clayton | dc6b76a | 2020-02-24 14:53:40 +0000 | [diff] [blame] | 297 | return scalar_rule(result_type, arg, const_mgr); |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 298 | } |
| 299 | }; |
| 300 | } |
| 301 | |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 302 | // Returns the result of folding the constants in |constants| according the |
| 303 | // |scalar_rule|. If |result_type| is a vector, then |scalar_rule| is applied |
| 304 | // per component. |
| 305 | const analysis::Constant* FoldFPBinaryOp( |
| 306 | BinaryScalarFoldingRule scalar_rule, uint32_t result_type_id, |
| 307 | const std::vector<const analysis::Constant*>& constants, |
| 308 | IRContext* context) { |
| 309 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 310 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 311 | const analysis::Type* result_type = type_mgr->GetType(result_type_id); |
| 312 | const analysis::Vector* vector_type = result_type->AsVector(); |
| 313 | |
| 314 | if (constants[0] == nullptr || constants[1] == nullptr) { |
| 315 | return nullptr; |
| 316 | } |
| 317 | |
| 318 | if (vector_type != nullptr) { |
| 319 | std::vector<const analysis::Constant*> a_components; |
| 320 | std::vector<const analysis::Constant*> b_components; |
| 321 | std::vector<const analysis::Constant*> results_components; |
| 322 | |
| 323 | a_components = constants[0]->GetVectorComponents(const_mgr); |
| 324 | b_components = constants[1]->GetVectorComponents(const_mgr); |
| 325 | |
| 326 | // Fold each component of the vector. |
| 327 | for (uint32_t i = 0; i < a_components.size(); ++i) { |
| 328 | results_components.push_back(scalar_rule(vector_type->element_type(), |
| 329 | a_components[i], b_components[i], |
| 330 | const_mgr)); |
| 331 | if (results_components[i] == nullptr) { |
| 332 | return nullptr; |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | // Build the constant object and return it. |
| 337 | std::vector<uint32_t> ids; |
| 338 | for (const analysis::Constant* member : results_components) { |
| 339 | ids.push_back(const_mgr->GetDefiningInstruction(member)->result_id()); |
| 340 | } |
| 341 | return const_mgr->GetConstant(vector_type, ids); |
| 342 | } else { |
| 343 | return scalar_rule(result_type, constants[0], constants[1], const_mgr); |
| 344 | } |
| 345 | } |
| 346 | |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 347 | // Returns a |ConstantFoldingRule| that folds floating point scalars using |
| 348 | // |scalar_rule| and vectors of floating point by applying |scalar_rule| to the |
| 349 | // elements of the vector. The |ConstantFoldingRule| that is returned assumes |
| 350 | // that |constants| contains 2 entries. If they are not |nullptr|, then their |
| 351 | // type is either |Float| or a |Vector| whose element type is |Float|. |
| 352 | ConstantFoldingRule FoldFPBinaryOp(BinaryScalarFoldingRule scalar_rule) { |
| 353 | return [scalar_rule](IRContext* context, Instruction* inst, |
| 354 | const std::vector<const analysis::Constant*>& constants) |
| 355 | -> const analysis::Constant* { |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 356 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 357 | return nullptr; |
| 358 | } |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 359 | if (inst->opcode() == SpvOpExtInst) { |
| 360 | return FoldFPBinaryOp(scalar_rule, inst->type_id(), |
| 361 | {constants[1], constants[2]}, context); |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 362 | } |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 363 | return FoldFPBinaryOp(scalar_rule, inst->type_id(), constants, context); |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 364 | }; |
| 365 | } |
| 366 | |
| 367 | // This macro defines a |UnaryScalarFoldingRule| that performs float to |
| 368 | // integer conversion. |
| 369 | // TODO(greg-lunarg): Support for 64-bit integer types. |
| 370 | UnaryScalarFoldingRule FoldFToIOp() { |
| 371 | return [](const analysis::Type* result_type, const analysis::Constant* a, |
| 372 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 373 | assert(result_type != nullptr && a != nullptr); |
| 374 | const analysis::Integer* integer_type = result_type->AsInteger(); |
| 375 | const analysis::Float* float_type = a->type()->AsFloat(); |
| 376 | assert(float_type != nullptr); |
| 377 | assert(integer_type != nullptr); |
| 378 | if (integer_type->width() != 32) return nullptr; |
| 379 | if (float_type->width() == 32) { |
| 380 | float fa = a->GetFloat(); |
| 381 | uint32_t result = integer_type->IsSigned() |
| 382 | ? static_cast<uint32_t>(static_cast<int32_t>(fa)) |
| 383 | : static_cast<uint32_t>(fa); |
| 384 | std::vector<uint32_t> words = {result}; |
| 385 | return const_mgr->GetConstant(result_type, words); |
| 386 | } else if (float_type->width() == 64) { |
| 387 | double fa = a->GetDouble(); |
| 388 | uint32_t result = integer_type->IsSigned() |
| 389 | ? static_cast<uint32_t>(static_cast<int32_t>(fa)) |
| 390 | : static_cast<uint32_t>(fa); |
| 391 | std::vector<uint32_t> words = {result}; |
| 392 | return const_mgr->GetConstant(result_type, words); |
| 393 | } |
| 394 | return nullptr; |
| 395 | }; |
| 396 | } |
| 397 | |
| 398 | // This function defines a |UnaryScalarFoldingRule| that performs integer to |
| 399 | // float conversion. |
| 400 | // TODO(greg-lunarg): Support for 64-bit integer types. |
| 401 | UnaryScalarFoldingRule FoldIToFOp() { |
| 402 | return [](const analysis::Type* result_type, const analysis::Constant* a, |
| 403 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 404 | assert(result_type != nullptr && a != nullptr); |
| 405 | const analysis::Integer* integer_type = a->type()->AsInteger(); |
| 406 | const analysis::Float* float_type = result_type->AsFloat(); |
| 407 | assert(float_type != nullptr); |
| 408 | assert(integer_type != nullptr); |
| 409 | if (integer_type->width() != 32) return nullptr; |
| 410 | uint32_t ua = a->GetU32(); |
| 411 | if (float_type->width() == 32) { |
| 412 | float result_val = integer_type->IsSigned() |
| 413 | ? static_cast<float>(static_cast<int32_t>(ua)) |
| 414 | : static_cast<float>(ua); |
| 415 | utils::FloatProxy<float> result(result_val); |
| 416 | std::vector<uint32_t> words = {result.data()}; |
| 417 | return const_mgr->GetConstant(result_type, words); |
| 418 | } else if (float_type->width() == 64) { |
| 419 | double result_val = integer_type->IsSigned() |
| 420 | ? static_cast<double>(static_cast<int32_t>(ua)) |
| 421 | : static_cast<double>(ua); |
| 422 | utils::FloatProxy<double> result(result_val); |
| 423 | std::vector<uint32_t> words = result.GetWords(); |
| 424 | return const_mgr->GetConstant(result_type, words); |
| 425 | } |
| 426 | return nullptr; |
| 427 | }; |
| 428 | } |
| 429 | |
Ben Clayton | b73b760 | 2019-07-29 13:56:13 +0100 | [diff] [blame] | 430 | // This defines a |UnaryScalarFoldingRule| that performs |OpQuantizeToF16|. |
| 431 | UnaryScalarFoldingRule FoldQuantizeToF16Scalar() { |
| 432 | return [](const analysis::Type* result_type, const analysis::Constant* a, |
| 433 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 434 | assert(result_type != nullptr && a != nullptr); |
| 435 | const analysis::Float* float_type = a->type()->AsFloat(); |
| 436 | assert(float_type != nullptr); |
| 437 | if (float_type->width() != 32) { |
| 438 | return nullptr; |
| 439 | } |
| 440 | |
| 441 | float fa = a->GetFloat(); |
| 442 | utils::HexFloat<utils::FloatProxy<float>> orignal(fa); |
| 443 | utils::HexFloat<utils::FloatProxy<utils::Float16>> quantized(0); |
| 444 | utils::HexFloat<utils::FloatProxy<float>> result(0.0f); |
| 445 | orignal.castTo(quantized, utils::round_direction::kToZero); |
| 446 | quantized.castTo(result, utils::round_direction::kToZero); |
| 447 | std::vector<uint32_t> words = {result.getBits()}; |
| 448 | return const_mgr->GetConstant(result_type, words); |
| 449 | }; |
| 450 | } |
| 451 | |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 452 | // This macro defines a |BinaryScalarFoldingRule| that applies |op|. The |
| 453 | // operator |op| must work for both float and double, and use syntax "f1 op f2". |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 454 | #define FOLD_FPARITH_OP(op) \ |
| 455 | [](const analysis::Type* result_type_in_macro, const analysis::Constant* a, \ |
| 456 | const analysis::Constant* b, \ |
| 457 | analysis::ConstantManager* const_mgr_in_macro) \ |
| 458 | -> const analysis::Constant* { \ |
| 459 | assert(result_type_in_macro != nullptr && a != nullptr && b != nullptr); \ |
| 460 | assert(result_type_in_macro == a->type() && \ |
| 461 | result_type_in_macro == b->type()); \ |
| 462 | const analysis::Float* float_type_in_macro = \ |
| 463 | result_type_in_macro->AsFloat(); \ |
| 464 | assert(float_type_in_macro != nullptr); \ |
| 465 | if (float_type_in_macro->width() == 32) { \ |
| 466 | float fa = a->GetFloat(); \ |
| 467 | float fb = b->GetFloat(); \ |
| 468 | utils::FloatProxy<float> result_in_macro(fa op fb); \ |
| 469 | std::vector<uint32_t> words_in_macro = result_in_macro.GetWords(); \ |
| 470 | return const_mgr_in_macro->GetConstant(result_type_in_macro, \ |
| 471 | words_in_macro); \ |
| 472 | } else if (float_type_in_macro->width() == 64) { \ |
| 473 | double fa = a->GetDouble(); \ |
| 474 | double fb = b->GetDouble(); \ |
| 475 | utils::FloatProxy<double> result_in_macro(fa op fb); \ |
| 476 | std::vector<uint32_t> words_in_macro = result_in_macro.GetWords(); \ |
| 477 | return const_mgr_in_macro->GetConstant(result_type_in_macro, \ |
| 478 | words_in_macro); \ |
| 479 | } \ |
| 480 | return nullptr; \ |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 481 | } |
| 482 | |
| 483 | // Define the folding rule for conversion between floating point and integer |
| 484 | ConstantFoldingRule FoldFToI() { return FoldFPUnaryOp(FoldFToIOp()); } |
| 485 | ConstantFoldingRule FoldIToF() { return FoldFPUnaryOp(FoldIToFOp()); } |
Ben Clayton | b73b760 | 2019-07-29 13:56:13 +0100 | [diff] [blame] | 486 | ConstantFoldingRule FoldQuantizeToF16() { |
| 487 | return FoldFPUnaryOp(FoldQuantizeToF16Scalar()); |
| 488 | } |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 489 | |
| 490 | // Define the folding rules for subtraction, addition, multiplication, and |
| 491 | // division for floating point values. |
| 492 | ConstantFoldingRule FoldFSub() { return FoldFPBinaryOp(FOLD_FPARITH_OP(-)); } |
| 493 | ConstantFoldingRule FoldFAdd() { return FoldFPBinaryOp(FOLD_FPARITH_OP(+)); } |
| 494 | ConstantFoldingRule FoldFMul() { return FoldFPBinaryOp(FOLD_FPARITH_OP(*)); } |
| 495 | ConstantFoldingRule FoldFDiv() { return FoldFPBinaryOp(FOLD_FPARITH_OP(/)); } |
| 496 | |
| 497 | bool CompareFloatingPoint(bool op_result, bool op_unordered, |
| 498 | bool need_ordered) { |
| 499 | if (need_ordered) { |
| 500 | // operands are ordered and Operand 1 is |op| Operand 2 |
| 501 | return !op_unordered && op_result; |
| 502 | } else { |
| 503 | // operands are unordered or Operand 1 is |op| Operand 2 |
| 504 | return op_unordered || op_result; |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | // This macro defines a |BinaryScalarFoldingRule| that applies |op|. The |
| 509 | // operator |op| must work for both float and double, and use syntax "f1 op f2". |
| 510 | #define FOLD_FPCMP_OP(op, ord) \ |
| 511 | [](const analysis::Type* result_type, const analysis::Constant* a, \ |
| 512 | const analysis::Constant* b, \ |
| 513 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { \ |
| 514 | assert(result_type != nullptr && a != nullptr && b != nullptr); \ |
| 515 | assert(result_type->AsBool()); \ |
| 516 | assert(a->type() == b->type()); \ |
| 517 | const analysis::Float* float_type = a->type()->AsFloat(); \ |
| 518 | assert(float_type != nullptr); \ |
| 519 | if (float_type->width() == 32) { \ |
| 520 | float fa = a->GetFloat(); \ |
| 521 | float fb = b->GetFloat(); \ |
| 522 | bool result = CompareFloatingPoint( \ |
| 523 | fa op fb, std::isnan(fa) || std::isnan(fb), ord); \ |
| 524 | std::vector<uint32_t> words = {uint32_t(result)}; \ |
| 525 | return const_mgr->GetConstant(result_type, words); \ |
| 526 | } else if (float_type->width() == 64) { \ |
| 527 | double fa = a->GetDouble(); \ |
| 528 | double fb = b->GetDouble(); \ |
| 529 | bool result = CompareFloatingPoint( \ |
| 530 | fa op fb, std::isnan(fa) || std::isnan(fb), ord); \ |
| 531 | std::vector<uint32_t> words = {uint32_t(result)}; \ |
| 532 | return const_mgr->GetConstant(result_type, words); \ |
| 533 | } \ |
| 534 | return nullptr; \ |
| 535 | } |
| 536 | |
| 537 | // Define the folding rules for ordered and unordered comparison for floating |
| 538 | // point values. |
| 539 | ConstantFoldingRule FoldFOrdEqual() { |
| 540 | return FoldFPBinaryOp(FOLD_FPCMP_OP(==, true)); |
| 541 | } |
| 542 | ConstantFoldingRule FoldFUnordEqual() { |
| 543 | return FoldFPBinaryOp(FOLD_FPCMP_OP(==, false)); |
| 544 | } |
| 545 | ConstantFoldingRule FoldFOrdNotEqual() { |
| 546 | return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, true)); |
| 547 | } |
| 548 | ConstantFoldingRule FoldFUnordNotEqual() { |
| 549 | return FoldFPBinaryOp(FOLD_FPCMP_OP(!=, false)); |
| 550 | } |
| 551 | ConstantFoldingRule FoldFOrdLessThan() { |
| 552 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<, true)); |
| 553 | } |
| 554 | ConstantFoldingRule FoldFUnordLessThan() { |
| 555 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<, false)); |
| 556 | } |
| 557 | ConstantFoldingRule FoldFOrdGreaterThan() { |
| 558 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>, true)); |
| 559 | } |
| 560 | ConstantFoldingRule FoldFUnordGreaterThan() { |
| 561 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>, false)); |
| 562 | } |
| 563 | ConstantFoldingRule FoldFOrdLessThanEqual() { |
| 564 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, true)); |
| 565 | } |
| 566 | ConstantFoldingRule FoldFUnordLessThanEqual() { |
| 567 | return FoldFPBinaryOp(FOLD_FPCMP_OP(<=, false)); |
| 568 | } |
| 569 | ConstantFoldingRule FoldFOrdGreaterThanEqual() { |
| 570 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, true)); |
| 571 | } |
| 572 | ConstantFoldingRule FoldFUnordGreaterThanEqual() { |
| 573 | return FoldFPBinaryOp(FOLD_FPCMP_OP(>=, false)); |
| 574 | } |
| 575 | |
| 576 | // Folds an OpDot where all of the inputs are constants to a |
| 577 | // constant. A new constant is created if necessary. |
| 578 | ConstantFoldingRule FoldOpDotWithConstants() { |
| 579 | return [](IRContext* context, Instruction* inst, |
| 580 | const std::vector<const analysis::Constant*>& constants) |
| 581 | -> const analysis::Constant* { |
| 582 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 583 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 584 | const analysis::Type* new_type = type_mgr->GetType(inst->type_id()); |
| 585 | assert(new_type->AsFloat() && "OpDot should have a float return type."); |
| 586 | const analysis::Float* float_type = new_type->AsFloat(); |
| 587 | |
| 588 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 589 | return nullptr; |
| 590 | } |
| 591 | |
| 592 | // If one of the operands is 0, then the result is 0. |
| 593 | bool has_zero_operand = false; |
| 594 | |
| 595 | for (int i = 0; i < 2; ++i) { |
| 596 | if (constants[i]) { |
| 597 | if (constants[i]->AsNullConstant() || |
| 598 | constants[i]->AsVectorConstant()->IsZero()) { |
| 599 | has_zero_operand = true; |
| 600 | break; |
| 601 | } |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | if (has_zero_operand) { |
| 606 | if (float_type->width() == 32) { |
| 607 | utils::FloatProxy<float> result(0.0f); |
| 608 | std::vector<uint32_t> words = result.GetWords(); |
| 609 | return const_mgr->GetConstant(float_type, words); |
| 610 | } |
| 611 | if (float_type->width() == 64) { |
| 612 | utils::FloatProxy<double> result(0.0); |
| 613 | std::vector<uint32_t> words = result.GetWords(); |
| 614 | return const_mgr->GetConstant(float_type, words); |
| 615 | } |
| 616 | return nullptr; |
| 617 | } |
| 618 | |
| 619 | if (constants[0] == nullptr || constants[1] == nullptr) { |
| 620 | return nullptr; |
| 621 | } |
| 622 | |
| 623 | std::vector<const analysis::Constant*> a_components; |
| 624 | std::vector<const analysis::Constant*> b_components; |
| 625 | |
| 626 | a_components = constants[0]->GetVectorComponents(const_mgr); |
| 627 | b_components = constants[1]->GetVectorComponents(const_mgr); |
| 628 | |
| 629 | utils::FloatProxy<double> result(0.0); |
| 630 | std::vector<uint32_t> words = result.GetWords(); |
| 631 | const analysis::Constant* result_const = |
| 632 | const_mgr->GetConstant(float_type, words); |
Ben Clayton | b73b760 | 2019-07-29 13:56:13 +0100 | [diff] [blame] | 633 | for (uint32_t i = 0; i < a_components.size() && result_const != nullptr; |
| 634 | ++i) { |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 635 | if (a_components[i] == nullptr || b_components[i] == nullptr) { |
| 636 | return nullptr; |
| 637 | } |
| 638 | |
| 639 | const analysis::Constant* component = FOLD_FPARITH_OP(*)( |
| 640 | new_type, a_components[i], b_components[i], const_mgr); |
Ben Clayton | b73b760 | 2019-07-29 13:56:13 +0100 | [diff] [blame] | 641 | if (component == nullptr) { |
| 642 | return nullptr; |
| 643 | } |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 644 | result_const = |
| 645 | FOLD_FPARITH_OP(+)(new_type, result_const, component, const_mgr); |
| 646 | } |
| 647 | return result_const; |
| 648 | }; |
| 649 | } |
| 650 | |
| 651 | // This function defines a |UnaryScalarFoldingRule| that subtracts the constant |
| 652 | // from zero. |
| 653 | UnaryScalarFoldingRule FoldFNegateOp() { |
| 654 | return [](const analysis::Type* result_type, const analysis::Constant* a, |
| 655 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 656 | assert(result_type != nullptr && a != nullptr); |
| 657 | assert(result_type == a->type()); |
| 658 | const analysis::Float* float_type = result_type->AsFloat(); |
| 659 | assert(float_type != nullptr); |
| 660 | if (float_type->width() == 32) { |
| 661 | float fa = a->GetFloat(); |
| 662 | utils::FloatProxy<float> result(-fa); |
| 663 | std::vector<uint32_t> words = result.GetWords(); |
| 664 | return const_mgr->GetConstant(result_type, words); |
| 665 | } else if (float_type->width() == 64) { |
| 666 | double da = a->GetDouble(); |
| 667 | utils::FloatProxy<double> result(-da); |
| 668 | std::vector<uint32_t> words = result.GetWords(); |
| 669 | return const_mgr->GetConstant(result_type, words); |
| 670 | } |
| 671 | return nullptr; |
| 672 | }; |
| 673 | } |
| 674 | |
| 675 | ConstantFoldingRule FoldFNegate() { return FoldFPUnaryOp(FoldFNegateOp()); } |
| 676 | |
| 677 | ConstantFoldingRule FoldFClampFeedingCompare(uint32_t cmp_opcode) { |
| 678 | return [cmp_opcode](IRContext* context, Instruction* inst, |
| 679 | const std::vector<const analysis::Constant*>& constants) |
| 680 | -> const analysis::Constant* { |
| 681 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 682 | analysis::DefUseManager* def_use_mgr = context->get_def_use_mgr(); |
| 683 | |
| 684 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 685 | return nullptr; |
| 686 | } |
| 687 | |
| 688 | uint32_t non_const_idx = (constants[0] ? 1 : 0); |
| 689 | uint32_t operand_id = inst->GetSingleWordInOperand(non_const_idx); |
| 690 | Instruction* operand_inst = def_use_mgr->GetDef(operand_id); |
| 691 | |
| 692 | analysis::TypeManager* type_mgr = context->get_type_mgr(); |
| 693 | const analysis::Type* operand_type = |
| 694 | type_mgr->GetType(operand_inst->type_id()); |
| 695 | |
| 696 | if (!operand_type->AsFloat()) { |
| 697 | return nullptr; |
| 698 | } |
| 699 | |
| 700 | if (operand_type->AsFloat()->width() != 32 && |
| 701 | operand_type->AsFloat()->width() != 64) { |
| 702 | return nullptr; |
| 703 | } |
| 704 | |
| 705 | if (operand_inst->opcode() != SpvOpExtInst) { |
| 706 | return nullptr; |
| 707 | } |
| 708 | |
| 709 | if (operand_inst->GetSingleWordInOperand(1) != GLSLstd450FClamp) { |
| 710 | return nullptr; |
| 711 | } |
| 712 | |
| 713 | if (constants[1] == nullptr && constants[0] == nullptr) { |
| 714 | return nullptr; |
| 715 | } |
| 716 | |
| 717 | uint32_t max_id = operand_inst->GetSingleWordInOperand(4); |
| 718 | const analysis::Constant* max_const = |
| 719 | const_mgr->FindDeclaredConstant(max_id); |
| 720 | |
| 721 | uint32_t min_id = operand_inst->GetSingleWordInOperand(3); |
| 722 | const analysis::Constant* min_const = |
| 723 | const_mgr->FindDeclaredConstant(min_id); |
| 724 | |
| 725 | bool found_result = false; |
| 726 | bool result = false; |
| 727 | |
| 728 | switch (cmp_opcode) { |
| 729 | case SpvOpFOrdLessThan: |
| 730 | case SpvOpFUnordLessThan: |
| 731 | case SpvOpFOrdGreaterThanEqual: |
| 732 | case SpvOpFUnordGreaterThanEqual: |
| 733 | if (constants[0]) { |
| 734 | if (min_const) { |
| 735 | if (constants[0]->GetValueAsDouble() < |
| 736 | min_const->GetValueAsDouble()) { |
| 737 | found_result = true; |
| 738 | result = (cmp_opcode == SpvOpFOrdLessThan || |
| 739 | cmp_opcode == SpvOpFUnordLessThan); |
| 740 | } |
| 741 | } |
| 742 | if (max_const) { |
| 743 | if (constants[0]->GetValueAsDouble() >= |
| 744 | max_const->GetValueAsDouble()) { |
| 745 | found_result = true; |
| 746 | result = !(cmp_opcode == SpvOpFOrdLessThan || |
| 747 | cmp_opcode == SpvOpFUnordLessThan); |
| 748 | } |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | if (constants[1]) { |
| 753 | if (max_const) { |
| 754 | if (max_const->GetValueAsDouble() < |
| 755 | constants[1]->GetValueAsDouble()) { |
| 756 | found_result = true; |
| 757 | result = (cmp_opcode == SpvOpFOrdLessThan || |
| 758 | cmp_opcode == SpvOpFUnordLessThan); |
| 759 | } |
| 760 | } |
| 761 | |
| 762 | if (min_const) { |
| 763 | if (min_const->GetValueAsDouble() >= |
| 764 | constants[1]->GetValueAsDouble()) { |
| 765 | found_result = true; |
| 766 | result = !(cmp_opcode == SpvOpFOrdLessThan || |
| 767 | cmp_opcode == SpvOpFUnordLessThan); |
| 768 | } |
| 769 | } |
| 770 | } |
| 771 | break; |
| 772 | case SpvOpFOrdGreaterThan: |
| 773 | case SpvOpFUnordGreaterThan: |
| 774 | case SpvOpFOrdLessThanEqual: |
| 775 | case SpvOpFUnordLessThanEqual: |
| 776 | if (constants[0]) { |
| 777 | if (min_const) { |
| 778 | if (constants[0]->GetValueAsDouble() <= |
| 779 | min_const->GetValueAsDouble()) { |
| 780 | found_result = true; |
| 781 | result = (cmp_opcode == SpvOpFOrdLessThanEqual || |
| 782 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 783 | } |
| 784 | } |
| 785 | if (max_const) { |
| 786 | if (constants[0]->GetValueAsDouble() > |
| 787 | max_const->GetValueAsDouble()) { |
| 788 | found_result = true; |
| 789 | result = !(cmp_opcode == SpvOpFOrdLessThanEqual || |
| 790 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 791 | } |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | if (constants[1]) { |
| 796 | if (max_const) { |
| 797 | if (max_const->GetValueAsDouble() <= |
| 798 | constants[1]->GetValueAsDouble()) { |
| 799 | found_result = true; |
| 800 | result = (cmp_opcode == SpvOpFOrdLessThanEqual || |
| 801 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | if (min_const) { |
| 806 | if (min_const->GetValueAsDouble() > |
| 807 | constants[1]->GetValueAsDouble()) { |
| 808 | found_result = true; |
| 809 | result = !(cmp_opcode == SpvOpFOrdLessThanEqual || |
| 810 | cmp_opcode == SpvOpFUnordLessThanEqual); |
| 811 | } |
| 812 | } |
| 813 | } |
| 814 | break; |
| 815 | default: |
| 816 | return nullptr; |
| 817 | } |
| 818 | |
| 819 | if (!found_result) { |
| 820 | return nullptr; |
| 821 | } |
| 822 | |
| 823 | const analysis::Type* bool_type = |
| 824 | context->get_type_mgr()->GetType(inst->type_id()); |
| 825 | const analysis::Constant* result_const = |
| 826 | const_mgr->GetConstant(bool_type, {static_cast<uint32_t>(result)}); |
| 827 | assert(result_const); |
| 828 | return result_const; |
| 829 | }; |
| 830 | } |
| 831 | |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 832 | ConstantFoldingRule FoldFMix() { |
| 833 | return [](IRContext* context, Instruction* inst, |
| 834 | const std::vector<const analysis::Constant*>& constants) |
| 835 | -> const analysis::Constant* { |
| 836 | analysis::ConstantManager* const_mgr = context->get_constant_mgr(); |
| 837 | assert(inst->opcode() == SpvOpExtInst && |
| 838 | "Expecting an extended instruction."); |
| 839 | assert(inst->GetSingleWordInOperand(0) == |
| 840 | context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && |
| 841 | "Expecting a GLSLstd450 extended instruction."); |
| 842 | assert(inst->GetSingleWordInOperand(1) == GLSLstd450FMix && |
| 843 | "Expecting and FMix instruction."); |
| 844 | |
| 845 | if (!inst->IsFloatingPointFoldingAllowed()) { |
| 846 | return nullptr; |
| 847 | } |
| 848 | |
| 849 | // Make sure all FMix operands are constants. |
| 850 | for (uint32_t i = 1; i < 4; i++) { |
| 851 | if (constants[i] == nullptr) { |
| 852 | return nullptr; |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | const analysis::Constant* one; |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 857 | bool is_vector = false; |
| 858 | const analysis::Type* result_type = constants[1]->type(); |
| 859 | const analysis::Type* base_type = result_type; |
| 860 | if (base_type->AsVector()) { |
| 861 | is_vector = true; |
| 862 | base_type = base_type->AsVector()->element_type(); |
| 863 | } |
| 864 | assert(base_type->AsFloat() != nullptr && |
| 865 | "FMix is suppose to act on floats or vectors of floats."); |
| 866 | |
| 867 | if (base_type->AsFloat()->width() == 32) { |
| 868 | one = const_mgr->GetConstant(base_type, |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 869 | utils::FloatProxy<float>(1.0f).GetWords()); |
| 870 | } else { |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 871 | one = const_mgr->GetConstant(base_type, |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 872 | utils::FloatProxy<double>(1.0).GetWords()); |
| 873 | } |
| 874 | |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 875 | if (is_vector) { |
| 876 | uint32_t one_id = const_mgr->GetDefiningInstruction(one)->result_id(); |
| 877 | one = |
| 878 | const_mgr->GetConstant(result_type, std::vector<uint32_t>(4, one_id)); |
| 879 | } |
| 880 | |
| 881 | const analysis::Constant* temp1 = FoldFPBinaryOp( |
| 882 | FOLD_FPARITH_OP(-), inst->type_id(), {one, constants[3]}, context); |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 883 | if (temp1 == nullptr) { |
| 884 | return nullptr; |
| 885 | } |
| 886 | |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 887 | const analysis::Constant* temp2 = FoldFPBinaryOp( |
| 888 | FOLD_FPARITH_OP(*), inst->type_id(), {constants[1], temp1}, context); |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 889 | if (temp2 == nullptr) { |
| 890 | return nullptr; |
| 891 | } |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 892 | const analysis::Constant* temp3 = |
| 893 | FoldFPBinaryOp(FOLD_FPARITH_OP(*), inst->type_id(), |
| 894 | {constants[2], constants[3]}, context); |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 895 | if (temp3 == nullptr) { |
| 896 | return nullptr; |
| 897 | } |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 898 | return FoldFPBinaryOp(FOLD_FPARITH_OP(+), inst->type_id(), {temp2, temp3}, |
| 899 | context); |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 900 | }; |
| 901 | } |
| 902 | |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 903 | template <class IntType> |
| 904 | IntType FoldIClamp(IntType x, IntType min_val, IntType max_val) { |
| 905 | if (x < min_val) { |
| 906 | x = min_val; |
| 907 | } |
| 908 | if (x > max_val) { |
| 909 | x = max_val; |
| 910 | } |
| 911 | return x; |
| 912 | } |
| 913 | |
| 914 | const analysis::Constant* FoldMin(const analysis::Type* result_type, |
| 915 | const analysis::Constant* a, |
| 916 | const analysis::Constant* b, |
| 917 | analysis::ConstantManager*) { |
| 918 | if (const analysis::Integer* int_type = result_type->AsInteger()) { |
| 919 | if (int_type->width() == 32) { |
| 920 | if (int_type->IsSigned()) { |
| 921 | int32_t va = a->GetS32(); |
| 922 | int32_t vb = b->GetS32(); |
| 923 | return (va < vb ? a : b); |
| 924 | } else { |
| 925 | uint32_t va = a->GetU32(); |
| 926 | uint32_t vb = b->GetU32(); |
| 927 | return (va < vb ? a : b); |
| 928 | } |
| 929 | } else if (int_type->width() == 64) { |
| 930 | if (int_type->IsSigned()) { |
| 931 | int64_t va = a->GetS64(); |
| 932 | int64_t vb = b->GetS64(); |
| 933 | return (va < vb ? a : b); |
| 934 | } else { |
| 935 | uint64_t va = a->GetU64(); |
| 936 | uint64_t vb = b->GetU64(); |
| 937 | return (va < vb ? a : b); |
| 938 | } |
| 939 | } |
| 940 | } else if (const analysis::Float* float_type = result_type->AsFloat()) { |
| 941 | if (float_type->width() == 32) { |
| 942 | float va = a->GetFloat(); |
| 943 | float vb = b->GetFloat(); |
| 944 | return (va < vb ? a : b); |
| 945 | } else if (float_type->width() == 64) { |
| 946 | double va = a->GetDouble(); |
| 947 | double vb = b->GetDouble(); |
| 948 | return (va < vb ? a : b); |
| 949 | } |
| 950 | } |
| 951 | return nullptr; |
| 952 | } |
| 953 | |
| 954 | const analysis::Constant* FoldMax(const analysis::Type* result_type, |
| 955 | const analysis::Constant* a, |
| 956 | const analysis::Constant* b, |
| 957 | analysis::ConstantManager*) { |
| 958 | if (const analysis::Integer* int_type = result_type->AsInteger()) { |
| 959 | if (int_type->width() == 32) { |
| 960 | if (int_type->IsSigned()) { |
| 961 | int32_t va = a->GetS32(); |
| 962 | int32_t vb = b->GetS32(); |
| 963 | return (va > vb ? a : b); |
| 964 | } else { |
| 965 | uint32_t va = a->GetU32(); |
| 966 | uint32_t vb = b->GetU32(); |
| 967 | return (va > vb ? a : b); |
| 968 | } |
| 969 | } else if (int_type->width() == 64) { |
| 970 | if (int_type->IsSigned()) { |
| 971 | int64_t va = a->GetS64(); |
| 972 | int64_t vb = b->GetS64(); |
| 973 | return (va > vb ? a : b); |
| 974 | } else { |
| 975 | uint64_t va = a->GetU64(); |
| 976 | uint64_t vb = b->GetU64(); |
| 977 | return (va > vb ? a : b); |
| 978 | } |
| 979 | } |
| 980 | } else if (const analysis::Float* float_type = result_type->AsFloat()) { |
| 981 | if (float_type->width() == 32) { |
| 982 | float va = a->GetFloat(); |
| 983 | float vb = b->GetFloat(); |
| 984 | return (va > vb ? a : b); |
| 985 | } else if (float_type->width() == 64) { |
| 986 | double va = a->GetDouble(); |
| 987 | double vb = b->GetDouble(); |
| 988 | return (va > vb ? a : b); |
| 989 | } |
| 990 | } |
| 991 | return nullptr; |
| 992 | } |
| 993 | |
| 994 | // Fold an clamp instruction when all three operands are constant. |
| 995 | const analysis::Constant* FoldClamp1( |
| 996 | IRContext* context, Instruction* inst, |
| 997 | const std::vector<const analysis::Constant*>& constants) { |
| 998 | assert(inst->opcode() == SpvOpExtInst && |
| 999 | "Expecting an extended instruction."); |
| 1000 | assert(inst->GetSingleWordInOperand(0) == |
| 1001 | context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && |
| 1002 | "Expecting a GLSLstd450 extended instruction."); |
| 1003 | |
| 1004 | // Make sure all Clamp operands are constants. |
| 1005 | for (uint32_t i = 1; i < 3; i++) { |
| 1006 | if (constants[i] == nullptr) { |
| 1007 | return nullptr; |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | const analysis::Constant* temp = FoldFPBinaryOp( |
| 1012 | FoldMax, inst->type_id(), {constants[1], constants[2]}, context); |
| 1013 | if (temp == nullptr) { |
| 1014 | return nullptr; |
| 1015 | } |
| 1016 | return FoldFPBinaryOp(FoldMin, inst->type_id(), {temp, constants[3]}, |
| 1017 | context); |
| 1018 | } |
| 1019 | |
| 1020 | // Fold a clamp instruction when |x >= min_val|. |
| 1021 | const analysis::Constant* FoldClamp2( |
| 1022 | IRContext* context, Instruction* inst, |
| 1023 | const std::vector<const analysis::Constant*>& constants) { |
| 1024 | assert(inst->opcode() == SpvOpExtInst && |
| 1025 | "Expecting an extended instruction."); |
| 1026 | assert(inst->GetSingleWordInOperand(0) == |
| 1027 | context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && |
| 1028 | "Expecting a GLSLstd450 extended instruction."); |
| 1029 | |
| 1030 | const analysis::Constant* x = constants[1]; |
| 1031 | const analysis::Constant* min_val = constants[2]; |
| 1032 | |
| 1033 | if (x == nullptr || min_val == nullptr) { |
| 1034 | return nullptr; |
| 1035 | } |
| 1036 | |
| 1037 | const analysis::Constant* temp = |
| 1038 | FoldFPBinaryOp(FoldMax, inst->type_id(), {x, min_val}, context); |
| 1039 | if (temp == min_val) { |
| 1040 | // We can assume that |min_val| is less than |max_val|. Therefore, if the |
| 1041 | // result of the max operation is |min_val|, we know the result of the min |
| 1042 | // operation, even if |max_val| is not a constant. |
| 1043 | return min_val; |
| 1044 | } |
| 1045 | return nullptr; |
| 1046 | } |
| 1047 | |
| 1048 | // Fold a clamp instruction when |x >= max_val|. |
| 1049 | const analysis::Constant* FoldClamp3( |
| 1050 | IRContext* context, Instruction* inst, |
| 1051 | const std::vector<const analysis::Constant*>& constants) { |
| 1052 | assert(inst->opcode() == SpvOpExtInst && |
| 1053 | "Expecting an extended instruction."); |
| 1054 | assert(inst->GetSingleWordInOperand(0) == |
| 1055 | context->get_feature_mgr()->GetExtInstImportId_GLSLstd450() && |
| 1056 | "Expecting a GLSLstd450 extended instruction."); |
| 1057 | |
| 1058 | const analysis::Constant* x = constants[1]; |
| 1059 | const analysis::Constant* max_val = constants[3]; |
| 1060 | |
| 1061 | if (x == nullptr || max_val == nullptr) { |
| 1062 | return nullptr; |
| 1063 | } |
| 1064 | |
| 1065 | const analysis::Constant* temp = |
| 1066 | FoldFPBinaryOp(FoldMin, inst->type_id(), {x, max_val}, context); |
| 1067 | if (temp == max_val) { |
| 1068 | // We can assume that |min_val| is less than |max_val|. Therefore, if the |
| 1069 | // result of the max operation is |min_val|, we know the result of the min |
| 1070 | // operation, even if |max_val| is not a constant. |
| 1071 | return max_val; |
| 1072 | } |
| 1073 | return nullptr; |
| 1074 | } |
| 1075 | |
Ben Clayton | dc6b76a | 2020-02-24 14:53:40 +0000 | [diff] [blame] | 1076 | UnaryScalarFoldingRule FoldFTranscendentalUnary(double (*fp)(double)) { |
| 1077 | return |
| 1078 | [fp](const analysis::Type* result_type, const analysis::Constant* a, |
| 1079 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 1080 | assert(result_type != nullptr && a != nullptr); |
| 1081 | const analysis::Float* float_type = a->type()->AsFloat(); |
| 1082 | assert(float_type != nullptr); |
| 1083 | assert(float_type == result_type->AsFloat()); |
| 1084 | if (float_type->width() == 32) { |
| 1085 | float fa = a->GetFloat(); |
| 1086 | float res = static_cast<float>(fp(fa)); |
| 1087 | utils::FloatProxy<float> result(res); |
| 1088 | std::vector<uint32_t> words = result.GetWords(); |
| 1089 | return const_mgr->GetConstant(result_type, words); |
| 1090 | } else if (float_type->width() == 64) { |
| 1091 | double fa = a->GetDouble(); |
| 1092 | double res = fp(fa); |
| 1093 | utils::FloatProxy<double> result(res); |
| 1094 | std::vector<uint32_t> words = result.GetWords(); |
| 1095 | return const_mgr->GetConstant(result_type, words); |
| 1096 | } |
| 1097 | return nullptr; |
| 1098 | }; |
| 1099 | } |
| 1100 | |
| 1101 | BinaryScalarFoldingRule FoldFTranscendentalBinary(double (*fp)(double, |
| 1102 | double)) { |
| 1103 | return |
| 1104 | [fp](const analysis::Type* result_type, const analysis::Constant* a, |
| 1105 | const analysis::Constant* b, |
| 1106 | analysis::ConstantManager* const_mgr) -> const analysis::Constant* { |
| 1107 | assert(result_type != nullptr && a != nullptr); |
| 1108 | const analysis::Float* float_type = a->type()->AsFloat(); |
| 1109 | assert(float_type != nullptr); |
| 1110 | assert(float_type == result_type->AsFloat()); |
| 1111 | assert(float_type == b->type()->AsFloat()); |
| 1112 | if (float_type->width() == 32) { |
| 1113 | float fa = a->GetFloat(); |
| 1114 | float fb = b->GetFloat(); |
| 1115 | float res = static_cast<float>(fp(fa, fb)); |
| 1116 | utils::FloatProxy<float> result(res); |
| 1117 | std::vector<uint32_t> words = result.GetWords(); |
| 1118 | return const_mgr->GetConstant(result_type, words); |
| 1119 | } else if (float_type->width() == 64) { |
| 1120 | double fa = a->GetDouble(); |
| 1121 | double fb = b->GetDouble(); |
| 1122 | double res = fp(fa, fb); |
| 1123 | utils::FloatProxy<double> result(res); |
| 1124 | std::vector<uint32_t> words = result.GetWords(); |
| 1125 | return const_mgr->GetConstant(result_type, words); |
| 1126 | } |
| 1127 | return nullptr; |
| 1128 | }; |
| 1129 | } |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 1130 | } // namespace |
| 1131 | |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 1132 | void ConstantFoldingRules::AddFoldingRules() { |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 1133 | // Add all folding rules to the list for the opcodes to which they apply. |
| 1134 | // Note that the order in which rules are added to the list matters. If a rule |
| 1135 | // applies to the instruction, the rest of the rules will not be attempted. |
| 1136 | // Take that into consideration. |
| 1137 | |
| 1138 | rules_[SpvOpCompositeConstruct].push_back(FoldCompositeWithConstants()); |
| 1139 | |
| 1140 | rules_[SpvOpCompositeExtract].push_back(FoldExtractWithConstants()); |
| 1141 | |
| 1142 | rules_[SpvOpConvertFToS].push_back(FoldFToI()); |
| 1143 | rules_[SpvOpConvertFToU].push_back(FoldFToI()); |
| 1144 | rules_[SpvOpConvertSToF].push_back(FoldIToF()); |
| 1145 | rules_[SpvOpConvertUToF].push_back(FoldIToF()); |
| 1146 | |
| 1147 | rules_[SpvOpDot].push_back(FoldOpDotWithConstants()); |
| 1148 | rules_[SpvOpFAdd].push_back(FoldFAdd()); |
| 1149 | rules_[SpvOpFDiv].push_back(FoldFDiv()); |
| 1150 | rules_[SpvOpFMul].push_back(FoldFMul()); |
| 1151 | rules_[SpvOpFSub].push_back(FoldFSub()); |
| 1152 | |
| 1153 | rules_[SpvOpFOrdEqual].push_back(FoldFOrdEqual()); |
| 1154 | |
| 1155 | rules_[SpvOpFUnordEqual].push_back(FoldFUnordEqual()); |
| 1156 | |
| 1157 | rules_[SpvOpFOrdNotEqual].push_back(FoldFOrdNotEqual()); |
| 1158 | |
| 1159 | rules_[SpvOpFUnordNotEqual].push_back(FoldFUnordNotEqual()); |
| 1160 | |
| 1161 | rules_[SpvOpFOrdLessThan].push_back(FoldFOrdLessThan()); |
| 1162 | rules_[SpvOpFOrdLessThan].push_back( |
| 1163 | FoldFClampFeedingCompare(SpvOpFOrdLessThan)); |
| 1164 | |
| 1165 | rules_[SpvOpFUnordLessThan].push_back(FoldFUnordLessThan()); |
| 1166 | rules_[SpvOpFUnordLessThan].push_back( |
| 1167 | FoldFClampFeedingCompare(SpvOpFUnordLessThan)); |
| 1168 | |
| 1169 | rules_[SpvOpFOrdGreaterThan].push_back(FoldFOrdGreaterThan()); |
| 1170 | rules_[SpvOpFOrdGreaterThan].push_back( |
| 1171 | FoldFClampFeedingCompare(SpvOpFOrdGreaterThan)); |
| 1172 | |
| 1173 | rules_[SpvOpFUnordGreaterThan].push_back(FoldFUnordGreaterThan()); |
| 1174 | rules_[SpvOpFUnordGreaterThan].push_back( |
| 1175 | FoldFClampFeedingCompare(SpvOpFUnordGreaterThan)); |
| 1176 | |
| 1177 | rules_[SpvOpFOrdLessThanEqual].push_back(FoldFOrdLessThanEqual()); |
| 1178 | rules_[SpvOpFOrdLessThanEqual].push_back( |
| 1179 | FoldFClampFeedingCompare(SpvOpFOrdLessThanEqual)); |
| 1180 | |
| 1181 | rules_[SpvOpFUnordLessThanEqual].push_back(FoldFUnordLessThanEqual()); |
| 1182 | rules_[SpvOpFUnordLessThanEqual].push_back( |
| 1183 | FoldFClampFeedingCompare(SpvOpFUnordLessThanEqual)); |
| 1184 | |
| 1185 | rules_[SpvOpFOrdGreaterThanEqual].push_back(FoldFOrdGreaterThanEqual()); |
| 1186 | rules_[SpvOpFOrdGreaterThanEqual].push_back( |
| 1187 | FoldFClampFeedingCompare(SpvOpFOrdGreaterThanEqual)); |
| 1188 | |
| 1189 | rules_[SpvOpFUnordGreaterThanEqual].push_back(FoldFUnordGreaterThanEqual()); |
| 1190 | rules_[SpvOpFUnordGreaterThanEqual].push_back( |
| 1191 | FoldFClampFeedingCompare(SpvOpFUnordGreaterThanEqual)); |
| 1192 | |
| 1193 | rules_[SpvOpVectorShuffle].push_back(FoldVectorShuffleWithConstants()); |
| 1194 | rules_[SpvOpVectorTimesScalar].push_back(FoldVectorTimesScalar()); |
| 1195 | |
| 1196 | rules_[SpvOpFNegate].push_back(FoldFNegate()); |
Ben Clayton | b73b760 | 2019-07-29 13:56:13 +0100 | [diff] [blame] | 1197 | rules_[SpvOpQuantizeToF16].push_back(FoldQuantizeToF16()); |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 1198 | |
| 1199 | // Add rules for GLSLstd450 |
| 1200 | FeatureManager* feature_manager = context_->get_feature_mgr(); |
| 1201 | uint32_t ext_inst_glslstd450_id = |
| 1202 | feature_manager->GetExtInstImportId_GLSLstd450(); |
| 1203 | if (ext_inst_glslstd450_id != 0) { |
| 1204 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMix}].push_back(FoldFMix()); |
Ben Clayton | d552f63 | 2019-11-18 11:18:41 +0000 | [diff] [blame] | 1205 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SMin}].push_back( |
| 1206 | FoldFPBinaryOp(FoldMin)); |
| 1207 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UMin}].push_back( |
| 1208 | FoldFPBinaryOp(FoldMin)); |
| 1209 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMin}].push_back( |
| 1210 | FoldFPBinaryOp(FoldMin)); |
| 1211 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SMax}].push_back( |
| 1212 | FoldFPBinaryOp(FoldMax)); |
| 1213 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UMax}].push_back( |
| 1214 | FoldFPBinaryOp(FoldMax)); |
| 1215 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FMax}].push_back( |
| 1216 | FoldFPBinaryOp(FoldMax)); |
| 1217 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back( |
| 1218 | FoldClamp1); |
| 1219 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back( |
| 1220 | FoldClamp2); |
| 1221 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450UClamp}].push_back( |
| 1222 | FoldClamp3); |
| 1223 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back( |
| 1224 | FoldClamp1); |
| 1225 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back( |
| 1226 | FoldClamp2); |
| 1227 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450SClamp}].push_back( |
| 1228 | FoldClamp3); |
| 1229 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back( |
| 1230 | FoldClamp1); |
| 1231 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back( |
| 1232 | FoldClamp2); |
| 1233 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450FClamp}].push_back( |
| 1234 | FoldClamp3); |
Ben Clayton | dc6b76a | 2020-02-24 14:53:40 +0000 | [diff] [blame] | 1235 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Sin}].push_back( |
| 1236 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::sin))); |
| 1237 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Cos}].push_back( |
| 1238 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::cos))); |
| 1239 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Tan}].push_back( |
| 1240 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::tan))); |
| 1241 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Asin}].push_back( |
| 1242 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::asin))); |
| 1243 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Acos}].push_back( |
| 1244 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::acos))); |
| 1245 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Atan}].push_back( |
| 1246 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::atan))); |
| 1247 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp}].push_back( |
| 1248 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::exp))); |
| 1249 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log}].push_back( |
| 1250 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::log))); |
| 1251 | |
| 1252 | #ifdef __ANDROID__ |
| 1253 | // Android NDK r15c tageting ABI 15 doesn't have full support for C++11 |
| 1254 | // (no std::exp2/log2). ::exp2 is available from C99 but ::log2 isn't |
| 1255 | // available up until ABI 18 so we use a shim |
| 1256 | auto log2_shim = [](double v) -> double { return log(v) / log(2.0); }; |
| 1257 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp2}].push_back( |
| 1258 | FoldFPUnaryOp(FoldFTranscendentalUnary(::exp2))); |
| 1259 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log2}].push_back( |
| 1260 | FoldFPUnaryOp(FoldFTranscendentalUnary(log2_shim))); |
| 1261 | #else |
| 1262 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Exp2}].push_back( |
| 1263 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::exp2))); |
| 1264 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Log2}].push_back( |
| 1265 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::log2))); |
| 1266 | #endif |
| 1267 | |
| 1268 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Sqrt}].push_back( |
| 1269 | FoldFPUnaryOp(FoldFTranscendentalUnary(std::sqrt))); |
| 1270 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Atan2}].push_back( |
| 1271 | FoldFPBinaryOp(FoldFTranscendentalBinary(std::atan2))); |
| 1272 | ext_rules_[{ext_inst_glslstd450_id, GLSLstd450Pow}].push_back( |
| 1273 | FoldFPBinaryOp(FoldFTranscendentalBinary(std::pow))); |
Ben Clayton | d0f684e | 2019-08-30 22:36:08 +0100 | [diff] [blame] | 1274 | } |
Chris Forbes | cc5697f | 2019-01-30 11:54:08 -0800 | [diff] [blame] | 1275 | } |
| 1276 | } // namespace opt |
| 1277 | } // namespace spvtools |