blob: a3a6086cf2634d97a830739e6f5e57558561eae6 [file] [log] [blame]
Gael Guennebaud86ccd992008-11-05 13:47:55 +00001// This file is part of Eigen, a lightweight C++ template library
Benoit Jacob6347b1d2009-05-22 20:25:33 +02002// for linear algebra.
Gael Guennebaud86ccd992008-11-05 13:47:55 +00003//
Gael Guennebaud22c76092011-03-22 11:58:22 +01004// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
Gael Guennebaud86ccd992008-11-05 13:47:55 +00005// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
6//
7// Eigen is free software; you can redistribute it and/or
8// modify it under the terms of the GNU Lesser General Public
9// License as published by the Free Software Foundation; either
10// version 3 of the License, or (at your option) any later version.
11//
12// Alternatively, you can redistribute it and/or
13// modify it under the terms of the GNU General Public License as
14// published by the Free Software Foundation; either version 2 of
15// the License, or (at your option) any later version.
16//
17// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
18// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
19// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
20// GNU General Public License for more details.
21//
22// You should have received a copy of the GNU Lesser General Public
23// License and a copy of the GNU General Public License along with
24// Eigen. If not, see <http://www.gnu.org/licenses/>.
25
26#include "sparse.h"
27
Gael Guennebaud178858f2009-01-19 15:20:45 +000028template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
29{
Hauke Heibelf1679c72010-06-20 17:37:56 +020030 typedef typename SparseMatrixType::Index Index;
31
32 const Index rows = ref.rows();
33 const Index cols = ref.cols();
Gael Guennebaud178858f2009-01-19 15:20:45 +000034 typedef typename SparseMatrixType::Scalar Scalar;
35 enum { Flags = SparseMatrixType::Flags };
Gael Guennebaud9f795582009-12-16 19:18:40 +010036
Gael Guennebaud42e25782011-08-19 14:18:05 +020037 double density = (std::max)(8./(rows*cols), 0.01);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000038 typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
39 typedef Matrix<Scalar,Dynamic,1> DenseVector;
40 Scalar eps = 1e-6;
41
Gael Guennebaud178858f2009-01-19 15:20:45 +000042 SparseMatrixType m(rows, cols);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000043 DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
44 DenseVector vec1 = DenseVector::Random(rows);
Benoit Jacob47160402010-10-25 10:15:22 -040045 Scalar s1 = internal::random<Scalar>();
Gael Guennebaud86ccd992008-11-05 13:47:55 +000046
47 std::vector<Vector2i> zeroCoords;
48 std::vector<Vector2i> nonzeroCoords;
49 initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
Gael Guennebaud9f795582009-12-16 19:18:40 +010050
Gael Guennebaud86ccd992008-11-05 13:47:55 +000051 if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
52 return;
53
54 // test coeff and coeffRef
55 for (int i=0; i<(int)zeroCoords.size(); ++i)
56 {
57 VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
Hauke Heibel7bc8e3a2010-10-25 22:13:49 +020058 if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
Gael Guennebaud178858f2009-01-19 15:20:45 +000059 VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
Gael Guennebaud86ccd992008-11-05 13:47:55 +000060 }
61 VERIFY_IS_APPROX(m, refMat);
62
63 m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
64 refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
65
66 VERIFY_IS_APPROX(m, refMat);
Gael Guennebaudc4c70662009-01-14 14:24:10 +000067 /*
Gael Guennebaud86ccd992008-11-05 13:47:55 +000068 // test InnerIterators and Block expressions
69 for (int t=0; t<10; ++t)
70 {
Benoit Jacob47160402010-10-25 10:15:22 -040071 int j = internal::random<int>(0,cols-1);
72 int i = internal::random<int>(0,rows-1);
73 int w = internal::random<int>(1,cols-j-1);
74 int h = internal::random<int>(1,rows-i-1);
Gael Guennebaud86ccd992008-11-05 13:47:55 +000075
Gael Guennebaudc4c70662009-01-14 14:24:10 +000076// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
Gael Guennebaud86ccd992008-11-05 13:47:55 +000077 for(int c=0; c<w; c++)
78 {
79 VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
80 for(int r=0; r<h; r++)
81 {
Gael Guennebaudc4c70662009-01-14 14:24:10 +000082// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
Gael Guennebaud86ccd992008-11-05 13:47:55 +000083 }
84 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +000085// for(int r=0; r<h; r++)
86// {
87// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
88// for(int c=0; c<w; c++)
89// {
90// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
91// }
92// }
Gael Guennebaud86ccd992008-11-05 13:47:55 +000093 }
94
95 for(int c=0; c<cols; c++)
96 {
97 VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
98 VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
99 }
100
101 for(int r=0; r<rows; r++)
102 {
103 VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
104 VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
105 }
106 */
107
Gael Guennebaud28293142009-05-04 14:25:12 +0000108 // test insert (inner random)
Gael Guennebaud5015e482008-12-11 18:26:24 +0000109 {
110 DenseMatrix m1(rows,cols);
111 m1.setZero();
Gael Guennebaud178858f2009-01-19 15:20:45 +0000112 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100113 if(internal::random<int>()%2)
114 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud5015e482008-12-11 18:26:24 +0000115 for (int j=0; j<cols; ++j)
116 {
117 for (int k=0; k<rows/2; ++k)
118 {
Benoit Jacob47160402010-10-25 10:15:22 -0400119 int i = internal::random<int>(0,rows-1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000120 if (m1.coeff(i,j)==Scalar(0))
Benoit Jacob47160402010-10-25 10:15:22 -0400121 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud5015e482008-12-11 18:26:24 +0000122 }
123 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000124 m2.finalize();
125 VERIFY_IS_APPROX(m2,m1);
126 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100127
Gael Guennebaud28293142009-05-04 14:25:12 +0000128 // test insert (fully random)
129 {
130 DenseMatrix m1(rows,cols);
131 m1.setZero();
132 SparseMatrixType m2(rows,cols);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100133 if(internal::random<int>()%2)
134 m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
Gael Guennebaud28293142009-05-04 14:25:12 +0000135 for (int k=0; k<rows*cols; ++k)
136 {
Benoit Jacob47160402010-10-25 10:15:22 -0400137 int i = internal::random<int>(0,rows-1);
138 int j = internal::random<int>(0,cols-1);
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100139 if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
Benoit Jacob47160402010-10-25 10:15:22 -0400140 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100141 else
142 {
143 Scalar v = internal::random<Scalar>();
144 m2.coeffRef(i,j) += v;
145 m1(i,j) += v;
146 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000147 }
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000148 VERIFY_IS_APPROX(m2,m1);
Gael Guennebaud5015e482008-12-11 18:26:24 +0000149 }
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200150
151 // test insert (un-compressed)
152 for(int mode=0;mode<4;++mode)
153 {
154 DenseMatrix m1(rows,cols);
155 m1.setZero();
156 SparseMatrixType m2(rows,cols);
157 VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8)));
158 m2.reserve(r);
159 for (int k=0; k<rows*cols; ++k)
160 {
161 int i = internal::random<int>(0,rows-1);
162 int j = internal::random<int>(0,cols-1);
163 if (m1.coeff(i,j)==Scalar(0))
164 m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
165 if(mode==3)
166 m2.reserve(r);
167 }
Gael Guennebaud4ca89f32011-12-02 19:00:16 +0100168 if(internal::random<int>()%2)
169 m2.makeCompressed();
Gael Guennebaud7706baf2011-09-08 13:42:54 +0200170 VERIFY_IS_APPROX(m2,m1);
171 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100172
Gael Guennebaud2d534662009-01-14 21:27:54 +0000173 // test basic computations
174 {
175 DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
176 DenseMatrix refM2 = DenseMatrix::Zero(rows, rows);
177 DenseMatrix refM3 = DenseMatrix::Zero(rows, rows);
178 DenseMatrix refM4 = DenseMatrix::Zero(rows, rows);
Gael Guennebaud178858f2009-01-19 15:20:45 +0000179 SparseMatrixType m1(rows, rows);
180 SparseMatrixType m2(rows, rows);
181 SparseMatrixType m3(rows, rows);
182 SparseMatrixType m4(rows, rows);
Gael Guennebaud2d534662009-01-14 21:27:54 +0000183 initSparse<Scalar>(density, refM1, m1);
184 initSparse<Scalar>(density, refM2, m2);
185 initSparse<Scalar>(density, refM3, m3);
186 initSparse<Scalar>(density, refM4, m4);
187
188 VERIFY_IS_APPROX(m1+m2, refM1+refM2);
189 VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3);
Gael Guennebaud9f795582009-12-16 19:18:40 +0100190 VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2));
Gael Guennebaud2d534662009-01-14 21:27:54 +0000191 VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2);
192
193 VERIFY_IS_APPROX(m1*=s1, refM1*=s1);
194 VERIFY_IS_APPROX(m1/=s1, refM1/=s1);
Gael Guennebaud9f795582009-12-16 19:18:40 +0100195
Gael Guennebaude7c48fa2009-01-23 13:59:32 +0000196 VERIFY_IS_APPROX(m1+=m2, refM1+=refM2);
197 VERIFY_IS_APPROX(m1-=m2, refM1-=refM2);
Gael Guennebaud9f795582009-12-16 19:18:40 +0100198
Gael Guennebauda9688f02009-02-09 09:59:30 +0000199 VERIFY_IS_APPROX(m1.col(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0)));
Gael Guennebaud9f795582009-12-16 19:18:40 +0100200
Gael Guennebaud91e392a2011-12-03 23:49:37 +0100201 VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate());
202 VERIFY_IS_APPROX(m1.real(), refM1.real());
203
Gael Guennebaud2d534662009-01-14 21:27:54 +0000204 refM4.setRandom();
205 // sparse cwise* dense
Gael Guennebaud9f795582009-12-16 19:18:40 +0100206 VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
Gael Guennebaud2d534662009-01-14 21:27:54 +0000207// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
208 }
209
Gael Guennebaudece48a62010-06-18 11:28:30 +0200210 // test transpose
211 {
212 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
213 SparseMatrixType m2(rows, rows);
214 initSparse<Scalar>(density, refMat2, m2);
215 VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval());
216 VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose());
217
218 VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
219 }
220
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000221 // test innerVector()
222 {
223 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
Gael Guennebaud178858f2009-01-19 15:20:45 +0000224 SparseMatrixType m2(rows, rows);
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000225 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200226 int j0 = internal::random<int>(0,rows-1);
227 int j1 = internal::random<int>(0,rows-1);
Gael Guennebaud2d534662009-01-14 21:27:54 +0000228 VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
229 VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
Gael Guennebaud8ce45032009-01-27 22:48:17 +0000230 //m2.innerVector(j0) = 2*m2.innerVector(j1);
231 //refMat2.col(j0) = 2*refMat2.col(j1);
232 //VERIFY_IS_APPROX(m2, refMat2);
233 }
Gael Guennebaud9f795582009-12-16 19:18:40 +0100234
Gael Guennebaud8ce45032009-01-27 22:48:17 +0000235 // test innerVectors()
236 {
237 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
238 SparseMatrixType m2(rows, rows);
239 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200240 int j0 = internal::random<int>(0,rows-2);
241 int j1 = internal::random<int>(0,rows-2);
Gael Guennebaud42e25782011-08-19 14:18:05 +0200242 int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
Gael Guennebaud8ce45032009-01-27 22:48:17 +0000243 VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
244 VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
245 refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
246 //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
247 //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
Gael Guennebaudc4c70662009-01-14 14:24:10 +0000248 }
249
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000250 // test prune
251 {
252 SparseMatrixType m2(rows, rows);
253 DenseMatrix refM2(rows, rows);
254 refM2.setZero();
255 int countFalseNonZero = 0;
256 int countTrueNonZero = 0;
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000257 for (int j=0; j<m2.outerSize(); ++j)
Gael Guennebaud28293142009-05-04 14:25:12 +0000258 {
259 m2.startVec(j);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000260 for (int i=0; i<m2.innerSize(); ++i)
261 {
Benoit Jacob47160402010-10-25 10:15:22 -0400262 float x = internal::random<float>(0,1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000263 if (x<0.1)
264 {
265 // do nothing
266 }
267 else if (x<0.5)
268 {
269 countFalseNonZero++;
Gael Guennebaud8710bd22010-06-02 13:32:13 +0200270 m2.insertBackByOuterInner(j,i) = Scalar(0);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000271 }
272 else
273 {
274 countTrueNonZero++;
Gael Guennebaud8710bd22010-06-02 13:32:13 +0200275 m2.insertBackByOuterInner(j,i) = refM2(i,j) = Scalar(1);
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000276 }
277 }
Gael Guennebaud28293142009-05-04 14:25:12 +0000278 }
279 m2.finalize();
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000280 VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros());
281 VERIFY_IS_APPROX(m2, refM2);
Hauke Heibeld204ec42010-11-02 14:33:33 +0100282 m2.prune(Scalar(1));
Gael Guennebaud52cf07d2009-01-21 18:46:04 +0000283 VERIFY(countTrueNonZero==m2.nonZeros());
284 VERIFY_IS_APPROX(m2, refM2);
285 }
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200286
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100287 // test selfadjointView
288 {
289 DenseMatrix refMat2(rows, rows), refMat3(rows, rows);
290 SparseMatrixType m2(rows, rows), m3(rows, rows);
291 initSparse<Scalar>(density, refMat2, m2);
292 refMat3 = refMat2.template selfadjointView<Lower>();
293 m3 = m2.template selfadjointView<Lower>();
294 VERIFY_IS_APPROX(m3, refMat3);
295 }
296
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200297 // test sparseView
298 {
299 DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
300 SparseMatrixType m2(rows, rows);
Gael Guennebaud9a3ec632010-11-15 14:14:05 +0100301 initSparse<Scalar>(density, refMat2, m2);
Gael Guennebaudfa6d36e2010-07-22 15:57:01 +0200302 VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval());
303 }
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000304}
305
306void test_sparse_basic()
307{
308 for(int i = 0; i < g_repeat; i++) {
Gael Guennebaud91fe1502011-06-07 11:28:16 +0200309 int s = Eigen::internal::random<int>(1,50);
310 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
311 CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double> >(s, s)) ));
312 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) ));
313 CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
Gael Guennebaud86ccd992008-11-05 13:47:55 +0000314 }
315}