Adam Sawicki | f1a793c | 2018-03-13 15:42:22 +0100 | [diff] [blame] | 1 | #include "Tests.h"
|
| 2 | #include "VmaUsage.h"
|
| 3 | #include "Common.h"
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 4 | #include <atomic>
|
| 5 | #include <thread>
|
| 6 | #include <mutex>
|
Adam Sawicki | f1a793c | 2018-03-13 15:42:22 +0100 | [diff] [blame] | 7 |
|
| 8 | #ifdef _WIN32
|
| 9 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 10 | enum class FREE_ORDER { FORWARD, BACKWARD, RANDOM, COUNT };
|
| 11 |
|
| 12 | struct AllocationSize
|
| 13 | {
|
| 14 | uint32_t Probability;
|
| 15 | VkDeviceSize BufferSizeMin, BufferSizeMax;
|
| 16 | uint32_t ImageSizeMin, ImageSizeMax;
|
| 17 | };
|
| 18 |
|
| 19 | struct Config
|
| 20 | {
|
| 21 | uint32_t RandSeed;
|
| 22 | VkDeviceSize BeginBytesToAllocate;
|
| 23 | uint32_t AdditionalOperationCount;
|
| 24 | VkDeviceSize MaxBytesToAllocate;
|
| 25 | uint32_t MemUsageProbability[4]; // For VMA_MEMORY_USAGE_*
|
| 26 | std::vector<AllocationSize> AllocationSizes;
|
| 27 | uint32_t ThreadCount;
|
| 28 | uint32_t ThreadsUsingCommonAllocationsProbabilityPercent;
|
| 29 | FREE_ORDER FreeOrder;
|
| 30 | };
|
| 31 |
|
| 32 | struct Result
|
| 33 | {
|
| 34 | duration TotalTime;
|
| 35 | duration AllocationTimeMin, AllocationTimeAvg, AllocationTimeMax;
|
| 36 | duration DeallocationTimeMin, DeallocationTimeAvg, DeallocationTimeMax;
|
| 37 | VkDeviceSize TotalMemoryAllocated;
|
| 38 | VkDeviceSize FreeRangeSizeAvg, FreeRangeSizeMax;
|
| 39 | };
|
| 40 |
|
| 41 | void TestDefragmentationSimple();
|
| 42 | void TestDefragmentationFull();
|
| 43 |
|
| 44 | struct PoolTestConfig
|
| 45 | {
|
| 46 | uint32_t RandSeed;
|
| 47 | uint32_t ThreadCount;
|
| 48 | VkDeviceSize PoolSize;
|
| 49 | uint32_t FrameCount;
|
| 50 | uint32_t TotalItemCount;
|
| 51 | // Range for number of items used in each frame.
|
| 52 | uint32_t UsedItemCountMin, UsedItemCountMax;
|
| 53 | // Percent of items to make unused, and possibly make some others used in each frame.
|
| 54 | uint32_t ItemsToMakeUnusedPercent;
|
| 55 | std::vector<AllocationSize> AllocationSizes;
|
| 56 |
|
| 57 | VkDeviceSize CalcAvgResourceSize() const
|
| 58 | {
|
| 59 | uint32_t probabilitySum = 0;
|
| 60 | VkDeviceSize sizeSum = 0;
|
| 61 | for(size_t i = 0; i < AllocationSizes.size(); ++i)
|
| 62 | {
|
| 63 | const AllocationSize& allocSize = AllocationSizes[i];
|
| 64 | if(allocSize.BufferSizeMax > 0)
|
| 65 | sizeSum += (allocSize.BufferSizeMin + allocSize.BufferSizeMax) / 2 * allocSize.Probability;
|
| 66 | else
|
| 67 | {
|
| 68 | const VkDeviceSize avgDimension = (allocSize.ImageSizeMin + allocSize.ImageSizeMax) / 2;
|
| 69 | sizeSum += avgDimension * avgDimension * 4 * allocSize.Probability;
|
| 70 | }
|
| 71 | probabilitySum += allocSize.Probability;
|
| 72 | }
|
| 73 | return sizeSum / probabilitySum;
|
| 74 | }
|
| 75 |
|
| 76 | bool UsesBuffers() const
|
| 77 | {
|
| 78 | for(size_t i = 0; i < AllocationSizes.size(); ++i)
|
| 79 | if(AllocationSizes[i].BufferSizeMax > 0)
|
| 80 | return true;
|
| 81 | return false;
|
| 82 | }
|
| 83 |
|
| 84 | bool UsesImages() const
|
| 85 | {
|
| 86 | for(size_t i = 0; i < AllocationSizes.size(); ++i)
|
| 87 | if(AllocationSizes[i].ImageSizeMax > 0)
|
| 88 | return true;
|
| 89 | return false;
|
| 90 | }
|
| 91 | };
|
| 92 |
|
| 93 | struct PoolTestResult
|
| 94 | {
|
| 95 | duration TotalTime;
|
| 96 | duration AllocationTimeMin, AllocationTimeAvg, AllocationTimeMax;
|
| 97 | duration DeallocationTimeMin, DeallocationTimeAvg, DeallocationTimeMax;
|
| 98 | size_t LostAllocationCount, LostAllocationTotalSize;
|
| 99 | size_t FailedAllocationCount, FailedAllocationTotalSize;
|
| 100 | };
|
| 101 |
|
| 102 | static const uint32_t IMAGE_BYTES_PER_PIXEL = 1;
|
| 103 |
|
| 104 | struct BufferInfo
|
| 105 | {
|
| 106 | VkBuffer Buffer = VK_NULL_HANDLE;
|
| 107 | VmaAllocation Allocation = VK_NULL_HANDLE;
|
| 108 | };
|
| 109 |
|
| 110 | static void InitResult(Result& outResult)
|
| 111 | {
|
| 112 | outResult.TotalTime = duration::zero();
|
| 113 | outResult.AllocationTimeMin = duration::max();
|
| 114 | outResult.AllocationTimeAvg = duration::zero();
|
| 115 | outResult.AllocationTimeMax = duration::min();
|
| 116 | outResult.DeallocationTimeMin = duration::max();
|
| 117 | outResult.DeallocationTimeAvg = duration::zero();
|
| 118 | outResult.DeallocationTimeMax = duration::min();
|
| 119 | outResult.TotalMemoryAllocated = 0;
|
| 120 | outResult.FreeRangeSizeAvg = 0;
|
| 121 | outResult.FreeRangeSizeMax = 0;
|
| 122 | }
|
| 123 |
|
| 124 | class TimeRegisterObj
|
| 125 | {
|
| 126 | public:
|
| 127 | TimeRegisterObj(duration& min, duration& sum, duration& max) :
|
| 128 | m_Min(min),
|
| 129 | m_Sum(sum),
|
| 130 | m_Max(max),
|
| 131 | m_TimeBeg(std::chrono::high_resolution_clock::now())
|
| 132 | {
|
| 133 | }
|
| 134 |
|
| 135 | ~TimeRegisterObj()
|
| 136 | {
|
| 137 | duration d = std::chrono::high_resolution_clock::now() - m_TimeBeg;
|
| 138 | m_Sum += d;
|
| 139 | if(d < m_Min) m_Min = d;
|
| 140 | if(d > m_Max) m_Max = d;
|
| 141 | }
|
| 142 |
|
| 143 | private:
|
| 144 | duration& m_Min;
|
| 145 | duration& m_Sum;
|
| 146 | duration& m_Max;
|
| 147 | time_point m_TimeBeg;
|
| 148 | };
|
| 149 |
|
| 150 | struct PoolTestThreadResult
|
| 151 | {
|
| 152 | duration AllocationTimeMin, AllocationTimeSum, AllocationTimeMax;
|
| 153 | duration DeallocationTimeMin, DeallocationTimeSum, DeallocationTimeMax;
|
| 154 | size_t AllocationCount, DeallocationCount;
|
| 155 | size_t LostAllocationCount, LostAllocationTotalSize;
|
| 156 | size_t FailedAllocationCount, FailedAllocationTotalSize;
|
| 157 | };
|
| 158 |
|
| 159 | class AllocationTimeRegisterObj : public TimeRegisterObj
|
| 160 | {
|
| 161 | public:
|
| 162 | AllocationTimeRegisterObj(Result& result) :
|
| 163 | TimeRegisterObj(result.AllocationTimeMin, result.AllocationTimeAvg, result.AllocationTimeMax)
|
| 164 | {
|
| 165 | }
|
| 166 | };
|
| 167 |
|
| 168 | class DeallocationTimeRegisterObj : public TimeRegisterObj
|
| 169 | {
|
| 170 | public:
|
| 171 | DeallocationTimeRegisterObj(Result& result) :
|
| 172 | TimeRegisterObj(result.DeallocationTimeMin, result.DeallocationTimeAvg, result.DeallocationTimeMax)
|
| 173 | {
|
| 174 | }
|
| 175 | };
|
| 176 |
|
| 177 | class PoolAllocationTimeRegisterObj : public TimeRegisterObj
|
| 178 | {
|
| 179 | public:
|
| 180 | PoolAllocationTimeRegisterObj(PoolTestThreadResult& result) :
|
| 181 | TimeRegisterObj(result.AllocationTimeMin, result.AllocationTimeSum, result.AllocationTimeMax)
|
| 182 | {
|
| 183 | }
|
| 184 | };
|
| 185 |
|
| 186 | class PoolDeallocationTimeRegisterObj : public TimeRegisterObj
|
| 187 | {
|
| 188 | public:
|
| 189 | PoolDeallocationTimeRegisterObj(PoolTestThreadResult& result) :
|
| 190 | TimeRegisterObj(result.DeallocationTimeMin, result.DeallocationTimeSum, result.DeallocationTimeMax)
|
| 191 | {
|
| 192 | }
|
| 193 | };
|
| 194 |
|
| 195 | VkResult MainTest(Result& outResult, const Config& config)
|
| 196 | {
|
| 197 | assert(config.ThreadCount > 0);
|
| 198 |
|
| 199 | InitResult(outResult);
|
| 200 |
|
| 201 | RandomNumberGenerator mainRand{config.RandSeed};
|
| 202 |
|
| 203 | time_point timeBeg = std::chrono::high_resolution_clock::now();
|
| 204 |
|
| 205 | std::atomic<size_t> allocationCount = 0;
|
| 206 | VkResult res = VK_SUCCESS;
|
| 207 |
|
| 208 | uint32_t memUsageProbabilitySum =
|
| 209 | config.MemUsageProbability[0] + config.MemUsageProbability[1] +
|
| 210 | config.MemUsageProbability[2] + config.MemUsageProbability[3];
|
| 211 | assert(memUsageProbabilitySum > 0);
|
| 212 |
|
| 213 | uint32_t allocationSizeProbabilitySum = std::accumulate(
|
| 214 | config.AllocationSizes.begin(),
|
| 215 | config.AllocationSizes.end(),
|
| 216 | 0u,
|
| 217 | [](uint32_t sum, const AllocationSize& allocSize) {
|
| 218 | return sum + allocSize.Probability;
|
| 219 | });
|
| 220 |
|
| 221 | struct Allocation
|
| 222 | {
|
| 223 | VkBuffer Buffer;
|
| 224 | VkImage Image;
|
| 225 | VmaAllocation Alloc;
|
| 226 | };
|
| 227 |
|
| 228 | std::vector<Allocation> commonAllocations;
|
| 229 | std::mutex commonAllocationsMutex;
|
| 230 |
|
| 231 | auto Allocate = [&](
|
| 232 | VkDeviceSize bufferSize,
|
| 233 | const VkExtent2D imageExtent,
|
| 234 | RandomNumberGenerator& localRand,
|
| 235 | VkDeviceSize& totalAllocatedBytes,
|
| 236 | std::vector<Allocation>& allocations) -> VkResult
|
| 237 | {
|
| 238 | assert((bufferSize == 0) != (imageExtent.width == 0 && imageExtent.height == 0));
|
| 239 |
|
| 240 | uint32_t memUsageIndex = 0;
|
| 241 | uint32_t memUsageRand = localRand.Generate() % memUsageProbabilitySum;
|
| 242 | while(memUsageRand >= config.MemUsageProbability[memUsageIndex])
|
| 243 | memUsageRand -= config.MemUsageProbability[memUsageIndex++];
|
| 244 |
|
| 245 | VmaAllocationCreateInfo memReq = {};
|
| 246 | memReq.usage = (VmaMemoryUsage)(VMA_MEMORY_USAGE_GPU_ONLY + memUsageIndex);
|
| 247 |
|
| 248 | Allocation allocation = {};
|
| 249 | VmaAllocationInfo allocationInfo;
|
| 250 |
|
| 251 | // Buffer
|
| 252 | if(bufferSize > 0)
|
| 253 | {
|
| 254 | assert(imageExtent.width == 0);
|
| 255 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 256 | bufferInfo.size = bufferSize;
|
| 257 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
| 258 |
|
| 259 | {
|
| 260 | AllocationTimeRegisterObj timeRegisterObj{outResult};
|
| 261 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &memReq, &allocation.Buffer, &allocation.Alloc, &allocationInfo);
|
| 262 | }
|
| 263 | }
|
| 264 | // Image
|
| 265 | else
|
| 266 | {
|
| 267 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
| 268 | imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
| 269 | imageInfo.extent.width = imageExtent.width;
|
| 270 | imageInfo.extent.height = imageExtent.height;
|
| 271 | imageInfo.extent.depth = 1;
|
| 272 | imageInfo.mipLevels = 1;
|
| 273 | imageInfo.arrayLayers = 1;
|
| 274 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
| 275 | imageInfo.tiling = memReq.usage == VMA_MEMORY_USAGE_GPU_ONLY ?
|
| 276 | VK_IMAGE_TILING_OPTIMAL :
|
| 277 | VK_IMAGE_TILING_LINEAR;
|
| 278 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
| 279 | switch(memReq.usage)
|
| 280 | {
|
| 281 | case VMA_MEMORY_USAGE_GPU_ONLY:
|
| 282 | switch(localRand.Generate() % 3)
|
| 283 | {
|
| 284 | case 0:
|
| 285 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
| 286 | break;
|
| 287 | case 1:
|
| 288 | imageInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
|
| 289 | break;
|
| 290 | case 2:
|
| 291 | imageInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
| 292 | break;
|
| 293 | }
|
| 294 | break;
|
| 295 | case VMA_MEMORY_USAGE_CPU_ONLY:
|
| 296 | case VMA_MEMORY_USAGE_CPU_TO_GPU:
|
| 297 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
| 298 | break;
|
| 299 | case VMA_MEMORY_USAGE_GPU_TO_CPU:
|
| 300 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT;
|
| 301 | break;
|
| 302 | }
|
| 303 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
| 304 | imageInfo.flags = 0;
|
| 305 |
|
| 306 | {
|
| 307 | AllocationTimeRegisterObj timeRegisterObj{outResult};
|
| 308 | res = vmaCreateImage(g_hAllocator, &imageInfo, &memReq, &allocation.Image, &allocation.Alloc, &allocationInfo);
|
| 309 | }
|
| 310 | }
|
| 311 |
|
| 312 | if(res == VK_SUCCESS)
|
| 313 | {
|
| 314 | ++allocationCount;
|
| 315 | totalAllocatedBytes += allocationInfo.size;
|
| 316 | bool useCommonAllocations = localRand.Generate() % 100 < config.ThreadsUsingCommonAllocationsProbabilityPercent;
|
| 317 | if(useCommonAllocations)
|
| 318 | {
|
| 319 | std::unique_lock<std::mutex> lock(commonAllocationsMutex);
|
| 320 | commonAllocations.push_back(allocation);
|
| 321 | }
|
| 322 | else
|
| 323 | allocations.push_back(allocation);
|
| 324 | }
|
| 325 | else
|
| 326 | {
|
| 327 | assert(0);
|
| 328 | }
|
| 329 | return res;
|
| 330 | };
|
| 331 |
|
| 332 | auto GetNextAllocationSize = [&](
|
| 333 | VkDeviceSize& outBufSize,
|
| 334 | VkExtent2D& outImageSize,
|
| 335 | RandomNumberGenerator& localRand)
|
| 336 | {
|
| 337 | outBufSize = 0;
|
| 338 | outImageSize = {0, 0};
|
| 339 |
|
| 340 | uint32_t allocSizeIndex = 0;
|
| 341 | uint32_t r = localRand.Generate() % allocationSizeProbabilitySum;
|
| 342 | while(r >= config.AllocationSizes[allocSizeIndex].Probability)
|
| 343 | r -= config.AllocationSizes[allocSizeIndex++].Probability;
|
| 344 |
|
| 345 | const AllocationSize& allocSize = config.AllocationSizes[allocSizeIndex];
|
| 346 | if(allocSize.BufferSizeMax > 0)
|
| 347 | {
|
| 348 | assert(allocSize.ImageSizeMax == 0);
|
| 349 | if(allocSize.BufferSizeMax == allocSize.BufferSizeMin)
|
| 350 | outBufSize = allocSize.BufferSizeMin;
|
| 351 | else
|
| 352 | {
|
| 353 | outBufSize = allocSize.BufferSizeMin + localRand.Generate() % (allocSize.BufferSizeMax - allocSize.BufferSizeMin);
|
| 354 | outBufSize = outBufSize / 16 * 16;
|
| 355 | }
|
| 356 | }
|
| 357 | else
|
| 358 | {
|
| 359 | if(allocSize.ImageSizeMax == allocSize.ImageSizeMin)
|
| 360 | outImageSize.width = outImageSize.height = allocSize.ImageSizeMax;
|
| 361 | else
|
| 362 | {
|
| 363 | outImageSize.width = allocSize.ImageSizeMin + localRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 364 | outImageSize.height = allocSize.ImageSizeMin + localRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 365 | }
|
| 366 | }
|
| 367 | };
|
| 368 |
|
| 369 | std::atomic<uint32_t> numThreadsReachedMaxAllocations = 0;
|
| 370 | HANDLE threadsFinishEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
|
| 371 |
|
| 372 | auto ThreadProc = [&](uint32_t randSeed) -> void
|
| 373 | {
|
| 374 | RandomNumberGenerator threadRand(randSeed);
|
| 375 | VkDeviceSize threadTotalAllocatedBytes = 0;
|
| 376 | std::vector<Allocation> threadAllocations;
|
| 377 | VkDeviceSize threadBeginBytesToAllocate = config.BeginBytesToAllocate / config.ThreadCount;
|
| 378 | VkDeviceSize threadMaxBytesToAllocate = config.MaxBytesToAllocate / config.ThreadCount;
|
| 379 | uint32_t threadAdditionalOperationCount = config.AdditionalOperationCount / config.ThreadCount;
|
| 380 |
|
| 381 | // BEGIN ALLOCATIONS
|
| 382 | for(;;)
|
| 383 | {
|
| 384 | VkDeviceSize bufferSize = 0;
|
| 385 | VkExtent2D imageExtent = {};
|
| 386 | GetNextAllocationSize(bufferSize, imageExtent, threadRand);
|
| 387 | if(threadTotalAllocatedBytes + bufferSize + imageExtent.width * imageExtent.height * IMAGE_BYTES_PER_PIXEL <
|
| 388 | threadBeginBytesToAllocate)
|
| 389 | {
|
| 390 | if(Allocate(bufferSize, imageExtent, threadRand, threadTotalAllocatedBytes, threadAllocations) != VK_SUCCESS)
|
| 391 | break;
|
| 392 | }
|
| 393 | else
|
| 394 | break;
|
| 395 | }
|
| 396 |
|
| 397 | // ADDITIONAL ALLOCATIONS AND FREES
|
| 398 | for(size_t i = 0; i < threadAdditionalOperationCount; ++i)
|
| 399 | {
|
| 400 | VkDeviceSize bufferSize = 0;
|
| 401 | VkExtent2D imageExtent = {};
|
| 402 | GetNextAllocationSize(bufferSize, imageExtent, threadRand);
|
| 403 |
|
| 404 | // true = allocate, false = free
|
| 405 | bool allocate = threadRand.Generate() % 2 != 0;
|
| 406 |
|
| 407 | if(allocate)
|
| 408 | {
|
| 409 | if(threadTotalAllocatedBytes +
|
| 410 | bufferSize +
|
| 411 | imageExtent.width * imageExtent.height * IMAGE_BYTES_PER_PIXEL <
|
| 412 | threadMaxBytesToAllocate)
|
| 413 | {
|
| 414 | if(Allocate(bufferSize, imageExtent, threadRand, threadTotalAllocatedBytes, threadAllocations) != VK_SUCCESS)
|
| 415 | break;
|
| 416 | }
|
| 417 | }
|
| 418 | else
|
| 419 | {
|
| 420 | bool useCommonAllocations = threadRand.Generate() % 100 < config.ThreadsUsingCommonAllocationsProbabilityPercent;
|
| 421 | if(useCommonAllocations)
|
| 422 | {
|
| 423 | std::unique_lock<std::mutex> lock(commonAllocationsMutex);
|
| 424 | if(!commonAllocations.empty())
|
| 425 | {
|
| 426 | size_t indexToFree = threadRand.Generate() % commonAllocations.size();
|
| 427 | VmaAllocationInfo allocationInfo;
|
| 428 | vmaGetAllocationInfo(g_hAllocator, commonAllocations[indexToFree].Alloc, &allocationInfo);
|
| 429 | if(threadTotalAllocatedBytes >= allocationInfo.size)
|
| 430 | {
|
| 431 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 432 | if(commonAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 433 | vmaDestroyBuffer(g_hAllocator, commonAllocations[indexToFree].Buffer, commonAllocations[indexToFree].Alloc);
|
| 434 | else
|
| 435 | vmaDestroyImage(g_hAllocator, commonAllocations[indexToFree].Image, commonAllocations[indexToFree].Alloc);
|
| 436 | threadTotalAllocatedBytes -= allocationInfo.size;
|
| 437 | commonAllocations.erase(commonAllocations.begin() + indexToFree);
|
| 438 | }
|
| 439 | }
|
| 440 | }
|
| 441 | else
|
| 442 | {
|
| 443 | if(!threadAllocations.empty())
|
| 444 | {
|
| 445 | size_t indexToFree = threadRand.Generate() % threadAllocations.size();
|
| 446 | VmaAllocationInfo allocationInfo;
|
| 447 | vmaGetAllocationInfo(g_hAllocator, threadAllocations[indexToFree].Alloc, &allocationInfo);
|
| 448 | if(threadTotalAllocatedBytes >= allocationInfo.size)
|
| 449 | {
|
| 450 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 451 | if(threadAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 452 | vmaDestroyBuffer(g_hAllocator, threadAllocations[indexToFree].Buffer, threadAllocations[indexToFree].Alloc);
|
| 453 | else
|
| 454 | vmaDestroyImage(g_hAllocator, threadAllocations[indexToFree].Image, threadAllocations[indexToFree].Alloc);
|
| 455 | threadTotalAllocatedBytes -= allocationInfo.size;
|
| 456 | threadAllocations.erase(threadAllocations.begin() + indexToFree);
|
| 457 | }
|
| 458 | }
|
| 459 | }
|
| 460 | }
|
| 461 | }
|
| 462 |
|
| 463 | ++numThreadsReachedMaxAllocations;
|
| 464 |
|
| 465 | WaitForSingleObject(threadsFinishEvent, INFINITE);
|
| 466 |
|
| 467 | // DEALLOCATION
|
| 468 | while(!threadAllocations.empty())
|
| 469 | {
|
| 470 | size_t indexToFree = 0;
|
| 471 | switch(config.FreeOrder)
|
| 472 | {
|
| 473 | case FREE_ORDER::FORWARD:
|
| 474 | indexToFree = 0;
|
| 475 | break;
|
| 476 | case FREE_ORDER::BACKWARD:
|
| 477 | indexToFree = threadAllocations.size() - 1;
|
| 478 | break;
|
| 479 | case FREE_ORDER::RANDOM:
|
| 480 | indexToFree = mainRand.Generate() % threadAllocations.size();
|
| 481 | break;
|
| 482 | }
|
| 483 |
|
| 484 | {
|
| 485 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 486 | if(threadAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 487 | vmaDestroyBuffer(g_hAllocator, threadAllocations[indexToFree].Buffer, threadAllocations[indexToFree].Alloc);
|
| 488 | else
|
| 489 | vmaDestroyImage(g_hAllocator, threadAllocations[indexToFree].Image, threadAllocations[indexToFree].Alloc);
|
| 490 | }
|
| 491 | threadAllocations.erase(threadAllocations.begin() + indexToFree);
|
| 492 | }
|
| 493 | };
|
| 494 |
|
| 495 | uint32_t threadRandSeed = mainRand.Generate();
|
| 496 | std::vector<std::thread> bkgThreads;
|
| 497 | for(size_t i = 0; i < config.ThreadCount; ++i)
|
| 498 | {
|
| 499 | bkgThreads.emplace_back(std::bind(ThreadProc, threadRandSeed + (uint32_t)i));
|
| 500 | }
|
| 501 |
|
| 502 | // Wait for threads reached max allocations
|
| 503 | while(numThreadsReachedMaxAllocations < config.ThreadCount)
|
| 504 | Sleep(0);
|
| 505 |
|
| 506 | // CALCULATE MEMORY STATISTICS ON FINAL USAGE
|
| 507 | VmaStats vmaStats = {};
|
| 508 | vmaCalculateStats(g_hAllocator, &vmaStats);
|
| 509 | outResult.TotalMemoryAllocated = vmaStats.total.usedBytes + vmaStats.total.unusedBytes;
|
| 510 | outResult.FreeRangeSizeMax = vmaStats.total.unusedRangeSizeMax;
|
| 511 | outResult.FreeRangeSizeAvg = vmaStats.total.unusedRangeSizeAvg;
|
| 512 |
|
| 513 | // Signal threads to deallocate
|
| 514 | SetEvent(threadsFinishEvent);
|
| 515 |
|
| 516 | // Wait for threads finished
|
| 517 | for(size_t i = 0; i < bkgThreads.size(); ++i)
|
| 518 | bkgThreads[i].join();
|
| 519 | bkgThreads.clear();
|
| 520 |
|
| 521 | CloseHandle(threadsFinishEvent);
|
| 522 |
|
| 523 | // Deallocate remaining common resources
|
| 524 | while(!commonAllocations.empty())
|
| 525 | {
|
| 526 | size_t indexToFree = 0;
|
| 527 | switch(config.FreeOrder)
|
| 528 | {
|
| 529 | case FREE_ORDER::FORWARD:
|
| 530 | indexToFree = 0;
|
| 531 | break;
|
| 532 | case FREE_ORDER::BACKWARD:
|
| 533 | indexToFree = commonAllocations.size() - 1;
|
| 534 | break;
|
| 535 | case FREE_ORDER::RANDOM:
|
| 536 | indexToFree = mainRand.Generate() % commonAllocations.size();
|
| 537 | break;
|
| 538 | }
|
| 539 |
|
| 540 | {
|
| 541 | DeallocationTimeRegisterObj timeRegisterObj{outResult};
|
| 542 | if(commonAllocations[indexToFree].Buffer != VK_NULL_HANDLE)
|
| 543 | vmaDestroyBuffer(g_hAllocator, commonAllocations[indexToFree].Buffer, commonAllocations[indexToFree].Alloc);
|
| 544 | else
|
| 545 | vmaDestroyImage(g_hAllocator, commonAllocations[indexToFree].Image, commonAllocations[indexToFree].Alloc);
|
| 546 | }
|
| 547 | commonAllocations.erase(commonAllocations.begin() + indexToFree);
|
| 548 | }
|
| 549 |
|
| 550 | if(allocationCount)
|
| 551 | {
|
| 552 | outResult.AllocationTimeAvg /= allocationCount;
|
| 553 | outResult.DeallocationTimeAvg /= allocationCount;
|
| 554 | }
|
| 555 |
|
| 556 | outResult.TotalTime = std::chrono::high_resolution_clock::now() - timeBeg;
|
| 557 |
|
| 558 | return res;
|
| 559 | }
|
| 560 |
|
| 561 | static void SaveAllocatorStatsToFile(VmaAllocator alloc, const wchar_t* filePath)
|
| 562 | {
|
| 563 | char* stats;
|
| 564 | vmaBuildStatsString(alloc, &stats, VK_TRUE);
|
| 565 | SaveFile(filePath, stats, strlen(stats));
|
| 566 | vmaFreeStatsString(alloc, stats);
|
| 567 | }
|
| 568 |
|
| 569 | struct AllocInfo
|
| 570 | {
|
| 571 | VmaAllocation m_Allocation;
|
| 572 | VkBuffer m_Buffer;
|
| 573 | VkImage m_Image;
|
| 574 | uint32_t m_StartValue;
|
| 575 | union
|
| 576 | {
|
| 577 | VkBufferCreateInfo m_BufferInfo;
|
| 578 | VkImageCreateInfo m_ImageInfo;
|
| 579 | };
|
| 580 | };
|
| 581 |
|
| 582 | static void GetMemReq(VmaAllocationCreateInfo& outMemReq)
|
| 583 | {
|
| 584 | outMemReq = {};
|
| 585 | outMemReq.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
|
| 586 | //outMemReq.flags = VMA_ALLOCATION_CREATE_PERSISTENT_MAP_BIT;
|
| 587 | }
|
| 588 |
|
| 589 | static void CreateBuffer(
|
| 590 | VmaPool pool,
|
| 591 | const VkBufferCreateInfo& bufCreateInfo,
|
| 592 | bool persistentlyMapped,
|
| 593 | AllocInfo& outAllocInfo)
|
| 594 | {
|
| 595 | outAllocInfo = {};
|
| 596 | outAllocInfo.m_BufferInfo = bufCreateInfo;
|
| 597 |
|
| 598 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 599 | allocCreateInfo.pool = pool;
|
| 600 | if(persistentlyMapped)
|
| 601 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 602 |
|
| 603 | VmaAllocationInfo vmaAllocInfo = {};
|
| 604 | ERR_GUARD_VULKAN( vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &outAllocInfo.m_Buffer, &outAllocInfo.m_Allocation, &vmaAllocInfo) );
|
| 605 |
|
| 606 | // Setup StartValue and fill.
|
| 607 | {
|
| 608 | outAllocInfo.m_StartValue = (uint32_t)rand();
|
| 609 | uint32_t* data = (uint32_t*)vmaAllocInfo.pMappedData;
|
| 610 | assert((data != nullptr) == persistentlyMapped);
|
| 611 | if(!persistentlyMapped)
|
| 612 | {
|
| 613 | ERR_GUARD_VULKAN( vmaMapMemory(g_hAllocator, outAllocInfo.m_Allocation, (void**)&data) );
|
| 614 | }
|
| 615 |
|
| 616 | uint32_t value = outAllocInfo.m_StartValue;
|
| 617 | assert(bufCreateInfo.size % 4 == 0);
|
| 618 | for(size_t i = 0; i < bufCreateInfo.size / sizeof(uint32_t); ++i)
|
| 619 | data[i] = value++;
|
| 620 |
|
| 621 | if(!persistentlyMapped)
|
| 622 | vmaUnmapMemory(g_hAllocator, outAllocInfo.m_Allocation);
|
| 623 | }
|
| 624 | }
|
| 625 |
|
| 626 | static void CreateAllocation(AllocInfo& outAllocation, VmaAllocator allocator)
|
| 627 | {
|
| 628 | outAllocation.m_Allocation = nullptr;
|
| 629 | outAllocation.m_Buffer = nullptr;
|
| 630 | outAllocation.m_Image = nullptr;
|
| 631 | outAllocation.m_StartValue = (uint32_t)rand();
|
| 632 |
|
| 633 | VmaAllocationCreateInfo vmaMemReq;
|
| 634 | GetMemReq(vmaMemReq);
|
| 635 |
|
| 636 | VmaAllocationInfo allocInfo;
|
| 637 |
|
| 638 | const bool isBuffer = true;//(rand() & 0x1) != 0;
|
| 639 | const bool isLarge = (rand() % 16) == 0;
|
| 640 | if(isBuffer)
|
| 641 | {
|
| 642 | const uint32_t bufferSize = isLarge ?
|
| 643 | (rand() % 10 + 1) * (1024 * 1024) : // 1 MB ... 10 MB
|
| 644 | (rand() % 1024 + 1) * 1024; // 1 KB ... 1 MB
|
| 645 |
|
| 646 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 647 | bufferInfo.size = bufferSize;
|
| 648 | bufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 649 |
|
| 650 | VkResult res = vmaCreateBuffer(allocator, &bufferInfo, &vmaMemReq, &outAllocation.m_Buffer, &outAllocation.m_Allocation, &allocInfo);
|
| 651 | outAllocation.m_BufferInfo = bufferInfo;
|
| 652 | assert(res == VK_SUCCESS);
|
| 653 | }
|
| 654 | else
|
| 655 | {
|
| 656 | const uint32_t imageSizeX = isLarge ?
|
| 657 | 1024 + rand() % (4096 - 1024) : // 1024 ... 4096
|
| 658 | rand() % 1024 + 1; // 1 ... 1024
|
| 659 | const uint32_t imageSizeY = isLarge ?
|
| 660 | 1024 + rand() % (4096 - 1024) : // 1024 ... 4096
|
| 661 | rand() % 1024 + 1; // 1 ... 1024
|
| 662 |
|
| 663 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
| 664 | imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
| 665 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
| 666 | imageInfo.extent.width = imageSizeX;
|
| 667 | imageInfo.extent.height = imageSizeY;
|
| 668 | imageInfo.extent.depth = 1;
|
| 669 | imageInfo.mipLevels = 1;
|
| 670 | imageInfo.arrayLayers = 1;
|
| 671 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
| 672 | imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
|
| 673 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
| 674 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
|
| 675 |
|
| 676 | VkResult res = vmaCreateImage(allocator, &imageInfo, &vmaMemReq, &outAllocation.m_Image, &outAllocation.m_Allocation, &allocInfo);
|
| 677 | outAllocation.m_ImageInfo = imageInfo;
|
| 678 | assert(res == VK_SUCCESS);
|
| 679 | }
|
| 680 |
|
| 681 | uint32_t* data = (uint32_t*)allocInfo.pMappedData;
|
| 682 | if(allocInfo.pMappedData == nullptr)
|
| 683 | {
|
| 684 | VkResult res = vmaMapMemory(allocator, outAllocation.m_Allocation, (void**)&data);
|
| 685 | assert(res == VK_SUCCESS);
|
| 686 | }
|
| 687 |
|
| 688 | uint32_t value = outAllocation.m_StartValue;
|
| 689 | assert(allocInfo.size % 4 == 0);
|
| 690 | for(size_t i = 0; i < allocInfo.size / sizeof(uint32_t); ++i)
|
| 691 | data[i] = value++;
|
| 692 |
|
| 693 | if(allocInfo.pMappedData == nullptr)
|
| 694 | vmaUnmapMemory(allocator, outAllocation.m_Allocation);
|
| 695 | }
|
| 696 |
|
| 697 | static void DestroyAllocation(const AllocInfo& allocation)
|
| 698 | {
|
| 699 | if(allocation.m_Buffer)
|
| 700 | vmaDestroyBuffer(g_hAllocator, allocation.m_Buffer, allocation.m_Allocation);
|
| 701 | else
|
| 702 | vmaDestroyImage(g_hAllocator, allocation.m_Image, allocation.m_Allocation);
|
| 703 | }
|
| 704 |
|
| 705 | static void DestroyAllAllocations(std::vector<AllocInfo>& allocations)
|
| 706 | {
|
| 707 | for(size_t i = allocations.size(); i--; )
|
| 708 | DestroyAllocation(allocations[i]);
|
| 709 | allocations.clear();
|
| 710 | }
|
| 711 |
|
| 712 | static void ValidateAllocationData(const AllocInfo& allocation)
|
| 713 | {
|
| 714 | VmaAllocationInfo allocInfo;
|
| 715 | vmaGetAllocationInfo(g_hAllocator, allocation.m_Allocation, &allocInfo);
|
| 716 |
|
| 717 | uint32_t* data = (uint32_t*)allocInfo.pMappedData;
|
| 718 | if(allocInfo.pMappedData == nullptr)
|
| 719 | {
|
| 720 | VkResult res = vmaMapMemory(g_hAllocator, allocation.m_Allocation, (void**)&data);
|
| 721 | assert(res == VK_SUCCESS);
|
| 722 | }
|
| 723 |
|
| 724 | uint32_t value = allocation.m_StartValue;
|
| 725 | bool ok = true;
|
| 726 | size_t i;
|
| 727 | assert(allocInfo.size % 4 == 0);
|
| 728 | for(i = 0; i < allocInfo.size / sizeof(uint32_t); ++i)
|
| 729 | {
|
| 730 | if(data[i] != value++)
|
| 731 | {
|
| 732 | ok = false;
|
| 733 | break;
|
| 734 | }
|
| 735 | }
|
| 736 | assert(ok);
|
| 737 |
|
| 738 | if(allocInfo.pMappedData == nullptr)
|
| 739 | vmaUnmapMemory(g_hAllocator, allocation.m_Allocation);
|
| 740 | }
|
| 741 |
|
| 742 | static void RecreateAllocationResource(AllocInfo& allocation)
|
| 743 | {
|
| 744 | VmaAllocationInfo allocInfo;
|
| 745 | vmaGetAllocationInfo(g_hAllocator, allocation.m_Allocation, &allocInfo);
|
| 746 |
|
| 747 | if(allocation.m_Buffer)
|
| 748 | {
|
| 749 | vkDestroyBuffer(g_hDevice, allocation.m_Buffer, nullptr);
|
| 750 |
|
| 751 | VkResult res = vkCreateBuffer(g_hDevice, &allocation.m_BufferInfo, nullptr, &allocation.m_Buffer);
|
| 752 | assert(res == VK_SUCCESS);
|
| 753 |
|
| 754 | // Just to silence validation layer warnings.
|
| 755 | VkMemoryRequirements vkMemReq;
|
| 756 | vkGetBufferMemoryRequirements(g_hDevice, allocation.m_Buffer, &vkMemReq);
|
| 757 | assert(vkMemReq.size == allocation.m_BufferInfo.size);
|
| 758 |
|
| 759 | res = vkBindBufferMemory(g_hDevice, allocation.m_Buffer, allocInfo.deviceMemory, allocInfo.offset);
|
| 760 | assert(res == VK_SUCCESS);
|
| 761 | }
|
| 762 | else
|
| 763 | {
|
| 764 | vkDestroyImage(g_hDevice, allocation.m_Image, nullptr);
|
| 765 |
|
| 766 | VkResult res = vkCreateImage(g_hDevice, &allocation.m_ImageInfo, nullptr, &allocation.m_Image);
|
| 767 | assert(res == VK_SUCCESS);
|
| 768 |
|
| 769 | // Just to silence validation layer warnings.
|
| 770 | VkMemoryRequirements vkMemReq;
|
| 771 | vkGetImageMemoryRequirements(g_hDevice, allocation.m_Image, &vkMemReq);
|
| 772 |
|
| 773 | res = vkBindImageMemory(g_hDevice, allocation.m_Image, allocInfo.deviceMemory, allocInfo.offset);
|
| 774 | assert(res == VK_SUCCESS);
|
| 775 | }
|
| 776 | }
|
| 777 |
|
| 778 | static void Defragment(AllocInfo* allocs, size_t allocCount,
|
| 779 | const VmaDefragmentationInfo* defragmentationInfo = nullptr,
|
| 780 | VmaDefragmentationStats* defragmentationStats = nullptr)
|
| 781 | {
|
| 782 | std::vector<VmaAllocation> vmaAllocs(allocCount);
|
| 783 | for(size_t i = 0; i < allocCount; ++i)
|
| 784 | vmaAllocs[i] = allocs[i].m_Allocation;
|
| 785 |
|
| 786 | std::vector<VkBool32> allocChanged(allocCount);
|
| 787 |
|
| 788 | ERR_GUARD_VULKAN( vmaDefragment(g_hAllocator, vmaAllocs.data(), allocCount, allocChanged.data(),
|
| 789 | defragmentationInfo, defragmentationStats) );
|
| 790 |
|
| 791 | for(size_t i = 0; i < allocCount; ++i)
|
| 792 | {
|
| 793 | if(allocChanged[i])
|
| 794 | {
|
| 795 | RecreateAllocationResource(allocs[i]);
|
| 796 | }
|
| 797 | }
|
| 798 | }
|
| 799 |
|
| 800 | static void ValidateAllocationsData(const AllocInfo* allocs, size_t allocCount)
|
| 801 | {
|
| 802 | std::for_each(allocs, allocs + allocCount, [](const AllocInfo& allocInfo) {
|
| 803 | ValidateAllocationData(allocInfo);
|
| 804 | });
|
| 805 | }
|
| 806 |
|
| 807 | void TestDefragmentationSimple()
|
| 808 | {
|
| 809 | wprintf(L"Test defragmentation simple\n");
|
| 810 |
|
| 811 | RandomNumberGenerator rand(667);
|
| 812 |
|
| 813 | const VkDeviceSize BUF_SIZE = 0x10000;
|
| 814 | const VkDeviceSize BLOCK_SIZE = BUF_SIZE * 8;
|
| 815 |
|
| 816 | const VkDeviceSize MIN_BUF_SIZE = 32;
|
| 817 | const VkDeviceSize MAX_BUF_SIZE = BUF_SIZE * 4;
|
| 818 | auto RandomBufSize = [&]() -> VkDeviceSize {
|
| 819 | return align_up<VkDeviceSize>(rand.Generate() % (MAX_BUF_SIZE - MIN_BUF_SIZE + 1) + MIN_BUF_SIZE, 32);
|
| 820 | };
|
| 821 |
|
| 822 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 823 | bufCreateInfo.size = BUF_SIZE;
|
| 824 | bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 825 |
|
| 826 | VmaAllocationCreateInfo exampleAllocCreateInfo = {};
|
| 827 | exampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 828 |
|
| 829 | uint32_t memTypeIndex = UINT32_MAX;
|
| 830 | vmaFindMemoryTypeIndexForBufferInfo(g_hAllocator, &bufCreateInfo, &exampleAllocCreateInfo, &memTypeIndex);
|
| 831 |
|
| 832 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 833 | poolCreateInfo.blockSize = BLOCK_SIZE;
|
| 834 | poolCreateInfo.memoryTypeIndex = memTypeIndex;
|
| 835 |
|
| 836 | VmaPool pool;
|
| 837 | ERR_GUARD_VULKAN( vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool) );
|
| 838 |
|
| 839 | std::vector<AllocInfo> allocations;
|
| 840 |
|
| 841 | // persistentlyMappedOption = 0 - not persistently mapped.
|
| 842 | // persistentlyMappedOption = 1 - persistently mapped.
|
| 843 | for(uint32_t persistentlyMappedOption = 0; persistentlyMappedOption < 2; ++persistentlyMappedOption)
|
| 844 | {
|
| 845 | wprintf(L" Persistently mapped option = %u\n", persistentlyMappedOption);
|
| 846 | const bool persistentlyMapped = persistentlyMappedOption != 0;
|
| 847 |
|
| 848 | // # Test 1
|
| 849 | // Buffers of fixed size.
|
| 850 | // Fill 2 blocks. Remove odd buffers. Defragment everything.
|
| 851 | // Expected result: at least 1 block freed.
|
| 852 | {
|
| 853 | for(size_t i = 0; i < BLOCK_SIZE / BUF_SIZE * 2; ++i)
|
| 854 | {
|
| 855 | AllocInfo allocInfo;
|
| 856 | CreateBuffer(pool, bufCreateInfo, persistentlyMapped, allocInfo);
|
| 857 | allocations.push_back(allocInfo);
|
| 858 | }
|
| 859 |
|
| 860 | for(size_t i = 1; i < allocations.size(); ++i)
|
| 861 | {
|
| 862 | DestroyAllocation(allocations[i]);
|
| 863 | allocations.erase(allocations.begin() + i);
|
| 864 | }
|
| 865 |
|
| 866 | VmaDefragmentationStats defragStats;
|
| 867 | Defragment(allocations.data(), allocations.size(), nullptr, &defragStats);
|
| 868 | assert(defragStats.allocationsMoved > 0 && defragStats.bytesMoved > 0);
|
| 869 | assert(defragStats.deviceMemoryBlocksFreed >= 1);
|
| 870 |
|
| 871 | ValidateAllocationsData(allocations.data(), allocations.size());
|
| 872 |
|
| 873 | DestroyAllAllocations(allocations);
|
| 874 | }
|
| 875 |
|
| 876 | // # Test 2
|
| 877 | // Buffers of fixed size.
|
| 878 | // Fill 2 blocks. Remove odd buffers. Defragment one buffer at time.
|
| 879 | // Expected result: Each of 4 interations makes some progress.
|
| 880 | {
|
| 881 | for(size_t i = 0; i < BLOCK_SIZE / BUF_SIZE * 2; ++i)
|
| 882 | {
|
| 883 | AllocInfo allocInfo;
|
| 884 | CreateBuffer(pool, bufCreateInfo, persistentlyMapped, allocInfo);
|
| 885 | allocations.push_back(allocInfo);
|
| 886 | }
|
| 887 |
|
| 888 | for(size_t i = 1; i < allocations.size(); ++i)
|
| 889 | {
|
| 890 | DestroyAllocation(allocations[i]);
|
| 891 | allocations.erase(allocations.begin() + i);
|
| 892 | }
|
| 893 |
|
| 894 | VmaDefragmentationInfo defragInfo = {};
|
| 895 | defragInfo.maxAllocationsToMove = 1;
|
| 896 | defragInfo.maxBytesToMove = BUF_SIZE;
|
| 897 |
|
| 898 | for(size_t i = 0; i < BLOCK_SIZE / BUF_SIZE / 2; ++i)
|
| 899 | {
|
| 900 | VmaDefragmentationStats defragStats;
|
| 901 | Defragment(allocations.data(), allocations.size(), &defragInfo, &defragStats);
|
| 902 | assert(defragStats.allocationsMoved > 0 && defragStats.bytesMoved > 0);
|
| 903 | }
|
| 904 |
|
| 905 | ValidateAllocationsData(allocations.data(), allocations.size());
|
| 906 |
|
| 907 | DestroyAllAllocations(allocations);
|
| 908 | }
|
| 909 |
|
| 910 | // # Test 3
|
| 911 | // Buffers of variable size.
|
| 912 | // Create a number of buffers. Remove some percent of them.
|
| 913 | // Defragment while having some percent of them unmovable.
|
| 914 | // Expected result: Just simple validation.
|
| 915 | {
|
| 916 | for(size_t i = 0; i < 100; ++i)
|
| 917 | {
|
| 918 | VkBufferCreateInfo localBufCreateInfo = bufCreateInfo;
|
| 919 | localBufCreateInfo.size = RandomBufSize();
|
| 920 |
|
| 921 | AllocInfo allocInfo;
|
| 922 | CreateBuffer(pool, bufCreateInfo, persistentlyMapped, allocInfo);
|
| 923 | allocations.push_back(allocInfo);
|
| 924 | }
|
| 925 |
|
| 926 | const uint32_t percentToDelete = 60;
|
| 927 | const size_t numberToDelete = allocations.size() * percentToDelete / 100;
|
| 928 | for(size_t i = 0; i < numberToDelete; ++i)
|
| 929 | {
|
| 930 | size_t indexToDelete = rand.Generate() % (uint32_t)allocations.size();
|
| 931 | DestroyAllocation(allocations[indexToDelete]);
|
| 932 | allocations.erase(allocations.begin() + indexToDelete);
|
| 933 | }
|
| 934 |
|
| 935 | // Non-movable allocations will be at the beginning of allocations array.
|
| 936 | const uint32_t percentNonMovable = 20;
|
| 937 | const size_t numberNonMovable = allocations.size() * percentNonMovable / 100;
|
| 938 | for(size_t i = 0; i < numberNonMovable; ++i)
|
| 939 | {
|
| 940 | size_t indexNonMovable = i + rand.Generate() % (uint32_t)(allocations.size() - i);
|
| 941 | if(indexNonMovable != i)
|
| 942 | std::swap(allocations[i], allocations[indexNonMovable]);
|
| 943 | }
|
| 944 |
|
| 945 | VmaDefragmentationStats defragStats;
|
| 946 | Defragment(
|
| 947 | allocations.data() + numberNonMovable,
|
| 948 | allocations.size() - numberNonMovable,
|
| 949 | nullptr, &defragStats);
|
| 950 |
|
| 951 | ValidateAllocationsData(allocations.data(), allocations.size());
|
| 952 |
|
| 953 | DestroyAllAllocations(allocations);
|
| 954 | }
|
| 955 | }
|
| 956 |
|
| 957 | vmaDestroyPool(g_hAllocator, pool);
|
| 958 | }
|
| 959 |
|
| 960 | void TestDefragmentationFull()
|
| 961 | {
|
| 962 | std::vector<AllocInfo> allocations;
|
| 963 |
|
| 964 | // Create initial allocations.
|
| 965 | for(size_t i = 0; i < 400; ++i)
|
| 966 | {
|
| 967 | AllocInfo allocation;
|
| 968 | CreateAllocation(allocation, g_hAllocator);
|
| 969 | allocations.push_back(allocation);
|
| 970 | }
|
| 971 |
|
| 972 | // Delete random allocations
|
| 973 | const size_t allocationsToDeletePercent = 80;
|
| 974 | size_t allocationsToDelete = allocations.size() * allocationsToDeletePercent / 100;
|
| 975 | for(size_t i = 0; i < allocationsToDelete; ++i)
|
| 976 | {
|
| 977 | size_t index = (size_t)rand() % allocations.size();
|
| 978 | DestroyAllocation(allocations[index]);
|
| 979 | allocations.erase(allocations.begin() + index);
|
| 980 | }
|
| 981 |
|
| 982 | for(size_t i = 0; i < allocations.size(); ++i)
|
| 983 | ValidateAllocationData(allocations[i]);
|
| 984 |
|
| 985 | SaveAllocatorStatsToFile(g_hAllocator, L"Before.csv");
|
| 986 |
|
| 987 | {
|
| 988 | std::vector<VmaAllocation> vmaAllocations(allocations.size());
|
| 989 | for(size_t i = 0; i < allocations.size(); ++i)
|
| 990 | vmaAllocations[i] = allocations[i].m_Allocation;
|
| 991 |
|
| 992 | const size_t nonMovablePercent = 0;
|
| 993 | size_t nonMovableCount = vmaAllocations.size() * nonMovablePercent / 100;
|
| 994 | for(size_t i = 0; i < nonMovableCount; ++i)
|
| 995 | {
|
| 996 | size_t index = (size_t)rand() % vmaAllocations.size();
|
| 997 | vmaAllocations.erase(vmaAllocations.begin() + index);
|
| 998 | }
|
| 999 |
|
| 1000 | const uint32_t defragCount = 1;
|
| 1001 | for(uint32_t defragIndex = 0; defragIndex < defragCount; ++defragIndex)
|
| 1002 | {
|
| 1003 | std::vector<VkBool32> allocationsChanged(vmaAllocations.size());
|
| 1004 |
|
| 1005 | VmaDefragmentationInfo defragmentationInfo;
|
| 1006 | defragmentationInfo.maxAllocationsToMove = UINT_MAX;
|
| 1007 | defragmentationInfo.maxBytesToMove = SIZE_MAX;
|
| 1008 |
|
| 1009 | wprintf(L"Defragmentation #%u\n", defragIndex);
|
| 1010 |
|
| 1011 | time_point begTime = std::chrono::high_resolution_clock::now();
|
| 1012 |
|
| 1013 | VmaDefragmentationStats stats;
|
| 1014 | VkResult res = vmaDefragment(g_hAllocator, vmaAllocations.data(), vmaAllocations.size(), allocationsChanged.data(), &defragmentationInfo, &stats);
|
| 1015 | assert(res >= 0);
|
| 1016 |
|
| 1017 | float defragmentDuration = ToFloatSeconds(std::chrono::high_resolution_clock::now() - begTime);
|
| 1018 |
|
| 1019 | wprintf(L"Moved allocations %u, bytes %llu\n", stats.allocationsMoved, stats.bytesMoved);
|
| 1020 | wprintf(L"Freed blocks %u, bytes %llu\n", stats.deviceMemoryBlocksFreed, stats.bytesFreed);
|
| 1021 | wprintf(L"Time: %.2f s\n", defragmentDuration);
|
| 1022 |
|
| 1023 | for(size_t i = 0; i < vmaAllocations.size(); ++i)
|
| 1024 | {
|
| 1025 | if(allocationsChanged[i])
|
| 1026 | {
|
| 1027 | RecreateAllocationResource(allocations[i]);
|
| 1028 | }
|
| 1029 | }
|
| 1030 |
|
| 1031 | for(size_t i = 0; i < allocations.size(); ++i)
|
| 1032 | ValidateAllocationData(allocations[i]);
|
| 1033 |
|
| 1034 | wchar_t fileName[MAX_PATH];
|
| 1035 | swprintf(fileName, MAX_PATH, L"After_%02u.csv", defragIndex);
|
| 1036 | SaveAllocatorStatsToFile(g_hAllocator, fileName);
|
| 1037 | }
|
| 1038 | }
|
| 1039 |
|
| 1040 | // Destroy all remaining allocations.
|
| 1041 | DestroyAllAllocations(allocations);
|
| 1042 | }
|
| 1043 |
|
| 1044 | static void TestUserData()
|
| 1045 | {
|
| 1046 | VkResult res;
|
| 1047 |
|
| 1048 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1049 | bufCreateInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
|
| 1050 | bufCreateInfo.size = 0x10000;
|
| 1051 |
|
| 1052 | for(uint32_t testIndex = 0; testIndex < 2; ++testIndex)
|
| 1053 | {
|
| 1054 | // Opaque pointer
|
| 1055 | {
|
| 1056 |
|
| 1057 | void* numberAsPointer = (void*)(size_t)0xC2501FF3u;
|
| 1058 | void* pointerToSomething = &res;
|
| 1059 |
|
| 1060 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1061 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1062 | allocCreateInfo.pUserData = numberAsPointer;
|
| 1063 | if(testIndex == 1)
|
| 1064 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1065 |
|
| 1066 | VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo;
|
| 1067 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1068 | assert(res == VK_SUCCESS);
|
| 1069 | assert(allocInfo.pUserData = numberAsPointer);
|
| 1070 |
|
| 1071 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1072 | assert(allocInfo.pUserData == numberAsPointer);
|
| 1073 |
|
| 1074 | vmaSetAllocationUserData(g_hAllocator, alloc, pointerToSomething);
|
| 1075 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1076 | assert(allocInfo.pUserData == pointerToSomething);
|
| 1077 |
|
| 1078 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1079 | }
|
| 1080 |
|
| 1081 | // String
|
| 1082 | {
|
| 1083 | const char* name1 = "Buffer name \\\"\'<>&% \nSecond line .,;=";
|
| 1084 | const char* name2 = "2";
|
| 1085 | const size_t name1Len = strlen(name1);
|
| 1086 |
|
| 1087 | char* name1Buf = new char[name1Len + 1];
|
| 1088 | strcpy_s(name1Buf, name1Len + 1, name1);
|
| 1089 |
|
| 1090 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1091 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1092 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT;
|
| 1093 | allocCreateInfo.pUserData = name1Buf;
|
| 1094 | if(testIndex == 1)
|
| 1095 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1096 |
|
| 1097 | VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo;
|
| 1098 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1099 | assert(res == VK_SUCCESS);
|
| 1100 | assert(allocInfo.pUserData != nullptr && allocInfo.pUserData != name1Buf);
|
| 1101 | assert(strcmp(name1, (const char*)allocInfo.pUserData) == 0);
|
| 1102 |
|
| 1103 | delete[] name1Buf;
|
| 1104 |
|
| 1105 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1106 | assert(strcmp(name1, (const char*)allocInfo.pUserData) == 0);
|
| 1107 |
|
| 1108 | vmaSetAllocationUserData(g_hAllocator, alloc, (void*)name2);
|
| 1109 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1110 | assert(strcmp(name2, (const char*)allocInfo.pUserData) == 0);
|
| 1111 |
|
| 1112 | vmaSetAllocationUserData(g_hAllocator, alloc, nullptr);
|
| 1113 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1114 | assert(allocInfo.pUserData == nullptr);
|
| 1115 |
|
| 1116 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1117 | }
|
| 1118 | }
|
| 1119 | }
|
| 1120 |
|
| 1121 | static void TestMemoryRequirements()
|
| 1122 | {
|
| 1123 | VkResult res;
|
| 1124 | VkBuffer buf;
|
| 1125 | VmaAllocation alloc;
|
| 1126 | VmaAllocationInfo allocInfo;
|
| 1127 |
|
| 1128 | const VkPhysicalDeviceMemoryProperties* memProps;
|
| 1129 | vmaGetMemoryProperties(g_hAllocator, &memProps);
|
| 1130 |
|
| 1131 | VkBufferCreateInfo bufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1132 | bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 1133 | bufInfo.size = 128;
|
| 1134 |
|
| 1135 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1136 |
|
| 1137 | // No requirements.
|
| 1138 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1139 | assert(res == VK_SUCCESS);
|
| 1140 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1141 |
|
| 1142 | // Usage.
|
| 1143 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1144 | allocCreateInfo.requiredFlags = 0;
|
| 1145 | allocCreateInfo.preferredFlags = 0;
|
| 1146 | allocCreateInfo.memoryTypeBits = UINT32_MAX;
|
| 1147 |
|
| 1148 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1149 | assert(res == VK_SUCCESS);
|
| 1150 | assert(memProps->memoryTypes[allocInfo.memoryType].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
|
| 1151 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1152 |
|
| 1153 | // Required flags, preferred flags.
|
| 1154 | allocCreateInfo.usage = VMA_MEMORY_USAGE_UNKNOWN;
|
| 1155 | allocCreateInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
|
| 1156 | allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
|
| 1157 | allocCreateInfo.memoryTypeBits = 0;
|
| 1158 |
|
| 1159 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1160 | assert(res == VK_SUCCESS);
|
| 1161 | assert(memProps->memoryTypes[allocInfo.memoryType].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
|
| 1162 | assert(memProps->memoryTypes[allocInfo.memoryType].propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
|
| 1163 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1164 |
|
| 1165 | // memoryTypeBits.
|
| 1166 | const uint32_t memType = allocInfo.memoryType;
|
| 1167 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1168 | allocCreateInfo.requiredFlags = 0;
|
| 1169 | allocCreateInfo.preferredFlags = 0;
|
| 1170 | allocCreateInfo.memoryTypeBits = 1u << memType;
|
| 1171 |
|
| 1172 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1173 | assert(res == VK_SUCCESS);
|
| 1174 | assert(allocInfo.memoryType == memType);
|
| 1175 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1176 |
|
| 1177 | }
|
| 1178 |
|
| 1179 | static void TestBasics()
|
| 1180 | {
|
| 1181 | VkResult res;
|
| 1182 |
|
| 1183 | TestMemoryRequirements();
|
| 1184 |
|
| 1185 | // Lost allocation
|
| 1186 | {
|
| 1187 | VmaAllocation alloc = VK_NULL_HANDLE;
|
| 1188 | vmaCreateLostAllocation(g_hAllocator, &alloc);
|
| 1189 | assert(alloc != VK_NULL_HANDLE);
|
| 1190 |
|
| 1191 | VmaAllocationInfo allocInfo;
|
| 1192 | vmaGetAllocationInfo(g_hAllocator, alloc, &allocInfo);
|
| 1193 | assert(allocInfo.deviceMemory == VK_NULL_HANDLE);
|
| 1194 | assert(allocInfo.size == 0);
|
| 1195 |
|
| 1196 | vmaFreeMemory(g_hAllocator, alloc);
|
| 1197 | }
|
| 1198 |
|
| 1199 | // Allocation that is MAPPED and not necessarily HOST_VISIBLE.
|
| 1200 | {
|
| 1201 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1202 | bufCreateInfo.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
|
| 1203 | bufCreateInfo.size = 128;
|
| 1204 |
|
| 1205 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1206 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1207 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 1208 |
|
| 1209 | VkBuffer buf; VmaAllocation alloc; VmaAllocationInfo allocInfo;
|
| 1210 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1211 | assert(res == VK_SUCCESS);
|
| 1212 |
|
| 1213 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1214 |
|
| 1215 | // Same with OWN_MEMORY.
|
| 1216 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1217 |
|
| 1218 | res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
|
| 1219 | assert(res == VK_SUCCESS);
|
| 1220 |
|
| 1221 | vmaDestroyBuffer(g_hAllocator, buf, alloc);
|
| 1222 | }
|
| 1223 |
|
| 1224 | TestUserData();
|
| 1225 | }
|
| 1226 |
|
| 1227 | void TestHeapSizeLimit()
|
| 1228 | {
|
| 1229 | const VkDeviceSize HEAP_SIZE_LIMIT = 1ull * 1024 * 1024 * 1024; // 1 GB
|
| 1230 | const VkDeviceSize BLOCK_SIZE = 128ull * 1024 * 1024; // 128 MB
|
| 1231 |
|
| 1232 | VkDeviceSize heapSizeLimit[VK_MAX_MEMORY_HEAPS];
|
| 1233 | for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
|
| 1234 | {
|
| 1235 | heapSizeLimit[i] = HEAP_SIZE_LIMIT;
|
| 1236 | }
|
| 1237 |
|
| 1238 | VmaAllocatorCreateInfo allocatorCreateInfo = {};
|
| 1239 | allocatorCreateInfo.physicalDevice = g_hPhysicalDevice;
|
| 1240 | allocatorCreateInfo.device = g_hDevice;
|
| 1241 | allocatorCreateInfo.pHeapSizeLimit = heapSizeLimit;
|
| 1242 |
|
| 1243 | VmaAllocator hAllocator;
|
| 1244 | VkResult res = vmaCreateAllocator(&allocatorCreateInfo, &hAllocator);
|
| 1245 | assert(res == VK_SUCCESS);
|
| 1246 |
|
| 1247 | struct Item
|
| 1248 | {
|
| 1249 | VkBuffer hBuf;
|
| 1250 | VmaAllocation hAlloc;
|
| 1251 | };
|
| 1252 | std::vector<Item> items;
|
| 1253 |
|
| 1254 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1255 | bufCreateInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
|
| 1256 |
|
| 1257 | // 1. Allocate two blocks of Own Memory, half the size of BLOCK_SIZE.
|
| 1258 | VmaAllocationInfo ownAllocInfo;
|
| 1259 | {
|
| 1260 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1261 | allocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1262 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 1263 |
|
| 1264 | bufCreateInfo.size = BLOCK_SIZE / 2;
|
| 1265 |
|
| 1266 | for(size_t i = 0; i < 2; ++i)
|
| 1267 | {
|
| 1268 | Item item;
|
| 1269 | res = vmaCreateBuffer(hAllocator, &bufCreateInfo, &allocCreateInfo, &item.hBuf, &item.hAlloc, &ownAllocInfo);
|
| 1270 | assert(res == VK_SUCCESS);
|
| 1271 | items.push_back(item);
|
| 1272 | }
|
| 1273 | }
|
| 1274 |
|
| 1275 | // Create pool to make sure allocations must be out of this memory type.
|
| 1276 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 1277 | poolCreateInfo.memoryTypeIndex = ownAllocInfo.memoryType;
|
| 1278 | poolCreateInfo.blockSize = BLOCK_SIZE;
|
| 1279 |
|
| 1280 | VmaPool hPool;
|
| 1281 | res = vmaCreatePool(hAllocator, &poolCreateInfo, &hPool);
|
| 1282 | assert(res == VK_SUCCESS);
|
| 1283 |
|
| 1284 | // 2. Allocate normal buffers from all the remaining memory.
|
| 1285 | {
|
| 1286 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1287 | allocCreateInfo.pool = hPool;
|
| 1288 |
|
| 1289 | bufCreateInfo.size = BLOCK_SIZE / 2;
|
| 1290 |
|
| 1291 | const size_t bufCount = ((HEAP_SIZE_LIMIT / BLOCK_SIZE) - 1) * 2;
|
| 1292 | for(size_t i = 0; i < bufCount; ++i)
|
| 1293 | {
|
| 1294 | Item item;
|
| 1295 | res = vmaCreateBuffer(hAllocator, &bufCreateInfo, &allocCreateInfo, &item.hBuf, &item.hAlloc, nullptr);
|
| 1296 | assert(res == VK_SUCCESS);
|
| 1297 | items.push_back(item);
|
| 1298 | }
|
| 1299 | }
|
| 1300 |
|
| 1301 | // 3. Allocation of one more (even small) buffer should fail.
|
| 1302 | {
|
| 1303 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1304 | allocCreateInfo.pool = hPool;
|
| 1305 |
|
| 1306 | bufCreateInfo.size = 128;
|
| 1307 |
|
| 1308 | VkBuffer hBuf;
|
| 1309 | VmaAllocation hAlloc;
|
| 1310 | res = vmaCreateBuffer(hAllocator, &bufCreateInfo, &allocCreateInfo, &hBuf, &hAlloc, nullptr);
|
| 1311 | assert(res == VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
| 1312 | }
|
| 1313 |
|
| 1314 | // Destroy everything.
|
| 1315 | for(size_t i = items.size(); i--; )
|
| 1316 | {
|
| 1317 | vmaDestroyBuffer(hAllocator, items[i].hBuf, items[i].hAlloc);
|
| 1318 | }
|
| 1319 |
|
| 1320 | vmaDestroyPool(hAllocator, hPool);
|
| 1321 |
|
| 1322 | vmaDestroyAllocator(hAllocator);
|
| 1323 | }
|
| 1324 |
|
| 1325 | static void TestPool_SameSize()
|
| 1326 | {
|
| 1327 | const VkDeviceSize BUF_SIZE = 1024 * 1024;
|
| 1328 | const size_t BUF_COUNT = 100;
|
| 1329 | VkResult res;
|
| 1330 |
|
| 1331 | RandomNumberGenerator rand{123};
|
| 1332 |
|
| 1333 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1334 | bufferInfo.size = BUF_SIZE;
|
| 1335 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
| 1336 |
|
| 1337 | uint32_t memoryTypeBits = UINT32_MAX;
|
| 1338 | {
|
| 1339 | VkBuffer dummyBuffer;
|
| 1340 | res = vkCreateBuffer(g_hDevice, &bufferInfo, nullptr, &dummyBuffer);
|
| 1341 | assert(res == VK_SUCCESS);
|
| 1342 |
|
| 1343 | VkMemoryRequirements memReq;
|
| 1344 | vkGetBufferMemoryRequirements(g_hDevice, dummyBuffer, &memReq);
|
| 1345 | memoryTypeBits = memReq.memoryTypeBits;
|
| 1346 |
|
| 1347 | vkDestroyBuffer(g_hDevice, dummyBuffer, nullptr);
|
| 1348 | }
|
| 1349 |
|
| 1350 | VmaAllocationCreateInfo poolAllocInfo = {};
|
| 1351 | poolAllocInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 1352 | uint32_t memTypeIndex;
|
| 1353 | res = vmaFindMemoryTypeIndex(
|
| 1354 | g_hAllocator,
|
| 1355 | memoryTypeBits,
|
| 1356 | &poolAllocInfo,
|
| 1357 | &memTypeIndex);
|
| 1358 |
|
| 1359 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 1360 | poolCreateInfo.memoryTypeIndex = memTypeIndex;
|
| 1361 | poolCreateInfo.blockSize = BUF_SIZE * BUF_COUNT / 4;
|
| 1362 | poolCreateInfo.minBlockCount = 1;
|
| 1363 | poolCreateInfo.maxBlockCount = 4;
|
| 1364 | poolCreateInfo.frameInUseCount = 0;
|
| 1365 |
|
| 1366 | VmaPool pool;
|
| 1367 | res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
| 1368 | assert(res == VK_SUCCESS);
|
| 1369 |
|
| 1370 | vmaSetCurrentFrameIndex(g_hAllocator, 1);
|
| 1371 |
|
| 1372 | VmaAllocationCreateInfo allocInfo = {};
|
| 1373 | allocInfo.pool = pool;
|
| 1374 | allocInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
|
| 1375 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
| 1376 |
|
| 1377 | struct BufItem
|
| 1378 | {
|
| 1379 | VkBuffer Buf;
|
| 1380 | VmaAllocation Alloc;
|
| 1381 | };
|
| 1382 | std::vector<BufItem> items;
|
| 1383 |
|
| 1384 | // Fill entire pool.
|
| 1385 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 1386 | {
|
| 1387 | BufItem item;
|
| 1388 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1389 | assert(res == VK_SUCCESS);
|
| 1390 | items.push_back(item);
|
| 1391 | }
|
| 1392 |
|
| 1393 | // Make sure that another allocation would fail.
|
| 1394 | {
|
| 1395 | BufItem item;
|
| 1396 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1397 | assert(res == VK_ERROR_OUT_OF_DEVICE_MEMORY);
|
| 1398 | }
|
| 1399 |
|
| 1400 | // Validate that no buffer is lost. Also check that they are not mapped.
|
| 1401 | for(size_t i = 0; i < items.size(); ++i)
|
| 1402 | {
|
| 1403 | VmaAllocationInfo allocInfo;
|
| 1404 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 1405 | assert(allocInfo.deviceMemory != VK_NULL_HANDLE);
|
| 1406 | assert(allocInfo.pMappedData == nullptr);
|
| 1407 | }
|
| 1408 |
|
| 1409 | // Free some percent of random items.
|
| 1410 | {
|
| 1411 | const size_t PERCENT_TO_FREE = 10;
|
| 1412 | size_t itemsToFree = items.size() * PERCENT_TO_FREE / 100;
|
| 1413 | for(size_t i = 0; i < itemsToFree; ++i)
|
| 1414 | {
|
| 1415 | size_t index = (size_t)rand.Generate() % items.size();
|
| 1416 | vmaDestroyBuffer(g_hAllocator, items[index].Buf, items[index].Alloc);
|
| 1417 | items.erase(items.begin() + index);
|
| 1418 | }
|
| 1419 | }
|
| 1420 |
|
| 1421 | // Randomly allocate and free items.
|
| 1422 | {
|
| 1423 | const size_t OPERATION_COUNT = BUF_COUNT;
|
| 1424 | for(size_t i = 0; i < OPERATION_COUNT; ++i)
|
| 1425 | {
|
| 1426 | bool allocate = rand.Generate() % 2 != 0;
|
| 1427 | if(allocate)
|
| 1428 | {
|
| 1429 | if(items.size() < BUF_COUNT)
|
| 1430 | {
|
| 1431 | BufItem item;
|
| 1432 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1433 | assert(res == VK_SUCCESS);
|
| 1434 | items.push_back(item);
|
| 1435 | }
|
| 1436 | }
|
| 1437 | else // Free
|
| 1438 | {
|
| 1439 | if(!items.empty())
|
| 1440 | {
|
| 1441 | size_t index = (size_t)rand.Generate() % items.size();
|
| 1442 | vmaDestroyBuffer(g_hAllocator, items[index].Buf, items[index].Alloc);
|
| 1443 | items.erase(items.begin() + index);
|
| 1444 | }
|
| 1445 | }
|
| 1446 | }
|
| 1447 | }
|
| 1448 |
|
| 1449 | // Allocate up to maximum.
|
| 1450 | while(items.size() < BUF_COUNT)
|
| 1451 | {
|
| 1452 | BufItem item;
|
| 1453 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1454 | assert(res == VK_SUCCESS);
|
| 1455 | items.push_back(item);
|
| 1456 | }
|
| 1457 |
|
| 1458 | // Validate that no buffer is lost.
|
| 1459 | for(size_t i = 0; i < items.size(); ++i)
|
| 1460 | {
|
| 1461 | VmaAllocationInfo allocInfo;
|
| 1462 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 1463 | assert(allocInfo.deviceMemory != VK_NULL_HANDLE);
|
| 1464 | }
|
| 1465 |
|
| 1466 | // Next frame.
|
| 1467 | vmaSetCurrentFrameIndex(g_hAllocator, 2);
|
| 1468 |
|
| 1469 | // Allocate another BUF_COUNT buffers.
|
| 1470 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 1471 | {
|
| 1472 | BufItem item;
|
| 1473 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1474 | assert(res == VK_SUCCESS);
|
| 1475 | items.push_back(item);
|
| 1476 | }
|
| 1477 |
|
| 1478 | // Make sure the first BUF_COUNT is lost. Delete them.
|
| 1479 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 1480 | {
|
| 1481 | VmaAllocationInfo allocInfo;
|
| 1482 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 1483 | assert(allocInfo.deviceMemory == VK_NULL_HANDLE);
|
| 1484 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 1485 | }
|
| 1486 | items.erase(items.begin(), items.begin() + BUF_COUNT);
|
| 1487 |
|
| 1488 | // Validate that no buffer is lost.
|
| 1489 | for(size_t i = 0; i < items.size(); ++i)
|
| 1490 | {
|
| 1491 | VmaAllocationInfo allocInfo;
|
| 1492 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 1493 | assert(allocInfo.deviceMemory != VK_NULL_HANDLE);
|
| 1494 | }
|
| 1495 |
|
| 1496 | // Free one item.
|
| 1497 | vmaDestroyBuffer(g_hAllocator, items.back().Buf, items.back().Alloc);
|
| 1498 | items.pop_back();
|
| 1499 |
|
| 1500 | // Validate statistics.
|
| 1501 | {
|
| 1502 | VmaPoolStats poolStats = {};
|
| 1503 | vmaGetPoolStats(g_hAllocator, pool, &poolStats);
|
| 1504 | assert(poolStats.allocationCount == items.size());
|
| 1505 | assert(poolStats.size = BUF_COUNT * BUF_SIZE);
|
| 1506 | assert(poolStats.unusedRangeCount == 1);
|
| 1507 | assert(poolStats.unusedRangeSizeMax == BUF_SIZE);
|
| 1508 | assert(poolStats.unusedSize == BUF_SIZE);
|
| 1509 | }
|
| 1510 |
|
| 1511 | // Free all remaining items.
|
| 1512 | for(size_t i = items.size(); i--; )
|
| 1513 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 1514 | items.clear();
|
| 1515 |
|
| 1516 | // Allocate maximum items again.
|
| 1517 | for(size_t i = 0; i < BUF_COUNT; ++i)
|
| 1518 | {
|
| 1519 | BufItem item;
|
| 1520 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1521 | assert(res == VK_SUCCESS);
|
| 1522 | items.push_back(item);
|
| 1523 | }
|
| 1524 |
|
| 1525 | // Delete every other item.
|
| 1526 | for(size_t i = 0; i < BUF_COUNT / 2; ++i)
|
| 1527 | {
|
| 1528 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 1529 | items.erase(items.begin() + i);
|
| 1530 | }
|
| 1531 |
|
| 1532 | // Defragment!
|
| 1533 | {
|
| 1534 | std::vector<VmaAllocation> allocationsToDefragment(items.size());
|
| 1535 | for(size_t i = 0; i < items.size(); ++i)
|
| 1536 | allocationsToDefragment[i] = items[i].Alloc;
|
| 1537 |
|
| 1538 | VmaDefragmentationStats defragmentationStats;
|
| 1539 | res = vmaDefragment(g_hAllocator, allocationsToDefragment.data(), items.size(), nullptr, nullptr, &defragmentationStats);
|
| 1540 | assert(res == VK_SUCCESS);
|
| 1541 | assert(defragmentationStats.deviceMemoryBlocksFreed == 2);
|
| 1542 | }
|
| 1543 |
|
| 1544 | // Free all remaining items.
|
| 1545 | for(size_t i = items.size(); i--; )
|
| 1546 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 1547 | items.clear();
|
| 1548 |
|
| 1549 | ////////////////////////////////////////////////////////////////////////////////
|
| 1550 | // Test for vmaMakePoolAllocationsLost
|
| 1551 |
|
| 1552 | // Allocate 4 buffers on frame 10.
|
| 1553 | vmaSetCurrentFrameIndex(g_hAllocator, 10);
|
| 1554 | for(size_t i = 0; i < 4; ++i)
|
| 1555 | {
|
| 1556 | BufItem item;
|
| 1557 | res = vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1558 | assert(res == VK_SUCCESS);
|
| 1559 | items.push_back(item);
|
| 1560 | }
|
| 1561 |
|
| 1562 | // Touch first 2 of them on frame 11.
|
| 1563 | vmaSetCurrentFrameIndex(g_hAllocator, 11);
|
| 1564 | for(size_t i = 0; i < 2; ++i)
|
| 1565 | {
|
| 1566 | VmaAllocationInfo allocInfo;
|
| 1567 | vmaGetAllocationInfo(g_hAllocator, items[i].Alloc, &allocInfo);
|
| 1568 | }
|
| 1569 |
|
| 1570 | // vmaMakePoolAllocationsLost. Only remaining 2 should be lost.
|
| 1571 | size_t lostCount = 0xDEADC0DE;
|
| 1572 | vmaMakePoolAllocationsLost(g_hAllocator, pool, &lostCount);
|
| 1573 | assert(lostCount == 2);
|
| 1574 |
|
| 1575 | // Make another call. Now 0 should be lost.
|
| 1576 | vmaMakePoolAllocationsLost(g_hAllocator, pool, &lostCount);
|
| 1577 | assert(lostCount == 0);
|
| 1578 |
|
| 1579 | // Make another call, with null count. Should not crash.
|
| 1580 | vmaMakePoolAllocationsLost(g_hAllocator, pool, nullptr);
|
| 1581 |
|
| 1582 | // END: Free all remaining items.
|
| 1583 | for(size_t i = items.size(); i--; )
|
| 1584 | vmaDestroyBuffer(g_hAllocator, items[i].Buf, items[i].Alloc);
|
| 1585 |
|
| 1586 | items.clear();
|
| 1587 |
|
Adam Sawicki | d292417 | 2018-06-11 12:48:46 +0200 | [diff] [blame] | 1588 | ////////////////////////////////////////////////////////////////////////////////
|
| 1589 | // Test for allocation too large for pool
|
| 1590 |
|
| 1591 | {
|
| 1592 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1593 | allocCreateInfo.pool = pool;
|
| 1594 |
|
| 1595 | VkMemoryRequirements memReq;
|
| 1596 | memReq.memoryTypeBits = UINT32_MAX;
|
| 1597 | memReq.alignment = 1;
|
| 1598 | memReq.size = poolCreateInfo.blockSize + 4;
|
| 1599 |
|
| 1600 | VmaAllocation alloc = nullptr;
|
| 1601 | res = vmaAllocateMemory(g_hAllocator, &memReq, &allocCreateInfo, &alloc, nullptr);
|
| 1602 | assert(res == VK_ERROR_OUT_OF_DEVICE_MEMORY && alloc == nullptr);
|
| 1603 | }
|
| 1604 |
|
Adam Sawicki | b8333fb | 2018-03-13 16:15:53 +0100 | [diff] [blame] | 1605 | vmaDestroyPool(g_hAllocator, pool);
|
| 1606 | }
|
| 1607 |
|
| 1608 | static void TestPool_Benchmark(
|
| 1609 | PoolTestResult& outResult,
|
| 1610 | const PoolTestConfig& config)
|
| 1611 | {
|
| 1612 | assert(config.ThreadCount > 0);
|
| 1613 |
|
| 1614 | RandomNumberGenerator mainRand{config.RandSeed};
|
| 1615 |
|
| 1616 | uint32_t allocationSizeProbabilitySum = std::accumulate(
|
| 1617 | config.AllocationSizes.begin(),
|
| 1618 | config.AllocationSizes.end(),
|
| 1619 | 0u,
|
| 1620 | [](uint32_t sum, const AllocationSize& allocSize) {
|
| 1621 | return sum + allocSize.Probability;
|
| 1622 | });
|
| 1623 |
|
| 1624 | VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 1625 | bufferInfo.size = 256; // Whatever.
|
| 1626 | bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
|
| 1627 |
|
| 1628 | VkImageCreateInfo imageInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
|
| 1629 | imageInfo.imageType = VK_IMAGE_TYPE_2D;
|
| 1630 | imageInfo.extent.width = 256; // Whatever.
|
| 1631 | imageInfo.extent.height = 256; // Whatever.
|
| 1632 | imageInfo.extent.depth = 1;
|
| 1633 | imageInfo.mipLevels = 1;
|
| 1634 | imageInfo.arrayLayers = 1;
|
| 1635 | imageInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
|
| 1636 | imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL; // LINEAR if CPU memory.
|
| 1637 | imageInfo.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
|
| 1638 | imageInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT; // TRANSFER_SRC if CPU memory.
|
| 1639 | imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
|
| 1640 |
|
| 1641 | uint32_t bufferMemoryTypeBits = UINT32_MAX;
|
| 1642 | {
|
| 1643 | VkBuffer dummyBuffer;
|
| 1644 | VkResult res = vkCreateBuffer(g_hDevice, &bufferInfo, nullptr, &dummyBuffer);
|
| 1645 | assert(res == VK_SUCCESS);
|
| 1646 |
|
| 1647 | VkMemoryRequirements memReq;
|
| 1648 | vkGetBufferMemoryRequirements(g_hDevice, dummyBuffer, &memReq);
|
| 1649 | bufferMemoryTypeBits = memReq.memoryTypeBits;
|
| 1650 |
|
| 1651 | vkDestroyBuffer(g_hDevice, dummyBuffer, nullptr);
|
| 1652 | }
|
| 1653 |
|
| 1654 | uint32_t imageMemoryTypeBits = UINT32_MAX;
|
| 1655 | {
|
| 1656 | VkImage dummyImage;
|
| 1657 | VkResult res = vkCreateImage(g_hDevice, &imageInfo, nullptr, &dummyImage);
|
| 1658 | assert(res == VK_SUCCESS);
|
| 1659 |
|
| 1660 | VkMemoryRequirements memReq;
|
| 1661 | vkGetImageMemoryRequirements(g_hDevice, dummyImage, &memReq);
|
| 1662 | imageMemoryTypeBits = memReq.memoryTypeBits;
|
| 1663 |
|
| 1664 | vkDestroyImage(g_hDevice, dummyImage, nullptr);
|
| 1665 | }
|
| 1666 |
|
| 1667 | uint32_t memoryTypeBits = 0;
|
| 1668 | if(config.UsesBuffers() && config.UsesImages())
|
| 1669 | {
|
| 1670 | memoryTypeBits = bufferMemoryTypeBits & imageMemoryTypeBits;
|
| 1671 | if(memoryTypeBits == 0)
|
| 1672 | {
|
| 1673 | PrintWarning(L"Cannot test buffers + images in the same memory pool on this GPU.");
|
| 1674 | return;
|
| 1675 | }
|
| 1676 | }
|
| 1677 | else if(config.UsesBuffers())
|
| 1678 | memoryTypeBits = bufferMemoryTypeBits;
|
| 1679 | else if(config.UsesImages())
|
| 1680 | memoryTypeBits = imageMemoryTypeBits;
|
| 1681 | else
|
| 1682 | assert(0);
|
| 1683 |
|
| 1684 | VmaPoolCreateInfo poolCreateInfo = {};
|
| 1685 | poolCreateInfo.memoryTypeIndex = 0;
|
| 1686 | poolCreateInfo.minBlockCount = 1;
|
| 1687 | poolCreateInfo.maxBlockCount = 1;
|
| 1688 | poolCreateInfo.blockSize = config.PoolSize;
|
| 1689 | poolCreateInfo.frameInUseCount = 1;
|
| 1690 |
|
| 1691 | VmaAllocationCreateInfo dummyAllocCreateInfo = {};
|
| 1692 | dummyAllocCreateInfo.usage = VMA_MEMORY_USAGE_GPU_ONLY;
|
| 1693 | vmaFindMemoryTypeIndex(g_hAllocator, memoryTypeBits, &dummyAllocCreateInfo, &poolCreateInfo.memoryTypeIndex);
|
| 1694 |
|
| 1695 | VmaPool pool;
|
| 1696 | VkResult res = vmaCreatePool(g_hAllocator, &poolCreateInfo, &pool);
|
| 1697 | assert(res == VK_SUCCESS);
|
| 1698 |
|
| 1699 | // Start time measurement - after creating pool and initializing data structures.
|
| 1700 | time_point timeBeg = std::chrono::high_resolution_clock::now();
|
| 1701 |
|
| 1702 | ////////////////////////////////////////////////////////////////////////////////
|
| 1703 | // ThreadProc
|
| 1704 | auto ThreadProc = [&](
|
| 1705 | PoolTestThreadResult* outThreadResult,
|
| 1706 | uint32_t randSeed,
|
| 1707 | HANDLE frameStartEvent,
|
| 1708 | HANDLE frameEndEvent) -> void
|
| 1709 | {
|
| 1710 | RandomNumberGenerator threadRand{randSeed};
|
| 1711 |
|
| 1712 | outThreadResult->AllocationTimeMin = duration::max();
|
| 1713 | outThreadResult->AllocationTimeSum = duration::zero();
|
| 1714 | outThreadResult->AllocationTimeMax = duration::min();
|
| 1715 | outThreadResult->DeallocationTimeMin = duration::max();
|
| 1716 | outThreadResult->DeallocationTimeSum = duration::zero();
|
| 1717 | outThreadResult->DeallocationTimeMax = duration::min();
|
| 1718 | outThreadResult->AllocationCount = 0;
|
| 1719 | outThreadResult->DeallocationCount = 0;
|
| 1720 | outThreadResult->LostAllocationCount = 0;
|
| 1721 | outThreadResult->LostAllocationTotalSize = 0;
|
| 1722 | outThreadResult->FailedAllocationCount = 0;
|
| 1723 | outThreadResult->FailedAllocationTotalSize = 0;
|
| 1724 |
|
| 1725 | struct Item
|
| 1726 | {
|
| 1727 | VkDeviceSize BufferSize;
|
| 1728 | VkExtent2D ImageSize;
|
| 1729 | VkBuffer Buf;
|
| 1730 | VkImage Image;
|
| 1731 | VmaAllocation Alloc;
|
| 1732 |
|
| 1733 | VkDeviceSize CalcSizeBytes() const
|
| 1734 | {
|
| 1735 | return BufferSize +
|
| 1736 | ImageSize.width * ImageSize.height * 4;
|
| 1737 | }
|
| 1738 | };
|
| 1739 | std::vector<Item> unusedItems, usedItems;
|
| 1740 |
|
| 1741 | const size_t threadTotalItemCount = config.TotalItemCount / config.ThreadCount;
|
| 1742 |
|
| 1743 | // Create all items - all unused, not yet allocated.
|
| 1744 | for(size_t i = 0; i < threadTotalItemCount; ++i)
|
| 1745 | {
|
| 1746 | Item item = {};
|
| 1747 |
|
| 1748 | uint32_t allocSizeIndex = 0;
|
| 1749 | uint32_t r = threadRand.Generate() % allocationSizeProbabilitySum;
|
| 1750 | while(r >= config.AllocationSizes[allocSizeIndex].Probability)
|
| 1751 | r -= config.AllocationSizes[allocSizeIndex++].Probability;
|
| 1752 |
|
| 1753 | const AllocationSize& allocSize = config.AllocationSizes[allocSizeIndex];
|
| 1754 | if(allocSize.BufferSizeMax > 0)
|
| 1755 | {
|
| 1756 | assert(allocSize.BufferSizeMin > 0);
|
| 1757 | assert(allocSize.ImageSizeMin == 0 && allocSize.ImageSizeMax == 0);
|
| 1758 | if(allocSize.BufferSizeMax == allocSize.BufferSizeMin)
|
| 1759 | item.BufferSize = allocSize.BufferSizeMin;
|
| 1760 | else
|
| 1761 | {
|
| 1762 | item.BufferSize = allocSize.BufferSizeMin + threadRand.Generate() % (allocSize.BufferSizeMax - allocSize.BufferSizeMin);
|
| 1763 | item.BufferSize = item.BufferSize / 16 * 16;
|
| 1764 | }
|
| 1765 | }
|
| 1766 | else
|
| 1767 | {
|
| 1768 | assert(allocSize.ImageSizeMin > 0 && allocSize.ImageSizeMax > 0);
|
| 1769 | if(allocSize.ImageSizeMax == allocSize.ImageSizeMin)
|
| 1770 | item.ImageSize.width = item.ImageSize.height = allocSize.ImageSizeMax;
|
| 1771 | else
|
| 1772 | {
|
| 1773 | item.ImageSize.width = allocSize.ImageSizeMin + threadRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 1774 | item.ImageSize.height = allocSize.ImageSizeMin + threadRand.Generate() % (allocSize.ImageSizeMax - allocSize.ImageSizeMin);
|
| 1775 | }
|
| 1776 | }
|
| 1777 |
|
| 1778 | unusedItems.push_back(item);
|
| 1779 | }
|
| 1780 |
|
| 1781 | auto Allocate = [&](Item& item) -> VkResult
|
| 1782 | {
|
| 1783 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 1784 | allocCreateInfo.pool = pool;
|
| 1785 | allocCreateInfo.flags = VMA_ALLOCATION_CREATE_CAN_BECOME_LOST_BIT |
|
| 1786 | VMA_ALLOCATION_CREATE_CAN_MAKE_OTHER_LOST_BIT;
|
| 1787 |
|
| 1788 | if(item.BufferSize)
|
| 1789 | {
|
| 1790 | bufferInfo.size = item.BufferSize;
|
| 1791 | PoolAllocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 1792 | return vmaCreateBuffer(g_hAllocator, &bufferInfo, &allocCreateInfo, &item.Buf, &item.Alloc, nullptr);
|
| 1793 | }
|
| 1794 | else
|
| 1795 | {
|
| 1796 | assert(item.ImageSize.width && item.ImageSize.height);
|
| 1797 |
|
| 1798 | imageInfo.extent.width = item.ImageSize.width;
|
| 1799 | imageInfo.extent.height = item.ImageSize.height;
|
| 1800 | PoolAllocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 1801 | return vmaCreateImage(g_hAllocator, &imageInfo, &allocCreateInfo, &item.Image, &item.Alloc, nullptr);
|
| 1802 | }
|
| 1803 | };
|
| 1804 |
|
| 1805 | ////////////////////////////////////////////////////////////////////////////////
|
| 1806 | // Frames
|
| 1807 | for(uint32_t frameIndex = 0; frameIndex < config.FrameCount; ++frameIndex)
|
| 1808 | {
|
| 1809 | WaitForSingleObject(frameStartEvent, INFINITE);
|
| 1810 |
|
| 1811 | // Always make some percent of used bufs unused, to choose different used ones.
|
| 1812 | const size_t bufsToMakeUnused = usedItems.size() * config.ItemsToMakeUnusedPercent / 100;
|
| 1813 | for(size_t i = 0; i < bufsToMakeUnused; ++i)
|
| 1814 | {
|
| 1815 | size_t index = threadRand.Generate() % usedItems.size();
|
| 1816 | unusedItems.push_back(usedItems[index]);
|
| 1817 | usedItems.erase(usedItems.begin() + index);
|
| 1818 | }
|
| 1819 |
|
| 1820 | // Determine which bufs we want to use in this frame.
|
| 1821 | const size_t usedBufCount = (threadRand.Generate() % (config.UsedItemCountMax - config.UsedItemCountMin) + config.UsedItemCountMin)
|
| 1822 | / config.ThreadCount;
|
| 1823 | assert(usedBufCount < usedItems.size() + unusedItems.size());
|
| 1824 | // Move some used to unused.
|
| 1825 | while(usedBufCount < usedItems.size())
|
| 1826 | {
|
| 1827 | size_t index = threadRand.Generate() % usedItems.size();
|
| 1828 | unusedItems.push_back(usedItems[index]);
|
| 1829 | usedItems.erase(usedItems.begin() + index);
|
| 1830 | }
|
| 1831 | // Move some unused to used.
|
| 1832 | while(usedBufCount > usedItems.size())
|
| 1833 | {
|
| 1834 | size_t index = threadRand.Generate() % unusedItems.size();
|
| 1835 | usedItems.push_back(unusedItems[index]);
|
| 1836 | unusedItems.erase(unusedItems.begin() + index);
|
| 1837 | }
|
| 1838 |
|
| 1839 | uint32_t touchExistingCount = 0;
|
| 1840 | uint32_t touchLostCount = 0;
|
| 1841 | uint32_t createSucceededCount = 0;
|
| 1842 | uint32_t createFailedCount = 0;
|
| 1843 |
|
| 1844 | // Touch all used bufs. If not created or lost, allocate.
|
| 1845 | for(size_t i = 0; i < usedItems.size(); ++i)
|
| 1846 | {
|
| 1847 | Item& item = usedItems[i];
|
| 1848 | // Not yet created.
|
| 1849 | if(item.Alloc == VK_NULL_HANDLE)
|
| 1850 | {
|
| 1851 | res = Allocate(item);
|
| 1852 | ++outThreadResult->AllocationCount;
|
| 1853 | if(res != VK_SUCCESS)
|
| 1854 | {
|
| 1855 | item.Alloc = VK_NULL_HANDLE;
|
| 1856 | item.Buf = VK_NULL_HANDLE;
|
| 1857 | ++outThreadResult->FailedAllocationCount;
|
| 1858 | outThreadResult->FailedAllocationTotalSize += item.CalcSizeBytes();
|
| 1859 | ++createFailedCount;
|
| 1860 | }
|
| 1861 | else
|
| 1862 | ++createSucceededCount;
|
| 1863 | }
|
| 1864 | else
|
| 1865 | {
|
| 1866 | // Touch.
|
| 1867 | VmaAllocationInfo allocInfo;
|
| 1868 | vmaGetAllocationInfo(g_hAllocator, item.Alloc, &allocInfo);
|
| 1869 | // Lost.
|
| 1870 | if(allocInfo.deviceMemory == VK_NULL_HANDLE)
|
| 1871 | {
|
| 1872 | ++touchLostCount;
|
| 1873 |
|
| 1874 | // Destroy.
|
| 1875 | {
|
| 1876 | PoolDeallocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 1877 | if(item.Buf)
|
| 1878 | vmaDestroyBuffer(g_hAllocator, item.Buf, item.Alloc);
|
| 1879 | else
|
| 1880 | vmaDestroyImage(g_hAllocator, item.Image, item.Alloc);
|
| 1881 | ++outThreadResult->DeallocationCount;
|
| 1882 | }
|
| 1883 | item.Alloc = VK_NULL_HANDLE;
|
| 1884 | item.Buf = VK_NULL_HANDLE;
|
| 1885 |
|
| 1886 | ++outThreadResult->LostAllocationCount;
|
| 1887 | outThreadResult->LostAllocationTotalSize += item.CalcSizeBytes();
|
| 1888 |
|
| 1889 | // Recreate.
|
| 1890 | res = Allocate(item);
|
| 1891 | ++outThreadResult->AllocationCount;
|
| 1892 | // Creation failed.
|
| 1893 | if(res != VK_SUCCESS)
|
| 1894 | {
|
| 1895 | ++outThreadResult->FailedAllocationCount;
|
| 1896 | outThreadResult->FailedAllocationTotalSize += item.CalcSizeBytes();
|
| 1897 | ++createFailedCount;
|
| 1898 | }
|
| 1899 | else
|
| 1900 | ++createSucceededCount;
|
| 1901 | }
|
| 1902 | else
|
| 1903 | ++touchExistingCount;
|
| 1904 | }
|
| 1905 | }
|
| 1906 |
|
| 1907 | /*
|
| 1908 | printf("Thread %u frame %u: Touch existing %u lost %u, create succeeded %u failed %u\n",
|
| 1909 | randSeed, frameIndex,
|
| 1910 | touchExistingCount, touchLostCount,
|
| 1911 | createSucceededCount, createFailedCount);
|
| 1912 | */
|
| 1913 |
|
| 1914 | SetEvent(frameEndEvent);
|
| 1915 | }
|
| 1916 |
|
| 1917 | // Free all remaining items.
|
| 1918 | for(size_t i = usedItems.size(); i--; )
|
| 1919 | {
|
| 1920 | PoolDeallocationTimeRegisterObj timeRegisterObj(*outThreadResult);
|
| 1921 | if(usedItems[i].Buf)
|
| 1922 | vmaDestroyBuffer(g_hAllocator, usedItems[i].Buf, usedItems[i].Alloc);
|
| 1923 | else
|
| 1924 | vmaDestroyImage(g_hAllocator, usedItems[i].Image, usedItems[i].Alloc);
|
| 1925 | ++outThreadResult->DeallocationCount;
|
| 1926 | }
|
| 1927 | for(size_t i = unusedItems.size(); i--; )
|
| 1928 | {
|
| 1929 | PoolDeallocationTimeRegisterObj timeRegisterOb(*outThreadResult);
|
| 1930 | if(unusedItems[i].Buf)
|
| 1931 | vmaDestroyBuffer(g_hAllocator, unusedItems[i].Buf, unusedItems[i].Alloc);
|
| 1932 | else
|
| 1933 | vmaDestroyImage(g_hAllocator, unusedItems[i].Image, unusedItems[i].Alloc);
|
| 1934 | ++outThreadResult->DeallocationCount;
|
| 1935 | }
|
| 1936 | };
|
| 1937 |
|
| 1938 | // Launch threads.
|
| 1939 | uint32_t threadRandSeed = mainRand.Generate();
|
| 1940 | std::vector<HANDLE> frameStartEvents{config.ThreadCount};
|
| 1941 | std::vector<HANDLE> frameEndEvents{config.ThreadCount};
|
| 1942 | std::vector<std::thread> bkgThreads;
|
| 1943 | std::vector<PoolTestThreadResult> threadResults{config.ThreadCount};
|
| 1944 | for(uint32_t threadIndex = 0; threadIndex < config.ThreadCount; ++threadIndex)
|
| 1945 | {
|
| 1946 | frameStartEvents[threadIndex] = CreateEvent(NULL, FALSE, FALSE, NULL);
|
| 1947 | frameEndEvents[threadIndex] = CreateEvent(NULL, FALSE, FALSE, NULL);
|
| 1948 | bkgThreads.emplace_back(std::bind(
|
| 1949 | ThreadProc,
|
| 1950 | &threadResults[threadIndex],
|
| 1951 | threadRandSeed + threadIndex,
|
| 1952 | frameStartEvents[threadIndex],
|
| 1953 | frameEndEvents[threadIndex]));
|
| 1954 | }
|
| 1955 |
|
| 1956 | // Execute frames.
|
| 1957 | assert(config.ThreadCount <= MAXIMUM_WAIT_OBJECTS);
|
| 1958 | for(uint32_t frameIndex = 0; frameIndex < config.FrameCount; ++frameIndex)
|
| 1959 | {
|
| 1960 | vmaSetCurrentFrameIndex(g_hAllocator, frameIndex);
|
| 1961 | for(size_t threadIndex = 0; threadIndex < config.ThreadCount; ++threadIndex)
|
| 1962 | SetEvent(frameStartEvents[threadIndex]);
|
| 1963 | WaitForMultipleObjects(config.ThreadCount, &frameEndEvents[0], TRUE, INFINITE);
|
| 1964 | }
|
| 1965 |
|
| 1966 | // Wait for threads finished
|
| 1967 | for(size_t i = 0; i < bkgThreads.size(); ++i)
|
| 1968 | {
|
| 1969 | bkgThreads[i].join();
|
| 1970 | CloseHandle(frameEndEvents[i]);
|
| 1971 | CloseHandle(frameStartEvents[i]);
|
| 1972 | }
|
| 1973 | bkgThreads.clear();
|
| 1974 |
|
| 1975 | // Finish time measurement - before destroying pool.
|
| 1976 | outResult.TotalTime = std::chrono::high_resolution_clock::now() - timeBeg;
|
| 1977 |
|
| 1978 | vmaDestroyPool(g_hAllocator, pool);
|
| 1979 |
|
| 1980 | outResult.AllocationTimeMin = duration::max();
|
| 1981 | outResult.AllocationTimeAvg = duration::zero();
|
| 1982 | outResult.AllocationTimeMax = duration::min();
|
| 1983 | outResult.DeallocationTimeMin = duration::max();
|
| 1984 | outResult.DeallocationTimeAvg = duration::zero();
|
| 1985 | outResult.DeallocationTimeMax = duration::min();
|
| 1986 | outResult.LostAllocationCount = 0;
|
| 1987 | outResult.LostAllocationTotalSize = 0;
|
| 1988 | outResult.FailedAllocationCount = 0;
|
| 1989 | outResult.FailedAllocationTotalSize = 0;
|
| 1990 | size_t allocationCount = 0;
|
| 1991 | size_t deallocationCount = 0;
|
| 1992 | for(size_t threadIndex = 0; threadIndex < config.ThreadCount; ++threadIndex)
|
| 1993 | {
|
| 1994 | const PoolTestThreadResult& threadResult = threadResults[threadIndex];
|
| 1995 | outResult.AllocationTimeMin = std::min(outResult.AllocationTimeMin, threadResult.AllocationTimeMin);
|
| 1996 | outResult.AllocationTimeMax = std::max(outResult.AllocationTimeMax, threadResult.AllocationTimeMax);
|
| 1997 | outResult.AllocationTimeAvg += threadResult.AllocationTimeSum;
|
| 1998 | outResult.DeallocationTimeMin = std::min(outResult.DeallocationTimeMin, threadResult.DeallocationTimeMin);
|
| 1999 | outResult.DeallocationTimeMax = std::max(outResult.DeallocationTimeMax, threadResult.DeallocationTimeMax);
|
| 2000 | outResult.DeallocationTimeAvg += threadResult.DeallocationTimeSum;
|
| 2001 | allocationCount += threadResult.AllocationCount;
|
| 2002 | deallocationCount += threadResult.DeallocationCount;
|
| 2003 | outResult.FailedAllocationCount += threadResult.FailedAllocationCount;
|
| 2004 | outResult.FailedAllocationTotalSize += threadResult.FailedAllocationTotalSize;
|
| 2005 | outResult.LostAllocationCount += threadResult.LostAllocationCount;
|
| 2006 | outResult.LostAllocationTotalSize += threadResult.LostAllocationTotalSize;
|
| 2007 | }
|
| 2008 | if(allocationCount)
|
| 2009 | outResult.AllocationTimeAvg /= allocationCount;
|
| 2010 | if(deallocationCount)
|
| 2011 | outResult.DeallocationTimeAvg /= deallocationCount;
|
| 2012 | }
|
| 2013 |
|
| 2014 | static inline bool MemoryRegionsOverlap(char* ptr1, size_t size1, char* ptr2, size_t size2)
|
| 2015 | {
|
| 2016 | if(ptr1 < ptr2)
|
| 2017 | return ptr1 + size1 > ptr2;
|
| 2018 | else if(ptr2 < ptr1)
|
| 2019 | return ptr2 + size2 > ptr1;
|
| 2020 | else
|
| 2021 | return true;
|
| 2022 | }
|
| 2023 |
|
| 2024 | static void TestMapping()
|
| 2025 | {
|
| 2026 | wprintf(L"Testing mapping...\n");
|
| 2027 |
|
| 2028 | VkResult res;
|
| 2029 | uint32_t memTypeIndex = UINT32_MAX;
|
| 2030 |
|
| 2031 | enum TEST
|
| 2032 | {
|
| 2033 | TEST_NORMAL,
|
| 2034 | TEST_POOL,
|
| 2035 | TEST_DEDICATED,
|
| 2036 | TEST_COUNT
|
| 2037 | };
|
| 2038 | for(uint32_t testIndex = 0; testIndex < TEST_COUNT; ++testIndex)
|
| 2039 | {
|
| 2040 | VmaPool pool = nullptr;
|
| 2041 | if(testIndex == TEST_POOL)
|
| 2042 | {
|
| 2043 | assert(memTypeIndex != UINT32_MAX);
|
| 2044 | VmaPoolCreateInfo poolInfo = {};
|
| 2045 | poolInfo.memoryTypeIndex = memTypeIndex;
|
| 2046 | res = vmaCreatePool(g_hAllocator, &poolInfo, &pool);
|
| 2047 | assert(res == VK_SUCCESS);
|
| 2048 | }
|
| 2049 |
|
| 2050 | VkBufferCreateInfo bufInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 2051 | bufInfo.size = 0x10000;
|
| 2052 | bufInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 2053 |
|
| 2054 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 2055 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 2056 | allocCreateInfo.pool = pool;
|
| 2057 | if(testIndex == TEST_DEDICATED)
|
| 2058 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 2059 |
|
| 2060 | VmaAllocationInfo allocInfo;
|
| 2061 |
|
| 2062 | // Mapped manually
|
| 2063 |
|
| 2064 | // Create 2 buffers.
|
| 2065 | BufferInfo bufferInfos[3];
|
| 2066 | for(size_t i = 0; i < 2; ++i)
|
| 2067 | {
|
| 2068 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo,
|
| 2069 | &bufferInfos[i].Buffer, &bufferInfos[i].Allocation, &allocInfo);
|
| 2070 | assert(res == VK_SUCCESS);
|
| 2071 | assert(allocInfo.pMappedData == nullptr);
|
| 2072 | memTypeIndex = allocInfo.memoryType;
|
| 2073 | }
|
| 2074 |
|
| 2075 | // Map buffer 0.
|
| 2076 | char* data00 = nullptr;
|
| 2077 | res = vmaMapMemory(g_hAllocator, bufferInfos[0].Allocation, (void**)&data00);
|
| 2078 | assert(res == VK_SUCCESS && data00 != nullptr);
|
| 2079 | data00[0xFFFF] = data00[0];
|
| 2080 |
|
| 2081 | // Map buffer 0 second time.
|
| 2082 | char* data01 = nullptr;
|
| 2083 | res = vmaMapMemory(g_hAllocator, bufferInfos[0].Allocation, (void**)&data01);
|
| 2084 | assert(res == VK_SUCCESS && data01 == data00);
|
| 2085 |
|
| 2086 | // Map buffer 1.
|
| 2087 | char* data1 = nullptr;
|
| 2088 | res = vmaMapMemory(g_hAllocator, bufferInfos[1].Allocation, (void**)&data1);
|
| 2089 | assert(res == VK_SUCCESS && data1 != nullptr);
|
| 2090 | assert(!MemoryRegionsOverlap(data00, (size_t)bufInfo.size, data1, (size_t)bufInfo.size));
|
| 2091 | data1[0xFFFF] = data1[0];
|
| 2092 |
|
| 2093 | // Unmap buffer 0 two times.
|
| 2094 | vmaUnmapMemory(g_hAllocator, bufferInfos[0].Allocation);
|
| 2095 | vmaUnmapMemory(g_hAllocator, bufferInfos[0].Allocation);
|
| 2096 | vmaGetAllocationInfo(g_hAllocator, bufferInfos[0].Allocation, &allocInfo);
|
| 2097 | assert(allocInfo.pMappedData == nullptr);
|
| 2098 |
|
| 2099 | // Unmap buffer 1.
|
| 2100 | vmaUnmapMemory(g_hAllocator, bufferInfos[1].Allocation);
|
| 2101 | vmaGetAllocationInfo(g_hAllocator, bufferInfos[1].Allocation, &allocInfo);
|
| 2102 | assert(allocInfo.pMappedData == nullptr);
|
| 2103 |
|
| 2104 | // Create 3rd buffer - persistently mapped.
|
| 2105 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 2106 | res = vmaCreateBuffer(g_hAllocator, &bufInfo, &allocCreateInfo,
|
| 2107 | &bufferInfos[2].Buffer, &bufferInfos[2].Allocation, &allocInfo);
|
| 2108 | assert(res == VK_SUCCESS && allocInfo.pMappedData != nullptr);
|
| 2109 |
|
| 2110 | // Map buffer 2.
|
| 2111 | char* data2 = nullptr;
|
| 2112 | res = vmaMapMemory(g_hAllocator, bufferInfos[2].Allocation, (void**)&data2);
|
| 2113 | assert(res == VK_SUCCESS && data2 == allocInfo.pMappedData);
|
| 2114 | data2[0xFFFF] = data2[0];
|
| 2115 |
|
| 2116 | // Unmap buffer 2.
|
| 2117 | vmaUnmapMemory(g_hAllocator, bufferInfos[2].Allocation);
|
| 2118 | vmaGetAllocationInfo(g_hAllocator, bufferInfos[2].Allocation, &allocInfo);
|
| 2119 | assert(allocInfo.pMappedData == data2);
|
| 2120 |
|
| 2121 | // Destroy all buffers.
|
| 2122 | for(size_t i = 3; i--; )
|
| 2123 | vmaDestroyBuffer(g_hAllocator, bufferInfos[i].Buffer, bufferInfos[i].Allocation);
|
| 2124 |
|
| 2125 | vmaDestroyPool(g_hAllocator, pool);
|
| 2126 | }
|
| 2127 | }
|
| 2128 |
|
| 2129 | static void TestMappingMultithreaded()
|
| 2130 | {
|
| 2131 | wprintf(L"Testing mapping multithreaded...\n");
|
| 2132 |
|
| 2133 | static const uint32_t threadCount = 16;
|
| 2134 | static const uint32_t bufferCount = 1024;
|
| 2135 | static const uint32_t threadBufferCount = bufferCount / threadCount;
|
| 2136 |
|
| 2137 | VkResult res;
|
| 2138 | volatile uint32_t memTypeIndex = UINT32_MAX;
|
| 2139 |
|
| 2140 | enum TEST
|
| 2141 | {
|
| 2142 | TEST_NORMAL,
|
| 2143 | TEST_POOL,
|
| 2144 | TEST_DEDICATED,
|
| 2145 | TEST_COUNT
|
| 2146 | };
|
| 2147 | for(uint32_t testIndex = 0; testIndex < TEST_COUNT; ++testIndex)
|
| 2148 | {
|
| 2149 | VmaPool pool = nullptr;
|
| 2150 | if(testIndex == TEST_POOL)
|
| 2151 | {
|
| 2152 | assert(memTypeIndex != UINT32_MAX);
|
| 2153 | VmaPoolCreateInfo poolInfo = {};
|
| 2154 | poolInfo.memoryTypeIndex = memTypeIndex;
|
| 2155 | res = vmaCreatePool(g_hAllocator, &poolInfo, &pool);
|
| 2156 | assert(res == VK_SUCCESS);
|
| 2157 | }
|
| 2158 |
|
| 2159 | VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
|
| 2160 | bufCreateInfo.size = 0x10000;
|
| 2161 | bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
|
| 2162 |
|
| 2163 | VmaAllocationCreateInfo allocCreateInfo = {};
|
| 2164 | allocCreateInfo.usage = VMA_MEMORY_USAGE_CPU_ONLY;
|
| 2165 | allocCreateInfo.pool = pool;
|
| 2166 | if(testIndex == TEST_DEDICATED)
|
| 2167 | allocCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
|
| 2168 |
|
| 2169 | std::thread threads[threadCount];
|
| 2170 | for(uint32_t threadIndex = 0; threadIndex < threadCount; ++threadIndex)
|
| 2171 | {
|
| 2172 | threads[threadIndex] = std::thread([=, &memTypeIndex](){
|
| 2173 | // ======== THREAD FUNCTION ========
|
| 2174 |
|
| 2175 | RandomNumberGenerator rand{threadIndex};
|
| 2176 |
|
| 2177 | enum class MODE
|
| 2178 | {
|
| 2179 | // Don't map this buffer at all.
|
| 2180 | DONT_MAP,
|
| 2181 | // Map and quickly unmap.
|
| 2182 | MAP_FOR_MOMENT,
|
| 2183 | // Map and unmap before destruction.
|
| 2184 | MAP_FOR_LONGER,
|
| 2185 | // Map two times. Quickly unmap, second unmap before destruction.
|
| 2186 | MAP_TWO_TIMES,
|
| 2187 | // Create this buffer as persistently mapped.
|
| 2188 | PERSISTENTLY_MAPPED,
|
| 2189 | COUNT
|
| 2190 | };
|
| 2191 | std::vector<BufferInfo> bufInfos{threadBufferCount};
|
| 2192 | std::vector<MODE> bufModes{threadBufferCount};
|
| 2193 |
|
| 2194 | for(uint32_t bufferIndex = 0; bufferIndex < threadBufferCount; ++bufferIndex)
|
| 2195 | {
|
| 2196 | BufferInfo& bufInfo = bufInfos[bufferIndex];
|
| 2197 | const MODE mode = (MODE)(rand.Generate() % (uint32_t)MODE::COUNT);
|
| 2198 | bufModes[bufferIndex] = mode;
|
| 2199 |
|
| 2200 | VmaAllocationCreateInfo localAllocCreateInfo = allocCreateInfo;
|
| 2201 | if(mode == MODE::PERSISTENTLY_MAPPED)
|
| 2202 | localAllocCreateInfo.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
|
| 2203 |
|
| 2204 | VmaAllocationInfo allocInfo;
|
| 2205 | VkResult res = vmaCreateBuffer(g_hAllocator, &bufCreateInfo, &localAllocCreateInfo,
|
| 2206 | &bufInfo.Buffer, &bufInfo.Allocation, &allocInfo);
|
| 2207 | assert(res == VK_SUCCESS);
|
| 2208 |
|
| 2209 | if(memTypeIndex == UINT32_MAX)
|
| 2210 | memTypeIndex = allocInfo.memoryType;
|
| 2211 |
|
| 2212 | char* data = nullptr;
|
| 2213 |
|
| 2214 | if(mode == MODE::PERSISTENTLY_MAPPED)
|
| 2215 | {
|
| 2216 | data = (char*)allocInfo.pMappedData;
|
| 2217 | assert(data != nullptr);
|
| 2218 | }
|
| 2219 | else if(mode == MODE::MAP_FOR_MOMENT || mode == MODE::MAP_FOR_LONGER ||
|
| 2220 | mode == MODE::MAP_TWO_TIMES)
|
| 2221 | {
|
| 2222 | assert(data == nullptr);
|
| 2223 | res = vmaMapMemory(g_hAllocator, bufInfo.Allocation, (void**)&data);
|
| 2224 | assert(res == VK_SUCCESS && data != nullptr);
|
| 2225 |
|
| 2226 | if(mode == MODE::MAP_TWO_TIMES)
|
| 2227 | {
|
| 2228 | char* data2 = nullptr;
|
| 2229 | res = vmaMapMemory(g_hAllocator, bufInfo.Allocation, (void**)&data2);
|
| 2230 | assert(res == VK_SUCCESS && data2 == data);
|
| 2231 | }
|
| 2232 | }
|
| 2233 | else if(mode == MODE::DONT_MAP)
|
| 2234 | {
|
| 2235 | assert(allocInfo.pMappedData == nullptr);
|
| 2236 | }
|
| 2237 | else
|
| 2238 | assert(0);
|
| 2239 |
|
| 2240 | // Test if reading and writing from the beginning and end of mapped memory doesn't crash.
|
| 2241 | if(data)
|
| 2242 | data[0xFFFF] = data[0];
|
| 2243 |
|
| 2244 | if(mode == MODE::MAP_FOR_MOMENT || mode == MODE::MAP_TWO_TIMES)
|
| 2245 | {
|
| 2246 | vmaUnmapMemory(g_hAllocator, bufInfo.Allocation);
|
| 2247 |
|
| 2248 | VmaAllocationInfo allocInfo;
|
| 2249 | vmaGetAllocationInfo(g_hAllocator, bufInfo.Allocation, &allocInfo);
|
| 2250 | if(mode == MODE::MAP_FOR_MOMENT)
|
| 2251 | assert(allocInfo.pMappedData == nullptr);
|
| 2252 | else
|
| 2253 | assert(allocInfo.pMappedData == data);
|
| 2254 | }
|
| 2255 |
|
| 2256 | switch(rand.Generate() % 3)
|
| 2257 | {
|
| 2258 | case 0: Sleep(0); break; // Yield.
|
| 2259 | case 1: Sleep(10); break; // 10 ms
|
| 2260 | // default: No sleep.
|
| 2261 | }
|
| 2262 |
|
| 2263 | // Test if reading and writing from the beginning and end of mapped memory doesn't crash.
|
| 2264 | if(data)
|
| 2265 | data[0xFFFF] = data[0];
|
| 2266 | }
|
| 2267 |
|
| 2268 | for(size_t bufferIndex = threadBufferCount; bufferIndex--; )
|
| 2269 | {
|
| 2270 | if(bufModes[bufferIndex] == MODE::MAP_FOR_LONGER ||
|
| 2271 | bufModes[bufferIndex] == MODE::MAP_TWO_TIMES)
|
| 2272 | {
|
| 2273 | vmaUnmapMemory(g_hAllocator, bufInfos[bufferIndex].Allocation);
|
| 2274 |
|
| 2275 | VmaAllocationInfo allocInfo;
|
| 2276 | vmaGetAllocationInfo(g_hAllocator, bufInfos[bufferIndex].Allocation, &allocInfo);
|
| 2277 | assert(allocInfo.pMappedData == nullptr);
|
| 2278 | }
|
| 2279 |
|
| 2280 | vmaDestroyBuffer(g_hAllocator, bufInfos[bufferIndex].Buffer, bufInfos[bufferIndex].Allocation);
|
| 2281 | }
|
| 2282 | });
|
| 2283 | }
|
| 2284 |
|
| 2285 | for(uint32_t threadIndex = 0; threadIndex < threadCount; ++threadIndex)
|
| 2286 | threads[threadIndex].join();
|
| 2287 |
|
| 2288 | vmaDestroyPool(g_hAllocator, pool);
|
| 2289 | }
|
| 2290 | }
|
| 2291 |
|
| 2292 | static void WriteMainTestResultHeader(FILE* file)
|
| 2293 | {
|
| 2294 | fprintf(file,
|
| 2295 | "Code,Test,Time,"
|
| 2296 | "Config,"
|
| 2297 | "Total Time (us),"
|
| 2298 | "Allocation Time Min (us),"
|
| 2299 | "Allocation Time Avg (us),"
|
| 2300 | "Allocation Time Max (us),"
|
| 2301 | "Deallocation Time Min (us),"
|
| 2302 | "Deallocation Time Avg (us),"
|
| 2303 | "Deallocation Time Max (us),"
|
| 2304 | "Total Memory Allocated (B),"
|
| 2305 | "Free Range Size Avg (B),"
|
| 2306 | "Free Range Size Max (B)\n");
|
| 2307 | }
|
| 2308 |
|
| 2309 | static void WriteMainTestResult(
|
| 2310 | FILE* file,
|
| 2311 | const char* codeDescription,
|
| 2312 | const char* testDescription,
|
| 2313 | const Config& config, const Result& result)
|
| 2314 | {
|
| 2315 | float totalTimeSeconds = ToFloatSeconds(result.TotalTime);
|
| 2316 | float allocationTimeMinSeconds = ToFloatSeconds(result.AllocationTimeMin);
|
| 2317 | float allocationTimeAvgSeconds = ToFloatSeconds(result.AllocationTimeAvg);
|
| 2318 | float allocationTimeMaxSeconds = ToFloatSeconds(result.AllocationTimeMax);
|
| 2319 | float deallocationTimeMinSeconds = ToFloatSeconds(result.DeallocationTimeMin);
|
| 2320 | float deallocationTimeAvgSeconds = ToFloatSeconds(result.DeallocationTimeAvg);
|
| 2321 | float deallocationTimeMaxSeconds = ToFloatSeconds(result.DeallocationTimeMax);
|
| 2322 |
|
| 2323 | time_t rawTime; time(&rawTime);
|
| 2324 | struct tm timeInfo; localtime_s(&timeInfo, &rawTime);
|
| 2325 | char timeStr[128];
|
| 2326 | strftime(timeStr, _countof(timeStr), "%c", &timeInfo);
|
| 2327 |
|
| 2328 | fprintf(file,
|
| 2329 | "%s,%s,%s,"
|
| 2330 | "BeginBytesToAllocate=%I64u MaxBytesToAllocate=%I64u AdditionalOperationCount=%u ThreadCount=%u FreeOrder=%d,"
|
| 2331 | "%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%I64u,%I64u,%I64u\n",
|
| 2332 | codeDescription,
|
| 2333 | testDescription,
|
| 2334 | timeStr,
|
| 2335 | config.BeginBytesToAllocate, config.MaxBytesToAllocate, config.AdditionalOperationCount, config.ThreadCount, (uint32_t)config.FreeOrder,
|
| 2336 | totalTimeSeconds * 1e6f,
|
| 2337 | allocationTimeMinSeconds * 1e6f,
|
| 2338 | allocationTimeAvgSeconds * 1e6f,
|
| 2339 | allocationTimeMaxSeconds * 1e6f,
|
| 2340 | deallocationTimeMinSeconds * 1e6f,
|
| 2341 | deallocationTimeAvgSeconds * 1e6f,
|
| 2342 | deallocationTimeMaxSeconds * 1e6f,
|
| 2343 | result.TotalMemoryAllocated,
|
| 2344 | result.FreeRangeSizeAvg,
|
| 2345 | result.FreeRangeSizeMax);
|
| 2346 | }
|
| 2347 |
|
| 2348 | static void WritePoolTestResultHeader(FILE* file)
|
| 2349 | {
|
| 2350 | fprintf(file,
|
| 2351 | "Code,Test,Time,"
|
| 2352 | "Config,"
|
| 2353 | "Total Time (us),"
|
| 2354 | "Allocation Time Min (us),"
|
| 2355 | "Allocation Time Avg (us),"
|
| 2356 | "Allocation Time Max (us),"
|
| 2357 | "Deallocation Time Min (us),"
|
| 2358 | "Deallocation Time Avg (us),"
|
| 2359 | "Deallocation Time Max (us),"
|
| 2360 | "Lost Allocation Count,"
|
| 2361 | "Lost Allocation Total Size (B),"
|
| 2362 | "Failed Allocation Count,"
|
| 2363 | "Failed Allocation Total Size (B)\n");
|
| 2364 | }
|
| 2365 |
|
| 2366 | static void WritePoolTestResult(
|
| 2367 | FILE* file,
|
| 2368 | const char* codeDescription,
|
| 2369 | const char* testDescription,
|
| 2370 | const PoolTestConfig& config,
|
| 2371 | const PoolTestResult& result)
|
| 2372 | {
|
| 2373 | float totalTimeSeconds = ToFloatSeconds(result.TotalTime);
|
| 2374 | float allocationTimeMinSeconds = ToFloatSeconds(result.AllocationTimeMin);
|
| 2375 | float allocationTimeAvgSeconds = ToFloatSeconds(result.AllocationTimeAvg);
|
| 2376 | float allocationTimeMaxSeconds = ToFloatSeconds(result.AllocationTimeMax);
|
| 2377 | float deallocationTimeMinSeconds = ToFloatSeconds(result.DeallocationTimeMin);
|
| 2378 | float deallocationTimeAvgSeconds = ToFloatSeconds(result.DeallocationTimeAvg);
|
| 2379 | float deallocationTimeMaxSeconds = ToFloatSeconds(result.DeallocationTimeMax);
|
| 2380 |
|
| 2381 | time_t rawTime; time(&rawTime);
|
| 2382 | struct tm timeInfo; localtime_s(&timeInfo, &rawTime);
|
| 2383 | char timeStr[128];
|
| 2384 | strftime(timeStr, _countof(timeStr), "%c", &timeInfo);
|
| 2385 |
|
| 2386 | fprintf(file,
|
| 2387 | "%s,%s,%s,"
|
| 2388 | "ThreadCount=%u PoolSize=%llu FrameCount=%u TotalItemCount=%u UsedItemCount=%u...%u ItemsToMakeUnusedPercent=%u,"
|
| 2389 | "%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%.2f,%I64u,%I64u,%I64u,%I64u\n",
|
| 2390 | // General
|
| 2391 | codeDescription,
|
| 2392 | testDescription,
|
| 2393 | timeStr,
|
| 2394 | // Config
|
| 2395 | config.ThreadCount,
|
| 2396 | (unsigned long long)config.PoolSize,
|
| 2397 | config.FrameCount,
|
| 2398 | config.TotalItemCount,
|
| 2399 | config.UsedItemCountMin,
|
| 2400 | config.UsedItemCountMax,
|
| 2401 | config.ItemsToMakeUnusedPercent,
|
| 2402 | // Results
|
| 2403 | totalTimeSeconds * 1e6f,
|
| 2404 | allocationTimeMinSeconds * 1e6f,
|
| 2405 | allocationTimeAvgSeconds * 1e6f,
|
| 2406 | allocationTimeMaxSeconds * 1e6f,
|
| 2407 | deallocationTimeMinSeconds * 1e6f,
|
| 2408 | deallocationTimeAvgSeconds * 1e6f,
|
| 2409 | deallocationTimeMaxSeconds * 1e6f,
|
| 2410 | result.LostAllocationCount,
|
| 2411 | result.LostAllocationTotalSize,
|
| 2412 | result.FailedAllocationCount,
|
| 2413 | result.FailedAllocationTotalSize);
|
| 2414 | }
|
| 2415 |
|
| 2416 | static void PerformCustomMainTest(FILE* file)
|
| 2417 | {
|
| 2418 | Config config{};
|
| 2419 | config.RandSeed = 65735476;
|
| 2420 | //config.MaxBytesToAllocate = 4ull * 1024 * 1024; // 4 MB
|
| 2421 | config.MaxBytesToAllocate = 4ull * 1024 * 1024 * 1024; // 4 GB
|
| 2422 | config.MemUsageProbability[0] = 1; // VMA_MEMORY_USAGE_GPU_ONLY
|
| 2423 | config.FreeOrder = FREE_ORDER::FORWARD;
|
| 2424 | config.ThreadCount = 16;
|
| 2425 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 50;
|
| 2426 |
|
| 2427 | // Buffers
|
| 2428 | //config.AllocationSizes.push_back({4, 16, 1024});
|
| 2429 | config.AllocationSizes.push_back({4, 0x10000, 0xA00000}); // 64 KB ... 10 MB
|
| 2430 |
|
| 2431 | // Images
|
| 2432 | //config.AllocationSizes.push_back({4, 0, 0, 4, 32});
|
| 2433 | //config.AllocationSizes.push_back({4, 0, 0, 256, 2048});
|
| 2434 |
|
| 2435 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 5 / 100;
|
| 2436 | config.AdditionalOperationCount = 1024;
|
| 2437 |
|
| 2438 | Result result{};
|
| 2439 | VkResult res = MainTest(result, config);
|
| 2440 | assert(res == VK_SUCCESS);
|
| 2441 | WriteMainTestResult(file, "Foo", "CustomTest", config, result);
|
| 2442 | }
|
| 2443 |
|
| 2444 | static void PerformCustomPoolTest(FILE* file)
|
| 2445 | {
|
| 2446 | PoolTestConfig config;
|
| 2447 | config.PoolSize = 100 * 1024 * 1024;
|
| 2448 | config.RandSeed = 2345764;
|
| 2449 | config.ThreadCount = 1;
|
| 2450 | config.FrameCount = 200;
|
| 2451 | config.ItemsToMakeUnusedPercent = 2;
|
| 2452 |
|
| 2453 | AllocationSize allocSize = {};
|
| 2454 | allocSize.BufferSizeMin = 1024;
|
| 2455 | allocSize.BufferSizeMax = 1024 * 1024;
|
| 2456 | allocSize.Probability = 1;
|
| 2457 | config.AllocationSizes.push_back(allocSize);
|
| 2458 |
|
| 2459 | allocSize.BufferSizeMin = 0;
|
| 2460 | allocSize.BufferSizeMax = 0;
|
| 2461 | allocSize.ImageSizeMin = 128;
|
| 2462 | allocSize.ImageSizeMax = 1024;
|
| 2463 | allocSize.Probability = 1;
|
| 2464 | config.AllocationSizes.push_back(allocSize);
|
| 2465 |
|
| 2466 | config.PoolSize = config.CalcAvgResourceSize() * 200;
|
| 2467 | config.UsedItemCountMax = 160;
|
| 2468 | config.TotalItemCount = config.UsedItemCountMax * 10;
|
| 2469 | config.UsedItemCountMin = config.UsedItemCountMax * 80 / 100;
|
| 2470 |
|
| 2471 | g_MemoryAliasingWarningEnabled = false;
|
| 2472 | PoolTestResult result = {};
|
| 2473 | TestPool_Benchmark(result, config);
|
| 2474 | g_MemoryAliasingWarningEnabled = true;
|
| 2475 |
|
| 2476 | WritePoolTestResult(file, "Code desc", "Test desc", config, result);
|
| 2477 | }
|
| 2478 |
|
| 2479 | enum CONFIG_TYPE {
|
| 2480 | CONFIG_TYPE_MINIMUM,
|
| 2481 | CONFIG_TYPE_SMALL,
|
| 2482 | CONFIG_TYPE_AVERAGE,
|
| 2483 | CONFIG_TYPE_LARGE,
|
| 2484 | CONFIG_TYPE_MAXIMUM,
|
| 2485 | CONFIG_TYPE_COUNT
|
| 2486 | };
|
| 2487 |
|
| 2488 | static constexpr CONFIG_TYPE ConfigType = CONFIG_TYPE_SMALL;
|
| 2489 | //static constexpr CONFIG_TYPE ConfigType = CONFIG_TYPE_LARGE;
|
| 2490 | static const char* CODE_DESCRIPTION = "Foo";
|
| 2491 |
|
| 2492 | static void PerformMainTests(FILE* file)
|
| 2493 | {
|
| 2494 | uint32_t repeatCount = 1;
|
| 2495 | if(ConfigType >= CONFIG_TYPE_MAXIMUM) repeatCount = 3;
|
| 2496 |
|
| 2497 | Config config{};
|
| 2498 | config.RandSeed = 65735476;
|
| 2499 | config.MemUsageProbability[0] = 1; // VMA_MEMORY_USAGE_GPU_ONLY
|
| 2500 | config.FreeOrder = FREE_ORDER::FORWARD;
|
| 2501 |
|
| 2502 | size_t threadCountCount = 1;
|
| 2503 | switch(ConfigType)
|
| 2504 | {
|
| 2505 | case CONFIG_TYPE_MINIMUM: threadCountCount = 1; break;
|
| 2506 | case CONFIG_TYPE_SMALL: threadCountCount = 2; break;
|
| 2507 | case CONFIG_TYPE_AVERAGE: threadCountCount = 3; break;
|
| 2508 | case CONFIG_TYPE_LARGE: threadCountCount = 5; break;
|
| 2509 | case CONFIG_TYPE_MAXIMUM: threadCountCount = 7; break;
|
| 2510 | default: assert(0);
|
| 2511 | }
|
| 2512 | for(size_t threadCountIndex = 0; threadCountIndex < threadCountCount; ++threadCountIndex)
|
| 2513 | {
|
| 2514 | std::string desc1;
|
| 2515 |
|
| 2516 | switch(threadCountIndex)
|
| 2517 | {
|
| 2518 | case 0:
|
| 2519 | desc1 += "1_thread";
|
| 2520 | config.ThreadCount = 1;
|
| 2521 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 0;
|
| 2522 | break;
|
| 2523 | case 1:
|
| 2524 | desc1 += "16_threads+0%_common";
|
| 2525 | config.ThreadCount = 16;
|
| 2526 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 0;
|
| 2527 | break;
|
| 2528 | case 2:
|
| 2529 | desc1 += "16_threads+50%_common";
|
| 2530 | config.ThreadCount = 16;
|
| 2531 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 50;
|
| 2532 | break;
|
| 2533 | case 3:
|
| 2534 | desc1 += "16_threads+100%_common";
|
| 2535 | config.ThreadCount = 16;
|
| 2536 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 100;
|
| 2537 | break;
|
| 2538 | case 4:
|
| 2539 | desc1 += "2_threads+0%_common";
|
| 2540 | config.ThreadCount = 2;
|
| 2541 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 0;
|
| 2542 | break;
|
| 2543 | case 5:
|
| 2544 | desc1 += "2_threads+50%_common";
|
| 2545 | config.ThreadCount = 2;
|
| 2546 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 50;
|
| 2547 | break;
|
| 2548 | case 6:
|
| 2549 | desc1 += "2_threads+100%_common";
|
| 2550 | config.ThreadCount = 2;
|
| 2551 | config.ThreadsUsingCommonAllocationsProbabilityPercent = 100;
|
| 2552 | break;
|
| 2553 | default:
|
| 2554 | assert(0);
|
| 2555 | }
|
| 2556 |
|
| 2557 | // 0 = buffers, 1 = images, 2 = buffers and images
|
| 2558 | size_t buffersVsImagesCount = 2;
|
| 2559 | if(ConfigType >= CONFIG_TYPE_LARGE) ++buffersVsImagesCount;
|
| 2560 | for(size_t buffersVsImagesIndex = 0; buffersVsImagesIndex < buffersVsImagesCount; ++buffersVsImagesIndex)
|
| 2561 | {
|
| 2562 | std::string desc2 = desc1;
|
| 2563 | switch(buffersVsImagesIndex)
|
| 2564 | {
|
| 2565 | case 0: desc2 += " Buffers"; break;
|
| 2566 | case 1: desc2 += " Images"; break;
|
| 2567 | case 2: desc2 += " Buffers+Images"; break;
|
| 2568 | default: assert(0);
|
| 2569 | }
|
| 2570 |
|
| 2571 | // 0 = small, 1 = large, 2 = small and large
|
| 2572 | size_t smallVsLargeCount = 2;
|
| 2573 | if(ConfigType >= CONFIG_TYPE_LARGE) ++smallVsLargeCount;
|
| 2574 | for(size_t smallVsLargeIndex = 0; smallVsLargeIndex < smallVsLargeCount; ++smallVsLargeIndex)
|
| 2575 | {
|
| 2576 | std::string desc3 = desc2;
|
| 2577 | switch(smallVsLargeIndex)
|
| 2578 | {
|
| 2579 | case 0: desc3 += " Small"; break;
|
| 2580 | case 1: desc3 += " Large"; break;
|
| 2581 | case 2: desc3 += " Small+Large"; break;
|
| 2582 | default: assert(0);
|
| 2583 | }
|
| 2584 |
|
| 2585 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 2586 | config.MaxBytesToAllocate = 4ull * 1024 * 1024 * 1024; // 4 GB
|
| 2587 | else
|
| 2588 | config.MaxBytesToAllocate = 4ull * 1024 * 1024;
|
| 2589 |
|
| 2590 | // 0 = varying sizes min...max, 1 = set of constant sizes
|
| 2591 | size_t constantSizesCount = 1;
|
| 2592 | if(ConfigType >= CONFIG_TYPE_SMALL) ++constantSizesCount;
|
| 2593 | for(size_t constantSizesIndex = 0; constantSizesIndex < constantSizesCount; ++constantSizesIndex)
|
| 2594 | {
|
| 2595 | std::string desc4 = desc3;
|
| 2596 | switch(constantSizesIndex)
|
| 2597 | {
|
| 2598 | case 0: desc4 += " Varying_sizes"; break;
|
| 2599 | case 1: desc4 += " Constant_sizes"; break;
|
| 2600 | default: assert(0);
|
| 2601 | }
|
| 2602 |
|
| 2603 | config.AllocationSizes.clear();
|
| 2604 | // Buffers present
|
| 2605 | if(buffersVsImagesIndex == 0 || buffersVsImagesIndex == 2)
|
| 2606 | {
|
| 2607 | // Small
|
| 2608 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 2609 | {
|
| 2610 | // Varying size
|
| 2611 | if(constantSizesIndex == 0)
|
| 2612 | config.AllocationSizes.push_back({4, 16, 1024});
|
| 2613 | // Constant sizes
|
| 2614 | else
|
| 2615 | {
|
| 2616 | config.AllocationSizes.push_back({1, 16, 16});
|
| 2617 | config.AllocationSizes.push_back({1, 64, 64});
|
| 2618 | config.AllocationSizes.push_back({1, 256, 256});
|
| 2619 | config.AllocationSizes.push_back({1, 1024, 1024});
|
| 2620 | }
|
| 2621 | }
|
| 2622 | // Large
|
| 2623 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 2624 | {
|
| 2625 | // Varying size
|
| 2626 | if(constantSizesIndex == 0)
|
| 2627 | config.AllocationSizes.push_back({4, 0x10000, 0xA00000}); // 64 KB ... 10 MB
|
| 2628 | // Constant sizes
|
| 2629 | else
|
| 2630 | {
|
| 2631 | config.AllocationSizes.push_back({1, 0x10000, 0x10000});
|
| 2632 | config.AllocationSizes.push_back({1, 0x80000, 0x80000});
|
| 2633 | config.AllocationSizes.push_back({1, 0x200000, 0x200000});
|
| 2634 | config.AllocationSizes.push_back({1, 0xA00000, 0xA00000});
|
| 2635 | }
|
| 2636 | }
|
| 2637 | }
|
| 2638 | // Images present
|
| 2639 | if(buffersVsImagesIndex == 1 || buffersVsImagesIndex == 2)
|
| 2640 | {
|
| 2641 | // Small
|
| 2642 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 2643 | {
|
| 2644 | // Varying size
|
| 2645 | if(constantSizesIndex == 0)
|
| 2646 | config.AllocationSizes.push_back({4, 0, 0, 4, 32});
|
| 2647 | // Constant sizes
|
| 2648 | else
|
| 2649 | {
|
| 2650 | config.AllocationSizes.push_back({1, 0, 0, 4, 4});
|
| 2651 | config.AllocationSizes.push_back({1, 0, 0, 8, 8});
|
| 2652 | config.AllocationSizes.push_back({1, 0, 0, 16, 16});
|
| 2653 | config.AllocationSizes.push_back({1, 0, 0, 32, 32});
|
| 2654 | }
|
| 2655 | }
|
| 2656 | // Large
|
| 2657 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 2658 | {
|
| 2659 | // Varying size
|
| 2660 | if(constantSizesIndex == 0)
|
| 2661 | config.AllocationSizes.push_back({4, 0, 0, 256, 2048});
|
| 2662 | // Constant sizes
|
| 2663 | else
|
| 2664 | {
|
| 2665 | config.AllocationSizes.push_back({1, 0, 0, 256, 256});
|
| 2666 | config.AllocationSizes.push_back({1, 0, 0, 512, 512});
|
| 2667 | config.AllocationSizes.push_back({1, 0, 0, 1024, 1024});
|
| 2668 | config.AllocationSizes.push_back({1, 0, 0, 2048, 2048});
|
| 2669 | }
|
| 2670 | }
|
| 2671 | }
|
| 2672 |
|
| 2673 | // 0 = 100%, additional_operations = 0, 1 = 50%, 2 = 5%, 3 = 95% additional_operations = a lot
|
| 2674 | size_t beginBytesToAllocateCount = 1;
|
| 2675 | if(ConfigType >= CONFIG_TYPE_SMALL) ++beginBytesToAllocateCount;
|
| 2676 | if(ConfigType >= CONFIG_TYPE_AVERAGE) ++beginBytesToAllocateCount;
|
| 2677 | if(ConfigType >= CONFIG_TYPE_LARGE) ++beginBytesToAllocateCount;
|
| 2678 | for(size_t beginBytesToAllocateIndex = 0; beginBytesToAllocateIndex < beginBytesToAllocateCount; ++beginBytesToAllocateIndex)
|
| 2679 | {
|
| 2680 | std::string desc5 = desc4;
|
| 2681 |
|
| 2682 | switch(beginBytesToAllocateIndex)
|
| 2683 | {
|
| 2684 | case 0:
|
| 2685 | desc5 += " Allocate_100%";
|
| 2686 | config.BeginBytesToAllocate = config.MaxBytesToAllocate;
|
| 2687 | config.AdditionalOperationCount = 0;
|
| 2688 | break;
|
| 2689 | case 1:
|
| 2690 | desc5 += " Allocate_50%+Operations";
|
| 2691 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 50 / 100;
|
| 2692 | config.AdditionalOperationCount = 1024;
|
| 2693 | break;
|
| 2694 | case 2:
|
| 2695 | desc5 += " Allocate_5%+Operations";
|
| 2696 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 5 / 100;
|
| 2697 | config.AdditionalOperationCount = 1024;
|
| 2698 | break;
|
| 2699 | case 3:
|
| 2700 | desc5 += " Allocate_95%+Operations";
|
| 2701 | config.BeginBytesToAllocate = config.MaxBytesToAllocate * 95 / 100;
|
| 2702 | config.AdditionalOperationCount = 1024;
|
| 2703 | break;
|
| 2704 | default:
|
| 2705 | assert(0);
|
| 2706 | }
|
| 2707 |
|
| 2708 | const char* testDescription = desc5.c_str();
|
| 2709 |
|
| 2710 | for(size_t repeat = 0; repeat < repeatCount; ++repeat)
|
| 2711 | {
|
| 2712 | printf("%s Repeat %u\n", testDescription, (uint32_t)repeat);
|
| 2713 |
|
| 2714 | Result result{};
|
| 2715 | VkResult res = MainTest(result, config);
|
| 2716 | assert(res == VK_SUCCESS);
|
| 2717 | WriteMainTestResult(file, CODE_DESCRIPTION, testDescription, config, result);
|
| 2718 | }
|
| 2719 | }
|
| 2720 | }
|
| 2721 | }
|
| 2722 | }
|
| 2723 | }
|
| 2724 | }
|
| 2725 |
|
| 2726 | static void PerformPoolTests(FILE* file)
|
| 2727 | {
|
| 2728 | const size_t AVG_RESOURCES_PER_POOL = 300;
|
| 2729 |
|
| 2730 | uint32_t repeatCount = 1;
|
| 2731 | if(ConfigType >= CONFIG_TYPE_MAXIMUM) repeatCount = 3;
|
| 2732 |
|
| 2733 | PoolTestConfig config{};
|
| 2734 | config.RandSeed = 2346343;
|
| 2735 | config.FrameCount = 200;
|
| 2736 | config.ItemsToMakeUnusedPercent = 2;
|
| 2737 |
|
| 2738 | size_t threadCountCount = 1;
|
| 2739 | switch(ConfigType)
|
| 2740 | {
|
| 2741 | case CONFIG_TYPE_MINIMUM: threadCountCount = 1; break;
|
| 2742 | case CONFIG_TYPE_SMALL: threadCountCount = 2; break;
|
| 2743 | case CONFIG_TYPE_AVERAGE: threadCountCount = 2; break;
|
| 2744 | case CONFIG_TYPE_LARGE: threadCountCount = 3; break;
|
| 2745 | case CONFIG_TYPE_MAXIMUM: threadCountCount = 3; break;
|
| 2746 | default: assert(0);
|
| 2747 | }
|
| 2748 | for(size_t threadCountIndex = 0; threadCountIndex < threadCountCount; ++threadCountIndex)
|
| 2749 | {
|
| 2750 | std::string desc1;
|
| 2751 |
|
| 2752 | switch(threadCountIndex)
|
| 2753 | {
|
| 2754 | case 0:
|
| 2755 | desc1 += "1_thread";
|
| 2756 | config.ThreadCount = 1;
|
| 2757 | break;
|
| 2758 | case 1:
|
| 2759 | desc1 += "16_threads";
|
| 2760 | config.ThreadCount = 16;
|
| 2761 | break;
|
| 2762 | case 2:
|
| 2763 | desc1 += "2_threads";
|
| 2764 | config.ThreadCount = 2;
|
| 2765 | break;
|
| 2766 | default:
|
| 2767 | assert(0);
|
| 2768 | }
|
| 2769 |
|
| 2770 | // 0 = buffers, 1 = images, 2 = buffers and images
|
| 2771 | size_t buffersVsImagesCount = 2;
|
| 2772 | if(ConfigType >= CONFIG_TYPE_LARGE) ++buffersVsImagesCount;
|
| 2773 | for(size_t buffersVsImagesIndex = 0; buffersVsImagesIndex < buffersVsImagesCount; ++buffersVsImagesIndex)
|
| 2774 | {
|
| 2775 | std::string desc2 = desc1;
|
| 2776 | switch(buffersVsImagesIndex)
|
| 2777 | {
|
| 2778 | case 0: desc2 += " Buffers"; break;
|
| 2779 | case 1: desc2 += " Images"; break;
|
| 2780 | case 2: desc2 += " Buffers+Images"; break;
|
| 2781 | default: assert(0);
|
| 2782 | }
|
| 2783 |
|
| 2784 | // 0 = small, 1 = large, 2 = small and large
|
| 2785 | size_t smallVsLargeCount = 2;
|
| 2786 | if(ConfigType >= CONFIG_TYPE_LARGE) ++smallVsLargeCount;
|
| 2787 | for(size_t smallVsLargeIndex = 0; smallVsLargeIndex < smallVsLargeCount; ++smallVsLargeIndex)
|
| 2788 | {
|
| 2789 | std::string desc3 = desc2;
|
| 2790 | switch(smallVsLargeIndex)
|
| 2791 | {
|
| 2792 | case 0: desc3 += " Small"; break;
|
| 2793 | case 1: desc3 += " Large"; break;
|
| 2794 | case 2: desc3 += " Small+Large"; break;
|
| 2795 | default: assert(0);
|
| 2796 | }
|
| 2797 |
|
| 2798 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 2799 | config.PoolSize = 6ull * 1024 * 1024 * 1024; // 6 GB
|
| 2800 | else
|
| 2801 | config.PoolSize = 4ull * 1024 * 1024;
|
| 2802 |
|
| 2803 | // 0 = varying sizes min...max, 1 = set of constant sizes
|
| 2804 | size_t constantSizesCount = 1;
|
| 2805 | if(ConfigType >= CONFIG_TYPE_SMALL) ++constantSizesCount;
|
| 2806 | for(size_t constantSizesIndex = 0; constantSizesIndex < constantSizesCount; ++constantSizesIndex)
|
| 2807 | {
|
| 2808 | std::string desc4 = desc3;
|
| 2809 | switch(constantSizesIndex)
|
| 2810 | {
|
| 2811 | case 0: desc4 += " Varying_sizes"; break;
|
| 2812 | case 1: desc4 += " Constant_sizes"; break;
|
| 2813 | default: assert(0);
|
| 2814 | }
|
| 2815 |
|
| 2816 | config.AllocationSizes.clear();
|
| 2817 | // Buffers present
|
| 2818 | if(buffersVsImagesIndex == 0 || buffersVsImagesIndex == 2)
|
| 2819 | {
|
| 2820 | // Small
|
| 2821 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 2822 | {
|
| 2823 | // Varying size
|
| 2824 | if(constantSizesIndex == 0)
|
| 2825 | config.AllocationSizes.push_back({4, 16, 1024});
|
| 2826 | // Constant sizes
|
| 2827 | else
|
| 2828 | {
|
| 2829 | config.AllocationSizes.push_back({1, 16, 16});
|
| 2830 | config.AllocationSizes.push_back({1, 64, 64});
|
| 2831 | config.AllocationSizes.push_back({1, 256, 256});
|
| 2832 | config.AllocationSizes.push_back({1, 1024, 1024});
|
| 2833 | }
|
| 2834 | }
|
| 2835 | // Large
|
| 2836 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 2837 | {
|
| 2838 | // Varying size
|
| 2839 | if(constantSizesIndex == 0)
|
| 2840 | config.AllocationSizes.push_back({4, 0x10000, 0xA00000}); // 64 KB ... 10 MB
|
| 2841 | // Constant sizes
|
| 2842 | else
|
| 2843 | {
|
| 2844 | config.AllocationSizes.push_back({1, 0x10000, 0x10000});
|
| 2845 | config.AllocationSizes.push_back({1, 0x80000, 0x80000});
|
| 2846 | config.AllocationSizes.push_back({1, 0x200000, 0x200000});
|
| 2847 | config.AllocationSizes.push_back({1, 0xA00000, 0xA00000});
|
| 2848 | }
|
| 2849 | }
|
| 2850 | }
|
| 2851 | // Images present
|
| 2852 | if(buffersVsImagesIndex == 1 || buffersVsImagesIndex == 2)
|
| 2853 | {
|
| 2854 | // Small
|
| 2855 | if(smallVsLargeIndex == 0 || smallVsLargeIndex == 2)
|
| 2856 | {
|
| 2857 | // Varying size
|
| 2858 | if(constantSizesIndex == 0)
|
| 2859 | config.AllocationSizes.push_back({4, 0, 0, 4, 32});
|
| 2860 | // Constant sizes
|
| 2861 | else
|
| 2862 | {
|
| 2863 | config.AllocationSizes.push_back({1, 0, 0, 4, 4});
|
| 2864 | config.AllocationSizes.push_back({1, 0, 0, 8, 8});
|
| 2865 | config.AllocationSizes.push_back({1, 0, 0, 16, 16});
|
| 2866 | config.AllocationSizes.push_back({1, 0, 0, 32, 32});
|
| 2867 | }
|
| 2868 | }
|
| 2869 | // Large
|
| 2870 | if(smallVsLargeIndex == 1 || smallVsLargeIndex == 2)
|
| 2871 | {
|
| 2872 | // Varying size
|
| 2873 | if(constantSizesIndex == 0)
|
| 2874 | config.AllocationSizes.push_back({4, 0, 0, 256, 2048});
|
| 2875 | // Constant sizes
|
| 2876 | else
|
| 2877 | {
|
| 2878 | config.AllocationSizes.push_back({1, 0, 0, 256, 256});
|
| 2879 | config.AllocationSizes.push_back({1, 0, 0, 512, 512});
|
| 2880 | config.AllocationSizes.push_back({1, 0, 0, 1024, 1024});
|
| 2881 | config.AllocationSizes.push_back({1, 0, 0, 2048, 2048});
|
| 2882 | }
|
| 2883 | }
|
| 2884 | }
|
| 2885 |
|
| 2886 | const VkDeviceSize avgResourceSize = config.CalcAvgResourceSize();
|
| 2887 | config.PoolSize = avgResourceSize * AVG_RESOURCES_PER_POOL;
|
| 2888 |
|
| 2889 | // 0 = 66%, 1 = 133%, 2 = 100%, 3 = 33%, 4 = 166%
|
| 2890 | size_t subscriptionModeCount;
|
| 2891 | switch(ConfigType)
|
| 2892 | {
|
| 2893 | case CONFIG_TYPE_MINIMUM: subscriptionModeCount = 2; break;
|
| 2894 | case CONFIG_TYPE_SMALL: subscriptionModeCount = 2; break;
|
| 2895 | case CONFIG_TYPE_AVERAGE: subscriptionModeCount = 3; break;
|
| 2896 | case CONFIG_TYPE_LARGE: subscriptionModeCount = 5; break;
|
| 2897 | case CONFIG_TYPE_MAXIMUM: subscriptionModeCount = 5; break;
|
| 2898 | default: assert(0);
|
| 2899 | }
|
| 2900 | for(size_t subscriptionModeIndex = 0; subscriptionModeIndex < subscriptionModeCount; ++subscriptionModeIndex)
|
| 2901 | {
|
| 2902 | std::string desc5 = desc4;
|
| 2903 |
|
| 2904 | switch(subscriptionModeIndex)
|
| 2905 | {
|
| 2906 | case 0:
|
| 2907 | desc5 += " Subscription_66%";
|
| 2908 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 66 / 100;
|
| 2909 | break;
|
| 2910 | case 1:
|
| 2911 | desc5 += " Subscription_133%";
|
| 2912 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 133 / 100;
|
| 2913 | break;
|
| 2914 | case 2:
|
| 2915 | desc5 += " Subscription_100%";
|
| 2916 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL;
|
| 2917 | break;
|
| 2918 | case 3:
|
| 2919 | desc5 += " Subscription_33%";
|
| 2920 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 33 / 100;
|
| 2921 | break;
|
| 2922 | case 4:
|
| 2923 | desc5 += " Subscription_166%";
|
| 2924 | config.UsedItemCountMax = AVG_RESOURCES_PER_POOL * 166 / 100;
|
| 2925 | break;
|
| 2926 | default:
|
| 2927 | assert(0);
|
| 2928 | }
|
| 2929 |
|
| 2930 | config.TotalItemCount = config.UsedItemCountMax * 5;
|
| 2931 | config.UsedItemCountMin = config.UsedItemCountMax * 80 / 100;
|
| 2932 |
|
| 2933 | const char* testDescription = desc5.c_str();
|
| 2934 |
|
| 2935 | for(size_t repeat = 0; repeat < repeatCount; ++repeat)
|
| 2936 | {
|
| 2937 | printf("%s Repeat %u\n", testDescription, (uint32_t)repeat);
|
| 2938 |
|
| 2939 | PoolTestResult result{};
|
| 2940 | g_MemoryAliasingWarningEnabled = false;
|
| 2941 | TestPool_Benchmark(result, config);
|
| 2942 | g_MemoryAliasingWarningEnabled = true;
|
| 2943 | WritePoolTestResult(file, CODE_DESCRIPTION, testDescription, config, result);
|
| 2944 | }
|
| 2945 | }
|
| 2946 | }
|
| 2947 | }
|
| 2948 | }
|
| 2949 | }
|
| 2950 | }
|
| 2951 |
|
| 2952 | void Test()
|
| 2953 | {
|
| 2954 | wprintf(L"TESTING:\n");
|
| 2955 |
|
| 2956 | // # Simple tests
|
| 2957 |
|
| 2958 | TestBasics();
|
| 2959 | TestPool_SameSize();
|
| 2960 | TestHeapSizeLimit();
|
| 2961 | TestMapping();
|
| 2962 | TestMappingMultithreaded();
|
| 2963 | TestDefragmentationSimple();
|
| 2964 | TestDefragmentationFull();
|
| 2965 |
|
| 2966 | // # Detailed tests
|
| 2967 | FILE* file;
|
| 2968 | fopen_s(&file, "Results.csv", "w");
|
| 2969 | assert(file != NULL);
|
| 2970 |
|
| 2971 | WriteMainTestResultHeader(file);
|
| 2972 | PerformMainTests(file);
|
| 2973 | //PerformCustomMainTest(file);
|
| 2974 |
|
| 2975 | WritePoolTestResultHeader(file);
|
| 2976 | PerformPoolTests(file);
|
| 2977 | //PerformCustomPoolTest(file);
|
| 2978 |
|
| 2979 | fclose(file);
|
| 2980 |
|
| 2981 | wprintf(L"Done.\n");
|
| 2982 | }
|
| 2983 |
|
Adam Sawicki | f1a793c | 2018-03-13 15:42:22 +0100 | [diff] [blame] | 2984 | #endif // #ifdef _WIN32
|