blob: 85a8716e6028bee7e5a5ceea07615cb0cf716673 [file] [log] [blame]
Vineet Guptaf1f33472013-01-18 15:12:19 +05301/*
2 * TLB Management (flush/create/diagnostics) for ARC700
3 *
4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
Vineet Guptad79e6782013-01-18 15:12:20 +05309 *
10 * vineetg: Aug 2011
11 * -Reintroduce duplicate PD fixup - some customer chips still have the issue
12 *
13 * vineetg: May 2011
14 * -No need to flush_cache_page( ) for each call to update_mmu_cache()
15 * some of the LMBench tests improved amazingly
16 * = page-fault thrice as fast (75 usec to 28 usec)
17 * = mmap twice as fast (9.6 msec to 4.6 msec),
18 * = fork (5.3 msec to 3.7 msec)
19 *
20 * vineetg: April 2011 :
21 * -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
22 * helps avoid a shift when preparing PD0 from PTE
23 *
24 * vineetg: April 2011 : Preparing for MMU V3
25 * -MMU v2/v3 BCRs decoded differently
26 * -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
27 * -tlb_entry_erase( ) can be void
28 * -local_flush_tlb_range( ):
29 * = need not "ceil" @end
30 * = walks MMU only if range spans < 32 entries, as opposed to 256
31 *
32 * Vineetg: Sept 10th 2008
33 * -Changes related to MMU v2 (Rel 4.8)
34 *
35 * Vineetg: Aug 29th 2008
36 * -In TLB Flush operations (Metal Fix MMU) there is a explict command to
37 * flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
38 * it fails. Thus need to load it with ANY valid value before invoking
39 * TLBIVUTLB cmd
40 *
41 * Vineetg: Aug 21th 2008:
42 * -Reduced the duration of IRQ lockouts in TLB Flush routines
43 * -Multiple copies of TLB erase code seperated into a "single" function
44 * -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
45 * in interrupt-safe region.
46 *
47 * Vineetg: April 23rd Bug #93131
48 * Problem: tlb_flush_kernel_range() doesnt do anything if the range to
49 * flush is more than the size of TLB itself.
50 *
51 * Rahul Trivedi : Codito Technologies 2004
Vineet Guptaf1f33472013-01-18 15:12:19 +053052 */
53
54#include <linux/module.h>
55#include <asm/arcregs.h>
Vineet Guptad79e6782013-01-18 15:12:20 +053056#include <asm/setup.h>
Vineet Guptaf1f33472013-01-18 15:12:19 +053057#include <asm/mmu_context.h>
Vineet Guptada1677b02013-05-14 13:28:17 +053058#include <asm/mmu.h>
Vineet Guptaf1f33472013-01-18 15:12:19 +053059
Vineet Guptad79e6782013-01-18 15:12:20 +053060/* Need for ARC MMU v2
61 *
62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
64 * map into same set, there would be contention for the 2 ways causing severe
65 * Thrashing.
66 *
67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
69 * Given this, the thrasing problem should never happen because once the 3
70 * J-TLB entries are created (even though 3rd will knock out one of the prev
71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
72 *
73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
74 * This is a simple design for keeping them in sync. So what do we do?
75 * The solution which James came up was pretty neat. It utilised the assoc
76 * of uTLBs by not invalidating always but only when absolutely necessary.
77 *
78 * - Existing TLB commands work as before
79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
80 * - New command (TLBIVUTLB) to invalidate uTLBs.
81 *
82 * The uTLBs need only be invalidated when pages are being removed from the
83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
84 * as a result of a miss, the removed entry is still allowed to exist in the
85 * uTLBs as it is still valid and present in the OS page table. This allows the
86 * full associativity of the uTLBs to hide the limited associativity of the main
87 * TLB.
88 *
89 * During a miss handler, the new "TLBWriteNI" command is used to load
90 * entries without clearing the uTLBs.
91 *
92 * When the OS page table is updated, TLB entries that may be associated with a
93 * removed page are removed (flushed) from the TLB using TLBWrite. In this
94 * circumstance, the uTLBs must also be cleared. This is done by using the
95 * existing TLBWrite command. An explicit IVUTLB is also required for those
96 * corner cases when TLBWrite was not executed at all because the corresp
97 * J-TLB entry got evicted/replaced.
98 */
99
Vineet Guptada1677b02013-05-14 13:28:17 +0530100
Vineet Guptaf1f33472013-01-18 15:12:19 +0530101/* A copy of the ASID from the PID reg is kept in asid_cache */
102int asid_cache = FIRST_ASID;
103
104/* ASID to mm struct mapping. We have one extra entry corresponding to
105 * NO_ASID to save us a compare when clearing the mm entry for old asid
106 * see get_new_mmu_context (asm-arc/mmu_context.h)
107 */
108struct mm_struct *asid_mm_map[NUM_ASID + 1];
Vineet Guptacc562d22013-01-18 15:12:19 +0530109
Vineet Guptad79e6782013-01-18 15:12:20 +0530110/*
111 * Utility Routine to erase a J-TLB entry
112 * The procedure is to look it up in the MMU. If found, ERASE it by
113 * issuing a TlbWrite CMD with PD0 = PD1 = 0
114 */
115
116static void __tlb_entry_erase(void)
117{
118 write_aux_reg(ARC_REG_TLBPD1, 0);
119 write_aux_reg(ARC_REG_TLBPD0, 0);
120 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
121}
122
123static void tlb_entry_erase(unsigned int vaddr_n_asid)
124{
125 unsigned int idx;
126
127 /* Locate the TLB entry for this vaddr + ASID */
128 write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
129 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
130 idx = read_aux_reg(ARC_REG_TLBINDEX);
131
132 /* No error means entry found, zero it out */
133 if (likely(!(idx & TLB_LKUP_ERR))) {
134 __tlb_entry_erase();
135 } else { /* Some sort of Error */
136
137 /* Duplicate entry error */
138 if (idx & 0x1) {
139 /* TODO we need to handle this case too */
140 pr_emerg("unhandled Duplicate flush for %x\n",
141 vaddr_n_asid);
142 }
143 /* else entry not found so nothing to do */
144 }
145}
146
147/****************************************************************************
148 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
149 *
150 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
151 *
152 * utlb_invalidate ( )
153 * -For v2 MMU calls Flush uTLB Cmd
154 * -For v1 MMU does nothing (except for Metal Fix v1 MMU)
155 * This is because in v1 TLBWrite itself invalidate uTLBs
156 ***************************************************************************/
157
158static void utlb_invalidate(void)
159{
160#if (CONFIG_ARC_MMU_VER >= 2)
161
162#if (CONFIG_ARC_MMU_VER < 3)
163 /* MMU v2 introduced the uTLB Flush command.
164 * There was however an obscure hardware bug, where uTLB flush would
165 * fail when a prior probe for J-TLB (both totally unrelated) would
166 * return lkup err - because the entry didnt exist in MMU.
167 * The Workround was to set Index reg with some valid value, prior to
168 * flush. This was fixed in MMU v3 hence not needed any more
169 */
170 unsigned int idx;
171
172 /* make sure INDEX Reg is valid */
173 idx = read_aux_reg(ARC_REG_TLBINDEX);
174
175 /* If not write some dummy val */
176 if (unlikely(idx & TLB_LKUP_ERR))
177 write_aux_reg(ARC_REG_TLBINDEX, 0xa);
178#endif
179
180 write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
181#endif
182
183}
184
185/*
186 * Un-conditionally (without lookup) erase the entire MMU contents
187 */
188
189noinline void local_flush_tlb_all(void)
190{
191 unsigned long flags;
192 unsigned int entry;
193 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
194
195 local_irq_save(flags);
196
197 /* Load PD0 and PD1 with template for a Blank Entry */
198 write_aux_reg(ARC_REG_TLBPD1, 0);
199 write_aux_reg(ARC_REG_TLBPD0, 0);
200
201 for (entry = 0; entry < mmu->num_tlb; entry++) {
202 /* write this entry to the TLB */
203 write_aux_reg(ARC_REG_TLBINDEX, entry);
204 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
205 }
206
207 utlb_invalidate();
208
209 local_irq_restore(flags);
210}
211
212/*
213 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
214 */
215noinline void local_flush_tlb_mm(struct mm_struct *mm)
216{
217 /*
218 * Small optimisation courtesy IA64
219 * flush_mm called during fork,exit,munmap etc, multiple times as well.
220 * Only for fork( ) do we need to move parent to a new MMU ctxt,
221 * all other cases are NOPs, hence this check.
222 */
223 if (atomic_read(&mm->mm_users) == 0)
224 return;
225
226 /*
227 * Workaround for Android weirdism:
228 * A binder VMA could end up in a task such that vma->mm != tsk->mm
229 * old code would cause h/w - s/w ASID to get out of sync
230 */
231 if (current->mm != mm)
232 destroy_context(mm);
233 else
234 get_new_mmu_context(mm);
235}
236
237/*
238 * Flush a Range of TLB entries for userland.
239 * @start is inclusive, while @end is exclusive
240 * Difference between this and Kernel Range Flush is
241 * -Here the fastest way (if range is too large) is to move to next ASID
242 * without doing any explicit Shootdown
243 * -In case of kernel Flush, entry has to be shot down explictly
244 */
245void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
246 unsigned long end)
247{
248 unsigned long flags;
249 unsigned int asid;
250
251 /* If range @start to @end is more than 32 TLB entries deep,
252 * its better to move to a new ASID rather than searching for
253 * individual entries and then shooting them down
254 *
255 * The calc above is rough, doesn't account for unaligned parts,
256 * since this is heuristics based anyways
257 */
258 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
259 local_flush_tlb_mm(vma->vm_mm);
260 return;
261 }
262
263 /*
264 * @start moved to page start: this alone suffices for checking
265 * loop end condition below, w/o need for aligning @end to end
266 * e.g. 2000 to 4001 will anyhow loop twice
267 */
268 start &= PAGE_MASK;
269
270 local_irq_save(flags);
271 asid = vma->vm_mm->context.asid;
272
273 if (asid != NO_ASID) {
274 while (start < end) {
275 tlb_entry_erase(start | (asid & 0xff));
276 start += PAGE_SIZE;
277 }
278 }
279
280 utlb_invalidate();
281
282 local_irq_restore(flags);
283}
284
285/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
286 * @start, @end interpreted as kvaddr
287 * Interestingly, shared TLB entries can also be flushed using just
288 * @start,@end alone (interpreted as user vaddr), although technically SASID
289 * is also needed. However our smart TLbProbe lookup takes care of that.
290 */
291void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
292{
293 unsigned long flags;
294
295 /* exactly same as above, except for TLB entry not taking ASID */
296
297 if (unlikely((end - start) >= PAGE_SIZE * 32)) {
298 local_flush_tlb_all();
299 return;
300 }
301
302 start &= PAGE_MASK;
303
304 local_irq_save(flags);
305 while (start < end) {
306 tlb_entry_erase(start);
307 start += PAGE_SIZE;
308 }
309
310 utlb_invalidate();
311
312 local_irq_restore(flags);
313}
314
315/*
316 * Delete TLB entry in MMU for a given page (??? address)
317 * NOTE One TLB entry contains translation for single PAGE
318 */
319
320void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
321{
322 unsigned long flags;
323
324 /* Note that it is critical that interrupts are DISABLED between
325 * checking the ASID and using it flush the TLB entry
326 */
327 local_irq_save(flags);
328
329 if (vma->vm_mm->context.asid != NO_ASID) {
330 tlb_entry_erase((page & PAGE_MASK) |
331 (vma->vm_mm->context.asid & 0xff));
332 utlb_invalidate();
333 }
334
335 local_irq_restore(flags);
336}
Vineet Guptacc562d22013-01-18 15:12:19 +0530337
338/*
339 * Routine to create a TLB entry
340 */
341void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
342{
343 unsigned long flags;
Vineet Gupta64b703e2013-06-17 18:12:13 +0530344 unsigned int idx, asid_or_sasid, rwx;
Vineet Guptacc562d22013-01-18 15:12:19 +0530345
346 /*
347 * create_tlb() assumes that current->mm == vma->mm, since
348 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
349 * -completes the lazy write to SASID reg (again valid for curr tsk)
350 *
351 * Removing the assumption involves
352 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
353 * -Fix the TLB paranoid debug code to not trigger false negatives.
354 * -More importantly it makes this handler inconsistent with fast-path
355 * TLB Refill handler which always deals with "current"
356 *
357 * Lets see the use cases when current->mm != vma->mm and we land here
358 * 1. execve->copy_strings()->__get_user_pages->handle_mm_fault
359 * Here VM wants to pre-install a TLB entry for user stack while
360 * current->mm still points to pre-execve mm (hence the condition).
361 * However the stack vaddr is soon relocated (randomization) and
362 * move_page_tables() tries to undo that TLB entry.
363 * Thus not creating TLB entry is not any worse.
364 *
365 * 2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
366 * breakpoint in debugged task. Not creating a TLB now is not
367 * performance critical.
368 *
369 * Both the cases above are not good enough for code churn.
370 */
371 if (current->active_mm != vma->vm_mm)
372 return;
373
374 local_irq_save(flags);
375
376 tlb_paranoid_check(vma->vm_mm->context.asid, address);
377
378 address &= PAGE_MASK;
379
380 /* update this PTE credentials */
381 pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
382
Vineet Guptad091fcb2013-06-17 19:44:06 +0530383 /* Create HW TLB(PD0,PD1) from PTE */
Vineet Guptacc562d22013-01-18 15:12:19 +0530384
385 /* ASID for this task */
386 asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
387
Vineet Guptad091fcb2013-06-17 19:44:06 +0530388 write_aux_reg(ARC_REG_TLBPD0, address | asid_or_sasid |
389 (pte_val(*ptep) & PTE_BITS_IN_PD0));
Vineet Guptacc562d22013-01-18 15:12:19 +0530390
Vineet Gupta64b703e2013-06-17 18:12:13 +0530391 /*
392 * ARC MMU provides fully orthogonal access bits for K/U mode,
393 * however Linux only saves 1 set to save PTE real-estate
394 * Here we convert 3 PTE bits into 6 MMU bits:
395 * -Kernel only entries have Kr Kw Kx 0 0 0
396 * -User entries have mirrored K and U bits
397 */
398 rwx = pte_val(*ptep) & PTE_BITS_RWX;
399
400 if (pte_val(*ptep) & _PAGE_GLOBAL)
401 rwx <<= 3; /* r w x => Kr Kw Kx 0 0 0 */
402 else
403 rwx |= (rwx << 3); /* r w x => Kr Kw Kx Ur Uw Ux */
404
Vineet Guptacc562d22013-01-18 15:12:19 +0530405 /* Load remaining info in PD1 (Page Frame Addr and Kx/Kw/Kr Flags) */
Vineet Gupta64b703e2013-06-17 18:12:13 +0530406 write_aux_reg(ARC_REG_TLBPD1,
407 rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1));
Vineet Guptacc562d22013-01-18 15:12:19 +0530408
409 /* First verify if entry for this vaddr+ASID already exists */
410 write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
411 idx = read_aux_reg(ARC_REG_TLBINDEX);
412
413 /*
414 * If Not already present get a free slot from MMU.
415 * Otherwise, Probe would have located the entry and set INDEX Reg
416 * with existing location. This will cause Write CMD to over-write
417 * existing entry with new PD0 and PD1
418 */
419 if (likely(idx & TLB_LKUP_ERR))
420 write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
421
422 /*
423 * Commit the Entry to MMU
424 * It doesnt sound safe to use the TLBWriteNI cmd here
425 * which doesn't flush uTLBs. I'd rather be safe than sorry.
426 */
427 write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
428
429 local_irq_restore(flags);
430}
431
Vineet Guptaeacd0e92013-04-16 14:10:48 +0530432/*
433 * Called at the end of pagefault, for a userspace mapped page
434 * -pre-install the corresponding TLB entry into MMU
Vineet Gupta4102b532013-05-09 21:54:51 +0530435 * -Finalize the delayed D-cache flush of kernel mapping of page due to
436 * flush_dcache_page(), copy_user_page()
437 *
438 * Note that flush (when done) involves both WBACK - so physical page is
439 * in sync as well as INV - so any non-congruent aliases don't remain
Vineet Guptacc562d22013-01-18 15:12:19 +0530440 */
Vineet Gupta24603fd2013-04-11 18:36:35 +0530441void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
Vineet Guptacc562d22013-01-18 15:12:19 +0530442 pte_t *ptep)
443{
Vineet Gupta24603fd2013-04-11 18:36:35 +0530444 unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
Vineet Gupta4102b532013-05-09 21:54:51 +0530445 unsigned long paddr = pte_val(*ptep) & PAGE_MASK;
Vineet Gupta29b93c62013-05-19 15:51:03 +0530446 struct page *page = pfn_to_page(pte_pfn(*ptep));
Vineet Guptacc562d22013-01-18 15:12:19 +0530447
Vineet Gupta24603fd2013-04-11 18:36:35 +0530448 create_tlb(vma, vaddr, ptep);
449
Vineet Gupta29b93c62013-05-19 15:51:03 +0530450 if (page == ZERO_PAGE(0)) {
451 return;
452 }
453
Vineet Gupta4102b532013-05-09 21:54:51 +0530454 /*
455 * Exec page : Independent of aliasing/page-color considerations,
456 * since icache doesn't snoop dcache on ARC, any dirty
457 * K-mapping of a code page needs to be wback+inv so that
458 * icache fetch by userspace sees code correctly.
459 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
460 * so userspace sees the right data.
461 * (Avoids the flush for Non-exec + congruent mapping case)
462 */
Vineet Gupta3e879742013-05-22 18:38:10 +0530463 if ((vma->vm_flags & VM_EXEC) ||
464 addr_not_cache_congruent(paddr, vaddr)) {
Vineet Guptaeacd0e92013-04-16 14:10:48 +0530465
Vineet Gupta2ed21da2013-05-13 17:23:58 +0530466 int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
Vineet Guptaeacd0e92013-04-16 14:10:48 +0530467 if (dirty) {
Vineet Gupta4102b532013-05-09 21:54:51 +0530468 /* wback + inv dcache lines */
Vineet Gupta6ec18a82013-05-09 15:10:18 +0530469 __flush_dcache_page(paddr, paddr);
Vineet Gupta4102b532013-05-09 21:54:51 +0530470
471 /* invalidate any existing icache lines */
472 if (vma->vm_flags & VM_EXEC)
473 __inv_icache_page(paddr, vaddr);
Vineet Guptaeacd0e92013-04-16 14:10:48 +0530474 }
Vineet Gupta24603fd2013-04-11 18:36:35 +0530475 }
Vineet Guptacc562d22013-01-18 15:12:19 +0530476}
477
478/* Read the Cache Build Confuration Registers, Decode them and save into
479 * the cpuinfo structure for later use.
480 * No Validation is done here, simply read/convert the BCRs
481 */
Paul Gortmakerce759952013-06-24 15:30:15 -0400482void read_decode_mmu_bcr(void)
Vineet Guptacc562d22013-01-18 15:12:19 +0530483{
Vineet Guptacc562d22013-01-18 15:12:19 +0530484 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
Vineet Guptada1677b02013-05-14 13:28:17 +0530485 unsigned int tmp;
486 struct bcr_mmu_1_2 {
487#ifdef CONFIG_CPU_BIG_ENDIAN
488 unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
489#else
490 unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
491#endif
492 } *mmu2;
493
494 struct bcr_mmu_3 {
495#ifdef CONFIG_CPU_BIG_ENDIAN
496 unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4,
497 u_itlb:4, u_dtlb:4;
498#else
499 unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4,
500 ways:4, ver:8;
501#endif
502 } *mmu3;
Vineet Guptacc562d22013-01-18 15:12:19 +0530503
504 tmp = read_aux_reg(ARC_REG_MMU_BCR);
505 mmu->ver = (tmp >> 24);
506
507 if (mmu->ver <= 2) {
508 mmu2 = (struct bcr_mmu_1_2 *)&tmp;
509 mmu->pg_sz = PAGE_SIZE;
510 mmu->sets = 1 << mmu2->sets;
511 mmu->ways = 1 << mmu2->ways;
512 mmu->u_dtlb = mmu2->u_dtlb;
513 mmu->u_itlb = mmu2->u_itlb;
514 } else {
515 mmu3 = (struct bcr_mmu_3 *)&tmp;
516 mmu->pg_sz = 512 << mmu3->pg_sz;
517 mmu->sets = 1 << mmu3->sets;
518 mmu->ways = 1 << mmu3->ways;
519 mmu->u_dtlb = mmu3->u_dtlb;
520 mmu->u_itlb = mmu3->u_itlb;
521 }
522
523 mmu->num_tlb = mmu->sets * mmu->ways;
524}
525
Vineet Guptaaf617422013-01-18 15:12:24 +0530526char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
527{
528 int n = 0;
Noam Camuse3edeb62013-02-26 09:22:46 +0200529 struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
Vineet Guptaaf617422013-01-18 15:12:24 +0530530
531 n += scnprintf(buf + n, len - n, "ARC700 MMU [v%x]\t: %dk PAGE, ",
532 p_mmu->ver, TO_KB(p_mmu->pg_sz));
533
534 n += scnprintf(buf + n, len - n,
535 "J-TLB %d (%dx%d), uDTLB %d, uITLB %d, %s\n",
536 p_mmu->num_tlb, p_mmu->sets, p_mmu->ways,
537 p_mmu->u_dtlb, p_mmu->u_itlb,
Vineet Gupta8235703e2013-06-01 12:55:42 +0530538 IS_ENABLED(CONFIG_ARC_MMU_SASID) ? "SASID" : "");
Vineet Guptaaf617422013-01-18 15:12:24 +0530539
540 return buf;
541}
542
Paul Gortmakerce759952013-06-24 15:30:15 -0400543void arc_mmu_init(void)
Vineet Guptacc562d22013-01-18 15:12:19 +0530544{
Vineet Guptaaf617422013-01-18 15:12:24 +0530545 char str[256];
546 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
547
548 printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
549
550 /* For efficiency sake, kernel is compile time built for a MMU ver
551 * This must match the hardware it is running on.
552 * Linux built for MMU V2, if run on MMU V1 will break down because V1
553 * hardware doesn't understand cmds such as WriteNI, or IVUTLB
554 * On the other hand, Linux built for V1 if run on MMU V2 will do
555 * un-needed workarounds to prevent memcpy thrashing.
556 * Similarly MMU V3 has new features which won't work on older MMU
557 */
558 if (mmu->ver != CONFIG_ARC_MMU_VER) {
559 panic("MMU ver %d doesn't match kernel built for %d...\n",
560 mmu->ver, CONFIG_ARC_MMU_VER);
561 }
562
563 if (mmu->pg_sz != PAGE_SIZE)
564 panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
565
Vineet Guptacc562d22013-01-18 15:12:19 +0530566 /*
567 * ASID mgmt data structures are compile time init
568 * asid_cache = FIRST_ASID and asid_mm_map[] all zeroes
569 */
570
571 local_flush_tlb_all();
572
573 /* Enable the MMU */
574 write_aux_reg(ARC_REG_PID, MMU_ENABLE);
Vineet Gupta41195d22013-01-18 15:12:23 +0530575
576 /* In smp we use this reg for interrupt 1 scratch */
577#ifndef CONFIG_SMP
578 /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
579 write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
580#endif
Vineet Guptacc562d22013-01-18 15:12:19 +0530581}
582
583/*
584 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
585 * The mapping is Column-first.
586 * --------------------- -----------
587 * |way0|way1|way2|way3| |way0|way1|
588 * --------------------- -----------
589 * [set0] | 0 | 1 | 2 | 3 | | 0 | 1 |
590 * [set1] | 4 | 5 | 6 | 7 | | 2 | 3 |
591 * ~ ~ ~ ~
592 * [set127] | 508| 509| 510| 511| | 254| 255|
593 * --------------------- -----------
594 * For normal operations we don't(must not) care how above works since
595 * MMU cmd getIndex(vaddr) abstracts that out.
596 * However for walking WAYS of a SET, we need to know this
597 */
598#define SET_WAY_TO_IDX(mmu, set, way) ((set) * mmu->ways + (way))
599
600/* Handling of Duplicate PD (TLB entry) in MMU.
601 * -Could be due to buggy customer tapeouts or obscure kernel bugs
602 * -MMU complaints not at the time of duplicate PD installation, but at the
603 * time of lookup matching multiple ways.
604 * -Ideally these should never happen - but if they do - workaround by deleting
605 * the duplicate one.
606 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
607 */
608volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */
609
610void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
611 struct pt_regs *regs)
612{
613 int set, way, n;
614 unsigned int pd0[4], pd1[4]; /* assume max 4 ways */
615 unsigned long flags, is_valid;
616 struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
617
618 local_irq_save(flags);
619
620 /* re-enable the MMU */
621 write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
622
623 /* loop thru all sets of TLB */
624 for (set = 0; set < mmu->sets; set++) {
625
626 /* read out all the ways of current set */
627 for (way = 0, is_valid = 0; way < mmu->ways; way++) {
628 write_aux_reg(ARC_REG_TLBINDEX,
629 SET_WAY_TO_IDX(mmu, set, way));
630 write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
631 pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
632 pd1[way] = read_aux_reg(ARC_REG_TLBPD1);
633 is_valid |= pd0[way] & _PAGE_PRESENT;
634 }
635
636 /* If all the WAYS in SET are empty, skip to next SET */
637 if (!is_valid)
638 continue;
639
640 /* Scan the set for duplicate ways: needs a nested loop */
641 for (way = 0; way < mmu->ways; way++) {
642 if (!pd0[way])
643 continue;
644
645 for (n = way + 1; n < mmu->ways; n++) {
646 if ((pd0[way] & PAGE_MASK) ==
647 (pd0[n] & PAGE_MASK)) {
648
649 if (dup_pd_verbose) {
650 pr_info("Duplicate PD's @"
651 "[%d:%d]/[%d:%d]\n",
652 set, way, set, n);
653 pr_info("TLBPD0[%u]: %08x\n",
654 way, pd0[way]);
655 }
656
657 /*
658 * clear entry @way and not @n. This is
659 * critical to our optimised loop
660 */
661 pd0[way] = pd1[way] = 0;
662 write_aux_reg(ARC_REG_TLBINDEX,
663 SET_WAY_TO_IDX(mmu, set, way));
664 __tlb_entry_erase();
665 }
666 }
667 }
668 }
669
670 local_irq_restore(flags);
671}
672
673/***********************************************************************
674 * Diagnostic Routines
675 * -Called from Low Level TLB Hanlders if things don;t look good
676 **********************************************************************/
677
678#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
679
680/*
681 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
682 * don't match
683 */
684void print_asid_mismatch(int is_fast_path)
685{
686 int pid_sw, pid_hw;
687 pid_sw = current->active_mm->context.asid;
688 pid_hw = read_aux_reg(ARC_REG_PID) & 0xff;
689
690 pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
691 is_fast_path ? "Fast" : "Slow", pid_sw, pid_hw);
692
693 __asm__ __volatile__("flag 1");
694}
695
696void tlb_paranoid_check(unsigned int pid_sw, unsigned long addr)
697{
698 unsigned int pid_hw;
699
700 pid_hw = read_aux_reg(ARC_REG_PID) & 0xff;
701
702 if (addr < 0x70000000 && ((pid_hw != pid_sw) || (pid_sw == NO_ASID)))
703 print_asid_mismatch(0);
704}
705#endif