blob: 4c8b0c3cf284e10ebfff2e8544a32dc5e2c5b94e [file] [log] [blame]
Thomas Gleixnerd2912cb2019-06-04 10:11:33 +02001// SPDX-License-Identifier: GPL-2.0-only
Willy Tarreau7df4f9a2017-08-28 20:44:51 +02002/*
3 * Activity LED trigger
4 *
5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
Willy Tarreau7df4f9a2017-08-28 20:44:51 +02007 */
Uwe Kleine-König033692e2018-07-02 22:05:20 +02008
Willy Tarreau7df4f9a2017-08-28 20:44:51 +02009#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/kernel_stat.h>
12#include <linux/leds.h>
13#include <linux/module.h>
14#include <linux/reboot.h>
15#include <linux/sched.h>
16#include <linux/slab.h>
17#include <linux/timer.h>
18#include "../leds.h"
19
20static int panic_detected;
21
22struct activity_data {
23 struct timer_list timer;
Kees Cook49404662017-10-25 03:30:01 -070024 struct led_classdev *led_cdev;
Willy Tarreau7df4f9a2017-08-28 20:44:51 +020025 u64 last_used;
26 u64 last_boot;
27 int time_left;
28 int state;
29 int invert;
30};
31
Kees Cook49404662017-10-25 03:30:01 -070032static void led_activity_function(struct timer_list *t)
Willy Tarreau7df4f9a2017-08-28 20:44:51 +020033{
Kees Cook49404662017-10-25 03:30:01 -070034 struct activity_data *activity_data = from_timer(activity_data, t,
35 timer);
36 struct led_classdev *led_cdev = activity_data->led_cdev;
Willy Tarreau7df4f9a2017-08-28 20:44:51 +020037 unsigned int target;
38 unsigned int usage;
39 int delay;
40 u64 curr_used;
41 u64 curr_boot;
42 s32 diff_used;
43 s32 diff_boot;
44 int cpus;
45 int i;
46
47 if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
48 led_cdev->blink_brightness = led_cdev->new_blink_brightness;
49
50 if (unlikely(panic_detected)) {
51 /* full brightness in case of panic */
52 led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
53 return;
54 }
55
Willy Tarreau7df4f9a2017-08-28 20:44:51 +020056 cpus = 0;
57 curr_used = 0;
58
59 for_each_possible_cpu(i) {
60 curr_used += kcpustat_cpu(i).cpustat[CPUTIME_USER]
61 + kcpustat_cpu(i).cpustat[CPUTIME_NICE]
62 + kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM]
63 + kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ]
64 + kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
65 cpus++;
66 }
67
68 /* We come here every 100ms in the worst case, so that's 100M ns of
69 * cumulated time. By dividing by 2^16, we get the time resolution
70 * down to 16us, ensuring we won't overflow 32-bit computations below
71 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
72 */
Arnd Bergmannd30c8d22018-06-19 10:18:56 +020073 curr_boot = ktime_get_boot_ns() * cpus;
Willy Tarreau7df4f9a2017-08-28 20:44:51 +020074 diff_boot = (curr_boot - activity_data->last_boot) >> 16;
75 diff_used = (curr_used - activity_data->last_used) >> 16;
76 activity_data->last_boot = curr_boot;
77 activity_data->last_used = curr_used;
78
79 if (diff_boot <= 0 || diff_used < 0)
80 usage = 0;
81 else if (diff_used >= diff_boot)
82 usage = 100;
83 else
84 usage = 100 * diff_used / diff_boot;
85
86 /*
87 * Now we know the total boot_time multiplied by the number of CPUs, and
88 * the total idle+wait time for all CPUs. We'll compare how they evolved
89 * since last call. The % of overall CPU usage is :
90 *
91 * 1 - delta_idle / delta_boot
92 *
93 * What we want is that when the CPU usage is zero, the LED must blink
94 * slowly with very faint flashes that are detectable but not disturbing
95 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
96 * blinking frequency to increase up to the point where the load is
97 * enough to saturate one core in multi-core systems or 50% in single
98 * core systems. At this point it should reach 10 Hz with a 10/90 duty
99 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
100 * remains stable (10 Hz) and only the duty cycle increases to report
101 * the activity, up to the point where we have 90ms ON, 10ms OFF when
102 * all cores are saturated. It's important that the LED never stays in
103 * a steady state so that it's easy to distinguish an idle or saturated
104 * machine from a hung one.
105 *
106 * This gives us :
107 * - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
108 * (10ms ON, 90ms OFF)
109 * - below target :
110 * ON_ms = 10
111 * OFF_ms = 90 + (1 - usage/target) * 900
112 * - above target :
113 * ON_ms = 10 + (usage-target)/(100%-target) * 80
114 * OFF_ms = 90 - (usage-target)/(100%-target) * 80
115 *
116 * In order to keep a good responsiveness, we cap the sleep time to
117 * 100 ms and keep track of the sleep time left. This allows us to
118 * quickly change it if needed.
119 */
120
121 activity_data->time_left -= 100;
122 if (activity_data->time_left <= 0) {
123 activity_data->time_left = 0;
124 activity_data->state = !activity_data->state;
125 led_set_brightness_nosleep(led_cdev,
126 (activity_data->state ^ activity_data->invert) ?
127 led_cdev->blink_brightness : LED_OFF);
128 }
129
130 target = (cpus > 1) ? (100 / cpus) : 50;
131
132 if (usage < target)
133 delay = activity_data->state ?
134 10 : /* ON */
135 990 - 900 * usage / target; /* OFF */
136 else
137 delay = activity_data->state ?
138 10 + 80 * (usage - target) / (100 - target) : /* ON */
139 90 - 80 * (usage - target) / (100 - target); /* OFF */
140
141
142 if (!activity_data->time_left || delay <= activity_data->time_left)
143 activity_data->time_left = delay;
144
145 delay = min_t(int, activity_data->time_left, 100);
146 mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
147}
148
149static ssize_t led_invert_show(struct device *dev,
150 struct device_attribute *attr, char *buf)
151{
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200152 struct activity_data *activity_data = led_trigger_get_drvdata(dev);
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200153
154 return sprintf(buf, "%u\n", activity_data->invert);
155}
156
157static ssize_t led_invert_store(struct device *dev,
158 struct device_attribute *attr,
159 const char *buf, size_t size)
160{
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200161 struct activity_data *activity_data = led_trigger_get_drvdata(dev);
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200162 unsigned long state;
163 int ret;
164
165 ret = kstrtoul(buf, 0, &state);
166 if (ret)
167 return ret;
168
169 activity_data->invert = !!state;
170
171 return size;
172}
173
174static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
175
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200176static struct attribute *activity_led_attrs[] = {
177 &dev_attr_invert.attr,
178 NULL
179};
180ATTRIBUTE_GROUPS(activity_led);
181
Uwe Kleine-König2282e1252018-07-02 22:05:21 +0200182static int activity_activate(struct led_classdev *led_cdev)
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200183{
184 struct activity_data *activity_data;
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200185
186 activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
187 if (!activity_data)
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200188 return -ENOMEM;
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200189
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200190 led_set_trigger_data(led_cdev, activity_data);
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200191
Kees Cook49404662017-10-25 03:30:01 -0700192 activity_data->led_cdev = led_cdev;
193 timer_setup(&activity_data->timer, led_activity_function, 0);
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200194 if (!led_cdev->blink_brightness)
195 led_cdev->blink_brightness = led_cdev->max_brightness;
Kees Cook49404662017-10-25 03:30:01 -0700196 led_activity_function(&activity_data->timer);
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200197 set_bit(LED_BLINK_SW, &led_cdev->work_flags);
Uwe Kleine-König2282e1252018-07-02 22:05:21 +0200198
199 return 0;
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200200}
201
202static void activity_deactivate(struct led_classdev *led_cdev)
203{
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200204 struct activity_data *activity_data = led_get_trigger_data(led_cdev);
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200205
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200206 del_timer_sync(&activity_data->timer);
207 kfree(activity_data);
208 clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200209}
210
211static struct led_trigger activity_led_trigger = {
212 .name = "activity",
213 .activate = activity_activate,
214 .deactivate = activity_deactivate,
Uwe Kleine-König13d698c2018-07-02 22:05:32 +0200215 .groups = activity_led_groups,
Willy Tarreau7df4f9a2017-08-28 20:44:51 +0200216};
217
218static int activity_reboot_notifier(struct notifier_block *nb,
219 unsigned long code, void *unused)
220{
221 led_trigger_unregister(&activity_led_trigger);
222 return NOTIFY_DONE;
223}
224
225static int activity_panic_notifier(struct notifier_block *nb,
226 unsigned long code, void *unused)
227{
228 panic_detected = 1;
229 return NOTIFY_DONE;
230}
231
232static struct notifier_block activity_reboot_nb = {
233 .notifier_call = activity_reboot_notifier,
234};
235
236static struct notifier_block activity_panic_nb = {
237 .notifier_call = activity_panic_notifier,
238};
239
240static int __init activity_init(void)
241{
242 int rc = led_trigger_register(&activity_led_trigger);
243
244 if (!rc) {
245 atomic_notifier_chain_register(&panic_notifier_list,
246 &activity_panic_nb);
247 register_reboot_notifier(&activity_reboot_nb);
248 }
249 return rc;
250}
251
252static void __exit activity_exit(void)
253{
254 unregister_reboot_notifier(&activity_reboot_nb);
255 atomic_notifier_chain_unregister(&panic_notifier_list,
256 &activity_panic_nb);
257 led_trigger_unregister(&activity_led_trigger);
258}
259
260module_init(activity_init);
261module_exit(activity_exit);
262
263MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
264MODULE_DESCRIPTION("Activity LED trigger");
Uwe Kleine-König033692e2018-07-02 22:05:20 +0200265MODULE_LICENSE("GPL v2");