Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 1 | /* |
| 2 | * AMD Memory Encryption Support |
| 3 | * |
| 4 | * Copyright (C) 2016 Advanced Micro Devices, Inc. |
| 5 | * |
| 6 | * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or modify |
| 9 | * it under the terms of the GNU General Public License version 2 as |
| 10 | * published by the Free Software Foundation. |
| 11 | */ |
| 12 | |
Tom Lendacky | bc829ee | 2017-09-29 11:24:19 -0500 | [diff] [blame] | 13 | #define DISABLE_BRANCH_PROFILING |
| 14 | |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 15 | #include <linux/linkage.h> |
Tom Lendacky | 5868f36 | 2017-07-17 16:10:05 -0500 | [diff] [blame] | 16 | #include <linux/init.h> |
Tom Lendacky | 21729f8 | 2017-07-17 16:10:07 -0500 | [diff] [blame] | 17 | #include <linux/mm.h> |
Christoph Hellwig | ea8c64a | 2018-01-10 16:21:13 +0100 | [diff] [blame] | 18 | #include <linux/dma-direct.h> |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 19 | #include <linux/swiotlb.h> |
Tom Lendacky | aca20d5 | 2017-07-17 16:10:35 -0500 | [diff] [blame] | 20 | #include <linux/mem_encrypt.h> |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 21 | |
Tom Lendacky | 7f8b7e7 | 2017-07-17 16:10:10 -0500 | [diff] [blame] | 22 | #include <asm/tlbflush.h> |
| 23 | #include <asm/fixmap.h> |
Tom Lendacky | b9d0520 | 2017-07-17 16:10:11 -0500 | [diff] [blame] | 24 | #include <asm/setup.h> |
| 25 | #include <asm/bootparam.h> |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 26 | #include <asm/set_memory.h> |
Tom Lendacky | 6ebcb06 | 2017-07-17 16:10:32 -0500 | [diff] [blame] | 27 | #include <asm/cacheflush.h> |
Tom Lendacky | aca20d5 | 2017-07-17 16:10:35 -0500 | [diff] [blame] | 28 | #include <asm/processor-flags.h> |
| 29 | #include <asm/msr.h> |
| 30 | #include <asm/cmdline.h> |
| 31 | |
Brijesh Singh | dfaaec9 | 2017-10-20 09:30:56 -0500 | [diff] [blame] | 32 | #include "mm_internal.h" |
| 33 | |
Tom Lendacky | 7744ccd | 2017-07-17 16:10:03 -0500 | [diff] [blame] | 34 | /* |
| 35 | * Since SME related variables are set early in the boot process they must |
| 36 | * reside in the .data section so as not to be zeroed out when the .bss |
| 37 | * section is later cleared. |
| 38 | */ |
Borislav Petkov | 21d9bb4 | 2017-09-07 11:38:37 +0200 | [diff] [blame] | 39 | u64 sme_me_mask __section(.data) = 0; |
Jiri Kosina | 87df261 | 2017-11-08 21:18:18 +0100 | [diff] [blame] | 40 | EXPORT_SYMBOL(sme_me_mask); |
Tom Lendacky | 606b21d | 2017-10-20 09:30:55 -0500 | [diff] [blame] | 41 | DEFINE_STATIC_KEY_FALSE(sev_enable_key); |
| 42 | EXPORT_SYMBOL_GPL(sev_enable_key); |
Tom Lendacky | 5868f36 | 2017-07-17 16:10:05 -0500 | [diff] [blame] | 43 | |
Kirill A. Shutemov | 1cd9c22 | 2018-01-31 16:54:02 +0300 | [diff] [blame] | 44 | bool sev_enabled __section(.data); |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 45 | |
Tom Lendacky | 7f8b7e7 | 2017-07-17 16:10:10 -0500 | [diff] [blame] | 46 | /* Buffer used for early in-place encryption by BSP, no locking needed */ |
| 47 | static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE); |
| 48 | |
| 49 | /* |
| 50 | * This routine does not change the underlying encryption setting of the |
| 51 | * page(s) that map this memory. It assumes that eventually the memory is |
| 52 | * meant to be accessed as either encrypted or decrypted but the contents |
| 53 | * are currently not in the desired state. |
| 54 | * |
| 55 | * This routine follows the steps outlined in the AMD64 Architecture |
| 56 | * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. |
| 57 | */ |
| 58 | static void __init __sme_early_enc_dec(resource_size_t paddr, |
| 59 | unsigned long size, bool enc) |
| 60 | { |
| 61 | void *src, *dst; |
| 62 | size_t len; |
| 63 | |
| 64 | if (!sme_me_mask) |
| 65 | return; |
| 66 | |
Tom Lendacky | 7f8b7e7 | 2017-07-17 16:10:10 -0500 | [diff] [blame] | 67 | wbinvd(); |
| 68 | |
| 69 | /* |
| 70 | * There are limited number of early mapping slots, so map (at most) |
| 71 | * one page at time. |
| 72 | */ |
| 73 | while (size) { |
| 74 | len = min_t(size_t, sizeof(sme_early_buffer), size); |
| 75 | |
| 76 | /* |
| 77 | * Create mappings for the current and desired format of |
| 78 | * the memory. Use a write-protected mapping for the source. |
| 79 | */ |
| 80 | src = enc ? early_memremap_decrypted_wp(paddr, len) : |
| 81 | early_memremap_encrypted_wp(paddr, len); |
| 82 | |
| 83 | dst = enc ? early_memremap_encrypted(paddr, len) : |
| 84 | early_memremap_decrypted(paddr, len); |
| 85 | |
| 86 | /* |
| 87 | * If a mapping can't be obtained to perform the operation, |
| 88 | * then eventual access of that area in the desired mode |
| 89 | * will cause a crash. |
| 90 | */ |
| 91 | BUG_ON(!src || !dst); |
| 92 | |
| 93 | /* |
| 94 | * Use a temporary buffer, of cache-line multiple size, to |
| 95 | * avoid data corruption as documented in the APM. |
| 96 | */ |
| 97 | memcpy(sme_early_buffer, src, len); |
| 98 | memcpy(dst, sme_early_buffer, len); |
| 99 | |
| 100 | early_memunmap(dst, len); |
| 101 | early_memunmap(src, len); |
| 102 | |
| 103 | paddr += len; |
| 104 | size -= len; |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) |
| 109 | { |
| 110 | __sme_early_enc_dec(paddr, size, true); |
| 111 | } |
| 112 | |
| 113 | void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) |
| 114 | { |
| 115 | __sme_early_enc_dec(paddr, size, false); |
| 116 | } |
| 117 | |
Tom Lendacky | b9d0520 | 2017-07-17 16:10:11 -0500 | [diff] [blame] | 118 | static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, |
| 119 | bool map) |
| 120 | { |
| 121 | unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; |
| 122 | pmdval_t pmd_flags, pmd; |
| 123 | |
| 124 | /* Use early_pmd_flags but remove the encryption mask */ |
| 125 | pmd_flags = __sme_clr(early_pmd_flags); |
| 126 | |
| 127 | do { |
| 128 | pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; |
| 129 | __early_make_pgtable((unsigned long)vaddr, pmd); |
| 130 | |
| 131 | vaddr += PMD_SIZE; |
| 132 | paddr += PMD_SIZE; |
| 133 | size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; |
| 134 | } while (size); |
| 135 | |
| 136 | __native_flush_tlb(); |
| 137 | } |
| 138 | |
| 139 | void __init sme_unmap_bootdata(char *real_mode_data) |
| 140 | { |
| 141 | struct boot_params *boot_data; |
| 142 | unsigned long cmdline_paddr; |
| 143 | |
| 144 | if (!sme_active()) |
| 145 | return; |
| 146 | |
| 147 | /* Get the command line address before unmapping the real_mode_data */ |
| 148 | boot_data = (struct boot_params *)real_mode_data; |
| 149 | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); |
| 150 | |
| 151 | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); |
| 152 | |
| 153 | if (!cmdline_paddr) |
| 154 | return; |
| 155 | |
| 156 | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); |
| 157 | } |
| 158 | |
| 159 | void __init sme_map_bootdata(char *real_mode_data) |
| 160 | { |
| 161 | struct boot_params *boot_data; |
| 162 | unsigned long cmdline_paddr; |
| 163 | |
| 164 | if (!sme_active()) |
| 165 | return; |
| 166 | |
| 167 | __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); |
| 168 | |
| 169 | /* Get the command line address after mapping the real_mode_data */ |
| 170 | boot_data = (struct boot_params *)real_mode_data; |
| 171 | cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); |
| 172 | |
| 173 | if (!cmdline_paddr) |
| 174 | return; |
| 175 | |
| 176 | __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); |
| 177 | } |
| 178 | |
Tom Lendacky | 21729f8 | 2017-07-17 16:10:07 -0500 | [diff] [blame] | 179 | void __init sme_early_init(void) |
| 180 | { |
| 181 | unsigned int i; |
| 182 | |
| 183 | if (!sme_me_mask) |
| 184 | return; |
| 185 | |
| 186 | early_pmd_flags = __sme_set(early_pmd_flags); |
| 187 | |
| 188 | __supported_pte_mask = __sme_set(__supported_pte_mask); |
| 189 | |
| 190 | /* Update the protection map with memory encryption mask */ |
| 191 | for (i = 0; i < ARRAY_SIZE(protection_map); i++) |
| 192 | protection_map[i] = pgprot_encrypted(protection_map[i]); |
Tom Lendacky | d7b417f | 2017-10-20 09:30:53 -0500 | [diff] [blame] | 193 | |
| 194 | if (sev_active()) |
| 195 | swiotlb_force = SWIOTLB_FORCE; |
| 196 | } |
| 197 | |
Brijesh Singh | dfaaec9 | 2017-10-20 09:30:56 -0500 | [diff] [blame] | 198 | static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) |
| 199 | { |
| 200 | pgprot_t old_prot, new_prot; |
| 201 | unsigned long pfn, pa, size; |
| 202 | pte_t new_pte; |
| 203 | |
| 204 | switch (level) { |
| 205 | case PG_LEVEL_4K: |
| 206 | pfn = pte_pfn(*kpte); |
| 207 | old_prot = pte_pgprot(*kpte); |
| 208 | break; |
| 209 | case PG_LEVEL_2M: |
| 210 | pfn = pmd_pfn(*(pmd_t *)kpte); |
| 211 | old_prot = pmd_pgprot(*(pmd_t *)kpte); |
| 212 | break; |
| 213 | case PG_LEVEL_1G: |
| 214 | pfn = pud_pfn(*(pud_t *)kpte); |
| 215 | old_prot = pud_pgprot(*(pud_t *)kpte); |
| 216 | break; |
| 217 | default: |
| 218 | return; |
| 219 | } |
| 220 | |
| 221 | new_prot = old_prot; |
| 222 | if (enc) |
| 223 | pgprot_val(new_prot) |= _PAGE_ENC; |
| 224 | else |
| 225 | pgprot_val(new_prot) &= ~_PAGE_ENC; |
| 226 | |
| 227 | /* If prot is same then do nothing. */ |
| 228 | if (pgprot_val(old_prot) == pgprot_val(new_prot)) |
| 229 | return; |
| 230 | |
| 231 | pa = pfn << page_level_shift(level); |
| 232 | size = page_level_size(level); |
| 233 | |
| 234 | /* |
| 235 | * We are going to perform in-place en-/decryption and change the |
| 236 | * physical page attribute from C=1 to C=0 or vice versa. Flush the |
| 237 | * caches to ensure that data gets accessed with the correct C-bit. |
| 238 | */ |
| 239 | clflush_cache_range(__va(pa), size); |
| 240 | |
| 241 | /* Encrypt/decrypt the contents in-place */ |
| 242 | if (enc) |
| 243 | sme_early_encrypt(pa, size); |
| 244 | else |
| 245 | sme_early_decrypt(pa, size); |
| 246 | |
| 247 | /* Change the page encryption mask. */ |
| 248 | new_pte = pfn_pte(pfn, new_prot); |
| 249 | set_pte_atomic(kpte, new_pte); |
| 250 | } |
| 251 | |
| 252 | static int __init early_set_memory_enc_dec(unsigned long vaddr, |
| 253 | unsigned long size, bool enc) |
| 254 | { |
| 255 | unsigned long vaddr_end, vaddr_next; |
| 256 | unsigned long psize, pmask; |
| 257 | int split_page_size_mask; |
| 258 | int level, ret; |
| 259 | pte_t *kpte; |
| 260 | |
| 261 | vaddr_next = vaddr; |
| 262 | vaddr_end = vaddr + size; |
| 263 | |
| 264 | for (; vaddr < vaddr_end; vaddr = vaddr_next) { |
| 265 | kpte = lookup_address(vaddr, &level); |
| 266 | if (!kpte || pte_none(*kpte)) { |
| 267 | ret = 1; |
| 268 | goto out; |
| 269 | } |
| 270 | |
| 271 | if (level == PG_LEVEL_4K) { |
| 272 | __set_clr_pte_enc(kpte, level, enc); |
| 273 | vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; |
| 274 | continue; |
| 275 | } |
| 276 | |
| 277 | psize = page_level_size(level); |
| 278 | pmask = page_level_mask(level); |
| 279 | |
| 280 | /* |
| 281 | * Check whether we can change the large page in one go. |
| 282 | * We request a split when the address is not aligned and |
| 283 | * the number of pages to set/clear encryption bit is smaller |
| 284 | * than the number of pages in the large page. |
| 285 | */ |
| 286 | if (vaddr == (vaddr & pmask) && |
| 287 | ((vaddr_end - vaddr) >= psize)) { |
| 288 | __set_clr_pte_enc(kpte, level, enc); |
| 289 | vaddr_next = (vaddr & pmask) + psize; |
| 290 | continue; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * The virtual address is part of a larger page, create the next |
| 295 | * level page table mapping (4K or 2M). If it is part of a 2M |
| 296 | * page then we request a split of the large page into 4K |
| 297 | * chunks. A 1GB large page is split into 2M pages, resp. |
| 298 | */ |
| 299 | if (level == PG_LEVEL_2M) |
| 300 | split_page_size_mask = 0; |
| 301 | else |
| 302 | split_page_size_mask = 1 << PG_LEVEL_2M; |
| 303 | |
| 304 | kernel_physical_mapping_init(__pa(vaddr & pmask), |
| 305 | __pa((vaddr_end & pmask) + psize), |
| 306 | split_page_size_mask); |
| 307 | } |
| 308 | |
| 309 | ret = 0; |
| 310 | |
| 311 | out: |
| 312 | __flush_tlb_all(); |
| 313 | return ret; |
| 314 | } |
| 315 | |
| 316 | int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) |
| 317 | { |
| 318 | return early_set_memory_enc_dec(vaddr, size, false); |
| 319 | } |
| 320 | |
| 321 | int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) |
| 322 | { |
| 323 | return early_set_memory_enc_dec(vaddr, size, true); |
| 324 | } |
| 325 | |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 326 | /* |
| 327 | * SME and SEV are very similar but they are not the same, so there are |
| 328 | * times that the kernel will need to distinguish between SME and SEV. The |
| 329 | * sme_active() and sev_active() functions are used for this. When a |
| 330 | * distinction isn't needed, the mem_encrypt_active() function can be used. |
| 331 | * |
| 332 | * The trampoline code is a good example for this requirement. Before |
| 333 | * paging is activated, SME will access all memory as decrypted, but SEV |
| 334 | * will access all memory as encrypted. So, when APs are being brought |
| 335 | * up under SME the trampoline area cannot be encrypted, whereas under SEV |
| 336 | * the trampoline area must be encrypted. |
| 337 | */ |
| 338 | bool sme_active(void) |
| 339 | { |
| 340 | return sme_me_mask && !sev_enabled; |
| 341 | } |
Tom Lendacky | 9d5f38b | 2017-12-15 10:20:12 -0600 | [diff] [blame] | 342 | EXPORT_SYMBOL(sme_active); |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 343 | |
| 344 | bool sev_active(void) |
| 345 | { |
| 346 | return sme_me_mask && sev_enabled; |
| 347 | } |
Tom Lendacky | 9d5f38b | 2017-12-15 10:20:12 -0600 | [diff] [blame] | 348 | EXPORT_SYMBOL(sev_active); |
Tom Lendacky | d8aa7ee | 2017-10-20 09:30:44 -0500 | [diff] [blame] | 349 | |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 350 | /* Architecture __weak replacement functions */ |
Brijesh Singh | b3f0907 | 2018-09-14 08:45:58 -0500 | [diff] [blame] | 351 | void __init mem_encrypt_free_decrypted_mem(void) |
| 352 | { |
| 353 | unsigned long vaddr, vaddr_end, npages; |
| 354 | int r; |
| 355 | |
| 356 | vaddr = (unsigned long)__start_bss_decrypted_unused; |
| 357 | vaddr_end = (unsigned long)__end_bss_decrypted; |
| 358 | npages = (vaddr_end - vaddr) >> PAGE_SHIFT; |
| 359 | |
| 360 | /* |
| 361 | * The unused memory range was mapped decrypted, change the encryption |
| 362 | * attribute from decrypted to encrypted before freeing it. |
| 363 | */ |
| 364 | if (mem_encrypt_active()) { |
| 365 | r = set_memory_encrypted(vaddr, npages); |
| 366 | if (r) { |
| 367 | pr_warn("failed to free unused decrypted pages\n"); |
| 368 | return; |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | free_init_pages("unused decrypted", vaddr, vaddr_end); |
| 373 | } |
| 374 | |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 375 | void __init mem_encrypt_init(void) |
| 376 | { |
| 377 | if (!sme_me_mask) |
| 378 | return; |
| 379 | |
| 380 | /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ |
| 381 | swiotlb_update_mem_attributes(); |
Tom Lendacky | aca20d5 | 2017-07-17 16:10:35 -0500 | [diff] [blame] | 382 | |
Tom Lendacky | d7b417f | 2017-10-20 09:30:53 -0500 | [diff] [blame] | 383 | /* |
Tom Lendacky | 606b21d | 2017-10-20 09:30:55 -0500 | [diff] [blame] | 384 | * With SEV, we need to unroll the rep string I/O instructions. |
| 385 | */ |
| 386 | if (sev_active()) |
| 387 | static_branch_enable(&sev_enable_key); |
| 388 | |
Tom Lendacky | 1958b5f | 2017-10-20 09:30:54 -0500 | [diff] [blame] | 389 | pr_info("AMD %s active\n", |
| 390 | sev_active() ? "Secure Encrypted Virtualization (SEV)" |
| 391 | : "Secure Memory Encryption (SME)"); |
Tom Lendacky | c775320 | 2017-07-17 16:10:21 -0500 | [diff] [blame] | 392 | } |
| 393 | |