Peter Zijlstra (Intel) | 13b3568 | 2016-02-19 09:46:37 +0100 | [diff] [blame] | 1 | #ifndef _LINUX_SWAIT_H |
| 2 | #define _LINUX_SWAIT_H |
| 3 | |
| 4 | #include <linux/list.h> |
| 5 | #include <linux/stddef.h> |
| 6 | #include <linux/spinlock.h> |
| 7 | #include <asm/current.h> |
| 8 | |
| 9 | /* |
| 10 | * Simple wait queues |
| 11 | * |
| 12 | * While these are very similar to the other/complex wait queues (wait.h) the |
| 13 | * most important difference is that the simple waitqueue allows for |
| 14 | * deterministic behaviour -- IOW it has strictly bounded IRQ and lock hold |
| 15 | * times. |
| 16 | * |
| 17 | * In order to make this so, we had to drop a fair number of features of the |
| 18 | * other waitqueue code; notably: |
| 19 | * |
| 20 | * - mixing INTERRUPTIBLE and UNINTERRUPTIBLE sleeps on the same waitqueue; |
| 21 | * all wakeups are TASK_NORMAL in order to avoid O(n) lookups for the right |
| 22 | * sleeper state. |
| 23 | * |
| 24 | * - the exclusive mode; because this requires preserving the list order |
| 25 | * and this is hard. |
| 26 | * |
| 27 | * - custom wake functions; because you cannot give any guarantees about |
| 28 | * random code. |
| 29 | * |
| 30 | * As a side effect of this; the data structures are slimmer. |
| 31 | * |
| 32 | * One would recommend using this wait queue where possible. |
| 33 | */ |
| 34 | |
| 35 | struct task_struct; |
| 36 | |
| 37 | struct swait_queue_head { |
| 38 | raw_spinlock_t lock; |
| 39 | struct list_head task_list; |
| 40 | }; |
| 41 | |
| 42 | struct swait_queue { |
| 43 | struct task_struct *task; |
| 44 | struct list_head task_list; |
| 45 | }; |
| 46 | |
| 47 | #define __SWAITQUEUE_INITIALIZER(name) { \ |
| 48 | .task = current, \ |
| 49 | .task_list = LIST_HEAD_INIT((name).task_list), \ |
| 50 | } |
| 51 | |
| 52 | #define DECLARE_SWAITQUEUE(name) \ |
| 53 | struct swait_queue name = __SWAITQUEUE_INITIALIZER(name) |
| 54 | |
| 55 | #define __SWAIT_QUEUE_HEAD_INITIALIZER(name) { \ |
| 56 | .lock = __RAW_SPIN_LOCK_UNLOCKED(name.lock), \ |
| 57 | .task_list = LIST_HEAD_INIT((name).task_list), \ |
| 58 | } |
| 59 | |
| 60 | #define DECLARE_SWAIT_QUEUE_HEAD(name) \ |
| 61 | struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INITIALIZER(name) |
| 62 | |
| 63 | extern void __init_swait_queue_head(struct swait_queue_head *q, const char *name, |
| 64 | struct lock_class_key *key); |
| 65 | |
| 66 | #define init_swait_queue_head(q) \ |
| 67 | do { \ |
| 68 | static struct lock_class_key __key; \ |
| 69 | __init_swait_queue_head((q), #q, &__key); \ |
| 70 | } while (0) |
| 71 | |
| 72 | #ifdef CONFIG_LOCKDEP |
| 73 | # define __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name) \ |
| 74 | ({ init_swait_queue_head(&name); name; }) |
| 75 | # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name) \ |
| 76 | struct swait_queue_head name = __SWAIT_QUEUE_HEAD_INIT_ONSTACK(name) |
| 77 | #else |
| 78 | # define DECLARE_SWAIT_QUEUE_HEAD_ONSTACK(name) \ |
| 79 | DECLARE_SWAIT_QUEUE_HEAD(name) |
| 80 | #endif |
| 81 | |
Davidlohr Bueso | 8cd641e | 2017-09-13 13:08:18 -0700 | [diff] [blame^] | 82 | /** |
| 83 | * swait_active -- locklessly test for waiters on the queue |
| 84 | * @wq: the waitqueue to test for waiters |
| 85 | * |
| 86 | * returns true if the wait list is not empty |
| 87 | * |
| 88 | * NOTE: this function is lockless and requires care, incorrect usage _will_ |
| 89 | * lead to sporadic and non-obvious failure. |
| 90 | * |
| 91 | * NOTE2: this function has the same above implications as regular waitqueues. |
| 92 | * |
| 93 | * Use either while holding swait_queue_head::lock or when used for wakeups |
| 94 | * with an extra smp_mb() like: |
| 95 | * |
| 96 | * CPU0 - waker CPU1 - waiter |
| 97 | * |
| 98 | * for (;;) { |
| 99 | * @cond = true; prepare_to_swait(&wq_head, &wait, state); |
| 100 | * smp_mb(); // smp_mb() from set_current_state() |
| 101 | * if (swait_active(wq_head)) if (@cond) |
| 102 | * wake_up(wq_head); break; |
| 103 | * schedule(); |
| 104 | * } |
| 105 | * finish_swait(&wq_head, &wait); |
| 106 | * |
| 107 | * Because without the explicit smp_mb() it's possible for the |
| 108 | * swait_active() load to get hoisted over the @cond store such that we'll |
| 109 | * observe an empty wait list while the waiter might not observe @cond. |
| 110 | * This, in turn, can trigger missing wakeups. |
| 111 | * |
| 112 | * Also note that this 'optimization' trades a spin_lock() for an smp_mb(), |
| 113 | * which (when the lock is uncontended) are of roughly equal cost. |
| 114 | */ |
| 115 | static inline int swait_active(struct swait_queue_head *wq) |
Peter Zijlstra (Intel) | 13b3568 | 2016-02-19 09:46:37 +0100 | [diff] [blame] | 116 | { |
Davidlohr Bueso | 8cd641e | 2017-09-13 13:08:18 -0700 | [diff] [blame^] | 117 | return !list_empty(&wq->task_list); |
| 118 | } |
| 119 | |
| 120 | /** |
| 121 | * swq_has_sleeper - check if there are any waiting processes |
| 122 | * @wq: the waitqueue to test for waiters |
| 123 | * |
| 124 | * Returns true if @wq has waiting processes |
| 125 | * |
| 126 | * Please refer to the comment for swait_active. |
| 127 | */ |
| 128 | static inline bool swq_has_sleeper(struct swait_queue_head *wq) |
| 129 | { |
| 130 | /* |
| 131 | * We need to be sure we are in sync with the list_add() |
| 132 | * modifications to the wait queue (task_list). |
| 133 | * |
| 134 | * This memory barrier should be paired with one on the |
| 135 | * waiting side. |
| 136 | */ |
| 137 | smp_mb(); |
| 138 | return swait_active(wq); |
Peter Zijlstra (Intel) | 13b3568 | 2016-02-19 09:46:37 +0100 | [diff] [blame] | 139 | } |
| 140 | |
| 141 | extern void swake_up(struct swait_queue_head *q); |
| 142 | extern void swake_up_all(struct swait_queue_head *q); |
| 143 | extern void swake_up_locked(struct swait_queue_head *q); |
| 144 | |
| 145 | extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); |
| 146 | extern void prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait, int state); |
| 147 | extern long prepare_to_swait_event(struct swait_queue_head *q, struct swait_queue *wait, int state); |
| 148 | |
| 149 | extern void __finish_swait(struct swait_queue_head *q, struct swait_queue *wait); |
| 150 | extern void finish_swait(struct swait_queue_head *q, struct swait_queue *wait); |
| 151 | |
| 152 | /* as per ___wait_event() but for swait, therefore "exclusive == 0" */ |
| 153 | #define ___swait_event(wq, condition, state, ret, cmd) \ |
| 154 | ({ \ |
| 155 | struct swait_queue __wait; \ |
| 156 | long __ret = ret; \ |
| 157 | \ |
| 158 | INIT_LIST_HEAD(&__wait.task_list); \ |
| 159 | for (;;) { \ |
| 160 | long __int = prepare_to_swait_event(&wq, &__wait, state);\ |
| 161 | \ |
| 162 | if (condition) \ |
| 163 | break; \ |
| 164 | \ |
| 165 | if (___wait_is_interruptible(state) && __int) { \ |
| 166 | __ret = __int; \ |
| 167 | break; \ |
| 168 | } \ |
| 169 | \ |
| 170 | cmd; \ |
| 171 | } \ |
| 172 | finish_swait(&wq, &__wait); \ |
| 173 | __ret; \ |
| 174 | }) |
| 175 | |
| 176 | #define __swait_event(wq, condition) \ |
| 177 | (void)___swait_event(wq, condition, TASK_UNINTERRUPTIBLE, 0, \ |
| 178 | schedule()) |
| 179 | |
| 180 | #define swait_event(wq, condition) \ |
| 181 | do { \ |
| 182 | if (condition) \ |
| 183 | break; \ |
| 184 | __swait_event(wq, condition); \ |
| 185 | } while (0) |
| 186 | |
| 187 | #define __swait_event_timeout(wq, condition, timeout) \ |
| 188 | ___swait_event(wq, ___wait_cond_timeout(condition), \ |
| 189 | TASK_UNINTERRUPTIBLE, timeout, \ |
| 190 | __ret = schedule_timeout(__ret)) |
| 191 | |
| 192 | #define swait_event_timeout(wq, condition, timeout) \ |
| 193 | ({ \ |
| 194 | long __ret = timeout; \ |
| 195 | if (!___wait_cond_timeout(condition)) \ |
| 196 | __ret = __swait_event_timeout(wq, condition, timeout); \ |
| 197 | __ret; \ |
| 198 | }) |
| 199 | |
| 200 | #define __swait_event_interruptible(wq, condition) \ |
| 201 | ___swait_event(wq, condition, TASK_INTERRUPTIBLE, 0, \ |
| 202 | schedule()) |
| 203 | |
| 204 | #define swait_event_interruptible(wq, condition) \ |
| 205 | ({ \ |
| 206 | int __ret = 0; \ |
| 207 | if (!(condition)) \ |
| 208 | __ret = __swait_event_interruptible(wq, condition); \ |
| 209 | __ret; \ |
| 210 | }) |
| 211 | |
| 212 | #define __swait_event_interruptible_timeout(wq, condition, timeout) \ |
| 213 | ___swait_event(wq, ___wait_cond_timeout(condition), \ |
| 214 | TASK_INTERRUPTIBLE, timeout, \ |
| 215 | __ret = schedule_timeout(__ret)) |
| 216 | |
| 217 | #define swait_event_interruptible_timeout(wq, condition, timeout) \ |
| 218 | ({ \ |
| 219 | long __ret = timeout; \ |
| 220 | if (!___wait_cond_timeout(condition)) \ |
| 221 | __ret = __swait_event_interruptible_timeout(wq, \ |
| 222 | condition, timeout); \ |
| 223 | __ret; \ |
| 224 | }) |
| 225 | |
Luis R. Rodriguez | 352eee1 | 2017-06-20 14:45:46 -0700 | [diff] [blame] | 226 | #define __swait_event_idle(wq, condition) \ |
| 227 | (void)___swait_event(wq, condition, TASK_IDLE, 0, schedule()) |
| 228 | |
| 229 | /** |
| 230 | * swait_event_idle - wait without system load contribution |
| 231 | * @wq: the waitqueue to wait on |
| 232 | * @condition: a C expression for the event to wait for |
| 233 | * |
| 234 | * The process is put to sleep (TASK_IDLE) until the @condition evaluates to |
| 235 | * true. The @condition is checked each time the waitqueue @wq is woken up. |
| 236 | * |
| 237 | * This function is mostly used when a kthread or workqueue waits for some |
| 238 | * condition and doesn't want to contribute to system load. Signals are |
| 239 | * ignored. |
| 240 | */ |
| 241 | #define swait_event_idle(wq, condition) \ |
| 242 | do { \ |
| 243 | if (condition) \ |
| 244 | break; \ |
| 245 | __swait_event_idle(wq, condition); \ |
| 246 | } while (0) |
| 247 | |
| 248 | #define __swait_event_idle_timeout(wq, condition, timeout) \ |
| 249 | ___swait_event(wq, ___wait_cond_timeout(condition), \ |
| 250 | TASK_IDLE, timeout, \ |
| 251 | __ret = schedule_timeout(__ret)) |
| 252 | |
| 253 | /** |
| 254 | * swait_event_idle_timeout - wait up to timeout without load contribution |
| 255 | * @wq: the waitqueue to wait on |
| 256 | * @condition: a C expression for the event to wait for |
| 257 | * @timeout: timeout at which we'll give up in jiffies |
| 258 | * |
| 259 | * The process is put to sleep (TASK_IDLE) until the @condition evaluates to |
| 260 | * true. The @condition is checked each time the waitqueue @wq is woken up. |
| 261 | * |
| 262 | * This function is mostly used when a kthread or workqueue waits for some |
| 263 | * condition and doesn't want to contribute to system load. Signals are |
| 264 | * ignored. |
| 265 | * |
| 266 | * Returns: |
| 267 | * 0 if the @condition evaluated to %false after the @timeout elapsed, |
| 268 | * 1 if the @condition evaluated to %true after the @timeout elapsed, |
| 269 | * or the remaining jiffies (at least 1) if the @condition evaluated |
| 270 | * to %true before the @timeout elapsed. |
| 271 | */ |
| 272 | #define swait_event_idle_timeout(wq, condition, timeout) \ |
| 273 | ({ \ |
| 274 | long __ret = timeout; \ |
| 275 | if (!___wait_cond_timeout(condition)) \ |
| 276 | __ret = __swait_event_idle_timeout(wq, \ |
| 277 | condition, timeout); \ |
| 278 | __ret; \ |
| 279 | }) |
| 280 | |
Peter Zijlstra (Intel) | 13b3568 | 2016-02-19 09:46:37 +0100 | [diff] [blame] | 281 | #endif /* _LINUX_SWAIT_H */ |