blob: cb92ceeae18eb896fef23fd8ca5b7b9eb3bdfe64 [file] [log] [blame]
Benoit Jacob76152e92010-06-29 10:02:33 -04001namespace Eigen {
2
Gael Guennebaud93ee82b2013-01-05 16:37:11 +01003/** \eigenManualPage TutorialLinearAlgebra Linear algebra and decompositions
Benoit Jacob76152e92010-06-29 10:02:33 -04004
Gael Guennebaud091a49c2013-01-06 23:48:59 +01005This page explains how to solve linear systems, compute various decompositions such as LU,
6QR, %SVD, eigendecompositions... After reading this page, don't miss our
7\link TopicLinearAlgebraDecompositions catalogue \endlink of dense matrix decompositions.
Benoit Jacob76152e92010-06-29 10:02:33 -04008
Gael Guennebaud93ee82b2013-01-05 16:37:11 +01009\eigenAutoToc
Jitse Niesend0f6b1c2010-07-22 21:52:04 +010010
Benoit Jacob4d4a23c2010-06-30 10:11:55 -040011\section TutorialLinAlgBasicSolve Basic linear solving
Benoit Jacob76152e92010-06-29 10:02:33 -040012
13\b The \b problem: You have a system of equations, that you have written as a single matrix equation
14 \f[ Ax \: = \: b \f]
15Where \a A and \a b are matrices (\a b could be a vector, as a special case). You want to find a solution \a x.
16
17\b The \b solution: You can choose between various decompositions, depending on what your matrix \a A looks like,
18and depending on whether you favor speed or accuracy. However, let's start with an example that works in all cases,
19and is a good compromise:
Gael Guennebaudf66fe262010-10-19 11:40:49 +020020<table class="example">
21<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040022<tr>
23 <td>\include TutorialLinAlgExSolveColPivHouseholderQR.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020024 <td>\verbinclude TutorialLinAlgExSolveColPivHouseholderQR.out </td>
Benoit Jacob76152e92010-06-29 10:02:33 -040025</tr>
26</table>
27
Benoit Jacob4d4a23c2010-06-30 10:11:55 -040028In this example, the colPivHouseholderQr() method returns an object of class ColPivHouseholderQR. Since here the
29matrix is of type Matrix3f, this line could have been replaced by:
Benoit Jacob76152e92010-06-29 10:02:33 -040030\code
Benoit Jacob4d4a23c2010-06-30 10:11:55 -040031ColPivHouseholderQR<Matrix3f> dec(A);
Benoit Jacob76152e92010-06-29 10:02:33 -040032Vector3f x = dec.solve(b);
33\endcode
34
35Here, ColPivHouseholderQR is a QR decomposition with column pivoting. It's a good compromise for this tutorial, as it
36works for all matrices while being quite fast. Here is a table of some other decompositions that you can choose from,
37depending on your matrix and the trade-off you want to make:
38
Gael Guennebaudf66fe262010-10-19 11:40:49 +020039<table class="manual">
Benoit Jacob76152e92010-06-29 10:02:33 -040040 <tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020041 <th>Decomposition</th>
42 <th>Method</th>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020043 <th>Requirements<br/>on the matrix</th>
44 <th>Speed<br/> (small-to-medium)</th>
45 <th>Speed<br/> (large)</th>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020046 <th>Accuracy</th>
Benoit Jacob76152e92010-06-29 10:02:33 -040047 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040048 <tr>
49 <td>PartialPivLU</td>
50 <td>partialPivLu()</td>
51 <td>Invertible</td>
52 <td>++</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020053 <td>++</td>
Benoit Jacob76152e92010-06-29 10:02:33 -040054 <td>+</td>
55 </tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020056 <tr class="alt">
Benoit Jacob76152e92010-06-29 10:02:33 -040057 <td>FullPivLU</td>
58 <td>fullPivLu()</td>
59 <td>None</td>
60 <td>-</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020061 <td>- -</td>
Benoit Jacob76152e92010-06-29 10:02:33 -040062 <td>+++</td>
63 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040064 <tr>
65 <td>HouseholderQR</td>
66 <td>householderQr()</td>
67 <td>None</td>
68 <td>++</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020069 <td>++</td>
Benoit Jacob76152e92010-06-29 10:02:33 -040070 <td>+</td>
71 </tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020072 <tr class="alt">
Benoit Jacob76152e92010-06-29 10:02:33 -040073 <td>ColPivHouseholderQR</td>
74 <td>colPivHouseholderQr()</td>
75 <td>None</td>
Benoit Jacob76152e92010-06-29 10:02:33 -040076 <td>++</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020077 <td>-</td>
78 <td>+++</td>
Benoit Jacob76152e92010-06-29 10:02:33 -040079 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040080 <tr>
81 <td>FullPivHouseholderQR</td>
82 <td>fullPivHouseholderQr()</td>
83 <td>None</td>
84 <td>-</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020085 <td>- -</td>
Benoit Jacob76152e92010-06-29 10:02:33 -040086 <td>+++</td>
87 </tr>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020088 <tr class="alt">
Benoit Jacob76152e92010-06-29 10:02:33 -040089 <td>LLT</td>
90 <td>llt()</td>
91 <td>Positive definite</td>
92 <td>+++</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020093 <td>+++</td>
Benoit Jacob76152e92010-06-29 10:02:33 -040094 <td>+</td>
95 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -040096 <tr>
97 <td>LDLT</td>
98 <td>ldlt()</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +020099 <td>Positive or negative<br/> semidefinite</td>
Benoit Jacob76152e92010-06-29 10:02:33 -0400100 <td>+++</td>
Gael Guennebaud95ecd582014-06-17 09:37:07 +0200101 <td>+</td>
Benoit Jacob76152e92010-06-29 10:02:33 -0400102 <td>++</td>
103 </tr>
Gael Guennebaud95ecd582014-06-17 09:37:07 +0200104 <tr class="alt">
105 <td>JacobiSVD</td>
106 <td>jacobiSvd()</td>
107 <td>None</td>
108 <td>- -</td>
109 <td>- - -</td>
110 <td>+++</td>
111 </tr>
Benoit Jacob76152e92010-06-29 10:02:33 -0400112</table>
113
114All of these decompositions offer a solve() method that works as in the above example.
115
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400116For example, if your matrix is positive definite, the above table says that a very good
Gael Guennebaud95ecd582014-06-17 09:37:07 +0200117choice is then the LLT or LDLT decomposition. Here's an example, also demonstrating that using a general
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400118matrix (not a vector) as right hand side is possible.
119
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200120<table class="example">
121<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400122<tr>
123 <td>\include TutorialLinAlgExSolveLDLT.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200124 <td>\verbinclude TutorialLinAlgExSolveLDLT.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400125</tr>
126</table>
127
128For a \ref TopicLinearAlgebraDecompositions "much more complete table" comparing all decompositions supported by Eigen (notice that Eigen
Benoit Jacob76152e92010-06-29 10:02:33 -0400129supports many other decompositions), see our special page on
130\ref TopicLinearAlgebraDecompositions "this topic".
131
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400132\section TutorialLinAlgSolutionExists Checking if a solution really exists
Benoit Jacob76152e92010-06-29 10:02:33 -0400133
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400134Only you know what error margin you want to allow for a solution to be considered valid.
135So Eigen lets you do this computation for yourself, if you want to, as in this example:
136
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200137<table class="example">
138<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400139<tr>
140 <td>\include TutorialLinAlgExComputeSolveError.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200141 <td>\verbinclude TutorialLinAlgExComputeSolveError.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400142</tr>
143</table>
144
145\section TutorialLinAlgEigensolving Computing eigenvalues and eigenvectors
146
147You need an eigendecomposition here, see available such decompositions on \ref TopicLinearAlgebraDecompositions "this page".
148Make sure to check if your matrix is self-adjoint, as is often the case in these problems. Here's an example using
149SelfAdjointEigenSolver, it could easily be adapted to general matrices using EigenSolver or ComplexEigenSolver.
150
Jitse Niesen45a6bb32011-11-07 17:14:06 +0000151The computation of eigenvalues and eigenvectors does not necessarily converge, but such failure to converge is
152very rare. The call to info() is to check for this possibility.
153
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200154<table class="example">
155<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400156<tr>
157 <td>\include TutorialLinAlgSelfAdjointEigenSolver.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200158 <td>\verbinclude TutorialLinAlgSelfAdjointEigenSolver.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400159</tr>
160</table>
161
Jitse Niesend0f6b1c2010-07-22 21:52:04 +0100162\section TutorialLinAlgInverse Computing inverse and determinant
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400163
164First of all, make sure that you really want this. While inverse and determinant are fundamental mathematical concepts,
165in \em numerical linear algebra they are not as popular as in pure mathematics. Inverse computations are often
166advantageously replaced by solve() operations, and the determinant is often \em not a good way of checking if a matrix
167is invertible.
168
169However, for \em very \em small matrices, the above is not true, and inverse and determinant can be very useful.
170
171While certain decompositions, such as PartialPivLU and FullPivLU, offer inverse() and determinant() methods, you can also
172call inverse() and determinant() directly on a matrix. If your matrix is of a very small fixed size (at most 4x4) this
173allows Eigen to avoid performing a LU decomposition, and instead use formulas that are more efficient on such small matrices.
174
175Here is an example:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200176<table class="example">
177<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400178<tr>
179 <td>\include TutorialLinAlgInverseDeterminant.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200180 <td>\verbinclude TutorialLinAlgInverseDeterminant.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400181</tr>
182</table>
183
184\section TutorialLinAlgLeastsquares Least squares solving
185
Jitse Niesenaa0db352014-01-18 01:16:17 +0000186The most accurate method to do least squares solving is with a SVD decomposition. Eigen provides one
187as the JacobiSVD class, and its solve() is doing least-squares solving.
Benoit Jacob26129222010-10-15 09:44:43 -0400188
189Here is an example:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200190<table class="example">
191<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob26129222010-10-15 09:44:43 -0400192<tr>
193 <td>\include TutorialLinAlgSVDSolve.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200194 <td>\verbinclude TutorialLinAlgSVDSolve.out </td>
Benoit Jacob26129222010-10-15 09:44:43 -0400195</tr>
196</table>
197
Jitse Niesenaa0db352014-01-18 01:16:17 +0000198Another methods, potentially faster but less reliable, are to use a Cholesky decomposition of the
199normal matrix or a QR decomposition. Our page on \link LeastSquares least squares solving \endlink
200has more details.
201
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400202
203\section TutorialLinAlgSeparateComputation Separating the computation from the construction
204
205In the above examples, the decomposition was computed at the same time that the decomposition object was constructed.
206There are however situations where you might want to separate these two things, for example if you don't know,
207at the time of the construction, the matrix that you will want to decompose; or if you want to reuse an existing
208decomposition object.
209
210What makes this possible is that:
211\li all decompositions have a default constructor,
212\li all decompositions have a compute(matrix) method that does the computation, and that may be called again
213 on an already-computed decomposition, reinitializing it.
214
215For example:
216
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200217<table class="example">
218<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400219<tr>
220 <td>\include TutorialLinAlgComputeTwice.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200221 <td>\verbinclude TutorialLinAlgComputeTwice.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400222</tr>
223</table>
224
225Finally, you can tell the decomposition constructor to preallocate storage for decomposing matrices of a given size,
226so that when you subsequently decompose such matrices, no dynamic memory allocation is performed (of course, if you
227are using fixed-size matrices, no dynamic memory allocation happens at all). This is done by just
228passing the size to the decomposition constructor, as in this example:
229\code
230HouseholderQR<MatrixXf> qr(50,50);
231MatrixXf A = MatrixXf::Random(50,50);
232qr.compute(A); // no dynamic memory allocation
233\endcode
234
235\section TutorialLinAlgRankRevealing Rank-revealing decompositions
236
237Certain decompositions are rank-revealing, i.e. are able to compute the rank of a matrix. These are typically
238also the decompositions that behave best in the face of a non-full-rank matrix (which in the square case means a
239singular matrix). On \ref TopicLinearAlgebraDecompositions "this table" you can see for all our decompositions
240whether they are rank-revealing or not.
241
242Rank-revealing decompositions offer at least a rank() method. They can also offer convenience methods such as isInvertible(),
243and some are also providing methods to compute the kernel (null-space) and image (column-space) of the matrix, as is the
244case with FullPivLU:
245
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200246<table class="example">
247<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400248<tr>
249 <td>\include TutorialLinAlgRankRevealing.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200250 <td>\verbinclude TutorialLinAlgRankRevealing.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400251</tr>
252</table>
253
254Of course, any rank computation depends on the choice of an arbitrary threshold, since practically no
255floating-point matrix is \em exactly rank-deficient. Eigen picks a sensible default threshold, which depends
256on the decomposition but is typically the diagonal size times machine epsilon. While this is the best default we
257could pick, only you know what is the right threshold for your application. You can set this by calling setThreshold()
Benoit Jacob962b30d2010-06-30 19:27:30 -0400258on your decomposition object before calling rank() or any other method that needs to use such a threshold.
259The decomposition itself, i.e. the compute() method, is independent of the threshold. You don't need to recompute the
260decomposition after you've changed the threshold.
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400261
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200262<table class="example">
263<tr><th>Example:</th><th>Output:</th></tr>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400264<tr>
265 <td>\include TutorialLinAlgSetThreshold.cpp </td>
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200266 <td>\verbinclude TutorialLinAlgSetThreshold.out </td>
Benoit Jacob4d4a23c2010-06-30 10:11:55 -0400267</tr>
268</table>
269
Benoit Jacob76152e92010-06-29 10:02:33 -0400270*/
271
272}