Add FuzzedDataProvider helper class / single header library.

Summary:
This class is useful for writing fuzz target that have multiple inputs.

Current CL imports the existing `FuzzedDataProvider` from Chromium
without any modifications. Feel free to review it thoroughly, if you're
interested, but I'd prefer changing the class in a follow up CL.

The CL also introduces an exhaustive test for the library, as the behavior
of `FuzzedDataProvider` must not change over time.

In follow up CLs I'm planning on changing some implementation details
(I can share a doc with some comments to be addressed). After that, we
will document how `FuzzedDataProvider` should be used.

I have tested this on Linux, Windows and Mac platforms.

Reviewers: morehouse, metzman, kcc

Reviewed By: morehouse

Subscribers: metzman, thakis, rnk, mgorny, ormris, delcypher, #sanitizers, llvm-commits

Tags: #llvm, #sanitizers

Differential Revision: https://reviews.llvm.org/D62733

git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk/lib/fuzzer@363071 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/utils/FuzzedDataProvider.h b/utils/FuzzedDataProvider.h
new file mode 100644
index 0000000..252f1f6
--- /dev/null
+++ b/utils/FuzzedDataProvider.h
@@ -0,0 +1,205 @@
+//===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+// A single header library providing an utility class to break up an array of
+// bytes (supposedly provided by a fuzzing engine) for multiple consumers.
+// Whenever run on the same input, provides the same output, as long as its
+// methods are called in the same order, with the same arguments.
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
+#define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
+
+#include <limits.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#include <algorithm>
+#include <cstring>
+#include <string>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
+class FuzzedDataProvider {
+ public:
+  typedef uint8_t data_type;
+
+  // |data| is an array of length |size| that the FuzzedDataProvider wraps to
+  // provide more granular access. |data| must outlive the FuzzedDataProvider.
+  FuzzedDataProvider(const uint8_t* data, size_t size)
+      : data_ptr_(data), remaining_bytes_(size) {}
+  ~FuzzedDataProvider() = default;
+
+  // Returns a std::vector containing |num_bytes| of input data. If fewer than
+  // |num_bytes| of data remain, returns a shorter std::vector containing all
+  // of the data that's left.
+  template <typename T = data_type>
+  std::vector<T> ConsumeBytes(size_t num_bytes) {
+    static_assert(sizeof(T) == sizeof(data_type), "Incompatible data type.");
+
+    num_bytes = std::min(num_bytes, remaining_bytes_);
+
+    // The point of using the size-based constructor below is to increase the
+    // odds of having a vector object with capacity being equal to the length.
+    // That part is always implementation specific, but at least both libc++ and
+    // libstdc++ allocate the requested number of bytes in that constructor,
+    // which seems to be a natual choice for other implementations as well.
+    // To increase the odds even more, we also call |shrink_to_fit| below.
+    std::vector<T> result(num_bytes);
+    std::memcpy(result.data(), data_ptr_, num_bytes);
+    Advance(num_bytes);
+
+    // Even though |shrink_to_fit| is also implementation specific, we expect it
+    // to provide an additional assurance in case vector's constructor allocated
+    // a buffer which is larger than the actual amount of data we put inside it.
+    result.shrink_to_fit();
+    return result;
+  }
+
+  // Prefer using |ConsumeBytes| unless you actually need a std::string object.
+  // Returns a std::string containing |num_bytes| of input data. If fewer than
+  // |num_bytes| of data remain, returns a shorter std::string containing all
+  // of the data that's left.
+  std::string ConsumeBytesAsString(size_t num_bytes) {
+    static_assert(sizeof(std::string::value_type) == sizeof(data_type),
+                  "ConsumeBytesAsString cannot convert the data to a string.");
+
+    num_bytes = std::min(num_bytes, remaining_bytes_);
+    std::string result(
+        reinterpret_cast<const std::string::value_type*>(data_ptr_), num_bytes);
+    Advance(num_bytes);
+    return result;
+  }
+
+  // Returns a number in the range [min, max] by consuming bytes from the input
+  // data. The value might not be uniformly distributed in the given range. If
+  // there's no input data left, always returns |min|. |min| must be less than
+  // or equal to |max|.
+  template <typename T>
+  T ConsumeIntegralInRange(T min, T max) {
+    static_assert(std::is_integral<T>::value, "An integral type is required.");
+    static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
+
+    if (min > max)
+      abort();
+
+    // Use the biggest type possible to hold the range and the result.
+    uint64_t range = static_cast<uint64_t>(max) - min;
+    uint64_t result = 0;
+    size_t offset = 0;
+
+    while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
+           remaining_bytes_ != 0) {
+      // Pull bytes off the end of the seed data. Experimentally, this seems to
+      // allow the fuzzer to more easily explore the input space. This makes
+      // sense, since it works by modifying inputs that caused new code to run,
+      // and this data is often used to encode length of data read by
+      // |ConsumeBytes|. Separating out read lengths makes it easier modify the
+      // contents of the data that is actually read.
+      --remaining_bytes_;
+      result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
+      offset += CHAR_BIT;
+    }
+
+    // Avoid division by 0, in the case |range + 1| results in overflow.
+    if (range != std::numeric_limits<decltype(range)>::max())
+      result = result % (range + 1);
+
+    return static_cast<T>(min + result);
+  }
+
+  // Returns a std::string of length from 0 to |max_length|. When it runs out of
+  // input data, returns what remains of the input. Designed to be more stable
+  // with respect to a fuzzer inserting characters than just picking a random
+  // length and then consuming that many bytes with |ConsumeBytes|.
+  std::string ConsumeRandomLengthString(size_t max_length) {
+    // Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
+    // followed by anything else to the end of the string. As a result of this
+    // logic, a fuzzer can insert characters into the string, and the string
+    // will be lengthened to include those new characters, resulting in a more
+    // stable fuzzer than picking the length of a string independently from
+    // picking its contents.
+    std::string result;
+    for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
+      char next = static_cast<char>(data_ptr_[0]);
+      Advance(1);
+      if (next == '\\' && remaining_bytes_ != 0) {
+        next = static_cast<char>(data_ptr_[0]);
+        Advance(1);
+        if (next != '\\')
+          return result;
+      }
+      result += next;
+    }
+
+    result.shrink_to_fit();
+    return result;
+  }
+
+  // Returns a std::vector containing all remaining bytes of the input data.
+  template <typename T = data_type>
+  std::vector<T> ConsumeRemainingBytes() {
+    return ConsumeBytes<T>(remaining_bytes_);
+  }
+
+  // Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
+  // object.
+  // Returns a std::vector containing all remaining bytes of the input data.
+  std::string ConsumeRemainingBytesAsString() {
+    return ConsumeBytesAsString(remaining_bytes_);
+  }
+
+  // Returns a number in the range [Type's min, Type's max]. The value might
+  // not be uniformly distributed in the given range. If there's no input data
+  // left, always returns |min|.
+  template <typename T>
+  T ConsumeIntegral() {
+    return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
+                                  std::numeric_limits<T>::max());
+  }
+
+  // Reads one byte and returns a bool, or false when no data remains.
+  bool ConsumeBool() { return 1 & ConsumeIntegral<uint8_t>(); }
+
+  // Returns a value from |array|, consuming as many bytes as needed to do so.
+  // |array| must be a fixed-size array.
+  template <typename T, size_t size>
+  T PickValueInArray(T (&array)[size]) {
+    return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
+  }
+
+  // Return an enum value. The enum must start at 0 and be contiguous. It must
+  // also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
+  // enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
+  template <typename T>
+  T ConsumeEnum() {
+    static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
+    return static_cast<T>(ConsumeIntegralInRange<uint32_t>(
+        0, static_cast<uint32_t>(T::kMaxValue)));
+  }
+
+  // Reports the remaining bytes available for fuzzed input.
+  size_t remaining_bytes() { return remaining_bytes_; }
+
+ private:
+  FuzzedDataProvider(const FuzzedDataProvider&) = delete;
+  FuzzedDataProvider& operator=(const FuzzedDataProvider&) = delete;
+
+  void Advance(size_t num_bytes) {
+    if (num_bytes > remaining_bytes_)
+      abort();
+
+    data_ptr_ += num_bytes;
+    remaining_bytes_ -= num_bytes;
+  }
+
+  const data_type* data_ptr_;
+  size_t remaining_bytes_;
+};
+
+#endif  // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_