blob: 2d5b6a682138d12af18eb2b93caeca9c4443c56f [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/module.h>
31#include <linux/timex.h>
Randy.Dunlapc59ede72006-01-11 12:17:46 -080032#include <linux/capability.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070033#include <linux/errno.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include <linux/syscalls.h>
35#include <linux/security.h>
36#include <linux/fs.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070037
38#include <asm/uaccess.h>
39#include <asm/unistd.h>
40
41/*
42 * The timezone where the local system is located. Used as a default by some
43 * programs who obtain this value by using gettimeofday.
44 */
45struct timezone sys_tz;
46
47EXPORT_SYMBOL(sys_tz);
48
49#ifdef __ARCH_WANT_SYS_TIME
50
51/*
52 * sys_time() can be implemented in user-level using
53 * sys_gettimeofday(). Is this for backwards compatibility? If so,
54 * why not move it into the appropriate arch directory (for those
55 * architectures that need it).
56 */
57asmlinkage long sys_time(time_t __user * tloc)
58{
Ingo Molnarf20bf612007-10-16 16:09:20 +020059 time_t i = get_seconds();
Linus Torvalds1da177e2005-04-16 15:20:36 -070060
61 if (tloc) {
Linus Torvalds20082202007-07-20 13:28:54 -070062 if (put_user(i,tloc))
Linus Torvalds1da177e2005-04-16 15:20:36 -070063 i = -EFAULT;
64 }
65 return i;
66}
67
68/*
69 * sys_stime() can be implemented in user-level using
70 * sys_settimeofday(). Is this for backwards compatibility? If so,
71 * why not move it into the appropriate arch directory (for those
72 * architectures that need it).
73 */
74
75asmlinkage long sys_stime(time_t __user *tptr)
76{
77 struct timespec tv;
78 int err;
79
80 if (get_user(tv.tv_sec, tptr))
81 return -EFAULT;
82
83 tv.tv_nsec = 0;
84
85 err = security_settime(&tv, NULL);
86 if (err)
87 return err;
88
89 do_settimeofday(&tv);
90 return 0;
91}
92
93#endif /* __ARCH_WANT_SYS_TIME */
94
95asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
96{
97 if (likely(tv != NULL)) {
98 struct timeval ktv;
99 do_gettimeofday(&ktv);
100 if (copy_to_user(tv, &ktv, sizeof(ktv)))
101 return -EFAULT;
102 }
103 if (unlikely(tz != NULL)) {
104 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
105 return -EFAULT;
106 }
107 return 0;
108}
109
110/*
111 * Adjust the time obtained from the CMOS to be UTC time instead of
112 * local time.
113 *
114 * This is ugly, but preferable to the alternatives. Otherwise we
115 * would either need to write a program to do it in /etc/rc (and risk
116 * confusion if the program gets run more than once; it would also be
117 * hard to make the program warp the clock precisely n hours) or
118 * compile in the timezone information into the kernel. Bad, bad....
119 *
120 * - TYT, 1992-01-01
121 *
122 * The best thing to do is to keep the CMOS clock in universal time (UTC)
123 * as real UNIX machines always do it. This avoids all headaches about
124 * daylight saving times and warping kernel clocks.
125 */
Jesper Juhl77933d72005-07-27 11:46:09 -0700126static inline void warp_clock(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700127{
128 write_seqlock_irq(&xtime_lock);
129 wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
130 xtime.tv_sec += sys_tz.tz_minuteswest * 60;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700131 write_sequnlock_irq(&xtime_lock);
132 clock_was_set();
133}
134
135/*
136 * In case for some reason the CMOS clock has not already been running
137 * in UTC, but in some local time: The first time we set the timezone,
138 * we will warp the clock so that it is ticking UTC time instead of
139 * local time. Presumably, if someone is setting the timezone then we
140 * are running in an environment where the programs understand about
141 * timezones. This should be done at boot time in the /etc/rc script,
142 * as soon as possible, so that the clock can be set right. Otherwise,
143 * various programs will get confused when the clock gets warped.
144 */
145
146int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
147{
148 static int firsttime = 1;
149 int error = 0;
150
Linus Torvalds951069e2006-01-31 10:16:55 -0800151 if (tv && !timespec_valid(tv))
Thomas Gleixner718bcce2006-01-09 20:52:29 -0800152 return -EINVAL;
153
Linus Torvalds1da177e2005-04-16 15:20:36 -0700154 error = security_settime(tv, tz);
155 if (error)
156 return error;
157
158 if (tz) {
159 /* SMP safe, global irq locking makes it work. */
160 sys_tz = *tz;
161 if (firsttime) {
162 firsttime = 0;
163 if (!tv)
164 warp_clock();
165 }
166 }
167 if (tv)
168 {
169 /* SMP safe, again the code in arch/foo/time.c should
170 * globally block out interrupts when it runs.
171 */
172 return do_settimeofday(tv);
173 }
174 return 0;
175}
176
177asmlinkage long sys_settimeofday(struct timeval __user *tv,
178 struct timezone __user *tz)
179{
180 struct timeval user_tv;
181 struct timespec new_ts;
182 struct timezone new_tz;
183
184 if (tv) {
185 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
186 return -EFAULT;
187 new_ts.tv_sec = user_tv.tv_sec;
188 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
189 }
190 if (tz) {
191 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
192 return -EFAULT;
193 }
194
195 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
196}
197
Linus Torvalds1da177e2005-04-16 15:20:36 -0700198asmlinkage long sys_adjtimex(struct timex __user *txc_p)
199{
200 struct timex txc; /* Local copy of parameter */
201 int ret;
202
203 /* Copy the user data space into the kernel copy
204 * structure. But bear in mind that the structures
205 * may change
206 */
207 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
208 return -EFAULT;
209 ret = do_adjtimex(&txc);
210 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
211}
212
Linus Torvalds1da177e2005-04-16 15:20:36 -0700213/**
214 * current_fs_time - Return FS time
215 * @sb: Superblock.
216 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200217 * Return the current time truncated to the time granularity supported by
Linus Torvalds1da177e2005-04-16 15:20:36 -0700218 * the fs.
219 */
220struct timespec current_fs_time(struct super_block *sb)
221{
222 struct timespec now = current_kernel_time();
223 return timespec_trunc(now, sb->s_time_gran);
224}
225EXPORT_SYMBOL(current_fs_time);
226
Eric Dumazet753e9c52007-05-08 00:25:32 -0700227/*
228 * Convert jiffies to milliseconds and back.
229 *
230 * Avoid unnecessary multiplications/divisions in the
231 * two most common HZ cases:
232 */
233unsigned int inline jiffies_to_msecs(const unsigned long j)
234{
235#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
236 return (MSEC_PER_SEC / HZ) * j;
237#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
238 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
239#else
240 return (j * MSEC_PER_SEC) / HZ;
241#endif
242}
243EXPORT_SYMBOL(jiffies_to_msecs);
244
245unsigned int inline jiffies_to_usecs(const unsigned long j)
246{
247#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
248 return (USEC_PER_SEC / HZ) * j;
249#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
250 return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
251#else
252 return (j * USEC_PER_SEC) / HZ;
253#endif
254}
255EXPORT_SYMBOL(jiffies_to_usecs);
256
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257/**
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200258 * timespec_trunc - Truncate timespec to a granularity
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 * @t: Timespec
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200260 * @gran: Granularity in ns.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700261 *
Kalin KOZHUHAROV8ba8e952006-04-01 01:41:22 +0200262 * Truncate a timespec to a granularity. gran must be smaller than a second.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263 * Always rounds down.
264 *
265 * This function should be only used for timestamps returned by
266 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
267 * it doesn't handle the better resolution of the later.
268 */
269struct timespec timespec_trunc(struct timespec t, unsigned gran)
270{
271 /*
272 * Division is pretty slow so avoid it for common cases.
273 * Currently current_kernel_time() never returns better than
274 * jiffies resolution. Exploit that.
275 */
276 if (gran <= jiffies_to_usecs(1) * 1000) {
277 /* nothing */
278 } else if (gran == 1000000000) {
279 t.tv_nsec = 0;
280 } else {
281 t.tv_nsec -= t.tv_nsec % gran;
282 }
283 return t;
284}
285EXPORT_SYMBOL(timespec_trunc);
286
john stultzcf3c7692006-06-26 00:25:08 -0700287#ifndef CONFIG_GENERIC_TIME
Linus Torvalds1da177e2005-04-16 15:20:36 -0700288/*
289 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
290 * and therefore only yields usec accuracy
291 */
292void getnstimeofday(struct timespec *tv)
293{
294 struct timeval x;
295
296 do_gettimeofday(&x);
297 tv->tv_sec = x.tv_sec;
298 tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
299}
Takashi Iwaic6ecf7e2005-10-14 15:59:03 -0700300EXPORT_SYMBOL_GPL(getnstimeofday);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700301#endif
302
Thomas Gleixner753be622006-01-09 20:52:22 -0800303/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
304 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
305 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
306 *
307 * [For the Julian calendar (which was used in Russia before 1917,
308 * Britain & colonies before 1752, anywhere else before 1582,
309 * and is still in use by some communities) leave out the
310 * -year/100+year/400 terms, and add 10.]
311 *
312 * This algorithm was first published by Gauss (I think).
313 *
314 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
315 * machines were long is 32-bit! (However, as time_t is signed, we
316 * will already get problems at other places on 2038-01-19 03:14:08)
317 */
318unsigned long
Ingo Molnarf4818902006-01-09 20:52:23 -0800319mktime(const unsigned int year0, const unsigned int mon0,
320 const unsigned int day, const unsigned int hour,
321 const unsigned int min, const unsigned int sec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800322{
Ingo Molnarf4818902006-01-09 20:52:23 -0800323 unsigned int mon = mon0, year = year0;
324
325 /* 1..12 -> 11,12,1..10 */
326 if (0 >= (int) (mon -= 2)) {
327 mon += 12; /* Puts Feb last since it has leap day */
Thomas Gleixner753be622006-01-09 20:52:22 -0800328 year -= 1;
329 }
330
331 return ((((unsigned long)
332 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
333 year*365 - 719499
334 )*24 + hour /* now have hours */
335 )*60 + min /* now have minutes */
336 )*60 + sec; /* finally seconds */
337}
338
Andrew Morton199e7052006-01-09 20:52:24 -0800339EXPORT_SYMBOL(mktime);
340
Thomas Gleixner753be622006-01-09 20:52:22 -0800341/**
342 * set_normalized_timespec - set timespec sec and nsec parts and normalize
343 *
344 * @ts: pointer to timespec variable to be set
345 * @sec: seconds to set
346 * @nsec: nanoseconds to set
347 *
348 * Set seconds and nanoseconds field of a timespec variable and
349 * normalize to the timespec storage format
350 *
351 * Note: The tv_nsec part is always in the range of
352 * 0 <= tv_nsec < NSEC_PER_SEC
353 * For negative values only the tv_sec field is negative !
354 */
Ingo Molnarf4818902006-01-09 20:52:23 -0800355void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
Thomas Gleixner753be622006-01-09 20:52:22 -0800356{
357 while (nsec >= NSEC_PER_SEC) {
358 nsec -= NSEC_PER_SEC;
359 ++sec;
360 }
361 while (nsec < 0) {
362 nsec += NSEC_PER_SEC;
363 --sec;
364 }
365 ts->tv_sec = sec;
366 ts->tv_nsec = nsec;
367}
368
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800369/**
370 * ns_to_timespec - Convert nanoseconds to timespec
371 * @nsec: the nanoseconds value to be converted
372 *
373 * Returns the timespec representation of the nsec parameter.
374 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800375struct timespec ns_to_timespec(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800376{
377 struct timespec ts;
378
George Anzinger88fc3892006-02-03 03:04:20 -0800379 if (!nsec)
380 return (struct timespec) {0, 0};
381
382 ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
383 if (unlikely(nsec < 0))
384 set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800385
386 return ts;
387}
Stephen Hemminger85795d62007-03-24 21:35:33 -0700388EXPORT_SYMBOL(ns_to_timespec);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800389
390/**
391 * ns_to_timeval - Convert nanoseconds to timeval
392 * @nsec: the nanoseconds value to be converted
393 *
394 * Returns the timeval representation of the nsec parameter.
395 */
Roman Zippeldf869b62006-03-26 01:38:11 -0800396struct timeval ns_to_timeval(const s64 nsec)
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800397{
398 struct timespec ts = ns_to_timespec(nsec);
399 struct timeval tv;
400
401 tv.tv_sec = ts.tv_sec;
402 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
403
404 return tv;
405}
Eric Dumazetb7aa0bf2007-04-19 16:16:32 -0700406EXPORT_SYMBOL(ns_to_timeval);
Thomas Gleixnerf8f46da2006-01-09 20:52:30 -0800407
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800408/*
Ingo Molnar41cf5442007-02-16 01:27:28 -0800409 * When we convert to jiffies then we interpret incoming values
410 * the following way:
411 *
412 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
413 *
414 * - 'too large' values [that would result in larger than
415 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
416 *
417 * - all other values are converted to jiffies by either multiplying
418 * the input value by a factor or dividing it with a factor
419 *
420 * We must also be careful about 32-bit overflows.
421 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800422unsigned long msecs_to_jiffies(const unsigned int m)
423{
Ingo Molnar41cf5442007-02-16 01:27:28 -0800424 /*
425 * Negative value, means infinite timeout:
426 */
427 if ((int)m < 0)
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800428 return MAX_JIFFY_OFFSET;
Ingo Molnar41cf5442007-02-16 01:27:28 -0800429
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800430#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800431 /*
432 * HZ is equal to or smaller than 1000, and 1000 is a nice
433 * round multiple of HZ, divide with the factor between them,
434 * but round upwards:
435 */
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800436 return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
437#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
Ingo Molnar41cf5442007-02-16 01:27:28 -0800438 /*
439 * HZ is larger than 1000, and HZ is a nice round multiple of
440 * 1000 - simply multiply with the factor between them.
441 *
442 * But first make sure the multiplication result cannot
443 * overflow:
444 */
445 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
446 return MAX_JIFFY_OFFSET;
447
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800448 return m * (HZ / MSEC_PER_SEC);
449#else
Ingo Molnar41cf5442007-02-16 01:27:28 -0800450 /*
451 * Generic case - multiply, round and divide. But first
452 * check that if we are doing a net multiplication, that
453 * we wouldnt overflow:
454 */
455 if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
456 return MAX_JIFFY_OFFSET;
457
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800458 return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
459#endif
460}
461EXPORT_SYMBOL(msecs_to_jiffies);
462
463unsigned long usecs_to_jiffies(const unsigned int u)
464{
465 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
466 return MAX_JIFFY_OFFSET;
467#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
468 return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
469#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
470 return u * (HZ / USEC_PER_SEC);
471#else
472 return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
473#endif
474}
475EXPORT_SYMBOL(usecs_to_jiffies);
476
477/*
478 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
479 * that a remainder subtract here would not do the right thing as the
480 * resolution values don't fall on second boundries. I.e. the line:
481 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
482 *
483 * Rather, we just shift the bits off the right.
484 *
485 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
486 * value to a scaled second value.
487 */
488unsigned long
489timespec_to_jiffies(const struct timespec *value)
490{
491 unsigned long sec = value->tv_sec;
492 long nsec = value->tv_nsec + TICK_NSEC - 1;
493
494 if (sec >= MAX_SEC_IN_JIFFIES){
495 sec = MAX_SEC_IN_JIFFIES;
496 nsec = 0;
497 }
498 return (((u64)sec * SEC_CONVERSION) +
499 (((u64)nsec * NSEC_CONVERSION) >>
500 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
501
502}
503EXPORT_SYMBOL(timespec_to_jiffies);
504
505void
506jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
507{
508 /*
509 * Convert jiffies to nanoseconds and separate with
510 * one divide.
511 */
512 u64 nsec = (u64)jiffies * TICK_NSEC;
513 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
514}
515EXPORT_SYMBOL(jiffies_to_timespec);
516
517/* Same for "timeval"
518 *
519 * Well, almost. The problem here is that the real system resolution is
520 * in nanoseconds and the value being converted is in micro seconds.
521 * Also for some machines (those that use HZ = 1024, in-particular),
522 * there is a LARGE error in the tick size in microseconds.
523
524 * The solution we use is to do the rounding AFTER we convert the
525 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
526 * Instruction wise, this should cost only an additional add with carry
527 * instruction above the way it was done above.
528 */
529unsigned long
530timeval_to_jiffies(const struct timeval *value)
531{
532 unsigned long sec = value->tv_sec;
533 long usec = value->tv_usec;
534
535 if (sec >= MAX_SEC_IN_JIFFIES){
536 sec = MAX_SEC_IN_JIFFIES;
537 usec = 0;
538 }
539 return (((u64)sec * SEC_CONVERSION) +
540 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
541 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
542}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200543EXPORT_SYMBOL(timeval_to_jiffies);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800544
545void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
546{
547 /*
548 * Convert jiffies to nanoseconds and separate with
549 * one divide.
550 */
551 u64 nsec = (u64)jiffies * TICK_NSEC;
552 long tv_usec;
553
554 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
555 tv_usec /= NSEC_PER_USEC;
556 value->tv_usec = tv_usec;
557}
Thomas Bittermann456a09d2007-04-04 22:20:54 +0200558EXPORT_SYMBOL(jiffies_to_timeval);
Ingo Molnar8b9365d2007-02-16 01:27:27 -0800559
560/*
561 * Convert jiffies/jiffies_64 to clock_t and back.
562 */
563clock_t jiffies_to_clock_t(long x)
564{
565#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
566 return x / (HZ / USER_HZ);
567#else
568 u64 tmp = (u64)x * TICK_NSEC;
569 do_div(tmp, (NSEC_PER_SEC / USER_HZ));
570 return (long)tmp;
571#endif
572}
573EXPORT_SYMBOL(jiffies_to_clock_t);
574
575unsigned long clock_t_to_jiffies(unsigned long x)
576{
577#if (HZ % USER_HZ)==0
578 if (x >= ~0UL / (HZ / USER_HZ))
579 return ~0UL;
580 return x * (HZ / USER_HZ);
581#else
582 u64 jif;
583
584 /* Don't worry about loss of precision here .. */
585 if (x >= ~0UL / HZ * USER_HZ)
586 return ~0UL;
587
588 /* .. but do try to contain it here */
589 jif = x * (u64) HZ;
590 do_div(jif, USER_HZ);
591 return jif;
592#endif
593}
594EXPORT_SYMBOL(clock_t_to_jiffies);
595
596u64 jiffies_64_to_clock_t(u64 x)
597{
598#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
599 do_div(x, HZ / USER_HZ);
600#else
601 /*
602 * There are better ways that don't overflow early,
603 * but even this doesn't overflow in hundreds of years
604 * in 64 bits, so..
605 */
606 x *= TICK_NSEC;
607 do_div(x, (NSEC_PER_SEC / USER_HZ));
608#endif
609 return x;
610}
611
612EXPORT_SYMBOL(jiffies_64_to_clock_t);
613
614u64 nsec_to_clock_t(u64 x)
615{
616#if (NSEC_PER_SEC % USER_HZ) == 0
617 do_div(x, (NSEC_PER_SEC / USER_HZ));
618#elif (USER_HZ % 512) == 0
619 x *= USER_HZ/512;
620 do_div(x, (NSEC_PER_SEC / 512));
621#else
622 /*
623 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
624 * overflow after 64.99 years.
625 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
626 */
627 x *= 9;
628 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
629 USER_HZ));
630#endif
631 return x;
632}
633
Linus Torvalds1da177e2005-04-16 15:20:36 -0700634#if (BITS_PER_LONG < 64)
635u64 get_jiffies_64(void)
636{
637 unsigned long seq;
638 u64 ret;
639
640 do {
641 seq = read_seqbegin(&xtime_lock);
642 ret = jiffies_64;
643 } while (read_seqretry(&xtime_lock, seq));
644 return ret;
645}
646
647EXPORT_SYMBOL(get_jiffies_64);
648#endif
649
650EXPORT_SYMBOL(jiffies);