blob: e7042bc5c7d2ca4d46f9e3d44d260055a6a2421e [file] [log] [blame]
Jamie Iles06c3df42011-06-06 12:43:07 +01001/*
2 * (C) Copyright 2009 Intel Corporation
3 * Author: Jacob Pan (jacob.jun.pan@intel.com)
4 *
5 * Shared with ARM platforms, Jamie Iles, Picochip 2011
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Support for the Synopsys DesignWare APB Timers.
12 */
13#include <linux/dw_apb_timer.h>
14#include <linux/delay.h>
15#include <linux/kernel.h>
16#include <linux/interrupt.h>
17#include <linux/irq.h>
18#include <linux/io.h>
19#include <linux/slab.h>
20
21#define APBT_MIN_PERIOD 4
22#define APBT_MIN_DELTA_USEC 200
23
Jamie Iles06c3df42011-06-06 12:43:07 +010024#define APBTMRS_INT_STATUS 0xa0
25#define APBTMRS_EOI 0xa4
26#define APBTMRS_RAW_INT_STATUS 0xa8
27#define APBTMRS_COMP_VERSION 0xac
28
29#define APBTMR_CONTROL_ENABLE (1 << 0)
30/* 1: periodic, 0:free running. */
31#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1)
32#define APBTMR_CONTROL_INT (1 << 2)
33
34static inline struct dw_apb_clock_event_device *
35ced_to_dw_apb_ced(struct clock_event_device *evt)
36{
37 return container_of(evt, struct dw_apb_clock_event_device, ced);
38}
39
40static inline struct dw_apb_clocksource *
41clocksource_to_dw_apb_clocksource(struct clocksource *cs)
42{
43 return container_of(cs, struct dw_apb_clocksource, cs);
44}
45
46static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs)
47{
48 return readl(timer->base + offs);
49}
50
51static void apbt_writel(struct dw_apb_timer *timer, unsigned long val,
52 unsigned long offs)
53{
54 writel(val, timer->base + offs);
55}
56
57static void apbt_disable_int(struct dw_apb_timer *timer)
58{
59 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
60
61 ctrl |= APBTMR_CONTROL_INT;
62 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
63}
64
65/**
66 * dw_apb_clockevent_pause() - stop the clock_event_device from running
67 *
68 * @dw_ced: The APB clock to stop generating events.
69 */
70void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced)
71{
72 disable_irq(dw_ced->timer.irq);
73 apbt_disable_int(&dw_ced->timer);
74}
75
76static void apbt_eoi(struct dw_apb_timer *timer)
77{
78 apbt_readl(timer, APBTMR_N_EOI);
79}
80
81static irqreturn_t dw_apb_clockevent_irq(int irq, void *data)
82{
83 struct clock_event_device *evt = data;
84 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
85
86 if (!evt->event_handler) {
87 pr_info("Spurious APBT timer interrupt %d", irq);
88 return IRQ_NONE;
89 }
90
91 if (dw_ced->eoi)
92 dw_ced->eoi(&dw_ced->timer);
93
94 evt->event_handler(evt);
95 return IRQ_HANDLED;
96}
97
98static void apbt_enable_int(struct dw_apb_timer *timer)
99{
100 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL);
101 /* clear pending intr */
102 apbt_readl(timer, APBTMR_N_EOI);
103 ctrl &= ~APBTMR_CONTROL_INT;
104 apbt_writel(timer, ctrl, APBTMR_N_CONTROL);
105}
106
107static void apbt_set_mode(enum clock_event_mode mode,
108 struct clock_event_device *evt)
109{
110 unsigned long ctrl;
111 unsigned long period;
112 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
113
114 pr_debug("%s CPU %d mode=%d\n", __func__, first_cpu(*evt->cpumask),
115 mode);
116
117 switch (mode) {
118 case CLOCK_EVT_MODE_PERIODIC:
119 period = DIV_ROUND_UP(dw_ced->timer.freq, HZ);
120 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
121 ctrl |= APBTMR_CONTROL_MODE_PERIODIC;
122 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
123 /*
124 * DW APB p. 46, have to disable timer before load counter,
125 * may cause sync problem.
126 */
127 ctrl &= ~APBTMR_CONTROL_ENABLE;
128 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
129 udelay(1);
130 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ);
131 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT);
132 ctrl |= APBTMR_CONTROL_ENABLE;
133 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
134 break;
135
136 case CLOCK_EVT_MODE_ONESHOT:
137 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
138 /*
139 * set free running mode, this mode will let timer reload max
140 * timeout which will give time (3min on 25MHz clock) to rearm
141 * the next event, therefore emulate the one-shot mode.
142 */
143 ctrl &= ~APBTMR_CONTROL_ENABLE;
144 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
145
146 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
147 /* write again to set free running mode */
148 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
149
150 /*
151 * DW APB p. 46, load counter with all 1s before starting free
152 * running mode.
153 */
154 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT);
155 ctrl &= ~APBTMR_CONTROL_INT;
156 ctrl |= APBTMR_CONTROL_ENABLE;
157 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
158 break;
159
160 case CLOCK_EVT_MODE_UNUSED:
161 case CLOCK_EVT_MODE_SHUTDOWN:
162 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
163 ctrl &= ~APBTMR_CONTROL_ENABLE;
164 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
165 break;
166
167 case CLOCK_EVT_MODE_RESUME:
168 apbt_enable_int(&dw_ced->timer);
169 break;
170 }
171}
172
173static int apbt_next_event(unsigned long delta,
174 struct clock_event_device *evt)
175{
176 unsigned long ctrl;
177 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt);
178
179 /* Disable timer */
180 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL);
181 ctrl &= ~APBTMR_CONTROL_ENABLE;
182 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
183 /* write new count */
184 apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT);
185 ctrl |= APBTMR_CONTROL_ENABLE;
186 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL);
187
188 return 0;
189}
190
191/**
192 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device
193 *
194 * @cpu: The CPU the events will be targeted at.
195 * @name: The name used for the timer and the IRQ for it.
196 * @rating: The rating to give the timer.
197 * @base: I/O base for the timer registers.
198 * @irq: The interrupt number to use for the timer.
199 * @freq: The frequency that the timer counts at.
200 *
201 * This creates a clock_event_device for using with the generic clock layer
202 * but does not start and register it. This should be done with
203 * dw_apb_clockevent_register() as the next step. If this is the first time
204 * it has been called for a timer then the IRQ will be requested, if not it
205 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and
206 * releasing the IRQ.
207 */
208struct dw_apb_clock_event_device *
209dw_apb_clockevent_init(int cpu, const char *name, unsigned rating,
210 void __iomem *base, int irq, unsigned long freq)
211{
212 struct dw_apb_clock_event_device *dw_ced =
213 kzalloc(sizeof(*dw_ced), GFP_KERNEL);
214 int err;
215
216 if (!dw_ced)
217 return NULL;
218
219 dw_ced->timer.base = base;
220 dw_ced->timer.irq = irq;
221 dw_ced->timer.freq = freq;
222
223 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD);
224 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff,
225 &dw_ced->ced);
226 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced);
227 dw_ced->ced.cpumask = cpumask_of(cpu);
228 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
229 dw_ced->ced.set_mode = apbt_set_mode;
230 dw_ced->ced.set_next_event = apbt_next_event;
231 dw_ced->ced.irq = dw_ced->timer.irq;
232 dw_ced->ced.rating = rating;
233 dw_ced->ced.name = name;
234
235 dw_ced->irqaction.name = dw_ced->ced.name;
236 dw_ced->irqaction.handler = dw_apb_clockevent_irq;
237 dw_ced->irqaction.dev_id = &dw_ced->ced;
238 dw_ced->irqaction.irq = irq;
239 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL |
240 IRQF_NOBALANCING |
241 IRQF_DISABLED;
242
243 dw_ced->eoi = apbt_eoi;
244 err = setup_irq(irq, &dw_ced->irqaction);
245 if (err) {
246 pr_err("failed to request timer irq\n");
247 kfree(dw_ced);
248 dw_ced = NULL;
249 }
250
251 return dw_ced;
252}
253
254/**
255 * dw_apb_clockevent_resume() - resume a clock that has been paused.
256 *
257 * @dw_ced: The APB clock to resume.
258 */
259void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced)
260{
261 enable_irq(dw_ced->timer.irq);
262}
263
264/**
265 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ.
266 *
267 * @dw_ced: The APB clock to stop generating the events.
268 */
269void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced)
270{
271 free_irq(dw_ced->timer.irq, &dw_ced->ced);
272}
273
274/**
275 * dw_apb_clockevent_register() - register the clock with the generic layer
276 *
277 * @dw_ced: The APB clock to register as a clock_event_device.
278 */
279void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced)
280{
281 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL);
282 clockevents_register_device(&dw_ced->ced);
283 apbt_enable_int(&dw_ced->timer);
284}
285
286/**
287 * dw_apb_clocksource_start() - start the clocksource counting.
288 *
289 * @dw_cs: The clocksource to start.
290 *
291 * This is used to start the clocksource before registration and can be used
292 * to enable calibration of timers.
293 */
294void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs)
295{
296 /*
297 * start count down from 0xffff_ffff. this is done by toggling the
298 * enable bit then load initial load count to ~0.
299 */
300 unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL);
301
302 ctrl &= ~APBTMR_CONTROL_ENABLE;
303 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
304 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT);
305 /* enable, mask interrupt */
306 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC;
307 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT);
308 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL);
309 /* read it once to get cached counter value initialized */
310 dw_apb_clocksource_read(dw_cs);
311}
312
313static cycle_t __apbt_read_clocksource(struct clocksource *cs)
314{
315 unsigned long current_count;
316 struct dw_apb_clocksource *dw_cs =
317 clocksource_to_dw_apb_clocksource(cs);
318
319 current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
320
321 return (cycle_t)~current_count;
322}
323
324static void apbt_restart_clocksource(struct clocksource *cs)
325{
326 struct dw_apb_clocksource *dw_cs =
327 clocksource_to_dw_apb_clocksource(cs);
328
329 dw_apb_clocksource_start(dw_cs);
330}
331
332/**
333 * dw_apb_clocksource_init() - use an APB timer as a clocksource.
334 *
335 * @rating: The rating to give the clocksource.
336 * @name: The name for the clocksource.
337 * @base: The I/O base for the timer registers.
338 * @freq: The frequency that the timer counts at.
339 *
340 * This creates a clocksource using an APB timer but does not yet register it
341 * with the clocksource system. This should be done with
342 * dw_apb_clocksource_register() as the next step.
343 */
344struct dw_apb_clocksource *
Jamie Ilesa1330222011-07-25 16:34:37 +0100345dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base,
Jamie Iles06c3df42011-06-06 12:43:07 +0100346 unsigned long freq)
347{
348 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL);
349
350 if (!dw_cs)
351 return NULL;
352
353 dw_cs->timer.base = base;
354 dw_cs->timer.freq = freq;
355 dw_cs->cs.name = name;
356 dw_cs->cs.rating = rating;
357 dw_cs->cs.read = __apbt_read_clocksource;
358 dw_cs->cs.mask = CLOCKSOURCE_MASK(32);
359 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
360 dw_cs->cs.resume = apbt_restart_clocksource;
361
362 return dw_cs;
363}
364
365/**
366 * dw_apb_clocksource_register() - register the APB clocksource.
367 *
368 * @dw_cs: The clocksource to register.
369 */
370void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs)
371{
372 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq);
373}
374
375/**
376 * dw_apb_clocksource_read() - read the current value of a clocksource.
377 *
378 * @dw_cs: The clocksource to read.
379 */
380cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs)
381{
382 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE);
383}