John Zulauf | 86ce1cf | 2020-01-23 12:27:01 -0700 | [diff] [blame] | 1 | /* Copyright (c) 2019-2020 The Khronos Group Inc. |
| 2 | * Copyright (c) 2019-2020 Valve Corporation |
| 3 | * Copyright (c) 2019-2020 LunarG, Inc. |
| 4 | * Copyright (C) 2019-2020 Google Inc. |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 5 | * |
| 6 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 7 | * you may not use this file except in compliance with the License. |
| 8 | * You may obtain a copy of the License at |
| 9 | * |
| 10 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 11 | * |
| 12 | * Unless required by applicable law or agreed to in writing, software |
| 13 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 14 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 15 | * See the License for the specific language governing permissions and |
| 16 | * limitations under the License. |
| 17 | * |
| 18 | * John Zulauf <jzulauf@lunarg.com> |
| 19 | * |
| 20 | */ |
| 21 | #pragma once |
| 22 | |
| 23 | #ifndef RANGE_VECTOR_H_ |
| 24 | #define RANGE_VECTOR_H_ |
| 25 | |
| 26 | #include <algorithm> |
| 27 | #include <cassert> |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 28 | #include <limits> |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 29 | #include <map> |
| 30 | #include <utility> |
| 31 | |
| 32 | #define RANGE_ASSERT(b) assert(b) |
| 33 | |
| 34 | namespace sparse_container { |
| 35 | // range_map |
| 36 | // |
| 37 | // Implements an ordered map of non-overlapping, non-empty ranges |
| 38 | // |
| 39 | template <typename Index> |
| 40 | struct range { |
| 41 | using index_type = Index; |
| 42 | index_type begin; // Inclusive lower bound of range |
| 43 | index_type end; // Exlcusive upper bound of range |
| 44 | |
| 45 | inline bool empty() const { return begin == end; } |
| 46 | inline bool valid() const { return begin <= end; } |
| 47 | inline bool invalid() const { return !valid(); } |
| 48 | inline bool non_empty() const { return begin < end; } // valid and !empty |
| 49 | |
| 50 | inline bool is_prior_to(const range &other) const { return end == other.begin; } |
| 51 | inline bool is_subsequent_to(const range &other) const { return begin == other.end; } |
| 52 | inline bool includes(const index_type &index) const { return (begin <= index) && (index < end); } |
| 53 | inline bool includes(const range &other) const { return (begin <= other.begin) && (other.end <= end); } |
| 54 | inline bool excludes(const index_type &index) const { return (index < begin) || (end <= index); } |
| 55 | inline bool excludes(const range &other) const { return (other.end <= begin) || (end <= other.begin); } |
| 56 | inline bool intersects(const range &other) const { return includes(other.begin) || other.includes(begin); } |
| 57 | inline index_type distance() const { return end - begin; } |
| 58 | |
| 59 | inline bool operator==(const range &rhs) const { return (begin == rhs.begin) && (end == rhs.end); } |
| 60 | inline bool operator!=(const range &rhs) const { return (begin != rhs.begin) || (end != rhs.end); } |
| 61 | |
| 62 | inline range &operator-=(const index_type &offset) { |
| 63 | begin = begin - offset; |
| 64 | end = end - offset; |
| 65 | return *this; |
| 66 | } |
| 67 | |
| 68 | inline range &operator+=(const index_type &offset) { |
| 69 | begin = begin + offset; |
| 70 | end = end + offset; |
| 71 | return *this; |
| 72 | } |
| 73 | |
| 74 | // for a reversible/transitive < operator compare first on begin and then end |
| 75 | // only less or begin is less or if end is less when begin is equal |
| 76 | bool operator<(const range &rhs) const { |
| 77 | bool result = false; |
| 78 | if (invalid()) { |
| 79 | // all invalid < valid, allows map/set validity check by looking at begin()->first |
| 80 | // all invalid are equal, thus only equal if this is invalid and rhs is valid |
| 81 | result = rhs.valid(); |
| 82 | } else if (begin < rhs.begin) { |
| 83 | result = true; |
| 84 | } else if ((begin == rhs.begin) && (end < rhs.end)) { |
| 85 | result = true; // Simple common case -- boundary case require equality check for correctness. |
| 86 | } |
| 87 | return result; |
| 88 | } |
| 89 | |
| 90 | // use as "strictly less/greater than" to check for non-overlapping ranges |
| 91 | bool strictly_less(const range &rhs) const { return end <= rhs.begin; } |
| 92 | bool strictly_less(const index_type &index) const { return end <= index; } |
| 93 | bool strictly_greater(const range &rhs) const { return rhs.end <= begin; } |
| 94 | bool strictly_greater(const index_type &index) const { return index < begin; } |
| 95 | |
| 96 | range &operator=(const range &rhs) { |
| 97 | begin = rhs.begin; |
| 98 | end = rhs.end; |
| 99 | return *this; |
| 100 | } |
| 101 | |
| 102 | range operator&(const range &rhs) const { |
| 103 | if (includes(rhs.begin)) { |
| 104 | return range(rhs.begin, std::min(end, rhs.end)); |
| 105 | } else if (rhs.includes(begin)) { |
| 106 | return range(begin, std::min(end, rhs.end)); |
| 107 | } |
| 108 | return range(); // Empty default range on non-intersection |
| 109 | } |
| 110 | |
| 111 | range() : begin(), end() {} |
| 112 | range(const index_type &begin_, const index_type &end_) : begin(begin_), end(end_) {} |
| 113 | }; |
| 114 | |
John Zulauf | 2076e81 | 2020-01-08 14:55:54 -0700 | [diff] [blame^] | 115 | template <typename Range> |
| 116 | class range_view { |
| 117 | public: |
| 118 | using index_type = typename Range::index_type; |
| 119 | class iterator { |
| 120 | public: |
| 121 | iterator &operator++() { |
| 122 | ++current; |
| 123 | return *this; |
| 124 | } |
| 125 | const index_type &operator*() const { return current; } |
| 126 | bool operator!=(const iterator &rhs) const { return current != rhs.current; } |
| 127 | iterator(index_type value) : current(value) {} |
| 128 | |
| 129 | private: |
| 130 | index_type current; |
| 131 | }; |
| 132 | range_view(const Range &range) : range_(range) {} |
| 133 | const iterator begin() const { return iterator(range_.begin); } |
| 134 | const iterator end() const { return iterator(range_.end); } |
| 135 | |
| 136 | private: |
| 137 | const Range &range_; |
| 138 | }; |
| 139 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 140 | template <typename Container> |
| 141 | using const_correct_iterator = decltype(std::declval<Container>().begin()); |
| 142 | |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 143 | // Type parameters for the range_map(s) |
| 144 | struct insert_range_no_split_bounds { |
| 145 | const static bool split_boundaries = false; |
| 146 | }; |
| 147 | |
| 148 | struct insert_range_split_bounds { |
| 149 | const static bool split_boundaries = true; |
| 150 | }; |
| 151 | |
| 152 | struct split_op_keep_both { |
| 153 | static constexpr bool keep_lower() { return true; } |
| 154 | static constexpr bool keep_upper() { return true; } |
| 155 | }; |
| 156 | |
| 157 | struct split_op_keep_lower { |
| 158 | static constexpr bool keep_lower() { return true; } |
| 159 | static constexpr bool keep_upper() { return false; } |
| 160 | }; |
| 161 | |
| 162 | struct split_op_keep_upper { |
| 163 | static constexpr bool keep_lower() { return false; } |
| 164 | static constexpr bool keep_upper() { return true; } |
| 165 | }; |
| 166 | |
| 167 | enum class value_precedence { prefer_source, prefer_dest }; |
| 168 | |
| 169 | // The range based sparse map implemented on the ImplMap |
| 170 | template <typename Key, typename T, typename RangeKey = range<Key>, typename ImplMap = std::map<RangeKey, T>> |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 171 | class range_map { |
| 172 | public: |
| 173 | protected: |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 174 | using MapKey = RangeKey; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 175 | ImplMap impl_map_; |
| 176 | using ImplIterator = typename ImplMap::iterator; |
| 177 | using ImplConstIterator = typename ImplMap::const_iterator; |
| 178 | |
| 179 | public: |
| 180 | using mapped_type = typename ImplMap::mapped_type; |
| 181 | using value_type = typename ImplMap::value_type; |
| 182 | using key_type = typename ImplMap::key_type; |
| 183 | using index_type = typename key_type::index_type; |
| 184 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 185 | protected: |
| 186 | template <typename ThisType> |
| 187 | using ConstCorrectImplIterator = decltype(std::declval<ThisType>().impl_begin()); |
| 188 | |
| 189 | template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>> |
| 190 | static WrappedIterator lower_bound_impl(ThisType &that, const key_type &key) { |
| 191 | if (key.valid()) { |
| 192 | // ImplMap doesn't give us what want with a direct query, it will give us the first entry contained (if any) in key, |
| 193 | // not the first entry intersecting key, so, first look for the the first entry that starts at or after key.begin |
| 194 | // with the operator > in range, we can safely use an empty range for comparison |
| 195 | auto lower = that.impl_map_.lower_bound(key_type(key.begin, key.begin)); |
| 196 | |
| 197 | // If there is a preceding entry it's possible that begin is included, as all we know is that lower.begin >= key.begin |
| 198 | // or lower is at end |
| 199 | if (!that.at_impl_begin(lower)) { |
| 200 | auto prev = lower; |
| 201 | --prev; |
| 202 | // If the previous entry includes begin (and we know key.begin > prev.begin) then prev is actually lower |
| 203 | if (key.begin < prev->first.end) { |
| 204 | lower = prev; |
| 205 | } |
| 206 | } |
| 207 | return lower; |
| 208 | } |
| 209 | // Key is ill-formed |
| 210 | return that.impl_end(); // Point safely to nothing. |
| 211 | } |
| 212 | |
| 213 | ImplIterator lower_bound_impl(const key_type &key) { return lower_bound_impl(*this, key); } |
| 214 | |
| 215 | ImplConstIterator lower_bound_impl(const key_type &key) const { return lower_bound_impl(*this, key); } |
| 216 | |
| 217 | template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>> |
| 218 | static WrappedIterator upper_bound_impl(ThisType &that, const key_type &key) { |
| 219 | if (key.valid()) { |
| 220 | // the upper bound is the first range that is full greater (upper.begin >= key.end |
| 221 | // we can get close by looking for the first to exclude key.end, then adjust to account for the fact that key.end is |
| 222 | // exclusive and we thus ImplMap::upper_bound may be off by one here, i.e. the previous may be the upper bound |
| 223 | auto upper = that.impl_map_.upper_bound(key_type(key.end, key.end)); |
| 224 | if (!that.at_impl_end(upper) && (upper != that.impl_begin())) { |
| 225 | auto prev = upper; |
| 226 | --prev; |
| 227 | // We know key.end is >= prev.begin, the only question is whether it's == |
| 228 | if (prev->first.begin == key.end) { |
| 229 | upper = prev; |
| 230 | } |
| 231 | } |
| 232 | return upper; |
| 233 | } |
| 234 | return that.impl_end(); // Point safely to nothing. |
| 235 | } |
| 236 | |
| 237 | ImplIterator upper_bound_impl(const key_type &key) { return upper_bound_impl(*this, key); } |
| 238 | |
| 239 | ImplConstIterator upper_bound_impl(const key_type &key) const { return upper_bound_impl(*this, key); } |
| 240 | |
| 241 | ImplIterator impl_find(const key_type &key) { return impl_map_.find(key); } |
| 242 | ImplConstIterator impl_find(const key_type &key) const { return impl_map_.find(key); } |
| 243 | bool impl_not_found(const key_type &key) const { return impl_end() == impl_find(key); } |
| 244 | |
| 245 | ImplIterator impl_end() { return impl_map_.end(); } |
| 246 | ImplConstIterator impl_end() const { return impl_map_.end(); } |
| 247 | |
| 248 | ImplIterator impl_begin() { return impl_map_.begin(); } |
| 249 | ImplConstIterator impl_begin() const { return impl_map_.begin(); } |
| 250 | |
| 251 | inline bool at_impl_end(const ImplIterator &pos) { return pos == impl_end(); } |
| 252 | inline bool at_impl_end(const ImplConstIterator &pos) const { return pos == impl_end(); } |
| 253 | |
| 254 | inline bool at_impl_begin(const ImplIterator &pos) { return pos == impl_begin(); } |
| 255 | inline bool at_impl_begin(const ImplConstIterator &pos) const { return pos == impl_begin(); } |
| 256 | |
| 257 | ImplIterator impl_erase(const ImplIterator &pos) { return impl_map_.erase(pos); } |
| 258 | |
| 259 | template <typename Value> |
| 260 | ImplIterator impl_insert(const ImplIterator &hint, Value &&value) { |
| 261 | RANGE_ASSERT(impl_not_found(value.first)); |
| 262 | RANGE_ASSERT(value.first.non_empty()); |
| 263 | return impl_map_.emplace_hint(hint, std::forward<Value>(value)); |
| 264 | } |
| 265 | ImplIterator impl_insert(const ImplIterator &hint, const key_type &key, const mapped_type &value) { |
| 266 | return impl_insert(hint, std::make_pair(key, value)); |
| 267 | } |
| 268 | |
| 269 | ImplIterator impl_insert(const ImplIterator &hint, const index_type &begin, const index_type &end, const mapped_type &value) { |
| 270 | return impl_insert(hint, key_type(begin, end), value); |
| 271 | } |
| 272 | |
| 273 | template <typename SplitOp> |
| 274 | ImplIterator split_impl(const ImplIterator &split_it, const index_type &index, const SplitOp &) { |
| 275 | // Make sure contains the split point |
| 276 | if (!split_it->first.includes(index)) return split_it; // If we don't have a valid split point, just return the iterator |
| 277 | |
| 278 | const auto range = split_it->first; |
| 279 | key_type lower_range(range.begin, index); |
| 280 | if (lower_range.empty() && SplitOp::keep_upper()) { |
| 281 | return split_it; // this is a noop we're keeping the upper half which is the same as split_it; |
| 282 | } |
| 283 | // Save the contents of it and erase it |
| 284 | auto value = std::move(split_it->second); |
| 285 | auto next_it = impl_map_.erase(split_it); // Keep this, just in case the split point results in an empty "keep" set |
| 286 | |
| 287 | if (lower_range.empty() && !SplitOp::keep_upper()) { |
| 288 | // This effectively an erase... |
| 289 | return next_it; |
| 290 | } |
| 291 | // Upper range cannot be empty |
| 292 | key_type upper_range(index, range.end); |
| 293 | key_type move_range; |
| 294 | key_type copy_range; |
| 295 | |
| 296 | // Were either going to keep one or both of the split pieces. If we keep both, we'll copy value to the upper, |
| 297 | // and move to the lower, and return the lower, else move to, and return the kept one. |
| 298 | if (SplitOp::keep_lower() && !lower_range.empty()) { |
| 299 | move_range = lower_range; |
| 300 | if (SplitOp::keep_upper()) { |
| 301 | copy_range = upper_range; // only need a valid copy range if we keep both. |
| 302 | } |
| 303 | } else if (SplitOp::keep_upper()) { // We're not keeping the lower split because it's either empty or not wanted |
| 304 | move_range = upper_range; // this will be non_empty as index is included ( < end) in the original range) |
| 305 | } |
| 306 | |
| 307 | // we insert from upper to lower because that's what emplace_hint can do in constant time. (not log time in C++11) |
| 308 | if (!copy_range.empty()) { |
| 309 | // We have a second range to create, so do it by copy |
| 310 | RANGE_ASSERT(impl_map_.find(copy_range) == impl_map_.end()); |
| 311 | next_it = impl_map_.emplace_hint(next_it, std::make_pair(copy_range, value)); |
| 312 | } |
| 313 | |
| 314 | if (!move_range.empty()) { |
| 315 | // Whether we keep one or both, the one we return gets value moved to it, as the other one already has a copy |
| 316 | RANGE_ASSERT(impl_map_.find(move_range) == impl_map_.end()); |
| 317 | next_it = impl_map_.emplace_hint(next_it, std::make_pair(move_range, std::move(value))); |
| 318 | } |
| 319 | |
| 320 | // point to the beginning of the inserted elements (or the next from the erase |
| 321 | return next_it; |
| 322 | } |
| 323 | |
| 324 | // do an ranged insert that splits existing ranges at the boundaries, and writes value to any non-initialized sub-ranges |
| 325 | range<ImplIterator> infill_and_split(const key_type &bounds, const mapped_type &value, ImplIterator lower, bool split_bounds) { |
| 326 | auto pos = lower; |
| 327 | if (at_impl_end(pos)) return range<ImplIterator>(pos, pos); // defensive... |
| 328 | |
| 329 | // Logic assumes we are starting at lower bound |
| 330 | RANGE_ASSERT(lower == lower_bound_impl(bounds)); |
| 331 | |
| 332 | // Trim/infil the beginning if needed |
| 333 | const auto first_begin = pos->first.begin; |
| 334 | if (bounds.begin > first_begin && split_bounds) { |
| 335 | pos = split_impl(pos, bounds.begin, split_op_keep_both()); |
| 336 | lower = pos; |
| 337 | ++lower; |
| 338 | RANGE_ASSERT(lower == lower_bound_impl(bounds)); |
| 339 | } else if (bounds.begin < first_begin) { |
| 340 | pos = impl_insert(pos, bounds.begin, first_begin, value); |
| 341 | lower = pos; |
| 342 | RANGE_ASSERT(lower == lower_bound_impl(bounds)); |
| 343 | } |
| 344 | |
| 345 | // in the trim case pos starts one before lower_bound, but that allows trimming a single entry range in loop. |
| 346 | // NOTE that the loop is trimming and infilling at pos + 1 |
| 347 | while (!at_impl_end(pos) && pos->first.begin < bounds.end) { |
| 348 | auto last_end = pos->first.end; |
| 349 | // check for in-fill |
| 350 | ++pos; |
| 351 | if (at_impl_end(pos)) { |
| 352 | if (last_end < bounds.end) { |
| 353 | // Gap after last entry in impl_map and before end, |
| 354 | pos = impl_insert(pos, last_end, bounds.end, value); |
| 355 | ++pos; // advances to impl_end, as we're at upper boundary |
| 356 | RANGE_ASSERT(at_impl_end(pos)); |
| 357 | } |
| 358 | } else if (pos->first.begin != last_end) { |
| 359 | // we have a gap between last entry and current... fill, but not beyond bounds |
| 360 | if (bounds.includes(pos->first.begin)) { |
| 361 | pos = impl_insert(pos, last_end, pos->first.begin, value); |
| 362 | // don't further advance pos, because we may need to split the next entry and thus can't skip it. |
| 363 | } else if (last_end < bounds.end) { |
| 364 | // Non-zero length final gap in-bounds |
| 365 | pos = impl_insert(pos, last_end, bounds.end, value); |
| 366 | ++pos; // advances back to the out of bounds entry which we inserted just before |
| 367 | RANGE_ASSERT(!bounds.includes(pos->first.begin)); |
| 368 | } |
| 369 | } else if (pos->first.includes(bounds.end)) { |
| 370 | if (split_bounds) { |
| 371 | // extends past the end of the bounds range, snip to only include the bounded section |
| 372 | // NOTE: this splits pos, but the upper half of the split should now be considered upper_bound |
| 373 | // for the range |
| 374 | pos = split_impl(pos, bounds.end, split_op_keep_both()); |
| 375 | } |
| 376 | // advance to the upper haf of the split which will be upper_bound or to next which will both be out of bounds |
| 377 | ++pos; |
| 378 | RANGE_ASSERT(!bounds.includes(pos->first.begin)); |
| 379 | } |
| 380 | } |
| 381 | // Return the current position which should be the upper_bound for bounds |
| 382 | RANGE_ASSERT(pos == upper_bound_impl(bounds)); |
| 383 | return range<ImplIterator>(lower, pos); |
| 384 | } |
| 385 | |
| 386 | ImplIterator impl_erase_range(const key_type &bounds, ImplIterator lower) { |
| 387 | // Logic assumes we are starting at a valid lower bound |
| 388 | RANGE_ASSERT(!at_impl_end(lower)); |
| 389 | RANGE_ASSERT(lower == lower_bound_impl(bounds)); |
| 390 | |
| 391 | // Trim/infil the beginning if needed |
| 392 | auto current = lower; |
| 393 | const auto first_begin = current->first.begin; |
| 394 | if (bounds.begin > first_begin) { |
| 395 | // Preserve the portion of lower bound excluded from bounds |
John Zulauf | 38c85f3 | 2020-02-06 11:14:27 -0700 | [diff] [blame] | 396 | if (current->first.end <= bounds.end) { |
| 397 | // If current ends within the erased bound we can discard the the upper portion of current |
| 398 | current = split_impl(current, bounds.begin, split_op_keep_lower()); |
| 399 | } else { |
| 400 | // Keep the upper portion of current for the later split below |
| 401 | current = split_impl(current, bounds.begin, split_op_keep_both()); |
| 402 | } |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 403 | // Exclude the preserved portion |
| 404 | ++current; |
| 405 | RANGE_ASSERT(current == lower_bound_impl(bounds)); |
| 406 | } |
| 407 | |
| 408 | // Loop over completely contained entries and erase them |
| 409 | while (!at_impl_end(current) && (current->first.end <= bounds.end)) { |
| 410 | current = impl_erase(current); |
| 411 | } |
| 412 | |
| 413 | if (!at_impl_end(current) && current->first.includes(bounds.end)) { |
| 414 | // last entry extends past the end of the bounds range, snip to only erase the bounded section |
| 415 | current = split_impl(current, bounds.end, split_op_keep_upper()); |
| 416 | } |
| 417 | |
| 418 | RANGE_ASSERT(current == upper_bound_impl(bounds)); |
| 419 | return current; |
| 420 | } |
| 421 | |
| 422 | template <typename ValueType, typename WrappedIterator_> |
| 423 | struct iterator_impl { |
| 424 | public: |
| 425 | friend class range_map; |
| 426 | using WrappedIterator = WrappedIterator_; |
| 427 | |
| 428 | private: |
| 429 | WrappedIterator pos_; |
| 430 | |
| 431 | // Create an iterator at a specific internal state -- only from the parent container |
| 432 | iterator_impl(const WrappedIterator &pos) : pos_(pos) {} |
| 433 | |
| 434 | public: |
| 435 | iterator_impl() : iterator_impl(WrappedIterator()){}; |
| 436 | iterator_impl(const iterator_impl &other) : pos_(other.pos_){}; |
| 437 | |
| 438 | iterator_impl &operator=(const iterator_impl &rhs) { |
| 439 | pos_ = rhs.pos_; |
| 440 | return *this; |
| 441 | } |
| 442 | |
| 443 | inline bool operator==(const iterator_impl &rhs) const { return pos_ == rhs.pos_; } |
| 444 | |
| 445 | inline bool operator!=(const iterator_impl &rhs) const { return pos_ != rhs.pos_; } |
| 446 | |
| 447 | ValueType &operator*() const { return *pos_; } |
| 448 | ValueType *operator->() const { return &*pos_; } |
| 449 | |
| 450 | iterator_impl &operator++() { |
| 451 | ++pos_; |
| 452 | return *this; |
| 453 | } |
| 454 | |
| 455 | iterator_impl &operator--() { |
| 456 | --pos_; |
| 457 | return *this; |
| 458 | } |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 459 | |
| 460 | // To allow for iterator -> const_iterator construction |
| 461 | // NOTE: while it breaks strict encapsulation, it does so less than friend |
| 462 | const WrappedIterator &get_pos() const { return pos_; }; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 463 | }; |
| 464 | |
| 465 | public: |
| 466 | using iterator = iterator_impl<value_type, ImplIterator>; |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 467 | |
| 468 | // The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support |
| 469 | class const_iterator : public iterator_impl<const value_type, ImplConstIterator> { |
| 470 | using Base = iterator_impl<const value_type, ImplConstIterator>; |
| 471 | friend range_map; |
| 472 | |
| 473 | public: |
| 474 | const_iterator(const const_iterator &other) : Base(other){}; |
| 475 | const_iterator(const iterator &it) : Base(ImplConstIterator(it.get_pos())) {} |
| 476 | const_iterator() : Base() {} |
| 477 | |
| 478 | private: |
| 479 | const_iterator(const ImplConstIterator &pos) : Base(pos) {} |
| 480 | }; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 481 | |
| 482 | protected: |
| 483 | inline bool at_end(const iterator &it) { return at_impl_end(it.pos_); } |
| 484 | inline bool at_end(const const_iterator &it) const { return at_impl_end(it.pos_); } |
| 485 | inline bool at_begin(const iterator &it) { return at_impl_begin(it.pos_); } |
| 486 | |
| 487 | template <typename That, typename Iterator> |
| 488 | static bool is_contiguous_impl(That *const that, const key_type &range, const Iterator &lower) { |
| 489 | // Search range or intersection is empty |
| 490 | if (lower == that->impl_end() || lower->first.excludes(range)) return false; |
| 491 | |
| 492 | if (lower->first.includes(range)) { |
| 493 | return true; // there is one entry that contains the whole key range |
| 494 | } |
| 495 | |
| 496 | bool contiguous = true; |
| 497 | for (auto pos = lower; contiguous && pos != that->impl_end() && range.includes(pos->first.begin); ++pos) { |
| 498 | // if current doesn't cover the rest of the key range, check to see that the next is extant and abuts |
| 499 | if (pos->first.end < range.end) { |
| 500 | auto next = pos; |
John Zulauf | f3eeba6 | 2019-11-22 15:09:07 -0700 | [diff] [blame] | 501 | ++next; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 502 | contiguous = (next != that->impl_end()) && pos->first.is_prior_to(next->first); |
| 503 | } |
| 504 | } |
| 505 | return contiguous; |
| 506 | } |
| 507 | |
| 508 | public: |
| 509 | iterator end() { return iterator(impl_map_.end()); } // policy and bounds don't matter for end |
| 510 | const_iterator end() const { return const_iterator(impl_map_.end()); } // policy and bounds don't matter for end |
| 511 | iterator begin() { return iterator(impl_map_.begin()); } // with default policy, and thus no bounds |
| 512 | const_iterator begin() const { return const_iterator(impl_map_.begin()); } // with default policy, and thus no bounds |
| 513 | const_iterator cbegin() const { return const_iterator(impl_map_.cbegin()); } // with default policy, and thus no bounds |
| 514 | const_iterator cend() const { return const_iterator(impl_map_.cend()); } // with default policy, and thus no bounds |
| 515 | |
| 516 | iterator erase(const iterator &pos) { |
| 517 | RANGE_ASSERT(!at_end(pos)); |
| 518 | return iterator(impl_erase(pos.pos_)); |
| 519 | } |
| 520 | |
| 521 | iterator erase(range<iterator> bounds) { |
| 522 | auto current = bounds.begin.pos_; |
| 523 | while (current != bounds.end.pos_) { |
| 524 | RANGE_ASSERT(!at_impl_end(current)); |
| 525 | current = impl_map_.erase(current); |
| 526 | } |
| 527 | RANGE_ASSERT(current == bounds.end.pos_); |
| 528 | return current; |
| 529 | } |
| 530 | |
| 531 | iterator erase(iterator first, iterator last) { return erase(range<iterator>(first, last)); } |
| 532 | |
| 533 | iterator erase_range(const key_type &bounds) { |
| 534 | auto lower = lower_bound_impl(bounds); |
| 535 | |
| 536 | if (at_impl_end(lower) || !bounds.intersects(lower->first)) { |
| 537 | // There is nothing in this range lower bound is above bound |
| 538 | return iterator(lower); |
| 539 | } |
| 540 | auto next = impl_erase_range(bounds, lower); |
| 541 | return iterator(next); |
| 542 | } |
| 543 | |
| 544 | void clear() { impl_map_.clear(); } |
| 545 | |
| 546 | iterator find(const key_type &key) { return iterator(impl_map_.find(key)); } |
| 547 | |
| 548 | const_iterator find(const key_type &key) const { return const_iterator(impl_map_.find(key)); } |
| 549 | |
| 550 | iterator find(const index_type &index) { |
| 551 | auto lower = lower_bound(range<index_type>(index, index + 1)); |
| 552 | if (!at_end(lower) && lower->first.includes(index)) { |
| 553 | return lower; |
| 554 | } |
| 555 | return end(); |
| 556 | } |
| 557 | |
| 558 | const_iterator find(const index_type &index) const { |
| 559 | auto lower = lower_bound(key_type(index, index + 1)); |
| 560 | if (!at_end(lower) && lower->first.includes(index)) { |
| 561 | return lower; |
| 562 | } |
| 563 | return end(); |
| 564 | } |
| 565 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 566 | iterator lower_bound(const key_type &key) { return iterator(lower_bound_impl(key)); } |
| 567 | |
| 568 | const_iterator lower_bound(const key_type &key) const { return const_iterator(lower_bound_impl(key)); } |
| 569 | |
| 570 | iterator upper_bound(const key_type &key) { return iterator(upper_bound_impl(key)); } |
| 571 | |
| 572 | const_iterator upper_bound(const key_type &key) const { return const_iterator(upper_bound_impl(key)); } |
| 573 | |
| 574 | range<iterator> bounds(const key_type &key) { return {lower_bound(key), upper_bound(key)}; } |
| 575 | range<const_iterator> cbounds(const key_type &key) const { return {lower_bound(key), upper_bound(key)}; } |
| 576 | range<const_iterator> bounds(const key_type &key) const { return cbounds(key); } |
| 577 | |
| 578 | using insert_pair = std::pair<iterator, bool>; |
| 579 | |
| 580 | // This is traditional no replacement insert. |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 581 | insert_pair insert(const value_type &value) { |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 582 | const auto &key = value.first; |
| 583 | if (!key.non_empty()) { |
| 584 | // It's an invalid key, early bail pointing to end |
| 585 | return std::make_pair(end(), false); |
| 586 | } |
| 587 | |
| 588 | // Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work) |
| 589 | // we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper) |
| 590 | auto lower = lower_bound_impl(key); |
| 591 | if (at_impl_end(lower) || !lower->first.intersects(key)) { |
| 592 | // range is not even paritally overlapped, and lower is strictly > than key |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 593 | auto impl_insert = impl_map_.emplace_hint(lower, value); |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 594 | // auto impl_insert = impl_map_.emplace(value); |
| 595 | iterator wrap_it(impl_insert); |
| 596 | return std::make_pair(wrap_it, true); |
| 597 | } |
| 598 | // We don't replace |
| 599 | return std::make_pair(iterator(lower), false); |
| 600 | }; |
| 601 | |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 602 | iterator insert(const_iterator hint, const value_type &value) { |
| 603 | bool hint_open; |
| 604 | ImplConstIterator impl_next = hint.pos_; |
| 605 | if (impl_map_.empty()) { |
| 606 | hint_open = true; |
| 607 | } else if (impl_next == impl_map_.cbegin()) { |
| 608 | hint_open = value.first.strictly_less(impl_next->first); |
| 609 | } else if (impl_next == impl_map_.cend()) { |
| 610 | auto impl_prev = impl_next; |
| 611 | --impl_prev; |
| 612 | hint_open = value.first.strictly_greater(impl_prev->first); |
| 613 | } else { |
| 614 | auto impl_prev = impl_next; |
| 615 | --impl_prev; |
| 616 | hint_open = value.first.strictly_greater(impl_prev->first) && value.first.strictly_less(impl_next->first); |
| 617 | } |
| 618 | |
| 619 | if (!hint_open) { |
| 620 | // Hint was unhelpful, fall back to the non-hinted version |
| 621 | auto plain_insert = insert(value); |
| 622 | return plain_insert.first; |
| 623 | } |
| 624 | |
| 625 | auto impl_insert = impl_map_.insert(impl_next, value); |
| 626 | return iterator(impl_insert); |
| 627 | } |
| 628 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 629 | template <typename SplitOp> |
| 630 | iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) { |
| 631 | auto split_it = split_impl(whole_it.pos_, index, split_op); |
| 632 | return iterator(split_it); |
| 633 | } |
| 634 | |
| 635 | // The overwrite hint here is lower.... and if it's not right... this fails |
| 636 | template <typename Value> |
| 637 | iterator overwrite_range(const iterator &lower, Value &&value) { |
| 638 | // We're not robust to a bad hint, so detect it with extreme prejudice |
| 639 | // TODO: Add bad hint test to make this robust... |
| 640 | auto lower_impl = lower.pos_; |
| 641 | auto insert_hint = lower_impl; |
| 642 | if (!at_impl_end(lower_impl)) { |
| 643 | // If we're at end (and the hint is good, there's nothing to erase |
| 644 | RANGE_ASSERT(lower == lower_bound(value.first)); |
| 645 | insert_hint = impl_erase_range(value.first, lower_impl); |
| 646 | } |
| 647 | auto inserted = impl_insert(insert_hint, std::forward<Value>(value)); |
| 648 | return iterator(inserted); |
| 649 | } |
| 650 | |
| 651 | template <typename Value> |
| 652 | iterator overwrite_range(Value &&value) { |
| 653 | auto lower = lower_bound(value.first); |
| 654 | return overwrite_range(lower, value); |
| 655 | } |
| 656 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 657 | bool empty() const { return impl_map_.empty(); } |
| 658 | size_t size() const { return impl_map_.size(); } |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 659 | |
| 660 | // For configuration/debug use // Use with caution... |
| 661 | ImplMap &get_implementation_map() { return impl_map_; } |
| 662 | const ImplMap &get_implementation_map() const { return impl_map_; } |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 663 | }; |
| 664 | |
| 665 | template <typename Container> |
| 666 | using const_correct_iterator = decltype(std::declval<Container>().begin()); |
| 667 | |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 668 | // The an array based small ordered map for range keys for use as the range map "ImplMap" as an alternate to std::map |
| 669 | // |
| 670 | // Assumes RangeKey::index_type is unsigned (TBD is it useful to generalize to unsigned?) |
| 671 | // Assumes RangeKey implements begin, end, < and (TBD) from template range above |
| 672 | template <typename Key, typename T, typename RangeKey = range<Key>, size_t N = 64, typename SmallIndex = uint8_t> |
| 673 | class small_range_map { |
| 674 | using SmallRange = range<SmallIndex>; |
| 675 | |
| 676 | public: |
| 677 | using mapped_type = T; |
| 678 | using key_type = RangeKey; |
| 679 | using value_type = std::pair<const key_type, mapped_type>; |
| 680 | using index_type = typename key_type::index_type; |
| 681 | |
| 682 | using size_type = SmallIndex; |
| 683 | template <typename Map_, typename Value_> |
| 684 | struct IteratorImpl { |
| 685 | public: |
| 686 | using Map = Map_; |
| 687 | using Value = Value_; |
| 688 | friend Map; |
| 689 | Value *operator->() const { return map_->get_value(pos_); } |
| 690 | Value &operator*() const { return *(map_->get_value(pos_)); } |
| 691 | IteratorImpl &operator++() { |
| 692 | pos_ = map_->next_range(pos_); |
| 693 | return *this; |
| 694 | } |
| 695 | IteratorImpl &operator--() { |
| 696 | pos_ = map_->prev_range(pos_); |
| 697 | return *this; |
| 698 | } |
| 699 | IteratorImpl &operator=(const IteratorImpl &other) { |
| 700 | map_ = other.map_; |
| 701 | pos_ = other.pos_; |
| 702 | return *this; |
| 703 | } |
| 704 | bool operator==(const IteratorImpl &other) const { |
| 705 | if (at_end() && other.at_end()) { |
| 706 | return true; // all ends are equal |
| 707 | } |
| 708 | return (map_ == other.map_) && (pos_ == other.pos_); |
| 709 | } |
| 710 | bool operator!=(const IteratorImpl &other) const { return !(*this == other); } |
| 711 | |
| 712 | // At end() |
| 713 | IteratorImpl() : map_(nullptr), pos_(N) {} |
| 714 | |
| 715 | // Raw getters to allow for const_iterator conversion below |
| 716 | Map *get_map() const { return map_; } |
| 717 | SmallIndex get_pos() const { return pos_; } |
| 718 | |
| 719 | bool at_end() const { return (map_ == nullptr) || (pos_ >= map_->get_limit()); } |
| 720 | |
| 721 | protected: |
| 722 | IteratorImpl(Map *map, SmallIndex pos) : map_(map), pos_(pos) {} |
| 723 | |
| 724 | private: |
| 725 | Map *map_; |
| 726 | SmallIndex pos_; // the begin of the current small_range |
| 727 | }; |
| 728 | using iterator = IteratorImpl<small_range_map, value_type>; |
| 729 | |
| 730 | // The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support |
| 731 | class const_iterator : public IteratorImpl<const small_range_map, const value_type> { |
| 732 | using Base = IteratorImpl<const small_range_map, const value_type>; |
| 733 | friend small_range_map; |
| 734 | |
| 735 | public: |
| 736 | const_iterator(const iterator &it) : Base(it.get_map(), it.get_pos()) {} |
| 737 | const_iterator() : Base() {} |
| 738 | |
| 739 | private: |
| 740 | const_iterator(const small_range_map *map, SmallIndex pos) : Base(map, pos) {} |
| 741 | }; |
| 742 | |
| 743 | iterator begin() { |
| 744 | // Either ranges of 0 is valid and begin is 0 and begin *or* it's invalid an points to the first valid range (or end) |
| 745 | return iterator(this, ranges_[0].begin); |
| 746 | } |
| 747 | const_iterator cbegin() const { return const_iterator(this, ranges_[0].begin); } |
| 748 | const_iterator begin() const { return cbegin(); } |
| 749 | iterator end() { return iterator(); } |
| 750 | const_iterator cend() const { return const_iterator(); } |
| 751 | const_iterator end() const { return cend(); } |
| 752 | |
| 753 | void clear() { |
| 754 | const SmallRange clear_range(limit_, 0); |
| 755 | for (SmallIndex i = 0; i < limit_; ++i) { |
| 756 | auto &range = ranges_[i]; |
| 757 | if (range.begin == i) { |
| 758 | // Clean up the backing store |
| 759 | destruct_value(i); |
| 760 | } |
| 761 | range = clear_range; |
| 762 | } |
| 763 | size_ = 0; |
| 764 | } |
| 765 | |
| 766 | // Find entry with an exact key match (uncommon use case) |
| 767 | iterator find(const key_type &key) { |
| 768 | RANGE_ASSERT(in_bounds(key)); |
| 769 | if (key.begin < limit_) { |
| 770 | const SmallIndex small_begin = static_cast<SmallIndex>(key.begin); |
| 771 | const auto &range = ranges_[small_begin]; |
| 772 | if (range.begin == small_begin) { |
| 773 | const auto small_end = static_cast<SmallIndex>(key.end); |
| 774 | if (range.end == small_end) return iterator(this, small_begin); |
| 775 | } |
| 776 | } |
| 777 | return end(); |
| 778 | } |
| 779 | const_iterator find(const key_type &key) const { |
| 780 | RANGE_ASSERT(in_bounds(key)); |
| 781 | if (key.begin < limit_) { |
| 782 | const SmallIndex small_begin = static_cast<SmallIndex>(key.begin); |
| 783 | const auto &range = ranges_[small_begin]; |
| 784 | if (range.begin == small_begin) { |
| 785 | const auto small_end = static_cast<SmallIndex>(key.end); |
| 786 | if (range.end == small_end) return const_iterator(this, small_begin); |
| 787 | } |
| 788 | } |
| 789 | return end(); |
| 790 | } |
| 791 | |
| 792 | iterator find(const index_type &index) { |
| 793 | if (index < get_limit()) { |
| 794 | const SmallIndex small_index = static_cast<SmallIndex>(index); |
| 795 | const auto &range = ranges_[small_index]; |
| 796 | if (range.valid()) { |
| 797 | return iterator(this, range.begin); |
| 798 | } |
| 799 | } |
| 800 | return end(); |
| 801 | } |
| 802 | |
| 803 | const_iterator find(const index_type &index) const { |
| 804 | if (index < get_limit()) { |
| 805 | const SmallIndex small_index = static_cast<SmallIndex>(index); |
| 806 | const auto &range = ranges_[small_index]; |
| 807 | if (range.valid()) { |
| 808 | return const_iterator(this, range.begin); |
| 809 | } |
| 810 | } |
| 811 | return end(); |
| 812 | } |
| 813 | |
| 814 | size_type size() const { return size_; } |
| 815 | bool empty() const { return 0 == size_; } |
| 816 | |
| 817 | iterator erase(const_iterator pos) { |
| 818 | RANGE_ASSERT(pos.map_ == this); |
| 819 | return erase_impl(pos.get_pos()); |
| 820 | } |
| 821 | |
| 822 | iterator erase(iterator pos) { |
| 823 | RANGE_ASSERT(pos.map_ == this); |
| 824 | return erase_impl(pos.get_pos()); |
| 825 | } |
| 826 | |
| 827 | // Must be called with rvalue or lvalue of value_type |
| 828 | template <typename Value> |
| 829 | iterator emplace(Value &&value) { |
| 830 | const auto &key = value.first; |
| 831 | RANGE_ASSERT(in_bounds(key)); |
| 832 | if (key.begin >= limit_) return end(); // Invalid key (end is checked in "is_open") |
| 833 | const SmallRange range(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end)); |
| 834 | if (is_open(key)) { |
| 835 | // This needs to be the fast path, but I don't see how we can avoid the sanity checks above |
| 836 | for (auto i = range.begin; i < range.end; ++i) { |
| 837 | ranges_[i] = range; |
| 838 | } |
| 839 | // Update the next information for the previous unused slots (as stored in begin invalidly) |
| 840 | auto prev = range.begin; |
| 841 | while (prev > 0) { |
| 842 | --prev; |
| 843 | if (ranges_[prev].valid()) break; |
| 844 | ranges_[prev].begin = range.begin; |
| 845 | } |
| 846 | // Placement new into the storage interpreted as Value |
| 847 | construct_value(range.begin, value_type(std::forward<Value>(value))); |
| 848 | auto next = range.end; |
| 849 | // update the previous range information for the next unsed slots (as stored in end invalidly) |
| 850 | while (next < limit_) { |
| 851 | // End is exclusive... increment *after* update |
| 852 | if (ranges_[next].valid()) break; |
| 853 | ranges_[next].end = range.end; |
| 854 | ++next; |
| 855 | } |
| 856 | return iterator(this, range.begin); |
| 857 | } else { |
| 858 | // Can't insert into occupied ranges. |
| 859 | // if ranges_[key.begin] is valid then this is the collision (starting at .begin |
| 860 | // if it's invalid .begin points to the overlapping entry from is_open (or end if key was out of range) |
| 861 | return iterator(this, ranges_[range.begin].begin); |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | // As hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction |
| 866 | template <typename Value> |
| 867 | iterator emplace_hint(const const_iterator &hint, Value &&value) { |
| 868 | // We have direct access so we can drop the hint |
| 869 | return emplace(std::forward<Value>(value)); |
| 870 | } |
| 871 | |
| 872 | template <typename Value> |
| 873 | iterator emplace_hint(const iterator &hint, Value &&value) { |
| 874 | // We have direct access so we can drop the hint |
| 875 | return emplace(std::forward<Value>(value)); |
| 876 | } |
| 877 | |
| 878 | // Again, hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction |
| 879 | iterator insert(const const_iterator &hint, const value_type &value) { return emplace(value); } |
| 880 | iterator insert(const iterator &hint, const value_type &value) { return emplace(value); } |
| 881 | |
| 882 | std::pair<iterator, bool> insert(const value_type &value) { |
| 883 | const auto &key = value.first; |
| 884 | RANGE_ASSERT(in_bounds(key)); |
| 885 | if (key.begin >= limit_) return std::make_pair(end(), false); // Invalid key, not inserted. |
| 886 | if (is_open(key)) { |
| 887 | return std::make_pair(emplace(value), true); |
| 888 | } |
| 889 | // If invalid we point to the subsequent range that collided, if valid begin is the start of the valid range |
| 890 | const auto &collision_begin = ranges_[key.begin].begin; |
| 891 | RANGE_ASSERT(ranges_[collision_begin].valid()); |
| 892 | return std::make_pair(iterator(this, collision_begin), false); |
| 893 | } |
| 894 | |
| 895 | template <typename SplitOp> |
| 896 | iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) { |
| 897 | if (!whole_it->first.includes(index)) return whole_it; // If we don't have a valid split point, just return the iterator |
| 898 | |
| 899 | const auto &key = whole_it->first; |
| 900 | const auto small_key = make_small_range(key); |
| 901 | key_type lower_key(key.begin, index); |
| 902 | if (lower_key.empty() && SplitOp::keep_upper()) { |
| 903 | return whole_it; // this is a noop we're keeping the upper half which is the same as whole_it; |
| 904 | } |
| 905 | |
| 906 | if ((lower_key.empty() && !SplitOp::keep_upper()) || !(SplitOp::keep_lower() || SplitOp::keep_upper())) { |
| 907 | // This effectively an erase... so erase. |
| 908 | return erase(whole_it); |
| 909 | } |
| 910 | |
| 911 | // Upper range cannot be empty (because the split point would be included... |
| 912 | const auto small_lower_key = make_small_range(lower_key); |
| 913 | const SmallRange small_upper_key{small_lower_key.end, small_key.end}; |
| 914 | if (SplitOp::keep_upper()) { |
| 915 | // Note: create the upper section before the lower, as processing the lower may erase it |
| 916 | RANGE_ASSERT(!small_upper_key.empty()); |
| 917 | const key_type upper_key{lower_key.end, key.end}; |
| 918 | if (SplitOp::keep_lower()) { |
| 919 | construct_value(small_upper_key.begin, std::make_pair(upper_key, get_value(small_key.begin)->second)); |
| 920 | } else { |
| 921 | // If we aren't keeping the lower, move instead of copy |
| 922 | construct_value(small_upper_key.begin, std::make_pair(upper_key, std::move(get_value(small_key.begin)->second))); |
| 923 | } |
| 924 | for (auto i = small_upper_key.begin; i < small_upper_key.end; ++i) { |
| 925 | ranges_[i] = small_upper_key; |
| 926 | } |
| 927 | } else { |
| 928 | // rewrite "end" to the next valid range (or end) |
| 929 | RANGE_ASSERT(SplitOp::keep_lower()); |
| 930 | auto next = next_range(small_key.begin); |
| 931 | rerange(small_upper_key, SmallRange(next, small_lower_key.end)); |
| 932 | // for any already invalid, we just rewrite the end. |
| 933 | rerange_end(small_upper_key.end, next, small_lower_key.end); |
| 934 | } |
| 935 | SmallIndex split_index; |
| 936 | if (SplitOp::keep_lower()) { |
| 937 | resize_value(small_key.begin, lower_key.end); |
| 938 | rerange_end(small_lower_key.begin, small_lower_key.end, small_lower_key.end); |
| 939 | split_index = small_lower_key.begin; |
| 940 | } else { |
| 941 | // Remove lower and rewrite empty space |
| 942 | RANGE_ASSERT(SplitOp::keep_upper()); |
| 943 | destruct_value(small_key.begin); |
| 944 | |
| 945 | // Rewrite prior empty space (if any) |
| 946 | auto prev = prev_range(small_key.begin); |
| 947 | SmallIndex limit = small_lower_key.end; |
| 948 | SmallIndex start = 0; |
| 949 | if (small_key.begin != 0) { |
| 950 | const auto &prev_start = ranges_[prev]; |
| 951 | if (prev_start.valid()) { |
| 952 | // If there is a previous used range, the empty space starts after it. |
| 953 | start = prev_start.end; |
| 954 | } else { |
| 955 | RANGE_ASSERT(prev == 0); // prev_range only returns invalid ranges "off the front" |
| 956 | start = prev; |
| 957 | } |
| 958 | // for the section *prior* to key begin only need to rewrite the "invalid" begin (i.e. next "in use" begin) |
| 959 | rerange_begin(start, small_lower_key.begin, limit); |
| 960 | } |
| 961 | // for the section being erased rewrite the invalid range reflecting the empty space |
| 962 | rerange(small_lower_key, SmallRange(limit, start)); |
| 963 | split_index = small_lower_key.end; |
| 964 | } |
| 965 | |
| 966 | return iterator(this, split_index); |
| 967 | } |
| 968 | |
| 969 | // For the value.first range rewrite the range... |
| 970 | template <typename Value> |
| 971 | iterator overwrite_range(Value &&value) { |
| 972 | const auto &key = value.first; |
| 973 | |
| 974 | // Small map only has a restricted range supported |
| 975 | RANGE_ASSERT(in_bounds(key)); |
| 976 | if (key.end > get_limit()) { |
| 977 | return end(); |
| 978 | } |
| 979 | |
| 980 | const auto small_key = make_small_range(key); |
| 981 | clear_out_range(small_key, /* valid clear range */ true); |
| 982 | construct_value(small_key.begin, std::forward<Value>(value)); |
| 983 | return iterator(this, small_key.begin); |
| 984 | } |
| 985 | |
| 986 | // We don't need a hint... |
| 987 | template <typename Value> |
| 988 | iterator overwrite_range(const iterator &hint, Value &&value) { |
| 989 | return overwrite_range(std::forward<Value>(value)); |
| 990 | } |
| 991 | |
| 992 | // For the range erase all contents within range, trimming any overlapping ranges |
| 993 | iterator erase_range(const key_type &range) { |
| 994 | // Small map only has a restricted range supported |
| 995 | RANGE_ASSERT(in_bounds(range)); |
| 996 | if (range.end > get_limit() || range.empty()) { |
| 997 | return end(); |
| 998 | } |
| 999 | const auto empty = clear_out_range(make_small_range(range), /* valid clear range */ false); |
| 1000 | return iterator(this, empty.end); |
| 1001 | } |
| 1002 | |
| 1003 | template <typename Iterator> |
| 1004 | iterator erase(const Iterator &first, const Iterator &last) { |
| 1005 | RANGE_ASSERT(this == first.map_); |
| 1006 | RANGE_ASSERT(this == last.map_); |
| 1007 | auto first_pos = !first.at_end() ? first.pos_ : limit_; |
| 1008 | auto last_pos = !last.at_end() ? last.pos_ : limit_; |
| 1009 | RANGE_ASSERT(first_pos <= last_pos); |
| 1010 | const SmallRange clear_me(first_pos, last_pos); |
| 1011 | if (!clear_me.empty()) { |
| 1012 | const SmallRange empty_range(find_empty_left(clear_me), last_pos); |
| 1013 | clear_and_set_range(empty_range.begin, empty_range.end, make_invalid_range(empty_range)); |
| 1014 | } |
| 1015 | return iterator(this, last_pos); |
| 1016 | } |
| 1017 | |
| 1018 | iterator lower_bound(const key_type &key) { return iterator(this, lower_bound_impl(this, key)); } |
| 1019 | const_iterator lower_bound(const key_type &key) const { return const_iterator(this, lower_bound_impl(this, key)); } |
| 1020 | |
| 1021 | iterator upper_bound(const key_type &key) { return iterator(this, upper_bound_impl(this, key)); } |
| 1022 | const_iterator upper_bound(const key_type &key) const { return const_iterator(this, upper_bound_impl(this, key)); } |
| 1023 | |
| 1024 | small_range_map(index_type limit = N) : size_(0), limit_(static_cast<SmallIndex>(limit)) { |
| 1025 | RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max()); |
| 1026 | init_range(); |
| 1027 | } |
| 1028 | |
| 1029 | // Only valid for empty maps |
| 1030 | void set_limit(size_t limit) { |
| 1031 | RANGE_ASSERT(size_ == 0); |
| 1032 | RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max()); |
| 1033 | limit_ = static_cast<SmallIndex>(limit); |
| 1034 | init_range(); |
| 1035 | } |
| 1036 | inline index_type get_limit() const { return static_cast<index_type>(limit_); } |
| 1037 | |
| 1038 | private: |
| 1039 | inline bool in_bounds(index_type index) const { return index < get_limit(); } |
| 1040 | inline bool in_bounds(const RangeKey &key) const { return key.begin < get_limit() && key.end <= get_limit(); } |
| 1041 | |
| 1042 | inline SmallRange make_small_range(const RangeKey &key) const { |
| 1043 | RANGE_ASSERT(in_bounds(key)); |
| 1044 | return SmallRange(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end)); |
| 1045 | } |
| 1046 | |
| 1047 | inline SmallRange make_invalid_range(const SmallRange &key) const { return SmallRange(key.end, key.begin); } |
| 1048 | |
| 1049 | bool is_open(const key_type &key) const { |
| 1050 | // Remebering that invalid range.begin is the beginning the next used range. |
| 1051 | const auto small_key = make_small_range(key); |
| 1052 | const auto &range = ranges_[small_key.begin]; |
| 1053 | return range.invalid() && small_key.end <= range.begin; |
| 1054 | } |
| 1055 | // Only call this with a valid beginning index |
| 1056 | iterator erase_impl(SmallIndex erase_index) { |
| 1057 | RANGE_ASSERT(erase_index == ranges_[erase_index].begin); |
| 1058 | auto &range = ranges_[erase_index]; |
| 1059 | destruct_value(erase_index); |
| 1060 | // Need to update the ranges to accommodate the erasure |
| 1061 | SmallIndex prev = 0; // This is correct for the case erase_index is 0.... |
| 1062 | if (erase_index != 0) { |
| 1063 | prev = prev_range(erase_index); |
| 1064 | // This works if prev is valid or invalid, because the invalid end will be either 0 (and correct) or the end of the |
| 1065 | // prior valid range and the valid end will be the end of the previous range (and thus correct) |
| 1066 | prev = ranges_[prev].end; |
| 1067 | } |
| 1068 | auto next = next_range(erase_index); |
| 1069 | // We have to be careful of next == limit_... |
| 1070 | if (next < limit_) { |
| 1071 | next = ranges_[next].begin; |
| 1072 | } |
| 1073 | // Rewrite both adjoining and newly empty entries |
| 1074 | SmallRange infill(next, prev); |
| 1075 | for (auto i = prev; i < next; ++i) { |
| 1076 | ranges_[i] = infill; |
| 1077 | } |
| 1078 | return iterator(this, next); |
| 1079 | } |
| 1080 | // This implements the "range lower bound logic" directly on the ranges |
| 1081 | template <typename Map> |
| 1082 | static SmallIndex lower_bound_impl(Map *const that, const key_type &key) { |
| 1083 | if (!that->in_bounds(key.begin)) return that->limit_; |
| 1084 | // If range is invalid, then begin points to the next valid (or end) with must be the lower bound |
| 1085 | // If range is valid, the begin points to a the lowest range that interects key |
| 1086 | const auto lb = that->ranges_[static_cast<SmallIndex>(key.begin)].begin; |
| 1087 | return lb; |
| 1088 | } |
| 1089 | |
| 1090 | template <typename Map> |
| 1091 | static SmallIndex upper_bound_impl(Map *that, const key_type &key) { |
| 1092 | const auto limit = that->get_limit(); |
| 1093 | if (key.end >= limit) return that->limit_; // at end |
| 1094 | const auto &end_range = that->ranges_[key.end]; |
| 1095 | // If range is invalid, then begin points to the next valid (or end) with must be the upper bound (key < range because |
| 1096 | auto ub = end_range.begin; |
| 1097 | // If range is valid, the begin points to a range that may interects key, which is be upper iff range.begin == key.end |
| 1098 | if (end_range.valid() && (key.end > end_range.begin)) { |
| 1099 | // the ub candidate *intersects* the key, so we have to go to the next range. |
| 1100 | ub = that->next_range(end_range.begin); |
| 1101 | } |
| 1102 | return ub; |
| 1103 | } |
| 1104 | |
| 1105 | // This is and inclusive "inuse", the entry itself |
| 1106 | SmallIndex find_inuse_right(const SmallRange &range) const { |
| 1107 | if (range.end >= limit_) return limit_; |
| 1108 | // if range is valid, begin is the first use (== range.end), else it's the first used after the invalid range |
| 1109 | return ranges_[range.end].begin; |
| 1110 | } |
| 1111 | // This is an exclusive "inuse", the end of the previous range |
| 1112 | SmallIndex find_inuse_left(const SmallRange &range) const { |
| 1113 | if (range.begin == 0) return 0; |
| 1114 | // if range is valid, end is the end of the first use (== range.begin), else it's the end of the in use range before the |
| 1115 | // invalid range |
| 1116 | return ranges_[range.begin - 1].end; |
| 1117 | } |
| 1118 | SmallRange find_empty(const SmallRange &range) const { return SmallRange(find_inuse_left(range), find_inuse_right(range)); } |
| 1119 | |
| 1120 | // Clear out the given range, trimming as needed. The clear_range can be set as valid or invalid |
| 1121 | SmallRange clear_out_range(const SmallRange &clear_range, bool valid_clear_range) { |
| 1122 | // By copy to avoid reranging side affect |
| 1123 | auto first_range = ranges_[clear_range.begin]; |
| 1124 | |
| 1125 | // fast path for matching ranges... |
| 1126 | if (first_range == clear_range) { |
| 1127 | // clobber the existing value |
| 1128 | destruct_value(clear_range.begin); |
| 1129 | if (valid_clear_range) { |
| 1130 | return clear_range; // This is the overwrite fastpath for matching range |
| 1131 | } else { |
| 1132 | const auto empty_range = find_empty(clear_range); |
| 1133 | rerange(empty_range, make_invalid_range(empty_range)); |
| 1134 | return empty_range; |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | SmallRange empty_left(clear_range.begin, clear_range.begin); |
| 1139 | SmallRange empty_right(clear_range.end, clear_range.end); |
| 1140 | |
| 1141 | // The clearout is entirely within a single extant range, trim and set. |
| 1142 | if (first_range.valid() && first_range.includes(clear_range)) { |
| 1143 | // Shuffle around first_range, three cases... |
| 1144 | if (first_range.begin < clear_range.begin) { |
| 1145 | // We have a lower trimmed area to preserve. |
| 1146 | resize_value(first_range.begin, clear_range.begin); |
| 1147 | rerange_end(first_range.begin, clear_range.begin, clear_range.begin); |
| 1148 | if (first_range.end > clear_range.end) { |
| 1149 | // And an upper portion of first that needs to copy from the lower |
| 1150 | construct_value(clear_range.end, std::make_pair(key_type(clear_range.end, first_range.end), |
| 1151 | get_value(first_range.begin)->second)); |
| 1152 | rerange_begin(clear_range.end, first_range.end, clear_range.end); |
| 1153 | } else { |
| 1154 | RANGE_ASSERT(first_range.end == clear_range.end); |
| 1155 | empty_right.end = find_inuse_right(clear_range); |
| 1156 | } |
| 1157 | } else { |
| 1158 | RANGE_ASSERT(first_range.end > clear_range.end); |
| 1159 | RANGE_ASSERT(first_range.begin == clear_range.begin); |
| 1160 | // Only an upper trimmed area to preserve, so move the first range value to the upper trim zone. |
| 1161 | resize_value_right(first_range, clear_range.end); |
| 1162 | rerange_begin(clear_range.end, first_range.end, clear_range.end); |
| 1163 | empty_left.begin = find_inuse_left(clear_range); |
| 1164 | } |
| 1165 | } else { |
| 1166 | if (first_range.valid()) { |
| 1167 | if (first_range.begin < clear_range.begin) { |
| 1168 | // Trim left. |
| 1169 | RANGE_ASSERT(first_range.end < clear_range.end); // we handled the "includes" case above |
| 1170 | resize_value(first_range.begin, clear_range.begin); |
| 1171 | rerange_end(first_range.begin, clear_range.begin, clear_range.begin); |
| 1172 | } |
| 1173 | } else { |
| 1174 | empty_left.begin = find_inuse_left(clear_range); |
| 1175 | } |
| 1176 | |
| 1177 | // rewrite excluded portion of final range |
| 1178 | if (clear_range.end < limit_) { |
| 1179 | const auto &last_range = ranges_[clear_range.end]; |
| 1180 | if (last_range.valid()) { |
| 1181 | // for a valid adjoining range we don't have to change empty_right, but we may have to trim |
| 1182 | if (last_range.begin < clear_range.end) { |
| 1183 | resize_value_right(last_range, clear_range.end); |
| 1184 | rerange_begin(clear_range.end, last_range.end, clear_range.end); |
| 1185 | } |
| 1186 | } else { |
| 1187 | // Note: invalid ranges "begin" and the next inuse range (or end) |
| 1188 | empty_right.end = last_range.begin; |
| 1189 | } |
| 1190 | } |
| 1191 | } |
| 1192 | |
| 1193 | const SmallRange empty(empty_left.begin, empty_right.end); |
| 1194 | // Clear out the contents |
| 1195 | for (auto i = empty.begin; i < empty.end; ++i) { |
| 1196 | const auto &range = ranges_[i]; |
| 1197 | if (range.begin == i) { |
| 1198 | RANGE_ASSERT(range.valid()); |
| 1199 | // Clean up the backing store |
| 1200 | destruct_value(i); |
| 1201 | } |
| 1202 | } |
| 1203 | |
| 1204 | // Rewrite the ranges |
| 1205 | if (valid_clear_range) { |
| 1206 | rerange_begin(empty_left.begin, empty_left.end, clear_range.begin); |
| 1207 | rerange(clear_range, clear_range); |
| 1208 | rerange_end(empty_right.begin, empty_right.end, clear_range.end); |
| 1209 | } else { |
| 1210 | rerange(empty, make_invalid_range(empty)); |
| 1211 | } |
| 1212 | RANGE_ASSERT(empty.end == limit_ || ranges_[empty.end].valid()); |
| 1213 | RANGE_ASSERT(empty.begin == 0 || ranges_[empty.begin - 1].valid()); |
| 1214 | return empty; |
| 1215 | } |
| 1216 | |
| 1217 | void init_range() { |
| 1218 | const SmallRange init_val(limit_, 0); |
| 1219 | for (SmallIndex i = 0; i < limit_; ++i) { |
| 1220 | ranges_[i] = init_val; |
| 1221 | in_use_[i] = false; |
| 1222 | } |
| 1223 | } |
| 1224 | value_type *get_value(SmallIndex index) { |
| 1225 | RANGE_ASSERT(index < limit_); // Must be inbounds |
| 1226 | return reinterpret_cast<value_type *>(&(backing_store_[index])); |
| 1227 | } |
| 1228 | const value_type *get_value(SmallIndex index) const { |
| 1229 | RANGE_ASSERT(index < limit_); // Must be inbounds |
| 1230 | RANGE_ASSERT(index == ranges_[index].begin); // Must be the record at begin |
| 1231 | return reinterpret_cast<const value_type *>(&(backing_store_[index])); |
| 1232 | } |
| 1233 | |
| 1234 | template <typename Value> |
| 1235 | void construct_value(SmallIndex index, Value &&value) { |
| 1236 | RANGE_ASSERT(!in_use_[index]); |
| 1237 | new (get_value(index)) value_type(std::forward<Value>(value)); |
| 1238 | in_use_[index] = true; |
| 1239 | ++size_; |
| 1240 | } |
| 1241 | |
| 1242 | void destruct_value(SmallIndex index) { |
| 1243 | // there are times when the range and destruct logic clash... allow for double attempted deletes |
| 1244 | if (in_use_[index]) { |
| 1245 | RANGE_ASSERT(size_ > 0); |
| 1246 | --size_; |
| 1247 | get_value(index)->~value_type(); |
| 1248 | in_use_[index] = false; |
| 1249 | } |
| 1250 | } |
| 1251 | |
| 1252 | // No need to move around the value, when just the key is moving |
| 1253 | // Use the destructor/placement new just in case of a complex key with range's semantics |
| 1254 | // Note: Call resize before rewriting ranges_ |
| 1255 | void resize_value(SmallIndex current_begin, index_type new_end) { |
| 1256 | // Destroy and rewrite the key in place |
| 1257 | RANGE_ASSERT(ranges_[current_begin].end != new_end); |
| 1258 | key_type new_key(current_begin, new_end); |
| 1259 | key_type *key = const_cast<key_type *>(&get_value(current_begin)->first); |
| 1260 | key->~key_type(); |
| 1261 | new (key) key_type(new_key); |
| 1262 | } |
| 1263 | |
| 1264 | inline void rerange_end(SmallIndex old_begin, SmallIndex new_end, SmallIndex new_end_value) { |
| 1265 | for (auto i = old_begin; i < new_end; ++i) { |
| 1266 | ranges_[i].end = new_end_value; |
| 1267 | } |
| 1268 | } |
| 1269 | inline void rerange_begin(SmallIndex new_begin, SmallIndex old_end, SmallIndex new_begin_value) { |
| 1270 | for (auto i = new_begin; i < old_end; ++i) { |
| 1271 | ranges_[i].begin = new_begin_value; |
| 1272 | } |
| 1273 | } |
| 1274 | inline void rerange(const SmallRange &range, const SmallRange &range_value) { |
| 1275 | for (auto i = range.begin; i < range.end; ++i) { |
| 1276 | ranges_[i] = range_value; |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | // for resize right need both begin and end... |
| 1281 | void resize_value_right(const SmallRange ¤t_range, index_type new_begin) { |
| 1282 | // Use move semantics for (potentially) heavyweight mapped_type's |
| 1283 | RANGE_ASSERT(current_range.begin != new_begin); |
| 1284 | // Move second from it's current location and update the first at the same time |
| 1285 | construct_value(static_cast<SmallIndex>(new_begin), |
| 1286 | std::make_pair(key_type(new_begin, current_range.end), std::move(get_value(current_range.begin)->second))); |
| 1287 | destruct_value(current_range.begin); |
| 1288 | } |
| 1289 | |
| 1290 | // Now we can walk a range and rewrite it cleaning up any live contents |
| 1291 | void clear_and_set_range(SmallIndex rewrite_begin, SmallIndex rewrite_end, const SmallRange &new_range) { |
| 1292 | for (auto i = rewrite_begin; i < rewrite_end; ++i) { |
| 1293 | auto &range = ranges_[i]; |
| 1294 | if (i == range.begin) { |
| 1295 | destruct_value(i); |
| 1296 | } |
| 1297 | range = new_range; |
| 1298 | } |
| 1299 | } |
| 1300 | |
| 1301 | SmallIndex next_range(SmallIndex current) const { |
| 1302 | SmallIndex next = ranges_[current].end; |
| 1303 | // If the next range is invalid, skip to the next range, which *must* be (or be end) |
| 1304 | if ((next < limit_) && ranges_[next].invalid()) { |
| 1305 | // For invalid ranges, begin is the beginning of the next range |
| 1306 | next = ranges_[next].begin; |
| 1307 | RANGE_ASSERT(next == limit_ || ranges_[next].valid()); |
| 1308 | } |
| 1309 | return next; |
| 1310 | } |
| 1311 | |
| 1312 | SmallIndex prev_range(SmallIndex current) const { |
| 1313 | if (current == 0) { |
| 1314 | return 0; |
| 1315 | } |
| 1316 | |
| 1317 | auto prev = current - 1; |
| 1318 | if (ranges_[prev].valid()) { |
| 1319 | // For valid ranges, the range denoted by begin (as that's where the backing store keeps values |
| 1320 | prev = ranges_[prev].begin; |
| 1321 | } else if (prev != 0) { |
| 1322 | // Invalid but not off the front, we can recur (only once) from the end of the prev range to get the answer |
| 1323 | // For invalid ranges this is the end of the previous range |
| 1324 | prev = prev_range(ranges_[prev].end); |
| 1325 | } |
| 1326 | return prev; |
| 1327 | } |
| 1328 | |
| 1329 | friend iterator; |
| 1330 | friend const_iterator; |
| 1331 | // Stores range boundaries only |
| 1332 | // open ranges, stored as inverted, invalid range (begining of next, end of prev] |
| 1333 | // inuse(begin, end) for all entries on (begin, end] |
| 1334 | // Used for placement new of T for each range begin. |
| 1335 | struct alignas(alignof(value_type)) BackingStore { |
| 1336 | uint8_t data[sizeof(value_type)]; |
| 1337 | }; |
| 1338 | |
| 1339 | SmallIndex size_; |
| 1340 | SmallIndex limit_; |
| 1341 | std::array<SmallRange, N> ranges_; |
| 1342 | std::array<BackingStore, N> backing_store_; |
| 1343 | std::array<bool, N> in_use_; |
| 1344 | }; |
| 1345 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1346 | // Forward index iterator, tracking an index value and the appropos lower bound |
| 1347 | // returns an index_type, lower_bound pair. Supports ++, offset, and seek affecting the index, |
| 1348 | // lower bound updates as needed. As the index may specify a range for which no entry exist, dereferenced |
| 1349 | // iterator includes an "valid" field, true IFF the lower_bound is not end() and contains [index, index +1) |
| 1350 | // |
| 1351 | // Must be explicitly invalidated when the underlying map is changed. |
| 1352 | template <typename Map> |
| 1353 | class cached_lower_bound_impl { |
| 1354 | using plain_map_type = typename std::remove_const<Map>::type; // Allow instatiation with const or non-const Map |
| 1355 | public: |
| 1356 | using iterator = const_correct_iterator<Map>; |
| 1357 | using key_type = typename plain_map_type::key_type; |
| 1358 | using mapped_type = typename plain_map_type::mapped_type; |
| 1359 | // Both sides of the return pair are const'd because we're returning references/pointers to the *internal* state |
| 1360 | // and we don't want and caller altering internal state. |
| 1361 | using index_type = typename Map::index_type; |
| 1362 | struct value_type { |
| 1363 | const index_type &index; |
| 1364 | const iterator &lower_bound; |
| 1365 | const bool &valid; |
| 1366 | value_type(const index_type &index_, const iterator &lower_bound_, bool &valid_) |
| 1367 | : index(index_), lower_bound(lower_bound_), valid(valid_) {} |
| 1368 | }; |
| 1369 | |
| 1370 | private: |
| 1371 | Map *const map_; |
John Zulauf | b58415b | 2019-12-09 15:02:32 -0700 | [diff] [blame] | 1372 | const iterator end_; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1373 | value_type pos_; |
| 1374 | |
| 1375 | index_type index_; |
| 1376 | iterator lower_bound_; |
| 1377 | bool valid_; |
| 1378 | |
| 1379 | bool is_valid() const { return includes(index_); } |
| 1380 | |
| 1381 | // Allow reuse of a type with const semantics |
| 1382 | void set_value(const index_type &index, const iterator &it) { |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1383 | RANGE_ASSERT(it == lower_bound(index)); |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1384 | index_ = index; |
| 1385 | lower_bound_ = it; |
| 1386 | valid_ = is_valid(); |
| 1387 | } |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1388 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1389 | void update(const index_type &index) { |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1390 | RANGE_ASSERT(lower_bound_ == lower_bound(index)); |
| 1391 | index_ = index; |
| 1392 | valid_ = is_valid(); |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1393 | } |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1394 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1395 | inline iterator lower_bound(const index_type &index) { return map_->lower_bound(key_type(index, index + 1)); } |
John Zulauf | b58415b | 2019-12-09 15:02:32 -0700 | [diff] [blame] | 1396 | inline bool at_end(const iterator &it) const { return it == end_; } |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1397 | inline bool at_end() const { return at_end(lower_bound_); } |
| 1398 | |
| 1399 | bool is_lower_than(const index_type &index, const iterator &it) { return at_end(it) || (index < it->first.end); } |
| 1400 | |
| 1401 | public: |
| 1402 | // includes(index) is a convenience function to test if the index would be in the currently cached lower bound |
| 1403 | bool includes(const index_type &index) const { return !at_end() && lower_bound_->first.includes(index); } |
| 1404 | |
| 1405 | // The return is const because we are sharing the internal state directly. |
| 1406 | const value_type &operator*() const { return pos_; } |
| 1407 | const value_type *operator->() const { return &pos_; } |
| 1408 | |
| 1409 | // Advance the cached location by 1 |
| 1410 | cached_lower_bound_impl &operator++() { |
| 1411 | const index_type next = index_ + 1; |
| 1412 | if (is_lower_than(next, lower_bound_)) { |
| 1413 | update(next); |
| 1414 | } else { |
| 1415 | // if we're past pos_->second, next *must* be the new lower bound. |
| 1416 | // NOTE: that next can't be past end, so lower_bound_ isn't end. |
| 1417 | auto next_it = lower_bound_; |
| 1418 | ++next_it; |
| 1419 | set_value(next, next_it); |
| 1420 | |
| 1421 | // However we *must* not be past next. |
| 1422 | RANGE_ASSERT(is_lower_than(next, next_it)); |
| 1423 | } |
| 1424 | |
| 1425 | return *this; |
| 1426 | } |
| 1427 | |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1428 | // seek(index) updates lower_bound for index, updating lower_bound_ as needed. |
| 1429 | cached_lower_bound_impl &seek(const index_type &seek_to) { |
| 1430 | // Optimize seeking to forward |
| 1431 | if (index_ == seek_to) { |
| 1432 | // seek to self is a NOOP. To reset lower bound after a map change, use invalidate |
| 1433 | } else if (index_ < seek_to) { |
| 1434 | // See if the current or next ranges are the appropriate lower_bound... should be a common use case |
| 1435 | if (is_lower_than(seek_to, lower_bound_)) { |
| 1436 | // lower_bound_ is still the correct lower bound |
| 1437 | update(seek_to); |
| 1438 | } else { |
| 1439 | // Look to see if the next range is the new lower_bound (and we aren't at end) |
| 1440 | auto next_it = lower_bound_; |
| 1441 | ++next_it; |
| 1442 | if (is_lower_than(seek_to, next_it)) { |
| 1443 | // next_it is the correct new lower bound |
| 1444 | set_value(seek_to, next_it); |
| 1445 | } else { |
| 1446 | // We don't know where we are... and we aren't going to walk the tree looking for seek_to. |
| 1447 | set_value(seek_to, lower_bound(seek_to)); |
| 1448 | } |
| 1449 | } |
| 1450 | } else { |
| 1451 | // General case... this is += so we're not implmenting optimized negative offset logic |
| 1452 | set_value(seek_to, lower_bound(seek_to)); |
| 1453 | } |
| 1454 | return *this; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1455 | } |
| 1456 | |
| 1457 | // Advance the cached location by offset. |
| 1458 | cached_lower_bound_impl &offset(const index_type &offset) { |
| 1459 | const index_type next = index_ + offset; |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1460 | return seek(next); |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1461 | } |
| 1462 | |
| 1463 | // invalidate() resets the the lower_bound_ cache, needed after insert/erase/overwrite/split operations |
John Zulauf | 8bf934f | 2020-01-15 10:10:05 -0700 | [diff] [blame] | 1464 | // Pass index by value in case we are invalidating to index_ and set_value does a modify-in-place on index_ |
| 1465 | cached_lower_bound_impl &invalidate(index_type index) { |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1466 | set_value(index, lower_bound(index)); |
| 1467 | return *this; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1468 | } |
| 1469 | |
John Zulauf | 8bf934f | 2020-01-15 10:10:05 -0700 | [diff] [blame] | 1470 | cached_lower_bound_impl &invalidate() { return invalidate(index_); } |
| 1471 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1472 | // Allow a hint for a *valid* lower bound for current index |
| 1473 | // TODO: if the fail-over becomes a hot-spot, the hint logic could be far more clever (looking at previous/next...) |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1474 | cached_lower_bound_impl &invalidate(const iterator &hint) { |
John Zulauf | b58415b | 2019-12-09 15:02:32 -0700 | [diff] [blame] | 1475 | if ((hint != end_) && hint->first.includes(index_)) { |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1476 | auto index = index_; // by copy set modifies in place |
| 1477 | set_value(index, hint); |
| 1478 | } else { |
| 1479 | invalidate(); |
| 1480 | } |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1481 | return *this; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1482 | } |
| 1483 | |
| 1484 | // The offset in index type to the next change (the end of the current range, or the transition from invalid to |
| 1485 | // valid. If invalid and at_end, returns index_type(0) |
| 1486 | index_type distance_to_edge() { |
| 1487 | if (valid_) { |
| 1488 | // Distance to edge of |
| 1489 | return lower_bound_->first.end - index_; |
| 1490 | } else if (at_end()) { |
| 1491 | return index_type(0); |
| 1492 | } else { |
| 1493 | return lower_bound_->first.begin - index_; |
| 1494 | } |
| 1495 | } |
| 1496 | |
| 1497 | // Default constructed object reports valid (correctly) as false, but otherwise will fail (assert) under nearly any use. |
John Zulauf | b58415b | 2019-12-09 15:02:32 -0700 | [diff] [blame] | 1498 | cached_lower_bound_impl() |
| 1499 | : map_(nullptr), end_(), pos_(index_, lower_bound_, valid_), index_(0), lower_bound_(), valid_(false) {} |
John Zulauf | 6066f73 | 2019-11-21 13:15:10 -0700 | [diff] [blame] | 1500 | cached_lower_bound_impl(Map &map, const index_type &index) |
John Zulauf | b58415b | 2019-12-09 15:02:32 -0700 | [diff] [blame] | 1501 | : map_(&map), |
| 1502 | end_(map.end()), |
| 1503 | pos_(index_, lower_bound_, valid_), |
| 1504 | index_(index), |
| 1505 | lower_bound_(lower_bound(index)), |
| 1506 | valid_(is_valid()) {} |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1507 | }; |
| 1508 | |
| 1509 | template <typename CachedLowerBound, typename MappedType = typename CachedLowerBound::mapped_type> |
| 1510 | const MappedType &evaluate(const CachedLowerBound &clb, const MappedType &default_value) { |
| 1511 | if (clb->valid) { |
| 1512 | return clb->lower_bound->second; |
| 1513 | } |
| 1514 | return default_value; |
| 1515 | } |
| 1516 | |
| 1517 | // Parallel iterator |
| 1518 | // Traverse to range maps over the the same range, but without assumptions of aligned ranges. |
| 1519 | // ++ increments to the next point where on of the two maps changes range, giving a range over which the two |
| 1520 | // maps do not transition ranges |
John Zulauf | 2076e81 | 2020-01-08 14:55:54 -0700 | [diff] [blame^] | 1521 | template <typename MapA, typename MapB = MapA, typename KeyType = typename MapA::key_type> |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1522 | class parallel_iterator { |
| 1523 | public: |
| 1524 | using key_type = KeyType; |
| 1525 | using index_type = typename key_type::index_type; |
| 1526 | |
| 1527 | // The traits keep the iterator/const_interator consistent with the constness of the map. |
| 1528 | using map_type_A = MapA; |
| 1529 | using plain_map_type_A = typename std::remove_const<MapA>::type; // Allow instatiation with const or non-const Map |
| 1530 | using key_type_A = typename plain_map_type_A::key_type; |
| 1531 | using index_type_A = typename plain_map_type_A::index_type; |
| 1532 | using iterator_A = const_correct_iterator<map_type_A>; |
| 1533 | using lower_bound_A = cached_lower_bound_impl<map_type_A>; |
| 1534 | |
| 1535 | using map_type_B = MapB; |
| 1536 | using plain_map_type_B = typename std::remove_const<MapB>::type; |
| 1537 | using key_type_B = typename plain_map_type_B::key_type; |
| 1538 | using index_type_B = typename plain_map_type_B::index_type; |
| 1539 | using iterator_B = const_correct_iterator<map_type_B>; |
| 1540 | using lower_bound_B = cached_lower_bound_impl<map_type_B>; |
| 1541 | |
| 1542 | // This is the value we'll always be returning, but the referenced object will be updated by the operations |
| 1543 | struct value_type { |
| 1544 | const key_type ⦥ |
| 1545 | const lower_bound_A &pos_A; |
| 1546 | const lower_bound_B &pos_B; |
| 1547 | value_type(const key_type &range_, const lower_bound_A &pos_A_, const lower_bound_B &pos_B_) |
| 1548 | : range(range_), pos_A(pos_A_), pos_B(pos_B_) {} |
| 1549 | }; |
| 1550 | |
| 1551 | private: |
| 1552 | lower_bound_A pos_A_; |
| 1553 | lower_bound_B pos_B_; |
| 1554 | key_type range_; |
| 1555 | value_type pos_; |
| 1556 | index_type compute_delta() { |
| 1557 | auto delta_A = pos_A_.distance_to_edge(); |
| 1558 | auto delta_B = pos_B_.distance_to_edge(); |
| 1559 | index_type delta_min; |
| 1560 | |
| 1561 | // If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge" |
| 1562 | if (delta_A == 0) { // lower A is at end |
| 1563 | delta_min = static_cast<index_type>(delta_B); |
| 1564 | } else if (delta_B == 0) { // lower B is at end |
| 1565 | delta_min = static_cast<index_type>(delta_A); |
| 1566 | } else { |
| 1567 | // Neither are at end, use the nearest edge, s.t. over this range A and B are both constant |
| 1568 | delta_min = std::min(static_cast<index_type>(delta_A), static_cast<index_type>(delta_B)); |
| 1569 | } |
| 1570 | return delta_min; |
| 1571 | } |
| 1572 | |
| 1573 | public: |
| 1574 | // Default constructed object will report range empty (for end checks), but otherwise is unsafe to use |
| 1575 | parallel_iterator() : pos_A_(), pos_B_(), range_(), pos_(range_, pos_A_, pos_B_) {} |
| 1576 | parallel_iterator(map_type_A &map_A, map_type_B &map_B, index_type index) |
| 1577 | : pos_A_(map_A, static_cast<index_type_A>(index)), |
| 1578 | pos_B_(map_B, static_cast<index_type_B>(index)), |
| 1579 | range_(index, index + compute_delta()), |
| 1580 | pos_(range_, pos_A_, pos_B_) {} |
| 1581 | |
| 1582 | // Advance to the next spot one of the two maps changes |
| 1583 | parallel_iterator &operator++() { |
| 1584 | const auto start = range_.end; // we computed this the last time we set range |
| 1585 | const auto delta = range_.distance(); // we computed this the last time we set range |
| 1586 | RANGE_ASSERT(delta != 0); // Trying to increment past end |
| 1587 | |
| 1588 | pos_A_.offset(static_cast<index_type_A>(delta)); |
| 1589 | pos_B_.offset(static_cast<index_type_B>(delta)); |
| 1590 | |
| 1591 | range_ = key_type(start, start + compute_delta()); // find the next boundary (must be after offset) |
| 1592 | RANGE_ASSERT(pos_A_->index == start); |
| 1593 | RANGE_ASSERT(pos_B_->index == start); |
| 1594 | |
| 1595 | return *this; |
| 1596 | } |
| 1597 | |
| 1598 | // Seeks to a specific index in both maps reseting range. Cannot guarantee range.begin is on edge boundary, |
| 1599 | /// but range.end will be. Lower bound objects assumed to invalidate their cached lower bounds on seek. |
| 1600 | parallel_iterator &seek(const index_type &index) { |
| 1601 | pos_A_.seek(static_cast<index_type_A>(index)); |
| 1602 | pos_B_.seek(static_cast<index_type_B>(index)); |
| 1603 | range_ = key_type(index, index + compute_delta()); |
| 1604 | RANGE_ASSERT(pos_A_->index == index); |
| 1605 | RANGE_ASSERT(pos_A_->index == pos_B_->index); |
| 1606 | return *this; |
| 1607 | } |
| 1608 | |
| 1609 | // Invalidates the lower_bound caches, reseting range. Cannot guarantee range.begin is on edge boundary, |
| 1610 | // but range.end will be. |
| 1611 | parallel_iterator &invalidate() { |
| 1612 | const index_type start = range_.begin; |
| 1613 | seek(start); |
| 1614 | return *this; |
| 1615 | } |
| 1616 | parallel_iterator &invalidate_A() { |
| 1617 | const index_type index = range_.begin; |
John Zulauf | 8bf934f | 2020-01-15 10:10:05 -0700 | [diff] [blame] | 1618 | pos_A_.invalidate(static_cast<index_type_A>(index)); |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1619 | range_ = key_type(index, index + compute_delta()); |
| 1620 | return *this; |
| 1621 | } |
| 1622 | parallel_iterator &invalidate_B() { |
| 1623 | const index_type index = range_.begin; |
John Zulauf | 8bf934f | 2020-01-15 10:10:05 -0700 | [diff] [blame] | 1624 | pos_B_.invalidate(static_cast<index_type_B>(index)); |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1625 | range_ = key_type(index, index + compute_delta()); |
| 1626 | return *this; |
| 1627 | } |
| 1628 | |
| 1629 | // The return is const because we are sharing the internal state directly. |
| 1630 | const value_type &operator*() const { return pos_; } |
| 1631 | const value_type *operator->() const { return &pos_; } |
| 1632 | }; |
| 1633 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1634 | template <typename RangeMap, typename SourceIterator = typename RangeMap::const_iterator> |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 1635 | bool splice(RangeMap *to, const RangeMap &from, value_precedence arbiter, SourceIterator begin, SourceIterator end) { |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1636 | if (from.empty() || (begin == end) || (begin == from.cend())) return false; // nothing to merge. |
| 1637 | |
| 1638 | using ParallelIterator = parallel_iterator<RangeMap, const RangeMap>; |
| 1639 | using Key = typename RangeMap::key_type; |
| 1640 | using CachedLowerBound = cached_lower_bound_impl<RangeMap>; |
| 1641 | using ConstCachedLowerBound = cached_lower_bound_impl<const RangeMap>; |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1642 | ParallelIterator par_it(*to, from, begin->first.begin); |
| 1643 | bool updated = false; |
| 1644 | while (par_it->range.non_empty() && par_it->pos_B->lower_bound != end) { |
| 1645 | const Key &range = par_it->range; |
| 1646 | const CachedLowerBound &to_lb = par_it->pos_A; |
| 1647 | const ConstCachedLowerBound &from_lb = par_it->pos_B; |
| 1648 | if (from_lb->valid) { |
| 1649 | auto read_it = from_lb->lower_bound; |
| 1650 | auto write_it = to_lb->lower_bound; |
| 1651 | // Because of how the parallel iterator walk, "to" is valid over the whole range or it isn't (ranges don't span |
| 1652 | // transitions between map entries or between valid and invalid ranges) |
| 1653 | if (to_lb->valid) { |
| 1654 | // Only rewrite this range if source is preferred (and the value differs) |
| 1655 | // TODO determine if equality checks are always wanted. (for example heavyweight values) |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 1656 | if (arbiter == value_precedence::prefer_source && (write_it->second != read_it->second)) { |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1657 | // Both ranges occupied and source is preferred and from differs from to |
| 1658 | if (write_it->first == range) { |
| 1659 | // we're writing the whole destination range, so just set the value |
| 1660 | write_it->second = read_it->second; |
| 1661 | } else { |
| 1662 | to->overwrite_range(write_it, std::make_pair(range, read_it->second)); |
| 1663 | par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know. |
| 1664 | } |
| 1665 | updated = true; |
| 1666 | } |
| 1667 | } else { |
| 1668 | // Insert into the gap. |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 1669 | to->insert(write_it, std::make_pair(range, read_it->second)); |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1670 | par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know. |
| 1671 | updated = true; |
| 1672 | } |
| 1673 | } |
| 1674 | ++par_it; // next range over which both 'to' and 'from' stay constant |
| 1675 | } |
| 1676 | return updated; |
| 1677 | } |
| 1678 | // And short hand for "from begin to end" |
| 1679 | template <typename RangeMap> |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 1680 | bool splice(RangeMap *to, const RangeMap &from, value_precedence arbiter) { |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1681 | return splice(to, from, arbiter, from.cbegin(), from.cend()); |
| 1682 | } |
| 1683 | |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 1684 | template <typename Map, typename Range = typename Map::key_type, typename MapValue = typename Map::mapped_type> |
| 1685 | bool update_range_value(Map &map, const Range &range, MapValue &&value, value_precedence precedence) { |
| 1686 | using CachedLowerBound = typename sparse_container::cached_lower_bound_impl<Map>; |
| 1687 | CachedLowerBound pos(map, range.begin); |
| 1688 | |
| 1689 | bool updated = false; |
| 1690 | while (range.includes(pos->index)) { |
| 1691 | if (!pos->valid) { |
| 1692 | if (precedence == value_precedence::prefer_source) { |
| 1693 | // We can convert this into and overwrite... |
| 1694 | map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value))); |
| 1695 | return true; |
| 1696 | } |
| 1697 | // Fill in the leading space (or in the case of pos at end the trailing space |
| 1698 | const auto start = pos->index; |
| 1699 | auto it = pos->lower_bound; |
| 1700 | const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end; |
| 1701 | map.insert(it, std::make_pair(Range(start, limit), value)); |
| 1702 | // We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek |
| 1703 | // will fix this (and move the state to valid) |
| 1704 | pos.seek(limit); |
| 1705 | updated = true; |
| 1706 | } |
| 1707 | // Note that after the "fill" operation pos may have become valid so we check again |
| 1708 | if (pos->valid) { |
| 1709 | if ((precedence == value_precedence::prefer_source) && (pos->lower_bound->second != value)) { |
| 1710 | // We've found a place where we're changing the value, at this point might as well simply over write the range |
John Zulauf | b58415b | 2019-12-09 15:02:32 -0700 | [diff] [blame] | 1711 | // and be done with it. (save on later merge operations....) |
Tony-LunarG | 0d4e65d | 2020-01-28 11:38:11 -0700 | [diff] [blame] | 1712 | pos.seek(range.begin); |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 1713 | map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value))); |
| 1714 | return true; |
John Zulauf | b58415b | 2019-12-09 15:02:32 -0700 | [diff] [blame] | 1715 | |
John Zulauf | 81408f1 | 2019-11-27 16:40:27 -0700 | [diff] [blame] | 1716 | } else { |
| 1717 | // "prefer_dest" means don't overwrite existing values, so we'll skip this interval. |
| 1718 | // Point just past the end of this section, if it's within the given range, it will get filled next iteration |
| 1719 | // ++pos could move us past the end of range (which would exit the loop) so we don't use it. |
| 1720 | pos.seek(pos->lower_bound->first.end); |
| 1721 | } |
| 1722 | } |
| 1723 | } |
| 1724 | return updated; |
| 1725 | } |
| 1726 | |
John Zulauf | 1121140 | 2019-11-15 14:02:36 -0700 | [diff] [blame] | 1727 | } // namespace sparse_container |
| 1728 | |
| 1729 | #endif |