blob: 046bbbc5b21448b8afa5b5a250739bb8452a9090 [file] [log] [blame]
Benoit Jacob2fdd0672007-11-28 15:34:40 +00001// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2006-2007 Benoit Jacob <jacob@math.jussieu.fr>
5//
6// Eigen is free software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the Free Software
8// Foundation; either version 2 or (at your option) any later version.
9//
10// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
11// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
12// FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
13// details.
14//
15// You should have received a copy of the GNU General Public License along
16// with Eigen; if not, write to the Free Software Foundation, Inc., 51
17// Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18//
19// As a special exception, if other files instantiate templates or use macros
20// or functions from this file, or you compile this file and link it
21// with other works to produce a work based on this file, this file does not
22// by itself cause the resulting work to be covered by the GNU General Public
23// License. This exception does not invalidate any other reasons why a work
24// based on this file might be covered by the GNU General Public License.
25
26#include "main.h"
27
28template<typename MatrixType> void adjoint(const MatrixType& m)
29{
30 /* this test covers the following files:
31 Transpose.h Conjugate.h Dot.h
32 */
33
34 typedef typename MatrixType::Scalar Scalar;
35 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
36 int rows = m.rows();
37 int cols = m.cols();
38
39 MatrixType m1 = MatrixType::random(rows, cols),
40 m2 = MatrixType::random(rows, cols),
41 m3(rows, cols),
42 mzero = MatrixType::zero(rows, cols),
43 identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
44 ::identity(rows),
45 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
46 ::random(rows, rows);
47 VectorType v1 = VectorType::random(rows),
48 v2 = VectorType::random(rows),
49 v3 = VectorType::random(rows),
50 vzero = VectorType::zero(rows);
51
52 Scalar s1 = NumTraits<Scalar>::random(),
53 s2 = NumTraits<Scalar>::random();
54
55 // check involutivity of adjoint, transpose, conjugate
56 QVERIFY(m1.transpose().transpose().isApprox(m1));
57 QVERIFY(m1.conjugate().conjugate().isApprox(m1));
58 QVERIFY(m1.adjoint().adjoint().isApprox(m1));
59
60 // check basic compatibility of adjoint, transpose, conjugate
61 QVERIFY(m1.transpose().conjugate().adjoint().isApprox(m1));
62 QVERIFY(m1.adjoint().conjugate().transpose().isApprox(m1));
63 if(!NumTraits<Scalar>::IsComplex) QVERIFY(m1.adjoint().transpose().isApprox(m1));
64
65 // check multiplicative behavior
66 QVERIFY((m1.transpose() * m2).transpose().isApprox(m2.transpose() * m1));
67 QVERIFY((m1.adjoint() * m2).adjoint().isApprox(m2.adjoint() * m1));
68 QVERIFY((m1.transpose() * m2).conjugate().isApprox(m1.adjoint() * m2.conjugate()));
69 QVERIFY((s1 * m1).transpose().isApprox(s1 * m1.transpose()));
70 QVERIFY((s1 * m1).conjugate().isApprox(NumTraits<Scalar>::conj(s1) * m1.conjugate()));
71 QVERIFY((s1 * m1).adjoint().isApprox(NumTraits<Scalar>::conj(s1) * m1.adjoint()));
72
73 // check basic properties of dot, norm, norm2
74 typedef typename NumTraits<Scalar>::Real RealScalar;
75 QVERIFY(NumTraits<Scalar>::isApprox((s1 * v1 + s2 * v2).dot(v3), s1 * v1.dot(v3) + s2 * v2.dot(v3)));
76 QVERIFY(NumTraits<Scalar>::isApprox(v3.dot(s1 * v1 + s2 * v2), NumTraits<Scalar>::conj(s1) * v3.dot(v1) + NumTraits<Scalar>::conj(s2) * v3.dot(v2)));
77 QVERIFY(NumTraits<Scalar>::isApprox(NumTraits<Scalar>::conj(v1.dot(v2)), v2.dot(v1)));
78 QVERIFY(NumTraits<RealScalar>::isApprox(abs(v1.dot(v1)), v1.norm2()));
79 if(NumTraits<Scalar>::HasFloatingPoint) QVERIFY(NumTraits<RealScalar>::isApprox(v1.norm2(), v1.norm() * v1.norm()));
80 QVERIFY(NumTraits<RealScalar>::isMuchSmallerThan(abs(vzero.dot(v1)), 1));
81 QVERIFY(NumTraits<RealScalar>::isMuchSmallerThan(vzero.norm(), 1));
82
83 // check compatibility of dot and adjoint
84 QVERIFY(NumTraits<Scalar>::isApprox(v1.dot(square * v2), (square.adjoint() * v1).dot(v2)));
85}
86
87void EigenTest::testAdjoint()
88{
89 adjoint(Matrix<float, 1, 1>());
90 adjoint(Matrix<complex<double>, 4, 4>());
91 adjoint(MatrixXcf(3, 3));
92 adjoint(MatrixXi(8, 12));
93 adjoint(MatrixXd(20, 20));
94}