Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2017, Intel Corporation |
| 3 | * All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions are met: |
| 7 | * * Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of the Intel Corporation nor the |
| 13 | * names of its contributors may be used to endorse or promote products |
| 14 | * derived from this software without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | * |
| 28 | * Author: Seppo Ingalsuo <seppo.ingalsuo@linux.intel.com> |
| 29 | */ |
| 30 | |
| 31 | #include <sof/stream.h> |
| 32 | #include <sof/dmic.h> |
| 33 | #include <sof/interrupt.h> |
| 34 | #include <sof/math/numbers.h> |
| 35 | #include <sof/audio/format.h> |
| 36 | |
| 37 | #if defined DMIC_HW_VERSION |
| 38 | |
| 39 | #include <sof/audio/coefficients/pdm_decim/pdm_decim_table.h> |
| 40 | |
| 41 | #if defined MODULE_TEST |
| 42 | #include <stdio.h> |
| 43 | #endif |
| 44 | |
| 45 | #define DMIC_MAX_MODES 50 |
| 46 | |
| 47 | /* HW FIR pipeline needs 5 additional cycles per channel for internal |
| 48 | * operations. This is used in MAX filter length check. |
| 49 | */ |
| 50 | #define DMIC_FIR_PIPELINE_OVERHEAD 5 |
| 51 | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 52 | struct decim_modes { |
| 53 | int16_t clkdiv[DMIC_MAX_MODES]; |
| 54 | int16_t mcic[DMIC_MAX_MODES]; |
| 55 | int16_t mfir[DMIC_MAX_MODES]; |
| 56 | int num_of_modes; |
| 57 | }; |
| 58 | |
| 59 | struct matched_modes { |
| 60 | int16_t clkdiv[DMIC_MAX_MODES]; |
| 61 | int16_t mcic[DMIC_MAX_MODES]; |
| 62 | int16_t mfir_a[DMIC_MAX_MODES]; |
| 63 | int16_t mfir_b[DMIC_MAX_MODES]; |
| 64 | int num_of_modes; |
| 65 | }; |
| 66 | |
| 67 | struct dmic_configuration { |
| 68 | struct pdm_decim *fir_a; |
| 69 | struct pdm_decim *fir_b; |
| 70 | int clkdiv; |
| 71 | int mcic; |
| 72 | int mfir_a; |
| 73 | int mfir_b; |
| 74 | int cic_shift; |
| 75 | int fir_a_shift; |
| 76 | int fir_b_shift; |
| 77 | int fir_a_length; |
| 78 | int fir_b_length; |
| 79 | int32_t fir_a_scale; |
| 80 | int32_t fir_b_scale; |
| 81 | }; |
| 82 | |
| 83 | struct pdm_controllers_configuration { |
| 84 | uint32_t cic_control; |
| 85 | uint32_t cic_config; |
| 86 | uint32_t mic_control; |
| 87 | uint32_t fir_control_a; |
| 88 | uint32_t fir_config_a; |
| 89 | uint32_t dc_offset_left_a; |
| 90 | uint32_t dc_offset_right_a; |
| 91 | uint32_t out_gain_left_a; |
| 92 | uint32_t out_gain_right_a; |
| 93 | uint32_t fir_control_b; |
| 94 | uint32_t fir_config_b; |
| 95 | uint32_t dc_offset_left_b; |
| 96 | uint32_t dc_offset_right_b; |
| 97 | uint32_t out_gain_left_b; |
| 98 | uint32_t out_gain_right_b; |
| 99 | }; |
| 100 | |
| 101 | /* Configuration ABI version, increment if not compatible with previous |
| 102 | * version. |
| 103 | */ |
| 104 | #define DMIC_IPC_VERSION 1 |
| 105 | |
| 106 | /* Minimum OSR is always applied for 48 kHz and less sample rates */ |
| 107 | #define DMIC_MIN_OSR 50 |
| 108 | |
| 109 | /* These are used as guideline for configuring > 48 kHz sample rates. The |
| 110 | * minimum OSR can be relaxed down to 40 (use 3.84 MHz clock for 96 kHz). |
| 111 | */ |
| 112 | #define DMIC_HIGH_RATE_MIN_FS 64000 |
| 113 | #define DMIC_HIGH_RATE_OSR_MIN 40 |
| 114 | |
| 115 | /* Used for scaling FIR coeffcients for HW */ |
| 116 | #define DMIC_HW_FIR_COEF_MAX ((1 << (DMIC_HW_BITS_FIR_COEF - 1)) - 1) |
| 117 | #define DMIC_HW_FIR_COEF_Q (DMIC_HW_BITS_FIR_COEF - 1) |
| 118 | |
| 119 | /* Internal precision in gains computation, e.g. Q4.28 in int32_t */ |
| 120 | #define DMIC_FIR_SCALE_Q 28 |
| 121 | |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 122 | /* Used in unmute ramp values calculation */ |
| 123 | #define DMIC_HW_FIR_GAIN_MAX ((1 << (DMIC_HW_BITS_FIR_GAIN - 1)) - 1) |
| 124 | |
| 125 | /* Hardwired log ramp parameters. The first value is the initial logarithmic |
| 126 | * gain and the second value is the multiplier for gain to achieve the linear |
| 127 | * decibels change over time. Currently the coefficient GM needs to be |
| 128 | * calculated manually. The 300 ms ramp should ensure clean sounding start with |
| 129 | * any microphone. However it is likely unnecessarily long for machine hearing. |
| 130 | * TODO: Add ramp characteristic passing via topology. |
| 131 | */ |
| 132 | #define LOGRAMP_GI 33954 /* -90 dB, Q2.30*/ |
| 133 | #define LOGRAMP_GM 16959 /* Gives 300 ms ramp for -90..0 dB, Q2.14 */ |
| 134 | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 135 | /* tracing */ |
| 136 | #define trace_dmic(__e) trace_event(TRACE_CLASS_DMIC, __e) |
| 137 | #define trace_dmic_error(__e) trace_error(TRACE_CLASS_DMIC, __e) |
| 138 | #define tracev_dmic(__e) tracev_event(TRACE_CLASS_DMIC, __e) |
| 139 | |
| 140 | /* Base addresses (in PDM scope) of 2ch PDM controllers and coefficient RAM. */ |
| 141 | static const uint32_t base[4] = {PDM0, PDM1, PDM2, PDM3}; |
| 142 | static const uint32_t coef_base_a[4] = {PDM0_COEFFICIENT_A, PDM1_COEFFICIENT_A, |
| 143 | PDM2_COEFFICIENT_A, PDM3_COEFFICIENT_A}; |
| 144 | static const uint32_t coef_base_b[4] = {PDM0_COEFFICIENT_B, PDM1_COEFFICIENT_B, |
| 145 | PDM2_COEFFICIENT_B, PDM3_COEFFICIENT_B}; |
| 146 | |
| 147 | #if defined MODULE_TEST |
| 148 | #define IO_BYTES_GLOBAL (PDM0 - OUTCONTROL0) |
| 149 | #define IO_BYTES_MIDDLE (PDM1 - PDM0) |
| 150 | #define IO_BYTES_LAST (PDM0_COEFFICIENT_B + PDM_COEF_RAM_B_LENGTH - PDM0) |
| 151 | #define IO_BYTES (((DMIC_HW_CONTROLLERS) - 1) * (IO_BYTES_MIDDLE) \ |
| 152 | + (IO_BYTES_LAST) + (IO_BYTES_GLOBAL)) |
| 153 | #define IO_LENGTH ((IO_BYTES) >> 2) |
| 154 | |
| 155 | static uint32_t dmic_io[IO_LENGTH]; |
| 156 | |
| 157 | static void dmic_write(struct dai *dai, uint32_t reg, uint32_t value) |
| 158 | { |
| 159 | printf("W %04x %08x\n", reg, value); |
| 160 | dmic_io[reg >> 2] = value; |
| 161 | } |
| 162 | |
| 163 | static uint32_t dmic_read(struct dai *dai, uint32_t reg) |
| 164 | { |
| 165 | uint32_t value = dmic_io[reg >> 2]; |
| 166 | |
| 167 | printf("R %04x %08x\n", reg, value); |
| 168 | return value; |
| 169 | } |
| 170 | |
| 171 | static void dmic_update_bits(struct dai *dai, uint32_t reg, uint32_t mask, |
| 172 | uint32_t value) |
| 173 | { |
| 174 | uint32_t new_value; |
| 175 | uint32_t old_value = dmic_io[reg >> 2]; |
| 176 | |
| 177 | new_value = (old_value & (~mask)) | value; |
| 178 | dmic_io[reg >> 2] = new_value; |
| 179 | printf("W %04x %08x\n", reg, new_value); |
| 180 | } |
| 181 | #else |
| 182 | |
| 183 | static void dmic_write(struct dai *dai, uint32_t reg, uint32_t value) |
| 184 | { |
| 185 | io_reg_write(dai_base(dai) + reg, value); |
| 186 | } |
| 187 | |
| 188 | static uint32_t dmic_read(struct dai *dai, uint32_t reg) |
| 189 | { |
| 190 | return io_reg_read(dai_base(dai) + reg); |
| 191 | } |
| 192 | |
| 193 | static void dmic_update_bits(struct dai *dai, uint32_t reg, uint32_t mask, |
| 194 | uint32_t value) |
| 195 | { |
| 196 | io_reg_update_bits(dai_base(dai) + reg, mask, value); |
| 197 | } |
| 198 | #endif |
| 199 | |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 200 | /* this ramps volume changes over time */ |
| 201 | static uint64_t dmic_work(void *data, uint64_t delay) |
| 202 | { |
| 203 | struct dai *dai = (struct dai *)data; |
| 204 | struct dmic_pdata *dmic = dai_get_drvdata(dai); |
| 205 | int32_t gval; |
| 206 | uint32_t val; |
| 207 | int i; |
| 208 | |
| 209 | tracev_dmic("wrk"); |
| 210 | spin_lock(&dmic->lock); |
| 211 | |
| 212 | /* Increment gain with logaritmic step. |
| 213 | * Gain is Q2.30 and gain modifier is Q2.14. |
| 214 | */ |
| 215 | dmic->startcount++; |
| 216 | dmic->gain = Q_MULTSR_32X32((int64_t)dmic->gain, |
| 217 | LOGRAMP_GM, 30, 14, 30); |
| 218 | |
| 219 | /* Gain is stored as Q2.30, while HW register is Q1.19 so shift |
| 220 | * the value right by 11. |
| 221 | */ |
| 222 | gval = dmic->gain >> 11; |
| 223 | |
| 224 | /* Note that DMIC gain value zero has a special purpose. Value zero |
| 225 | * sets gain bypass mode in HW. Zero value will be applied after ramp |
| 226 | * is complete. It is because exact 1.0 gain is not possible with Q1.19. |
| 227 | */ |
| 228 | if (gval > DMIC_HW_FIR_GAIN_MAX) |
| 229 | gval = 0; |
| 230 | |
| 231 | /* Write gain to registers */ |
| 232 | for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { |
| 233 | if (!dmic->enable[i]) |
| 234 | continue; |
| 235 | |
| 236 | if (dmic->startcount == DMIC_UNMUTE_CIC) |
| 237 | dmic_update_bits(dai, base[i] + CIC_CONTROL, |
| 238 | CIC_CONTROL_MIC_MUTE_BIT, 0); |
| 239 | |
| 240 | if (dmic->startcount == DMIC_UNMUTE_FIR) { |
| 241 | if (dmic->fifo_a) |
| 242 | dmic_update_bits(dai, base[i] + FIR_CONTROL_A, |
| 243 | FIR_CONTROL_A_MUTE_BIT, 0); |
| 244 | |
| 245 | if (dmic->fifo_b) |
| 246 | dmic_update_bits(dai, base[i] + FIR_CONTROL_B, |
| 247 | FIR_CONTROL_B_MUTE_BIT, 0); |
| 248 | } |
| 249 | if (dmic->fifo_a) { |
| 250 | val = OUT_GAIN_LEFT_A_GAIN(gval); |
| 251 | dmic_write(dai, base[i] + OUT_GAIN_LEFT_A, val); |
| 252 | dmic_write(dai, base[i] + OUT_GAIN_RIGHT_A, val); |
| 253 | } |
| 254 | if (dmic->fifo_b) { |
| 255 | val = OUT_GAIN_LEFT_B_GAIN(gval); |
| 256 | dmic_write(dai, base[i] + OUT_GAIN_LEFT_B, val); |
| 257 | dmic_write(dai, base[i] + OUT_GAIN_RIGHT_B, val); |
| 258 | } |
| 259 | } |
| 260 | spin_unlock(&dmic->lock); |
| 261 | |
| 262 | if (gval) |
| 263 | return DMIC_UNMUTE_RAMP_US; |
| 264 | else |
| 265 | return 0; |
| 266 | } |
| 267 | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 268 | /* This function returns a raw list of potential microphone clock and decimation |
| 269 | * modes for achieving requested sample rates. The search is constrained by |
| 270 | * decimation HW capabililies and setup parameters. The parameters such as |
| 271 | * microphone clock min/max and duty cycle requirements need be checked from |
| 272 | * used microphone component datasheet. |
| 273 | */ |
| 274 | static void find_modes(struct decim_modes *modes, |
| 275 | struct sof_ipc_dai_dmic_params *prm, uint32_t fs) |
| 276 | { |
| 277 | int clkdiv_min; |
| 278 | int clkdiv_max; |
| 279 | int clkdiv; |
| 280 | int c1; |
| 281 | int du_min; |
| 282 | int du_max; |
| 283 | int pdmclk; |
| 284 | int osr; |
| 285 | int mfir; |
| 286 | int mcic; |
| 287 | int ioclk_test; |
| 288 | int osr_min = DMIC_MIN_OSR; |
| 289 | int i = 0; |
| 290 | |
| 291 | /* Defaults, empty result */ |
| 292 | modes->num_of_modes = 0; |
| 293 | |
| 294 | /* The FIFO is not requested if sample rate is set to zero. Just |
| 295 | * return in such case with num_of_modes as zero. |
| 296 | */ |
| 297 | if (fs == 0) |
| 298 | return; |
| 299 | |
| 300 | /* Override DMIC_MIN_OSR for very high sample rates, use as minimum |
| 301 | * the nominal clock for the high rates. |
| 302 | */ |
| 303 | if (fs >= DMIC_HIGH_RATE_MIN_FS) |
| 304 | osr_min = DMIC_HIGH_RATE_OSR_MIN; |
| 305 | |
| 306 | /* Check for sane pdm clock, min 100 kHz, max ioclk/2 */ |
| 307 | if (prm->pdmclk_max < DMIC_HW_PDM_CLK_MIN || |
| 308 | prm->pdmclk_max > DMIC_HW_IOCLK / 2) { |
| 309 | trace_dmic_error("pmx"); |
| 310 | return; |
| 311 | } |
| 312 | if (prm->pdmclk_min < DMIC_HW_PDM_CLK_MIN || |
| 313 | prm->pdmclk_min > prm->pdmclk_max) { |
| 314 | trace_dmic_error("pmn"); |
| 315 | return; |
| 316 | } |
| 317 | |
| 318 | /* Check for sane duty cycle */ |
| 319 | if (prm->duty_min > prm->duty_max) { |
| 320 | trace_dmic_error("pdu"); |
| 321 | return; |
| 322 | } |
| 323 | if (prm->duty_min < DMIC_HW_DUTY_MIN || |
| 324 | prm->duty_min > DMIC_HW_DUTY_MAX) { |
| 325 | trace_dmic_error("pdn"); |
| 326 | return; |
| 327 | } |
| 328 | if (prm->duty_max < DMIC_HW_DUTY_MIN || |
| 329 | prm->duty_max > DMIC_HW_DUTY_MAX) { |
| 330 | trace_dmic_error("pdx"); |
| 331 | return; |
| 332 | } |
| 333 | |
| 334 | /* Min and max clock dividers */ |
| 335 | clkdiv_min = ceil_divide(DMIC_HW_IOCLK, prm->pdmclk_max); |
| 336 | clkdiv_min = MAX(clkdiv_min, DMIC_HW_CIC_DECIM_MIN); |
| 337 | clkdiv_max = DMIC_HW_IOCLK / prm->pdmclk_min; |
| 338 | |
| 339 | /* Loop possible clock dividers and check based on resulting |
| 340 | * oversampling ratio that CIC and FIR decimation ratios are |
| 341 | * feasible. The ratios need to be integers. Also the mic clock |
| 342 | * duty cycle need to be within limits. |
| 343 | */ |
| 344 | for (clkdiv = clkdiv_min; clkdiv <= clkdiv_max; clkdiv++) { |
| 345 | /* Calculate duty cycle for this clock divider. Note that |
| 346 | * odd dividers cause non-50% duty cycle. |
| 347 | */ |
| 348 | c1 = clkdiv >> 1; |
| 349 | du_min = 100 * c1 / clkdiv; |
| 350 | du_max = 100 - du_min; |
| 351 | |
| 352 | /* Calculate PDM clock rate and oversampling ratio. */ |
| 353 | pdmclk = DMIC_HW_IOCLK / clkdiv; |
| 354 | osr = pdmclk / fs; |
| 355 | |
| 356 | /* Check that OSR constraints is met and clock duty cycle does |
| 357 | * not exceed microphone specification. If exceed proceed to |
| 358 | * next clkdiv. |
| 359 | */ |
| 360 | if (osr < osr_min || du_min < prm->duty_min || |
| 361 | du_max > prm->duty_max) |
| 362 | continue; |
| 363 | |
| 364 | /* Loop FIR decimation factors candidates. If the |
| 365 | * integer divided decimation factors and clock dividers |
| 366 | * as multiplied with sample rate match the IO clock |
| 367 | * rate the division was exact and such decimation mode |
| 368 | * is possible. Then check that CIC decimation constraints |
| 369 | * are met. The passed decimation modes are added to array. |
| 370 | */ |
| 371 | for (mfir = DMIC_HW_FIR_DECIM_MIN; |
| 372 | mfir <= DMIC_HW_FIR_DECIM_MAX; mfir++) { |
| 373 | mcic = osr / mfir; |
| 374 | ioclk_test = fs * mfir * mcic * clkdiv; |
| 375 | |
| 376 | if (ioclk_test == DMIC_HW_IOCLK && |
| 377 | mcic >= DMIC_HW_CIC_DECIM_MIN && |
| 378 | mcic <= DMIC_HW_CIC_DECIM_MAX && |
| 379 | i < DMIC_MAX_MODES) { |
| 380 | modes->clkdiv[i] = clkdiv; |
| 381 | modes->mcic[i] = mcic; |
| 382 | modes->mfir[i] = mfir; |
| 383 | i++; |
| 384 | modes->num_of_modes = i; |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | #if defined MODULE_TEST |
| 389 | printf("# Found %d modes\n", i); |
| 390 | #endif |
| 391 | } |
| 392 | |
| 393 | /* The previous raw modes list contains sane configuration possibilities. When |
| 394 | * there is request for both FIFOs A and B operation this function returns |
| 395 | * list of compatible settings. |
| 396 | */ |
| 397 | static void match_modes(struct matched_modes *c, struct decim_modes *a, |
| 398 | struct decim_modes *b) |
| 399 | { |
| 400 | int16_t idx[DMIC_MAX_MODES]; |
| 401 | int idx_length; |
| 402 | int i; |
| 403 | int n; |
| 404 | int m; |
| 405 | |
| 406 | /* Check if previous search got results. */ |
| 407 | c->num_of_modes = 0; |
| 408 | if (a->num_of_modes == 0 && b->num_of_modes == 0) { |
| 409 | /* Nothing to do */ |
| 410 | return; |
| 411 | } |
| 412 | |
Seppo Ingalsuo | 2979baa | 2018-05-22 20:07:08 +0300 | [diff] [blame] | 413 | /* Ensure that num_of_modes is sane. */ |
| 414 | if (a->num_of_modes > DMIC_MAX_MODES || |
| 415 | b->num_of_modes > DMIC_MAX_MODES) |
| 416 | return; |
| 417 | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 418 | /* Check for request only for FIFO A or B. In such case pass list for |
| 419 | * A or B as such. |
| 420 | */ |
| 421 | if (b->num_of_modes == 0) { |
| 422 | c->num_of_modes = a->num_of_modes; |
| 423 | for (i = 0; i < a->num_of_modes; i++) { |
| 424 | c->clkdiv[i] = a->clkdiv[i]; |
| 425 | c->mcic[i] = a->mcic[i]; |
| 426 | c->mfir_a[i] = a->mfir[i]; |
| 427 | c->mfir_b[i] = 0; /* Mark FIR B as non-used */ |
| 428 | } |
| 429 | return; |
| 430 | } |
| 431 | |
| 432 | if (a->num_of_modes == 0) { |
| 433 | c->num_of_modes = b->num_of_modes; |
| 434 | for (i = 0; i < b->num_of_modes; i++) { |
| 435 | c->clkdiv[i] = b->clkdiv[i]; |
| 436 | c->mcic[i] = b->mcic[i]; |
| 437 | c->mfir_b[i] = b->mfir[i]; |
| 438 | c->mfir_a[i] = 0; /* Mark FIR A as non-used */ |
| 439 | } |
| 440 | return; |
| 441 | } |
| 442 | |
| 443 | /* Merge a list of compatible modes */ |
| 444 | i = 0; |
| 445 | for (n = 0; n < a->num_of_modes; n++) { |
| 446 | /* Find all indices of values a->clkdiv[n] in b->clkdiv[] */ |
| 447 | idx_length = find_equal_int16(idx, b->clkdiv, a->clkdiv[n], |
| 448 | b->num_of_modes, 0); |
| 449 | for (m = 0; m < idx_length; m++) { |
| 450 | if (b->mcic[idx[m]] == a->mcic[n]) { |
| 451 | c->clkdiv[i] = a->clkdiv[n]; |
| 452 | c->mcic[i] = a->mcic[n]; |
| 453 | c->mfir_a[i] = a->mfir[n]; |
| 454 | c->mfir_b[i] = b->mfir[idx[m]]; |
| 455 | i++; |
| 456 | } |
| 457 | } |
| 458 | c->num_of_modes = i; |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | /* Finds a suitable FIR decimation filter from the included set */ |
| 463 | static struct pdm_decim *get_fir(struct dmic_configuration *cfg, int mfir) |
| 464 | { |
| 465 | int i; |
| 466 | int fs; |
| 467 | int cic_fs; |
| 468 | int fir_max_length; |
| 469 | struct pdm_decim *fir = NULL; |
| 470 | |
| 471 | if (mfir <= 0) |
| 472 | return fir; |
| 473 | |
| 474 | cic_fs = DMIC_HW_IOCLK / cfg->clkdiv / cfg->mcic; |
| 475 | fs = cic_fs / mfir; |
| 476 | /* FIR max. length depends on available cycles and coef RAM |
| 477 | * length. Exceeding this length sets HW overrun status and |
| 478 | * overwrite of other register. |
| 479 | */ |
| 480 | fir_max_length = MIN(DMIC_HW_FIR_LENGTH_MAX, |
| 481 | DMIC_HW_IOCLK / fs / 2 - DMIC_FIR_PIPELINE_OVERHEAD); |
| 482 | |
| 483 | for (i = 0; i < DMIC_FIR_LIST_LENGTH; i++) { |
| 484 | if (fir_list[i]->decim_factor == mfir && |
| 485 | fir_list[i]->length <= fir_max_length) { |
| 486 | /* Store pointer, break from loop to avoid a |
| 487 | * Possible other mode with lower FIR length. |
| 488 | */ |
| 489 | fir = fir_list[i]; |
| 490 | break; |
| 491 | } |
| 492 | } |
| 493 | |
| 494 | return fir; |
| 495 | } |
| 496 | |
| 497 | /* Calculate scale and shift to use for FIR coefficients. Scale is applied |
| 498 | * before write to HW coef RAM. Shift will be programmed to HW register. |
| 499 | */ |
| 500 | static int fir_coef_scale(int32_t *fir_scale, int *fir_shift, int add_shift, |
| 501 | const int32_t coef[], int coef_length, int32_t gain) |
| 502 | { |
| 503 | int32_t amax; |
| 504 | int32_t new_amax; |
| 505 | int32_t fir_gain; |
| 506 | int shift; |
| 507 | |
| 508 | /* Multiply gain passed from CIC with output full scale. */ |
| 509 | fir_gain = Q_MULTSR_32X32((int64_t)gain, DMIC_HW_SENS_Q28, |
| 510 | DMIC_FIR_SCALE_Q, 28, DMIC_FIR_SCALE_Q); |
| 511 | |
| 512 | /* Find the largest FIR coefficient value. */ |
| 513 | amax = find_max_abs_int32((int32_t *)coef, coef_length); |
| 514 | |
| 515 | /* Scale max. tap value with FIR gain. */ |
| 516 | new_amax = Q_MULTSR_32X32((int64_t)amax, fir_gain, 31, |
| 517 | DMIC_FIR_SCALE_Q, DMIC_FIR_SCALE_Q); |
| 518 | if (new_amax <= 0) |
| 519 | return -EINVAL; |
| 520 | |
| 521 | /* Get left shifts count to normalize the fractional value as 32 bit. |
| 522 | * We need right shifts count for scaling so need to invert. The |
| 523 | * difference of Q31 vs. used Q format is added to get the correct |
| 524 | * normalization right shift value. |
| 525 | */ |
| 526 | shift = 31 - DMIC_FIR_SCALE_Q - norm_int32(new_amax); |
| 527 | |
| 528 | /* Add to shift for coef raw Q31 format shift and store to |
| 529 | * configuration. Ensure range (fail should not happen with OK |
| 530 | * coefficient set). |
| 531 | */ |
| 532 | *fir_shift = -shift + add_shift; |
| 533 | if (*fir_shift < DMIC_HW_FIR_SHIFT_MIN || |
| 534 | *fir_shift > DMIC_HW_FIR_SHIFT_MAX) |
| 535 | return -EINVAL; |
| 536 | |
| 537 | /* Compensate shift into FIR coef scaler and store as Q4.20. */ |
| 538 | if (shift < 0) |
| 539 | *fir_scale = (fir_gain << -shift); |
| 540 | else |
| 541 | *fir_scale = (fir_gain >> shift); |
| 542 | |
| 543 | #if defined MODULE_TEST |
| 544 | printf("# FIR gain need Q28 = %d (%f)\n", fir_gain, |
| 545 | Q_CONVERT_QTOF(fir_gain, 28)); |
| 546 | printf("# FIR max coef no gain Q31 = %d (%f)\n", amax, |
| 547 | Q_CONVERT_QTOF(amax, 31)); |
| 548 | printf("# FIR max coef with gain Q28 = %d (%f)\n", new_amax, |
| 549 | Q_CONVERT_QTOF(new_amax, 28)); |
| 550 | printf("# FIR coef norm rshift = %d\n", shift); |
| 551 | printf("# FIR coef old rshift = %d\n", add_shift); |
| 552 | printf("# FIR coef new rshift = %d\n", *fir_shift); |
| 553 | printf("# FIR coef scaler Q28 = %d (%f)\n", *fir_scale, |
| 554 | Q_CONVERT_QTOF(*fir_scale, 28)); |
| 555 | #endif |
| 556 | |
| 557 | return 0; |
| 558 | } |
| 559 | |
| 560 | /* This function selects with a simple criteria one mode to set up the |
| 561 | * decimator. For the settings chosen for FIFOs A and B output a lookup |
| 562 | * is done for FIR coefficients from the included coefficients tables. |
| 563 | * For some decimation factors there may be several length coefficient sets. |
| 564 | * It is due to possible restruction of decimation engine cycles per given |
| 565 | * sample rate. If the coefficients length is exceeded the lookup continues. |
| 566 | * Therefore the list of coefficient set must present the filters for a |
| 567 | * decimation factor in decreasing length order. |
| 568 | * |
| 569 | * Note: If there is no filter available an error is returned. The parameters |
| 570 | * should be reviewed for such case. If still a filter is missing it should be |
| 571 | * added into the included set. FIR decimation with a high factor usually |
| 572 | * needs compromizes into specifications and is not desirable. |
| 573 | */ |
| 574 | static int select_mode(struct dmic_configuration *cfg, |
| 575 | struct matched_modes *modes) |
| 576 | { |
| 577 | int32_t g_cic; |
| 578 | int32_t fir_in_max; |
| 579 | int32_t cic_out_max; |
| 580 | int32_t gain_to_fir; |
| 581 | int16_t idx[DMIC_MAX_MODES]; |
| 582 | int16_t *mfir; |
| 583 | int n = 1; |
| 584 | int mmin; |
| 585 | int count; |
| 586 | int mcic; |
| 587 | int bits_cic; |
| 588 | int ret; |
| 589 | |
| 590 | /* If there are more than one possibilities select a mode with lowest |
| 591 | * FIR decimation factor. If there are several select mode with highest |
| 592 | * ioclk divider to minimize microphone power consumption. The highest |
| 593 | * clock divisors are in the end of list so select the last of list. |
| 594 | * The minimum OSR criteria used in previous ensures that quality in |
| 595 | * the candidates should be sufficient. |
| 596 | */ |
| 597 | if (modes->num_of_modes == 0) { |
| 598 | trace_dmic_error("nom"); |
| 599 | return -EINVAL; |
| 600 | } |
| 601 | |
| 602 | /* Valid modes presence is indicated with non-zero decimation |
| 603 | * factor in 1st element. If FIR A is not used get decimation factors |
| 604 | * from FIR B instead. |
| 605 | */ |
| 606 | if (modes->mfir_a[0] > 0) |
| 607 | mfir = modes->mfir_a; |
| 608 | else |
| 609 | mfir = modes->mfir_b; |
| 610 | |
| 611 | mmin = find_min_int16(mfir, modes->num_of_modes); |
| 612 | count = find_equal_int16(idx, mfir, mmin, modes->num_of_modes, 0); |
| 613 | n = idx[count - 1]; |
| 614 | |
| 615 | /* Get microphone clock and decimation parameters for used mode from |
| 616 | * the list. |
| 617 | */ |
| 618 | cfg->clkdiv = modes->clkdiv[n]; |
| 619 | cfg->mfir_a = modes->mfir_a[n]; |
| 620 | cfg->mfir_b = modes->mfir_b[n]; |
| 621 | cfg->mcic = modes->mcic[n]; |
| 622 | cfg->fir_a = NULL; |
| 623 | cfg->fir_b = NULL; |
| 624 | |
| 625 | /* Find raw FIR coefficients to match the decimation factors of FIR |
| 626 | * A and B. |
| 627 | */ |
| 628 | if (cfg->mfir_a > 0) { |
| 629 | cfg->fir_a = get_fir(cfg, cfg->mfir_a); |
| 630 | if (!cfg->fir_a) { |
| 631 | trace_dmic_error("fam"); |
| 632 | trace_value(cfg->mfir_a); |
| 633 | return -EINVAL; |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | if (cfg->mfir_b > 0) { |
| 638 | cfg->fir_b = get_fir(cfg, cfg->mfir_b); |
| 639 | if (!cfg->fir_b) { |
| 640 | trace_dmic_error("fbm"); |
| 641 | trace_value(cfg->mfir_b); |
| 642 | return -EINVAL; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /* Calculate CIC shift from the decimation factor specific gain. The |
| 647 | * gain of HW decimator equals decimation factor to power of 5. |
| 648 | */ |
| 649 | mcic = cfg->mcic; |
| 650 | g_cic = mcic * mcic * mcic * mcic * mcic; |
| 651 | if (g_cic < 0) { |
| 652 | /* Erroneous decimation factor and CIC gain */ |
| 653 | trace_dmic_error("gci"); |
| 654 | return -EINVAL; |
| 655 | } |
| 656 | |
| 657 | bits_cic = 32 - norm_int32(g_cic); |
| 658 | cfg->cic_shift = bits_cic - DMIC_HW_BITS_FIR_INPUT; |
| 659 | |
| 660 | /* Calculate remaining gain to FIR in Q format used for gain |
| 661 | * values. |
| 662 | */ |
| 663 | fir_in_max = (1 << (DMIC_HW_BITS_FIR_INPUT - 1)); |
| 664 | if (cfg->cic_shift >= 0) |
| 665 | cic_out_max = g_cic >> cfg->cic_shift; |
| 666 | else |
| 667 | cic_out_max = g_cic << -cfg->cic_shift; |
| 668 | |
| 669 | gain_to_fir = (int32_t)((((int64_t)fir_in_max) << DMIC_FIR_SCALE_Q) / |
| 670 | cic_out_max); |
| 671 | |
| 672 | /* Calculate FIR scale and shift */ |
| 673 | if (cfg->mfir_a > 0) { |
| 674 | cfg->fir_a_length = cfg->fir_a->length; |
| 675 | ret = fir_coef_scale(&cfg->fir_a_scale, &cfg->fir_a_shift, |
| 676 | cfg->fir_a->shift, cfg->fir_a->coef, cfg->fir_a->length, |
| 677 | gain_to_fir); |
| 678 | if (ret < 0) { |
| 679 | /* Invalid coefficient set found, should not happen. */ |
| 680 | trace_dmic_error("ina"); |
| 681 | return -EINVAL; |
| 682 | } |
| 683 | } else { |
| 684 | cfg->fir_a_scale = 0; |
| 685 | cfg->fir_a_shift = 0; |
| 686 | cfg->fir_a_length = 0; |
| 687 | } |
| 688 | |
| 689 | if (cfg->mfir_b > 0) { |
| 690 | cfg->fir_b_length = cfg->fir_b->length; |
| 691 | ret = fir_coef_scale(&cfg->fir_b_scale, &cfg->fir_b_shift, |
| 692 | cfg->fir_b->shift, cfg->fir_b->coef, cfg->fir_b->length, |
| 693 | gain_to_fir); |
| 694 | if (ret < 0) { |
| 695 | /* Invalid coefficient set found, should not happen. */ |
| 696 | trace_dmic_error("inb"); |
| 697 | return -EINVAL; |
| 698 | } |
| 699 | } else { |
| 700 | cfg->fir_b_scale = 0; |
| 701 | cfg->fir_b_shift = 0; |
| 702 | cfg->fir_b_length = 0; |
| 703 | } |
| 704 | |
| 705 | return 0; |
| 706 | } |
| 707 | |
| 708 | /* The FIFO input packer mode (IPM) settings are somewhat different in |
| 709 | * HW versions. This helper function returns a suitable IPM bit field |
| 710 | * value to use. |
| 711 | */ |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 712 | |
Seppo Ingalsuo | 06570f2 | 2018-06-19 18:14:52 +0300 | [diff] [blame] | 713 | static inline void ipm_helper1(int *ipm, int stereo[], int swap[], |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 714 | struct sof_ipc_dai_dmic_params *dmic) |
| 715 | { |
Seppo Ingalsuo | 2979baa | 2018-05-22 20:07:08 +0300 | [diff] [blame] | 716 | int pdm[DMIC_HW_CONTROLLERS] = {0}; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 717 | int cnt; |
| 718 | int i; |
| 719 | |
| 720 | /* Loop number of PDM controllers in the configuration. If mic A |
| 721 | * or B is enabled then a pdm controller is marked as active. Also it |
| 722 | * is checked whether the controller should operate as stereo or mono |
| 723 | * left (A) or mono right (B) mode. Mono right mode is setup as channel |
| 724 | * swapped mono left. |
| 725 | */ |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 726 | for (i = 0; i < dmic->num_pdm_active; i++) { |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 727 | cnt = 0; |
| 728 | if (dmic->pdm[i].enable_mic_a > 0) |
| 729 | cnt++; |
| 730 | |
| 731 | if (dmic->pdm[i].enable_mic_b > 0) |
| 732 | cnt++; |
| 733 | |
| 734 | /* A PDM controller is used if at least one mic was enabled. */ |
| 735 | pdm[i] = !!cnt; |
| 736 | |
| 737 | /* Set stereo mode if both mic A anc B are enabled. */ |
| 738 | cnt >>= 1; |
| 739 | stereo[i] = cnt; |
| 740 | |
| 741 | /* Swap channels if only mic B is used for mono processing. */ |
| 742 | swap[i] = dmic->pdm[i].enable_mic_b & !cnt; |
| 743 | } |
| 744 | |
| 745 | /* IPM indicates active pdm controllers. */ |
| 746 | *ipm = 0; |
| 747 | |
| 748 | if (pdm[0] == 0 && pdm[1] > 0) |
| 749 | *ipm = 1; |
| 750 | |
| 751 | if (pdm[0] > 0 && pdm[1] > 0) |
| 752 | *ipm = 2; |
| 753 | } |
| 754 | |
Seppo Ingalsuo | 06570f2 | 2018-06-19 18:14:52 +0300 | [diff] [blame] | 755 | #if DMIC_HW_VERSION == 2 |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 756 | |
Seppo Ingalsuo | 06570f2 | 2018-06-19 18:14:52 +0300 | [diff] [blame] | 757 | static inline void ipm_helper2(int source[], int *ipm, int stereo[], |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 758 | int swap[], struct sof_ipc_dai_dmic_params *dmic) |
| 759 | { |
| 760 | int pdm[DMIC_HW_CONTROLLERS]; |
| 761 | int i; |
| 762 | int n = 0; |
| 763 | |
| 764 | /* Loop number of PDM controllers in the configuration. If mic A |
| 765 | * or B is enabled then a pdm controller is marked as active. Also it |
| 766 | * is checked whether the controller should operate as stereo or mono |
| 767 | * left (A) or mono right (B) mode. Mono right mode is setup as channel |
| 768 | * swapped mono left. The function returns also in array source[] the |
| 769 | * indice of enabled pdm controllers to be used for IPM configuration. |
| 770 | */ |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 771 | for (i = 0; i < dmic->num_pdm_active; i++) { |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 772 | if (dmic->pdm[i].enable_mic_a > 0 || |
| 773 | dmic->pdm[i].enable_mic_b > 0) { |
| 774 | pdm[i] = 1; |
| 775 | source[n] = i; |
| 776 | n++; |
| 777 | } else { |
| 778 | pdm[i] = 0; |
| 779 | swap[i] = 0; |
| 780 | } |
| 781 | |
| 782 | if (dmic->pdm[i].enable_mic_a > 0 && |
| 783 | dmic->pdm[i].enable_mic_b > 0) { |
| 784 | stereo[i] = 1; |
| 785 | swap[i] = 0; |
| 786 | } else { |
| 787 | stereo[i] = 0; |
| 788 | if (dmic->pdm[i].enable_mic_a == 0) |
| 789 | swap[i] = 1; |
| 790 | else |
| 791 | swap[i] = 0; |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | /* IPM bit field is set to count of active pdm controllers. */ |
| 796 | *ipm = pdm[0]; |
Seppo Ingalsuo | b2200bf | 2018-06-19 18:14:49 +0300 | [diff] [blame] | 797 | for (i = 1; i < dmic->num_pdm_active; i++) |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 798 | *ipm += pdm[i]; |
| 799 | } |
| 800 | #endif |
| 801 | |
| 802 | static int configure_registers(struct dai *dai, struct dmic_configuration *cfg, |
| 803 | struct sof_ipc_dai_dmic_params *dmic) |
| 804 | { |
| 805 | int stereo[DMIC_HW_CONTROLLERS]; |
| 806 | int swap[DMIC_HW_CONTROLLERS]; |
| 807 | uint32_t val; |
| 808 | int32_t ci; |
| 809 | uint32_t cu; |
| 810 | int ipm; |
| 811 | int of0; |
| 812 | int of1; |
| 813 | int fir_decim; |
| 814 | int fir_length; |
| 815 | int length; |
| 816 | int edge; |
| 817 | int dccomp; |
| 818 | int cic_start_a; |
| 819 | int cic_start_b; |
| 820 | int fir_start_a; |
| 821 | int fir_start_b; |
| 822 | int soft_reset; |
| 823 | int i; |
| 824 | int j; |
| 825 | |
| 826 | struct dmic_pdata *pdata = dai_get_drvdata(dai); |
| 827 | int array_a = 0; |
| 828 | int array_b = 0; |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 829 | int cic_mute = 1; |
| 830 | int fir_mute = 1; |
Seppo Ingalsuo | be4bf56 | 2018-06-20 19:07:58 +0300 | [diff] [blame] | 831 | int bfth = 3; /* Should be 3 for 8 entries, 1 is 2 entries */ |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 832 | int th = 0; /* Used with TIE=1 */ |
| 833 | |
| 834 | /* Normal start sequence */ |
| 835 | dccomp = 1; |
| 836 | soft_reset = 1; |
| 837 | cic_start_a = 0; |
| 838 | cic_start_b = 0; |
| 839 | fir_start_a = 0; |
| 840 | fir_start_b = 0; |
| 841 | |
| 842 | #if DMIC_HW_VERSION == 2 |
| 843 | int source[4] = {0, 0, 0, 0}; |
| 844 | #endif |
| 845 | |
| 846 | #if defined MODULE_TEST |
| 847 | int32_t fir_a_max = 0; |
| 848 | int32_t fir_a_min = 0; |
| 849 | int32_t fir_b_max = 0; |
| 850 | int32_t fir_b_min = 0; |
| 851 | #endif |
| 852 | |
| 853 | /* pdata is set by dmic_probe(), error if it has not been set */ |
| 854 | if (!pdata) { |
| 855 | trace_dmic_error("cfr"); |
| 856 | return -EINVAL; |
| 857 | } |
| 858 | |
| 859 | /* Sanity checks */ |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 860 | if (dmic->num_pdm_active > DMIC_HW_CONTROLLERS) { |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 861 | trace_dmic_error("num"); |
| 862 | return -EINVAL; |
| 863 | } |
| 864 | |
| 865 | /* OUTCONTROL0 and OUTCONTROL1 */ |
| 866 | trace_dmic("reg"); |
| 867 | of0 = (dmic->fifo_bits_a == 32) ? 2 : 0; |
| 868 | of1 = (dmic->fifo_bits_b == 32) ? 2 : 0; |
| 869 | |
| 870 | #if DMIC_HW_VERSION == 1 |
Seppo Ingalsuo | 06570f2 | 2018-06-19 18:14:52 +0300 | [diff] [blame] | 871 | ipm_helper1(&ipm, stereo, swap, dmic); |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 872 | val = OUTCONTROL0_TIE(0) | |
| 873 | OUTCONTROL0_SIP(0) | |
| 874 | OUTCONTROL0_FINIT(1) | |
| 875 | OUTCONTROL0_FCI(0) | |
| 876 | OUTCONTROL0_BFTH(bfth) | |
| 877 | OUTCONTROL0_OF(of0) | |
| 878 | OUTCONTROL0_IPM(ipm) | |
| 879 | OUTCONTROL0_TH(th); |
| 880 | dmic_write(dai, OUTCONTROL0, val); |
| 881 | trace_value(val); |
| 882 | |
| 883 | val = OUTCONTROL1_TIE(0) | |
| 884 | OUTCONTROL1_SIP(0) | |
| 885 | OUTCONTROL1_FINIT(1) | |
| 886 | OUTCONTROL1_FCI(0) | |
| 887 | OUTCONTROL1_BFTH(bfth) | |
| 888 | OUTCONTROL1_OF(of1) | |
| 889 | OUTCONTROL1_IPM(ipm) | |
| 890 | OUTCONTROL1_TH(th); |
| 891 | dmic_write(dai, OUTCONTROL1, val); |
| 892 | trace_value(val); |
| 893 | #endif |
| 894 | |
| 895 | #if DMIC_HW_VERSION == 2 |
Seppo Ingalsuo | 06570f2 | 2018-06-19 18:14:52 +0300 | [diff] [blame] | 896 | #if DMIC_HW_CONTROLLERS > 2 |
| 897 | ipm_helper2(source, &ipm, stereo, swap, dmic); |
| 898 | #else |
| 899 | ipm_helper1(&ipm, stereo, swap, dmic); |
| 900 | #endif |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 901 | val = OUTCONTROL0_TIE(0) | |
| 902 | OUTCONTROL0_SIP(0) | |
| 903 | OUTCONTROL0_FINIT(1) | |
| 904 | OUTCONTROL0_FCI(0) | |
Seppo Ingalsuo | f886d3d | 2018-06-19 18:14:50 +0300 | [diff] [blame] | 905 | OUTCONTROL0_BFTH(bfth) | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 906 | OUTCONTROL0_OF(of0) | |
Seppo Ingalsuo | 24ee043 | 2018-06-19 18:14:51 +0300 | [diff] [blame] | 907 | OUTCONTROL0_IPM(ipm) | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 908 | OUTCONTROL0_IPM_SOURCE_1(source[0]) | |
| 909 | OUTCONTROL0_IPM_SOURCE_2(source[1]) | |
| 910 | OUTCONTROL0_IPM_SOURCE_3(source[2]) | |
| 911 | OUTCONTROL0_IPM_SOURCE_4(source[3]) | |
Seppo Ingalsuo | f886d3d | 2018-06-19 18:14:50 +0300 | [diff] [blame] | 912 | OUTCONTROL0_TH(th); |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 913 | dmic_write(dai, OUTCONTROL0, val); |
| 914 | trace_value(val); |
| 915 | |
| 916 | val = OUTCONTROL1_TIE(0) | |
| 917 | OUTCONTROL1_SIP(0) | |
| 918 | OUTCONTROL1_FINIT(1) | |
| 919 | OUTCONTROL1_FCI(0) | |
Seppo Ingalsuo | f886d3d | 2018-06-19 18:14:50 +0300 | [diff] [blame] | 920 | OUTCONTROL1_BFTH(bfth) | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 921 | OUTCONTROL1_OF(of1) | |
Seppo Ingalsuo | 24ee043 | 2018-06-19 18:14:51 +0300 | [diff] [blame] | 922 | OUTCONTROL1_IPM(ipm) | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 923 | OUTCONTROL1_IPM_SOURCE_1(source[0]) | |
| 924 | OUTCONTROL1_IPM_SOURCE_2(source[1]) | |
| 925 | OUTCONTROL1_IPM_SOURCE_3(source[2]) | |
| 926 | OUTCONTROL1_IPM_SOURCE_4(source[3]) | |
Seppo Ingalsuo | f886d3d | 2018-06-19 18:14:50 +0300 | [diff] [blame] | 927 | OUTCONTROL1_TH(th); |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 928 | dmic_write(dai, OUTCONTROL1, val); |
| 929 | trace_value(val); |
| 930 | #endif |
| 931 | |
| 932 | /* Mark enabled microphones into private data to be later used |
| 933 | * for starting correct parts of the HW. |
| 934 | */ |
| 935 | for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { |
| 936 | pdata->enable[i] = (dmic->pdm[i].enable_mic_b << 1) | |
| 937 | dmic->pdm[i].enable_mic_a; |
| 938 | } |
| 939 | |
| 940 | for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { |
| 941 | /* CIC */ |
| 942 | val = CIC_CONTROL_SOFT_RESET(soft_reset) | |
| 943 | CIC_CONTROL_CIC_START_B(cic_start_b) | |
| 944 | CIC_CONTROL_CIC_START_A(cic_start_a) | |
| 945 | CIC_CONTROL_MIC_B_POLARITY(dmic->pdm[i].polarity_mic_a) | |
| 946 | CIC_CONTROL_MIC_A_POLARITY(dmic->pdm[i].polarity_mic_b) | |
| 947 | CIC_CONTROL_MIC_MUTE(cic_mute) | |
| 948 | CIC_CONTROL_STEREO_MODE(stereo[i]); |
| 949 | dmic_write(dai, base[i] + CIC_CONTROL, val); |
| 950 | trace_value(val); |
| 951 | |
| 952 | val = CIC_CONFIG_CIC_SHIFT(cfg->cic_shift + 8) | |
| 953 | CIC_CONFIG_COMB_COUNT(cfg->mcic - 1); |
| 954 | dmic_write(dai, base[i] + CIC_CONFIG, val); |
| 955 | trace_value(val); |
| 956 | |
| 957 | /* Mono right channel mic usage requires swap of PDM channels |
| 958 | * since the mono decimation is done with only left channel |
| 959 | * processing active. |
| 960 | */ |
| 961 | edge = dmic->pdm[i].clk_edge; |
| 962 | if (swap[i]) |
| 963 | edge = !edge; |
| 964 | |
| 965 | val = MIC_CONTROL_PDM_CLKDIV(cfg->clkdiv - 2) | |
| 966 | MIC_CONTROL_PDM_SKEW(dmic->pdm[i].skew) | |
| 967 | MIC_CONTROL_CLK_EDGE(edge) | |
| 968 | MIC_CONTROL_PDM_EN_B(cic_start_b) | |
| 969 | MIC_CONTROL_PDM_EN_A(cic_start_a); |
| 970 | dmic_write(dai, base[i] + MIC_CONTROL, val); |
| 971 | trace_value(val); |
| 972 | |
| 973 | /* FIR A */ |
| 974 | fir_decim = MAX(cfg->mfir_a - 1, 0); |
| 975 | fir_length = MAX(cfg->fir_a_length - 1, 0); |
| 976 | val = FIR_CONTROL_A_START(fir_start_a) | |
| 977 | FIR_CONTROL_A_ARRAY_START_EN(array_a) | |
| 978 | FIR_CONTROL_A_DCCOMP(dccomp) | |
| 979 | FIR_CONTROL_A_MUTE(fir_mute) | |
| 980 | FIR_CONTROL_A_STEREO(stereo[i]); |
| 981 | dmic_write(dai, base[i] + FIR_CONTROL_A, val); |
| 982 | trace_value(val); |
| 983 | |
| 984 | val = FIR_CONFIG_A_FIR_DECIMATION(fir_decim) | |
| 985 | FIR_CONFIG_A_FIR_SHIFT(cfg->fir_a_shift) | |
| 986 | FIR_CONFIG_A_FIR_LENGTH(fir_length); |
| 987 | dmic_write(dai, base[i] + FIR_CONFIG_A, val); |
| 988 | trace_value(val); |
| 989 | |
| 990 | val = DC_OFFSET_LEFT_A_DC_OFFS(DCCOMP_TC0); |
| 991 | dmic_write(dai, base[i] + DC_OFFSET_LEFT_A, val); |
| 992 | trace_value(val); |
| 993 | |
| 994 | val = DC_OFFSET_RIGHT_A_DC_OFFS(DCCOMP_TC0); |
| 995 | dmic_write(dai, base[i] + DC_OFFSET_RIGHT_A, val); |
| 996 | trace_value(val); |
| 997 | |
| 998 | val = OUT_GAIN_LEFT_A_GAIN(0); |
| 999 | dmic_write(dai, base[i] + OUT_GAIN_LEFT_A, val); |
| 1000 | trace_value(val); |
| 1001 | |
| 1002 | val = OUT_GAIN_RIGHT_A_GAIN(0); |
| 1003 | dmic_write(dai, base[i] + OUT_GAIN_RIGHT_A, val); |
| 1004 | trace_value(val); |
| 1005 | |
| 1006 | /* FIR B */ |
| 1007 | fir_decim = MAX(cfg->mfir_b - 1, 0); |
| 1008 | fir_length = MAX(cfg->fir_b_length - 1, 0); |
| 1009 | val = FIR_CONTROL_B_START(fir_start_b) | |
| 1010 | FIR_CONTROL_B_ARRAY_START_EN(array_b) | |
| 1011 | FIR_CONTROL_B_DCCOMP(dccomp) | |
| 1012 | FIR_CONTROL_B_MUTE(fir_mute) | |
| 1013 | FIR_CONTROL_B_STEREO(stereo[i]); |
| 1014 | dmic_write(dai, base[i] + FIR_CONTROL_B, val); |
| 1015 | trace_value(val); |
| 1016 | |
| 1017 | val = FIR_CONFIG_B_FIR_DECIMATION(fir_decim) | |
| 1018 | FIR_CONFIG_B_FIR_SHIFT(cfg->fir_b_shift) | |
| 1019 | FIR_CONFIG_B_FIR_LENGTH(fir_length); |
| 1020 | dmic_write(dai, base[i] + FIR_CONFIG_B, val); |
| 1021 | trace_value(val); |
| 1022 | |
| 1023 | val = DC_OFFSET_LEFT_B_DC_OFFS(DCCOMP_TC0); |
| 1024 | dmic_write(dai, base[i] + DC_OFFSET_LEFT_B, val); |
| 1025 | trace_value(val); |
| 1026 | trace_value(val); |
| 1027 | |
| 1028 | val = DC_OFFSET_RIGHT_B_DC_OFFS(DCCOMP_TC0); |
| 1029 | dmic_write(dai, base[i] + DC_OFFSET_RIGHT_B, val); |
| 1030 | trace_value(val); |
| 1031 | |
| 1032 | val = OUT_GAIN_LEFT_B_GAIN(0); |
| 1033 | dmic_write(dai, base[i] + OUT_GAIN_LEFT_B, val); |
| 1034 | trace_value(val); |
| 1035 | |
| 1036 | val = OUT_GAIN_RIGHT_B_GAIN(0); |
| 1037 | dmic_write(dai, base[i] + OUT_GAIN_RIGHT_B, val); |
| 1038 | trace_value(val); |
| 1039 | |
| 1040 | /* Write coef RAM A with scaled coefficient in reverse order */ |
| 1041 | length = cfg->fir_a_length; |
| 1042 | for (j = 0; j < length; j++) { |
| 1043 | ci = (int32_t)Q_MULTSR_32X32( |
| 1044 | (int64_t)cfg->fir_a->coef[j], cfg->fir_a_scale, |
| 1045 | 31, DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q); |
| 1046 | cu = FIR_COEF_A(ci); |
| 1047 | dmic_write(dai, coef_base_a[i] |
| 1048 | + ((length - j - 1) << 2), cu); |
| 1049 | #if defined MODULE_TEST |
| 1050 | fir_a_max = MAX(fir_a_max, ci); |
| 1051 | fir_a_min = MIN(fir_a_min, ci); |
| 1052 | #endif |
| 1053 | } |
| 1054 | |
| 1055 | /* Write coef RAM B with scaled coefficient in reverse order */ |
| 1056 | length = cfg->fir_b_length; |
| 1057 | for (j = 0; j < length; j++) { |
| 1058 | ci = (int32_t)Q_MULTSR_32X32( |
| 1059 | (int64_t)cfg->fir_b->coef[j], cfg->fir_b_scale, |
| 1060 | 31, DMIC_FIR_SCALE_Q, DMIC_HW_FIR_COEF_Q); |
| 1061 | cu = FIR_COEF_B(ci); |
| 1062 | dmic_write(dai, coef_base_b[i] |
| 1063 | + ((length - j - 1) << 2), cu); |
| 1064 | #if defined MODULE_TEST |
| 1065 | fir_b_max = MAX(fir_b_max, ci); |
| 1066 | fir_b_min = MIN(fir_b_min, ci); |
| 1067 | #endif |
| 1068 | } |
| 1069 | } |
| 1070 | |
| 1071 | #if defined MODULE_TEST |
| 1072 | printf("# FIR A max Q19 = %d (%f)\n", fir_a_max, |
| 1073 | Q_CONVERT_QTOF(fir_a_max, 19)); |
| 1074 | printf("# FIR A min Q19 = %d (%f)\n", fir_a_min, |
| 1075 | Q_CONVERT_QTOF(fir_a_min, 19)); |
| 1076 | printf("# FIR B max Q19 = %d (%f)\n", fir_b_max, |
| 1077 | Q_CONVERT_QTOF(fir_b_max, 19)); |
| 1078 | printf("# FIR B min Q19 = %d (%f)\n", fir_b_min, |
| 1079 | Q_CONVERT_QTOF(fir_b_min, 19)); |
| 1080 | #endif |
| 1081 | |
| 1082 | /* Function dmic_start() uses these to start the used FIFOs */ |
| 1083 | if (cfg->mfir_a > 0) |
| 1084 | pdata->fifo_a = 1; |
| 1085 | else |
| 1086 | pdata->fifo_a = 0; |
| 1087 | |
| 1088 | if (cfg->mfir_b > 0) |
| 1089 | pdata->fifo_b = 1; |
| 1090 | else |
| 1091 | pdata->fifo_b = 0; |
| 1092 | |
| 1093 | return 0; |
| 1094 | } |
| 1095 | |
| 1096 | static int dmic_set_config(struct dai *dai, struct sof_ipc_dai_config *config) |
| 1097 | { |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1098 | struct dmic_pdata *dmic = dai_get_drvdata(dai); |
| 1099 | struct sof_ipc_dai_dmic_params *prm; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1100 | struct matched_modes modes_ab; |
| 1101 | struct dmic_configuration cfg; |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1102 | struct decim_modes modes_a; |
| 1103 | struct decim_modes modes_b; |
| 1104 | int num_pdm_active = config->dmic.num_pdm_active; |
| 1105 | size_t size; |
| 1106 | int i, j, ret = 0; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1107 | |
| 1108 | trace_dmic("dsc"); |
| 1109 | |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 1110 | /* Initialize start sequence handler */ |
| 1111 | work_init(&dmic->dmicwork, dmic_work, dai, WORK_ASYNC); |
| 1112 | |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1113 | /* |
| 1114 | * "config" might contain pdm controller params for only |
| 1115 | * the active controllers |
| 1116 | * "prm" is initialized with default params for all HW controllers |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1117 | */ |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1118 | size = sizeof(*prm) + DMIC_HW_CONTROLLERS |
| 1119 | * sizeof(struct sof_ipc_dai_dmic_pdm_ctrl); |
| 1120 | prm = rzalloc(RZONE_SYS, SOF_MEM_CAPS_RAM, size); |
| 1121 | |
Ranjani Sridharan | 48d2a1c | 2018-06-14 10:45:57 -0700 | [diff] [blame] | 1122 | /* copy the DMIC params */ |
| 1123 | memcpy(prm, &config->dmic, sizeof(struct sof_ipc_dai_dmic_params)); |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1124 | |
| 1125 | /* copy the pdm controller params from ipc */ |
| 1126 | for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { |
| 1127 | prm->pdm[i].id = i; |
| 1128 | for (j = 0; j < num_pdm_active; j++) { |
| 1129 | /* copy the pdm controller params id the id's match */ |
| 1130 | if (prm->pdm[i].id == config->dmic.pdm[j].id) |
| 1131 | memcpy(&prm->pdm[i], &config->dmic.pdm[j], |
| 1132 | sizeof(prm->pdm[i])); |
| 1133 | } |
| 1134 | } |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1135 | |
| 1136 | trace_value(prm->driver_ipc_version); |
| 1137 | trace_value(prm->pdmclk_min); |
| 1138 | trace_value(prm->pdmclk_max); |
| 1139 | trace_value(prm->fifo_fs_a); |
| 1140 | trace_value(prm->fifo_fs_b); |
| 1141 | trace_value(prm->fifo_bits_a); |
| 1142 | trace_value(prm->fifo_bits_b); |
| 1143 | trace_value(prm->duty_min); |
| 1144 | trace_value(prm->duty_max); |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1145 | trace_value(prm->num_pdm_active); |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1146 | |
| 1147 | if (prm->driver_ipc_version != DMIC_IPC_VERSION) { |
| 1148 | trace_dmic_error("ver"); |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1149 | ret = -EINVAL; |
| 1150 | goto finish; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1151 | } |
| 1152 | |
Seppo Ingalsuo | 4e06d57 | 2018-07-26 18:42:28 +0300 | [diff] [blame] | 1153 | if (prm->fifo_bits_a != 16 && prm->fifo_bits_a != 32) { |
| 1154 | trace_dmic_error("fba"); |
| 1155 | ret = -EINVAL; |
| 1156 | goto finish; |
| 1157 | } |
| 1158 | |
| 1159 | if (prm->fifo_bits_b != 16 && prm->fifo_bits_b != 32) { |
| 1160 | trace_dmic_error("fbb"); |
| 1161 | ret = -EINVAL; |
| 1162 | goto finish; |
| 1163 | } |
| 1164 | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1165 | /* Match and select optimal decimators configuration for FIFOs A and B |
| 1166 | * paths. This setup phase is still abstract. Successful completion |
| 1167 | * points struct cfg to FIR coefficients and contains the scale value |
| 1168 | * to use for FIR coefficient RAM write as well as the CIC and FIR |
| 1169 | * shift values. |
| 1170 | */ |
| 1171 | find_modes(&modes_a, prm, prm->fifo_fs_a); |
| 1172 | if (modes_a.num_of_modes == 0 && prm->fifo_fs_a > 0) { |
| 1173 | trace_dmic_error("amo"); |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1174 | ret = -EINVAL; |
| 1175 | goto finish; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1176 | } |
| 1177 | |
| 1178 | find_modes(&modes_b, prm, prm->fifo_fs_b); |
| 1179 | if (modes_b.num_of_modes == 0 && prm->fifo_fs_b > 0) { |
| 1180 | trace_dmic_error("bmo"); |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1181 | ret = -EINVAL; |
| 1182 | goto finish; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1183 | } |
| 1184 | |
| 1185 | match_modes(&modes_ab, &modes_a, &modes_b); |
| 1186 | ret = select_mode(&cfg, &modes_ab); |
| 1187 | if (ret < 0) { |
| 1188 | trace_dmic_error("smo"); |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1189 | ret = -EINVAL; |
| 1190 | goto finish; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1191 | } |
| 1192 | |
| 1193 | trace_dmic("cfg"); |
| 1194 | trace_value(cfg.clkdiv); |
| 1195 | trace_value(cfg.mcic); |
| 1196 | trace_value(cfg.mfir_a); |
| 1197 | trace_value(cfg.mfir_b); |
| 1198 | trace_value(cfg.fir_a_length); |
| 1199 | trace_value(cfg.fir_b_length); |
| 1200 | trace_value(cfg.cic_shift); |
| 1201 | trace_value(cfg.fir_a_shift); |
| 1202 | trace_value(cfg.fir_b_shift); |
| 1203 | |
| 1204 | /* Struct reg contains a mirror of actual HW registers. Determine |
| 1205 | * register bits configuration from decimator configuration and the |
| 1206 | * requested parameters. |
| 1207 | */ |
| 1208 | ret = configure_registers(dai, &cfg, prm); |
| 1209 | if (ret < 0) { |
| 1210 | trace_dmic_error("cor"); |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1211 | ret = -EINVAL; |
| 1212 | goto finish; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1213 | } |
| 1214 | |
| 1215 | dmic->state = COMP_STATE_PREPARE; |
| 1216 | |
Ranjani Sridharan | c02e34f | 2018-05-26 23:22:44 -0700 | [diff] [blame] | 1217 | finish: |
| 1218 | /* free config params */ |
| 1219 | rfree(prm); |
| 1220 | |
| 1221 | return ret; |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1222 | } |
| 1223 | |
| 1224 | /* start the DMIC for capture */ |
| 1225 | static void dmic_start(struct dai *dai) |
| 1226 | { |
| 1227 | struct dmic_pdata *dmic = dai_get_drvdata(dai); |
| 1228 | int i; |
| 1229 | int mic_a; |
| 1230 | int mic_b; |
| 1231 | int fir_a; |
| 1232 | int fir_b; |
| 1233 | |
| 1234 | /* enable port */ |
| 1235 | spin_lock(&dmic->lock); |
| 1236 | trace_dmic("sta"); |
| 1237 | dmic->state = COMP_STATE_ACTIVE; |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 1238 | dmic->startcount = 0; |
| 1239 | dmic->gain = LOGRAMP_GI; /* Initial gain value */ |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1240 | |
| 1241 | if (dmic->fifo_a) { |
| 1242 | trace_dmic("ffa"); |
| 1243 | /* Clear FIFO A initialize, Enable interrupts to DSP, |
| 1244 | * Start FIFO A packer. |
| 1245 | */ |
| 1246 | dmic_update_bits(dai, OUTCONTROL0, |
| 1247 | OUTCONTROL0_FINIT_BIT | OUTCONTROL0_SIP_BIT, |
| 1248 | OUTCONTROL0_SIP_BIT); |
| 1249 | } |
| 1250 | if (dmic->fifo_b) { |
| 1251 | trace_dmic("ffb"); |
| 1252 | /* Clear FIFO B initialize, Enable interrupts to DSP, |
| 1253 | * Start FIFO B packer. |
| 1254 | */ |
| 1255 | dmic_update_bits(dai, OUTCONTROL1, |
| 1256 | OUTCONTROL1_FINIT_BIT | OUTCONTROL1_SIP_BIT, |
| 1257 | OUTCONTROL1_SIP_BIT); |
| 1258 | } |
| 1259 | |
| 1260 | for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { |
| 1261 | mic_a = dmic->enable[i] & 1; |
| 1262 | mic_b = (dmic->enable[i] & 2) >> 1; |
| 1263 | if (dmic->fifo_a) |
| 1264 | fir_a = (dmic->enable[i] > 0) ? 1 : 0; |
| 1265 | else |
| 1266 | fir_a = 0; |
| 1267 | if (dmic->fifo_b) |
| 1268 | fir_b = (dmic->enable[i] > 0) ? 1 : 0; |
| 1269 | else |
| 1270 | fir_b = 0; |
| 1271 | |
| 1272 | trace_dmic("mfn"); |
| 1273 | trace_value(mic_a); |
| 1274 | trace_value(mic_b); |
| 1275 | trace_value(fir_a); |
| 1276 | trace_value(fir_b); |
| 1277 | |
| 1278 | dmic_update_bits(dai, base[i] + CIC_CONTROL, |
| 1279 | CIC_CONTROL_CIC_START_A_BIT | |
| 1280 | CIC_CONTROL_CIC_START_B_BIT, |
| 1281 | CIC_CONTROL_CIC_START_A(mic_a) | |
| 1282 | CIC_CONTROL_CIC_START_B(mic_b)); |
| 1283 | dmic_update_bits(dai, base[i] + MIC_CONTROL, |
| 1284 | MIC_CONTROL_PDM_EN_A_BIT | |
| 1285 | MIC_CONTROL_PDM_EN_B_BIT, |
| 1286 | MIC_CONTROL_PDM_EN_A(mic_a) | |
| 1287 | MIC_CONTROL_PDM_EN_B(mic_b)); |
| 1288 | |
| 1289 | dmic_update_bits(dai, base[i] + FIR_CONTROL_A, |
| 1290 | FIR_CONTROL_A_START_BIT, FIR_CONTROL_A_START(fir_a)); |
| 1291 | dmic_update_bits(dai, base[i] + FIR_CONTROL_B, |
| 1292 | FIR_CONTROL_B_START_BIT, FIR_CONTROL_B_START(fir_b)); |
| 1293 | } |
| 1294 | |
| 1295 | /* Clear soft reset for all/used PDM controllers. This should |
| 1296 | * start capture in sync. |
| 1297 | */ |
| 1298 | trace_dmic("unr"); |
| 1299 | for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { |
| 1300 | dmic_update_bits(dai, base[i] + CIC_CONTROL, |
| 1301 | CIC_CONTROL_SOFT_RESET_BIT, 0); |
| 1302 | } |
| 1303 | |
| 1304 | spin_unlock(&dmic->lock); |
| 1305 | |
| 1306 | /* Currently there's no DMIC HW internal mutings and wait times |
| 1307 | * applied into this start sequence. It can be implemented here if |
| 1308 | * start of audio capture would contain clicks and/or noise and it |
| 1309 | * is not suppressed by gain ramp somewhere in the capture pipe. |
| 1310 | */ |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 1311 | |
| 1312 | work_schedule_default(&dmic->dmicwork, DMIC_UNMUTE_RAMP_US); |
| 1313 | |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1314 | trace_dmic("run"); |
| 1315 | } |
| 1316 | /* stop the DMIC for capture */ |
| 1317 | static void dmic_stop(struct dai *dai) |
| 1318 | { |
| 1319 | struct dmic_pdata *dmic = dai_get_drvdata(dai); |
| 1320 | int i; |
| 1321 | |
| 1322 | trace_dmic("sto") |
| 1323 | spin_lock(&dmic->lock); |
| 1324 | dmic->state = COMP_STATE_PREPARE; |
| 1325 | |
| 1326 | /* Stop FIFO packers and set FIFO initialize bits */ |
| 1327 | dmic_update_bits(dai, OUTCONTROL0, |
| 1328 | OUTCONTROL0_SIP_BIT | OUTCONTROL0_FINIT_BIT, |
| 1329 | OUTCONTROL0_FINIT_BIT); |
| 1330 | dmic_update_bits(dai, OUTCONTROL1, |
| 1331 | OUTCONTROL1_SIP_BIT | OUTCONTROL1_FINIT_BIT, |
| 1332 | OUTCONTROL1_FINIT_BIT); |
| 1333 | |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 1334 | /* Set soft reset and mute on for all PDM controllers. |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1335 | */ |
| 1336 | trace_dmic("sre"); |
| 1337 | for (i = 0; i < DMIC_HW_CONTROLLERS; i++) { |
| 1338 | dmic_update_bits(dai, base[i] + CIC_CONTROL, |
Seppo Ingalsuo | fa48a05 | 2018-06-19 18:14:53 +0300 | [diff] [blame] | 1339 | CIC_CONTROL_SOFT_RESET_BIT | |
| 1340 | CIC_CONTROL_MIC_MUTE_BIT, |
| 1341 | CIC_CONTROL_SOFT_RESET_BIT | |
| 1342 | CIC_CONTROL_MIC_MUTE_BIT); |
| 1343 | dmic_update_bits(dai, base[i] + FIR_CONTROL_A, |
| 1344 | FIR_CONTROL_A_MUTE_BIT, |
| 1345 | FIR_CONTROL_A_MUTE_BIT); |
| 1346 | dmic_update_bits(dai, base[i] + FIR_CONTROL_B, |
| 1347 | FIR_CONTROL_B_MUTE_BIT, |
| 1348 | FIR_CONTROL_B_MUTE_BIT); |
Seppo Ingalsuo | fdc0cf9 | 2018-05-11 17:03:02 +0300 | [diff] [blame] | 1349 | } |
| 1350 | |
| 1351 | spin_unlock(&dmic->lock); |
| 1352 | } |
| 1353 | |
| 1354 | /* save DMIC context prior to entering D3 */ |
| 1355 | static int dmic_context_store(struct dai *dai) |
| 1356 | { |
| 1357 | /* TODO: Nothing stored at the moment. Could read the registers into |
| 1358 | * persisten memory if needed but the large coef RAM is not desirable |
| 1359 | * to copy. It would be better to store selected mode parametesr from |
| 1360 | * previous configuration request and re-program registers from |
| 1361 | * scratch. |
| 1362 | */ |
| 1363 | return 0; |
| 1364 | } |
| 1365 | |
| 1366 | /* restore DMIC context after leaving D3 */ |
| 1367 | static int dmic_context_restore(struct dai *dai) |
| 1368 | { |
| 1369 | /* Nothing restored at the moment. */ |
| 1370 | return 0; |
| 1371 | } |
| 1372 | |
| 1373 | static int dmic_trigger(struct dai *dai, int cmd, int direction) |
| 1374 | { |
| 1375 | struct dmic_pdata *dmic = dai_get_drvdata(dai); |
| 1376 | |
| 1377 | trace_dmic("tri"); |
| 1378 | |
| 1379 | /* dai private is set in dmic_probe(), error if not set */ |
| 1380 | if (!dmic) { |
| 1381 | trace_dmic_error("trn"); |
| 1382 | return -EINVAL; |
| 1383 | } |
| 1384 | |
| 1385 | if (direction != DAI_DIR_CAPTURE) { |
| 1386 | trace_dmic_error("cap"); |
| 1387 | return -EINVAL; |
| 1388 | } |
| 1389 | |
| 1390 | switch (cmd) { |
| 1391 | case COMP_TRIGGER_RELEASE: |
| 1392 | case COMP_TRIGGER_START: |
| 1393 | if (dmic->state == COMP_STATE_PREPARE || |
| 1394 | dmic->state == COMP_STATE_PAUSED) { |
| 1395 | dmic_start(dai); |
| 1396 | } else { |
| 1397 | trace_dmic_error("cst"); |
| 1398 | trace_value(dmic->state); |
| 1399 | } |
| 1400 | break; |
| 1401 | case COMP_TRIGGER_STOP: |
| 1402 | case COMP_TRIGGER_PAUSE: |
| 1403 | dmic_stop(dai); |
| 1404 | break; |
| 1405 | case COMP_TRIGGER_RESUME: |
| 1406 | dmic_context_restore(dai); |
| 1407 | break; |
| 1408 | case COMP_TRIGGER_SUSPEND: |
| 1409 | dmic_context_store(dai); |
| 1410 | break; |
| 1411 | default: |
| 1412 | break; |
| 1413 | } |
| 1414 | |
| 1415 | return 0; |
| 1416 | } |
| 1417 | |
| 1418 | /* On DMIC IRQ event trace the status register that contains the status and |
| 1419 | * error bit fields. |
| 1420 | */ |
| 1421 | static void dmic_irq_handler(void *data) |
| 1422 | { |
| 1423 | struct dai *dai = data; |
| 1424 | uint32_t val; |
| 1425 | |
| 1426 | /* Trace OUTSTAT0 register */ |
| 1427 | val = dmic_read(dai, OUTSTAT0); |
| 1428 | trace_dmic("irq"); |
| 1429 | |
| 1430 | if (val & OUTSTAT0_ROR_BIT) |
| 1431 | trace_dmic_error("eor"); /* Full fifo or PDM overrrun */ |
| 1432 | |
| 1433 | trace_value(val); |
| 1434 | |
| 1435 | /* clear IRQ */ |
| 1436 | platform_interrupt_clear(dmic_irq(dai), 1); |
| 1437 | } |
| 1438 | |
| 1439 | static int dmic_probe(struct dai *dai) |
| 1440 | { |
| 1441 | struct dmic_pdata *dmic; |
| 1442 | |
| 1443 | trace_dmic("pro"); |
| 1444 | |
| 1445 | /* allocate private data */ |
| 1446 | dmic = rzalloc(RZONE_SYS, SOF_MEM_CAPS_RAM, sizeof(*dmic)); |
| 1447 | dai_set_drvdata(dai, dmic); |
| 1448 | |
| 1449 | spinlock_init(&dmic->lock); |
| 1450 | |
| 1451 | /* Set state, note there is no playback direction support */ |
| 1452 | dmic->state = COMP_STATE_READY; |
| 1453 | |
| 1454 | /* register our IRQ handler */ |
| 1455 | interrupt_register(dmic_irq(dai), dmic_irq_handler, dai); |
| 1456 | |
| 1457 | platform_interrupt_unmask(dmic_irq(dai), 1); |
| 1458 | interrupt_enable(dmic_irq(dai)); |
| 1459 | |
| 1460 | return 0; |
| 1461 | } |
| 1462 | |
| 1463 | /* DMIC has no loopback support */ |
| 1464 | static inline int dmic_set_loopback_mode(struct dai *dai, uint32_t lbm) |
| 1465 | { |
| 1466 | return -EINVAL; |
| 1467 | } |
| 1468 | |
| 1469 | const struct dai_ops dmic_ops = { |
| 1470 | .trigger = dmic_trigger, |
| 1471 | .set_config = dmic_set_config, |
| 1472 | .pm_context_store = dmic_context_store, |
| 1473 | .pm_context_restore = dmic_context_restore, |
| 1474 | .probe = dmic_probe, |
| 1475 | .set_loopback_mode = dmic_set_loopback_mode, |
| 1476 | }; |
| 1477 | |
| 1478 | #endif |