blob: ab272c9659854db81a1c18e5fad99c91932ca56b [file] [log] [blame]
snelson8913d082010-02-26 05:48:29 +00001/*
2 * This file is part of the flashrom project.
3 *
hailfinger39d159a2010-05-21 23:09:42 +00004 * Copyright (C) 2007, 2008, 2009, 2010 Carl-Daniel Hailfinger
snelson8913d082010-02-26 05:48:29 +00005 * Copyright (C) 2008 coresystems GmbH
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21/*
22 * Contains the common SPI chip driver functions
23 */
24
25#include <string.h>
26#include "flash.h"
27#include "flashchips.h"
28#include "chipdrivers.h"
hailfinger428f6852010-07-27 22:41:39 +000029#include "programmer.h"
snelson8913d082010-02-26 05:48:29 +000030#include "spi.h"
31
snelson8913d082010-02-26 05:48:29 +000032static int spi_rdid(unsigned char *readarr, int bytes)
33{
krause2eb76212011-01-17 07:50:42 +000034 static const unsigned char cmd[JEDEC_RDID_OUTSIZE] = { JEDEC_RDID };
snelson8913d082010-02-26 05:48:29 +000035 int ret;
36 int i;
37
38 ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
39 if (ret)
40 return ret;
snelsonfc007bb2010-03-24 23:14:32 +000041 msg_cspew("RDID returned");
snelson8913d082010-02-26 05:48:29 +000042 for (i = 0; i < bytes; i++)
snelsonfc007bb2010-03-24 23:14:32 +000043 msg_cspew(" 0x%02x", readarr[i]);
44 msg_cspew(". ");
snelson8913d082010-02-26 05:48:29 +000045 return 0;
46}
47
48static int spi_rems(unsigned char *readarr)
49{
50 unsigned char cmd[JEDEC_REMS_OUTSIZE] = { JEDEC_REMS, 0, 0, 0 };
51 uint32_t readaddr;
52 int ret;
53
54 ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
55 if (ret == SPI_INVALID_ADDRESS) {
56 /* Find the lowest even address allowed for reads. */
57 readaddr = (spi_get_valid_read_addr() + 1) & ~1;
58 cmd[1] = (readaddr >> 16) & 0xff,
59 cmd[2] = (readaddr >> 8) & 0xff,
60 cmd[3] = (readaddr >> 0) & 0xff,
61 ret = spi_send_command(sizeof(cmd), JEDEC_REMS_INSIZE, cmd, readarr);
62 }
63 if (ret)
64 return ret;
snelsonfc007bb2010-03-24 23:14:32 +000065 msg_cspew("REMS returned %02x %02x. ", readarr[0], readarr[1]);
snelson8913d082010-02-26 05:48:29 +000066 return 0;
67}
68
hailfinger59a83572010-05-28 17:07:57 +000069static int spi_res(unsigned char *readarr, int bytes)
snelson8913d082010-02-26 05:48:29 +000070{
71 unsigned char cmd[JEDEC_RES_OUTSIZE] = { JEDEC_RES, 0, 0, 0 };
72 uint32_t readaddr;
73 int ret;
hailfingercb0564e2010-06-20 10:39:33 +000074 int i;
snelson8913d082010-02-26 05:48:29 +000075
hailfinger59a83572010-05-28 17:07:57 +000076 ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
snelson8913d082010-02-26 05:48:29 +000077 if (ret == SPI_INVALID_ADDRESS) {
78 /* Find the lowest even address allowed for reads. */
79 readaddr = (spi_get_valid_read_addr() + 1) & ~1;
80 cmd[1] = (readaddr >> 16) & 0xff,
81 cmd[2] = (readaddr >> 8) & 0xff,
82 cmd[3] = (readaddr >> 0) & 0xff,
hailfinger59a83572010-05-28 17:07:57 +000083 ret = spi_send_command(sizeof(cmd), bytes, cmd, readarr);
snelson8913d082010-02-26 05:48:29 +000084 }
85 if (ret)
86 return ret;
hailfingercb0564e2010-06-20 10:39:33 +000087 msg_cspew("RES returned");
88 for (i = 0; i < bytes; i++)
89 msg_cspew(" 0x%02x", readarr[i]);
90 msg_cspew(". ");
snelson8913d082010-02-26 05:48:29 +000091 return 0;
92}
93
94int spi_write_enable(void)
95{
krause2eb76212011-01-17 07:50:42 +000096 static const unsigned char cmd[JEDEC_WREN_OUTSIZE] = { JEDEC_WREN };
snelson8913d082010-02-26 05:48:29 +000097 int result;
98
99 /* Send WREN (Write Enable) */
100 result = spi_send_command(sizeof(cmd), 0, cmd, NULL);
101
102 if (result)
snelsonfc007bb2010-03-24 23:14:32 +0000103 msg_cerr("%s failed\n", __func__);
snelson8913d082010-02-26 05:48:29 +0000104
105 return result;
106}
107
108int spi_write_disable(void)
109{
krause2eb76212011-01-17 07:50:42 +0000110 static const unsigned char cmd[JEDEC_WRDI_OUTSIZE] = { JEDEC_WRDI };
snelson8913d082010-02-26 05:48:29 +0000111
112 /* Send WRDI (Write Disable) */
113 return spi_send_command(sizeof(cmd), 0, cmd, NULL);
114}
115
116static int probe_spi_rdid_generic(struct flashchip *flash, int bytes)
117{
118 unsigned char readarr[4];
119 uint32_t id1;
120 uint32_t id2;
121
122 if (spi_rdid(readarr, bytes))
123 return 0;
124
125 if (!oddparity(readarr[0]))
snelsonfc007bb2010-03-24 23:14:32 +0000126 msg_cdbg("RDID byte 0 parity violation. ");
snelson8913d082010-02-26 05:48:29 +0000127
hailfingercb0564e2010-06-20 10:39:33 +0000128 /* Check if this is a continuation vendor ID.
129 * FIXME: Handle continuation device IDs.
130 */
snelson8913d082010-02-26 05:48:29 +0000131 if (readarr[0] == 0x7f) {
132 if (!oddparity(readarr[1]))
snelsonfc007bb2010-03-24 23:14:32 +0000133 msg_cdbg("RDID byte 1 parity violation. ");
snelson8913d082010-02-26 05:48:29 +0000134 id1 = (readarr[0] << 8) | readarr[1];
135 id2 = readarr[2];
136 if (bytes > 3) {
137 id2 <<= 8;
138 id2 |= readarr[3];
139 }
140 } else {
141 id1 = readarr[0];
142 id2 = (readarr[1] << 8) | readarr[2];
143 }
144
snelsonfc007bb2010-03-24 23:14:32 +0000145 msg_cdbg("%s: id1 0x%02x, id2 0x%02x\n", __func__, id1, id2);
snelson8913d082010-02-26 05:48:29 +0000146
147 if (id1 == flash->manufacture_id && id2 == flash->model_id) {
148 /* Print the status register to tell the
149 * user about possible write protection.
150 */
151 spi_prettyprint_status_register(flash);
152
153 return 1;
154 }
155
156 /* Test if this is a pure vendor match. */
157 if (id1 == flash->manufacture_id &&
158 GENERIC_DEVICE_ID == flash->model_id)
159 return 1;
160
161 /* Test if there is any vendor ID. */
162 if (GENERIC_MANUF_ID == flash->manufacture_id &&
163 id1 != 0xff)
164 return 1;
165
166 return 0;
167}
168
169int probe_spi_rdid(struct flashchip *flash)
170{
171 return probe_spi_rdid_generic(flash, 3);
172}
173
snelson8913d082010-02-26 05:48:29 +0000174int probe_spi_rdid4(struct flashchip *flash)
175{
hailfingercb0564e2010-06-20 10:39:33 +0000176 /* Some SPI controllers do not support commands with writecnt=1 and
177 * readcnt=4.
178 */
mkarcherd264e9e2011-05-11 17:07:07 +0000179 switch (spi_programmer->type) {
hailfinger90c7d542010-05-31 15:27:27 +0000180#if CONFIG_INTERNAL == 1
hailfinger324a9cc2010-05-26 01:45:41 +0000181#if defined(__i386__) || defined(__x86_64__)
hailfingercb0564e2010-06-20 10:39:33 +0000182 case SPI_CONTROLLER_IT87XX:
snelson8913d082010-02-26 05:48:29 +0000183 case SPI_CONTROLLER_WBSIO:
hailfingercb0564e2010-06-20 10:39:33 +0000184 msg_cinfo("4 byte RDID not supported on this SPI controller\n");
185 return 0;
186 break;
snelson8913d082010-02-26 05:48:29 +0000187#endif
hailfinger324a9cc2010-05-26 01:45:41 +0000188#endif
snelson8913d082010-02-26 05:48:29 +0000189 default:
hailfingercb0564e2010-06-20 10:39:33 +0000190 return probe_spi_rdid_generic(flash, 4);
snelson8913d082010-02-26 05:48:29 +0000191 }
192
193 return 0;
194}
195
196int probe_spi_rems(struct flashchip *flash)
197{
198 unsigned char readarr[JEDEC_REMS_INSIZE];
199 uint32_t id1, id2;
200
201 if (spi_rems(readarr))
202 return 0;
203
204 id1 = readarr[0];
205 id2 = readarr[1];
206
snelsonfc007bb2010-03-24 23:14:32 +0000207 msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
snelson8913d082010-02-26 05:48:29 +0000208
209 if (id1 == flash->manufacture_id && id2 == flash->model_id) {
210 /* Print the status register to tell the
211 * user about possible write protection.
212 */
213 spi_prettyprint_status_register(flash);
214
215 return 1;
216 }
217
218 /* Test if this is a pure vendor match. */
219 if (id1 == flash->manufacture_id &&
220 GENERIC_DEVICE_ID == flash->model_id)
221 return 1;
222
223 /* Test if there is any vendor ID. */
224 if (GENERIC_MANUF_ID == flash->manufacture_id &&
225 id1 != 0xff)
226 return 1;
227
228 return 0;
229}
230
hailfinger59a83572010-05-28 17:07:57 +0000231int probe_spi_res1(struct flashchip *flash)
snelson8913d082010-02-26 05:48:29 +0000232{
krause2eb76212011-01-17 07:50:42 +0000233 static const unsigned char allff[] = {0xff, 0xff, 0xff};
234 static const unsigned char all00[] = {0x00, 0x00, 0x00};
snelson8913d082010-02-26 05:48:29 +0000235 unsigned char readarr[3];
236 uint32_t id2;
snelson8913d082010-02-26 05:48:29 +0000237
hailfinger59a83572010-05-28 17:07:57 +0000238 /* We only want one-byte RES if RDID and REMS are unusable. */
239
snelson8913d082010-02-26 05:48:29 +0000240 /* Check if RDID is usable and does not return 0xff 0xff 0xff or
241 * 0x00 0x00 0x00. In that case, RES is pointless.
242 */
243 if (!spi_rdid(readarr, 3) && memcmp(readarr, allff, 3) &&
244 memcmp(readarr, all00, 3)) {
245 msg_cdbg("Ignoring RES in favour of RDID.\n");
246 return 0;
247 }
248 /* Check if REMS is usable and does not return 0xff 0xff or
249 * 0x00 0x00. In that case, RES is pointless.
250 */
251 if (!spi_rems(readarr) && memcmp(readarr, allff, JEDEC_REMS_INSIZE) &&
252 memcmp(readarr, all00, JEDEC_REMS_INSIZE)) {
253 msg_cdbg("Ignoring RES in favour of REMS.\n");
254 return 0;
255 }
256
hailfinger59a83572010-05-28 17:07:57 +0000257 if (spi_res(readarr, 1))
snelson8913d082010-02-26 05:48:29 +0000258 return 0;
259
snelson8913d082010-02-26 05:48:29 +0000260 id2 = readarr[0];
hailfinger59a83572010-05-28 17:07:57 +0000261
snelsonfc007bb2010-03-24 23:14:32 +0000262 msg_cdbg("%s: id 0x%x\n", __func__, id2);
hailfinger59a83572010-05-28 17:07:57 +0000263
snelson8913d082010-02-26 05:48:29 +0000264 if (id2 != flash->model_id)
265 return 0;
266
267 /* Print the status register to tell the
268 * user about possible write protection.
269 */
270 spi_prettyprint_status_register(flash);
271 return 1;
272}
273
hailfinger59a83572010-05-28 17:07:57 +0000274int probe_spi_res2(struct flashchip *flash)
275{
276 unsigned char readarr[2];
277 uint32_t id1, id2;
278
279 if (spi_res(readarr, 2))
280 return 0;
281
282 id1 = readarr[0];
283 id2 = readarr[1];
284
285 msg_cdbg("%s: id1 0x%x, id2 0x%x\n", __func__, id1, id2);
286
287 if (id1 != flash->manufacture_id || id2 != flash->model_id)
288 return 0;
289
290 /* Print the status register to tell the
291 * user about possible write protection.
292 */
293 spi_prettyprint_status_register(flash);
294 return 1;
295}
296
snelson8913d082010-02-26 05:48:29 +0000297uint8_t spi_read_status_register(void)
298{
krause2eb76212011-01-17 07:50:42 +0000299 static const unsigned char cmd[JEDEC_RDSR_OUTSIZE] = { JEDEC_RDSR };
snelson8913d082010-02-26 05:48:29 +0000300 /* FIXME: No workarounds for driver/hardware bugs in generic code. */
301 unsigned char readarr[2]; /* JEDEC_RDSR_INSIZE=1 but wbsio needs 2 */
302 int ret;
303
304 /* Read Status Register */
305 ret = spi_send_command(sizeof(cmd), sizeof(readarr), cmd, readarr);
306 if (ret)
snelsonfc007bb2010-03-24 23:14:32 +0000307 msg_cerr("RDSR failed!\n");
snelson8913d082010-02-26 05:48:29 +0000308
309 return readarr[0];
310}
311
312/* Prettyprint the status register. Common definitions. */
hailfinger7533bc82011-05-19 00:06:06 +0000313void spi_prettyprint_status_register_welwip(uint8_t status)
hailfingerc33d4732010-07-29 13:09:18 +0000314{
315 msg_cdbg("Chip status register: Write Enable Latch (WEL) is "
316 "%sset\n", (status & (1 << 1)) ? "" : "not ");
317 msg_cdbg("Chip status register: Write In Progress (WIP/BUSY) is "
318 "%sset\n", (status & (1 << 0)) ? "" : "not ");
319}
320
321/* Prettyprint the status register. Common definitions. */
hailfinger7533bc82011-05-19 00:06:06 +0000322void spi_prettyprint_status_register_bp3210(uint8_t status, int bp)
323{
324 switch (bp) {
325 /* Fall through. */
326 case 3:
327 msg_cdbg("Chip status register: Bit 5 / Block Protect 3 (BP3) "
328 "is %sset\n", (status & (1 << 5)) ? "" : "not ");
329 case 2:
330 msg_cdbg("Chip status register: Bit 4 / Block Protect 2 (BP2) "
331 "is %sset\n", (status & (1 << 4)) ? "" : "not ");
332 case 1:
333 msg_cdbg("Chip status register: Bit 3 / Block Protect 1 (BP1) "
334 "is %sset\n", (status & (1 << 3)) ? "" : "not ");
335 case 0:
336 msg_cdbg("Chip status register: Bit 2 / Block Protect 0 (BP0) "
337 "is %sset\n", (status & (1 << 2)) ? "" : "not ");
338 }
339}
340
341/* Prettyprint the status register. Unnamed bits. */
342void spi_prettyprint_status_register_bit(uint8_t status, int bit)
343{
344 msg_cdbg("Chip status register: Bit %i "
345 "is %sset\n", bit, (status & (1 << bit)) ? "" : "not ");
346}
347
hailfingerc33d4732010-07-29 13:09:18 +0000348static void spi_prettyprint_status_register_common(uint8_t status)
snelson8913d082010-02-26 05:48:29 +0000349{
hailfinger7533bc82011-05-19 00:06:06 +0000350 spi_prettyprint_status_register_bp3210(status, 3);
hailfingerc33d4732010-07-29 13:09:18 +0000351 spi_prettyprint_status_register_welwip(status);
snelson8913d082010-02-26 05:48:29 +0000352}
353
354/* Prettyprint the status register. Works for
355 * ST M25P series
356 * MX MX25L series
357 */
358void spi_prettyprint_status_register_st_m25p(uint8_t status)
359{
snelsonfc007bb2010-03-24 23:14:32 +0000360 msg_cdbg("Chip status register: Status Register Write Disable "
snelson8913d082010-02-26 05:48:29 +0000361 "(SRWD) is %sset\n", (status & (1 << 7)) ? "" : "not ");
snelsonfc007bb2010-03-24 23:14:32 +0000362 msg_cdbg("Chip status register: Bit 6 is "
snelson8913d082010-02-26 05:48:29 +0000363 "%sset\n", (status & (1 << 6)) ? "" : "not ");
364 spi_prettyprint_status_register_common(status);
365}
366
367void spi_prettyprint_status_register_sst25(uint8_t status)
368{
snelsonfc007bb2010-03-24 23:14:32 +0000369 msg_cdbg("Chip status register: Block Protect Write Disable "
snelson8913d082010-02-26 05:48:29 +0000370 "(BPL) is %sset\n", (status & (1 << 7)) ? "" : "not ");
snelsonfc007bb2010-03-24 23:14:32 +0000371 msg_cdbg("Chip status register: Auto Address Increment Programming "
snelson8913d082010-02-26 05:48:29 +0000372 "(AAI) is %sset\n", (status & (1 << 6)) ? "" : "not ");
373 spi_prettyprint_status_register_common(status);
374}
375
376/* Prettyprint the status register. Works for
377 * SST 25VF016
378 */
379void spi_prettyprint_status_register_sst25vf016(uint8_t status)
380{
krause2eb76212011-01-17 07:50:42 +0000381 static const char *const bpt[] = {
snelson8913d082010-02-26 05:48:29 +0000382 "none",
383 "1F0000H-1FFFFFH",
384 "1E0000H-1FFFFFH",
385 "1C0000H-1FFFFFH",
386 "180000H-1FFFFFH",
387 "100000H-1FFFFFH",
388 "all", "all"
389 };
390 spi_prettyprint_status_register_sst25(status);
snelsonfc007bb2010-03-24 23:14:32 +0000391 msg_cdbg("Resulting block protection : %s\n",
snelson8913d082010-02-26 05:48:29 +0000392 bpt[(status & 0x1c) >> 2]);
393}
394
395void spi_prettyprint_status_register_sst25vf040b(uint8_t status)
396{
krause2eb76212011-01-17 07:50:42 +0000397 static const char *const bpt[] = {
snelson8913d082010-02-26 05:48:29 +0000398 "none",
399 "0x70000-0x7ffff",
400 "0x60000-0x7ffff",
401 "0x40000-0x7ffff",
402 "all blocks", "all blocks", "all blocks", "all blocks"
403 };
404 spi_prettyprint_status_register_sst25(status);
snelsonfc007bb2010-03-24 23:14:32 +0000405 msg_cdbg("Resulting block protection : %s\n",
snelson8913d082010-02-26 05:48:29 +0000406 bpt[(status & 0x1c) >> 2]);
407}
408
hailfinger7533bc82011-05-19 00:06:06 +0000409int spi_prettyprint_status_register(struct flashchip *flash)
snelson8913d082010-02-26 05:48:29 +0000410{
411 uint8_t status;
412
413 status = spi_read_status_register();
snelsonfc007bb2010-03-24 23:14:32 +0000414 msg_cdbg("Chip status register is %02x\n", status);
snelson8913d082010-02-26 05:48:29 +0000415 switch (flash->manufacture_id) {
416 case ST_ID:
417 if (((flash->model_id & 0xff00) == 0x2000) ||
418 ((flash->model_id & 0xff00) == 0x2500))
419 spi_prettyprint_status_register_st_m25p(status);
420 break;
mhmd3c80cd2010-09-15 23:31:03 +0000421 case MACRONIX_ID:
snelson8913d082010-02-26 05:48:29 +0000422 if ((flash->model_id & 0xff00) == 0x2000)
423 spi_prettyprint_status_register_st_m25p(status);
424 break;
425 case SST_ID:
426 switch (flash->model_id) {
427 case 0x2541:
428 spi_prettyprint_status_register_sst25vf016(status);
429 break;
430 case 0x8d:
431 case 0x258d:
432 spi_prettyprint_status_register_sst25vf040b(status);
433 break;
434 default:
435 spi_prettyprint_status_register_sst25(status);
436 break;
437 }
438 break;
439 }
hailfinger7533bc82011-05-19 00:06:06 +0000440 return 0;
snelson8913d082010-02-26 05:48:29 +0000441}
442
443int spi_chip_erase_60(struct flashchip *flash)
444{
445 int result;
446 struct spi_command cmds[] = {
447 {
448 .writecnt = JEDEC_WREN_OUTSIZE,
449 .writearr = (const unsigned char[]){ JEDEC_WREN },
450 .readcnt = 0,
451 .readarr = NULL,
452 }, {
453 .writecnt = JEDEC_CE_60_OUTSIZE,
454 .writearr = (const unsigned char[]){ JEDEC_CE_60 },
455 .readcnt = 0,
456 .readarr = NULL,
457 }, {
458 .writecnt = 0,
459 .writearr = NULL,
460 .readcnt = 0,
461 .readarr = NULL,
462 }};
463
snelson8913d082010-02-26 05:48:29 +0000464 result = spi_send_multicommand(cmds);
465 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000466 msg_cerr("%s failed during command execution\n",
snelson8913d082010-02-26 05:48:29 +0000467 __func__);
468 return result;
469 }
470 /* Wait until the Write-In-Progress bit is cleared.
471 * This usually takes 1-85 s, so wait in 1 s steps.
472 */
473 /* FIXME: We assume spi_read_status_register will never fail. */
474 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
475 programmer_delay(1000 * 1000);
476 if (check_erased_range(flash, 0, flash->total_size * 1024)) {
snelsonfc007bb2010-03-24 23:14:32 +0000477 msg_cerr("ERASE FAILED!\n");
snelson8913d082010-02-26 05:48:29 +0000478 return -1;
479 }
480 return 0;
481}
482
483int spi_chip_erase_c7(struct flashchip *flash)
484{
485 int result;
486 struct spi_command cmds[] = {
487 {
488 .writecnt = JEDEC_WREN_OUTSIZE,
489 .writearr = (const unsigned char[]){ JEDEC_WREN },
490 .readcnt = 0,
491 .readarr = NULL,
492 }, {
493 .writecnt = JEDEC_CE_C7_OUTSIZE,
494 .writearr = (const unsigned char[]){ JEDEC_CE_C7 },
495 .readcnt = 0,
496 .readarr = NULL,
497 }, {
498 .writecnt = 0,
499 .writearr = NULL,
500 .readcnt = 0,
501 .readarr = NULL,
502 }};
503
snelson8913d082010-02-26 05:48:29 +0000504 result = spi_send_multicommand(cmds);
505 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000506 msg_cerr("%s failed during command execution\n", __func__);
snelson8913d082010-02-26 05:48:29 +0000507 return result;
508 }
509 /* Wait until the Write-In-Progress bit is cleared.
510 * This usually takes 1-85 s, so wait in 1 s steps.
511 */
512 /* FIXME: We assume spi_read_status_register will never fail. */
513 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
514 programmer_delay(1000 * 1000);
515 if (check_erased_range(flash, 0, flash->total_size * 1024)) {
snelsonfc007bb2010-03-24 23:14:32 +0000516 msg_cerr("ERASE FAILED!\n");
snelson8913d082010-02-26 05:48:29 +0000517 return -1;
518 }
519 return 0;
520}
521
snelson8913d082010-02-26 05:48:29 +0000522int spi_block_erase_52(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
523{
524 int result;
525 struct spi_command cmds[] = {
526 {
527 .writecnt = JEDEC_WREN_OUTSIZE,
528 .writearr = (const unsigned char[]){ JEDEC_WREN },
529 .readcnt = 0,
530 .readarr = NULL,
531 }, {
532 .writecnt = JEDEC_BE_52_OUTSIZE,
533 .writearr = (const unsigned char[]){
534 JEDEC_BE_52,
535 (addr >> 16) & 0xff,
536 (addr >> 8) & 0xff,
537 (addr & 0xff)
538 },
539 .readcnt = 0,
540 .readarr = NULL,
541 }, {
542 .writecnt = 0,
543 .writearr = NULL,
544 .readcnt = 0,
545 .readarr = NULL,
546 }};
547
548 result = spi_send_multicommand(cmds);
549 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000550 msg_cerr("%s failed during command execution at address 0x%x\n",
snelson8913d082010-02-26 05:48:29 +0000551 __func__, addr);
552 return result;
553 }
554 /* Wait until the Write-In-Progress bit is cleared.
555 * This usually takes 100-4000 ms, so wait in 100 ms steps.
556 */
557 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
558 programmer_delay(100 * 1000);
559 if (check_erased_range(flash, addr, blocklen)) {
snelsonfc007bb2010-03-24 23:14:32 +0000560 msg_cerr("ERASE FAILED!\n");
snelson8913d082010-02-26 05:48:29 +0000561 return -1;
562 }
563 return 0;
564}
565
566/* Block size is usually
567 * 64k for Macronix
568 * 32k for SST
569 * 4-32k non-uniform for EON
570 */
571int spi_block_erase_d8(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
572{
573 int result;
574 struct spi_command cmds[] = {
575 {
576 .writecnt = JEDEC_WREN_OUTSIZE,
577 .writearr = (const unsigned char[]){ JEDEC_WREN },
578 .readcnt = 0,
579 .readarr = NULL,
580 }, {
581 .writecnt = JEDEC_BE_D8_OUTSIZE,
582 .writearr = (const unsigned char[]){
583 JEDEC_BE_D8,
584 (addr >> 16) & 0xff,
585 (addr >> 8) & 0xff,
586 (addr & 0xff)
587 },
588 .readcnt = 0,
589 .readarr = NULL,
590 }, {
591 .writecnt = 0,
592 .writearr = NULL,
593 .readcnt = 0,
594 .readarr = NULL,
595 }};
596
597 result = spi_send_multicommand(cmds);
598 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000599 msg_cerr("%s failed during command execution at address 0x%x\n",
snelson8913d082010-02-26 05:48:29 +0000600 __func__, addr);
601 return result;
602 }
603 /* Wait until the Write-In-Progress bit is cleared.
604 * This usually takes 100-4000 ms, so wait in 100 ms steps.
605 */
606 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
607 programmer_delay(100 * 1000);
608 if (check_erased_range(flash, addr, blocklen)) {
snelsonfc007bb2010-03-24 23:14:32 +0000609 msg_cerr("ERASE FAILED!\n");
snelson8913d082010-02-26 05:48:29 +0000610 return -1;
611 }
612 return 0;
613}
614
615/* Block size is usually
616 * 4k for PMC
617 */
618int spi_block_erase_d7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
619{
620 int result;
621 struct spi_command cmds[] = {
622 {
623 .writecnt = JEDEC_WREN_OUTSIZE,
624 .writearr = (const unsigned char[]){ JEDEC_WREN },
625 .readcnt = 0,
626 .readarr = NULL,
627 }, {
628 .writecnt = JEDEC_BE_D7_OUTSIZE,
629 .writearr = (const unsigned char[]){
630 JEDEC_BE_D7,
631 (addr >> 16) & 0xff,
632 (addr >> 8) & 0xff,
633 (addr & 0xff)
634 },
635 .readcnt = 0,
636 .readarr = NULL,
637 }, {
638 .writecnt = 0,
639 .writearr = NULL,
640 .readcnt = 0,
641 .readarr = NULL,
642 }};
643
644 result = spi_send_multicommand(cmds);
645 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000646 msg_cerr("%s failed during command execution at address 0x%x\n",
snelson8913d082010-02-26 05:48:29 +0000647 __func__, addr);
648 return result;
649 }
650 /* Wait until the Write-In-Progress bit is cleared.
651 * This usually takes 100-4000 ms, so wait in 100 ms steps.
652 */
653 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
654 programmer_delay(100 * 1000);
655 if (check_erased_range(flash, addr, blocklen)) {
snelsonfc007bb2010-03-24 23:14:32 +0000656 msg_cerr("ERASE FAILED!\n");
snelson8913d082010-02-26 05:48:29 +0000657 return -1;
658 }
659 return 0;
660}
661
snelson8913d082010-02-26 05:48:29 +0000662/* Sector size is usually 4k, though Macronix eliteflash has 64k */
663int spi_block_erase_20(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
664{
665 int result;
666 struct spi_command cmds[] = {
667 {
668 .writecnt = JEDEC_WREN_OUTSIZE,
669 .writearr = (const unsigned char[]){ JEDEC_WREN },
670 .readcnt = 0,
671 .readarr = NULL,
672 }, {
673 .writecnt = JEDEC_SE_OUTSIZE,
674 .writearr = (const unsigned char[]){
675 JEDEC_SE,
676 (addr >> 16) & 0xff,
677 (addr >> 8) & 0xff,
678 (addr & 0xff)
679 },
680 .readcnt = 0,
681 .readarr = NULL,
682 }, {
683 .writecnt = 0,
684 .writearr = NULL,
685 .readcnt = 0,
686 .readarr = NULL,
687 }};
688
689 result = spi_send_multicommand(cmds);
690 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000691 msg_cerr("%s failed during command execution at address 0x%x\n",
snelson8913d082010-02-26 05:48:29 +0000692 __func__, addr);
693 return result;
694 }
695 /* Wait until the Write-In-Progress bit is cleared.
696 * This usually takes 15-800 ms, so wait in 10 ms steps.
697 */
698 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
699 programmer_delay(10 * 1000);
700 if (check_erased_range(flash, addr, blocklen)) {
snelsonfc007bb2010-03-24 23:14:32 +0000701 msg_cerr("ERASE FAILED!\n");
snelson8913d082010-02-26 05:48:29 +0000702 return -1;
703 }
704 return 0;
705}
706
707int spi_block_erase_60(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
708{
709 if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
snelsonfc007bb2010-03-24 23:14:32 +0000710 msg_cerr("%s called with incorrect arguments\n",
snelson8913d082010-02-26 05:48:29 +0000711 __func__);
712 return -1;
713 }
714 return spi_chip_erase_60(flash);
715}
716
717int spi_block_erase_c7(struct flashchip *flash, unsigned int addr, unsigned int blocklen)
718{
719 if ((addr != 0) || (blocklen != flash->total_size * 1024)) {
snelsonfc007bb2010-03-24 23:14:32 +0000720 msg_cerr("%s called with incorrect arguments\n",
snelson8913d082010-02-26 05:48:29 +0000721 __func__);
722 return -1;
723 }
724 return spi_chip_erase_c7(flash);
725}
726
727int spi_write_status_enable(void)
728{
krause2eb76212011-01-17 07:50:42 +0000729 static const unsigned char cmd[JEDEC_EWSR_OUTSIZE] = { JEDEC_EWSR };
snelson8913d082010-02-26 05:48:29 +0000730 int result;
731
732 /* Send EWSR (Enable Write Status Register). */
733 result = spi_send_command(sizeof(cmd), JEDEC_EWSR_INSIZE, cmd, NULL);
734
735 if (result)
snelsonfc007bb2010-03-24 23:14:32 +0000736 msg_cerr("%s failed\n", __func__);
snelson8913d082010-02-26 05:48:29 +0000737
738 return result;
739}
740
741/*
742 * This is according the SST25VF016 datasheet, who knows it is more
743 * generic that this...
744 */
hailfingerc33d4732010-07-29 13:09:18 +0000745static int spi_write_status_register_ewsr(struct flashchip *flash, int status)
snelson8913d082010-02-26 05:48:29 +0000746{
747 int result;
hailfingeree9ee132010-10-08 00:37:55 +0000748 int i = 0;
snelson8913d082010-02-26 05:48:29 +0000749 struct spi_command cmds[] = {
750 {
hailfingerc33d4732010-07-29 13:09:18 +0000751 /* WRSR requires either EWSR or WREN depending on chip type. */
snelson8913d082010-02-26 05:48:29 +0000752 .writecnt = JEDEC_EWSR_OUTSIZE,
753 .writearr = (const unsigned char[]){ JEDEC_EWSR },
754 .readcnt = 0,
755 .readarr = NULL,
756 }, {
757 .writecnt = JEDEC_WRSR_OUTSIZE,
758 .writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
759 .readcnt = 0,
760 .readarr = NULL,
761 }, {
762 .writecnt = 0,
763 .writearr = NULL,
764 .readcnt = 0,
765 .readarr = NULL,
766 }};
767
768 result = spi_send_multicommand(cmds);
769 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000770 msg_cerr("%s failed during command execution\n",
snelson8913d082010-02-26 05:48:29 +0000771 __func__);
hailfingeree9ee132010-10-08 00:37:55 +0000772 /* No point in waiting for the command to complete if execution
773 * failed.
774 */
775 return result;
snelson8913d082010-02-26 05:48:29 +0000776 }
hailfingeree9ee132010-10-08 00:37:55 +0000777 /* WRSR performs a self-timed erase before the changes take effect.
778 * This may take 50-85 ms in most cases, and some chips apparently
779 * allow running RDSR only once. Therefore pick an initial delay of
780 * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
781 */
hailfingerc33d4732010-07-29 13:09:18 +0000782 programmer_delay(100 * 1000);
hailfingeree9ee132010-10-08 00:37:55 +0000783 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) {
784 if (++i > 490) {
785 msg_cerr("Error: WIP bit after WRSR never cleared\n");
786 return TIMEOUT_ERROR;
787 }
788 programmer_delay(10 * 1000);
789 }
790 return 0;
snelson8913d082010-02-26 05:48:29 +0000791}
792
hailfingerc33d4732010-07-29 13:09:18 +0000793static int spi_write_status_register_wren(struct flashchip *flash, int status)
794{
795 int result;
hailfingeree9ee132010-10-08 00:37:55 +0000796 int i = 0;
hailfingerc33d4732010-07-29 13:09:18 +0000797 struct spi_command cmds[] = {
798 {
799 /* WRSR requires either EWSR or WREN depending on chip type. */
800 .writecnt = JEDEC_WREN_OUTSIZE,
801 .writearr = (const unsigned char[]){ JEDEC_WREN },
802 .readcnt = 0,
803 .readarr = NULL,
804 }, {
805 .writecnt = JEDEC_WRSR_OUTSIZE,
806 .writearr = (const unsigned char[]){ JEDEC_WRSR, (unsigned char) status },
807 .readcnt = 0,
808 .readarr = NULL,
809 }, {
810 .writecnt = 0,
811 .writearr = NULL,
812 .readcnt = 0,
813 .readarr = NULL,
814 }};
815
816 result = spi_send_multicommand(cmds);
817 if (result) {
818 msg_cerr("%s failed during command execution\n",
819 __func__);
hailfingeree9ee132010-10-08 00:37:55 +0000820 /* No point in waiting for the command to complete if execution
821 * failed.
822 */
823 return result;
hailfingerc33d4732010-07-29 13:09:18 +0000824 }
hailfingeree9ee132010-10-08 00:37:55 +0000825 /* WRSR performs a self-timed erase before the changes take effect.
826 * This may take 50-85 ms in most cases, and some chips apparently
827 * allow running RDSR only once. Therefore pick an initial delay of
828 * 100 ms, then wait in 10 ms steps until a total of 5 s have elapsed.
829 */
hailfingerc33d4732010-07-29 13:09:18 +0000830 programmer_delay(100 * 1000);
hailfingeree9ee132010-10-08 00:37:55 +0000831 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP) {
832 if (++i > 490) {
833 msg_cerr("Error: WIP bit after WRSR never cleared\n");
834 return TIMEOUT_ERROR;
835 }
836 programmer_delay(10 * 1000);
837 }
838 return 0;
hailfingerc33d4732010-07-29 13:09:18 +0000839}
840
hailfinger7533bc82011-05-19 00:06:06 +0000841int spi_write_status_register(struct flashchip *flash, int status)
hailfingerc33d4732010-07-29 13:09:18 +0000842{
843 int ret = 1;
844
845 if (!(flash->feature_bits & (FEATURE_WRSR_WREN | FEATURE_WRSR_EWSR))) {
846 msg_cdbg("Missing status register write definition, assuming "
847 "EWSR is needed\n");
848 flash->feature_bits |= FEATURE_WRSR_EWSR;
849 }
850 if (flash->feature_bits & FEATURE_WRSR_WREN)
851 ret = spi_write_status_register_wren(flash, status);
852 if (ret && (flash->feature_bits & FEATURE_WRSR_EWSR))
853 ret = spi_write_status_register_ewsr(flash, status);
854 return ret;
855}
856
snelson8913d082010-02-26 05:48:29 +0000857int spi_byte_program(int addr, uint8_t databyte)
858{
859 int result;
860 struct spi_command cmds[] = {
861 {
862 .writecnt = JEDEC_WREN_OUTSIZE,
863 .writearr = (const unsigned char[]){ JEDEC_WREN },
864 .readcnt = 0,
865 .readarr = NULL,
866 }, {
867 .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE,
868 .writearr = (const unsigned char[]){
869 JEDEC_BYTE_PROGRAM,
870 (addr >> 16) & 0xff,
871 (addr >> 8) & 0xff,
872 (addr & 0xff),
873 databyte
874 },
875 .readcnt = 0,
876 .readarr = NULL,
877 }, {
878 .writecnt = 0,
879 .writearr = NULL,
880 .readcnt = 0,
881 .readarr = NULL,
882 }};
883
884 result = spi_send_multicommand(cmds);
885 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000886 msg_cerr("%s failed during command execution at address 0x%x\n",
snelson8913d082010-02-26 05:48:29 +0000887 __func__, addr);
888 }
889 return result;
890}
891
892int spi_nbyte_program(int addr, uint8_t *bytes, int len)
893{
894 int result;
895 /* FIXME: Switch to malloc based on len unless that kills speed. */
896 unsigned char cmd[JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + 256] = {
897 JEDEC_BYTE_PROGRAM,
898 (addr >> 16) & 0xff,
899 (addr >> 8) & 0xff,
900 (addr >> 0) & 0xff,
901 };
902 struct spi_command cmds[] = {
903 {
904 .writecnt = JEDEC_WREN_OUTSIZE,
905 .writearr = (const unsigned char[]){ JEDEC_WREN },
906 .readcnt = 0,
907 .readarr = NULL,
908 }, {
909 .writecnt = JEDEC_BYTE_PROGRAM_OUTSIZE - 1 + len,
910 .writearr = cmd,
911 .readcnt = 0,
912 .readarr = NULL,
913 }, {
914 .writecnt = 0,
915 .writearr = NULL,
916 .readcnt = 0,
917 .readarr = NULL,
918 }};
919
920 if (!len) {
snelsonfc007bb2010-03-24 23:14:32 +0000921 msg_cerr("%s called for zero-length write\n", __func__);
snelson8913d082010-02-26 05:48:29 +0000922 return 1;
923 }
924 if (len > 256) {
snelsonfc007bb2010-03-24 23:14:32 +0000925 msg_cerr("%s called for too long a write\n", __func__);
snelson8913d082010-02-26 05:48:29 +0000926 return 1;
927 }
928
929 memcpy(&cmd[4], bytes, len);
930
931 result = spi_send_multicommand(cmds);
932 if (result) {
snelsonfc007bb2010-03-24 23:14:32 +0000933 msg_cerr("%s failed during command execution at address 0x%x\n",
snelson8913d082010-02-26 05:48:29 +0000934 __func__, addr);
935 }
936 return result;
937}
938
hailfingerc33d4732010-07-29 13:09:18 +0000939/* A generic brute-force block protection disable works like this:
940 * Write 0x00 to the status register. Check if any locks are still set (that
941 * part is chip specific). Repeat once.
942 */
hailfingerb9560ee2010-07-14 20:21:22 +0000943int spi_disable_blockprotect(struct flashchip *flash)
snelson8913d082010-02-26 05:48:29 +0000944{
945 uint8_t status;
946 int result;
947
948 status = spi_read_status_register();
hailfingerc33d4732010-07-29 13:09:18 +0000949 /* If block protection is disabled, stop here. */
950 if ((status & 0x3c) == 0)
951 return 0;
952
953 msg_cdbg("Some block protection in effect, disabling\n");
954 result = spi_write_status_register(flash, status & ~0x3c);
955 if (result) {
956 msg_cerr("spi_write_status_register failed\n");
957 return result;
958 }
959 status = spi_read_status_register();
snelson8913d082010-02-26 05:48:29 +0000960 if ((status & 0x3c) != 0) {
hailfingerc33d4732010-07-29 13:09:18 +0000961 msg_cerr("Block protection could not be disabled!\n");
962 return 1;
963 }
964 return 0;
965}
966
snelson8913d082010-02-26 05:48:29 +0000967int spi_nbyte_read(int address, uint8_t *bytes, int len)
968{
969 const unsigned char cmd[JEDEC_READ_OUTSIZE] = {
970 JEDEC_READ,
971 (address >> 16) & 0xff,
972 (address >> 8) & 0xff,
973 (address >> 0) & 0xff,
974 };
975
976 /* Send Read */
977 return spi_send_command(sizeof(cmd), len, cmd, bytes);
978}
979
980/*
hailfinger39d159a2010-05-21 23:09:42 +0000981 * Read a part of the flash chip.
hailfingerc7d06c62010-07-14 16:19:05 +0000982 * FIXME: Use the chunk code from Michael Karcher instead.
snelson8913d082010-02-26 05:48:29 +0000983 * Each page is read separately in chunks with a maximum size of chunksize.
984 */
985int spi_read_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
986{
987 int rc = 0;
988 int i, j, starthere, lenhere;
989 int page_size = flash->page_size;
990 int toread;
991
992 /* Warning: This loop has a very unusual condition and body.
993 * The loop needs to go through each page with at least one affected
994 * byte. The lowest page number is (start / page_size) since that
995 * division rounds down. The highest page number we want is the page
996 * where the last byte of the range lives. That last byte has the
997 * address (start + len - 1), thus the highest page number is
998 * (start + len - 1) / page_size. Since we want to include that last
999 * page as well, the loop condition uses <=.
1000 */
1001 for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
1002 /* Byte position of the first byte in the range in this page. */
1003 /* starthere is an offset to the base address of the chip. */
1004 starthere = max(start, i * page_size);
1005 /* Length of bytes in the range in this page. */
1006 lenhere = min(start + len, (i + 1) * page_size) - starthere;
1007 for (j = 0; j < lenhere; j += chunksize) {
1008 toread = min(chunksize, lenhere - j);
1009 rc = spi_nbyte_read(starthere + j, buf + starthere - start + j, toread);
1010 if (rc)
1011 break;
1012 }
1013 if (rc)
1014 break;
1015 }
1016
1017 return rc;
1018}
1019
1020/*
hailfinger39d159a2010-05-21 23:09:42 +00001021 * Write a part of the flash chip.
hailfingerc7d06c62010-07-14 16:19:05 +00001022 * FIXME: Use the chunk code from Michael Karcher instead.
hailfinger39d159a2010-05-21 23:09:42 +00001023 * Each page is written separately in chunks with a maximum size of chunksize.
1024 */
1025int spi_write_chunked(struct flashchip *flash, uint8_t *buf, int start, int len, int chunksize)
1026{
1027 int rc = 0;
1028 int i, j, starthere, lenhere;
1029 /* FIXME: page_size is the wrong variable. We need max_writechunk_size
1030 * in struct flashchip to do this properly. All chips using
1031 * spi_chip_write_256 have page_size set to max_writechunk_size, so
1032 * we're OK for now.
1033 */
1034 int page_size = flash->page_size;
1035 int towrite;
1036
1037 /* Warning: This loop has a very unusual condition and body.
1038 * The loop needs to go through each page with at least one affected
1039 * byte. The lowest page number is (start / page_size) since that
1040 * division rounds down. The highest page number we want is the page
1041 * where the last byte of the range lives. That last byte has the
1042 * address (start + len - 1), thus the highest page number is
1043 * (start + len - 1) / page_size. Since we want to include that last
1044 * page as well, the loop condition uses <=.
1045 */
1046 for (i = start / page_size; i <= (start + len - 1) / page_size; i++) {
1047 /* Byte position of the first byte in the range in this page. */
1048 /* starthere is an offset to the base address of the chip. */
1049 starthere = max(start, i * page_size);
1050 /* Length of bytes in the range in this page. */
1051 lenhere = min(start + len, (i + 1) * page_size) - starthere;
1052 for (j = 0; j < lenhere; j += chunksize) {
1053 towrite = min(chunksize, lenhere - j);
1054 rc = spi_nbyte_program(starthere + j, buf + starthere - start + j, towrite);
1055 if (rc)
1056 break;
1057 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1058 programmer_delay(10);
1059 }
1060 if (rc)
1061 break;
1062 }
1063
1064 return rc;
1065}
1066
1067/*
snelson8913d082010-02-26 05:48:29 +00001068 * Program chip using byte programming. (SLOW!)
1069 * This is for chips which can only handle one byte writes
1070 * and for chips where memory mapped programming is impossible
1071 * (e.g. due to size constraints in IT87* for over 512 kB)
1072 */
hailfingerc7d06c62010-07-14 16:19:05 +00001073/* real chunksize is 1, logical chunksize is 1 */
hailfinger71e1bd42010-10-13 22:26:56 +00001074int spi_chip_write_1(struct flashchip *flash, uint8_t *buf, int start, int len)
snelson8913d082010-02-26 05:48:29 +00001075{
snelson8913d082010-02-26 05:48:29 +00001076 int i, result = 0;
1077
hailfingerc7d06c62010-07-14 16:19:05 +00001078 for (i = start; i < start + len; i++) {
hailfingerdef852d2010-10-27 22:07:11 +00001079 result = spi_byte_program(i, buf[i - start]);
snelson8913d082010-02-26 05:48:29 +00001080 if (result)
1081 return 1;
1082 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1083 programmer_delay(10);
1084 }
1085
1086 return 0;
1087}
1088
hailfinger71e1bd42010-10-13 22:26:56 +00001089int spi_aai_write(struct flashchip *flash, uint8_t *buf, int start, int len)
hailfingerc7d06c62010-07-14 16:19:05 +00001090{
1091 uint32_t pos = start;
snelson8913d082010-02-26 05:48:29 +00001092 int result;
hailfinger19db0922010-06-20 10:41:35 +00001093 unsigned char cmd[JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE] = {
1094 JEDEC_AAI_WORD_PROGRAM,
1095 };
1096 struct spi_command cmds[] = {
1097 {
1098 .writecnt = JEDEC_WREN_OUTSIZE,
1099 .writearr = (const unsigned char[]){ JEDEC_WREN },
1100 .readcnt = 0,
1101 .readarr = NULL,
1102 }, {
1103 .writecnt = JEDEC_AAI_WORD_PROGRAM_OUTSIZE,
1104 .writearr = (const unsigned char[]){
1105 JEDEC_AAI_WORD_PROGRAM,
hailfingerc7d06c62010-07-14 16:19:05 +00001106 (start >> 16) & 0xff,
1107 (start >> 8) & 0xff,
1108 (start & 0xff),
hailfinger19db0922010-06-20 10:41:35 +00001109 buf[0],
1110 buf[1]
1111 },
1112 .readcnt = 0,
1113 .readarr = NULL,
1114 }, {
1115 .writecnt = 0,
1116 .writearr = NULL,
1117 .readcnt = 0,
1118 .readarr = NULL,
1119 }};
snelson8913d082010-02-26 05:48:29 +00001120
mkarcherd264e9e2011-05-11 17:07:07 +00001121 switch (spi_programmer->type) {
hailfinger90c7d542010-05-31 15:27:27 +00001122#if CONFIG_INTERNAL == 1
hailfinger324a9cc2010-05-26 01:45:41 +00001123#if defined(__i386__) || defined(__x86_64__)
hailfinger19db0922010-06-20 10:41:35 +00001124 case SPI_CONTROLLER_IT87XX:
snelson8913d082010-02-26 05:48:29 +00001125 case SPI_CONTROLLER_WBSIO:
hailfingerc7d06c62010-07-14 16:19:05 +00001126 msg_perr("%s: impossible with this SPI controller,"
snelson8913d082010-02-26 05:48:29 +00001127 " degrading to byte program\n", __func__);
hailfinger71e1bd42010-10-13 22:26:56 +00001128 return spi_chip_write_1(flash, buf, start, len);
snelson8913d082010-02-26 05:48:29 +00001129#endif
hailfinger324a9cc2010-05-26 01:45:41 +00001130#endif
snelson8913d082010-02-26 05:48:29 +00001131 default:
1132 break;
1133 }
hailfinger19db0922010-06-20 10:41:35 +00001134
hailfingerc7d06c62010-07-14 16:19:05 +00001135 /* The even start address and even length requirements can be either
1136 * honored outside this function, or we can call spi_byte_program
1137 * for the first and/or last byte and use AAI for the rest.
hailfinger71e1bd42010-10-13 22:26:56 +00001138 * FIXME: Move this to generic code.
hailfingerc7d06c62010-07-14 16:19:05 +00001139 */
hailfinger19db0922010-06-20 10:41:35 +00001140 /* The data sheet requires a start address with the low bit cleared. */
hailfingerc7d06c62010-07-14 16:19:05 +00001141 if (start % 2) {
hailfinger19db0922010-06-20 10:41:35 +00001142 msg_cerr("%s: start address not even! Please report a bug at "
1143 "flashrom@flashrom.org\n", __func__);
hailfinger71e1bd42010-10-13 22:26:56 +00001144 if (spi_chip_write_1(flash, buf, start, start % 2))
1145 return SPI_GENERIC_ERROR;
1146 pos += start % 2;
hailfingerdef852d2010-10-27 22:07:11 +00001147 cmds[1].writearr = (const unsigned char[]){
1148 JEDEC_AAI_WORD_PROGRAM,
1149 (pos >> 16) & 0xff,
1150 (pos >> 8) & 0xff,
1151 (pos & 0xff),
1152 buf[pos - start],
1153 buf[pos - start + 1]
1154 };
hailfinger71e1bd42010-10-13 22:26:56 +00001155 /* Do not return an error for now. */
1156 //return SPI_GENERIC_ERROR;
hailfinger19db0922010-06-20 10:41:35 +00001157 }
1158 /* The data sheet requires total AAI write length to be even. */
1159 if (len % 2) {
1160 msg_cerr("%s: total write length not even! Please report a "
1161 "bug at flashrom@flashrom.org\n", __func__);
hailfinger71e1bd42010-10-13 22:26:56 +00001162 /* Do not return an error for now. */
1163 //return SPI_GENERIC_ERROR;
hailfinger19db0922010-06-20 10:41:35 +00001164 }
1165
hailfinger19db0922010-06-20 10:41:35 +00001166
1167 result = spi_send_multicommand(cmds);
1168 if (result) {
1169 msg_cerr("%s failed during start command execution\n",
1170 __func__);
hailfingerc7d06c62010-07-14 16:19:05 +00001171 /* FIXME: Should we send WRDI here as well to make sure the chip
1172 * is not in AAI mode?
1173 */
snelson8913d082010-02-26 05:48:29 +00001174 return result;
snelson8913d082010-02-26 05:48:29 +00001175 }
hailfinger19db0922010-06-20 10:41:35 +00001176 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1177 programmer_delay(10);
1178
1179 /* We already wrote 2 bytes in the multicommand step. */
1180 pos += 2;
1181
hailfinger71e1bd42010-10-13 22:26:56 +00001182 /* Are there at least two more bytes to write? */
1183 while (pos < start + len - 1) {
hailfingerdef852d2010-10-27 22:07:11 +00001184 cmd[1] = buf[pos++ - start];
1185 cmd[2] = buf[pos++ - start];
hailfinger19db0922010-06-20 10:41:35 +00001186 spi_send_command(JEDEC_AAI_WORD_PROGRAM_CONT_OUTSIZE, 0, cmd, NULL);
1187 while (spi_read_status_register() & JEDEC_RDSR_BIT_WIP)
1188 programmer_delay(10);
1189 }
1190
hailfinger71e1bd42010-10-13 22:26:56 +00001191 /* Use WRDI to exit AAI mode. This needs to be done before issuing any
1192 * other non-AAI command.
1193 */
snelson8913d082010-02-26 05:48:29 +00001194 spi_write_disable();
hailfinger71e1bd42010-10-13 22:26:56 +00001195
1196 /* Write remaining byte (if any). */
1197 if (pos < start + len) {
hailfingerdef852d2010-10-27 22:07:11 +00001198 if (spi_chip_write_1(flash, buf + pos - start, pos, pos % 2))
hailfinger71e1bd42010-10-13 22:26:56 +00001199 return SPI_GENERIC_ERROR;
1200 pos += pos % 2;
1201 }
1202
snelson8913d082010-02-26 05:48:29 +00001203 return 0;
1204}