blob: a6115b2654f547a4c3691d7bf276fe925200dedd [file] [log] [blame]
Karl Schultz7b024b42018-08-30 16:18:18 -06001/* Copyright (c) 2018-2019 The Khronos Group Inc.
2 * Copyright (c) 2018-2019 Valve Corporation
3 * Copyright (c) 2018-2019 LunarG, Inc.
4 * Copyright (C) 2018-2019 Google Inc.
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 */
19
20// Allow use of STL min and max functions in Windows
21#define NOMINMAX
22
23#include "core_validation.h"
24#include "shader_validation.h"
25#include "gpu_validation.h"
26#include "spirv-tools/libspirv.h"
27#include "spirv-tools/optimizer.hpp"
28#include "spirv-tools/instrument.hpp"
29#include <SPIRV/spirv.hpp>
30#include <algorithm>
31#include <regex>
32
33// This is the number of bindings in the debug descriptor set.
34static const uint32_t kNumBindingsInSet = 1;
35
36// Implementation for Device Memory Manager class
37VkResult GpuDeviceMemoryManager::GetBlock(GpuDeviceMemoryBlock *block) {
38 assert(block->buffer == VK_NULL_HANDLE); // avoid possible overwrite/leak of an allocated block
39 VkResult result = VK_SUCCESS;
40 MemoryChunk *pChunk = nullptr;
41 // Look for a chunk with available offsets.
42 for (auto &chunk : chunk_list_) {
43 if (!chunk.available_offsets.empty()) {
44 pChunk = &chunk;
45 break;
46 }
47 }
48 // If no chunks with available offsets, allocate device memory and set up offsets.
49 if (pChunk == nullptr) {
50 MemoryChunk new_chunk;
51 result = AllocMemoryChunk(new_chunk);
52 if (result == VK_SUCCESS) {
53 new_chunk.available_offsets.resize(blocks_per_chunk_);
54 for (uint32_t offset = 0, i = 0; i < blocks_per_chunk_; offset += block_size_, ++i) {
55 new_chunk.available_offsets[i] = offset;
56 }
57 chunk_list_.push_front(std::move(new_chunk));
58 pChunk = &chunk_list_.front();
59 } else {
60 // Indicate failure
61 block->buffer = VK_NULL_HANDLE;
62 block->memory = VK_NULL_HANDLE;
63 return result;
64 }
65 }
66 // Give the requester an available offset
67 block->buffer = pChunk->buffer;
68 block->memory = pChunk->memory;
69 block->offset = pChunk->available_offsets.back();
70 pChunk->available_offsets.pop_back();
71 return result;
72}
73
74void GpuDeviceMemoryManager::PutBackBlock(VkBuffer buffer, VkDeviceMemory memory, uint32_t offset) {
75 GpuDeviceMemoryBlock block = {buffer, memory, offset};
76 PutBackBlock(block);
77}
78
79void GpuDeviceMemoryManager::PutBackBlock(GpuDeviceMemoryBlock &block) {
80 // Find the chunk belonging to the allocated offset and make the offset available again
81 auto chunk = std::find_if(std::begin(chunk_list_), std::end(chunk_list_),
82 [&block](const MemoryChunk &c) { return c.buffer == block.buffer; });
83 if (chunk_list_.end() == chunk) {
84 assert(false);
85 } else {
86 chunk->available_offsets.push_back(block.offset);
87 if (chunk->available_offsets.size() == blocks_per_chunk_) {
88 // All offsets have been returned
89 FreeMemoryChunk(*chunk);
90 chunk_list_.erase(chunk);
91 }
92 }
93}
94
95void ResetBlock(GpuDeviceMemoryBlock &block) {
96 block.buffer = VK_NULL_HANDLE;
97 block.memory = VK_NULL_HANDLE;
98 block.offset = 0;
99}
100
101bool BlockUsed(GpuDeviceMemoryBlock &block) { return (block.buffer != VK_NULL_HANDLE) && (block.memory != VK_NULL_HANDLE); }
102
103bool GpuDeviceMemoryManager::MemoryTypeFromProperties(uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) {
104 // Search memtypes to find first index with those properties
105 const VkPhysicalDeviceMemoryProperties *props = GetPhysicalDeviceMemoryProperties(dev_data_);
106 for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; i++) {
107 if ((typeBits & 1) == 1) {
108 // Type is available, does it match user properties?
109 if ((props->memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) {
110 *typeIndex = i;
111 return true;
112 }
113 }
114 typeBits >>= 1;
115 }
116 // No memory types matched, return failure
117 return false;
118}
119
120VkResult GpuDeviceMemoryManager::AllocMemoryChunk(MemoryChunk &chunk) {
121 VkBuffer buffer;
122 VkDeviceMemory memory;
123 VkBufferCreateInfo buffer_create_info = {};
124 VkMemoryRequirements mem_reqs = {};
125 VkMemoryAllocateInfo mem_alloc = {};
126 VkResult result = VK_SUCCESS;
127 bool pass;
128 void *pData;
129 const auto *dispatch_table = GetDispatchTable(dev_data_);
130
131 buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
132 buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
133 buffer_create_info.size = chunk_size_;
134 result = dispatch_table->CreateBuffer(GetDevice(dev_data_), &buffer_create_info, NULL, &buffer);
135 if (result != VK_SUCCESS) {
136 return result;
137 }
138
139 dispatch_table->GetBufferMemoryRequirements(GetDevice(dev_data_), buffer, &mem_reqs);
140
141 mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
142 mem_alloc.pNext = NULL;
143 mem_alloc.allocationSize = mem_reqs.size;
144 pass = MemoryTypeFromProperties(mem_reqs.memoryTypeBits,
145 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
146 &mem_alloc.memoryTypeIndex);
147 if (!pass) {
148 dispatch_table->DestroyBuffer(GetDevice(dev_data_), buffer, NULL);
149 return result;
150 }
151 result = dispatch_table->AllocateMemory(GetDevice(dev_data_), &mem_alloc, NULL, &memory);
152 if (result != VK_SUCCESS) {
153 dispatch_table->DestroyBuffer(GetDevice(dev_data_), buffer, NULL);
154 return result;
155 }
156
157 result = dispatch_table->BindBufferMemory(GetDevice(dev_data_), buffer, memory, 0);
158 if (result != VK_SUCCESS) {
159 dispatch_table->DestroyBuffer(GetDevice(dev_data_), buffer, NULL);
160 dispatch_table->FreeMemory(GetDevice(dev_data_), memory, NULL);
161 return result;
162 }
163
164 result = dispatch_table->MapMemory(GetDevice(dev_data_), memory, 0, mem_alloc.allocationSize, 0, &pData);
165 if (result == VK_SUCCESS) {
166 memset(pData, 0, chunk_size_);
167 dispatch_table->UnmapMemory(GetDevice(dev_data_), memory);
168 } else {
169 dispatch_table->DestroyBuffer(GetDevice(dev_data_), buffer, NULL);
170 dispatch_table->FreeMemory(GetDevice(dev_data_), memory, NULL);
171 return result;
172 }
173 chunk.buffer = buffer;
174 chunk.memory = memory;
175 return result;
176}
177
178void GpuDeviceMemoryManager::FreeMemoryChunk(MemoryChunk &chunk) {
179 GetDispatchTable(dev_data_)->DestroyBuffer(GetDevice(dev_data_), chunk.buffer, NULL);
180 GetDispatchTable(dev_data_)->FreeMemory(GetDevice(dev_data_), chunk.memory, NULL);
181}
182
183// Implementation for Descriptor Set Manager class
184VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
185 std::vector<VkDescriptorSet> *desc_sets) {
186 auto gpu_state = GetGpuValidationState(dev_data_);
187 const uint32_t default_pool_size = kItemsPerChunk;
188 VkResult result = VK_SUCCESS;
189 VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
190
191 if (0 == count) {
192 return result;
193 }
194 desc_sets->clear();
195 desc_sets->resize(count);
196
197 for (auto &pool : desc_pool_map_) {
198 if (pool.second.used + count < pool.second.size) {
199 pool_to_use = pool.first;
200 break;
201 }
202 }
203 if (VK_NULL_HANDLE == pool_to_use) {
204 uint32_t pool_count = default_pool_size;
205 if (count > default_pool_size) {
206 pool_count = count;
207 }
208 const VkDescriptorPoolSize size_counts = {
209 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
210 pool_count * kNumBindingsInSet,
211 };
212 VkDescriptorPoolCreateInfo desc_pool_info = {};
213 desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
214 desc_pool_info.pNext = NULL;
215 desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
216 desc_pool_info.maxSets = pool_count;
217 desc_pool_info.poolSizeCount = 1;
218 desc_pool_info.pPoolSizes = &size_counts;
219 result = GetDispatchTable(dev_data_)->CreateDescriptorPool(GetDevice(dev_data_), &desc_pool_info, NULL, &pool_to_use);
220 assert(result == VK_SUCCESS);
221 if (result != VK_SUCCESS) {
222 return result;
223 }
224 desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
225 desc_pool_map_[pool_to_use].used = 0;
226 }
227 std::vector<VkDescriptorSetLayout> desc_layouts(count, gpu_state->debug_desc_layout);
228
229 VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
230 desc_layouts.data()};
231
232 result = GetDispatchTable(dev_data_)->AllocateDescriptorSets(GetDevice(dev_data_), &alloc_info, desc_sets->data());
233 assert(result == VK_SUCCESS);
234 if (result != VK_SUCCESS) {
235 return result;
236 }
237 *pool = pool_to_use;
238 desc_pool_map_[pool_to_use].used += count;
239 return result;
240}
241
242void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
243 auto iter = desc_pool_map_.find(desc_pool);
244 if (iter != desc_pool_map_.end()) {
245 VkResult result = GetDispatchTable(dev_data_)->FreeDescriptorSets(GetDevice(dev_data_), desc_pool, 1, &desc_set);
246 assert(result == VK_SUCCESS);
247 if (result != VK_SUCCESS) {
248 return;
249 }
250 desc_pool_map_[desc_pool].used--;
251 if (0 == desc_pool_map_[desc_pool].used) {
252 GetDispatchTable(dev_data_)->DestroyDescriptorPool(GetDevice(dev_data_), desc_pool, NULL);
253 desc_pool_map_.erase(desc_pool);
254 }
255 }
256 return;
257}
258
259// Convenience function for reporting problems with setting up GPU Validation.
260static void ReportSetupProblem(const layer_data *dev_data, VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
261 const char *const specific_message) {
262 log_msg(GetReportData(dev_data), VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle,
263 "UNASSIGNED-GPU-Assisted Validation Error. ", "Detail: (%s)", specific_message);
264}
265
266// Turn on necessary device features.
267std::unique_ptr<safe_VkDeviceCreateInfo> GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *create_info,
268 VkPhysicalDeviceFeatures *supported_features) {
269 std::unique_ptr<safe_VkDeviceCreateInfo> new_info(new safe_VkDeviceCreateInfo(create_info));
270 if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
271 VkPhysicalDeviceFeatures new_features = *new_info->pEnabledFeatures;
272 new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
273 new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
274 delete new_info->pEnabledFeatures;
275 new_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
276 }
277 return new_info;
278}
279
280// Perform initializations that can be done at Create Device time.
281void GpuPostCallRecordCreateDevice(layer_data *dev_data) {
282 auto gpu_state = GetGpuValidationState(dev_data);
283 const auto *dispatch_table = GetDispatchTable(dev_data);
284
285 if (GetPhysicalDeviceProperties(dev_data)->apiVersion < VK_API_VERSION_1_1) {
286 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
287 "GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
288 gpu_state->aborted = true;
289 return;
290 }
291 // Some devices have extremely high limits here, so set a reasonable max because we have to pad
292 // the pipeline layout with dummy descriptor set layouts.
293 gpu_state->adjusted_max_desc_sets = GetPhysicalDeviceProperties(dev_data)->limits.maxBoundDescriptorSets;
294 gpu_state->adjusted_max_desc_sets = std::min(33U, gpu_state->adjusted_max_desc_sets);
295
296 // We can't do anything if there is only one.
297 // Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
298 if (gpu_state->adjusted_max_desc_sets == 1) {
299 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
300 "Device can bind only a single descriptor set. GPU-Assisted Validation disabled.");
301 gpu_state->aborted = true;
302 return;
303 }
304 gpu_state->desc_set_bind_index = gpu_state->adjusted_max_desc_sets - 1;
305 log_msg(GetReportData(dev_data), VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
306 HandleToUint64(GetDevice(dev_data)), "UNASSIGNED-GPU-Assisted Validation. ",
307 "Shaders using descriptor set at index %d. ", gpu_state->desc_set_bind_index);
308
309 std::unique_ptr<GpuDeviceMemoryManager> memory_manager(
310 new GpuDeviceMemoryManager(dev_data, sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1)));
311 std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(dev_data));
312
313 // The descriptor indexing checks require only the first "output" binding.
314 const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
315 {
316 0, // output
317 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
318 1,
319 VK_SHADER_STAGE_ALL_GRAPHICS,
320 NULL,
321 },
322 };
323
324 const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
325 kNumBindingsInSet, debug_desc_layout_bindings};
326
327 const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
328 NULL};
329
330 VkResult result = dispatch_table->CreateDescriptorSetLayout(GetDevice(dev_data), &debug_desc_layout_info, NULL,
331 &gpu_state->debug_desc_layout);
332
333 // This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
334 VkResult result2 = dispatch_table->CreateDescriptorSetLayout(GetDevice(dev_data), &dummy_desc_layout_info, NULL,
335 &gpu_state->dummy_desc_layout);
336 assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
337 if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
338 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
339 "Unable to create descriptor set layout. GPU-Assisted Validation disabled.");
340 if (result == VK_SUCCESS) {
341 dispatch_table->DestroyDescriptorSetLayout(GetDevice(dev_data), gpu_state->debug_desc_layout, NULL);
342 }
343 if (result2 == VK_SUCCESS) {
344 dispatch_table->DestroyDescriptorSetLayout(GetDevice(dev_data), gpu_state->dummy_desc_layout, NULL);
345 }
346 gpu_state->debug_desc_layout = VK_NULL_HANDLE;
347 gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
348 gpu_state->aborted = true;
349 return;
350 }
351 gpu_state->memory_manager = std::move(memory_manager);
352 gpu_state->desc_set_manager = std::move(desc_set_manager);
353}
354
355// Clean up device-related resources
356void GpuPreCallRecordDestroyDevice(layer_data *dev_data) {
357 auto gpu_state = GetGpuValidationState(dev_data);
358
359 if (gpu_state->debug_desc_layout) {
360 GetDispatchTable(dev_data)->DestroyDescriptorSetLayout(GetDevice(dev_data), gpu_state->debug_desc_layout, NULL);
361 gpu_state->debug_desc_layout = VK_NULL_HANDLE;
362 }
363 if (gpu_state->dummy_desc_layout) {
364 GetDispatchTable(dev_data)->DestroyDescriptorSetLayout(GetDevice(dev_data), gpu_state->dummy_desc_layout, NULL);
365 gpu_state->dummy_desc_layout = VK_NULL_HANDLE;
366 }
367}
368
369// Bind our debug descriptor set immediately after binding a pipeline if the pipeline layout is not using our slot.
370void GpuPostCallDispatchCmdBindPipeline(layer_data *dev_data, VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
371 VkPipeline pipeline) {
372 auto gpu_state = GetGpuValidationState(dev_data);
373 if (gpu_state->aborted) {
374 return;
375 }
376 const GLOBAL_CB_NODE *cb_state = GetCBNode(dev_data, commandBuffer);
377 auto iter = cb_state->lastBound.find(pipelineBindPoint); // find() allows read-only access to cb_state
378 if (iter != cb_state->lastBound.end()) {
379 auto pipeline_state = iter->second.pipeline_state;
380 if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_state->desc_set_bind_index)) {
381 GetDispatchTable(dev_data)->CmdBindDescriptorSets(
382 commandBuffer, pipelineBindPoint, pipeline_state->pipeline_layout.layout, gpu_state->desc_set_bind_index, 1,
383 &cb_state->gpu_buffer_desc_set, 0, nullptr);
384 }
385 }
386}
387
388// Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
389VkResult GpuOverrideDispatchCreatePipelineLayout(layer_data *dev_data, const VkPipelineLayoutCreateInfo *pCreateInfo,
390 const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout) {
391 auto gpu_state = GetGpuValidationState(dev_data);
392 if (gpu_state->aborted) {
393 return GetDispatchTable(dev_data)->CreatePipelineLayout(GetDevice(dev_data), pCreateInfo, pAllocator, pPipelineLayout);
394 }
395 VkPipelineLayoutCreateInfo new_create_info = *pCreateInfo;
396 std::vector<VkDescriptorSetLayout> new_layouts;
397 if (new_create_info.setLayoutCount >= gpu_state->adjusted_max_desc_sets) {
398 std::ostringstream strm;
399 strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_state->desc_set_bind_index << ". "
400 << "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
401 << "Validation is not modifying the pipeline layout. "
402 << "Instrumented shaders are replaced with non-instrumented shaders.";
403 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
404 strm.str().c_str());
405 } else {
406 // Modify the pipeline layout by:
407 // 1. Copying the caller's descriptor set desc_layouts
408 // 2. Fill in dummy descriptor layouts up to the max binding
409 // 3. Fill in with the debug descriptor layout at the max binding slot
410 new_layouts.reserve(gpu_state->adjusted_max_desc_sets);
411 new_layouts.insert(new_layouts.end(), &pCreateInfo->pSetLayouts[0], &pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
412 for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_state->adjusted_max_desc_sets - 1; ++i) {
413 new_layouts.push_back(gpu_state->dummy_desc_layout);
414 }
415 new_layouts.push_back(gpu_state->debug_desc_layout);
416 new_create_info.pSetLayouts = new_layouts.data();
417 new_create_info.setLayoutCount = gpu_state->adjusted_max_desc_sets;
418 }
419 VkResult result;
420 result = GetDispatchTable(dev_data)->CreatePipelineLayout(GetDevice(dev_data), &new_create_info, pAllocator, pPipelineLayout);
421 assert(result == VK_SUCCESS);
422 if (result != VK_SUCCESS) {
423 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
424 "Unable to create pipeline layout. Device could become unstable.");
425 gpu_state->aborted = true;
426 }
427 return result;
428}
429
430// Each command buffer gets a piece of device memory and a descriptor set for the debug buffer.
431void GpuPostCallRecordAllocateCommandBuffers(layer_data *dev_data, const VkCommandBufferAllocateInfo *pCreateInfo,
432 VkCommandBuffer *pCommandBuffer) {
433 VkResult result;
434
435 auto gpu_state = GetGpuValidationState(dev_data);
436 if (gpu_state->aborted) return;
437
438 std::vector<VkDescriptorSet> desc_sets;
439 VkDescriptorPool desc_pool = VK_NULL_HANDLE;
440 result = gpu_state->desc_set_manager->GetDescriptorSets(pCreateInfo->commandBufferCount, &desc_pool, &desc_sets);
441 assert(result == VK_SUCCESS);
442 if (result != VK_SUCCESS) {
443 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
444 "Unable to allocate descriptor sets. Device could become unstable.");
445 gpu_state->aborted = true;
446 return;
447 }
448
449 VkDescriptorBufferInfo desc_buffer_info = {};
450 desc_buffer_info.range = gpu_state->memory_manager->GetBlockSize();
451
452 VkWriteDescriptorSet desc_write = {};
453 desc_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
454 desc_write.descriptorCount = 1;
455 desc_write.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
456 desc_write.pBufferInfo = &desc_buffer_info;
457
458 for (uint32_t i = 0; i < pCreateInfo->commandBufferCount; i++) {
459 auto cb_node = GetCBNode(dev_data, pCommandBuffer[i]);
460
461 GpuDeviceMemoryBlock block = {};
462 result = gpu_state->memory_manager->GetBlock(&block);
463 if (result != VK_SUCCESS) {
464 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
465 "Unable to allocate device memory. Device could become unstable.");
466 gpu_state->aborted = true;
467 return;
468 }
469
470 // Record buffer and memory info in CB state tracking
471 cb_node->gpu_output_memory_block = block;
472 cb_node->gpu_buffer_desc_set = desc_sets[i];
473 cb_node->gpu_buffer_desc_pool = desc_pool;
474
475 // Write the descriptor
476 desc_buffer_info.buffer = block.buffer;
477 desc_buffer_info.offset = block.offset;
478 desc_write.dstSet = cb_node->gpu_buffer_desc_set;
479 GetDispatchTable(dev_data)->UpdateDescriptorSets(GetDevice(dev_data), 1, &desc_write, 0, NULL);
480 }
481}
482
483// Free the device memory and descriptor set associated with a command buffer.
484void GpuPreCallRecordFreeCommandBuffers(layer_data *dev_data, uint32_t commandBufferCount, const VkCommandBuffer *pCommandBuffers) {
485 auto gpu_state = GetGpuValidationState(dev_data);
486 if (gpu_state->aborted) {
487 return;
488 }
489 for (uint32_t i = 0; i < commandBufferCount; ++i) {
490 auto cb_node = GetCBNode(dev_data, pCommandBuffers[i]);
491 if (BlockUsed(cb_node->gpu_output_memory_block)) {
492 gpu_state->memory_manager->PutBackBlock(cb_node->gpu_output_memory_block);
493 ResetBlock(cb_node->gpu_output_memory_block);
494 }
495 if (cb_node->gpu_buffer_desc_set != VK_NULL_HANDLE) {
496 gpu_state->desc_set_manager->PutBackDescriptorSet(cb_node->gpu_buffer_desc_pool, cb_node->gpu_buffer_desc_set);
497 cb_node->gpu_buffer_desc_set = VK_NULL_HANDLE;
498 }
499 }
500}
501
502// Just gives a warning about a possible deadlock.
503void GpuPreCallValidateCmdWaitEvents(layer_data *dev_data, VkPipelineStageFlags sourceStageMask) {
504 if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
505 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(GetDevice(dev_data)),
506 "CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
507 "GPU_Assisted validation waits on queue completion. "
508 "This wait could block the host's signaling of this event, resulting in deadlock.");
509 }
510}
511
512// Examine the pipelines to see if they use the debug descriptor set binding index.
513// If any do, create new non-instrumented shader modules and use them to replace the instrumented
514// shaders in the pipeline. Return the (possibly) modified create infos to the caller.
515std::vector<safe_VkGraphicsPipelineCreateInfo> GpuPreCallRecordCreateGraphicsPipelines(
516 layer_data *dev_data, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
517 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
518 auto gpu_state = GetGpuValidationState(dev_data);
519
520 std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
521 std::vector<unsigned int> pipeline_uses_debug_index(count);
522
523 // Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
524 // descriptor set index.
525 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
526 new_pipeline_create_infos.push_back(pipe_state[pipeline]->graphicsPipelineCI);
527 if (pipe_state[pipeline]->active_slots.find(gpu_state->desc_set_bind_index) != pipe_state[pipeline]->active_slots.end()) {
528 pipeline_uses_debug_index[pipeline] = 1;
529 }
530 }
531
532 // See if any pipeline has shaders using the debug descriptor set index
533 if (std::all_of(pipeline_uses_debug_index.begin(), pipeline_uses_debug_index.end(), [](unsigned int i) { return i == 0; })) {
534 // None of the shaders in all the pipelines use the debug descriptor set index, so use the pipelines
535 // as they stand with the instrumented shaders.
536 return new_pipeline_create_infos;
537 }
538
539 // At least one pipeline has a shader that uses the debug descriptor set index.
540 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
541 if (pipeline_uses_debug_index[pipeline]) {
542 for (uint32_t stage = 0; stage < pCreateInfos[pipeline].stageCount; ++stage) {
543 const shader_module *shader = GetShaderModuleState(dev_data, pCreateInfos[pipeline].pStages[stage].module);
544 VkShaderModuleCreateInfo create_info = {};
545 VkShaderModule shader_module;
546 create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
547 create_info.pCode = shader->words.data();
548 create_info.codeSize = shader->words.size() * sizeof(uint32_t);
549 VkResult result =
550 GetDispatchTable(dev_data)->CreateShaderModule(GetDevice(dev_data), &create_info, pAllocator, &shader_module);
551 if (result == VK_SUCCESS) {
552 new_pipeline_create_infos[pipeline].pStages[stage].module = shader_module;
553 } else {
554 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT,
555 HandleToUint64(pCreateInfos[pipeline].pStages[stage].module),
556 "Unable to replace instrumented shader with non-instrumented one. "
557 "Device could become unstable.");
558 }
559 }
560 }
561 }
562 return new_pipeline_create_infos;
563}
564
565// For every pipeline:
566// - For every shader in a pipeline:
567// - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
568// - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
569// - Track the shader in the shader_map
570// - Save the shader binary if it contains debug code
571void GpuPostCallRecordCreateGraphicsPipelines(layer_data *dev_data, const uint32_t count,
572 const VkGraphicsPipelineCreateInfo *pCreateInfos,
573 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
574 auto gpu_state = GetGpuValidationState(dev_data);
575 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
576 auto pipeline_state = GetPipelineState(dev_data, pPipelines[pipeline]);
577 if (nullptr == pipeline_state) continue;
578 for (uint32_t stage = 0; stage < pipeline_state->graphicsPipelineCI.stageCount; ++stage) {
579 if (pipeline_state->active_slots.find(gpu_state->desc_set_bind_index) != pipeline_state->active_slots.end()) {
580 GetDispatchTable(dev_data)->DestroyShaderModule(GetDevice(dev_data), pCreateInfos->pStages[stage].module,
581 pAllocator);
582 }
583 auto shader_state = GetShaderModuleState(dev_data, pipeline_state->graphicsPipelineCI.pStages[stage].module);
584 std::vector<unsigned int> code;
585 // Save the shader binary if debug info is present.
586 // The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
587 // is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
588 // the pipeline is used, so we have to keep another copy.
589 if (shader_state && shader_state->has_valid_spirv) { // really checking for presense of SPIR-V code.
590 for (auto insn : *shader_state) {
591 if (insn.opcode() == spv::OpLine) {
592 code = shader_state->words;
593 break;
594 }
595 }
596 }
597 gpu_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
598 // Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
599 // out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above.
600 gpu_state->shader_map[shader_state->gpu_validation_shader_id].shader_module =
601 pipeline_state->graphicsPipelineCI.pStages[stage].module;
602 gpu_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
603 }
604 }
605}
606
607// Remove all the shader trackers associated with this destroyed pipeline.
608void GpuPreCallRecordDestroyPipeline(layer_data *dev_data, const VkPipeline pipeline) {
609 auto gpu_state = GetGpuValidationState(dev_data);
610 for (auto it = gpu_state->shader_map.begin(); it != gpu_state->shader_map.end();) {
611 if (it->second.pipeline == pipeline) {
612 it = gpu_state->shader_map.erase(it);
613 } else {
614 ++it;
615 }
616 }
617}
618
Karl Schultz24137052019-01-12 08:16:32 -0700619// This is a temporary workaround to fix a missing operation in the spirv-tools
620// instrumentation pass.
621// The instrumentation pass creates an array (of uint) variable to store the debug
622// data. But it doesn't set the ArrayStride decoration (to 4). Some drivers
623// move along and come up with a value of 4, but some don't and use a stride value of 0.
624// Add our own decoration to the SPIR-V type definition for the array.
625static void FixMissingStride(layer_data *dev_data, std::vector<unsigned int> &new_pgm) {
626 auto gpu_state = GetGpuValidationState(dev_data);
627 unsigned int insert_offset = 0;
628 shader_module shader;
629 shader.words = new_pgm;
630 if (shader.words.size() > 0) {
631 // Find the ID of the variable referenced by our debug descriptor set.
632 // If found, also save an offset for a good place to insert our additional decoration later.
633 unsigned int variable_id = 0;
634 for (auto insn : shader) {
635 if (insn.opcode() == spv::OpDecorate) {
636 if (insn.word(2) == spv::Decoration::DecorationDescriptorSet && insn.word(3) == gpu_state->desc_set_bind_index) {
637 variable_id = insn.word(1);
638 insn++;
639 insert_offset = insn.offset();
640 break;
641 }
642 }
643 }
644 if (variable_id == 0) return;
645
646 // Look up the variable and find its type ptr.
647 unsigned int variable_type_ptr_id = 0;
648 for (auto insn : shader) {
649 if (insn.opcode() == spv::OpVariable) {
650 if (insn.word(2) == variable_id) {
651 variable_type_ptr_id = insn.word(1);
652 break;
653 }
654 }
655 }
656 if (variable_type_ptr_id == 0) return;
657
658 // Look up the type ptr of the variable to find its type
659 unsigned int type_id = 0;
660 for (auto insn : shader) {
661 if (insn.opcode() == spv::OpTypePointer) {
662 if (insn.word(1) == variable_type_ptr_id) {
663 type_id = insn.word(3);
664 break;
665 }
666 }
667 }
668 if (type_id == 0) return;
669
670 // Look up the type that we want to annotate with the stride.
671 // We don't really know what the actual type is that is pointed to by the type ptr we just found.
672 // I suppose we could scan on the OpType* opcodes to look for an ID match.
673 // But we happen to know that there is a struct here, so look for just OpTypeStruct.
674 // We also know that the second struct member is the array of debug output words.
675 unsigned int array_type_id = 0;
676 for (auto insn : shader) {
677 if (insn.opcode() == spv::OpTypeStruct) {
678 if (insn.word(1) == type_id && insn.len() >= 4) { // has at least 2 members
679 array_type_id = insn.word(3); // second member type
680 break;
681 }
682 }
683 }
684 if (array_type_id == 0) return;
685
686 // See if the array stride decoration for the type of the debug data array is already there.
687 // Don't insert a new one if there is one already there.
688 bool stride_already_there = false;
689 for (auto insn : shader) {
690 if (insn.opcode() == spv::OpDecorate) {
691 if (insn.len() == 4 && insn.word(1) == array_type_id && insn.word(2) == spv::Decoration::DecorationArrayStride) {
692 stride_already_there = true;
693 break;
694 }
695 }
696 }
697 if (stride_already_there) return;
698
699 // Build an OpDecorate instruction to add the stride information and insert it in the program.
700 if (insert_offset != 0) {
701 std::vector<unsigned int> inst(4);
702 inst[0] = (4 << 16) | spv::OpDecorate;
703 inst[1] = array_type_id;
704 inst[2] = spv::Decoration::DecorationArrayStride;
705 inst[3] = 4;
706 auto it = new_pgm.begin();
707 new_pgm.insert(it + insert_offset, inst.begin(), inst.end());
708 }
709 }
710}
711
Karl Schultz7b024b42018-08-30 16:18:18 -0600712// Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
713static bool GpuInstrumentShader(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
714 std::vector<unsigned int> &new_pgm, uint32_t *unique_shader_id) {
715 auto gpu_state = GetGpuValidationState(dev_data);
716 if (gpu_state->aborted) return false;
717 if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
718
719 // Load original shader SPIR-V
720 uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
721 new_pgm.clear();
722 new_pgm.reserve(num_words);
723 new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
724
725 // Call the optimizer to instrument the shader.
726 // Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
727 using namespace spvtools;
728 spv_target_env target_env = SPV_ENV_VULKAN_1_1;
729 Optimizer optimizer(target_env);
730 optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_state->desc_set_bind_index, gpu_state->unique_shader_module_id));
731 optimizer.RegisterPass(CreateAggressiveDCEPass());
732 bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
733 if (!pass) {
734 ReportSetupProblem(dev_data, VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
735 "Failure to instrument shader. Proceeding with non-instrumented shader.");
736 }
Karl Schultz24137052019-01-12 08:16:32 -0700737 FixMissingStride(dev_data, new_pgm);
Karl Schultz7b024b42018-08-30 16:18:18 -0600738 *unique_shader_id = gpu_state->unique_shader_module_id++;
739 return pass;
740}
741
742// Override the CreateShaderModule command to provide the instrumented shader to the driver.
743VkResult GpuOverrideDispatchCreateShaderModule(layer_data *dev_data, const VkShaderModuleCreateInfo *pCreateInfo,
744 const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule,
745 uint32_t *unique_shader_id) {
746 VkShaderModuleCreateInfo instrumented_create_info = *pCreateInfo;
747 std::vector<unsigned int> instrumented_pgm;
748 bool pass = GpuInstrumentShader(dev_data, pCreateInfo, instrumented_pgm, unique_shader_id);
749 if (pass) {
750 instrumented_create_info.pCode = instrumented_pgm.data();
751 instrumented_create_info.codeSize = instrumented_pgm.size() * sizeof(unsigned int);
752 }
753 // We trust the optimizer's instrumentation pass to not change the validity of the SPIR-V as determined by
754 // the prior call to PreCallValidate.
755 // But we do pass the instrumented shader to the driver.
756 VkResult result =
757 GetDispatchTable(dev_data)->CreateShaderModule(GetDevice(dev_data), &instrumented_create_info, pAllocator, pShaderModule);
758 return result;
759}
760
761// Generate the stage-specific part of the message.
762static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
763 using namespace spvtools;
764 std::ostringstream strm;
765 switch (debug_record[kInstCommonOutStageIdx]) {
766 case 0: {
767 strm << "Stage = Vertex. Vertex ID = " << debug_record[kInstVertOutVertexId]
768 << " Instance ID = " << debug_record[kInstVertOutInstanceId] << ". ";
769 } break;
770 case 1: {
771 strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
772 } break;
773 case 2: {
774 strm << "Stage = Tessellation Eval. Invocation ID = " << debug_record[kInstTessOutInvocationId] << ". ";
775 } break;
776 case 3: {
777 strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
778 << " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
779 } break;
780 case 4: {
781 strm << "Stage = Fragment. Fragment coord (x,y) = ("
782 << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
783 << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
784 } break;
785 case 5: {
786 strm << "Stage = Compute. Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationId] << ". ";
787 } break;
788 default: {
789 strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
790 assert(false);
791 } break;
792 }
793 msg = strm.str();
794}
795
796// Generate the part of the message describing the violation.
797static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
798 using namespace spvtools;
799 std::ostringstream strm;
800 switch (debug_record[kInstValidationOutError]) {
801 case 0: {
802 strm << "Index of " << debug_record[kInstBindlessOutDescIndex] << " used to index descriptor array of length "
803 << debug_record[kInstBindlessOutDescBound] << ". ";
804 vuid_msg = "UNASSIGNED-Image descriptor index out of bounds";
805 } break;
806 case 1: {
807 strm << "Index of " << debug_record[kInstBindlessOutDescIndex] << " used to index descriptor array of length "
808 << debug_record[kInstBindlessOutDescBound] << ". ";
809 vuid_msg = "UNASSIGNED-Sampler index out of bounds";
810 } break;
811 case 2: {
812 strm << "Descriptor index " << debug_record[kInstBindlessOutDescIndex] << " is uninitialized. ";
813 vuid_msg = "UNASSIGNED-Image descriptor uninitialized";
814 } break;
815 case 3: {
816 strm << "Descriptor index " << debug_record[kInstBindlessOutDescIndex] << " is uninitialized. ";
817 vuid_msg = "UNASSIGNED-Sampler descriptor uninitialized";
818 } break;
819 default: {
820 strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
821 vuid_msg = "UNASSIGNED-Internal Error";
822 assert(false);
823 } break;
824 }
825 msg = strm.str();
826}
827
828static std::string LookupDebugUtilsName(const layer_data *dev_data, const uint64_t object) {
829 const debug_report_data *debug_data = GetReportData(dev_data);
830 auto utils_name_iter = debug_data->debugUtilsObjectNameMap->find(object);
831 if (utils_name_iter != debug_data->debugUtilsObjectNameMap->end()) {
832 return "(" + utils_name_iter->second + ")";
833 } else {
834 return "";
835 }
836}
837
838// Generate message from the common portion of the debug report record.
839static void GenerateCommonMessage(const layer_data *dev_data, const GLOBAL_CB_NODE *cb_node, const uint32_t *debug_record,
840 const VkShaderModule shader_module_handle, const VkPipeline pipeline_handle, std::string &msg) {
841 using namespace spvtools;
842 std::ostringstream strm;
843 if (shader_module_handle == VK_NULL_HANDLE) {
844 strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
845 << LookupDebugUtilsName(dev_data, HandleToUint64(cb_node->commandBuffer)) << "("
846 << HandleToUint64(cb_node->commandBuffer) << "). ";
847 assert(true);
848 } else {
849 strm << std::hex << std::showbase << "Command buffer "
850 << LookupDebugUtilsName(dev_data, HandleToUint64(cb_node->commandBuffer)) << "("
851 << HandleToUint64(cb_node->commandBuffer) << "). "
852 << "Pipeline " << LookupDebugUtilsName(dev_data, HandleToUint64(pipeline_handle)) << "("
853 << HandleToUint64(pipeline_handle) << "). "
854 << "Shader Module " << LookupDebugUtilsName(dev_data, HandleToUint64(shader_module_handle)) << "("
855 << HandleToUint64(shader_module_handle) << "). ";
856 }
857 strm << std::dec << std::noshowbase;
858 strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
859 msg = strm.str();
860}
861
862// Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
863// Split the single string into a vector of strings, one for each line, for easier processing.
864static void ReadOpSource(const shader_module &shader, const uint32_t reported_file_id, std::vector<std::string> &opsource_lines) {
865 for (auto insn : shader) {
866 if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
867 std::istringstream in_stream;
868 std::string cur_line;
869 in_stream.str((char *)&insn.word(4));
870 while (std::getline(in_stream, cur_line)) {
871 opsource_lines.push_back(cur_line);
872 }
873 while ((++insn).opcode() == spv::OpSourceContinued) {
874 in_stream.str((char *)&insn.word(1));
875 while (std::getline(in_stream, cur_line)) {
876 opsource_lines.push_back(cur_line);
877 }
878 }
879 break;
880 }
881 }
882}
883
884// Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
885// Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
886static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
887 std::string &source_msg) {
888 using namespace spvtools;
889 std::ostringstream filename_stream;
890 std::ostringstream source_stream;
891 shader_module shader;
892 shader.words = pgm;
893 // Find the OpLine just before the failing instruction indicated by the debug info.
894 // SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
895 uint32_t instruction_index = 0;
896 uint32_t reported_file_id = 0;
897 uint32_t reported_line_number = 0;
898 uint32_t reported_column_number = 0;
899 if (shader.words.size() > 0) {
900 for (auto insn : shader) {
901 if (insn.opcode() == spv::OpLine) {
902 reported_file_id = insn.word(1);
903 reported_line_number = insn.word(2);
904 reported_column_number = insn.word(3);
905 }
906 if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
907 break;
908 }
909 instruction_index++;
910 }
911 }
912 // Create message with file information obtained from the OpString pointed to by the discovered OpLine.
913 std::string reported_filename;
914 if (reported_file_id == 0) {
915 filename_stream
916 << "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
917 } else {
918 bool found_opstring = false;
919 for (auto insn : shader) {
920 if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
921 found_opstring = true;
922 reported_filename = (char *)&insn.word(2);
923 if (reported_filename.empty()) {
924 filename_stream << "Shader validation error occurred at line " << reported_line_number;
925 } else {
926 filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
927 << reported_line_number;
928 }
929 if (reported_column_number > 0) {
930 filename_stream << ", column " << reported_column_number;
931 }
932 filename_stream << ".";
933 break;
934 }
935 }
936 if (!found_opstring) {
937 filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
938 }
939 }
940 filename_msg = filename_stream.str();
941
942 // Create message to display source code line containing error.
943 if ((reported_file_id != 0)) {
944 // Read the source code and split it up into separate lines.
945 std::vector<std::string> opsource_lines;
946 ReadOpSource(shader, reported_file_id, opsource_lines);
947 // Find the line in the OpSource content that corresponds to the reported error file and line.
948 if (!opsource_lines.empty()) {
949 // The task here is to search the OpSource content to find the #line directive with the
950 // line number that is closest to, but still prior to the reported error line number and
951 // still within the reported filename.
952 // From this known position in the OpSource content we can add the difference between
953 // the #line line number and the reported error line number to determine the location
954 // in the OpSource content of the reported error line.
955 //
956 // Considerations:
957 // - Look only at #line directives that specify the reported_filename since
958 // the reported error line number refers to its location in the reported filename.
959 // - If a #line directive does not have a filename, the file is the reported filename, or
960 // the filename found in a prior #line directive. (This is C-preprocessor behavior)
961 // - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
962 // original order and the #line directives are used to keep the numbering correct. This
963 // is why we need to examine the entire contents of the source, instead of leaving early
964 // when finding a #line line number larger than the reported error line number.
965 //
966 std::regex line_regex( // matches #line directives
967 "^" // beginning of line
968 "\\s*" // optional whitespace
969 "#" // required text
970 "\\s*" // optional whitespace
971 "line" // required text
972 "\\s+" // required whitespace
973 "([0-9]+)" // required first capture - line number
974 "(\\s+)?" // optional second capture - whitespace
975 "(\".+\")?" // optional third capture - quoted filename with at least one char inside
976 ".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
977 uint32_t saved_line_number = 0;
978 std::string current_filename = reported_filename; // current "preprocessor" filename state.
979 std::vector<std::string>::size_type saved_opsource_offset = 0;
980 bool found_best_line = false;
981 for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
982 std::smatch captures;
983 bool found_line = std::regex_match(*it, captures, line_regex);
984 if (!found_line) continue;
985 // filename is optional and considered found only if the whitespace and the filename are captured
986 bool found_filename = captures[2].matched && captures[3].matched;
987 if (found_filename) {
988 // Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
989 current_filename = captures[3].str().substr(1, captures[3].str().size() - 2);
990 }
991 if ((!found_filename) || (current_filename == reported_filename)) {
992 // captures[1] is valid whenever the regex matches, which it has at this point.
993 uint32_t parsed_line_number = std::stoul(captures[1]);
994 // Update the candidate best line directive, if the current one is prior and closer to the reported line
995 if (reported_line_number >= parsed_line_number) {
996 if (!found_best_line ||
997 (reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
998 saved_line_number = parsed_line_number;
999 saved_opsource_offset = std::distance(opsource_lines.begin(), it);
1000 found_best_line = true;
1001 }
1002 }
1003 }
1004 }
1005 if (found_best_line) {
1006 assert(reported_line_number >= saved_line_number);
1007 std::vector<std::string>::size_type opsource_index =
1008 (reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
1009 if (opsource_index < opsource_lines.size()) {
1010 source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
1011 } else {
1012 source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
1013 << opsource_lines.size() << " lines.";
1014 }
1015 } else {
1016 source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
1017 }
1018 } else {
1019 source_stream << "Unable to find SPIR-V OpSource.";
1020 }
1021 }
1022 source_msg = source_stream.str();
1023}
1024
1025// Pull together all the information from the debug record to build the error message strings,
1026// and then assemble them into a single message string.
1027// Retrieve the shader program referenced by the unique shader ID provided in the debug record.
1028// We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
1029// sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
1030// keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
1031//
1032static void AnalyzeAndReportError(const layer_data *dev_data, GLOBAL_CB_NODE *cb_node, VkQueue queue,
1033 uint32_t *const debug_output_buffer) {
1034 using namespace spvtools;
1035 const uint32_t total_words = debug_output_buffer[0];
1036 // A zero here means that the shader instrumentation didn't write anything.
1037 // If you have nothing to say, don't say it here.
1038 if (0 == total_words) {
1039 return;
1040 }
1041 // The first word in the debug output buffer is the number of words that would have
1042 // been written by the shader instrumentation, if there was enough room in the buffer we provided.
1043 // The number of words actually written by the shaders is determined by the size of the buffer
1044 // we provide via the descriptor. So, we process only the number of words that can fit in the
1045 // buffer.
1046 // Each "report" written by the shader instrumentation is considered a "record". This function
1047 // is hard-coded to process only one record because it expects the buffer to be large enough to
1048 // hold only one record. If there is a desire to process more than one record, this function needs
1049 // to be modified to loop over records and the buffer size increased.
1050 auto gpu_state = GetGpuValidationState(dev_data);
1051 std::string validation_message;
1052 std::string stage_message;
1053 std::string common_message;
1054 std::string filename_message;
1055 std::string source_message;
1056 std::string vuid_msg;
1057 VkShaderModule shader_module_handle = VK_NULL_HANDLE;
1058 VkPipeline pipeline_handle = VK_NULL_HANDLE;
1059 std::vector<unsigned int> pgm;
1060 // The first record starts at this offset after the total_words.
1061 const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
1062 // Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
1063 // by the instrumented shader.
1064 auto it = gpu_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
1065 if (it != gpu_state->shader_map.end()) {
1066 shader_module_handle = it->second.shader_module;
1067 pipeline_handle = it->second.pipeline;
1068 pgm = it->second.pgm;
1069 }
1070 GenerateValidationMessage(debug_record, validation_message, vuid_msg);
1071 GenerateStageMessage(debug_record, stage_message);
1072 GenerateCommonMessage(dev_data, cb_node, debug_record, shader_module_handle, pipeline_handle, common_message);
1073 GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
1074 log_msg(GetReportData(dev_data), VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
1075 vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
1076 filename_message.c_str(), source_message.c_str());
1077 // The debug record at word kInstCommonOutSize is the number of words in the record
1078 // written by the shader. Clear the entire record plus the total_words word at the start.
1079 const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
1080 memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
1081}
1082
1083// For the given command buffer, map its debug data buffer and read its contents for analysis.
1084static void ProcessInstrumentationBuffer(const layer_data *dev_data, VkQueue queue, GLOBAL_CB_NODE *cb_node) {
1085 auto gpu_state = GetGpuValidationState(dev_data);
1086 if (cb_node && cb_node->hasDrawCmd && cb_node->gpu_output_memory_block.memory) {
1087 VkResult result;
1088 char *pData;
1089 uint32_t block_offset = cb_node->gpu_output_memory_block.offset;
1090 uint32_t block_size = gpu_state->memory_manager->GetBlockSize();
1091 uint32_t offset_to_data = 0;
1092 const uint32_t map_align =
1093 std::max(1U, static_cast<uint32_t>(GetPhysicalDeviceProperties(dev_data)->limits.minMemoryMapAlignment));
1094
1095 // Adjust the offset to the alignment required for mapping.
1096 block_offset = (block_offset / map_align) * map_align;
1097 offset_to_data = cb_node->gpu_output_memory_block.offset - block_offset;
1098 block_size += offset_to_data;
1099 result = GetDispatchTable(dev_data)->MapMemory(cb_node->device, cb_node->gpu_output_memory_block.memory, block_offset,
1100 block_size, 0, (void **)&pData);
1101 // Analyze debug output buffer
1102 if (result == VK_SUCCESS) {
1103 AnalyzeAndReportError(dev_data, cb_node, queue, (uint32_t *)(pData + offset_to_data));
1104 GetDispatchTable(dev_data)->UnmapMemory(cb_node->device, cb_node->gpu_output_memory_block.memory);
1105 }
1106 }
1107}
1108
1109// Wait for the queue to complete execution. Check the debug buffers for all the
1110// command buffers that were submitted.
1111void GpuPostCallQueueSubmit(const layer_data *dev_data, VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits,
1112 VkFence fence, mutex_t &global_lock) {
1113 auto gpu_state = GetGpuValidationState(dev_data);
1114 if (gpu_state->aborted) return;
1115 core_validation::QueueWaitIdle(queue);
1116 unique_lock_t lock(global_lock);
1117 for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
1118 const VkSubmitInfo *submit = &pSubmits[submit_idx];
1119 for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
1120 auto cb_node = GetCBNode(dev_data, submit->pCommandBuffers[i]);
1121 ProcessInstrumentationBuffer(dev_data, queue, cb_node);
1122 for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
1123 ProcessInstrumentationBuffer(dev_data, queue, secondaryCmdBuffer);
1124 }
1125 }
1126 }
1127}