blob: 8b5401dd7f16b6f9b764aa9b60cc8ca11e7a99d4 [file] [log] [blame]
Gael Guennebaud86a19262009-01-16 17:20:12 +00001namespace Eigen {
2
Gael Guennebaud41ea92d2010-07-04 10:14:47 +02003/** \page TutorialSparse Tutorial page 9 - Sparse Matrix
Gael Guennebaud86a19262009-01-16 17:20:12 +00004 \ingroup Tutorial
5
Gael Guennebaud41ea92d2010-07-04 10:14:47 +02006\li \b Previous: \ref TutorialGeometry
7\li \b Next: TODO
Gael Guennebaud86a19262009-01-16 17:20:12 +00008
9\b Table \b of \b contents \n
10 - \ref TutorialSparseIntro
11 - \ref TutorialSparseFilling
12 - \ref TutorialSparseFeatureSet
13 - \ref TutorialSparseDirectSolvers
14<hr>
15
Gael Guennebaud25f16582009-01-21 17:44:58 +000016\section TutorialSparseIntro Sparse matrix representations
Gael Guennebaud86a19262009-01-16 17:20:12 +000017
18In many applications (e.g., finite element methods) it is common to deal with very large matrices where only a few coefficients are different than zero. Both in term of memory consumption and performance, it is fundamental to use an adequate representation storing only nonzero coefficients. Such a matrix is called a sparse matrix.
19
Gael Guennebaud25f16582009-01-21 17:44:58 +000020\b Declaring \b sparse \b matrices \b and \b vectors \n
Zach Ploskeye3491be2011-06-17 15:42:15 -070021The SparseMatrix class is the main sparse matrix representation of the Eigen's sparse module which offers high performance, low memory usage, and compatibility with most of sparse linear algebra packages. Because of its limited flexibility, we also provide a DynamicSparseMatrix variant tailored for low-level sparse matrix assembly. Both of them can be either row major or column major:
Gael Guennebaud25f16582009-01-21 17:44:58 +000022
23\code
24#include <Eigen/Sparse>
Gael Guennebaud41ea92d2010-07-04 10:14:47 +020025SparseMatrix<std::complex<float> > m1(1000,2000); // declare a 1000x2000 col-major compressed sparse matrix of complex<float>
26SparseMatrix<double,RowMajor> m2(1000,2000); // declare a 1000x2000 row-major compressed sparse matrix of double
27DynamicSparseMatrix<std::complex<float> > m1(1000,2000); // declare a 1000x2000 col-major dynamic sparse matrix of complex<float>
28DynamicSparseMatrix<double,RowMajor> m2(1000,2000); // declare a 1000x2000 row-major dynamic sparse matrix of double
Gael Guennebaud25f16582009-01-21 17:44:58 +000029\endcode
30
31Although a sparse matrix could also be used to represent a sparse vector, for that purpose it is better to use the specialized SparseVector class:
32\code
33SparseVector<std::complex<float> > v1(1000); // declare a column sparse vector of complex<float> of size 1000
34SparseVector<double,RowMajor> v2(1000); // declare a row sparse vector of double of size 1000
35\endcode
36Note that here the size of a vector denotes its dimension and not the number of nonzero coefficients which is initially zero (like sparse matrices).
37
38
39\b Overview \b of \b the \b internal \b sparse \b storage \n
40In order to get the best of the Eigen's sparse objects, it is important to have a rough idea of the way they are internally stored. The SparseMatrix class implements the common and generic Compressed Column/Row Storage scheme. It consists of three compact arrays storing the values with their respective inner coordinates, and pointer indices to the begining of each outer vector. For instance, let \c m be a column-major sparse matrix. Then its nonzero coefficients are sequentially stored in memory in a column-major order (\em values). A second array of integer stores the respective row index of each coefficient (\em inner \em indices). Finally, a third array of integer, having the same length than the number of columns, stores the index in the previous arrays of the first element of each column (\em outer \em indices).
Gael Guennebaud86a19262009-01-16 17:20:12 +000041
42Here is an example, with the matrix:
Gael Guennebaudf66fe262010-10-19 11:40:49 +020043<table class="manual">
Gael Guennebaud86a19262009-01-16 17:20:12 +000044<tr><td>0</td><td>3</td><td>0</td><td>0</td><td>0</td></tr>
45<tr><td>22</td><td>0</td><td>0</td><td>0</td><td>17</td></tr>
46<tr><td>7</td><td>5</td><td>0</td><td>1</td><td>0</td></tr>
47<tr><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></tr>
48<tr><td>0</td><td>0</td><td>14</td><td>0</td><td>8</td></tr>
49</table>
50
51and its internal representation using the Compressed Column Storage format:
Gael Guennebaudf66fe262010-10-19 11:40:49 +020052<table class="manual">
Gael Guennebaud86a19262009-01-16 17:20:12 +000053<tr><td>Values:</td> <td>22</td><td>7</td><td>3</td><td>5</td><td>14</td><td>1</td><td>17</td><td>8</td></tr>
54<tr><td>Inner indices:</td> <td> 1</td><td>2</td><td>0</td><td>2</td><td> 4</td><td>2</td><td> 1</td><td>4</td></tr>
55</table>
Gael Guennebaudf66fe262010-10-19 11:40:49 +020056Outer indices:<table class="manual"><tr><td>0</td><td>2</td><td>4</td><td>5</td><td>6</td><td>\em 7 </td></tr></table>
Gael Guennebaud86a19262009-01-16 17:20:12 +000057
Gael Guennebaud25f16582009-01-21 17:44:58 +000058As you can guess, here the storage order is even more important than with dense matrix. We will therefore often make a clear difference between the \em inner and \em outer dimensions. For instance, it is easy to loop over the coefficients of an \em inner \em vector (e.g., a column of a column-major matrix), but completely inefficient to do the same for an \em outer \em vector (e.g., a row of a col-major matrix).
Gael Guennebaud86a19262009-01-16 17:20:12 +000059
Gael Guennebaud25f16582009-01-21 17:44:58 +000060The SparseVector class implements the same compressed storage scheme but, of course, without any outer index buffer.
Gael Guennebaud86a19262009-01-16 17:20:12 +000061
Gael Guennebaud25f16582009-01-21 17:44:58 +000062Since all nonzero coefficients of such a matrix are sequentially stored in memory, random insertion of new nonzeros can be extremely costly. To overcome this limitation, Eigen's sparse module provides a DynamicSparseMatrix class which is basically implemented as an array of SparseVector. In other words, a DynamicSparseMatrix is a SparseMatrix where the values and inner-indices arrays have been splitted into multiple small and resizable arrays. Assuming the number of nonzeros per inner vector is relatively low, this slight modification allow for very fast random insertion at the cost of a slight memory overhead and a lost of compatibility with other sparse libraries used by some of our highlevel solvers. Note that the major memory overhead comes from the extra memory preallocated by each inner vector to avoid an expensive memory reallocation at every insertion.
Gael Guennebaud86a19262009-01-16 17:20:12 +000063
Gael Guennebaud25f16582009-01-21 17:44:58 +000064To summarize, it is recommanded to use a SparseMatrix whenever this is possible, and reserve the use of DynamicSparseMatrix for matrix assembly purpose when a SparseMatrix is not flexible enough. The respective pro/cons of both representations are summarized in the following table:
65
Gael Guennebaudf66fe262010-10-19 11:40:49 +020066<table class="manual">
Gael Guennebaud25f16582009-01-21 17:44:58 +000067<tr><td></td> <td>SparseMatrix</td><td>DynamicSparseMatrix</td></tr>
68<tr><td>memory usage</td><td>***</td><td>**</td></tr>
69<tr><td>sorted insertion</td><td>***</td><td>***</td></tr>
70<tr><td>random insertion \n in sorted inner vector</td><td>**</td><td>**</td></tr>
71<tr><td>sorted insertion \n in random inner vector</td><td>-</td><td>***</td></tr>
72<tr><td>random insertion</td><td>-</td><td>**</td></tr>
73<tr><td>coeff wise unary operators</td><td>***</td><td>***</td></tr>
74<tr><td>coeff wise binary operators</td><td>***</td><td>***</td></tr>
75<tr><td>matrix products</td><td>***</td><td>**(*)</td></tr>
76<tr><td>transpose</td><td>**</td><td>***</td></tr>
77<tr><td>redux</td><td>***</td><td>**</td></tr>
78<tr><td>*= scalar</td><td>***</td><td>**</td></tr>
79<tr><td>Compatibility with highlevel solvers \n (TAUCS, Cholmod, SuperLU, UmfPack)</td><td>***</td><td>-</td></tr>
80</table>
81
Gael Guennebaud86a19262009-01-16 17:20:12 +000082
83\b Matrix \b and \b vector \b properties \n
84
Gael Guennebaud25f16582009-01-21 17:44:58 +000085Here mat and vec represents any sparse-matrix and sparse-vector types respectively.
86
Gael Guennebaudf66fe262010-10-19 11:40:49 +020087<table class="manual">
Gael Guennebaud86a19262009-01-16 17:20:12 +000088<tr><td>Standard \n dimensions</td><td>\code
89mat.rows()
90mat.cols()\endcode</td>
91<td>\code
92vec.size() \endcode</td>
93</tr>
94<tr><td>Sizes along the \n inner/outer dimensions</td><td>\code
95mat.innerSize()
96mat.outerSize()\endcode</td>
97<td></td>
98</tr>
99<tr><td>Number of non \n zero coefficiens</td><td>\code
100mat.nonZeros() \endcode</td>
101<td>\code
102vec.nonZeros() \endcode</td></tr>
103</table>
104
Gael Guennebaud25f16582009-01-21 17:44:58 +0000105
Gael Guennebaud86a19262009-01-16 17:20:12 +0000106\b Iterating \b over \b the \b nonzero \b coefficients \n
107
108Iterating over the coefficients of a sparse matrix can be done only in the same order than the storage order. Here is an example:
Gael Guennebaudf66fe262010-10-19 11:40:49 +0200109<table class="manual">
Gael Guennebaud86a19262009-01-16 17:20:12 +0000110<tr><td>
111\code
Gael Guennebaud25f16582009-01-21 17:44:58 +0000112SparseMatrixType mat(rows,cols);
113for (int k=0; k\<m1.outerSize(); ++k)
114 for (SparseMatrixType::InnerIterator it(mat,k); it; ++it)
Gael Guennebaud86a19262009-01-16 17:20:12 +0000115 {
116 it.value();
117 it.row(); // row index
118 it.col(); // col index (here it is equal to k)
119 it.index(); // inner index, here it is equal to it.row()
120 }
121\endcode
122</td><td>
123\code
Gael Guennebaud25f16582009-01-21 17:44:58 +0000124SparseVector<double> vec(size);
125for (SparseVector<double>::InnerIterator it(vec); it; ++it)
Gael Guennebaud86a19262009-01-16 17:20:12 +0000126{
Gael Guennebaud25f16582009-01-21 17:44:58 +0000127 it.value(); // == vec[ it.index() ]
Gael Guennebaudc532f422009-09-25 16:30:44 +0200128 it.index();
Gael Guennebaud86a19262009-01-16 17:20:12 +0000129}
130\endcode
131</td></tr>
132</table>
133
134
135\section TutorialSparseFilling Filling a sparse matrix
136
Gael Guennebaudc532f422009-09-25 16:30:44 +0200137Owing to the special storage scheme of a SparseMatrix, it is obvious that for performance reasons a sparse matrix cannot be filled as easily as a dense matrix. For instance the cost of a purely random insertion into a SparseMatrix is in O(nnz) where nnz is the current number of non zeros. In order to cover all uses cases with best efficiency, Eigen provides various mechanisms, from the easiest but slowest, to the fastest but restrictive one.
138
139If you don't have any prior knowledge about the order your matrix will be filled, then the best choice is to use a DynamicSparseMatrix. With a DynamicSparseMatrix, you can add or modify any coefficients at any time using the coeffRef(row,col) method. Here is an example:
Gael Guennebaud25f16582009-01-21 17:44:58 +0000140\code
141DynamicSparseMatrix<float> aux(1000,1000);
Gael Guennebaudc532f422009-09-25 16:30:44 +0200142aux.reserve(estimated_number_of_non_zero); // optional
Gael Guennebaud25f16582009-01-21 17:44:58 +0000143for (...)
Gael Guennebaudc532f422009-09-25 16:30:44 +0200144 for each j // the j can be random
145 for each i interacting with j // the i can be random
146 aux.coeffRef(i,j) += foo(i,j);
147\endcode
148Then the DynamicSparseMatrix object can be converted to a compact SparseMatrix to be used, e.g., by one of our supported solver:
149\code
150SparseMatrix<float> mat(aux);
Gael Guennebaud25f16582009-01-21 17:44:58 +0000151\endcode
152
Gael Guennebaudc532f422009-09-25 16:30:44 +0200153In order to optimize this process, instead of the generic coeffRef(i,j) method one can also use:
154 - \code m.insert(i,j) = value; \endcode which assumes the coefficient of coordinate (row,col) does not already exist (otherwise this is a programming error and your program will stop).
155 - \code m.insertBack(i,j) = value; \endcode which, in addition to the requirements of insert(), also assumes that the coefficient of coordinate (row,col) will be inserted at the end of the target inner-vector. More precisely, if the matrix m is column major, then the row index of the last non zero coefficient of the j-th column must be smaller than i.
Gael Guennebaud25f16582009-01-21 17:44:58 +0000156
Gael Guennebaud25f16582009-01-21 17:44:58 +0000157
Gael Guennebaudc532f422009-09-25 16:30:44 +0200158Actually, the SparseMatrix class also supports random insertion via the insert() method. However, its uses should be reserved in cases where the inserted non zero is nearly the last one of the compact storage array. In practice, this means it should be used only to perform random (or sorted) insertion into the current inner-vector while filling the inner-vectors in an increasing order. Moreover, with a SparseMatrix an insertion session must be closed by a call to finalize() before any use of the matrix. Here is an example for a column major matrix:
Gael Guennebaud25f16582009-01-21 17:44:58 +0000159
Gael Guennebaud86a19262009-01-16 17:20:12 +0000160\code
Gael Guennebaudc532f422009-09-25 16:30:44 +0200161SparseMatrix<float> mat(1000,1000);
162mat.reserve(estimated_number_of_non_zero); // optional
163for each j // should be in increasing order for performance reasons
164 for each i interacting with j // the i can be random
165 mat.insert(i,j) = foo(i,j); // optional for a DynamicSparseMatrix
166mat.finalize();
Gael Guennebaud86a19262009-01-16 17:20:12 +0000167\endcode
168
Gael Guennebaudc532f422009-09-25 16:30:44 +0200169Finally, the fastest way to fill a SparseMatrix object is to insert the elements in a purely coherence order (increasing inner index per increasing outer index). To this end, Eigen provides a very low but optimal API and illustrated below:
Gael Guennebaud86a19262009-01-16 17:20:12 +0000170
Gael Guennebaud86a19262009-01-16 17:20:12 +0000171\code
Gael Guennebaudc532f422009-09-25 16:30:44 +0200172SparseMatrix<float> mat(1000,1000);
173mat.reserve(estimated_number_of_non_zero); // optional
174for(int j=0; j<1000; ++j)
Gael Guennebaud86a19262009-01-16 17:20:12 +0000175{
Gael Guennebaudc532f422009-09-25 16:30:44 +0200176 mat.startVec(j); // optional for a DynamicSparseMatrix
177 for each i interacting with j // with increasing i
178 mat.insertBack(i,j) = foo(i,j);
Gael Guennebaud86a19262009-01-16 17:20:12 +0000179}
Gael Guennebaudc532f422009-09-25 16:30:44 +0200180mat.finalize(); // optional for a DynamicSparseMatrix
Gael Guennebaud86a19262009-01-16 17:20:12 +0000181\endcode
Gael Guennebaud8710bd22010-06-02 13:32:13 +0200182Note that there also exist the insertBackByOuterInner(Index outer, Index, inner) function which allows to write code agnostic to the storage order.
Gael Guennebaud86a19262009-01-16 17:20:12 +0000183
184\section TutorialSparseFeatureSet Supported operators and functions
185
186In the following \em sm denote a sparse matrix, \em sv a sparse vector, \em dm a dense matrix, and \em dv a dense vector.
187In Eigen's sparse module we chose to expose only the subset of the dense matrix API which can be efficiently implemented. Moreover, all combinations are not always possible. For instance, it is not possible to add two sparse matrices having two different storage order. On the other hand it is perfectly fine to evaluate a sparse matrix/expression to a matrix having a different storage order:
188\code
189SparseMatrixType sm1, sm2, sm3;
190sm3 = sm1.transpose() + sm2; // invalid
191sm3 = SparseMatrixType(sm1.transpose()) + sm2; // correct
192\endcode
193
194Here are some examples of the supported operations:
195\code
196s_1 *= 0.5;
197sm4 = sm1 + sm2 + sm3; // only if s_1, s_2 and s_3 have the same storage order
198sm3 = sm1 * sm2;
199dv3 = sm1 * dv2;
200dm3 = sm1 * dm2;
201dm3 = dm2 * sm1;
Gael Guennebaud41ea92d2010-07-04 10:14:47 +0200202sm3 = sm1.cwiseProduct(sm2); // only if s_1 and s_2 have the same storage order
203dv2 = sm1.triangularView<Upper>().solve(dv2);
Gael Guennebaud86a19262009-01-16 17:20:12 +0000204\endcode
205
Zach Ploskeye3491be2011-06-17 15:42:15 -0700206The product of a sparse symmetric matrix A with a dense matrix/vector dv can be optimized by telling that to Eigen:
Gael Guennebaud86a19262009-01-16 17:20:12 +0000207\code
Gael Guennebaud41ea92d2010-07-04 10:14:47 +0200208res = A.selfadjointView<>() * dv; // if all coefficients of A are stored
209res = A.selfadjointView<Upper>() * dv; // if only the upper part of A is stored
210res = A.selfadjointView<Lower>() * dv; // if only the lower part of A is stored
Gael Guennebaud86a19262009-01-16 17:20:12 +0000211\endcode
212
213
214\section TutorialSparseDirectSolvers Using the direct solvers
215
Gael Guennebaudab41c182010-08-18 15:33:58 +0200216To solve a sparse problem you currently have to use one or multiple of the following "unsupported" module:
217- \ref SparseExtra_Module
218 - \b solvers: SparseLLT<SparseMatrixType>, SparseLDLT<SparseMatrixType> (\#include <Eigen/SparseExtra>)
219 - \b notes: built-in basic LLT and LDLT solvers
220- \ref CholmodSupport_Module
221 - \b solver: SparseLLT<SparseMatrixType, Cholmod> (\#include <Eigen/CholmodSupport>)
222 - \b notes: LLT solving using Cholmod, requires a SparseMatrix object. (recommended for symmetric/selfadjoint problems)
223- \ref UmfPackSupport_Module
224 - \b solver: SparseLU<SparseMatrixType, UmfPack> (\#include <Eigen/UmfPackSupport>)
225 - \b notes: LU solving using UmfPack, requires a SparseMatrix object (recommended for squared matrices)
226- \ref SuperLUSupport_Module
227 - \b solver: SparseLU<SparseMatrixType, SuperLU> (\#include <Eigen/SuperLUSupport>)
228 - \b notes: (LU solving using SuperLU, requires a SparseMatrix object, recommended for squared matrices)
229- \ref TaucsSupport_Module
230 - \b solver: SparseLLT<SparseMatrixType, Taucs> (\#include <Eigen/TaucsSupport>)
231 - \b notes: LLT solving using Taucs, requires a SparseMatrix object (not recommended)
232
233\warning Those modules are currently considered to be "unsupported" because 1) they are not documented, and 2) their API is likely to change in the future.
234
235Here is a typical example:
236\code
237#include <Eigen/UmfPackSupport>
238// ...
239SparseMatrix<double> A;
240// fill A
241VectorXd b, x;
242// fill b
243// solve Ax = b using UmfPack:
244SparseLU<SparseMatrix<double>,UmfPack> lu_of_A(A);
245if(!lu_of_A.succeeded()) {
246 // decomposiiton failed
247 return;
248}
249if(!lu_of_A.solve(b,&x)) {
250 // solving failed
251 return;
252}
253\endcode
254
255See also the class SparseLLT, class SparseLU, and class SparseLDLT.
Gael Guennebaud86a19262009-01-16 17:20:12 +0000256
Gael Guennebaud41ea92d2010-07-04 10:14:47 +0200257\li \b Next: TODO
Gael Guennebaud86a19262009-01-16 17:20:12 +0000258
259*/
260
261}