alan-baker | fec0a47 | 2018-11-08 18:09:40 -0500 | [diff] [blame] | 1 | // Copyright 2018 The Clspv Authors. All rights reserved. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #include "clang/AST/RecordLayout.h" |
| 16 | #include "clang/AST/RecursiveASTVisitor.h" |
| 17 | #include "clang/Basic/TargetInfo.h" |
| 18 | #include "clang/CodeGen/CodeGenAction.h" |
| 19 | #include "clang/Frontend/CompilerInstance.h" |
| 20 | #include "clang/Frontend/FrontendPluginRegistry.h" |
| 21 | #include "clang/Frontend/TextDiagnosticPrinter.h" |
| 22 | |
| 23 | #include "clspv/Option.h" |
| 24 | |
| 25 | #include "FrontendPlugin.h" |
| 26 | |
| 27 | using namespace clang; |
| 28 | |
| 29 | namespace { |
| 30 | struct ExtraValidationConsumer final : public ASTConsumer { |
| 31 | private: |
| 32 | CompilerInstance &Instance; |
| 33 | llvm::StringRef InFile; |
| 34 | |
| 35 | enum CustomDiagnosticType { |
| 36 | CustomDiagnosticVectorsMoreThan4Elements = 0, |
| 37 | CustomDiagnosticVoidPointer = 1, |
| 38 | CustomDiagnosticUBOUnalignedScalar = 2, |
| 39 | CustomDiagnosticUBOUnalignedVec2 = 3, |
| 40 | CustomDiagnosticUBOUnalignedVec4 = 4, |
| 41 | CustomDiagnosticUBOUnalignedArray = 5, |
| 42 | CustomDiagnosticUBOUnalignedStruct = 6, |
| 43 | CustomDiagnosticUBOSmallStraddle = 7, |
| 44 | CustomDiagnosticUBOLargeStraddle = 8, |
| 45 | CustomDiagnosticUBOUnalignedStructMember = 9, |
| 46 | CustomDiagnosticUBORestrictedSize = 10, |
| 47 | CustomDiagnosticUBORestrictedStruct = 11, |
| 48 | CustomDiagnosticTotal |
| 49 | }; |
| 50 | std::vector<unsigned> CustomDiagnosticsIDMap; |
| 51 | |
| 52 | bool IsSupportedType(QualType QT, SourceRange SR) { |
| 53 | auto *Ty = QT.getTypePtr(); |
| 54 | |
| 55 | // First check if we have a pointer type. |
| 56 | if (Ty->isPointerType()) { |
| 57 | const Type *pointeeTy = Ty->getPointeeType().getTypePtr(); |
| 58 | if (pointeeTy && pointeeTy->isVoidType()) { |
| 59 | // We don't support void pointers. |
| 60 | Instance.getDiagnostics().Report( |
| 61 | SR.getBegin(), CustomDiagnosticsIDMap[CustomDiagnosticVoidPointer]); |
| 62 | return false; |
| 63 | } |
| 64 | // Otherwise check recursively. |
| 65 | return IsSupportedType(Ty->getPointeeType(), SR); |
| 66 | } |
| 67 | |
| 68 | const auto &canonicalType = QT.getCanonicalType(); |
| 69 | if (auto *VT = llvm::dyn_cast<ExtVectorType>(canonicalType)) { |
| 70 | // We don't support vectors with more than 4 elements. |
| 71 | if (4 < VT->getNumElements()) { |
| 72 | Instance.getDiagnostics().Report( |
| 73 | SR.getBegin(), |
| 74 | CustomDiagnosticsIDMap[CustomDiagnosticVectorsMoreThan4Elements]); |
| 75 | return false; |
| 76 | } |
| 77 | } |
| 78 | |
| 79 | return true; |
| 80 | } |
| 81 | |
| 82 | // Returns the alignment of |QT| to satisfy standard Uniform buffer layout |
| 83 | // rules. |
| 84 | uint64_t GetAlignment(const QualType QT, const ASTContext &context) const { |
| 85 | const auto canonical = QT.getCanonicalType(); |
| 86 | uint64_t alignment = context.getTypeAlignInChars(canonical).getQuantity(); |
| 87 | if (canonical->isRecordType() || canonical->isArrayType()) { |
| 88 | return llvm::alignTo(alignment, 16); |
| 89 | } |
| 90 | return alignment; |
| 91 | } |
| 92 | |
| 93 | // Returns true if |QT| is a valid layout for a Uniform buffer. Refer to |
| 94 | // 14.5.4 in the Vulkan specification. |
| 95 | bool IsSupportedUniformLayout(QualType QT, uint64_t offset, |
| 96 | ASTContext &context, SourceRange SR) { |
| 97 | const auto canonical = QT.getCanonicalType(); |
| 98 | if (canonical->isScalarType()) { |
| 99 | if (!IsSupportedUniformScalarLayout(canonical, offset, context, SR)) |
| 100 | return false; |
| 101 | } else if (canonical->isExtVectorType()) { |
| 102 | if (!IsSupportedUniformVectorLayout(canonical, offset, context, SR)) |
| 103 | return false; |
| 104 | } else if (canonical->isArrayType()) { |
| 105 | if (!IsSupportedUniformArrayLayout(canonical, offset, context, SR)) |
| 106 | return false; |
| 107 | } else if (canonical->isRecordType()) { |
| 108 | if (!IsSupportedUniformRecordLayout(canonical, offset, context, SR)) |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | // TODO(alan-baker): Find a way to avoid this restriction. |
| 113 | // Don't allow padding. This prevents structs like: |
| 114 | // struct { |
| 115 | // int x[2]; |
| 116 | // int y __attribute((aligned(16))); |
| 117 | // }; |
| 118 | // |
| 119 | // This would map in LLVM to { [2 x i32], [8 x i8], i32, [12 xi8] }. |
| 120 | // There is no easy way to manipulate the padding after the array to |
| 121 | // satisfy the standard Uniform buffer layout rules in this case. The usual |
| 122 | // trick is replacing the i8 arrays with an i32 element, but the i32 would |
| 123 | // still be laid out too close to the array. |
| 124 | const auto type_size = context.getTypeSizeInChars(canonical).getQuantity(); |
| 125 | const auto type_align = GetAlignment(canonical, context); |
| 126 | if (type_size % type_align != 0) { |
| 127 | Instance.getDiagnostics().Report( |
| 128 | SR.getBegin(), |
| 129 | CustomDiagnosticsIDMap[CustomDiagnosticUBORestrictedSize]); |
| 130 | return false; |
| 131 | } |
| 132 | |
| 133 | return true; |
| 134 | } |
| 135 | |
| 136 | bool IsSupportedUniformScalarLayout(QualType QT, uint64_t offset, |
| 137 | ASTContext &context, SourceRange SR) { |
| 138 | // A scalar type of size N has a base alignment on N. |
| 139 | const unsigned type_size = context.getTypeSizeInChars(QT).getQuantity(); |
| 140 | if (offset % type_size != 0) { |
| 141 | Instance.getDiagnostics().Report( |
| 142 | SR.getBegin(), |
| 143 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedScalar]); |
| 144 | return false; |
| 145 | } |
| 146 | |
| 147 | return true; |
| 148 | } |
| 149 | |
| 150 | bool IsSupportedUniformVectorLayout(QualType QT, uint64_t offset, |
| 151 | ASTContext &context, SourceRange SR) { |
| 152 | // 2-component vectors have a base alignment of 2 * (size of element). |
| 153 | // 3- and 4-component vectors hae a base alignment of 4 * (size of |
| 154 | // element). |
| 155 | const auto *VT = llvm::cast<VectorType>(QT); |
| 156 | const auto ele_size = |
| 157 | context.getTypeSizeInChars(VT->getElementType()).getQuantity(); |
| 158 | if (VT->getNumElements() == 2) { |
| 159 | if (offset % (ele_size * 2) != 0) { |
| 160 | Instance.getDiagnostics().Report( |
| 161 | SR.getBegin(), |
| 162 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedVec2]); |
| 163 | return false; |
| 164 | } |
| 165 | } else if (offset % (ele_size * 4) != 0) { |
| 166 | // Other vector sizes cause errors elsewhere. |
| 167 | Instance.getDiagnostics().Report( |
| 168 | SR.getBegin(), |
| 169 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedVec4]); |
| 170 | return false; |
| 171 | } |
| 172 | |
| 173 | // Straddling rules: |
| 174 | // * If total vector size is less than 16 bytes, the offset must place the |
| 175 | // entire vector within the same 16 bytes. |
| 176 | // * If total vector size is greater than 16 bytes, the offset must be a |
| 177 | // multiple of 16. |
| 178 | const auto size = context.getTypeSizeInChars(QT).getQuantity(); |
| 179 | if (size <= 16 && (offset / 16 != (offset + size - 1) / 16)) { |
| 180 | Instance.getDiagnostics().Report( |
| 181 | SR.getBegin(), |
| 182 | CustomDiagnosticsIDMap[CustomDiagnosticUBOSmallStraddle]); |
| 183 | return false; |
| 184 | } else if (size > 16 && (offset % 16 != 0)) { |
| 185 | Instance.getDiagnostics().Report( |
| 186 | SR.getBegin(), |
| 187 | CustomDiagnosticsIDMap[CustomDiagnosticUBOLargeStraddle]); |
| 188 | return false; |
| 189 | } |
| 190 | |
| 191 | return IsSupportedUniformLayout(VT->getElementType(), offset, context, SR); |
| 192 | } |
| 193 | |
| 194 | bool IsSupportedUniformArrayLayout(QualType QT, uint64_t offset, |
| 195 | ASTContext &context, SourceRange SR) { |
| 196 | // An array has a base alignment of is element type, rounded up to a |
| 197 | // multiple of 16. |
| 198 | const auto *AT = llvm::cast<ArrayType>(QT); |
| 199 | const auto type_align = |
| 200 | llvm::alignTo(GetAlignment(AT->getElementType(), context), 16); |
| 201 | if (offset % type_align != 0) { |
| 202 | Instance.getDiagnostics().Report( |
| 203 | SR.getBegin(), |
| 204 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedArray]); |
| 205 | return false; |
| 206 | } |
| 207 | |
| 208 | return IsSupportedUniformLayout(AT->getElementType(), offset, context, SR); |
| 209 | } |
| 210 | |
| 211 | bool IsSupportedUniformRecordLayout(QualType QT, uint64_t offset, |
| 212 | ASTContext &context, SourceRange SR) { |
| 213 | // A structure has a base alignment of its largest member, rounded up to a |
| 214 | // multiple of 16. |
| 215 | const auto *RT = llvm::cast<RecordType>(QT); |
| 216 | const auto type_alignment = GetAlignment(QT, context); |
| 217 | if (offset % type_alignment != 0) { |
| 218 | Instance.getDiagnostics().Report( |
| 219 | SR.getBegin(), |
| 220 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedStruct]); |
| 221 | return false; |
| 222 | } |
| 223 | |
| 224 | const auto &layout = context.getASTRecordLayout(RT->getDecl()); |
| 225 | const FieldDecl *prev = nullptr; |
| 226 | for (auto field_decl : RT->getDecl()->fields()) { |
| 227 | const auto field_type = field_decl->getType(); |
| 228 | const auto field_alignment = GetAlignment(field_type, context); |
| 229 | const unsigned field_no = field_decl->getFieldIndex(); |
| 230 | const uint64_t field_offset = |
| 231 | layout.getFieldOffset(field_no) / context.getCharWidth(); |
| 232 | |
| 233 | // Rules must be checked recursively. |
| 234 | if (!IsSupportedUniformLayout(field_type, field_offset, context, SR)) { |
| 235 | return false; |
| 236 | } |
| 237 | |
| 238 | if (prev) { |
| 239 | const auto prev_canonical = prev->getType().getCanonicalType(); |
| 240 | const uint64_t prev_offset = |
| 241 | layout.getFieldOffset(field_no - 1) / context.getCharWidth(); |
| 242 | const auto prev_size = |
| 243 | context.getTypeSizeInChars(prev_canonical).getQuantity(); |
| 244 | const auto prev_alignment = GetAlignment(prev_canonical, context); |
| 245 | const auto next_available = |
| 246 | prev_offset + llvm::alignTo(prev_size, prev_alignment); |
| 247 | if (prev_canonical->isArrayType() || prev_canonical->isRecordType()) { |
| 248 | // The next element after an array or struct must be placed on or |
| 249 | // after the next multiple of the alignment of that array or |
| 250 | // struct. |
| 251 | // Both arrays and structs must be aligned to a multiple of 16 bytes. |
| 252 | if (llvm::alignTo(next_available, 16) > field_offset) { |
| 253 | Instance.getDiagnostics().Report( |
| 254 | SR.getBegin(), CustomDiagnosticsIDMap |
| 255 | [CustomDiagnosticUBOUnalignedStructMember]); |
| 256 | return false; |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | prev = field_decl; |
| 262 | } |
| 263 | |
| 264 | return true; |
| 265 | } |
| 266 | |
| 267 | // This will be used to check the inside of function bodies. |
| 268 | class DeclVisitor : public RecursiveASTVisitor<DeclVisitor> { |
| 269 | private: |
| 270 | ExtraValidationConsumer &consumer; |
| 271 | |
| 272 | public: |
| 273 | explicit DeclVisitor(ExtraValidationConsumer &VC) : consumer(VC) {} |
| 274 | |
| 275 | // Visits a declaration. Emits a diagnostic and returns false if the |
| 276 | // declaration represents an unsupported vector value or vector type. |
| 277 | // Otherwise returns true. |
| 278 | bool VisitDecl(Decl *D) { |
| 279 | // Looking at the Decl class hierarchy, it seems ValueDecl and TypeDecl |
| 280 | // are the only two that might represent an unsupported vector type. |
| 281 | if (auto *VD = dyn_cast<ValueDecl>(D)) { |
| 282 | return consumer.IsSupportedType(VD->getType(), D->getSourceRange()); |
| 283 | } else if (auto *TD = dyn_cast<TypeDecl>(D)) { |
| 284 | QualType DefinedType = TD->getASTContext().getTypeDeclType(TD); |
| 285 | return consumer.IsSupportedType(DefinedType, TD->getSourceRange()); |
| 286 | } |
| 287 | return true; |
| 288 | } |
| 289 | }; |
| 290 | |
| 291 | DeclVisitor Visitor; |
| 292 | |
| 293 | public: |
| 294 | explicit ExtraValidationConsumer(CompilerInstance &Instance, |
| 295 | llvm::StringRef InFile) |
| 296 | : Instance(Instance), InFile(InFile), |
| 297 | CustomDiagnosticsIDMap(CustomDiagnosticTotal), Visitor(*this) { |
| 298 | auto &DE = Instance.getDiagnostics(); |
| 299 | |
| 300 | CustomDiagnosticsIDMap[CustomDiagnosticVectorsMoreThan4Elements] = |
| 301 | DE.getCustomDiagID( |
| 302 | DiagnosticsEngine::Error, |
| 303 | "vectors with more than 4 elements are not supported"); |
| 304 | CustomDiagnosticsIDMap[CustomDiagnosticVoidPointer] = DE.getCustomDiagID( |
| 305 | DiagnosticsEngine::Error, "pointer-to-void is not supported"); |
| 306 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedScalar] = |
| 307 | DE.getCustomDiagID( |
| 308 | DiagnosticsEngine::Error, |
| 309 | "in an UBO, scalar elements must be aligned to their size"); |
| 310 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedVec2] = |
| 311 | DE.getCustomDiagID(DiagnosticsEngine::Error, |
| 312 | "in an UBO, two-component vectors must be aligned " |
| 313 | "to 2 times their element size"); |
| 314 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedVec4] = |
| 315 | DE.getCustomDiagID(DiagnosticsEngine::Error, |
| 316 | "in an UBO, three- and four-component vectors must " |
| 317 | "be aligned to 4 times their element size"); |
| 318 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedArray] = |
| 319 | DE.getCustomDiagID(DiagnosticsEngine::Error, |
| 320 | "in an UBO, arrays must be aligned to their element " |
| 321 | "alignment, rounded up to a multiple of 16 bytes"); |
| 322 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedStruct] = |
| 323 | DE.getCustomDiagID( |
| 324 | DiagnosticsEngine::Error, |
| 325 | "in an UBO, structs must be aligned to their " |
| 326 | "largest element alignment, rounded up to a multiple of " |
| 327 | "16 bytes"); |
| 328 | CustomDiagnosticsIDMap[CustomDiagnosticUBOSmallStraddle] = |
| 329 | DE.getCustomDiagID(DiagnosticsEngine::Error, |
| 330 | "in an UBO, vectors with a total size less than or " |
| 331 | "equal to 16 bytes must be placed entirely within a " |
| 332 | "16 byte aligned region"); |
| 333 | CustomDiagnosticsIDMap[CustomDiagnosticUBOLargeStraddle] = |
| 334 | DE.getCustomDiagID(DiagnosticsEngine::Error, |
| 335 | "in an UBO, vectors with a total size greater than " |
| 336 | "16 bytes must aligned to 16 bytes"); |
| 337 | CustomDiagnosticsIDMap[CustomDiagnosticUBOUnalignedStructMember] = |
| 338 | DE.getCustomDiagID(DiagnosticsEngine::Error, |
| 339 | "in an UBO, a structure member must not be placed " |
| 340 | "between the end of a structure or array and the " |
| 341 | "next multiple of the base alignment of that " |
| 342 | "structure or array"); |
| 343 | CustomDiagnosticsIDMap[CustomDiagnosticUBORestrictedSize] = |
| 344 | DE.getCustomDiagID(DiagnosticsEngine::Error, |
| 345 | "clspv restriction: UBO element size must be a " |
| 346 | "multiple of that element's alignment"); |
| 347 | CustomDiagnosticsIDMap[CustomDiagnosticUBORestrictedStruct] = |
| 348 | DE.getCustomDiagID( |
| 349 | DiagnosticsEngine::Error, |
| 350 | "clspv restriction: UBO structures may not have implicit padding"); |
| 351 | } |
| 352 | |
| 353 | virtual bool HandleTopLevelDecl(DeclGroupRef DG) override { |
| 354 | for (auto *D : DG) { |
| 355 | if (auto *FD = llvm::dyn_cast<FunctionDecl>(D)) { |
| 356 | // If the function has a body it means we are not an OpenCL builtin |
| 357 | // function. |
| 358 | if (FD->hasBody()) { |
| 359 | if (!IsSupportedType(FD->getReturnType(), |
| 360 | FD->getReturnTypeSourceRange())) { |
| 361 | return false; |
| 362 | } |
| 363 | |
| 364 | bool is_opencl_kernel = false; |
| 365 | if (FD->hasAttrs()) { |
| 366 | for (auto *attr : FD->attrs()) { |
| 367 | if (attr->getKind() == attr::Kind::OpenCLKernel) { |
| 368 | is_opencl_kernel = true; |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | |
| 373 | for (auto *P : FD->parameters()) { |
| 374 | auto type = P->getType(); |
| 375 | if (!IsSupportedType(P->getOriginalType(), P->getSourceRange())) { |
| 376 | return false; |
| 377 | } |
| 378 | |
| 379 | if (is_opencl_kernel && |
| 380 | clspv::Option::ConstantArgsInUniformBuffer() && |
| 381 | type->isPointerType() && |
| 382 | type->getPointeeType().getAddressSpace() == |
| 383 | LangAS::opencl_constant) { |
| 384 | if (!IsSupportedUniformLayout(type->getPointeeType(), 0, |
| 385 | FD->getASTContext(), |
| 386 | P->getSourceRange())) { |
| 387 | return false; |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // Check for unsupported vector types. |
| 393 | Visitor.TraverseDecl(FD); |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | return true; |
| 399 | } |
| 400 | }; |
| 401 | } // namespace |
| 402 | |
| 403 | namespace clspv { |
| 404 | std::unique_ptr<ASTConsumer> |
| 405 | ExtraValidationASTAction::CreateASTConsumer(CompilerInstance &CI, |
| 406 | llvm::StringRef InFile) { |
| 407 | return std::unique_ptr<ASTConsumer>(new ExtraValidationConsumer(CI, InFile)); |
| 408 | } |
| 409 | } // namespace clspv |