blob: adcfa055b92133eb745d6eee55917ae72e7cfc33 [file] [log] [blame]
hailfingerab206542010-02-12 19:35:25 +00001/*
2 * This file is part of the flashrom project.
3 *
4 * Copyright (C) 2009,2010 Carl-Daniel Hailfinger
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
hailfingerab206542010-02-12 19:35:25 +000015 */
16
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010017#include "platform.h"
18
hailfingerab206542010-02-12 19:35:25 +000019#include <stdint.h>
20#include <string.h>
21#include <stdlib.h>
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010022#include <errno.h>
hailfinger6c391102010-06-21 23:20:15 +000023#include <sys/types.h>
oxygene50275892010-09-30 17:03:32 +000024#if !defined (__DJGPP__) && !defined(__LIBPAYLOAD__)
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010025/* No file access needed/possible to get hardware access permissions. */
hailfingera83a5fe2010-05-30 22:24:40 +000026#include <unistd.h>
hailfingerab206542010-02-12 19:35:25 +000027#include <fcntl.h>
oxygene50275892010-09-30 17:03:32 +000028#endif
hailfingerab206542010-02-12 19:35:25 +000029#include "flash.h"
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010030#include "hwaccess.h"
hailfingerab206542010-02-12 19:35:25 +000031
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010032#if !(IS_LINUX || IS_MACOSX || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__) || defined(__DJGPP__) || defined(__LIBPAYLOAD__) || defined(__sun) || defined(__gnu_hurd__))
33#error "Unknown operating system"
34#endif
hailfinger324a9cc2010-05-26 01:45:41 +000035
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010036#if IS_LINUX || IS_MACOSX || defined(__NetBSD__) || defined(__OpenBSD__)
37#define USE_IOPL 1
38#else
39#define USE_IOPL 0
40#endif
41#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
42#define USE_DEV_IO 1
43#else
44#define USE_DEV_IO 0
45#endif
46#if defined(__gnu_hurd__)
47#define USE_IOPERM 1
48#else
49#define USE_IOPERM 0
50#endif
hailfinger324a9cc2010-05-26 01:45:41 +000051
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010052#if USE_IOPERM
53#include <sys/io.h>
54#endif
55
56#if IS_X86 && USE_DEV_IO
hailfingerab206542010-02-12 19:35:25 +000057int io_fd;
58#endif
59
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010060/* Prevent reordering and/or merging of reads/writes to hardware.
61 * Such reordering and/or merging would break device accesses which depend on the exact access order.
hailfinger324a9cc2010-05-26 01:45:41 +000062 */
63static inline void sync_primitive(void)
64{
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010065/* This is not needed for...
66 * - x86: uses uncached accesses which have a strongly ordered memory model.
67 * - MIPS: uses uncached accesses in mode 2 on /dev/mem which has also a strongly ordered memory model.
68 * - ARM: uses a strongly ordered memory model for device memories.
69 *
70 * See also https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/memory-barriers.txt
71 */
72#if IS_PPC // cf. http://lxr.free-electrons.com/source/arch/powerpc/include/asm/barrier.h
73 asm("eieio" : : : "memory");
74#elif IS_SPARC
75#if defined(__sparc_v9__) || defined(__sparcv9)
76 /* Sparc V9 CPUs support three different memory orderings that range from x86-like TSO to PowerPC-like
77 * RMO. The modes can be switched at runtime thus to make sure we maintain the right order of access we
78 * use the strongest hardware memory barriers that exist on Sparc V9. */
79 asm volatile ("membar #Sync" ::: "memory");
80#elif defined(__sparc_v8__) || defined(__sparcv8)
81 /* On SPARC V8 there is no RMO just PSO and that does not apply to I/O accesses... but if V8 code is run
82 * on V9 CPUs it might apply... or not... we issue a write barrier anyway. That's the most suitable
83 * operation in the V8 instruction set anyway. If you know better then please tell us. */
84 asm volatile ("stbar");
hailfinger324a9cc2010-05-26 01:45:41 +000085#else
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010086 #error Unknown and/or unsupported SPARC instruction set version detected.
hailfinger324a9cc2010-05-26 01:45:41 +000087#endif
Patrick Georgi2a2d67f2017-03-09 10:15:39 +010088#endif
89}
90
91#if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__))
92static int release_io_perms(void *p)
93{
94#if defined (__sun)
95 sysi86(SI86V86, V86SC_IOPL, 0);
96#elif USE_DEV_IO
97 close(io_fd);
98#elif USE_IOPERM
99 ioperm(0, 65536, 0);
100#elif USE_IOPL
101 iopl(0);
102#endif
103 return 0;
104}
105#endif
106
107/* Get I/O permissions with automatic permission release on shutdown. */
108int rget_io_perms(void)
109{
110#if IS_X86 && !(defined(__DJGPP__) || defined(__LIBPAYLOAD__))
111#if defined (__sun)
112 if (sysi86(SI86V86, V86SC_IOPL, PS_IOPL) != 0) {
113#elif USE_DEV_IO
114 if ((io_fd = open("/dev/io", O_RDWR)) < 0) {
115#elif USE_IOPERM
116 if (ioperm(0, 65536, 1) != 0) {
117#elif USE_IOPL
118 if (iopl(3) != 0) {
119#endif
120 msg_perr("ERROR: Could not get I/O privileges (%s).\n", strerror(errno));
121 msg_perr("You need to be root.\n");
122#if defined (__OpenBSD__)
123 msg_perr("If you are root already please set securelevel=-1 in /etc/rc.securelevel and\n"
124 "reboot, or reboot into single user mode.\n");
125#elif defined(__NetBSD__)
126 msg_perr("If you are root already please reboot into single user mode or make sure\n"
127 "that your kernel configuration has the option INSECURE enabled.\n");
128#endif
129 return 1;
130 } else {
131 register_shutdown(release_io_perms, NULL);
132 }
133#else
134 /* DJGPP and libpayload environments have full PCI port I/O permissions by default. */
135 /* PCI port I/O support is unimplemented on PPC/MIPS and unavailable on ARM. */
136#endif
137 return 0;
138}
hailfinger324a9cc2010-05-26 01:45:41 +0000139
hailfingerab206542010-02-12 19:35:25 +0000140void mmio_writeb(uint8_t val, void *addr)
141{
142 *(volatile uint8_t *) addr = val;
hailfinger324a9cc2010-05-26 01:45:41 +0000143 sync_primitive();
hailfingerab206542010-02-12 19:35:25 +0000144}
145
146void mmio_writew(uint16_t val, void *addr)
147{
148 *(volatile uint16_t *) addr = val;
hailfinger324a9cc2010-05-26 01:45:41 +0000149 sync_primitive();
hailfingerab206542010-02-12 19:35:25 +0000150}
151
152void mmio_writel(uint32_t val, void *addr)
153{
154 *(volatile uint32_t *) addr = val;
hailfinger324a9cc2010-05-26 01:45:41 +0000155 sync_primitive();
hailfingerab206542010-02-12 19:35:25 +0000156}
157
Edward O'Callaghan46b1e492019-06-02 16:04:48 +1000158uint8_t mmio_readb(const void *addr)
hailfingerab206542010-02-12 19:35:25 +0000159{
Edward O'Callaghan46b1e492019-06-02 16:04:48 +1000160 return *(volatile const uint8_t *) addr;
hailfingerab206542010-02-12 19:35:25 +0000161}
162
Edward O'Callaghan46b1e492019-06-02 16:04:48 +1000163uint16_t mmio_readw(const void *addr)
hailfingerab206542010-02-12 19:35:25 +0000164{
Edward O'Callaghan46b1e492019-06-02 16:04:48 +1000165 return *(volatile const uint16_t *) addr;
hailfingerab206542010-02-12 19:35:25 +0000166}
167
Edward O'Callaghan46b1e492019-06-02 16:04:48 +1000168uint32_t mmio_readl(const void *addr)
hailfingerab206542010-02-12 19:35:25 +0000169{
Edward O'Callaghan46b1e492019-06-02 16:04:48 +1000170 return *(volatile const uint32_t *) addr;
hailfingerab206542010-02-12 19:35:25 +0000171}
hailfinger324a9cc2010-05-26 01:45:41 +0000172
Edward O'Callaghan46b1e492019-06-02 16:04:48 +1000173void mmio_readn(const void *addr, uint8_t *buf, size_t len)
Patrick Georgi2a2d67f2017-03-09 10:15:39 +0100174{
175 memcpy(buf, addr, len);
176 return;
177}
178
hailfinger324a9cc2010-05-26 01:45:41 +0000179void mmio_le_writeb(uint8_t val, void *addr)
180{
181 mmio_writeb(cpu_to_le8(val), addr);
182}
183
184void mmio_le_writew(uint16_t val, void *addr)
185{
186 mmio_writew(cpu_to_le16(val), addr);
187}
188
189void mmio_le_writel(uint32_t val, void *addr)
190{
191 mmio_writel(cpu_to_le32(val), addr);
192}
193
194uint8_t mmio_le_readb(void *addr)
195{
196 return le_to_cpu8(mmio_readb(addr));
197}
198
199uint16_t mmio_le_readw(void *addr)
200{
201 return le_to_cpu16(mmio_readw(addr));
202}
203
204uint32_t mmio_le_readl(void *addr)
205{
206 return le_to_cpu32(mmio_readl(addr));
207}
hailfinger1e2e3442011-05-03 21:49:41 +0000208
209enum mmio_write_type {
210 mmio_write_type_b,
211 mmio_write_type_w,
212 mmio_write_type_l,
213};
214
215struct undo_mmio_write_data {
216 void *addr;
217 int reg;
218 enum mmio_write_type type;
219 union {
220 uint8_t bdata;
221 uint16_t wdata;
222 uint32_t ldata;
223 };
224};
225
David Hendricks93784b42016-08-09 17:00:38 -0700226int undo_mmio_write(void *p)
hailfinger1e2e3442011-05-03 21:49:41 +0000227{
228 struct undo_mmio_write_data *data = p;
229 msg_pdbg("Restoring MMIO space at %p\n", data->addr);
230 switch (data->type) {
231 case mmio_write_type_b:
232 mmio_writeb(data->bdata, data->addr);
233 break;
234 case mmio_write_type_w:
235 mmio_writew(data->wdata, data->addr);
236 break;
237 case mmio_write_type_l:
238 mmio_writel(data->ldata, data->addr);
239 break;
240 }
241 /* p was allocated in register_undo_mmio_write. */
242 free(p);
dhendrix0ffc2eb2011-06-14 01:35:36 +0000243 return 0;
hailfinger1e2e3442011-05-03 21:49:41 +0000244}
245
246#define register_undo_mmio_write(a, c) \
247{ \
248 struct undo_mmio_write_data *undo_mmio_write_data; \
249 undo_mmio_write_data = malloc(sizeof(struct undo_mmio_write_data)); \
stefanctd611e8f2011-07-12 22:35:21 +0000250 if (!undo_mmio_write_data) { \
251 msg_gerr("Out of memory!\n"); \
252 exit(1); \
253 } \
hailfinger1e2e3442011-05-03 21:49:41 +0000254 undo_mmio_write_data->addr = a; \
255 undo_mmio_write_data->type = mmio_write_type_##c; \
256 undo_mmio_write_data->c##data = mmio_read##c(a); \
257 register_shutdown(undo_mmio_write, undo_mmio_write_data); \
258}
259
260#define register_undo_mmio_writeb(a) register_undo_mmio_write(a, b)
261#define register_undo_mmio_writew(a) register_undo_mmio_write(a, w)
262#define register_undo_mmio_writel(a) register_undo_mmio_write(a, l)
263
264void rmmio_writeb(uint8_t val, void *addr)
265{
266 register_undo_mmio_writeb(addr);
267 mmio_writeb(val, addr);
268}
269
270void rmmio_writew(uint16_t val, void *addr)
271{
272 register_undo_mmio_writew(addr);
273 mmio_writew(val, addr);
274}
275
276void rmmio_writel(uint32_t val, void *addr)
277{
278 register_undo_mmio_writel(addr);
279 mmio_writel(val, addr);
280}
281
282void rmmio_le_writeb(uint8_t val, void *addr)
283{
284 register_undo_mmio_writeb(addr);
285 mmio_le_writeb(val, addr);
286}
287
288void rmmio_le_writew(uint16_t val, void *addr)
289{
290 register_undo_mmio_writew(addr);
291 mmio_le_writew(val, addr);
292}
293
294void rmmio_le_writel(uint32_t val, void *addr)
295{
296 register_undo_mmio_writel(addr);
297 mmio_le_writel(val, addr);
298}
299
300void rmmio_valb(void *addr)
301{
302 register_undo_mmio_writeb(addr);
303}
304
305void rmmio_valw(void *addr)
306{
307 register_undo_mmio_writew(addr);
308}
309
310void rmmio_vall(void *addr)
311{
312 register_undo_mmio_writel(addr);
313}