blob: e66f6c400d131c5d2fe72b56f5f501467a988a96 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
39DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
40
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
247}
248
249/*
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
252 */
253static void
254list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255{
256 struct perf_event *group_leader = event->group_leader;
257
258 /*
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
262 */
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
268 }
269
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
274}
275
276/*
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
279 */
280static void
281list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282{
283 struct perf_event *sibling, *tmp;
284
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
290
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
293
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
296
297 /*
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
301 */
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
306 }
307}
308
309static void
310event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
313{
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
316
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
321 }
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
325
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
331}
332
333static void
334group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
337{
338 struct perf_event *event;
339
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
342
343 event_sched_out(group_event, cpuctx, ctx);
344
345 /*
346 * Schedule out siblings (if any):
347 */
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
350
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
353}
354
355/*
356 * Cross CPU call to remove a performance event
357 *
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
360 */
361static void __perf_event_remove_from_context(void *info)
362{
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
366
367 /*
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
371 */
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
374
375 spin_lock(&ctx->lock);
376 /*
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
379 */
380 perf_disable();
381
382 event_sched_out(event, cpuctx, ctx);
383
384 list_del_event(event, ctx);
385
386 if (!ctx->task) {
387 /*
388 * Allow more per task events with respect to the
389 * reservation:
390 */
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
394 }
395
396 perf_enable();
397 spin_unlock(&ctx->lock);
398}
399
400
401/*
402 * Remove the event from a task's (or a CPU's) list of events.
403 *
404 * Must be called with ctx->mutex held.
405 *
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
408 *
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
415 */
416static void perf_event_remove_from_context(struct perf_event *event)
417{
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
420
421 if (!task) {
422 /*
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
425 */
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
430 }
431
432retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
435
436 spin_lock_irq(&ctx->lock);
437 /*
438 * If the context is active we need to retry the smp call.
439 */
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
443 }
444
445 /*
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
449 */
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
452 }
453 spin_unlock_irq(&ctx->lock);
454}
455
456static inline u64 perf_clock(void)
457{
458 return cpu_clock(smp_processor_id());
459}
460
461/*
462 * Update the record of the current time in a context.
463 */
464static void update_context_time(struct perf_event_context *ctx)
465{
466 u64 now = perf_clock();
467
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
470}
471
472/*
473 * Update the total_time_enabled and total_time_running fields for a event.
474 */
475static void update_event_times(struct perf_event *event)
476{
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
479
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
483
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
485
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
490
491 event->total_time_running = run_end - event->tstamp_running;
492}
493
494/*
495 * Update total_time_enabled and total_time_running for all events in a group.
496 */
497static void update_group_times(struct perf_event *leader)
498{
499 struct perf_event *event;
500
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
504}
505
506/*
507 * Cross CPU call to disable a performance event
508 */
509static void __perf_event_disable(void *info)
510{
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
514
515 /*
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
518 */
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
521
522 spin_lock(&ctx->lock);
523
524 /*
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
527 */
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
536 }
537
538 spin_unlock(&ctx->lock);
539}
540
541/*
542 * Disable a event.
543 *
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
553 */
554static void perf_event_disable(struct perf_event *event)
555{
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
558
559 if (!task) {
560 /*
561 * Disable the event on the cpu that it's on
562 */
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
566 }
567
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
570
571 spin_lock_irq(&ctx->lock);
572 /*
573 * If the event is still active, we need to retry the cross-call.
574 */
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
578 }
579
580 /*
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
583 */
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
587 }
588
589 spin_unlock_irq(&ctx->lock);
590}
591
592static int
593event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
597{
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
600
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
603 /*
604 * The new state must be visible before we turn it on in the hardware:
605 */
606 smp_wmb();
607
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
612 }
613
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
615
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
619
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
622
623 return 0;
624}
625
626static int
627group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
631{
632 struct perf_event *event, *partial_group;
633 int ret;
634
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
637
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
641
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
644
645 /*
646 * Schedule in siblings as one group (if any):
647 */
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
652 }
653 }
654
655 return 0;
656
657group_error:
658 /*
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
661 */
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
666 }
667 event_sched_out(group_event, cpuctx, ctx);
668
669 return -EAGAIN;
670}
671
672/*
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
675 */
676static int is_software_only_group(struct perf_event *leader)
677{
678 struct perf_event *event;
679
680 if (!is_software_event(leader))
681 return 0;
682
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
686
687 return 1;
688}
689
690/*
691 * Work out whether we can put this event group on the CPU now.
692 */
693static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
696{
697 /*
698 * Groups consisting entirely of software events can always go on.
699 */
700 if (is_software_only_group(event))
701 return 1;
702 /*
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
705 */
706 if (cpuctx->exclusive)
707 return 0;
708 /*
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
711 */
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
714 /*
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
717 */
718 return can_add_hw;
719}
720
721static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
723{
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
728}
729
730/*
731 * Cross CPU call to install and enable a performance event
732 *
733 * Must be called with ctx->mutex held
734 */
735static void __perf_install_in_context(void *info)
736{
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
743
744 /*
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
750 */
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
755 }
756
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
760
761 /*
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
764 */
765 perf_disable();
766
767 add_event_to_ctx(event, ctx);
768
769 /*
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
772 */
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
776
777 /*
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
781 */
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
786
787 if (err) {
788 /*
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
792 */
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
798 }
799 }
800
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
803
804 unlock:
805 perf_enable();
806
807 spin_unlock(&ctx->lock);
808}
809
810/*
811 * Attach a performance event to a context
812 *
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
815 *
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
819 *
820 * Must be called with ctx->mutex held.
821 */
822static void
823perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
826{
827 struct task_struct *task = ctx->task;
828
829 if (!task) {
830 /*
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
833 */
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
837 }
838
839retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
842
843 spin_lock_irq(&ctx->lock);
844 /*
845 * we need to retry the smp call.
846 */
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
850 }
851
852 /*
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
856 */
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
860}
861
862/*
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
869 */
870static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
872{
873 struct perf_event *sub;
874
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
881}
882
883/*
884 * Cross CPU call to enable a performance event
885 */
886static void __perf_event_enable(void *info)
887{
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
893
894 /*
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
897 */
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
902 }
903
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
907
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
911
912 /*
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
915 */
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
918
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
930 }
931
932 if (err) {
933 /*
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
936 */
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
942 }
943 }
944
945 unlock:
946 spin_unlock(&ctx->lock);
947}
948
949/*
950 * Enable a event.
951 *
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
957 */
958static void perf_event_enable(struct perf_event *event)
959{
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
962
963 if (!task) {
964 /*
965 * Enable the event on the cpu that it's on
966 */
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
970 }
971
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
975
976 /*
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
982 */
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
985
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
989
990 spin_lock_irq(&ctx->lock);
991
992 /*
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
995 */
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
998
999 /*
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1002 */
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1005
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1008}
1009
1010static int perf_event_refresh(struct perf_event *event, int refresh)
1011{
1012 /*
1013 * not supported on inherited events
1014 */
1015 if (event->attr.inherit)
1016 return -EINVAL;
1017
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1020
1021 return 0;
1022}
1023
1024void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1026{
1027 struct perf_event *event;
1028
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1034
1035 perf_disable();
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1039
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1043}
1044
1045/*
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1055 */
1056static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1058{
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1062}
1063
1064static void __perf_event_read(void *event);
1065
1066static void __perf_event_sync_stat(struct perf_event *event,
1067 struct perf_event *next_event)
1068{
1069 u64 value;
1070
1071 if (!event->attr.inherit_stat)
1072 return;
1073
1074 /*
1075 * Update the event value, we cannot use perf_event_read()
1076 * because we're in the middle of a context switch and have IRQs
1077 * disabled, which upsets smp_call_function_single(), however
1078 * we know the event must be on the current CPU, therefore we
1079 * don't need to use it.
1080 */
1081 switch (event->state) {
1082 case PERF_EVENT_STATE_ACTIVE:
1083 __perf_event_read(event);
1084 break;
1085
1086 case PERF_EVENT_STATE_INACTIVE:
1087 update_event_times(event);
1088 break;
1089
1090 default:
1091 break;
1092 }
1093
1094 /*
1095 * In order to keep per-task stats reliable we need to flip the event
1096 * values when we flip the contexts.
1097 */
1098 value = atomic64_read(&next_event->count);
1099 value = atomic64_xchg(&event->count, value);
1100 atomic64_set(&next_event->count, value);
1101
1102 swap(event->total_time_enabled, next_event->total_time_enabled);
1103 swap(event->total_time_running, next_event->total_time_running);
1104
1105 /*
1106 * Since we swizzled the values, update the user visible data too.
1107 */
1108 perf_event_update_userpage(event);
1109 perf_event_update_userpage(next_event);
1110}
1111
1112#define list_next_entry(pos, member) \
1113 list_entry(pos->member.next, typeof(*pos), member)
1114
1115static void perf_event_sync_stat(struct perf_event_context *ctx,
1116 struct perf_event_context *next_ctx)
1117{
1118 struct perf_event *event, *next_event;
1119
1120 if (!ctx->nr_stat)
1121 return;
1122
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001123 update_context_time(ctx);
1124
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001125 event = list_first_entry(&ctx->event_list,
1126 struct perf_event, event_entry);
1127
1128 next_event = list_first_entry(&next_ctx->event_list,
1129 struct perf_event, event_entry);
1130
1131 while (&event->event_entry != &ctx->event_list &&
1132 &next_event->event_entry != &next_ctx->event_list) {
1133
1134 __perf_event_sync_stat(event, next_event);
1135
1136 event = list_next_entry(event, event_entry);
1137 next_event = list_next_entry(next_event, event_entry);
1138 }
1139}
1140
1141/*
1142 * Called from scheduler to remove the events of the current task,
1143 * with interrupts disabled.
1144 *
1145 * We stop each event and update the event value in event->count.
1146 *
1147 * This does not protect us against NMI, but disable()
1148 * sets the disabled bit in the control field of event _before_
1149 * accessing the event control register. If a NMI hits, then it will
1150 * not restart the event.
1151 */
1152void perf_event_task_sched_out(struct task_struct *task,
1153 struct task_struct *next, int cpu)
1154{
1155 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1156 struct perf_event_context *ctx = task->perf_event_ctxp;
1157 struct perf_event_context *next_ctx;
1158 struct perf_event_context *parent;
1159 struct pt_regs *regs;
1160 int do_switch = 1;
1161
1162 regs = task_pt_regs(task);
1163 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1164
1165 if (likely(!ctx || !cpuctx->task_ctx))
1166 return;
1167
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001168 rcu_read_lock();
1169 parent = rcu_dereference(ctx->parent_ctx);
1170 next_ctx = next->perf_event_ctxp;
1171 if (parent && next_ctx &&
1172 rcu_dereference(next_ctx->parent_ctx) == parent) {
1173 /*
1174 * Looks like the two contexts are clones, so we might be
1175 * able to optimize the context switch. We lock both
1176 * contexts and check that they are clones under the
1177 * lock (including re-checking that neither has been
1178 * uncloned in the meantime). It doesn't matter which
1179 * order we take the locks because no other cpu could
1180 * be trying to lock both of these tasks.
1181 */
1182 spin_lock(&ctx->lock);
1183 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1184 if (context_equiv(ctx, next_ctx)) {
1185 /*
1186 * XXX do we need a memory barrier of sorts
1187 * wrt to rcu_dereference() of perf_event_ctxp
1188 */
1189 task->perf_event_ctxp = next_ctx;
1190 next->perf_event_ctxp = ctx;
1191 ctx->task = next;
1192 next_ctx->task = task;
1193 do_switch = 0;
1194
1195 perf_event_sync_stat(ctx, next_ctx);
1196 }
1197 spin_unlock(&next_ctx->lock);
1198 spin_unlock(&ctx->lock);
1199 }
1200 rcu_read_unlock();
1201
1202 if (do_switch) {
1203 __perf_event_sched_out(ctx, cpuctx);
1204 cpuctx->task_ctx = NULL;
1205 }
1206}
1207
1208/*
1209 * Called with IRQs disabled
1210 */
1211static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1212{
1213 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1214
1215 if (!cpuctx->task_ctx)
1216 return;
1217
1218 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1219 return;
1220
1221 __perf_event_sched_out(ctx, cpuctx);
1222 cpuctx->task_ctx = NULL;
1223}
1224
1225/*
1226 * Called with IRQs disabled
1227 */
1228static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1229{
1230 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231}
1232
1233static void
1234__perf_event_sched_in(struct perf_event_context *ctx,
1235 struct perf_cpu_context *cpuctx, int cpu)
1236{
1237 struct perf_event *event;
1238 int can_add_hw = 1;
1239
1240 spin_lock(&ctx->lock);
1241 ctx->is_active = 1;
1242 if (likely(!ctx->nr_events))
1243 goto out;
1244
1245 ctx->timestamp = perf_clock();
1246
1247 perf_disable();
1248
1249 /*
1250 * First go through the list and put on any pinned groups
1251 * in order to give them the best chance of going on.
1252 */
1253 list_for_each_entry(event, &ctx->group_list, group_entry) {
1254 if (event->state <= PERF_EVENT_STATE_OFF ||
1255 !event->attr.pinned)
1256 continue;
1257 if (event->cpu != -1 && event->cpu != cpu)
1258 continue;
1259
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001260 if (group_can_go_on(event, cpuctx, 1))
1261 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001262
1263 /*
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1266 */
1267 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1268 update_group_times(event);
1269 event->state = PERF_EVENT_STATE_ERROR;
1270 }
1271 }
1272
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 /*
1275 * Ignore events in OFF or ERROR state, and
1276 * ignore pinned events since we did them already.
1277 */
1278 if (event->state <= PERF_EVENT_STATE_OFF ||
1279 event->attr.pinned)
1280 continue;
1281
1282 /*
1283 * Listen to the 'cpu' scheduling filter constraint
1284 * of events:
1285 */
1286 if (event->cpu != -1 && event->cpu != cpu)
1287 continue;
1288
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001289 if (group_can_go_on(event, cpuctx, can_add_hw))
1290 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001291 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001292 }
1293 perf_enable();
1294 out:
1295 spin_unlock(&ctx->lock);
1296}
1297
1298/*
1299 * Called from scheduler to add the events of the current task
1300 * with interrupts disabled.
1301 *
1302 * We restore the event value and then enable it.
1303 *
1304 * This does not protect us against NMI, but enable()
1305 * sets the enabled bit in the control field of event _before_
1306 * accessing the event control register. If a NMI hits, then it will
1307 * keep the event running.
1308 */
1309void perf_event_task_sched_in(struct task_struct *task, int cpu)
1310{
1311 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1312 struct perf_event_context *ctx = task->perf_event_ctxp;
1313
1314 if (likely(!ctx))
1315 return;
1316 if (cpuctx->task_ctx == ctx)
1317 return;
1318 __perf_event_sched_in(ctx, cpuctx, cpu);
1319 cpuctx->task_ctx = ctx;
1320}
1321
1322static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1323{
1324 struct perf_event_context *ctx = &cpuctx->ctx;
1325
1326 __perf_event_sched_in(ctx, cpuctx, cpu);
1327}
1328
1329#define MAX_INTERRUPTS (~0ULL)
1330
1331static void perf_log_throttle(struct perf_event *event, int enable);
1332
1333static void perf_adjust_period(struct perf_event *event, u64 events)
1334{
1335 struct hw_perf_event *hwc = &event->hw;
1336 u64 period, sample_period;
1337 s64 delta;
1338
1339 events *= hwc->sample_period;
1340 period = div64_u64(events, event->attr.sample_freq);
1341
1342 delta = (s64)(period - hwc->sample_period);
1343 delta = (delta + 7) / 8; /* low pass filter */
1344
1345 sample_period = hwc->sample_period + delta;
1346
1347 if (!sample_period)
1348 sample_period = 1;
1349
1350 hwc->sample_period = sample_period;
1351}
1352
1353static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1354{
1355 struct perf_event *event;
1356 struct hw_perf_event *hwc;
1357 u64 interrupts, freq;
1358
1359 spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001360 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001361 if (event->state != PERF_EVENT_STATE_ACTIVE)
1362 continue;
1363
1364 hwc = &event->hw;
1365
1366 interrupts = hwc->interrupts;
1367 hwc->interrupts = 0;
1368
1369 /*
1370 * unthrottle events on the tick
1371 */
1372 if (interrupts == MAX_INTERRUPTS) {
1373 perf_log_throttle(event, 1);
1374 event->pmu->unthrottle(event);
1375 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 }
1377
1378 if (!event->attr.freq || !event->attr.sample_freq)
1379 continue;
1380
1381 /*
1382 * if the specified freq < HZ then we need to skip ticks
1383 */
1384 if (event->attr.sample_freq < HZ) {
1385 freq = event->attr.sample_freq;
1386
1387 hwc->freq_count += freq;
1388 hwc->freq_interrupts += interrupts;
1389
1390 if (hwc->freq_count < HZ)
1391 continue;
1392
1393 interrupts = hwc->freq_interrupts;
1394 hwc->freq_interrupts = 0;
1395 hwc->freq_count -= HZ;
1396 } else
1397 freq = HZ;
1398
1399 perf_adjust_period(event, freq * interrupts);
1400
1401 /*
1402 * In order to avoid being stalled by an (accidental) huge
1403 * sample period, force reset the sample period if we didn't
1404 * get any events in this freq period.
1405 */
1406 if (!interrupts) {
1407 perf_disable();
1408 event->pmu->disable(event);
1409 atomic64_set(&hwc->period_left, 0);
1410 event->pmu->enable(event);
1411 perf_enable();
1412 }
1413 }
1414 spin_unlock(&ctx->lock);
1415}
1416
1417/*
1418 * Round-robin a context's events:
1419 */
1420static void rotate_ctx(struct perf_event_context *ctx)
1421{
1422 struct perf_event *event;
1423
1424 if (!ctx->nr_events)
1425 return;
1426
1427 spin_lock(&ctx->lock);
1428 /*
1429 * Rotate the first entry last (works just fine for group events too):
1430 */
1431 perf_disable();
1432 list_for_each_entry(event, &ctx->group_list, group_entry) {
1433 list_move_tail(&event->group_entry, &ctx->group_list);
1434 break;
1435 }
1436 perf_enable();
1437
1438 spin_unlock(&ctx->lock);
1439}
1440
1441void perf_event_task_tick(struct task_struct *curr, int cpu)
1442{
1443 struct perf_cpu_context *cpuctx;
1444 struct perf_event_context *ctx;
1445
1446 if (!atomic_read(&nr_events))
1447 return;
1448
1449 cpuctx = &per_cpu(perf_cpu_context, cpu);
1450 ctx = curr->perf_event_ctxp;
1451
1452 perf_ctx_adjust_freq(&cpuctx->ctx);
1453 if (ctx)
1454 perf_ctx_adjust_freq(ctx);
1455
1456 perf_event_cpu_sched_out(cpuctx);
1457 if (ctx)
1458 __perf_event_task_sched_out(ctx);
1459
1460 rotate_ctx(&cpuctx->ctx);
1461 if (ctx)
1462 rotate_ctx(ctx);
1463
1464 perf_event_cpu_sched_in(cpuctx, cpu);
1465 if (ctx)
1466 perf_event_task_sched_in(curr, cpu);
1467}
1468
1469/*
1470 * Enable all of a task's events that have been marked enable-on-exec.
1471 * This expects task == current.
1472 */
1473static void perf_event_enable_on_exec(struct task_struct *task)
1474{
1475 struct perf_event_context *ctx;
1476 struct perf_event *event;
1477 unsigned long flags;
1478 int enabled = 0;
1479
1480 local_irq_save(flags);
1481 ctx = task->perf_event_ctxp;
1482 if (!ctx || !ctx->nr_events)
1483 goto out;
1484
1485 __perf_event_task_sched_out(ctx);
1486
1487 spin_lock(&ctx->lock);
1488
1489 list_for_each_entry(event, &ctx->group_list, group_entry) {
1490 if (!event->attr.enable_on_exec)
1491 continue;
1492 event->attr.enable_on_exec = 0;
1493 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1494 continue;
1495 __perf_event_mark_enabled(event, ctx);
1496 enabled = 1;
1497 }
1498
1499 /*
1500 * Unclone this context if we enabled any event.
1501 */
1502 if (enabled)
1503 unclone_ctx(ctx);
1504
1505 spin_unlock(&ctx->lock);
1506
1507 perf_event_task_sched_in(task, smp_processor_id());
1508 out:
1509 local_irq_restore(flags);
1510}
1511
1512/*
1513 * Cross CPU call to read the hardware event
1514 */
1515static void __perf_event_read(void *info)
1516{
1517 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1518 struct perf_event *event = info;
1519 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001520
1521 /*
1522 * If this is a task context, we need to check whether it is
1523 * the current task context of this cpu. If not it has been
1524 * scheduled out before the smp call arrived. In that case
1525 * event->count would have been updated to a recent sample
1526 * when the event was scheduled out.
1527 */
1528 if (ctx->task && cpuctx->task_ctx != ctx)
1529 return;
1530
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001531 if (ctx->is_active)
1532 update_context_time(ctx);
1533 event->pmu->read(event);
1534 update_event_times(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001535}
1536
1537static u64 perf_event_read(struct perf_event *event)
1538{
1539 /*
1540 * If event is enabled and currently active on a CPU, update the
1541 * value in the event structure:
1542 */
1543 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1544 smp_call_function_single(event->oncpu,
1545 __perf_event_read, event, 1);
1546 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1547 update_event_times(event);
1548 }
1549
1550 return atomic64_read(&event->count);
1551}
1552
1553/*
1554 * Initialize the perf_event context in a task_struct:
1555 */
1556static void
1557__perf_event_init_context(struct perf_event_context *ctx,
1558 struct task_struct *task)
1559{
1560 memset(ctx, 0, sizeof(*ctx));
1561 spin_lock_init(&ctx->lock);
1562 mutex_init(&ctx->mutex);
1563 INIT_LIST_HEAD(&ctx->group_list);
1564 INIT_LIST_HEAD(&ctx->event_list);
1565 atomic_set(&ctx->refcount, 1);
1566 ctx->task = task;
1567}
1568
1569static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1570{
1571 struct perf_event_context *ctx;
1572 struct perf_cpu_context *cpuctx;
1573 struct task_struct *task;
1574 unsigned long flags;
1575 int err;
1576
1577 /*
1578 * If cpu is not a wildcard then this is a percpu event:
1579 */
1580 if (cpu != -1) {
1581 /* Must be root to operate on a CPU event: */
1582 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1583 return ERR_PTR(-EACCES);
1584
1585 if (cpu < 0 || cpu > num_possible_cpus())
1586 return ERR_PTR(-EINVAL);
1587
1588 /*
1589 * We could be clever and allow to attach a event to an
1590 * offline CPU and activate it when the CPU comes up, but
1591 * that's for later.
1592 */
1593 if (!cpu_isset(cpu, cpu_online_map))
1594 return ERR_PTR(-ENODEV);
1595
1596 cpuctx = &per_cpu(perf_cpu_context, cpu);
1597 ctx = &cpuctx->ctx;
1598 get_ctx(ctx);
1599
1600 return ctx;
1601 }
1602
1603 rcu_read_lock();
1604 if (!pid)
1605 task = current;
1606 else
1607 task = find_task_by_vpid(pid);
1608 if (task)
1609 get_task_struct(task);
1610 rcu_read_unlock();
1611
1612 if (!task)
1613 return ERR_PTR(-ESRCH);
1614
1615 /*
1616 * Can't attach events to a dying task.
1617 */
1618 err = -ESRCH;
1619 if (task->flags & PF_EXITING)
1620 goto errout;
1621
1622 /* Reuse ptrace permission checks for now. */
1623 err = -EACCES;
1624 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1625 goto errout;
1626
1627 retry:
1628 ctx = perf_lock_task_context(task, &flags);
1629 if (ctx) {
1630 unclone_ctx(ctx);
1631 spin_unlock_irqrestore(&ctx->lock, flags);
1632 }
1633
1634 if (!ctx) {
1635 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1636 err = -ENOMEM;
1637 if (!ctx)
1638 goto errout;
1639 __perf_event_init_context(ctx, task);
1640 get_ctx(ctx);
1641 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1642 /*
1643 * We raced with some other task; use
1644 * the context they set.
1645 */
1646 kfree(ctx);
1647 goto retry;
1648 }
1649 get_task_struct(task);
1650 }
1651
1652 put_task_struct(task);
1653 return ctx;
1654
1655 errout:
1656 put_task_struct(task);
1657 return ERR_PTR(err);
1658}
1659
Li Zefan6fb29152009-10-15 11:21:42 +08001660static void perf_event_free_filter(struct perf_event *event);
1661
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001662static void free_event_rcu(struct rcu_head *head)
1663{
1664 struct perf_event *event;
1665
1666 event = container_of(head, struct perf_event, rcu_head);
1667 if (event->ns)
1668 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001669 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001670 kfree(event);
1671}
1672
1673static void perf_pending_sync(struct perf_event *event);
1674
1675static void free_event(struct perf_event *event)
1676{
1677 perf_pending_sync(event);
1678
1679 if (!event->parent) {
1680 atomic_dec(&nr_events);
1681 if (event->attr.mmap)
1682 atomic_dec(&nr_mmap_events);
1683 if (event->attr.comm)
1684 atomic_dec(&nr_comm_events);
1685 if (event->attr.task)
1686 atomic_dec(&nr_task_events);
1687 }
1688
1689 if (event->output) {
1690 fput(event->output->filp);
1691 event->output = NULL;
1692 }
1693
1694 if (event->destroy)
1695 event->destroy(event);
1696
1697 put_ctx(event->ctx);
1698 call_rcu(&event->rcu_head, free_event_rcu);
1699}
1700
1701/*
1702 * Called when the last reference to the file is gone.
1703 */
1704static int perf_release(struct inode *inode, struct file *file)
1705{
1706 struct perf_event *event = file->private_data;
1707 struct perf_event_context *ctx = event->ctx;
1708
1709 file->private_data = NULL;
1710
1711 WARN_ON_ONCE(ctx->parent_ctx);
1712 mutex_lock(&ctx->mutex);
1713 perf_event_remove_from_context(event);
1714 mutex_unlock(&ctx->mutex);
1715
1716 mutex_lock(&event->owner->perf_event_mutex);
1717 list_del_init(&event->owner_entry);
1718 mutex_unlock(&event->owner->perf_event_mutex);
1719 put_task_struct(event->owner);
1720
1721 free_event(event);
1722
1723 return 0;
1724}
1725
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001726int perf_event_release_kernel(struct perf_event *event)
1727{
1728 struct perf_event_context *ctx = event->ctx;
1729
1730 WARN_ON_ONCE(ctx->parent_ctx);
1731 mutex_lock(&ctx->mutex);
1732 perf_event_remove_from_context(event);
1733 mutex_unlock(&ctx->mutex);
1734
1735 mutex_lock(&event->owner->perf_event_mutex);
1736 list_del_init(&event->owner_entry);
1737 mutex_unlock(&event->owner->perf_event_mutex);
1738 put_task_struct(event->owner);
1739
1740 free_event(event);
1741
1742 return 0;
1743}
1744EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1745
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001746static int perf_event_read_size(struct perf_event *event)
1747{
1748 int entry = sizeof(u64); /* value */
1749 int size = 0;
1750 int nr = 1;
1751
1752 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1753 size += sizeof(u64);
1754
1755 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1756 size += sizeof(u64);
1757
1758 if (event->attr.read_format & PERF_FORMAT_ID)
1759 entry += sizeof(u64);
1760
1761 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1762 nr += event->group_leader->nr_siblings;
1763 size += sizeof(u64);
1764 }
1765
1766 size += entry * nr;
1767
1768 return size;
1769}
1770
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001771u64 perf_event_read_value(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001772{
1773 struct perf_event *child;
1774 u64 total = 0;
1775
1776 total += perf_event_read(event);
1777 list_for_each_entry(child, &event->child_list, child_list)
1778 total += perf_event_read(child);
1779
1780 return total;
1781}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001782EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001783
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001784static int perf_event_read_group(struct perf_event *event,
1785 u64 read_format, char __user *buf)
1786{
1787 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001788 int n = 0, size = 0, ret = 0;
1789 u64 values[5];
1790 u64 count;
1791
1792 count = perf_event_read_value(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001793
1794 values[n++] = 1 + leader->nr_siblings;
1795 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1796 values[n++] = leader->total_time_enabled +
1797 atomic64_read(&leader->child_total_time_enabled);
1798 }
1799 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1800 values[n++] = leader->total_time_running +
1801 atomic64_read(&leader->child_total_time_running);
1802 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001803 values[n++] = count;
1804 if (read_format & PERF_FORMAT_ID)
1805 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001806
1807 size = n * sizeof(u64);
1808
1809 if (copy_to_user(buf, values, size))
1810 return -EFAULT;
1811
Peter Zijlstraabf48682009-11-20 22:19:49 +01001812 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001813
1814 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001815 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001816
Peter Zijlstraabf48682009-11-20 22:19:49 +01001817 values[n++] = perf_event_read_value(sub);
1818 if (read_format & PERF_FORMAT_ID)
1819 values[n++] = primary_event_id(sub);
1820
1821 size = n * sizeof(u64);
1822
1823 if (copy_to_user(buf + size, values, size))
1824 return -EFAULT;
1825
1826 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001827 }
1828
Peter Zijlstraabf48682009-11-20 22:19:49 +01001829 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001830}
1831
1832static int perf_event_read_one(struct perf_event *event,
1833 u64 read_format, char __user *buf)
1834{
1835 u64 values[4];
1836 int n = 0;
1837
1838 values[n++] = perf_event_read_value(event);
1839 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1840 values[n++] = event->total_time_enabled +
1841 atomic64_read(&event->child_total_time_enabled);
1842 }
1843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1844 values[n++] = event->total_time_running +
1845 atomic64_read(&event->child_total_time_running);
1846 }
1847 if (read_format & PERF_FORMAT_ID)
1848 values[n++] = primary_event_id(event);
1849
1850 if (copy_to_user(buf, values, n * sizeof(u64)))
1851 return -EFAULT;
1852
1853 return n * sizeof(u64);
1854}
1855
1856/*
1857 * Read the performance event - simple non blocking version for now
1858 */
1859static ssize_t
1860perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1861{
1862 u64 read_format = event->attr.read_format;
1863 int ret;
1864
1865 /*
1866 * Return end-of-file for a read on a event that is in
1867 * error state (i.e. because it was pinned but it couldn't be
1868 * scheduled on to the CPU at some point).
1869 */
1870 if (event->state == PERF_EVENT_STATE_ERROR)
1871 return 0;
1872
1873 if (count < perf_event_read_size(event))
1874 return -ENOSPC;
1875
1876 WARN_ON_ONCE(event->ctx->parent_ctx);
1877 mutex_lock(&event->child_mutex);
1878 if (read_format & PERF_FORMAT_GROUP)
1879 ret = perf_event_read_group(event, read_format, buf);
1880 else
1881 ret = perf_event_read_one(event, read_format, buf);
1882 mutex_unlock(&event->child_mutex);
1883
1884 return ret;
1885}
1886
1887static ssize_t
1888perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1889{
1890 struct perf_event *event = file->private_data;
1891
1892 return perf_read_hw(event, buf, count);
1893}
1894
1895static unsigned int perf_poll(struct file *file, poll_table *wait)
1896{
1897 struct perf_event *event = file->private_data;
1898 struct perf_mmap_data *data;
1899 unsigned int events = POLL_HUP;
1900
1901 rcu_read_lock();
1902 data = rcu_dereference(event->data);
1903 if (data)
1904 events = atomic_xchg(&data->poll, 0);
1905 rcu_read_unlock();
1906
1907 poll_wait(file, &event->waitq, wait);
1908
1909 return events;
1910}
1911
1912static void perf_event_reset(struct perf_event *event)
1913{
1914 (void)perf_event_read(event);
1915 atomic64_set(&event->count, 0);
1916 perf_event_update_userpage(event);
1917}
1918
1919/*
1920 * Holding the top-level event's child_mutex means that any
1921 * descendant process that has inherited this event will block
1922 * in sync_child_event if it goes to exit, thus satisfying the
1923 * task existence requirements of perf_event_enable/disable.
1924 */
1925static void perf_event_for_each_child(struct perf_event *event,
1926 void (*func)(struct perf_event *))
1927{
1928 struct perf_event *child;
1929
1930 WARN_ON_ONCE(event->ctx->parent_ctx);
1931 mutex_lock(&event->child_mutex);
1932 func(event);
1933 list_for_each_entry(child, &event->child_list, child_list)
1934 func(child);
1935 mutex_unlock(&event->child_mutex);
1936}
1937
1938static void perf_event_for_each(struct perf_event *event,
1939 void (*func)(struct perf_event *))
1940{
1941 struct perf_event_context *ctx = event->ctx;
1942 struct perf_event *sibling;
1943
1944 WARN_ON_ONCE(ctx->parent_ctx);
1945 mutex_lock(&ctx->mutex);
1946 event = event->group_leader;
1947
1948 perf_event_for_each_child(event, func);
1949 func(event);
1950 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1951 perf_event_for_each_child(event, func);
1952 mutex_unlock(&ctx->mutex);
1953}
1954
1955static int perf_event_period(struct perf_event *event, u64 __user *arg)
1956{
1957 struct perf_event_context *ctx = event->ctx;
1958 unsigned long size;
1959 int ret = 0;
1960 u64 value;
1961
1962 if (!event->attr.sample_period)
1963 return -EINVAL;
1964
1965 size = copy_from_user(&value, arg, sizeof(value));
1966 if (size != sizeof(value))
1967 return -EFAULT;
1968
1969 if (!value)
1970 return -EINVAL;
1971
1972 spin_lock_irq(&ctx->lock);
1973 if (event->attr.freq) {
1974 if (value > sysctl_perf_event_sample_rate) {
1975 ret = -EINVAL;
1976 goto unlock;
1977 }
1978
1979 event->attr.sample_freq = value;
1980 } else {
1981 event->attr.sample_period = value;
1982 event->hw.sample_period = value;
1983 }
1984unlock:
1985 spin_unlock_irq(&ctx->lock);
1986
1987 return ret;
1988}
1989
Li Zefan6fb29152009-10-15 11:21:42 +08001990static int perf_event_set_output(struct perf_event *event, int output_fd);
1991static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001992
1993static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1994{
1995 struct perf_event *event = file->private_data;
1996 void (*func)(struct perf_event *);
1997 u32 flags = arg;
1998
1999 switch (cmd) {
2000 case PERF_EVENT_IOC_ENABLE:
2001 func = perf_event_enable;
2002 break;
2003 case PERF_EVENT_IOC_DISABLE:
2004 func = perf_event_disable;
2005 break;
2006 case PERF_EVENT_IOC_RESET:
2007 func = perf_event_reset;
2008 break;
2009
2010 case PERF_EVENT_IOC_REFRESH:
2011 return perf_event_refresh(event, arg);
2012
2013 case PERF_EVENT_IOC_PERIOD:
2014 return perf_event_period(event, (u64 __user *)arg);
2015
2016 case PERF_EVENT_IOC_SET_OUTPUT:
2017 return perf_event_set_output(event, arg);
2018
Li Zefan6fb29152009-10-15 11:21:42 +08002019 case PERF_EVENT_IOC_SET_FILTER:
2020 return perf_event_set_filter(event, (void __user *)arg);
2021
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002022 default:
2023 return -ENOTTY;
2024 }
2025
2026 if (flags & PERF_IOC_FLAG_GROUP)
2027 perf_event_for_each(event, func);
2028 else
2029 perf_event_for_each_child(event, func);
2030
2031 return 0;
2032}
2033
2034int perf_event_task_enable(void)
2035{
2036 struct perf_event *event;
2037
2038 mutex_lock(&current->perf_event_mutex);
2039 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2040 perf_event_for_each_child(event, perf_event_enable);
2041 mutex_unlock(&current->perf_event_mutex);
2042
2043 return 0;
2044}
2045
2046int perf_event_task_disable(void)
2047{
2048 struct perf_event *event;
2049
2050 mutex_lock(&current->perf_event_mutex);
2051 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2052 perf_event_for_each_child(event, perf_event_disable);
2053 mutex_unlock(&current->perf_event_mutex);
2054
2055 return 0;
2056}
2057
2058#ifndef PERF_EVENT_INDEX_OFFSET
2059# define PERF_EVENT_INDEX_OFFSET 0
2060#endif
2061
2062static int perf_event_index(struct perf_event *event)
2063{
2064 if (event->state != PERF_EVENT_STATE_ACTIVE)
2065 return 0;
2066
2067 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2068}
2069
2070/*
2071 * Callers need to ensure there can be no nesting of this function, otherwise
2072 * the seqlock logic goes bad. We can not serialize this because the arch
2073 * code calls this from NMI context.
2074 */
2075void perf_event_update_userpage(struct perf_event *event)
2076{
2077 struct perf_event_mmap_page *userpg;
2078 struct perf_mmap_data *data;
2079
2080 rcu_read_lock();
2081 data = rcu_dereference(event->data);
2082 if (!data)
2083 goto unlock;
2084
2085 userpg = data->user_page;
2086
2087 /*
2088 * Disable preemption so as to not let the corresponding user-space
2089 * spin too long if we get preempted.
2090 */
2091 preempt_disable();
2092 ++userpg->lock;
2093 barrier();
2094 userpg->index = perf_event_index(event);
2095 userpg->offset = atomic64_read(&event->count);
2096 if (event->state == PERF_EVENT_STATE_ACTIVE)
2097 userpg->offset -= atomic64_read(&event->hw.prev_count);
2098
2099 userpg->time_enabled = event->total_time_enabled +
2100 atomic64_read(&event->child_total_time_enabled);
2101
2102 userpg->time_running = event->total_time_running +
2103 atomic64_read(&event->child_total_time_running);
2104
2105 barrier();
2106 ++userpg->lock;
2107 preempt_enable();
2108unlock:
2109 rcu_read_unlock();
2110}
2111
Peter Zijlstra906010b2009-09-21 16:08:49 +02002112static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002113{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002114 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002115}
2116
Peter Zijlstra906010b2009-09-21 16:08:49 +02002117#ifndef CONFIG_PERF_USE_VMALLOC
2118
2119/*
2120 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2121 */
2122
2123static struct page *
2124perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2125{
2126 if (pgoff > data->nr_pages)
2127 return NULL;
2128
2129 if (pgoff == 0)
2130 return virt_to_page(data->user_page);
2131
2132 return virt_to_page(data->data_pages[pgoff - 1]);
2133}
2134
2135static struct perf_mmap_data *
2136perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002137{
2138 struct perf_mmap_data *data;
2139 unsigned long size;
2140 int i;
2141
2142 WARN_ON(atomic_read(&event->mmap_count));
2143
2144 size = sizeof(struct perf_mmap_data);
2145 size += nr_pages * sizeof(void *);
2146
2147 data = kzalloc(size, GFP_KERNEL);
2148 if (!data)
2149 goto fail;
2150
2151 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2152 if (!data->user_page)
2153 goto fail_user_page;
2154
2155 for (i = 0; i < nr_pages; i++) {
2156 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2157 if (!data->data_pages[i])
2158 goto fail_data_pages;
2159 }
2160
Peter Zijlstra906010b2009-09-21 16:08:49 +02002161 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002162 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002163
Peter Zijlstra906010b2009-09-21 16:08:49 +02002164 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002165
2166fail_data_pages:
2167 for (i--; i >= 0; i--)
2168 free_page((unsigned long)data->data_pages[i]);
2169
2170 free_page((unsigned long)data->user_page);
2171
2172fail_user_page:
2173 kfree(data);
2174
2175fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002176 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002177}
2178
2179static void perf_mmap_free_page(unsigned long addr)
2180{
2181 struct page *page = virt_to_page((void *)addr);
2182
2183 page->mapping = NULL;
2184 __free_page(page);
2185}
2186
Peter Zijlstra906010b2009-09-21 16:08:49 +02002187static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002188{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002189 int i;
2190
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002191 perf_mmap_free_page((unsigned long)data->user_page);
2192 for (i = 0; i < data->nr_pages; i++)
2193 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002194}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002195
Peter Zijlstra906010b2009-09-21 16:08:49 +02002196#else
2197
2198/*
2199 * Back perf_mmap() with vmalloc memory.
2200 *
2201 * Required for architectures that have d-cache aliasing issues.
2202 */
2203
2204static struct page *
2205perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2206{
2207 if (pgoff > (1UL << data->data_order))
2208 return NULL;
2209
2210 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2211}
2212
2213static void perf_mmap_unmark_page(void *addr)
2214{
2215 struct page *page = vmalloc_to_page(addr);
2216
2217 page->mapping = NULL;
2218}
2219
2220static void perf_mmap_data_free_work(struct work_struct *work)
2221{
2222 struct perf_mmap_data *data;
2223 void *base;
2224 int i, nr;
2225
2226 data = container_of(work, struct perf_mmap_data, work);
2227 nr = 1 << data->data_order;
2228
2229 base = data->user_page;
2230 for (i = 0; i < nr + 1; i++)
2231 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2232
2233 vfree(base);
2234}
2235
2236static void perf_mmap_data_free(struct perf_mmap_data *data)
2237{
2238 schedule_work(&data->work);
2239}
2240
2241static struct perf_mmap_data *
2242perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2243{
2244 struct perf_mmap_data *data;
2245 unsigned long size;
2246 void *all_buf;
2247
2248 WARN_ON(atomic_read(&event->mmap_count));
2249
2250 size = sizeof(struct perf_mmap_data);
2251 size += sizeof(void *);
2252
2253 data = kzalloc(size, GFP_KERNEL);
2254 if (!data)
2255 goto fail;
2256
2257 INIT_WORK(&data->work, perf_mmap_data_free_work);
2258
2259 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2260 if (!all_buf)
2261 goto fail_all_buf;
2262
2263 data->user_page = all_buf;
2264 data->data_pages[0] = all_buf + PAGE_SIZE;
2265 data->data_order = ilog2(nr_pages);
2266 data->nr_pages = 1;
2267
2268 return data;
2269
2270fail_all_buf:
2271 kfree(data);
2272
2273fail:
2274 return NULL;
2275}
2276
2277#endif
2278
2279static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2280{
2281 struct perf_event *event = vma->vm_file->private_data;
2282 struct perf_mmap_data *data;
2283 int ret = VM_FAULT_SIGBUS;
2284
2285 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2286 if (vmf->pgoff == 0)
2287 ret = 0;
2288 return ret;
2289 }
2290
2291 rcu_read_lock();
2292 data = rcu_dereference(event->data);
2293 if (!data)
2294 goto unlock;
2295
2296 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2297 goto unlock;
2298
2299 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2300 if (!vmf->page)
2301 goto unlock;
2302
2303 get_page(vmf->page);
2304 vmf->page->mapping = vma->vm_file->f_mapping;
2305 vmf->page->index = vmf->pgoff;
2306
2307 ret = 0;
2308unlock:
2309 rcu_read_unlock();
2310
2311 return ret;
2312}
2313
2314static void
2315perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2316{
2317 long max_size = perf_data_size(data);
2318
2319 atomic_set(&data->lock, -1);
2320
2321 if (event->attr.watermark) {
2322 data->watermark = min_t(long, max_size,
2323 event->attr.wakeup_watermark);
2324 }
2325
2326 if (!data->watermark)
2327 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2328
2329
2330 rcu_assign_pointer(event->data, data);
2331}
2332
2333static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2334{
2335 struct perf_mmap_data *data;
2336
2337 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2338 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002339 kfree(data);
2340}
2341
Peter Zijlstra906010b2009-09-21 16:08:49 +02002342static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002343{
2344 struct perf_mmap_data *data = event->data;
2345
2346 WARN_ON(atomic_read(&event->mmap_count));
2347
2348 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002349 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002350}
2351
2352static void perf_mmap_open(struct vm_area_struct *vma)
2353{
2354 struct perf_event *event = vma->vm_file->private_data;
2355
2356 atomic_inc(&event->mmap_count);
2357}
2358
2359static void perf_mmap_close(struct vm_area_struct *vma)
2360{
2361 struct perf_event *event = vma->vm_file->private_data;
2362
2363 WARN_ON_ONCE(event->ctx->parent_ctx);
2364 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002365 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002366 struct user_struct *user = current_user();
2367
Peter Zijlstra906010b2009-09-21 16:08:49 +02002368 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002369 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002370 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002371 mutex_unlock(&event->mmap_mutex);
2372 }
2373}
2374
Alexey Dobriyanf0f37e2f2009-09-27 22:29:37 +04002375static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002376 .open = perf_mmap_open,
2377 .close = perf_mmap_close,
2378 .fault = perf_mmap_fault,
2379 .page_mkwrite = perf_mmap_fault,
2380};
2381
2382static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2383{
2384 struct perf_event *event = file->private_data;
2385 unsigned long user_locked, user_lock_limit;
2386 struct user_struct *user = current_user();
2387 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002388 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002389 unsigned long vma_size;
2390 unsigned long nr_pages;
2391 long user_extra, extra;
2392 int ret = 0;
2393
2394 if (!(vma->vm_flags & VM_SHARED))
2395 return -EINVAL;
2396
2397 vma_size = vma->vm_end - vma->vm_start;
2398 nr_pages = (vma_size / PAGE_SIZE) - 1;
2399
2400 /*
2401 * If we have data pages ensure they're a power-of-two number, so we
2402 * can do bitmasks instead of modulo.
2403 */
2404 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2405 return -EINVAL;
2406
2407 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2408 return -EINVAL;
2409
2410 if (vma->vm_pgoff != 0)
2411 return -EINVAL;
2412
2413 WARN_ON_ONCE(event->ctx->parent_ctx);
2414 mutex_lock(&event->mmap_mutex);
2415 if (event->output) {
2416 ret = -EINVAL;
2417 goto unlock;
2418 }
2419
2420 if (atomic_inc_not_zero(&event->mmap_count)) {
2421 if (nr_pages != event->data->nr_pages)
2422 ret = -EINVAL;
2423 goto unlock;
2424 }
2425
2426 user_extra = nr_pages + 1;
2427 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2428
2429 /*
2430 * Increase the limit linearly with more CPUs:
2431 */
2432 user_lock_limit *= num_online_cpus();
2433
2434 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2435
2436 extra = 0;
2437 if (user_locked > user_lock_limit)
2438 extra = user_locked - user_lock_limit;
2439
2440 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2441 lock_limit >>= PAGE_SHIFT;
2442 locked = vma->vm_mm->locked_vm + extra;
2443
2444 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2445 !capable(CAP_IPC_LOCK)) {
2446 ret = -EPERM;
2447 goto unlock;
2448 }
2449
2450 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002451
2452 data = perf_mmap_data_alloc(event, nr_pages);
2453 ret = -ENOMEM;
2454 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002455 goto unlock;
2456
Peter Zijlstra906010b2009-09-21 16:08:49 +02002457 ret = 0;
2458 perf_mmap_data_init(event, data);
2459
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002460 atomic_set(&event->mmap_count, 1);
2461 atomic_long_add(user_extra, &user->locked_vm);
2462 vma->vm_mm->locked_vm += extra;
2463 event->data->nr_locked = extra;
2464 if (vma->vm_flags & VM_WRITE)
2465 event->data->writable = 1;
2466
2467unlock:
2468 mutex_unlock(&event->mmap_mutex);
2469
2470 vma->vm_flags |= VM_RESERVED;
2471 vma->vm_ops = &perf_mmap_vmops;
2472
2473 return ret;
2474}
2475
2476static int perf_fasync(int fd, struct file *filp, int on)
2477{
2478 struct inode *inode = filp->f_path.dentry->d_inode;
2479 struct perf_event *event = filp->private_data;
2480 int retval;
2481
2482 mutex_lock(&inode->i_mutex);
2483 retval = fasync_helper(fd, filp, on, &event->fasync);
2484 mutex_unlock(&inode->i_mutex);
2485
2486 if (retval < 0)
2487 return retval;
2488
2489 return 0;
2490}
2491
2492static const struct file_operations perf_fops = {
2493 .release = perf_release,
2494 .read = perf_read,
2495 .poll = perf_poll,
2496 .unlocked_ioctl = perf_ioctl,
2497 .compat_ioctl = perf_ioctl,
2498 .mmap = perf_mmap,
2499 .fasync = perf_fasync,
2500};
2501
2502/*
2503 * Perf event wakeup
2504 *
2505 * If there's data, ensure we set the poll() state and publish everything
2506 * to user-space before waking everybody up.
2507 */
2508
2509void perf_event_wakeup(struct perf_event *event)
2510{
2511 wake_up_all(&event->waitq);
2512
2513 if (event->pending_kill) {
2514 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2515 event->pending_kill = 0;
2516 }
2517}
2518
2519/*
2520 * Pending wakeups
2521 *
2522 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2523 *
2524 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2525 * single linked list and use cmpxchg() to add entries lockless.
2526 */
2527
2528static void perf_pending_event(struct perf_pending_entry *entry)
2529{
2530 struct perf_event *event = container_of(entry,
2531 struct perf_event, pending);
2532
2533 if (event->pending_disable) {
2534 event->pending_disable = 0;
2535 __perf_event_disable(event);
2536 }
2537
2538 if (event->pending_wakeup) {
2539 event->pending_wakeup = 0;
2540 perf_event_wakeup(event);
2541 }
2542}
2543
2544#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2545
2546static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2547 PENDING_TAIL,
2548};
2549
2550static void perf_pending_queue(struct perf_pending_entry *entry,
2551 void (*func)(struct perf_pending_entry *))
2552{
2553 struct perf_pending_entry **head;
2554
2555 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2556 return;
2557
2558 entry->func = func;
2559
2560 head = &get_cpu_var(perf_pending_head);
2561
2562 do {
2563 entry->next = *head;
2564 } while (cmpxchg(head, entry->next, entry) != entry->next);
2565
2566 set_perf_event_pending();
2567
2568 put_cpu_var(perf_pending_head);
2569}
2570
2571static int __perf_pending_run(void)
2572{
2573 struct perf_pending_entry *list;
2574 int nr = 0;
2575
2576 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2577 while (list != PENDING_TAIL) {
2578 void (*func)(struct perf_pending_entry *);
2579 struct perf_pending_entry *entry = list;
2580
2581 list = list->next;
2582
2583 func = entry->func;
2584 entry->next = NULL;
2585 /*
2586 * Ensure we observe the unqueue before we issue the wakeup,
2587 * so that we won't be waiting forever.
2588 * -- see perf_not_pending().
2589 */
2590 smp_wmb();
2591
2592 func(entry);
2593 nr++;
2594 }
2595
2596 return nr;
2597}
2598
2599static inline int perf_not_pending(struct perf_event *event)
2600{
2601 /*
2602 * If we flush on whatever cpu we run, there is a chance we don't
2603 * need to wait.
2604 */
2605 get_cpu();
2606 __perf_pending_run();
2607 put_cpu();
2608
2609 /*
2610 * Ensure we see the proper queue state before going to sleep
2611 * so that we do not miss the wakeup. -- see perf_pending_handle()
2612 */
2613 smp_rmb();
2614 return event->pending.next == NULL;
2615}
2616
2617static void perf_pending_sync(struct perf_event *event)
2618{
2619 wait_event(event->waitq, perf_not_pending(event));
2620}
2621
2622void perf_event_do_pending(void)
2623{
2624 __perf_pending_run();
2625}
2626
2627/*
2628 * Callchain support -- arch specific
2629 */
2630
2631__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2632{
2633 return NULL;
2634}
2635
2636/*
2637 * Output
2638 */
2639static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2640 unsigned long offset, unsigned long head)
2641{
2642 unsigned long mask;
2643
2644 if (!data->writable)
2645 return true;
2646
Peter Zijlstra906010b2009-09-21 16:08:49 +02002647 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002648
2649 offset = (offset - tail) & mask;
2650 head = (head - tail) & mask;
2651
2652 if ((int)(head - offset) < 0)
2653 return false;
2654
2655 return true;
2656}
2657
2658static void perf_output_wakeup(struct perf_output_handle *handle)
2659{
2660 atomic_set(&handle->data->poll, POLL_IN);
2661
2662 if (handle->nmi) {
2663 handle->event->pending_wakeup = 1;
2664 perf_pending_queue(&handle->event->pending,
2665 perf_pending_event);
2666 } else
2667 perf_event_wakeup(handle->event);
2668}
2669
2670/*
2671 * Curious locking construct.
2672 *
2673 * We need to ensure a later event_id doesn't publish a head when a former
2674 * event_id isn't done writing. However since we need to deal with NMIs we
2675 * cannot fully serialize things.
2676 *
2677 * What we do is serialize between CPUs so we only have to deal with NMI
2678 * nesting on a single CPU.
2679 *
2680 * We only publish the head (and generate a wakeup) when the outer-most
2681 * event_id completes.
2682 */
2683static void perf_output_lock(struct perf_output_handle *handle)
2684{
2685 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002686 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002687
2688 handle->locked = 0;
2689
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002690 for (;;) {
2691 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2692 if (cur == -1) {
2693 handle->locked = 1;
2694 break;
2695 }
2696 if (cur == cpu)
2697 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002698
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002699 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002700 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002701}
2702
2703static void perf_output_unlock(struct perf_output_handle *handle)
2704{
2705 struct perf_mmap_data *data = handle->data;
2706 unsigned long head;
2707 int cpu;
2708
2709 data->done_head = data->head;
2710
2711 if (!handle->locked)
2712 goto out;
2713
2714again:
2715 /*
2716 * The xchg implies a full barrier that ensures all writes are done
2717 * before we publish the new head, matched by a rmb() in userspace when
2718 * reading this position.
2719 */
2720 while ((head = atomic_long_xchg(&data->done_head, 0)))
2721 data->user_page->data_head = head;
2722
2723 /*
2724 * NMI can happen here, which means we can miss a done_head update.
2725 */
2726
2727 cpu = atomic_xchg(&data->lock, -1);
2728 WARN_ON_ONCE(cpu != smp_processor_id());
2729
2730 /*
2731 * Therefore we have to validate we did not indeed do so.
2732 */
2733 if (unlikely(atomic_long_read(&data->done_head))) {
2734 /*
2735 * Since we had it locked, we can lock it again.
2736 */
2737 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2738 cpu_relax();
2739
2740 goto again;
2741 }
2742
2743 if (atomic_xchg(&data->wakeup, 0))
2744 perf_output_wakeup(handle);
2745out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002746 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002747}
2748
2749void perf_output_copy(struct perf_output_handle *handle,
2750 const void *buf, unsigned int len)
2751{
2752 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002753 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002754 unsigned int size;
2755 void **pages;
2756
2757 offset = handle->offset;
2758 pages_mask = handle->data->nr_pages - 1;
2759 pages = handle->data->data_pages;
2760
2761 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002762 unsigned long page_offset;
2763 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002764 int nr;
2765
2766 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002767 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2768 page_offset = offset & (page_size - 1);
2769 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002770
2771 memcpy(pages[nr] + page_offset, buf, size);
2772
2773 len -= size;
2774 buf += size;
2775 offset += size;
2776 } while (len);
2777
2778 handle->offset = offset;
2779
2780 /*
2781 * Check we didn't copy past our reservation window, taking the
2782 * possible unsigned int wrap into account.
2783 */
2784 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2785}
2786
2787int perf_output_begin(struct perf_output_handle *handle,
2788 struct perf_event *event, unsigned int size,
2789 int nmi, int sample)
2790{
2791 struct perf_event *output_event;
2792 struct perf_mmap_data *data;
2793 unsigned long tail, offset, head;
2794 int have_lost;
2795 struct {
2796 struct perf_event_header header;
2797 u64 id;
2798 u64 lost;
2799 } lost_event;
2800
2801 rcu_read_lock();
2802 /*
2803 * For inherited events we send all the output towards the parent.
2804 */
2805 if (event->parent)
2806 event = event->parent;
2807
2808 output_event = rcu_dereference(event->output);
2809 if (output_event)
2810 event = output_event;
2811
2812 data = rcu_dereference(event->data);
2813 if (!data)
2814 goto out;
2815
2816 handle->data = data;
2817 handle->event = event;
2818 handle->nmi = nmi;
2819 handle->sample = sample;
2820
2821 if (!data->nr_pages)
2822 goto fail;
2823
2824 have_lost = atomic_read(&data->lost);
2825 if (have_lost)
2826 size += sizeof(lost_event);
2827
2828 perf_output_lock(handle);
2829
2830 do {
2831 /*
2832 * Userspace could choose to issue a mb() before updating the
2833 * tail pointer. So that all reads will be completed before the
2834 * write is issued.
2835 */
2836 tail = ACCESS_ONCE(data->user_page->data_tail);
2837 smp_rmb();
2838 offset = head = atomic_long_read(&data->head);
2839 head += size;
2840 if (unlikely(!perf_output_space(data, tail, offset, head)))
2841 goto fail;
2842 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2843
2844 handle->offset = offset;
2845 handle->head = head;
2846
2847 if (head - tail > data->watermark)
2848 atomic_set(&data->wakeup, 1);
2849
2850 if (have_lost) {
2851 lost_event.header.type = PERF_RECORD_LOST;
2852 lost_event.header.misc = 0;
2853 lost_event.header.size = sizeof(lost_event);
2854 lost_event.id = event->id;
2855 lost_event.lost = atomic_xchg(&data->lost, 0);
2856
2857 perf_output_put(handle, lost_event);
2858 }
2859
2860 return 0;
2861
2862fail:
2863 atomic_inc(&data->lost);
2864 perf_output_unlock(handle);
2865out:
2866 rcu_read_unlock();
2867
2868 return -ENOSPC;
2869}
2870
2871void perf_output_end(struct perf_output_handle *handle)
2872{
2873 struct perf_event *event = handle->event;
2874 struct perf_mmap_data *data = handle->data;
2875
2876 int wakeup_events = event->attr.wakeup_events;
2877
2878 if (handle->sample && wakeup_events) {
2879 int events = atomic_inc_return(&data->events);
2880 if (events >= wakeup_events) {
2881 atomic_sub(wakeup_events, &data->events);
2882 atomic_set(&data->wakeup, 1);
2883 }
2884 }
2885
2886 perf_output_unlock(handle);
2887 rcu_read_unlock();
2888}
2889
2890static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2891{
2892 /*
2893 * only top level events have the pid namespace they were created in
2894 */
2895 if (event->parent)
2896 event = event->parent;
2897
2898 return task_tgid_nr_ns(p, event->ns);
2899}
2900
2901static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2902{
2903 /*
2904 * only top level events have the pid namespace they were created in
2905 */
2906 if (event->parent)
2907 event = event->parent;
2908
2909 return task_pid_nr_ns(p, event->ns);
2910}
2911
2912static void perf_output_read_one(struct perf_output_handle *handle,
2913 struct perf_event *event)
2914{
2915 u64 read_format = event->attr.read_format;
2916 u64 values[4];
2917 int n = 0;
2918
2919 values[n++] = atomic64_read(&event->count);
2920 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2921 values[n++] = event->total_time_enabled +
2922 atomic64_read(&event->child_total_time_enabled);
2923 }
2924 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2925 values[n++] = event->total_time_running +
2926 atomic64_read(&event->child_total_time_running);
2927 }
2928 if (read_format & PERF_FORMAT_ID)
2929 values[n++] = primary_event_id(event);
2930
2931 perf_output_copy(handle, values, n * sizeof(u64));
2932}
2933
2934/*
2935 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2936 */
2937static void perf_output_read_group(struct perf_output_handle *handle,
2938 struct perf_event *event)
2939{
2940 struct perf_event *leader = event->group_leader, *sub;
2941 u64 read_format = event->attr.read_format;
2942 u64 values[5];
2943 int n = 0;
2944
2945 values[n++] = 1 + leader->nr_siblings;
2946
2947 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2948 values[n++] = leader->total_time_enabled;
2949
2950 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2951 values[n++] = leader->total_time_running;
2952
2953 if (leader != event)
2954 leader->pmu->read(leader);
2955
2956 values[n++] = atomic64_read(&leader->count);
2957 if (read_format & PERF_FORMAT_ID)
2958 values[n++] = primary_event_id(leader);
2959
2960 perf_output_copy(handle, values, n * sizeof(u64));
2961
2962 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2963 n = 0;
2964
2965 if (sub != event)
2966 sub->pmu->read(sub);
2967
2968 values[n++] = atomic64_read(&sub->count);
2969 if (read_format & PERF_FORMAT_ID)
2970 values[n++] = primary_event_id(sub);
2971
2972 perf_output_copy(handle, values, n * sizeof(u64));
2973 }
2974}
2975
2976static void perf_output_read(struct perf_output_handle *handle,
2977 struct perf_event *event)
2978{
2979 if (event->attr.read_format & PERF_FORMAT_GROUP)
2980 perf_output_read_group(handle, event);
2981 else
2982 perf_output_read_one(handle, event);
2983}
2984
2985void perf_output_sample(struct perf_output_handle *handle,
2986 struct perf_event_header *header,
2987 struct perf_sample_data *data,
2988 struct perf_event *event)
2989{
2990 u64 sample_type = data->type;
2991
2992 perf_output_put(handle, *header);
2993
2994 if (sample_type & PERF_SAMPLE_IP)
2995 perf_output_put(handle, data->ip);
2996
2997 if (sample_type & PERF_SAMPLE_TID)
2998 perf_output_put(handle, data->tid_entry);
2999
3000 if (sample_type & PERF_SAMPLE_TIME)
3001 perf_output_put(handle, data->time);
3002
3003 if (sample_type & PERF_SAMPLE_ADDR)
3004 perf_output_put(handle, data->addr);
3005
3006 if (sample_type & PERF_SAMPLE_ID)
3007 perf_output_put(handle, data->id);
3008
3009 if (sample_type & PERF_SAMPLE_STREAM_ID)
3010 perf_output_put(handle, data->stream_id);
3011
3012 if (sample_type & PERF_SAMPLE_CPU)
3013 perf_output_put(handle, data->cpu_entry);
3014
3015 if (sample_type & PERF_SAMPLE_PERIOD)
3016 perf_output_put(handle, data->period);
3017
3018 if (sample_type & PERF_SAMPLE_READ)
3019 perf_output_read(handle, event);
3020
3021 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3022 if (data->callchain) {
3023 int size = 1;
3024
3025 if (data->callchain)
3026 size += data->callchain->nr;
3027
3028 size *= sizeof(u64);
3029
3030 perf_output_copy(handle, data->callchain, size);
3031 } else {
3032 u64 nr = 0;
3033 perf_output_put(handle, nr);
3034 }
3035 }
3036
3037 if (sample_type & PERF_SAMPLE_RAW) {
3038 if (data->raw) {
3039 perf_output_put(handle, data->raw->size);
3040 perf_output_copy(handle, data->raw->data,
3041 data->raw->size);
3042 } else {
3043 struct {
3044 u32 size;
3045 u32 data;
3046 } raw = {
3047 .size = sizeof(u32),
3048 .data = 0,
3049 };
3050 perf_output_put(handle, raw);
3051 }
3052 }
3053}
3054
3055void perf_prepare_sample(struct perf_event_header *header,
3056 struct perf_sample_data *data,
3057 struct perf_event *event,
3058 struct pt_regs *regs)
3059{
3060 u64 sample_type = event->attr.sample_type;
3061
3062 data->type = sample_type;
3063
3064 header->type = PERF_RECORD_SAMPLE;
3065 header->size = sizeof(*header);
3066
3067 header->misc = 0;
3068 header->misc |= perf_misc_flags(regs);
3069
3070 if (sample_type & PERF_SAMPLE_IP) {
3071 data->ip = perf_instruction_pointer(regs);
3072
3073 header->size += sizeof(data->ip);
3074 }
3075
3076 if (sample_type & PERF_SAMPLE_TID) {
3077 /* namespace issues */
3078 data->tid_entry.pid = perf_event_pid(event, current);
3079 data->tid_entry.tid = perf_event_tid(event, current);
3080
3081 header->size += sizeof(data->tid_entry);
3082 }
3083
3084 if (sample_type & PERF_SAMPLE_TIME) {
3085 data->time = perf_clock();
3086
3087 header->size += sizeof(data->time);
3088 }
3089
3090 if (sample_type & PERF_SAMPLE_ADDR)
3091 header->size += sizeof(data->addr);
3092
3093 if (sample_type & PERF_SAMPLE_ID) {
3094 data->id = primary_event_id(event);
3095
3096 header->size += sizeof(data->id);
3097 }
3098
3099 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3100 data->stream_id = event->id;
3101
3102 header->size += sizeof(data->stream_id);
3103 }
3104
3105 if (sample_type & PERF_SAMPLE_CPU) {
3106 data->cpu_entry.cpu = raw_smp_processor_id();
3107 data->cpu_entry.reserved = 0;
3108
3109 header->size += sizeof(data->cpu_entry);
3110 }
3111
3112 if (sample_type & PERF_SAMPLE_PERIOD)
3113 header->size += sizeof(data->period);
3114
3115 if (sample_type & PERF_SAMPLE_READ)
3116 header->size += perf_event_read_size(event);
3117
3118 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3119 int size = 1;
3120
3121 data->callchain = perf_callchain(regs);
3122
3123 if (data->callchain)
3124 size += data->callchain->nr;
3125
3126 header->size += size * sizeof(u64);
3127 }
3128
3129 if (sample_type & PERF_SAMPLE_RAW) {
3130 int size = sizeof(u32);
3131
3132 if (data->raw)
3133 size += data->raw->size;
3134 else
3135 size += sizeof(u32);
3136
3137 WARN_ON_ONCE(size & (sizeof(u64)-1));
3138 header->size += size;
3139 }
3140}
3141
3142static void perf_event_output(struct perf_event *event, int nmi,
3143 struct perf_sample_data *data,
3144 struct pt_regs *regs)
3145{
3146 struct perf_output_handle handle;
3147 struct perf_event_header header;
3148
3149 perf_prepare_sample(&header, data, event, regs);
3150
3151 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3152 return;
3153
3154 perf_output_sample(&handle, &header, data, event);
3155
3156 perf_output_end(&handle);
3157}
3158
3159/*
3160 * read event_id
3161 */
3162
3163struct perf_read_event {
3164 struct perf_event_header header;
3165
3166 u32 pid;
3167 u32 tid;
3168};
3169
3170static void
3171perf_event_read_event(struct perf_event *event,
3172 struct task_struct *task)
3173{
3174 struct perf_output_handle handle;
3175 struct perf_read_event read_event = {
3176 .header = {
3177 .type = PERF_RECORD_READ,
3178 .misc = 0,
3179 .size = sizeof(read_event) + perf_event_read_size(event),
3180 },
3181 .pid = perf_event_pid(event, task),
3182 .tid = perf_event_tid(event, task),
3183 };
3184 int ret;
3185
3186 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3187 if (ret)
3188 return;
3189
3190 perf_output_put(&handle, read_event);
3191 perf_output_read(&handle, event);
3192
3193 perf_output_end(&handle);
3194}
3195
3196/*
3197 * task tracking -- fork/exit
3198 *
3199 * enabled by: attr.comm | attr.mmap | attr.task
3200 */
3201
3202struct perf_task_event {
3203 struct task_struct *task;
3204 struct perf_event_context *task_ctx;
3205
3206 struct {
3207 struct perf_event_header header;
3208
3209 u32 pid;
3210 u32 ppid;
3211 u32 tid;
3212 u32 ptid;
3213 u64 time;
3214 } event_id;
3215};
3216
3217static void perf_event_task_output(struct perf_event *event,
3218 struct perf_task_event *task_event)
3219{
3220 struct perf_output_handle handle;
3221 int size;
3222 struct task_struct *task = task_event->task;
3223 int ret;
3224
3225 size = task_event->event_id.header.size;
3226 ret = perf_output_begin(&handle, event, size, 0, 0);
3227
3228 if (ret)
3229 return;
3230
3231 task_event->event_id.pid = perf_event_pid(event, task);
3232 task_event->event_id.ppid = perf_event_pid(event, current);
3233
3234 task_event->event_id.tid = perf_event_tid(event, task);
3235 task_event->event_id.ptid = perf_event_tid(event, current);
3236
3237 task_event->event_id.time = perf_clock();
3238
3239 perf_output_put(&handle, task_event->event_id);
3240
3241 perf_output_end(&handle);
3242}
3243
3244static int perf_event_task_match(struct perf_event *event)
3245{
3246 if (event->attr.comm || event->attr.mmap || event->attr.task)
3247 return 1;
3248
3249 return 0;
3250}
3251
3252static void perf_event_task_ctx(struct perf_event_context *ctx,
3253 struct perf_task_event *task_event)
3254{
3255 struct perf_event *event;
3256
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003257 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3258 if (perf_event_task_match(event))
3259 perf_event_task_output(event, task_event);
3260 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003261}
3262
3263static void perf_event_task_event(struct perf_task_event *task_event)
3264{
3265 struct perf_cpu_context *cpuctx;
3266 struct perf_event_context *ctx = task_event->task_ctx;
3267
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003268 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003269 cpuctx = &get_cpu_var(perf_cpu_context);
3270 perf_event_task_ctx(&cpuctx->ctx, task_event);
3271 put_cpu_var(perf_cpu_context);
3272
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003273 if (!ctx)
3274 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3275 if (ctx)
3276 perf_event_task_ctx(ctx, task_event);
3277 rcu_read_unlock();
3278}
3279
3280static void perf_event_task(struct task_struct *task,
3281 struct perf_event_context *task_ctx,
3282 int new)
3283{
3284 struct perf_task_event task_event;
3285
3286 if (!atomic_read(&nr_comm_events) &&
3287 !atomic_read(&nr_mmap_events) &&
3288 !atomic_read(&nr_task_events))
3289 return;
3290
3291 task_event = (struct perf_task_event){
3292 .task = task,
3293 .task_ctx = task_ctx,
3294 .event_id = {
3295 .header = {
3296 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3297 .misc = 0,
3298 .size = sizeof(task_event.event_id),
3299 },
3300 /* .pid */
3301 /* .ppid */
3302 /* .tid */
3303 /* .ptid */
3304 },
3305 };
3306
3307 perf_event_task_event(&task_event);
3308}
3309
3310void perf_event_fork(struct task_struct *task)
3311{
3312 perf_event_task(task, NULL, 1);
3313}
3314
3315/*
3316 * comm tracking
3317 */
3318
3319struct perf_comm_event {
3320 struct task_struct *task;
3321 char *comm;
3322 int comm_size;
3323
3324 struct {
3325 struct perf_event_header header;
3326
3327 u32 pid;
3328 u32 tid;
3329 } event_id;
3330};
3331
3332static void perf_event_comm_output(struct perf_event *event,
3333 struct perf_comm_event *comm_event)
3334{
3335 struct perf_output_handle handle;
3336 int size = comm_event->event_id.header.size;
3337 int ret = perf_output_begin(&handle, event, size, 0, 0);
3338
3339 if (ret)
3340 return;
3341
3342 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3343 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3344
3345 perf_output_put(&handle, comm_event->event_id);
3346 perf_output_copy(&handle, comm_event->comm,
3347 comm_event->comm_size);
3348 perf_output_end(&handle);
3349}
3350
3351static int perf_event_comm_match(struct perf_event *event)
3352{
3353 if (event->attr.comm)
3354 return 1;
3355
3356 return 0;
3357}
3358
3359static void perf_event_comm_ctx(struct perf_event_context *ctx,
3360 struct perf_comm_event *comm_event)
3361{
3362 struct perf_event *event;
3363
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003364 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3365 if (perf_event_comm_match(event))
3366 perf_event_comm_output(event, comm_event);
3367 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003368}
3369
3370static void perf_event_comm_event(struct perf_comm_event *comm_event)
3371{
3372 struct perf_cpu_context *cpuctx;
3373 struct perf_event_context *ctx;
3374 unsigned int size;
3375 char comm[TASK_COMM_LEN];
3376
3377 memset(comm, 0, sizeof(comm));
3378 strncpy(comm, comm_event->task->comm, sizeof(comm));
3379 size = ALIGN(strlen(comm)+1, sizeof(u64));
3380
3381 comm_event->comm = comm;
3382 comm_event->comm_size = size;
3383
3384 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3385
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003386 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003387 cpuctx = &get_cpu_var(perf_cpu_context);
3388 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3389 put_cpu_var(perf_cpu_context);
3390
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003391 /*
3392 * doesn't really matter which of the child contexts the
3393 * events ends up in.
3394 */
3395 ctx = rcu_dereference(current->perf_event_ctxp);
3396 if (ctx)
3397 perf_event_comm_ctx(ctx, comm_event);
3398 rcu_read_unlock();
3399}
3400
3401void perf_event_comm(struct task_struct *task)
3402{
3403 struct perf_comm_event comm_event;
3404
3405 if (task->perf_event_ctxp)
3406 perf_event_enable_on_exec(task);
3407
3408 if (!atomic_read(&nr_comm_events))
3409 return;
3410
3411 comm_event = (struct perf_comm_event){
3412 .task = task,
3413 /* .comm */
3414 /* .comm_size */
3415 .event_id = {
3416 .header = {
3417 .type = PERF_RECORD_COMM,
3418 .misc = 0,
3419 /* .size */
3420 },
3421 /* .pid */
3422 /* .tid */
3423 },
3424 };
3425
3426 perf_event_comm_event(&comm_event);
3427}
3428
3429/*
3430 * mmap tracking
3431 */
3432
3433struct perf_mmap_event {
3434 struct vm_area_struct *vma;
3435
3436 const char *file_name;
3437 int file_size;
3438
3439 struct {
3440 struct perf_event_header header;
3441
3442 u32 pid;
3443 u32 tid;
3444 u64 start;
3445 u64 len;
3446 u64 pgoff;
3447 } event_id;
3448};
3449
3450static void perf_event_mmap_output(struct perf_event *event,
3451 struct perf_mmap_event *mmap_event)
3452{
3453 struct perf_output_handle handle;
3454 int size = mmap_event->event_id.header.size;
3455 int ret = perf_output_begin(&handle, event, size, 0, 0);
3456
3457 if (ret)
3458 return;
3459
3460 mmap_event->event_id.pid = perf_event_pid(event, current);
3461 mmap_event->event_id.tid = perf_event_tid(event, current);
3462
3463 perf_output_put(&handle, mmap_event->event_id);
3464 perf_output_copy(&handle, mmap_event->file_name,
3465 mmap_event->file_size);
3466 perf_output_end(&handle);
3467}
3468
3469static int perf_event_mmap_match(struct perf_event *event,
3470 struct perf_mmap_event *mmap_event)
3471{
3472 if (event->attr.mmap)
3473 return 1;
3474
3475 return 0;
3476}
3477
3478static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3479 struct perf_mmap_event *mmap_event)
3480{
3481 struct perf_event *event;
3482
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003483 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3484 if (perf_event_mmap_match(event, mmap_event))
3485 perf_event_mmap_output(event, mmap_event);
3486 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003487}
3488
3489static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3490{
3491 struct perf_cpu_context *cpuctx;
3492 struct perf_event_context *ctx;
3493 struct vm_area_struct *vma = mmap_event->vma;
3494 struct file *file = vma->vm_file;
3495 unsigned int size;
3496 char tmp[16];
3497 char *buf = NULL;
3498 const char *name;
3499
3500 memset(tmp, 0, sizeof(tmp));
3501
3502 if (file) {
3503 /*
3504 * d_path works from the end of the buffer backwards, so we
3505 * need to add enough zero bytes after the string to handle
3506 * the 64bit alignment we do later.
3507 */
3508 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3509 if (!buf) {
3510 name = strncpy(tmp, "//enomem", sizeof(tmp));
3511 goto got_name;
3512 }
3513 name = d_path(&file->f_path, buf, PATH_MAX);
3514 if (IS_ERR(name)) {
3515 name = strncpy(tmp, "//toolong", sizeof(tmp));
3516 goto got_name;
3517 }
3518 } else {
3519 if (arch_vma_name(mmap_event->vma)) {
3520 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3521 sizeof(tmp));
3522 goto got_name;
3523 }
3524
3525 if (!vma->vm_mm) {
3526 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3527 goto got_name;
3528 }
3529
3530 name = strncpy(tmp, "//anon", sizeof(tmp));
3531 goto got_name;
3532 }
3533
3534got_name:
3535 size = ALIGN(strlen(name)+1, sizeof(u64));
3536
3537 mmap_event->file_name = name;
3538 mmap_event->file_size = size;
3539
3540 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3541
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003542 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003543 cpuctx = &get_cpu_var(perf_cpu_context);
3544 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3545 put_cpu_var(perf_cpu_context);
3546
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003547 /*
3548 * doesn't really matter which of the child contexts the
3549 * events ends up in.
3550 */
3551 ctx = rcu_dereference(current->perf_event_ctxp);
3552 if (ctx)
3553 perf_event_mmap_ctx(ctx, mmap_event);
3554 rcu_read_unlock();
3555
3556 kfree(buf);
3557}
3558
3559void __perf_event_mmap(struct vm_area_struct *vma)
3560{
3561 struct perf_mmap_event mmap_event;
3562
3563 if (!atomic_read(&nr_mmap_events))
3564 return;
3565
3566 mmap_event = (struct perf_mmap_event){
3567 .vma = vma,
3568 /* .file_name */
3569 /* .file_size */
3570 .event_id = {
3571 .header = {
3572 .type = PERF_RECORD_MMAP,
3573 .misc = 0,
3574 /* .size */
3575 },
3576 /* .pid */
3577 /* .tid */
3578 .start = vma->vm_start,
3579 .len = vma->vm_end - vma->vm_start,
3580 .pgoff = vma->vm_pgoff,
3581 },
3582 };
3583
3584 perf_event_mmap_event(&mmap_event);
3585}
3586
3587/*
3588 * IRQ throttle logging
3589 */
3590
3591static void perf_log_throttle(struct perf_event *event, int enable)
3592{
3593 struct perf_output_handle handle;
3594 int ret;
3595
3596 struct {
3597 struct perf_event_header header;
3598 u64 time;
3599 u64 id;
3600 u64 stream_id;
3601 } throttle_event = {
3602 .header = {
3603 .type = PERF_RECORD_THROTTLE,
3604 .misc = 0,
3605 .size = sizeof(throttle_event),
3606 },
3607 .time = perf_clock(),
3608 .id = primary_event_id(event),
3609 .stream_id = event->id,
3610 };
3611
3612 if (enable)
3613 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3614
3615 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3616 if (ret)
3617 return;
3618
3619 perf_output_put(&handle, throttle_event);
3620 perf_output_end(&handle);
3621}
3622
3623/*
3624 * Generic event overflow handling, sampling.
3625 */
3626
3627static int __perf_event_overflow(struct perf_event *event, int nmi,
3628 int throttle, struct perf_sample_data *data,
3629 struct pt_regs *regs)
3630{
3631 int events = atomic_read(&event->event_limit);
3632 struct hw_perf_event *hwc = &event->hw;
3633 int ret = 0;
3634
3635 throttle = (throttle && event->pmu->unthrottle != NULL);
3636
3637 if (!throttle) {
3638 hwc->interrupts++;
3639 } else {
3640 if (hwc->interrupts != MAX_INTERRUPTS) {
3641 hwc->interrupts++;
3642 if (HZ * hwc->interrupts >
3643 (u64)sysctl_perf_event_sample_rate) {
3644 hwc->interrupts = MAX_INTERRUPTS;
3645 perf_log_throttle(event, 0);
3646 ret = 1;
3647 }
3648 } else {
3649 /*
3650 * Keep re-disabling events even though on the previous
3651 * pass we disabled it - just in case we raced with a
3652 * sched-in and the event got enabled again:
3653 */
3654 ret = 1;
3655 }
3656 }
3657
3658 if (event->attr.freq) {
3659 u64 now = perf_clock();
3660 s64 delta = now - hwc->freq_stamp;
3661
3662 hwc->freq_stamp = now;
3663
3664 if (delta > 0 && delta < TICK_NSEC)
3665 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3666 }
3667
3668 /*
3669 * XXX event_limit might not quite work as expected on inherited
3670 * events
3671 */
3672
3673 event->pending_kill = POLL_IN;
3674 if (events && atomic_dec_and_test(&event->event_limit)) {
3675 ret = 1;
3676 event->pending_kill = POLL_HUP;
3677 if (nmi) {
3678 event->pending_disable = 1;
3679 perf_pending_queue(&event->pending,
3680 perf_pending_event);
3681 } else
3682 perf_event_disable(event);
3683 }
3684
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003685 if (event->overflow_handler)
3686 event->overflow_handler(event, nmi, data, regs);
3687 else
3688 perf_event_output(event, nmi, data, regs);
3689
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003690 return ret;
3691}
3692
3693int perf_event_overflow(struct perf_event *event, int nmi,
3694 struct perf_sample_data *data,
3695 struct pt_regs *regs)
3696{
3697 return __perf_event_overflow(event, nmi, 1, data, regs);
3698}
3699
3700/*
3701 * Generic software event infrastructure
3702 */
3703
3704/*
3705 * We directly increment event->count and keep a second value in
3706 * event->hw.period_left to count intervals. This period event
3707 * is kept in the range [-sample_period, 0] so that we can use the
3708 * sign as trigger.
3709 */
3710
3711static u64 perf_swevent_set_period(struct perf_event *event)
3712{
3713 struct hw_perf_event *hwc = &event->hw;
3714 u64 period = hwc->last_period;
3715 u64 nr, offset;
3716 s64 old, val;
3717
3718 hwc->last_period = hwc->sample_period;
3719
3720again:
3721 old = val = atomic64_read(&hwc->period_left);
3722 if (val < 0)
3723 return 0;
3724
3725 nr = div64_u64(period + val, period);
3726 offset = nr * period;
3727 val -= offset;
3728 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3729 goto again;
3730
3731 return nr;
3732}
3733
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003734static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003735 int nmi, struct perf_sample_data *data,
3736 struct pt_regs *regs)
3737{
3738 struct hw_perf_event *hwc = &event->hw;
3739 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003740
3741 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003742 if (!overflow)
3743 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003744
3745 if (hwc->interrupts == MAX_INTERRUPTS)
3746 return;
3747
3748 for (; overflow; overflow--) {
3749 if (__perf_event_overflow(event, nmi, throttle,
3750 data, regs)) {
3751 /*
3752 * We inhibit the overflow from happening when
3753 * hwc->interrupts == MAX_INTERRUPTS.
3754 */
3755 break;
3756 }
3757 throttle = 1;
3758 }
3759}
3760
3761static void perf_swevent_unthrottle(struct perf_event *event)
3762{
3763 /*
3764 * Nothing to do, we already reset hwc->interrupts.
3765 */
3766}
3767
3768static void perf_swevent_add(struct perf_event *event, u64 nr,
3769 int nmi, struct perf_sample_data *data,
3770 struct pt_regs *regs)
3771{
3772 struct hw_perf_event *hwc = &event->hw;
3773
3774 atomic64_add(nr, &event->count);
3775
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003776 if (!regs)
3777 return;
3778
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003779 if (!hwc->sample_period)
3780 return;
3781
3782 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3783 return perf_swevent_overflow(event, 1, nmi, data, regs);
3784
3785 if (atomic64_add_negative(nr, &hwc->period_left))
3786 return;
3787
3788 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003789}
3790
3791static int perf_swevent_is_counting(struct perf_event *event)
3792{
3793 /*
3794 * The event is active, we're good!
3795 */
3796 if (event->state == PERF_EVENT_STATE_ACTIVE)
3797 return 1;
3798
3799 /*
3800 * The event is off/error, not counting.
3801 */
3802 if (event->state != PERF_EVENT_STATE_INACTIVE)
3803 return 0;
3804
3805 /*
3806 * The event is inactive, if the context is active
3807 * we're part of a group that didn't make it on the 'pmu',
3808 * not counting.
3809 */
3810 if (event->ctx->is_active)
3811 return 0;
3812
3813 /*
3814 * We're inactive and the context is too, this means the
3815 * task is scheduled out, we're counting events that happen
3816 * to us, like migration events.
3817 */
3818 return 1;
3819}
3820
Li Zefan6fb29152009-10-15 11:21:42 +08003821static int perf_tp_event_match(struct perf_event *event,
3822 struct perf_sample_data *data);
3823
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003824static int perf_swevent_match(struct perf_event *event,
3825 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003826 u32 event_id,
3827 struct perf_sample_data *data,
3828 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003829{
3830 if (!perf_swevent_is_counting(event))
3831 return 0;
3832
3833 if (event->attr.type != type)
3834 return 0;
3835 if (event->attr.config != event_id)
3836 return 0;
3837
3838 if (regs) {
3839 if (event->attr.exclude_user && user_mode(regs))
3840 return 0;
3841
3842 if (event->attr.exclude_kernel && !user_mode(regs))
3843 return 0;
3844 }
3845
Li Zefan6fb29152009-10-15 11:21:42 +08003846 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3847 !perf_tp_event_match(event, data))
3848 return 0;
3849
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003850 return 1;
3851}
3852
3853static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3854 enum perf_type_id type,
3855 u32 event_id, u64 nr, int nmi,
3856 struct perf_sample_data *data,
3857 struct pt_regs *regs)
3858{
3859 struct perf_event *event;
3860
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003861 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003862 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003863 perf_swevent_add(event, nr, nmi, data, regs);
3864 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003865}
3866
3867static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3868{
3869 if (in_nmi())
3870 return &cpuctx->recursion[3];
3871
3872 if (in_irq())
3873 return &cpuctx->recursion[2];
3874
3875 if (in_softirq())
3876 return &cpuctx->recursion[1];
3877
3878 return &cpuctx->recursion[0];
3879}
3880
3881static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3882 u64 nr, int nmi,
3883 struct perf_sample_data *data,
3884 struct pt_regs *regs)
3885{
3886 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3887 int *recursion = perf_swevent_recursion_context(cpuctx);
3888 struct perf_event_context *ctx;
3889
3890 if (*recursion)
3891 goto out;
3892
3893 (*recursion)++;
3894 barrier();
3895
Peter Zijlstra81520182009-11-20 22:19:45 +01003896 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003897 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3898 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003899 /*
3900 * doesn't really matter which of the child contexts the
3901 * events ends up in.
3902 */
3903 ctx = rcu_dereference(current->perf_event_ctxp);
3904 if (ctx)
3905 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3906 rcu_read_unlock();
3907
3908 barrier();
3909 (*recursion)--;
3910
3911out:
3912 put_cpu_var(perf_cpu_context);
3913}
3914
3915void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3916 struct pt_regs *regs, u64 addr)
3917{
3918 struct perf_sample_data data = {
3919 .addr = addr,
3920 };
3921
3922 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3923 &data, regs);
3924}
3925
3926static void perf_swevent_read(struct perf_event *event)
3927{
3928}
3929
3930static int perf_swevent_enable(struct perf_event *event)
3931{
3932 struct hw_perf_event *hwc = &event->hw;
3933
3934 if (hwc->sample_period) {
3935 hwc->last_period = hwc->sample_period;
3936 perf_swevent_set_period(event);
3937 }
3938 return 0;
3939}
3940
3941static void perf_swevent_disable(struct perf_event *event)
3942{
3943}
3944
3945static const struct pmu perf_ops_generic = {
3946 .enable = perf_swevent_enable,
3947 .disable = perf_swevent_disable,
3948 .read = perf_swevent_read,
3949 .unthrottle = perf_swevent_unthrottle,
3950};
3951
3952/*
3953 * hrtimer based swevent callback
3954 */
3955
3956static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3957{
3958 enum hrtimer_restart ret = HRTIMER_RESTART;
3959 struct perf_sample_data data;
3960 struct pt_regs *regs;
3961 struct perf_event *event;
3962 u64 period;
3963
3964 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3965 event->pmu->read(event);
3966
3967 data.addr = 0;
3968 regs = get_irq_regs();
3969 /*
3970 * In case we exclude kernel IPs or are somehow not in interrupt
3971 * context, provide the next best thing, the user IP.
3972 */
3973 if ((event->attr.exclude_kernel || !regs) &&
3974 !event->attr.exclude_user)
3975 regs = task_pt_regs(current);
3976
3977 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02003978 if (!(event->attr.exclude_idle && current->pid == 0))
3979 if (perf_event_overflow(event, 0, &data, regs))
3980 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003981 }
3982
3983 period = max_t(u64, 10000, event->hw.sample_period);
3984 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3985
3986 return ret;
3987}
3988
Soeren Sandmann721a6692009-09-15 14:33:08 +02003989static void perf_swevent_start_hrtimer(struct perf_event *event)
3990{
3991 struct hw_perf_event *hwc = &event->hw;
3992
3993 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3994 hwc->hrtimer.function = perf_swevent_hrtimer;
3995 if (hwc->sample_period) {
3996 u64 period;
3997
3998 if (hwc->remaining) {
3999 if (hwc->remaining < 0)
4000 period = 10000;
4001 else
4002 period = hwc->remaining;
4003 hwc->remaining = 0;
4004 } else {
4005 period = max_t(u64, 10000, hwc->sample_period);
4006 }
4007 __hrtimer_start_range_ns(&hwc->hrtimer,
4008 ns_to_ktime(period), 0,
4009 HRTIMER_MODE_REL, 0);
4010 }
4011}
4012
4013static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4014{
4015 struct hw_perf_event *hwc = &event->hw;
4016
4017 if (hwc->sample_period) {
4018 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4019 hwc->remaining = ktime_to_ns(remaining);
4020
4021 hrtimer_cancel(&hwc->hrtimer);
4022 }
4023}
4024
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004025/*
4026 * Software event: cpu wall time clock
4027 */
4028
4029static void cpu_clock_perf_event_update(struct perf_event *event)
4030{
4031 int cpu = raw_smp_processor_id();
4032 s64 prev;
4033 u64 now;
4034
4035 now = cpu_clock(cpu);
4036 prev = atomic64_read(&event->hw.prev_count);
4037 atomic64_set(&event->hw.prev_count, now);
4038 atomic64_add(now - prev, &event->count);
4039}
4040
4041static int cpu_clock_perf_event_enable(struct perf_event *event)
4042{
4043 struct hw_perf_event *hwc = &event->hw;
4044 int cpu = raw_smp_processor_id();
4045
4046 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004047 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004048
4049 return 0;
4050}
4051
4052static void cpu_clock_perf_event_disable(struct perf_event *event)
4053{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004054 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004055 cpu_clock_perf_event_update(event);
4056}
4057
4058static void cpu_clock_perf_event_read(struct perf_event *event)
4059{
4060 cpu_clock_perf_event_update(event);
4061}
4062
4063static const struct pmu perf_ops_cpu_clock = {
4064 .enable = cpu_clock_perf_event_enable,
4065 .disable = cpu_clock_perf_event_disable,
4066 .read = cpu_clock_perf_event_read,
4067};
4068
4069/*
4070 * Software event: task time clock
4071 */
4072
4073static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4074{
4075 u64 prev;
4076 s64 delta;
4077
4078 prev = atomic64_xchg(&event->hw.prev_count, now);
4079 delta = now - prev;
4080 atomic64_add(delta, &event->count);
4081}
4082
4083static int task_clock_perf_event_enable(struct perf_event *event)
4084{
4085 struct hw_perf_event *hwc = &event->hw;
4086 u64 now;
4087
4088 now = event->ctx->time;
4089
4090 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004091
4092 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004093
4094 return 0;
4095}
4096
4097static void task_clock_perf_event_disable(struct perf_event *event)
4098{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004099 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004100 task_clock_perf_event_update(event, event->ctx->time);
4101
4102}
4103
4104static void task_clock_perf_event_read(struct perf_event *event)
4105{
4106 u64 time;
4107
4108 if (!in_nmi()) {
4109 update_context_time(event->ctx);
4110 time = event->ctx->time;
4111 } else {
4112 u64 now = perf_clock();
4113 u64 delta = now - event->ctx->timestamp;
4114 time = event->ctx->time + delta;
4115 }
4116
4117 task_clock_perf_event_update(event, time);
4118}
4119
4120static const struct pmu perf_ops_task_clock = {
4121 .enable = task_clock_perf_event_enable,
4122 .disable = task_clock_perf_event_disable,
4123 .read = task_clock_perf_event_read,
4124};
4125
4126#ifdef CONFIG_EVENT_PROFILE
Li Zefan6fb29152009-10-15 11:21:42 +08004127
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004128void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4129 int entry_size)
4130{
4131 struct perf_raw_record raw = {
4132 .size = entry_size,
4133 .data = record,
4134 };
4135
4136 struct perf_sample_data data = {
4137 .addr = addr,
4138 .raw = &raw,
4139 };
4140
4141 struct pt_regs *regs = get_irq_regs();
4142
4143 if (!regs)
4144 regs = task_pt_regs(current);
4145
4146 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4147 &data, regs);
4148}
4149EXPORT_SYMBOL_GPL(perf_tp_event);
4150
Li Zefan6fb29152009-10-15 11:21:42 +08004151static int perf_tp_event_match(struct perf_event *event,
4152 struct perf_sample_data *data)
4153{
4154 void *record = data->raw->data;
4155
4156 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4157 return 1;
4158 return 0;
4159}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004160
4161static void tp_perf_event_destroy(struct perf_event *event)
4162{
4163 ftrace_profile_disable(event->attr.config);
4164}
4165
4166static const struct pmu *tp_perf_event_init(struct perf_event *event)
4167{
4168 /*
4169 * Raw tracepoint data is a severe data leak, only allow root to
4170 * have these.
4171 */
4172 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4173 perf_paranoid_tracepoint_raw() &&
4174 !capable(CAP_SYS_ADMIN))
4175 return ERR_PTR(-EPERM);
4176
4177 if (ftrace_profile_enable(event->attr.config))
4178 return NULL;
4179
4180 event->destroy = tp_perf_event_destroy;
4181
4182 return &perf_ops_generic;
4183}
Li Zefan6fb29152009-10-15 11:21:42 +08004184
4185static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4186{
4187 char *filter_str;
4188 int ret;
4189
4190 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4191 return -EINVAL;
4192
4193 filter_str = strndup_user(arg, PAGE_SIZE);
4194 if (IS_ERR(filter_str))
4195 return PTR_ERR(filter_str);
4196
4197 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4198
4199 kfree(filter_str);
4200 return ret;
4201}
4202
4203static void perf_event_free_filter(struct perf_event *event)
4204{
4205 ftrace_profile_free_filter(event);
4206}
4207
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004208#else
Li Zefan6fb29152009-10-15 11:21:42 +08004209
4210static int perf_tp_event_match(struct perf_event *event,
4211 struct perf_sample_data *data)
4212{
4213 return 1;
4214}
4215
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004216static const struct pmu *tp_perf_event_init(struct perf_event *event)
4217{
4218 return NULL;
4219}
Li Zefan6fb29152009-10-15 11:21:42 +08004220
4221static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4222{
4223 return -ENOENT;
4224}
4225
4226static void perf_event_free_filter(struct perf_event *event)
4227{
4228}
4229
4230#endif /* CONFIG_EVENT_PROFILE */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004231
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004232#ifdef CONFIG_HAVE_HW_BREAKPOINT
4233static void bp_perf_event_destroy(struct perf_event *event)
4234{
4235 release_bp_slot(event);
4236}
4237
4238static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4239{
4240 int err;
4241 /*
4242 * The breakpoint is already filled if we haven't created the counter
4243 * through perf syscall
4244 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4245 */
4246 if (!bp->callback)
4247 err = register_perf_hw_breakpoint(bp);
4248 else
4249 err = __register_perf_hw_breakpoint(bp);
4250 if (err)
4251 return ERR_PTR(err);
4252
4253 bp->destroy = bp_perf_event_destroy;
4254
4255 return &perf_ops_bp;
4256}
4257
4258void perf_bp_event(struct perf_event *bp, void *regs)
4259{
4260 /* TODO */
4261}
4262#else
4263static void bp_perf_event_destroy(struct perf_event *event)
4264{
4265}
4266
4267static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4268{
4269 return NULL;
4270}
4271
4272void perf_bp_event(struct perf_event *bp, void *regs)
4273{
4274}
4275#endif
4276
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004277atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4278
4279static void sw_perf_event_destroy(struct perf_event *event)
4280{
4281 u64 event_id = event->attr.config;
4282
4283 WARN_ON(event->parent);
4284
4285 atomic_dec(&perf_swevent_enabled[event_id]);
4286}
4287
4288static const struct pmu *sw_perf_event_init(struct perf_event *event)
4289{
4290 const struct pmu *pmu = NULL;
4291 u64 event_id = event->attr.config;
4292
4293 /*
4294 * Software events (currently) can't in general distinguish
4295 * between user, kernel and hypervisor events.
4296 * However, context switches and cpu migrations are considered
4297 * to be kernel events, and page faults are never hypervisor
4298 * events.
4299 */
4300 switch (event_id) {
4301 case PERF_COUNT_SW_CPU_CLOCK:
4302 pmu = &perf_ops_cpu_clock;
4303
4304 break;
4305 case PERF_COUNT_SW_TASK_CLOCK:
4306 /*
4307 * If the user instantiates this as a per-cpu event,
4308 * use the cpu_clock event instead.
4309 */
4310 if (event->ctx->task)
4311 pmu = &perf_ops_task_clock;
4312 else
4313 pmu = &perf_ops_cpu_clock;
4314
4315 break;
4316 case PERF_COUNT_SW_PAGE_FAULTS:
4317 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4318 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4319 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4320 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004321 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4322 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004323 if (!event->parent) {
4324 atomic_inc(&perf_swevent_enabled[event_id]);
4325 event->destroy = sw_perf_event_destroy;
4326 }
4327 pmu = &perf_ops_generic;
4328 break;
4329 }
4330
4331 return pmu;
4332}
4333
4334/*
4335 * Allocate and initialize a event structure
4336 */
4337static struct perf_event *
4338perf_event_alloc(struct perf_event_attr *attr,
4339 int cpu,
4340 struct perf_event_context *ctx,
4341 struct perf_event *group_leader,
4342 struct perf_event *parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004343 perf_callback_t callback,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004344 gfp_t gfpflags)
4345{
4346 const struct pmu *pmu;
4347 struct perf_event *event;
4348 struct hw_perf_event *hwc;
4349 long err;
4350
4351 event = kzalloc(sizeof(*event), gfpflags);
4352 if (!event)
4353 return ERR_PTR(-ENOMEM);
4354
4355 /*
4356 * Single events are their own group leaders, with an
4357 * empty sibling list:
4358 */
4359 if (!group_leader)
4360 group_leader = event;
4361
4362 mutex_init(&event->child_mutex);
4363 INIT_LIST_HEAD(&event->child_list);
4364
4365 INIT_LIST_HEAD(&event->group_entry);
4366 INIT_LIST_HEAD(&event->event_entry);
4367 INIT_LIST_HEAD(&event->sibling_list);
4368 init_waitqueue_head(&event->waitq);
4369
4370 mutex_init(&event->mmap_mutex);
4371
4372 event->cpu = cpu;
4373 event->attr = *attr;
4374 event->group_leader = group_leader;
4375 event->pmu = NULL;
4376 event->ctx = ctx;
4377 event->oncpu = -1;
4378
4379 event->parent = parent_event;
4380
4381 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4382 event->id = atomic64_inc_return(&perf_event_id);
4383
4384 event->state = PERF_EVENT_STATE_INACTIVE;
4385
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004386 if (!callback && parent_event)
4387 callback = parent_event->callback;
4388
4389 event->callback = callback;
4390
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004391 if (attr->disabled)
4392 event->state = PERF_EVENT_STATE_OFF;
4393
4394 pmu = NULL;
4395
4396 hwc = &event->hw;
4397 hwc->sample_period = attr->sample_period;
4398 if (attr->freq && attr->sample_freq)
4399 hwc->sample_period = 1;
4400 hwc->last_period = hwc->sample_period;
4401
4402 atomic64_set(&hwc->period_left, hwc->sample_period);
4403
4404 /*
4405 * we currently do not support PERF_FORMAT_GROUP on inherited events
4406 */
4407 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4408 goto done;
4409
4410 switch (attr->type) {
4411 case PERF_TYPE_RAW:
4412 case PERF_TYPE_HARDWARE:
4413 case PERF_TYPE_HW_CACHE:
4414 pmu = hw_perf_event_init(event);
4415 break;
4416
4417 case PERF_TYPE_SOFTWARE:
4418 pmu = sw_perf_event_init(event);
4419 break;
4420
4421 case PERF_TYPE_TRACEPOINT:
4422 pmu = tp_perf_event_init(event);
4423 break;
4424
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004425 case PERF_TYPE_BREAKPOINT:
4426 pmu = bp_perf_event_init(event);
4427 break;
4428
4429
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004430 default:
4431 break;
4432 }
4433done:
4434 err = 0;
4435 if (!pmu)
4436 err = -EINVAL;
4437 else if (IS_ERR(pmu))
4438 err = PTR_ERR(pmu);
4439
4440 if (err) {
4441 if (event->ns)
4442 put_pid_ns(event->ns);
4443 kfree(event);
4444 return ERR_PTR(err);
4445 }
4446
4447 event->pmu = pmu;
4448
4449 if (!event->parent) {
4450 atomic_inc(&nr_events);
4451 if (event->attr.mmap)
4452 atomic_inc(&nr_mmap_events);
4453 if (event->attr.comm)
4454 atomic_inc(&nr_comm_events);
4455 if (event->attr.task)
4456 atomic_inc(&nr_task_events);
4457 }
4458
4459 return event;
4460}
4461
4462static int perf_copy_attr(struct perf_event_attr __user *uattr,
4463 struct perf_event_attr *attr)
4464{
4465 u32 size;
4466 int ret;
4467
4468 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4469 return -EFAULT;
4470
4471 /*
4472 * zero the full structure, so that a short copy will be nice.
4473 */
4474 memset(attr, 0, sizeof(*attr));
4475
4476 ret = get_user(size, &uattr->size);
4477 if (ret)
4478 return ret;
4479
4480 if (size > PAGE_SIZE) /* silly large */
4481 goto err_size;
4482
4483 if (!size) /* abi compat */
4484 size = PERF_ATTR_SIZE_VER0;
4485
4486 if (size < PERF_ATTR_SIZE_VER0)
4487 goto err_size;
4488
4489 /*
4490 * If we're handed a bigger struct than we know of,
4491 * ensure all the unknown bits are 0 - i.e. new
4492 * user-space does not rely on any kernel feature
4493 * extensions we dont know about yet.
4494 */
4495 if (size > sizeof(*attr)) {
4496 unsigned char __user *addr;
4497 unsigned char __user *end;
4498 unsigned char val;
4499
4500 addr = (void __user *)uattr + sizeof(*attr);
4501 end = (void __user *)uattr + size;
4502
4503 for (; addr < end; addr++) {
4504 ret = get_user(val, addr);
4505 if (ret)
4506 return ret;
4507 if (val)
4508 goto err_size;
4509 }
4510 size = sizeof(*attr);
4511 }
4512
4513 ret = copy_from_user(attr, uattr, size);
4514 if (ret)
4515 return -EFAULT;
4516
4517 /*
4518 * If the type exists, the corresponding creation will verify
4519 * the attr->config.
4520 */
4521 if (attr->type >= PERF_TYPE_MAX)
4522 return -EINVAL;
4523
4524 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4525 return -EINVAL;
4526
4527 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4528 return -EINVAL;
4529
4530 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4531 return -EINVAL;
4532
4533out:
4534 return ret;
4535
4536err_size:
4537 put_user(sizeof(*attr), &uattr->size);
4538 ret = -E2BIG;
4539 goto out;
4540}
4541
Li Zefan6fb29152009-10-15 11:21:42 +08004542static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004543{
4544 struct perf_event *output_event = NULL;
4545 struct file *output_file = NULL;
4546 struct perf_event *old_output;
4547 int fput_needed = 0;
4548 int ret = -EINVAL;
4549
4550 if (!output_fd)
4551 goto set;
4552
4553 output_file = fget_light(output_fd, &fput_needed);
4554 if (!output_file)
4555 return -EBADF;
4556
4557 if (output_file->f_op != &perf_fops)
4558 goto out;
4559
4560 output_event = output_file->private_data;
4561
4562 /* Don't chain output fds */
4563 if (output_event->output)
4564 goto out;
4565
4566 /* Don't set an output fd when we already have an output channel */
4567 if (event->data)
4568 goto out;
4569
4570 atomic_long_inc(&output_file->f_count);
4571
4572set:
4573 mutex_lock(&event->mmap_mutex);
4574 old_output = event->output;
4575 rcu_assign_pointer(event->output, output_event);
4576 mutex_unlock(&event->mmap_mutex);
4577
4578 if (old_output) {
4579 /*
4580 * we need to make sure no existing perf_output_*()
4581 * is still referencing this event.
4582 */
4583 synchronize_rcu();
4584 fput(old_output->filp);
4585 }
4586
4587 ret = 0;
4588out:
4589 fput_light(output_file, fput_needed);
4590 return ret;
4591}
4592
4593/**
4594 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4595 *
4596 * @attr_uptr: event_id type attributes for monitoring/sampling
4597 * @pid: target pid
4598 * @cpu: target cpu
4599 * @group_fd: group leader event fd
4600 */
4601SYSCALL_DEFINE5(perf_event_open,
4602 struct perf_event_attr __user *, attr_uptr,
4603 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4604{
4605 struct perf_event *event, *group_leader;
4606 struct perf_event_attr attr;
4607 struct perf_event_context *ctx;
4608 struct file *event_file = NULL;
4609 struct file *group_file = NULL;
4610 int fput_needed = 0;
4611 int fput_needed2 = 0;
4612 int err;
4613
4614 /* for future expandability... */
4615 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4616 return -EINVAL;
4617
4618 err = perf_copy_attr(attr_uptr, &attr);
4619 if (err)
4620 return err;
4621
4622 if (!attr.exclude_kernel) {
4623 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4624 return -EACCES;
4625 }
4626
4627 if (attr.freq) {
4628 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4629 return -EINVAL;
4630 }
4631
4632 /*
4633 * Get the target context (task or percpu):
4634 */
4635 ctx = find_get_context(pid, cpu);
4636 if (IS_ERR(ctx))
4637 return PTR_ERR(ctx);
4638
4639 /*
4640 * Look up the group leader (we will attach this event to it):
4641 */
4642 group_leader = NULL;
4643 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4644 err = -EINVAL;
4645 group_file = fget_light(group_fd, &fput_needed);
4646 if (!group_file)
4647 goto err_put_context;
4648 if (group_file->f_op != &perf_fops)
4649 goto err_put_context;
4650
4651 group_leader = group_file->private_data;
4652 /*
4653 * Do not allow a recursive hierarchy (this new sibling
4654 * becoming part of another group-sibling):
4655 */
4656 if (group_leader->group_leader != group_leader)
4657 goto err_put_context;
4658 /*
4659 * Do not allow to attach to a group in a different
4660 * task or CPU context:
4661 */
4662 if (group_leader->ctx != ctx)
4663 goto err_put_context;
4664 /*
4665 * Only a group leader can be exclusive or pinned
4666 */
4667 if (attr.exclusive || attr.pinned)
4668 goto err_put_context;
4669 }
4670
4671 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004672 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004673 err = PTR_ERR(event);
4674 if (IS_ERR(event))
4675 goto err_put_context;
4676
4677 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4678 if (err < 0)
4679 goto err_free_put_context;
4680
4681 event_file = fget_light(err, &fput_needed2);
4682 if (!event_file)
4683 goto err_free_put_context;
4684
4685 if (flags & PERF_FLAG_FD_OUTPUT) {
4686 err = perf_event_set_output(event, group_fd);
4687 if (err)
4688 goto err_fput_free_put_context;
4689 }
4690
4691 event->filp = event_file;
4692 WARN_ON_ONCE(ctx->parent_ctx);
4693 mutex_lock(&ctx->mutex);
4694 perf_install_in_context(ctx, event, cpu);
4695 ++ctx->generation;
4696 mutex_unlock(&ctx->mutex);
4697
4698 event->owner = current;
4699 get_task_struct(current);
4700 mutex_lock(&current->perf_event_mutex);
4701 list_add_tail(&event->owner_entry, &current->perf_event_list);
4702 mutex_unlock(&current->perf_event_mutex);
4703
4704err_fput_free_put_context:
4705 fput_light(event_file, fput_needed2);
4706
4707err_free_put_context:
4708 if (err < 0)
4709 kfree(event);
4710
4711err_put_context:
4712 if (err < 0)
4713 put_ctx(ctx);
4714
4715 fput_light(group_file, fput_needed);
4716
4717 return err;
4718}
4719
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004720/**
4721 * perf_event_create_kernel_counter
4722 *
4723 * @attr: attributes of the counter to create
4724 * @cpu: cpu in which the counter is bound
4725 * @pid: task to profile
4726 */
4727struct perf_event *
4728perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004729 pid_t pid, perf_callback_t callback)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004730{
4731 struct perf_event *event;
4732 struct perf_event_context *ctx;
4733 int err;
4734
4735 /*
4736 * Get the target context (task or percpu):
4737 */
4738
4739 ctx = find_get_context(pid, cpu);
4740 if (IS_ERR(ctx))
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004741 return NULL;
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004742
4743 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004744 NULL, callback, GFP_KERNEL);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004745 err = PTR_ERR(event);
4746 if (IS_ERR(event))
4747 goto err_put_context;
4748
4749 event->filp = NULL;
4750 WARN_ON_ONCE(ctx->parent_ctx);
4751 mutex_lock(&ctx->mutex);
4752 perf_install_in_context(ctx, event, cpu);
4753 ++ctx->generation;
4754 mutex_unlock(&ctx->mutex);
4755
4756 event->owner = current;
4757 get_task_struct(current);
4758 mutex_lock(&current->perf_event_mutex);
4759 list_add_tail(&event->owner_entry, &current->perf_event_list);
4760 mutex_unlock(&current->perf_event_mutex);
4761
4762 return event;
4763
4764err_put_context:
4765 if (err < 0)
4766 put_ctx(ctx);
4767
4768 return NULL;
4769}
4770EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4771
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004772/*
4773 * inherit a event from parent task to child task:
4774 */
4775static struct perf_event *
4776inherit_event(struct perf_event *parent_event,
4777 struct task_struct *parent,
4778 struct perf_event_context *parent_ctx,
4779 struct task_struct *child,
4780 struct perf_event *group_leader,
4781 struct perf_event_context *child_ctx)
4782{
4783 struct perf_event *child_event;
4784
4785 /*
4786 * Instead of creating recursive hierarchies of events,
4787 * we link inherited events back to the original parent,
4788 * which has a filp for sure, which we use as the reference
4789 * count:
4790 */
4791 if (parent_event->parent)
4792 parent_event = parent_event->parent;
4793
4794 child_event = perf_event_alloc(&parent_event->attr,
4795 parent_event->cpu, child_ctx,
4796 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004797 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004798 if (IS_ERR(child_event))
4799 return child_event;
4800 get_ctx(child_ctx);
4801
4802 /*
4803 * Make the child state follow the state of the parent event,
4804 * not its attr.disabled bit. We hold the parent's mutex,
4805 * so we won't race with perf_event_{en, dis}able_family.
4806 */
4807 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4808 child_event->state = PERF_EVENT_STATE_INACTIVE;
4809 else
4810 child_event->state = PERF_EVENT_STATE_OFF;
4811
4812 if (parent_event->attr.freq)
4813 child_event->hw.sample_period = parent_event->hw.sample_period;
4814
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004815 child_event->overflow_handler = parent_event->overflow_handler;
4816
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004817 /*
4818 * Link it up in the child's context:
4819 */
4820 add_event_to_ctx(child_event, child_ctx);
4821
4822 /*
4823 * Get a reference to the parent filp - we will fput it
4824 * when the child event exits. This is safe to do because
4825 * we are in the parent and we know that the filp still
4826 * exists and has a nonzero count:
4827 */
4828 atomic_long_inc(&parent_event->filp->f_count);
4829
4830 /*
4831 * Link this into the parent event's child list
4832 */
4833 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4834 mutex_lock(&parent_event->child_mutex);
4835 list_add_tail(&child_event->child_list, &parent_event->child_list);
4836 mutex_unlock(&parent_event->child_mutex);
4837
4838 return child_event;
4839}
4840
4841static int inherit_group(struct perf_event *parent_event,
4842 struct task_struct *parent,
4843 struct perf_event_context *parent_ctx,
4844 struct task_struct *child,
4845 struct perf_event_context *child_ctx)
4846{
4847 struct perf_event *leader;
4848 struct perf_event *sub;
4849 struct perf_event *child_ctr;
4850
4851 leader = inherit_event(parent_event, parent, parent_ctx,
4852 child, NULL, child_ctx);
4853 if (IS_ERR(leader))
4854 return PTR_ERR(leader);
4855 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4856 child_ctr = inherit_event(sub, parent, parent_ctx,
4857 child, leader, child_ctx);
4858 if (IS_ERR(child_ctr))
4859 return PTR_ERR(child_ctr);
4860 }
4861 return 0;
4862}
4863
4864static void sync_child_event(struct perf_event *child_event,
4865 struct task_struct *child)
4866{
4867 struct perf_event *parent_event = child_event->parent;
4868 u64 child_val;
4869
4870 if (child_event->attr.inherit_stat)
4871 perf_event_read_event(child_event, child);
4872
4873 child_val = atomic64_read(&child_event->count);
4874
4875 /*
4876 * Add back the child's count to the parent's count:
4877 */
4878 atomic64_add(child_val, &parent_event->count);
4879 atomic64_add(child_event->total_time_enabled,
4880 &parent_event->child_total_time_enabled);
4881 atomic64_add(child_event->total_time_running,
4882 &parent_event->child_total_time_running);
4883
4884 /*
4885 * Remove this event from the parent's list
4886 */
4887 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4888 mutex_lock(&parent_event->child_mutex);
4889 list_del_init(&child_event->child_list);
4890 mutex_unlock(&parent_event->child_mutex);
4891
4892 /*
4893 * Release the parent event, if this was the last
4894 * reference to it.
4895 */
4896 fput(parent_event->filp);
4897}
4898
4899static void
4900__perf_event_exit_task(struct perf_event *child_event,
4901 struct perf_event_context *child_ctx,
4902 struct task_struct *child)
4903{
4904 struct perf_event *parent_event;
4905
4906 update_event_times(child_event);
4907 perf_event_remove_from_context(child_event);
4908
4909 parent_event = child_event->parent;
4910 /*
4911 * It can happen that parent exits first, and has events
4912 * that are still around due to the child reference. These
4913 * events need to be zapped - but otherwise linger.
4914 */
4915 if (parent_event) {
4916 sync_child_event(child_event, child);
4917 free_event(child_event);
4918 }
4919}
4920
4921/*
4922 * When a child task exits, feed back event values to parent events.
4923 */
4924void perf_event_exit_task(struct task_struct *child)
4925{
4926 struct perf_event *child_event, *tmp;
4927 struct perf_event_context *child_ctx;
4928 unsigned long flags;
4929
4930 if (likely(!child->perf_event_ctxp)) {
4931 perf_event_task(child, NULL, 0);
4932 return;
4933 }
4934
4935 local_irq_save(flags);
4936 /*
4937 * We can't reschedule here because interrupts are disabled,
4938 * and either child is current or it is a task that can't be
4939 * scheduled, so we are now safe from rescheduling changing
4940 * our context.
4941 */
4942 child_ctx = child->perf_event_ctxp;
4943 __perf_event_task_sched_out(child_ctx);
4944
4945 /*
4946 * Take the context lock here so that if find_get_context is
4947 * reading child->perf_event_ctxp, we wait until it has
4948 * incremented the context's refcount before we do put_ctx below.
4949 */
4950 spin_lock(&child_ctx->lock);
4951 child->perf_event_ctxp = NULL;
4952 /*
4953 * If this context is a clone; unclone it so it can't get
4954 * swapped to another process while we're removing all
4955 * the events from it.
4956 */
4957 unclone_ctx(child_ctx);
4958 spin_unlock_irqrestore(&child_ctx->lock, flags);
4959
4960 /*
4961 * Report the task dead after unscheduling the events so that we
4962 * won't get any samples after PERF_RECORD_EXIT. We can however still
4963 * get a few PERF_RECORD_READ events.
4964 */
4965 perf_event_task(child, child_ctx, 0);
4966
4967 /*
4968 * We can recurse on the same lock type through:
4969 *
4970 * __perf_event_exit_task()
4971 * sync_child_event()
4972 * fput(parent_event->filp)
4973 * perf_release()
4974 * mutex_lock(&ctx->mutex)
4975 *
4976 * But since its the parent context it won't be the same instance.
4977 */
4978 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4979
4980again:
4981 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4982 group_entry)
4983 __perf_event_exit_task(child_event, child_ctx, child);
4984
4985 /*
4986 * If the last event was a group event, it will have appended all
4987 * its siblings to the list, but we obtained 'tmp' before that which
4988 * will still point to the list head terminating the iteration.
4989 */
4990 if (!list_empty(&child_ctx->group_list))
4991 goto again;
4992
4993 mutex_unlock(&child_ctx->mutex);
4994
4995 put_ctx(child_ctx);
4996}
4997
4998/*
4999 * free an unexposed, unused context as created by inheritance by
5000 * init_task below, used by fork() in case of fail.
5001 */
5002void perf_event_free_task(struct task_struct *task)
5003{
5004 struct perf_event_context *ctx = task->perf_event_ctxp;
5005 struct perf_event *event, *tmp;
5006
5007 if (!ctx)
5008 return;
5009
5010 mutex_lock(&ctx->mutex);
5011again:
5012 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5013 struct perf_event *parent = event->parent;
5014
5015 if (WARN_ON_ONCE(!parent))
5016 continue;
5017
5018 mutex_lock(&parent->child_mutex);
5019 list_del_init(&event->child_list);
5020 mutex_unlock(&parent->child_mutex);
5021
5022 fput(parent->filp);
5023
5024 list_del_event(event, ctx);
5025 free_event(event);
5026 }
5027
5028 if (!list_empty(&ctx->group_list))
5029 goto again;
5030
5031 mutex_unlock(&ctx->mutex);
5032
5033 put_ctx(ctx);
5034}
5035
5036/*
5037 * Initialize the perf_event context in task_struct
5038 */
5039int perf_event_init_task(struct task_struct *child)
5040{
5041 struct perf_event_context *child_ctx, *parent_ctx;
5042 struct perf_event_context *cloned_ctx;
5043 struct perf_event *event;
5044 struct task_struct *parent = current;
5045 int inherited_all = 1;
5046 int ret = 0;
5047
5048 child->perf_event_ctxp = NULL;
5049
5050 mutex_init(&child->perf_event_mutex);
5051 INIT_LIST_HEAD(&child->perf_event_list);
5052
5053 if (likely(!parent->perf_event_ctxp))
5054 return 0;
5055
5056 /*
5057 * This is executed from the parent task context, so inherit
5058 * events that have been marked for cloning.
5059 * First allocate and initialize a context for the child.
5060 */
5061
5062 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5063 if (!child_ctx)
5064 return -ENOMEM;
5065
5066 __perf_event_init_context(child_ctx, child);
5067 child->perf_event_ctxp = child_ctx;
5068 get_task_struct(child);
5069
5070 /*
5071 * If the parent's context is a clone, pin it so it won't get
5072 * swapped under us.
5073 */
5074 parent_ctx = perf_pin_task_context(parent);
5075
5076 /*
5077 * No need to check if parent_ctx != NULL here; since we saw
5078 * it non-NULL earlier, the only reason for it to become NULL
5079 * is if we exit, and since we're currently in the middle of
5080 * a fork we can't be exiting at the same time.
5081 */
5082
5083 /*
5084 * Lock the parent list. No need to lock the child - not PID
5085 * hashed yet and not running, so nobody can access it.
5086 */
5087 mutex_lock(&parent_ctx->mutex);
5088
5089 /*
5090 * We dont have to disable NMIs - we are only looking at
5091 * the list, not manipulating it:
5092 */
Xiao Guangrong27f99942009-09-25 13:54:01 +08005093 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005094
5095 if (!event->attr.inherit) {
5096 inherited_all = 0;
5097 continue;
5098 }
5099
5100 ret = inherit_group(event, parent, parent_ctx,
5101 child, child_ctx);
5102 if (ret) {
5103 inherited_all = 0;
5104 break;
5105 }
5106 }
5107
5108 if (inherited_all) {
5109 /*
5110 * Mark the child context as a clone of the parent
5111 * context, or of whatever the parent is a clone of.
5112 * Note that if the parent is a clone, it could get
5113 * uncloned at any point, but that doesn't matter
5114 * because the list of events and the generation
5115 * count can't have changed since we took the mutex.
5116 */
5117 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5118 if (cloned_ctx) {
5119 child_ctx->parent_ctx = cloned_ctx;
5120 child_ctx->parent_gen = parent_ctx->parent_gen;
5121 } else {
5122 child_ctx->parent_ctx = parent_ctx;
5123 child_ctx->parent_gen = parent_ctx->generation;
5124 }
5125 get_ctx(child_ctx->parent_ctx);
5126 }
5127
5128 mutex_unlock(&parent_ctx->mutex);
5129
5130 perf_unpin_context(parent_ctx);
5131
5132 return ret;
5133}
5134
5135static void __cpuinit perf_event_init_cpu(int cpu)
5136{
5137 struct perf_cpu_context *cpuctx;
5138
5139 cpuctx = &per_cpu(perf_cpu_context, cpu);
5140 __perf_event_init_context(&cpuctx->ctx, NULL);
5141
5142 spin_lock(&perf_resource_lock);
5143 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5144 spin_unlock(&perf_resource_lock);
5145
5146 hw_perf_event_setup(cpu);
5147}
5148
5149#ifdef CONFIG_HOTPLUG_CPU
5150static void __perf_event_exit_cpu(void *info)
5151{
5152 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5153 struct perf_event_context *ctx = &cpuctx->ctx;
5154 struct perf_event *event, *tmp;
5155
5156 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5157 __perf_event_remove_from_context(event);
5158}
5159static void perf_event_exit_cpu(int cpu)
5160{
5161 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5162 struct perf_event_context *ctx = &cpuctx->ctx;
5163
5164 mutex_lock(&ctx->mutex);
5165 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5166 mutex_unlock(&ctx->mutex);
5167}
5168#else
5169static inline void perf_event_exit_cpu(int cpu) { }
5170#endif
5171
5172static int __cpuinit
5173perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5174{
5175 unsigned int cpu = (long)hcpu;
5176
5177 switch (action) {
5178
5179 case CPU_UP_PREPARE:
5180 case CPU_UP_PREPARE_FROZEN:
5181 perf_event_init_cpu(cpu);
5182 break;
5183
5184 case CPU_ONLINE:
5185 case CPU_ONLINE_FROZEN:
5186 hw_perf_event_setup_online(cpu);
5187 break;
5188
5189 case CPU_DOWN_PREPARE:
5190 case CPU_DOWN_PREPARE_FROZEN:
5191 perf_event_exit_cpu(cpu);
5192 break;
5193
5194 default:
5195 break;
5196 }
5197
5198 return NOTIFY_OK;
5199}
5200
5201/*
5202 * This has to have a higher priority than migration_notifier in sched.c.
5203 */
5204static struct notifier_block __cpuinitdata perf_cpu_nb = {
5205 .notifier_call = perf_cpu_notify,
5206 .priority = 20,
5207};
5208
5209void __init perf_event_init(void)
5210{
5211 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5212 (void *)(long)smp_processor_id());
5213 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5214 (void *)(long)smp_processor_id());
5215 register_cpu_notifier(&perf_cpu_nb);
5216}
5217
5218static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5219{
5220 return sprintf(buf, "%d\n", perf_reserved_percpu);
5221}
5222
5223static ssize_t
5224perf_set_reserve_percpu(struct sysdev_class *class,
5225 const char *buf,
5226 size_t count)
5227{
5228 struct perf_cpu_context *cpuctx;
5229 unsigned long val;
5230 int err, cpu, mpt;
5231
5232 err = strict_strtoul(buf, 10, &val);
5233 if (err)
5234 return err;
5235 if (val > perf_max_events)
5236 return -EINVAL;
5237
5238 spin_lock(&perf_resource_lock);
5239 perf_reserved_percpu = val;
5240 for_each_online_cpu(cpu) {
5241 cpuctx = &per_cpu(perf_cpu_context, cpu);
5242 spin_lock_irq(&cpuctx->ctx.lock);
5243 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5244 perf_max_events - perf_reserved_percpu);
5245 cpuctx->max_pertask = mpt;
5246 spin_unlock_irq(&cpuctx->ctx.lock);
5247 }
5248 spin_unlock(&perf_resource_lock);
5249
5250 return count;
5251}
5252
5253static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5254{
5255 return sprintf(buf, "%d\n", perf_overcommit);
5256}
5257
5258static ssize_t
5259perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5260{
5261 unsigned long val;
5262 int err;
5263
5264 err = strict_strtoul(buf, 10, &val);
5265 if (err)
5266 return err;
5267 if (val > 1)
5268 return -EINVAL;
5269
5270 spin_lock(&perf_resource_lock);
5271 perf_overcommit = val;
5272 spin_unlock(&perf_resource_lock);
5273
5274 return count;
5275}
5276
5277static SYSDEV_CLASS_ATTR(
5278 reserve_percpu,
5279 0644,
5280 perf_show_reserve_percpu,
5281 perf_set_reserve_percpu
5282 );
5283
5284static SYSDEV_CLASS_ATTR(
5285 overcommit,
5286 0644,
5287 perf_show_overcommit,
5288 perf_set_overcommit
5289 );
5290
5291static struct attribute *perfclass_attrs[] = {
5292 &attr_reserve_percpu.attr,
5293 &attr_overcommit.attr,
5294 NULL
5295};
5296
5297static struct attribute_group perfclass_attr_group = {
5298 .attrs = perfclass_attrs,
5299 .name = "perf_events",
5300};
5301
5302static int __init perf_event_sysfs_init(void)
5303{
5304 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5305 &perfclass_attr_group);
5306}
5307device_initcall(perf_event_sysfs_init);