blob: 3de18a2e07d2915eb5cbac8fab7c25f16b41810e [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drh17435752007-08-16 04:30:38 +000024 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
29 }
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000034 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000035 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
drhbd573082016-01-01 16:42:09 +000038 assert( pParse->szOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000039 return p;
40}
41
42/*
drh22c17b82015-05-15 04:13:15 +000043** Change the error string stored in Vdbe.zErrMsg
44*/
45void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
46 va_list ap;
47 sqlite3DbFree(p->db, p->zErrMsg);
48 va_start(ap, zFormat);
49 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
50 va_end(ap);
51}
52
53/*
drhb900aaf2006-11-09 00:24:53 +000054** Remember the SQL string for a prepared statement.
55*/
danielk19776ab3a2e2009-02-19 14:39:25 +000056void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000057 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000058 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000059#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000060 if( !isPrepareV2 ) return;
61#endif
drhb900aaf2006-11-09 00:24:53 +000062 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000063 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000064 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000065}
66
67/*
68** Return the SQL associated with a prepared statement
69*/
danielk1977d0e2a852007-11-14 06:48:48 +000070const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000071 Vdbe *p = (Vdbe *)pStmt;
drhef41dfe2015-09-02 17:55:12 +000072 return p ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000073}
74
75/*
drhc5155252007-01-08 21:07:17 +000076** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000077*/
drhc5155252007-01-08 21:07:17 +000078void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
79 Vdbe tmp, *pTmp;
80 char *zTmp;
drhc5155252007-01-08 21:07:17 +000081 tmp = *pA;
82 *pA = *pB;
83 *pB = tmp;
84 pTmp = pA->pNext;
85 pA->pNext = pB->pNext;
86 pB->pNext = pTmp;
87 pTmp = pA->pPrev;
88 pA->pPrev = pB->pPrev;
89 pB->pPrev = pTmp;
90 zTmp = pA->zSql;
91 pA->zSql = pB->zSql;
92 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000093 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000094}
95
drh9a324642003-09-06 20:12:01 +000096/*
dan76ccd892014-08-12 13:38:52 +000097** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000098** than its current size. nOp is guaranteed to be less than or equal
99** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +0000100**
danielk197700e13612008-11-17 19:18:54 +0000101** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +0000102** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +0000103** unchanged (this is so that any opcodes already allocated can be
104** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +0000105*/
dan76ccd892014-08-12 13:38:52 +0000106static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +0000107 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +0000108 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +0000109
drh81e069e2014-08-12 14:29:20 +0000110 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
111 ** more frequent reallocs and hence provide more opportunities for
112 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
113 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
114 ** by the minimum* amount required until the size reaches 512. Normal
115 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
116 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000117#ifdef SQLITE_TEST_REALLOC_STRESS
118 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
119#else
danielk197700e13612008-11-17 19:18:54 +0000120 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000121 UNUSED_PARAMETER(nOp);
122#endif
123
drh81e069e2014-08-12 14:29:20 +0000124 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000125 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000126 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000127 if( pNew ){
drhbd573082016-01-01 16:42:09 +0000128 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
129 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000130 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000131 }
mistachkinfad30392016-02-13 23:43:46 +0000132 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
drh76ff3a02004-09-24 22:32:30 +0000133}
134
drh313619f2013-10-31 20:34:06 +0000135#ifdef SQLITE_DEBUG
136/* This routine is just a convenient place to set a breakpoint that will
137** fire after each opcode is inserted and displayed using
138** "PRAGMA vdbe_addoptrace=on".
139*/
140static void test_addop_breakpoint(void){
141 static int n = 0;
142 n++;
143}
144#endif
145
drh76ff3a02004-09-24 22:32:30 +0000146/*
drh9a324642003-09-06 20:12:01 +0000147** Add a new instruction to the list of instructions current in the
148** VDBE. Return the address of the new instruction.
149**
150** Parameters:
151**
152** p Pointer to the VDBE
153**
154** op The opcode for this instruction
155**
drh66a51672008-01-03 00:01:23 +0000156** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000157**
danielk19774adee202004-05-08 08:23:19 +0000158** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000159** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000160** operand.
161*/
drhd7970352015-11-09 12:33:39 +0000162static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
163 assert( p->pParse->nOpAlloc<=p->nOp );
164 if( growOpArray(p, 1) ) return 1;
165 assert( p->pParse->nOpAlloc>p->nOp );
166 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
167}
drh66a51672008-01-03 00:01:23 +0000168int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000169 int i;
drh701a0ae2004-02-22 20:05:00 +0000170 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000171
172 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000173 assert( p->magic==VDBE_MAGIC_INIT );
drhed94af52016-02-01 17:20:08 +0000174 assert( op>=0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000175 if( p->pParse->nOpAlloc<=i ){
drhd7970352015-11-09 12:33:39 +0000176 return growOp3(p, op, p1, p2, p3);
drh9a324642003-09-06 20:12:01 +0000177 }
danielk197701256832007-04-18 14:24:32 +0000178 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000179 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000180 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000181 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000182 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000183 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000184 pOp->p3 = p3;
185 pOp->p4.p = 0;
186 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000187#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000188 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000189#endif
190#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000191 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000192 int jj, kk;
193 Parse *pParse = p->pParse;
194 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
195 struct yColCache *x = pParse->aColCache + jj;
196 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
197 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
198 kk++;
199 }
200 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000201 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000202 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000203 }
drh9a324642003-09-06 20:12:01 +0000204#endif
drh26c9b5e2008-04-11 14:56:53 +0000205#ifdef VDBE_PROFILE
206 pOp->cycles = 0;
207 pOp->cnt = 0;
208#endif
drh688852a2014-02-17 22:40:43 +0000209#ifdef SQLITE_VDBE_COVERAGE
210 pOp->iSrcLine = 0;
211#endif
drh9a324642003-09-06 20:12:01 +0000212 return i;
213}
drh66a51672008-01-03 00:01:23 +0000214int sqlite3VdbeAddOp0(Vdbe *p, int op){
215 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
216}
217int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
218 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
219}
220int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
221 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000222}
223
drh076e85f2015-09-03 13:46:12 +0000224/* Generate code for an unconditional jump to instruction iDest
225*/
226int sqlite3VdbeGoto(Vdbe *p, int iDest){
drh2991ba02015-09-02 18:19:00 +0000227 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
228}
drh701a0ae2004-02-22 20:05:00 +0000229
drh076e85f2015-09-03 13:46:12 +0000230/* Generate code to cause the string zStr to be loaded into
231** register iDest
232*/
233int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
234 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
235}
236
237/*
238** Generate code that initializes multiple registers to string or integer
239** constants. The registers begin with iDest and increase consecutively.
240** One register is initialized for each characgter in zTypes[]. For each
241** "s" character in zTypes[], the register is a string if the argument is
242** not NULL, or OP_Null if the value is a null pointer. For each "i" character
243** in zTypes[], the register is initialized to an integer.
244*/
245void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
246 va_list ap;
247 int i;
248 char c;
249 va_start(ap, zTypes);
250 for(i=0; (c = zTypes[i])!=0; i++){
251 if( c=='s' ){
252 const char *z = va_arg(ap, const char*);
drh2ce18652016-01-16 20:50:21 +0000253 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
drh076e85f2015-09-03 13:46:12 +0000254 }else{
255 assert( c=='i' );
256 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
257 }
258 }
259 va_end(ap);
260}
drh66a51672008-01-03 00:01:23 +0000261
drh701a0ae2004-02-22 20:05:00 +0000262/*
drh66a51672008-01-03 00:01:23 +0000263** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000264*/
drh66a51672008-01-03 00:01:23 +0000265int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000266 Vdbe *p, /* Add the opcode to this VM */
267 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000268 int p1, /* The P1 operand */
269 int p2, /* The P2 operand */
270 int p3, /* The P3 operand */
271 const char *zP4, /* The P4 operand */
272 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000273){
drh66a51672008-01-03 00:01:23 +0000274 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
275 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000276 return addr;
277}
278
279/*
drh7cc023c2015-09-03 04:28:25 +0000280** Add an opcode that includes the p4 value with a P4_INT64 or
281** P4_REAL type.
drh97bae792015-06-05 15:59:57 +0000282*/
283int sqlite3VdbeAddOp4Dup8(
284 Vdbe *p, /* Add the opcode to this VM */
285 int op, /* The new opcode */
286 int p1, /* The P1 operand */
287 int p2, /* The P2 operand */
288 int p3, /* The P3 operand */
289 const u8 *zP4, /* The P4 operand */
290 int p4type /* P4 operand type */
291){
drh575fad62016-02-05 13:38:36 +0000292 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
drh97bae792015-06-05 15:59:57 +0000293 if( p4copy ) memcpy(p4copy, zP4, 8);
294 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
295}
296
297/*
drh5d9c9da2011-06-03 20:11:17 +0000298** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000299** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
300** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000301**
302** The zWhere string must have been obtained from sqlite3_malloc().
303** This routine will take ownership of the allocated memory.
304*/
305void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
306 int j;
drh00dceca2016-01-11 22:58:50 +0000307 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
drh5d9c9da2011-06-03 20:11:17 +0000308 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
309}
310
311/*
drh8cff69d2009-11-12 19:59:44 +0000312** Add an opcode that includes the p4 value as an integer.
313*/
314int sqlite3VdbeAddOp4Int(
315 Vdbe *p, /* Add the opcode to this VM */
316 int op, /* The new opcode */
317 int p1, /* The P1 operand */
318 int p2, /* The P2 operand */
319 int p3, /* The P3 operand */
320 int p4 /* The P4 operand as an integer */
321){
322 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
323 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
324 return addr;
325}
326
drh2fade2f2016-02-09 02:12:20 +0000327/* Insert the end of a co-routine
328*/
329void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
330 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
331
332 /* Clear the temporary register cache, thereby ensuring that each
333 ** co-routine has its own independent set of registers, because co-routines
334 ** might expect their registers to be preserved across an OP_Yield, and
335 ** that could cause problems if two or more co-routines are using the same
336 ** temporary register.
337 */
338 v->pParse->nTempReg = 0;
339 v->pParse->nRangeReg = 0;
340}
341
drh8cff69d2009-11-12 19:59:44 +0000342/*
drh9a324642003-09-06 20:12:01 +0000343** Create a new symbolic label for an instruction that has yet to be
344** coded. The symbolic label is really just a negative number. The
345** label can be used as the P2 value of an operation. Later, when
346** the label is resolved to a specific address, the VDBE will scan
347** through its operation list and change all values of P2 which match
348** the label into the resolved address.
349**
350** The VDBE knows that a P2 value is a label because labels are
351** always negative and P2 values are suppose to be non-negative.
352** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000353**
354** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000355*/
drh73d5b8f2013-12-23 19:09:07 +0000356int sqlite3VdbeMakeLabel(Vdbe *v){
357 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000358 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000359 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000360 if( (i & (i-1))==0 ){
361 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
362 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000363 }
drh76ff3a02004-09-24 22:32:30 +0000364 if( p->aLabel ){
365 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000366 }
drh5ef09bf2015-12-09 17:23:12 +0000367 return ADDR(i);
drh9a324642003-09-06 20:12:01 +0000368}
369
370/*
371** Resolve label "x" to be the address of the next instruction to
372** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000373** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000374*/
drh73d5b8f2013-12-23 19:09:07 +0000375void sqlite3VdbeResolveLabel(Vdbe *v, int x){
376 Parse *p = v->pParse;
drh5ef09bf2015-12-09 17:23:12 +0000377 int j = ADDR(x);
drh73d5b8f2013-12-23 19:09:07 +0000378 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000379 assert( j<p->nLabel );
drhef41dfe2015-09-02 17:55:12 +0000380 assert( j>=0 );
381 if( p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000382 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000383 }
drh61019c72014-01-04 16:49:02 +0000384 p->iFixedOp = v->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000385}
386
drh4611d922010-02-25 14:47:01 +0000387/*
388** Mark the VDBE as one that can only be run one time.
389*/
390void sqlite3VdbeRunOnlyOnce(Vdbe *p){
391 p->runOnlyOnce = 1;
392}
393
drhf71a3662016-03-16 20:44:45 +0000394/*
395** Mark the VDBE as one that can only be run multiple times.
396*/
397void sqlite3VdbeReusable(Vdbe *p){
398 p->runOnlyOnce = 0;
399}
400
drhff738bc2009-09-24 00:09:58 +0000401#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000402
403/*
404** The following type and function are used to iterate through all opcodes
405** in a Vdbe main program and each of the sub-programs (triggers) it may
406** invoke directly or indirectly. It should be used as follows:
407**
408** Op *pOp;
409** VdbeOpIter sIter;
410**
411** memset(&sIter, 0, sizeof(sIter));
412** sIter.v = v; // v is of type Vdbe*
413** while( (pOp = opIterNext(&sIter)) ){
414** // Do something with pOp
415** }
416** sqlite3DbFree(v->db, sIter.apSub);
417**
418*/
419typedef struct VdbeOpIter VdbeOpIter;
420struct VdbeOpIter {
421 Vdbe *v; /* Vdbe to iterate through the opcodes of */
422 SubProgram **apSub; /* Array of subprograms */
423 int nSub; /* Number of entries in apSub */
424 int iAddr; /* Address of next instruction to return */
425 int iSub; /* 0 = main program, 1 = first sub-program etc. */
426};
427static Op *opIterNext(VdbeOpIter *p){
428 Vdbe *v = p->v;
429 Op *pRet = 0;
430 Op *aOp;
431 int nOp;
432
433 if( p->iSub<=p->nSub ){
434
435 if( p->iSub==0 ){
436 aOp = v->aOp;
437 nOp = v->nOp;
438 }else{
439 aOp = p->apSub[p->iSub-1]->aOp;
440 nOp = p->apSub[p->iSub-1]->nOp;
441 }
442 assert( p->iAddr<nOp );
443
444 pRet = &aOp[p->iAddr];
445 p->iAddr++;
446 if( p->iAddr==nOp ){
447 p->iSub++;
448 p->iAddr = 0;
449 }
450
451 if( pRet->p4type==P4_SUBPROGRAM ){
452 int nByte = (p->nSub+1)*sizeof(SubProgram*);
453 int j;
454 for(j=0; j<p->nSub; j++){
455 if( p->apSub[j]==pRet->p4.pProgram ) break;
456 }
457 if( j==p->nSub ){
458 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
459 if( !p->apSub ){
460 pRet = 0;
461 }else{
462 p->apSub[p->nSub++] = pRet->p4.pProgram;
463 }
464 }
465 }
466 }
467
468 return pRet;
469}
470
471/*
danf3677212009-09-10 16:14:50 +0000472** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000473** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000474** to be rolled back). This condition is true if the main program or any
475** sub-programs contains any of the following:
476**
477** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
478** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
479** * OP_Destroy
480** * OP_VUpdate
481** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000482** * OP_FkCounter with P2==0 (immediate foreign key constraint)
drh0dd5cda2015-06-16 16:39:01 +0000483** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
dan144926d2009-09-09 11:37:20 +0000484**
danf3677212009-09-10 16:14:50 +0000485** Then check that the value of Parse.mayAbort is true if an
486** ABORT may be thrown, or false otherwise. Return true if it does
487** match, or false otherwise. This function is intended to be used as
488** part of an assert statement in the compiler. Similar to:
489**
490** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000491*/
danf3677212009-09-10 16:14:50 +0000492int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
493 int hasAbort = 0;
dan04668832014-12-16 20:13:30 +0000494 int hasFkCounter = 0;
drh0dd5cda2015-06-16 16:39:01 +0000495 int hasCreateTable = 0;
496 int hasInitCoroutine = 0;
dan144926d2009-09-09 11:37:20 +0000497 Op *pOp;
498 VdbeOpIter sIter;
499 memset(&sIter, 0, sizeof(sIter));
500 sIter.v = v;
501
502 while( (pOp = opIterNext(&sIter))!=0 ){
503 int opcode = pOp->opcode;
504 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
505 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000506 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000507 ){
danf3677212009-09-10 16:14:50 +0000508 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000509 break;
510 }
drh0dd5cda2015-06-16 16:39:01 +0000511 if( opcode==OP_CreateTable ) hasCreateTable = 1;
dana7123922016-03-28 14:57:04 +0000512#ifndef SQLITE_OMIT_VIRTUALTABLE
513 if( opcode==OP_VCreate ) hasAbort = 1;
514#endif
drh0dd5cda2015-06-16 16:39:01 +0000515 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
dan04668832014-12-16 20:13:30 +0000516#ifndef SQLITE_OMIT_FOREIGN_KEY
517 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
518 hasFkCounter = 1;
519 }
520#endif
dan144926d2009-09-09 11:37:20 +0000521 }
dan144926d2009-09-09 11:37:20 +0000522 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000523
mistachkin48864df2013-03-21 21:20:32 +0000524 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000525 ** If malloc failed, then the while() loop above may not have iterated
526 ** through all opcodes and hasAbort may be set incorrectly. Return
527 ** true for this case to prevent the assert() in the callers frame
528 ** from failing. */
drh0dd5cda2015-06-16 16:39:01 +0000529 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
530 || (hasCreateTable && hasInitCoroutine) );
dan144926d2009-09-09 11:37:20 +0000531}
drhff738bc2009-09-24 00:09:58 +0000532#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000533
drh9a324642003-09-06 20:12:01 +0000534/*
drhef41dfe2015-09-02 17:55:12 +0000535** This routine is called after all opcodes have been inserted. It loops
536** through all the opcodes and fixes up some details.
drh76ff3a02004-09-24 22:32:30 +0000537**
drhef41dfe2015-09-02 17:55:12 +0000538** (1) For each jump instruction with a negative P2 value (a label)
539** resolve the P2 value to an actual address.
danielk1977634f2982005-03-28 08:44:07 +0000540**
drhef41dfe2015-09-02 17:55:12 +0000541** (2) Compute the maximum number of arguments used by any SQL function
542** and store that value in *pMaxFuncArgs.
drha6c2ed92009-11-14 23:22:23 +0000543**
drhef41dfe2015-09-02 17:55:12 +0000544** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
545** indicate what the prepared statement actually does.
546**
547** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
548**
549** (5) Reclaim the memory allocated for storing labels.
drh76ff3a02004-09-24 22:32:30 +0000550*/
drh9cbf3422008-01-17 16:22:13 +0000551static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000552 int i;
dan165921a2009-08-28 18:53:45 +0000553 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000554 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000555 Parse *pParse = p->pParse;
556 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000557 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000558 p->bIsReader = 0;
drh76ff3a02004-09-24 22:32:30 +0000559 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000560 u8 opcode = pOp->opcode;
561
drhb0c88652016-02-01 13:21:13 +0000562 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
drh8c8a8c42013-08-06 07:45:08 +0000563 ** cases from this switch! */
564 switch( opcode ){
drh8c8a8c42013-08-06 07:45:08 +0000565 case OP_Transaction: {
566 if( pOp->p2!=0 ) p->readOnly = 0;
567 /* fall thru */
568 }
569 case OP_AutoCommit:
570 case OP_Savepoint: {
571 p->bIsReader = 1;
572 break;
573 }
dand9031542013-07-05 16:54:30 +0000574#ifndef SQLITE_OMIT_WAL
drh8c8a8c42013-08-06 07:45:08 +0000575 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000576#endif
drh8c8a8c42013-08-06 07:45:08 +0000577 case OP_Vacuum:
578 case OP_JournalMode: {
579 p->readOnly = 0;
580 p->bIsReader = 1;
581 break;
582 }
danielk1977182c4ba2007-06-27 15:53:34 +0000583#ifndef SQLITE_OMIT_VIRTUALTABLE
drh8c8a8c42013-08-06 07:45:08 +0000584 case OP_VUpdate: {
585 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
586 break;
587 }
588 case OP_VFilter: {
589 int n;
590 assert( p->nOp - i >= 3 );
591 assert( pOp[-1].opcode==OP_Integer );
592 n = pOp[-1].p1;
593 if( n>nMaxArgs ) nMaxArgs = n;
594 break;
595 }
danielk1977182c4ba2007-06-27 15:53:34 +0000596#endif
drh8c8a8c42013-08-06 07:45:08 +0000597 case OP_Next:
drhf93cd942013-11-21 03:12:25 +0000598 case OP_NextIfOpen:
drh8c8a8c42013-08-06 07:45:08 +0000599 case OP_SorterNext: {
600 pOp->p4.xAdvance = sqlite3BtreeNext;
601 pOp->p4type = P4_ADVANCE;
602 break;
603 }
drhf93cd942013-11-21 03:12:25 +0000604 case OP_Prev:
605 case OP_PrevIfOpen: {
drh8c8a8c42013-08-06 07:45:08 +0000606 pOp->p4.xAdvance = sqlite3BtreePrevious;
607 pOp->p4type = P4_ADVANCE;
608 break;
609 }
danielk1977bc04f852005-03-29 08:26:13 +0000610 }
danielk1977634f2982005-03-28 08:44:07 +0000611
drh8c8a8c42013-08-06 07:45:08 +0000612 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha6c2ed92009-11-14 23:22:23 +0000613 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drh5ef09bf2015-12-09 17:23:12 +0000614 assert( ADDR(pOp->p2)<pParse->nLabel );
615 pOp->p2 = aLabel[ADDR(pOp->p2)];
drhd2981512008-01-04 19:33:49 +0000616 }
drh76ff3a02004-09-24 22:32:30 +0000617 }
drh73d5b8f2013-12-23 19:09:07 +0000618 sqlite3DbFree(p->db, pParse->aLabel);
619 pParse->aLabel = 0;
620 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000621 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000622 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000623}
624
625/*
drh9a324642003-09-06 20:12:01 +0000626** Return the address of the next instruction to be inserted.
627*/
danielk19774adee202004-05-08 08:23:19 +0000628int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000629 assert( p->magic==VDBE_MAGIC_INIT );
630 return p->nOp;
631}
632
dan65a7cd12009-09-01 12:16:01 +0000633/*
drh2ce18652016-01-16 20:50:21 +0000634** Verify that at least N opcode slots are available in p without
drhdad300d2016-01-18 00:20:26 +0000635** having to malloc for more space (except when compiled using
636** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
637** to verify that certain calls to sqlite3VdbeAddOpList() can never
638** fail due to a OOM fault and hence that the return value from
639** sqlite3VdbeAddOpList() will always be non-NULL.
drh2ce18652016-01-16 20:50:21 +0000640*/
drhdad300d2016-01-18 00:20:26 +0000641#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
642void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
drh2ce18652016-01-16 20:50:21 +0000643 assert( p->nOp + N <= p->pParse->nOpAlloc );
644}
645#endif
646
647/*
dan65a7cd12009-09-01 12:16:01 +0000648** This function returns a pointer to the array of opcodes associated with
649** the Vdbe passed as the first argument. It is the callers responsibility
650** to arrange for the returned array to be eventually freed using the
651** vdbeFreeOpArray() function.
652**
653** Before returning, *pnOp is set to the number of entries in the returned
654** array. Also, *pnMaxArg is set to the larger of its current value and
655** the number of entries in the Vdbe.apArg[] array required to execute the
656** returned program.
657*/
dan165921a2009-08-28 18:53:45 +0000658VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
659 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000660 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000661
662 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000663 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000664
dan165921a2009-08-28 18:53:45 +0000665 resolveP2Values(p, pnMaxArg);
666 *pnOp = p->nOp;
667 p->aOp = 0;
668 return aOp;
669}
670
drh9a324642003-09-06 20:12:01 +0000671/*
drh2ce18652016-01-16 20:50:21 +0000672** Add a whole list of operations to the operation stack. Return a
673** pointer to the first operation inserted.
drh1b325542016-02-03 01:55:44 +0000674**
675** Non-zero P2 arguments to jump instructions are automatically adjusted
676** so that the jump target is relative to the first operation inserted.
drh9a324642003-09-06 20:12:01 +0000677*/
drh2ce18652016-01-16 20:50:21 +0000678VdbeOp *sqlite3VdbeAddOpList(
679 Vdbe *p, /* Add opcodes to the prepared statement */
680 int nOp, /* Number of opcodes to add */
681 VdbeOpList const *aOp, /* The opcodes to be added */
682 int iLineno /* Source-file line number of first opcode */
683){
684 int i;
685 VdbeOp *pOut, *pFirst;
drhef41dfe2015-09-02 17:55:12 +0000686 assert( nOp>0 );
drh9a324642003-09-06 20:12:01 +0000687 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000688 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000689 return 0;
drh9a324642003-09-06 20:12:01 +0000690 }
drh2ce18652016-01-16 20:50:21 +0000691 pFirst = pOut = &p->aOp[p->nOp];
drhef41dfe2015-09-02 17:55:12 +0000692 for(i=0; i<nOp; i++, aOp++, pOut++){
drhef41dfe2015-09-02 17:55:12 +0000693 pOut->opcode = aOp->opcode;
694 pOut->p1 = aOp->p1;
drh5ef09bf2015-12-09 17:23:12 +0000695 pOut->p2 = aOp->p2;
696 assert( aOp->p2>=0 );
drh1b325542016-02-03 01:55:44 +0000697 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
698 pOut->p2 += p->nOp;
699 }
drhef41dfe2015-09-02 17:55:12 +0000700 pOut->p3 = aOp->p3;
701 pOut->p4type = P4_NOTUSED;
702 pOut->p4.p = 0;
703 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000704#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhef41dfe2015-09-02 17:55:12 +0000705 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000706#endif
drh688852a2014-02-17 22:40:43 +0000707#ifdef SQLITE_VDBE_COVERAGE
drhef41dfe2015-09-02 17:55:12 +0000708 pOut->iSrcLine = iLineno+i;
drh688852a2014-02-17 22:40:43 +0000709#else
drhef41dfe2015-09-02 17:55:12 +0000710 (void)iLineno;
drh688852a2014-02-17 22:40:43 +0000711#endif
drhc7379ce2013-10-30 02:28:23 +0000712#ifdef SQLITE_DEBUG
drhef41dfe2015-09-02 17:55:12 +0000713 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh2ce18652016-01-16 20:50:21 +0000714 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
drh9a324642003-09-06 20:12:01 +0000715 }
drhef41dfe2015-09-02 17:55:12 +0000716#endif
drh9a324642003-09-06 20:12:01 +0000717 }
drhef41dfe2015-09-02 17:55:12 +0000718 p->nOp += nOp;
drh2ce18652016-01-16 20:50:21 +0000719 return pFirst;
drh9a324642003-09-06 20:12:01 +0000720}
721
dan6f9702e2014-11-01 20:38:06 +0000722#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
723/*
724** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
725*/
dan037b5322014-11-03 11:25:32 +0000726void sqlite3VdbeScanStatus(
dan6f9702e2014-11-01 20:38:06 +0000727 Vdbe *p, /* VM to add scanstatus() to */
728 int addrExplain, /* Address of OP_Explain (or 0) */
729 int addrLoop, /* Address of loop counter */
730 int addrVisit, /* Address of rows visited counter */
drh518140e2014-11-06 03:55:10 +0000731 LogEst nEst, /* Estimated number of output rows */
dan6f9702e2014-11-01 20:38:06 +0000732 const char *zName /* Name of table or index being scanned */
733){
dan037b5322014-11-03 11:25:32 +0000734 int nByte = (p->nScan+1) * sizeof(ScanStatus);
735 ScanStatus *aNew;
736 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
dan6f9702e2014-11-01 20:38:06 +0000737 if( aNew ){
dan037b5322014-11-03 11:25:32 +0000738 ScanStatus *pNew = &aNew[p->nScan++];
dan6f9702e2014-11-01 20:38:06 +0000739 pNew->addrExplain = addrExplain;
740 pNew->addrLoop = addrLoop;
741 pNew->addrVisit = addrVisit;
742 pNew->nEst = nEst;
743 pNew->zName = sqlite3DbStrDup(p->db, zName);
744 p->aScan = aNew;
745 }
746}
747#endif
748
749
drh9a324642003-09-06 20:12:01 +0000750/*
drh0ff287f2015-09-02 18:40:33 +0000751** Change the value of the opcode, or P1, P2, P3, or P5 operands
752** for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000753*/
drh0ff287f2015-09-02 18:40:33 +0000754void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
755 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
756}
drh88caeac2011-08-24 15:12:08 +0000757void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000758 sqlite3VdbeGetOp(p,addr)->p1 = val;
drh9a324642003-09-06 20:12:01 +0000759}
drh88caeac2011-08-24 15:12:08 +0000760void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000761 sqlite3VdbeGetOp(p,addr)->p2 = val;
drh9a324642003-09-06 20:12:01 +0000762}
drh88caeac2011-08-24 15:12:08 +0000763void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000764 sqlite3VdbeGetOp(p,addr)->p3 = val;
danielk1977207872a2008-01-03 07:54:23 +0000765}
drh0ff287f2015-09-02 18:40:33 +0000766void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
drh9b34abe2016-01-16 15:12:35 +0000767 if( !p->db->mallocFailed ) p->aOp[p->nOp-1].p5 = p5;
danielk19771f4aa332008-01-03 09:51:55 +0000768}
769
770/*
drhf8875402006-03-17 13:56:34 +0000771** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000772** the address of the next instruction to be coded.
773*/
774void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh61019c72014-01-04 16:49:02 +0000775 p->pParse->iFixedOp = p->nOp - 1;
drh0ff287f2015-09-02 18:40:33 +0000776 sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000777}
drhb38ad992005-09-16 00:27:01 +0000778
drhb7f6f682006-07-08 17:06:43 +0000779
780/*
781** If the input FuncDef structure is ephemeral, then free it. If
782** the FuncDef is not ephermal, then do nothing.
783*/
drh633e6d52008-07-28 19:34:53 +0000784static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhd36e1042013-09-06 13:10:12 +0000785 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000786 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000787 }
788}
789
dand46def72010-07-24 11:28:28 +0000790static void vdbeFreeOpArray(sqlite3 *, Op *, int);
791
drhb38ad992005-09-16 00:27:01 +0000792/*
drh66a51672008-01-03 00:01:23 +0000793** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000794*/
drh633e6d52008-07-28 19:34:53 +0000795static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000796 if( p4 ){
dand46def72010-07-24 11:28:28 +0000797 assert( db );
drh66a51672008-01-03 00:01:23 +0000798 switch( p4type ){
drh9c7c9132015-06-26 18:16:52 +0000799 case P4_FUNCCTX: {
800 freeEphemeralFunction(db, ((sqlite3_context*)p4)->pFunc);
801 /* Fall through into the next case */
802 }
drh66a51672008-01-03 00:01:23 +0000803 case P4_REAL:
804 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000805 case P4_DYNAMIC:
drh2ec2fb22013-11-06 19:59:23 +0000806 case P4_INTARRAY: {
drh633e6d52008-07-28 19:34:53 +0000807 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000808 break;
809 }
drh2ec2fb22013-11-06 19:59:23 +0000810 case P4_KEYINFO: {
811 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
812 break;
813 }
drh28935362013-12-07 20:39:19 +0000814#ifdef SQLITE_ENABLE_CURSOR_HINTS
815 case P4_EXPR: {
816 sqlite3ExprDelete(db, (Expr*)p4);
817 break;
818 }
819#endif
drhb9755982010-07-24 16:34:37 +0000820 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000821 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000822 break;
823 }
drh66a51672008-01-03 00:01:23 +0000824 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000825 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000826 break;
827 }
drh66a51672008-01-03 00:01:23 +0000828 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000829 if( db->pnBytesFreed==0 ){
830 sqlite3ValueFree((sqlite3_value*)p4);
831 }else{
drhf37c68e2010-07-26 14:20:06 +0000832 Mem *p = (Mem*)p4;
drh17bcb102014-09-18 21:25:33 +0000833 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drhf37c68e2010-07-26 14:20:06 +0000834 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000835 }
drhac1733d2005-09-17 17:58:22 +0000836 break;
837 }
danielk1977595a5232009-07-24 17:58:53 +0000838 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000839 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000840 break;
841 }
drhb38ad992005-09-16 00:27:01 +0000842 }
843 }
844}
845
dan65a7cd12009-09-01 12:16:01 +0000846/*
847** Free the space allocated for aOp and any p4 values allocated for the
848** opcodes contained within. If aOp is not NULL it is assumed to contain
849** nOp entries.
850*/
dan165921a2009-08-28 18:53:45 +0000851static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
852 if( aOp ){
853 Op *pOp;
854 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
drh00dceca2016-01-11 22:58:50 +0000855 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000856#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000857 sqlite3DbFree(db, pOp->zComment);
858#endif
859 }
860 }
861 sqlite3DbFree(db, aOp);
862}
863
dan65a7cd12009-09-01 12:16:01 +0000864/*
dand19c9332010-07-26 12:05:17 +0000865** Link the SubProgram object passed as the second argument into the linked
866** list at Vdbe.pSubProgram. This list is used to delete all sub-program
867** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000868*/
dand19c9332010-07-26 12:05:17 +0000869void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
870 p->pNext = pVdbe->pProgram;
871 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000872}
873
drh9a324642003-09-06 20:12:01 +0000874/*
drh48f2d3b2011-09-16 01:34:43 +0000875** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000876*/
drh2ce18652016-01-16 20:50:21 +0000877int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
878 VdbeOp *pOp;
879 if( p->db->mallocFailed ) return 0;
880 assert( addr>=0 && addr<p->nOp );
881 pOp = &p->aOp[addr];
882 freeP4(p->db, pOp->p4type, pOp->p4.p);
drh4b31bda2016-01-20 02:01:02 +0000883 pOp->p4type = P4_NOTUSED;
drh939e7782016-01-20 02:36:12 +0000884 pOp->p4.z = 0;
drh2ce18652016-01-16 20:50:21 +0000885 pOp->opcode = OP_Noop;
886 return 1;
drhf8875402006-03-17 13:56:34 +0000887}
888
889/*
drh39c4b822014-09-29 15:42:01 +0000890** If the last opcode is "op" and it is not a jump destination,
891** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000892*/
drh61019c72014-01-04 16:49:02 +0000893int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
894 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
drh2ce18652016-01-16 20:50:21 +0000895 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
drh61019c72014-01-04 16:49:02 +0000896 }else{
897 return 0;
898 }
drh762c1c42014-01-02 19:35:30 +0000899}
900
901/*
drh66a51672008-01-03 00:01:23 +0000902** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000903** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000904** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000905** few minor changes to the program.
906**
drh66a51672008-01-03 00:01:23 +0000907** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000908** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000909** A value of n==0 means copy bytes of zP4 up to and including the
910** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000911**
drh66a51672008-01-03 00:01:23 +0000912** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000913** to a string or structure that is guaranteed to exist for the lifetime of
914** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000915**
drh66a51672008-01-03 00:01:23 +0000916** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000917*/
drh00dceca2016-01-11 22:58:50 +0000918static void SQLITE_NOINLINE vdbeChangeP4Full(
919 Vdbe *p,
920 Op *pOp,
921 const char *zP4,
922 int n
923){
924 if( pOp->p4type ){
925 freeP4(p->db, pOp->p4type, pOp->p4.p);
926 pOp->p4type = 0;
927 pOp->p4.p = 0;
928 }
929 if( n<0 ){
930 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
931 }else{
932 if( n==0 ) n = sqlite3Strlen30(zP4);
933 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
934 pOp->p4type = P4_DYNAMIC;
935 }
936}
drh66a51672008-01-03 00:01:23 +0000937void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000938 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000939 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000940 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000941 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000942 assert( p->magic==VDBE_MAGIC_INIT );
drh00dceca2016-01-11 22:58:50 +0000943 assert( p->aOp!=0 || db->mallocFailed );
944 if( db->mallocFailed ){
945 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
danielk1977d5d56522005-03-16 12:15:20 +0000946 return;
947 }
drh7b746032009-06-26 12:15:22 +0000948 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000949 assert( addr<p->nOp );
950 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000951 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000952 }
953 pOp = &p->aOp[addr];
drh00dceca2016-01-11 22:58:50 +0000954 if( n>=0 || pOp->p4type ){
955 vdbeChangeP4Full(p, pOp, zP4, n);
956 return;
957 }
drh98757152008-01-09 23:04:12 +0000958 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000959 /* Note: this cast is safe, because the origin data point was an int
960 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000961 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000962 pOp->p4type = P4_INT32;
drh00dceca2016-01-11 22:58:50 +0000963 }else if( zP4!=0 ){
964 assert( n<0 );
danielk19772dca4ac2008-01-03 11:50:29 +0000965 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000966 pOp->p4type = (signed char)n;
drh00dceca2016-01-11 22:58:50 +0000967 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
drh9a324642003-09-06 20:12:01 +0000968 }
969}
970
drh2ec2fb22013-11-06 19:59:23 +0000971/*
972** Set the P4 on the most recently added opcode to the KeyInfo for the
973** index given.
974*/
975void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
976 Vdbe *v = pParse->pVdbe;
977 assert( v!=0 );
978 assert( pIdx!=0 );
979 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
980 P4_KEYINFO);
981}
982
drhc7379ce2013-10-30 02:28:23 +0000983#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +0000984/*
mistachkind5578432012-08-25 10:01:29 +0000985** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000986** insert a No-op and add the comment to that new instruction. This
987** makes the code easier to read during debugging. None of this happens
988** in a production build.
drhad6d9462004-09-19 02:15:24 +0000989*/
drhb07028f2011-10-14 21:49:18 +0000990static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000991 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000992 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000993 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000994 assert( p->aOp );
995 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
996 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
997 }
998}
999void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1000 va_list ap;
1001 if( p ){
danielk1977dba01372008-01-05 18:44:29 +00001002 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +00001003 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +00001004 va_end(ap);
1005 }
drhad6d9462004-09-19 02:15:24 +00001006}
drh16ee60f2008-06-20 18:13:25 +00001007void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1008 va_list ap;
drhb07028f2011-10-14 21:49:18 +00001009 if( p ){
1010 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +00001011 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +00001012 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +00001013 va_end(ap);
1014 }
1015}
1016#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +00001017
drh688852a2014-02-17 22:40:43 +00001018#ifdef SQLITE_VDBE_COVERAGE
1019/*
1020** Set the value if the iSrcLine field for the previously coded instruction.
1021*/
1022void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1023 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1024}
1025#endif /* SQLITE_VDBE_COVERAGE */
1026
drh9a324642003-09-06 20:12:01 +00001027/*
drh20411ea2009-05-29 19:00:12 +00001028** Return the opcode for a given address. If the address is -1, then
1029** return the most recently inserted opcode.
1030**
1031** If a memory allocation error has occurred prior to the calling of this
1032** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +00001033** is readable but not writable, though it is cast to a writable value.
1034** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +00001035** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +00001036** this routine is a valid pointer. But because the dummy.opcode is 0,
1037** dummy will never be written to. This is verified by code inspection and
1038** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +00001039*/
danielk19774adee202004-05-08 08:23:19 +00001040VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +00001041 /* C89 specifies that the constant "dummy" will be initialized to all
1042 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +00001043 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +00001044 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +00001045 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +00001046 addr = p->nOp - 1;
1047 }
drh17435752007-08-16 04:30:38 +00001048 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +00001049 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +00001050 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +00001051 }else{
1052 return &p->aOp[addr];
1053 }
drh9a324642003-09-06 20:12:01 +00001054}
1055
drhc7379ce2013-10-30 02:28:23 +00001056#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +00001057/*
drhf63552b2013-10-30 00:25:03 +00001058** Return an integer value for one of the parameters to the opcode pOp
1059** determined by character c.
1060*/
1061static int translateP(char c, const Op *pOp){
1062 if( c=='1' ) return pOp->p1;
1063 if( c=='2' ) return pOp->p2;
1064 if( c=='3' ) return pOp->p3;
1065 if( c=='4' ) return pOp->p4.i;
1066 return pOp->p5;
1067}
1068
drh81316f82013-10-29 20:40:47 +00001069/*
drh4eded602013-12-20 15:59:20 +00001070** Compute a string for the "comment" field of a VDBE opcode listing.
1071**
1072** The Synopsis: field in comments in the vdbe.c source file gets converted
1073** to an extra string that is appended to the sqlite3OpcodeName(). In the
1074** absence of other comments, this synopsis becomes the comment on the opcode.
1075** Some translation occurs:
1076**
1077** "PX" -> "r[X]"
1078** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1079** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1080** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +00001081*/
drhf63552b2013-10-30 00:25:03 +00001082static int displayComment(
1083 const Op *pOp, /* The opcode to be commented */
1084 const char *zP4, /* Previously obtained value for P4 */
1085 char *zTemp, /* Write result here */
1086 int nTemp /* Space available in zTemp[] */
1087){
drh81316f82013-10-29 20:40:47 +00001088 const char *zOpName;
1089 const char *zSynopsis;
1090 int nOpName;
1091 int ii, jj;
1092 zOpName = sqlite3OpcodeName(pOp->opcode);
1093 nOpName = sqlite3Strlen30(zOpName);
1094 if( zOpName[nOpName+1] ){
1095 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +00001096 char c;
drh81316f82013-10-29 20:40:47 +00001097 zSynopsis = zOpName += nOpName + 1;
drhf63552b2013-10-30 00:25:03 +00001098 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1099 if( c=='P' ){
1100 c = zSynopsis[++ii];
1101 if( c=='4' ){
1102 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1103 }else if( c=='X' ){
1104 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1105 seenCom = 1;
drh81316f82013-10-29 20:40:47 +00001106 }else{
drhf63552b2013-10-30 00:25:03 +00001107 int v1 = translateP(c, pOp);
1108 int v2;
1109 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1110 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1111 ii += 3;
1112 jj += sqlite3Strlen30(zTemp+jj);
1113 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +00001114 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1115 ii += 2;
1116 v2++;
1117 }
1118 if( v2>1 ){
1119 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1120 }
drhf63552b2013-10-30 00:25:03 +00001121 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1122 ii += 4;
1123 }
drh81316f82013-10-29 20:40:47 +00001124 }
1125 jj += sqlite3Strlen30(zTemp+jj);
1126 }else{
drhf63552b2013-10-30 00:25:03 +00001127 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001128 }
1129 }
1130 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1131 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1132 jj += sqlite3Strlen30(zTemp+jj);
1133 }
1134 if( jj<nTemp ) zTemp[jj] = 0;
1135 }else if( pOp->zComment ){
1136 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1137 jj = sqlite3Strlen30(zTemp);
1138 }else{
1139 zTemp[0] = 0;
1140 jj = 0;
1141 }
1142 return jj;
1143}
1144#endif /* SQLITE_DEBUG */
1145
drhf7e36902015-08-13 21:32:41 +00001146#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1147/*
1148** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1149** that can be displayed in the P4 column of EXPLAIN output.
1150*/
drh5f4a6862016-01-30 12:50:25 +00001151static void displayP4Expr(StrAccum *p, Expr *pExpr){
drha67a3162015-08-15 00:51:23 +00001152 const char *zOp = 0;
drhf7e36902015-08-13 21:32:41 +00001153 switch( pExpr->op ){
1154 case TK_STRING:
drh5f4a6862016-01-30 12:50:25 +00001155 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
drhf7e36902015-08-13 21:32:41 +00001156 break;
drhf7e36902015-08-13 21:32:41 +00001157 case TK_INTEGER:
drh5f4a6862016-01-30 12:50:25 +00001158 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
drhf7e36902015-08-13 21:32:41 +00001159 break;
drhf7e36902015-08-13 21:32:41 +00001160 case TK_NULL:
drh5f4a6862016-01-30 12:50:25 +00001161 sqlite3XPrintf(p, "NULL");
drhf7e36902015-08-13 21:32:41 +00001162 break;
drhf7e36902015-08-13 21:32:41 +00001163 case TK_REGISTER: {
drh5f4a6862016-01-30 12:50:25 +00001164 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
drhf7e36902015-08-13 21:32:41 +00001165 break;
1166 }
drhf7e36902015-08-13 21:32:41 +00001167 case TK_COLUMN: {
drhfe663522015-08-14 01:03:21 +00001168 if( pExpr->iColumn<0 ){
drh5f4a6862016-01-30 12:50:25 +00001169 sqlite3XPrintf(p, "rowid");
drhfe663522015-08-14 01:03:21 +00001170 }else{
drh5f4a6862016-01-30 12:50:25 +00001171 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
drhfe663522015-08-14 01:03:21 +00001172 }
drhf7e36902015-08-13 21:32:41 +00001173 break;
1174 }
drha67a3162015-08-15 00:51:23 +00001175 case TK_LT: zOp = "LT"; break;
1176 case TK_LE: zOp = "LE"; break;
1177 case TK_GT: zOp = "GT"; break;
1178 case TK_GE: zOp = "GE"; break;
1179 case TK_NE: zOp = "NE"; break;
1180 case TK_EQ: zOp = "EQ"; break;
1181 case TK_IS: zOp = "IS"; break;
1182 case TK_ISNOT: zOp = "ISNOT"; break;
1183 case TK_AND: zOp = "AND"; break;
1184 case TK_OR: zOp = "OR"; break;
1185 case TK_PLUS: zOp = "ADD"; break;
1186 case TK_STAR: zOp = "MUL"; break;
1187 case TK_MINUS: zOp = "SUB"; break;
1188 case TK_REM: zOp = "REM"; break;
1189 case TK_BITAND: zOp = "BITAND"; break;
1190 case TK_BITOR: zOp = "BITOR"; break;
1191 case TK_SLASH: zOp = "DIV"; break;
1192 case TK_LSHIFT: zOp = "LSHIFT"; break;
1193 case TK_RSHIFT: zOp = "RSHIFT"; break;
1194 case TK_CONCAT: zOp = "CONCAT"; break;
1195 case TK_UMINUS: zOp = "MINUS"; break;
1196 case TK_UPLUS: zOp = "PLUS"; break;
1197 case TK_BITNOT: zOp = "BITNOT"; break;
1198 case TK_NOT: zOp = "NOT"; break;
1199 case TK_ISNULL: zOp = "ISNULL"; break;
1200 case TK_NOTNULL: zOp = "NOTNULL"; break;
drhf7e36902015-08-13 21:32:41 +00001201
1202 default:
drh5f4a6862016-01-30 12:50:25 +00001203 sqlite3XPrintf(p, "%s", "expr");
drhf7e36902015-08-13 21:32:41 +00001204 break;
1205 }
1206
drha67a3162015-08-15 00:51:23 +00001207 if( zOp ){
drh5f4a6862016-01-30 12:50:25 +00001208 sqlite3XPrintf(p, "%s(", zOp);
1209 displayP4Expr(p, pExpr->pLeft);
1210 if( pExpr->pRight ){
1211 sqlite3StrAccumAppend(p, ",", 1);
1212 displayP4Expr(p, pExpr->pRight);
drha67a3162015-08-15 00:51:23 +00001213 }
drh5f4a6862016-01-30 12:50:25 +00001214 sqlite3StrAccumAppend(p, ")", 1);
drhf7e36902015-08-13 21:32:41 +00001215 }
drhf7e36902015-08-13 21:32:41 +00001216}
1217#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1218
1219
1220#if VDBE_DISPLAY_P4
drh9a324642003-09-06 20:12:01 +00001221/*
drh66a51672008-01-03 00:01:23 +00001222** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001223** Use zTemp for any required temporary buffer space.
1224*/
drh66a51672008-01-03 00:01:23 +00001225static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1226 char *zP4 = zTemp;
drh5f4a6862016-01-30 12:50:25 +00001227 StrAccum x;
drhd3d39e92004-05-20 22:16:29 +00001228 assert( nTemp>=20 );
drh5f4a6862016-01-30 12:50:25 +00001229 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
drh66a51672008-01-03 00:01:23 +00001230 switch( pOp->p4type ){
1231 case P4_KEYINFO: {
drh5f4a6862016-01-30 12:50:25 +00001232 int j;
danielk19772dca4ac2008-01-03 11:50:29 +00001233 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001234 assert( pKeyInfo->aSortOrder!=0 );
drh5f4a6862016-01-30 12:50:25 +00001235 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
drhd3d39e92004-05-20 22:16:29 +00001236 for(j=0; j<pKeyInfo->nField; j++){
1237 CollSeq *pColl = pKeyInfo->aColl[j];
drh5f4a6862016-01-30 12:50:25 +00001238 const char *zColl = pColl ? pColl->zName : "";
1239 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1240 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
drhd3d39e92004-05-20 22:16:29 +00001241 }
drh5f4a6862016-01-30 12:50:25 +00001242 sqlite3StrAccumAppend(&x, ")", 1);
drhd3d39e92004-05-20 22:16:29 +00001243 break;
1244 }
drh28935362013-12-07 20:39:19 +00001245#ifdef SQLITE_ENABLE_CURSOR_HINTS
1246 case P4_EXPR: {
drh5f4a6862016-01-30 12:50:25 +00001247 displayP4Expr(&x, pOp->p4.pExpr);
drh28935362013-12-07 20:39:19 +00001248 break;
1249 }
1250#endif
drh66a51672008-01-03 00:01:23 +00001251 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001252 CollSeq *pColl = pOp->p4.pColl;
drh5f4a6862016-01-30 12:50:25 +00001253 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001254 break;
1255 }
drh66a51672008-01-03 00:01:23 +00001256 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001257 FuncDef *pDef = pOp->p4.pFunc;
drh5f4a6862016-01-30 12:50:25 +00001258 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001259 break;
1260 }
drhe2d9e7c2015-06-26 18:47:53 +00001261#ifdef SQLITE_DEBUG
drh9c7c9132015-06-26 18:16:52 +00001262 case P4_FUNCCTX: {
1263 FuncDef *pDef = pOp->p4.pCtx->pFunc;
drh5f4a6862016-01-30 12:50:25 +00001264 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
drh9c7c9132015-06-26 18:16:52 +00001265 break;
1266 }
drhe2d9e7c2015-06-26 18:47:53 +00001267#endif
drh66a51672008-01-03 00:01:23 +00001268 case P4_INT64: {
drh5f4a6862016-01-30 12:50:25 +00001269 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001270 break;
1271 }
drh66a51672008-01-03 00:01:23 +00001272 case P4_INT32: {
drh5f4a6862016-01-30 12:50:25 +00001273 sqlite3XPrintf(&x, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001274 break;
1275 }
drh66a51672008-01-03 00:01:23 +00001276 case P4_REAL: {
drh5f4a6862016-01-30 12:50:25 +00001277 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001278 break;
1279 }
drh66a51672008-01-03 00:01:23 +00001280 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001281 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001282 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001283 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001284 }else if( pMem->flags & MEM_Int ){
drh5f4a6862016-01-30 12:50:25 +00001285 sqlite3XPrintf(&x, "%lld", pMem->u.i);
drhd4e70eb2008-01-02 00:34:36 +00001286 }else if( pMem->flags & MEM_Real ){
drh5f4a6862016-01-30 12:50:25 +00001287 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001288 }else if( pMem->flags & MEM_Null ){
drh5f4a6862016-01-30 12:50:25 +00001289 zP4 = "NULL";
drh56016892009-08-25 14:24:04 +00001290 }else{
1291 assert( pMem->flags & MEM_Blob );
1292 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001293 }
drh598f1342007-10-23 15:39:45 +00001294 break;
1295 }
drha967e882006-06-13 01:04:52 +00001296#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001297 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001298 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh5f4a6862016-01-30 12:50:25 +00001299 sqlite3XPrintf(&x, "vtab:%p", pVtab);
drha967e882006-06-13 01:04:52 +00001300 break;
1301 }
1302#endif
drh0acb7e42008-06-25 00:12:41 +00001303 case P4_INTARRAY: {
drh5f4a6862016-01-30 12:50:25 +00001304 int i;
drhb1702022016-01-30 00:45:18 +00001305 int *ai = pOp->p4.ai;
1306 int n = ai[0]; /* The first element of an INTARRAY is always the
1307 ** count of the number of elements to follow */
drh5f4a6862016-01-30 12:50:25 +00001308 for(i=1; i<n; i++){
1309 sqlite3XPrintf(&x, ",%d", ai[i]);
1310 }
drhb1702022016-01-30 00:45:18 +00001311 zTemp[0] = '[';
drh5f4a6862016-01-30 12:50:25 +00001312 sqlite3StrAccumAppend(&x, "]", 1);
drh0acb7e42008-06-25 00:12:41 +00001313 break;
1314 }
dan165921a2009-08-28 18:53:45 +00001315 case P4_SUBPROGRAM: {
drh5f4a6862016-01-30 12:50:25 +00001316 sqlite3XPrintf(&x, "program");
dan165921a2009-08-28 18:53:45 +00001317 break;
1318 }
drh4a6f3aa2011-08-28 00:19:26 +00001319 case P4_ADVANCE: {
1320 zTemp[0] = 0;
1321 break;
1322 }
drhd3d39e92004-05-20 22:16:29 +00001323 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001324 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001325 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001326 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001327 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001328 }
1329 }
1330 }
drh5f4a6862016-01-30 12:50:25 +00001331 sqlite3StrAccumFinish(&x);
drh66a51672008-01-03 00:01:23 +00001332 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001333 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001334}
drhf7e36902015-08-13 21:32:41 +00001335#endif /* VDBE_DISPLAY_P4 */
drhd3d39e92004-05-20 22:16:29 +00001336
drh900b31e2007-08-28 02:27:51 +00001337/*
drhd0679ed2007-08-28 22:24:34 +00001338** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001339**
drhbdaec522011-04-04 00:14:43 +00001340** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001341** attached databases that will be use. A mask of these databases
1342** is maintained in p->btreeMask. The p->lockMask value is the subset of
1343** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001344*/
drhfb982642007-08-30 01:19:59 +00001345void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001346 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001347 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001348 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001349 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001350 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001351 }
drh900b31e2007-08-28 02:27:51 +00001352}
1353
dan20d876f2016-01-07 16:06:22 +00001354#if !defined(SQLITE_OMIT_SHARED_CACHE)
drhbdaec522011-04-04 00:14:43 +00001355/*
1356** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1357** this routine obtains the mutex associated with each BtShared structure
1358** that may be accessed by the VM passed as an argument. In doing so it also
1359** sets the BtShared.db member of each of the BtShared structures, ensuring
1360** that the correct busy-handler callback is invoked if required.
1361**
1362** If SQLite is not threadsafe but does support shared-cache mode, then
1363** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1364** of all of BtShared structures accessible via the database handle
1365** associated with the VM.
1366**
1367** If SQLite is not threadsafe and does not support shared-cache mode, this
1368** function is a no-op.
1369**
1370** The p->btreeMask field is a bitmask of all btrees that the prepared
1371** statement p will ever use. Let N be the number of bits in p->btreeMask
1372** corresponding to btrees that use shared cache. Then the runtime of
1373** this routine is N*N. But as N is rarely more than 1, this should not
1374** be a problem.
1375*/
1376void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001377 int i;
drhdc5b0472011-04-06 22:05:53 +00001378 sqlite3 *db;
1379 Db *aDb;
1380 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001381 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001382 db = p->db;
1383 aDb = db->aDb;
1384 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001385 for(i=0; i<nDb; i++){
1386 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001387 sqlite3BtreeEnter(aDb[i].pBt);
1388 }
1389 }
drhbdaec522011-04-04 00:14:43 +00001390}
drhe54e0512011-04-05 17:31:56 +00001391#endif
drhbdaec522011-04-04 00:14:43 +00001392
drhe54e0512011-04-05 17:31:56 +00001393#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001394/*
1395** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1396*/
drhf1aabd62015-06-17 01:31:28 +00001397static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001398 int i;
drhdc5b0472011-04-06 22:05:53 +00001399 sqlite3 *db;
1400 Db *aDb;
1401 int nDb;
drhdc5b0472011-04-06 22:05:53 +00001402 db = p->db;
1403 aDb = db->aDb;
1404 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001405 for(i=0; i<nDb; i++){
1406 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001407 sqlite3BtreeLeave(aDb[i].pBt);
1408 }
1409 }
drhbdaec522011-04-04 00:14:43 +00001410}
drhf1aabd62015-06-17 01:31:28 +00001411void sqlite3VdbeLeave(Vdbe *p){
1412 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1413 vdbeLeave(p);
1414}
drhbdaec522011-04-04 00:14:43 +00001415#endif
drhd3d39e92004-05-20 22:16:29 +00001416
danielk19778b60e0f2005-01-12 09:10:39 +00001417#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001418/*
1419** Print a single opcode. This routine is used for debugging only.
1420*/
danielk19774adee202004-05-08 08:23:19 +00001421void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001422 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001423 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001424 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001425 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001426 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001427 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001428#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001429 displayComment(pOp, zP4, zCom, sizeof(zCom));
1430#else
drh2926f962014-02-17 01:13:28 +00001431 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001432#endif
drh4eded602013-12-20 15:59:20 +00001433 /* NB: The sqlite3OpcodeName() function is implemented by code created
1434 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1435 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001436 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001437 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001438 zCom
drh1db639c2008-01-17 02:36:28 +00001439 );
drh9a324642003-09-06 20:12:01 +00001440 fflush(pOut);
1441}
1442#endif
1443
1444/*
drh76ff3a02004-09-24 22:32:30 +00001445** Release an array of N Mem elements
1446*/
drhc890fec2008-08-01 20:10:08 +00001447static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001448 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001449 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001450 sqlite3 *db = p->db;
dand46def72010-07-24 11:28:28 +00001451 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001452 do{
drh17bcb102014-09-18 21:25:33 +00001453 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001454 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001455 return;
1456 }
drh069c23c2014-09-19 16:13:12 +00001457 do{
danielk1977e972e032008-09-19 18:32:26 +00001458 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001459 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001460
1461 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1462 ** that takes advantage of the fact that the memory cell value is
1463 ** being set to NULL after releasing any dynamic resources.
1464 **
1465 ** The justification for duplicating code is that according to
1466 ** callgrind, this causes a certain test case to hit the CPU 4.7
1467 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1468 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1469 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1470 ** with no indexes using a single prepared INSERT statement, bind()
1471 ** and reset(). Inserts are grouped into a transaction.
1472 */
drhb6e8fd12014-03-06 01:56:33 +00001473 testcase( p->flags & MEM_Agg );
1474 testcase( p->flags & MEM_Dyn );
1475 testcase( p->flags & MEM_Frame );
1476 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001477 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001478 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001479 }else if( p->szMalloc ){
danielk1977e972e032008-09-19 18:32:26 +00001480 sqlite3DbFree(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001481 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001482 }
1483
drha5750cf2014-02-07 13:20:31 +00001484 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001485 }while( (++p)<pEnd );
drh76ff3a02004-09-24 22:32:30 +00001486 }
1487}
1488
dan65a7cd12009-09-01 12:16:01 +00001489/*
1490** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1491** allocated by the OP_Program opcode in sqlite3VdbeExec().
1492*/
dan165921a2009-08-28 18:53:45 +00001493void sqlite3VdbeFrameDelete(VdbeFrame *p){
1494 int i;
1495 Mem *aMem = VdbeFrameMem(p);
1496 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1497 for(i=0; i<p->nChildCsr; i++){
1498 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1499 }
1500 releaseMemArray(aMem, p->nChildMem);
drhb9626cf2016-02-22 16:04:31 +00001501 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
dan165921a2009-08-28 18:53:45 +00001502 sqlite3DbFree(p->v->db, p);
1503}
1504
drhb7f91642004-10-31 02:22:47 +00001505#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001506/*
drh9a324642003-09-06 20:12:01 +00001507** Give a listing of the program in the virtual machine.
1508**
danielk19774adee202004-05-08 08:23:19 +00001509** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001510** running the code, it invokes the callback once for each instruction.
1511** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001512**
1513** When p->explain==1, each instruction is listed. When
1514** p->explain==2, only OP_Explain instructions are listed and these
1515** are shown in a different format. p->explain==2 is used to implement
1516** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001517**
1518** When p->explain==1, first the main program is listed, then each of
1519** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001520*/
danielk19774adee202004-05-08 08:23:19 +00001521int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001522 Vdbe *p /* The VDBE */
1523){
drh5cfa5842009-12-31 20:35:08 +00001524 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001525 int nSub = 0; /* Number of sub-vdbes seen so far */
1526 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001527 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1528 sqlite3 *db = p->db; /* The database connection */
1529 int i; /* Loop counter */
1530 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001531 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001532
drh9a324642003-09-06 20:12:01 +00001533 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001534 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001535 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001536
drh9cbf3422008-01-17 16:22:13 +00001537 /* Even though this opcode does not use dynamic strings for
1538 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001539 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001540 */
dan165921a2009-08-28 18:53:45 +00001541 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001542 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001543
mistachkinfad30392016-02-13 23:43:46 +00001544 if( p->rc==SQLITE_NOMEM_BKPT ){
danielk19776c359f02008-11-21 16:58:03 +00001545 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1546 ** sqlite3_column_text16() failed. */
drh4a642b62016-02-05 01:55:27 +00001547 sqlite3OomFault(db);
danielk19776c359f02008-11-21 16:58:03 +00001548 return SQLITE_ERROR;
1549 }
1550
drh5cfa5842009-12-31 20:35:08 +00001551 /* When the number of output rows reaches nRow, that means the
1552 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1553 ** nRow is the sum of the number of rows in the main program, plus
1554 ** the sum of the number of rows in all trigger subprograms encountered
1555 ** so far. The nRow value will increase as new trigger subprograms are
1556 ** encountered, but p->pc will eventually catch up to nRow.
1557 */
dan165921a2009-08-28 18:53:45 +00001558 nRow = p->nOp;
1559 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001560 /* The first 8 memory cells are used for the result set. So we will
1561 ** commandeer the 9th cell to use as storage for an array of pointers
1562 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1563 ** cells. */
1564 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001565 pSub = &p->aMem[9];
1566 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001567 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1568 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001569 nSub = pSub->n/sizeof(Vdbe*);
1570 apSub = (SubProgram **)pSub->z;
1571 }
1572 for(i=0; i<nSub; i++){
1573 nRow += apSub[i]->nOp;
1574 }
1575 }
1576
drhecc92422005-09-10 16:46:12 +00001577 do{
1578 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001579 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1580 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001581 p->rc = SQLITE_OK;
1582 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001583 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001584 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001585 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00001586 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001587 }else{
drh81316f82013-10-29 20:40:47 +00001588 char *zP4;
dan165921a2009-08-28 18:53:45 +00001589 Op *pOp;
1590 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001591 /* The output line number is small enough that we are still in the
1592 ** main program. */
dan165921a2009-08-28 18:53:45 +00001593 pOp = &p->aOp[i];
1594 }else{
drh5cfa5842009-12-31 20:35:08 +00001595 /* We are currently listing subprograms. Figure out which one and
1596 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001597 int j;
1598 i -= p->nOp;
1599 for(j=0; i>=apSub[j]->nOp; j++){
1600 i -= apSub[j]->nOp;
1601 }
1602 pOp = &apSub[j]->aOp[i];
1603 }
danielk19770d78bae2008-01-03 07:09:48 +00001604 if( p->explain==1 ){
1605 pMem->flags = MEM_Int;
danielk19770d78bae2008-01-03 07:09:48 +00001606 pMem->u.i = i; /* Program counter */
1607 pMem++;
1608
1609 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001610 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
danielk19770d78bae2008-01-03 07:09:48 +00001611 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001612 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001613 pMem->enc = SQLITE_UTF8;
1614 pMem++;
dan165921a2009-08-28 18:53:45 +00001615
drh5cfa5842009-12-31 20:35:08 +00001616 /* When an OP_Program opcode is encounter (the only opcode that has
1617 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1618 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1619 ** has not already been seen.
1620 */
dan165921a2009-08-28 18:53:45 +00001621 if( pOp->p4type==P4_SUBPROGRAM ){
1622 int nByte = (nSub+1)*sizeof(SubProgram*);
1623 int j;
1624 for(j=0; j<nSub; j++){
1625 if( apSub[j]==pOp->p4.pProgram ) break;
1626 }
dan2b9ee772012-03-31 09:59:44 +00001627 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001628 apSub = (SubProgram **)pSub->z;
1629 apSub[nSub++] = pOp->p4.pProgram;
1630 pSub->flags |= MEM_Blob;
1631 pSub->n = nSub*sizeof(SubProgram*);
1632 }
1633 }
danielk19770d78bae2008-01-03 07:09:48 +00001634 }
drheb2e1762004-05-27 01:53:56 +00001635
1636 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001637 pMem->u.i = pOp->p1; /* P1 */
drheb2e1762004-05-27 01:53:56 +00001638 pMem++;
1639
1640 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001641 pMem->u.i = pOp->p2; /* P2 */
drheb2e1762004-05-27 01:53:56 +00001642 pMem++;
1643
dan2ce22452010-11-08 19:01:16 +00001644 pMem->flags = MEM_Int;
1645 pMem->u.i = pOp->p3; /* P3 */
dan2ce22452010-11-08 19:01:16 +00001646 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001647
drh2f2b0272015-08-14 18:50:04 +00001648 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001649 assert( p->db->mallocFailed );
1650 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001651 }
drhc91b2fd2014-03-01 18:13:23 +00001652 pMem->flags = MEM_Str|MEM_Term;
drh2f2b0272015-08-14 18:50:04 +00001653 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
drh81316f82013-10-29 20:40:47 +00001654 if( zP4!=pMem->z ){
1655 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
danielk1977a7a8e142008-02-13 18:25:27 +00001656 }else{
1657 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001658 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001659 pMem->enc = SQLITE_UTF8;
1660 }
danielk19770d78bae2008-01-03 07:09:48 +00001661 pMem++;
drheb2e1762004-05-27 01:53:56 +00001662
danielk19770d78bae2008-01-03 07:09:48 +00001663 if( p->explain==1 ){
drh322f2852014-09-19 00:43:39 +00001664 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
danielk1977357864e2009-03-25 15:43:08 +00001665 assert( p->db->mallocFailed );
1666 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001667 }
drhc91b2fd2014-03-01 18:13:23 +00001668 pMem->flags = MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001669 pMem->n = 2;
1670 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001671 pMem->enc = SQLITE_UTF8;
1672 pMem++;
1673
drhc7379ce2013-10-30 02:28:23 +00001674#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh322f2852014-09-19 00:43:39 +00001675 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
drh81316f82013-10-29 20:40:47 +00001676 assert( p->db->mallocFailed );
1677 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001678 }
drhc91b2fd2014-03-01 18:13:23 +00001679 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001680 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
drh81316f82013-10-29 20:40:47 +00001681 pMem->enc = SQLITE_UTF8;
1682#else
1683 pMem->flags = MEM_Null; /* Comment */
drh81316f82013-10-29 20:40:47 +00001684#endif
danielk19770d78bae2008-01-03 07:09:48 +00001685 }
1686
dan2ce22452010-11-08 19:01:16 +00001687 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001688 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001689 p->rc = SQLITE_OK;
1690 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001691 }
drh826fb5a2004-02-14 23:59:57 +00001692 return rc;
drh9a324642003-09-06 20:12:01 +00001693}
drhb7f91642004-10-31 02:22:47 +00001694#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001695
drh7c4ac0c2007-04-05 11:25:58 +00001696#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001697/*
drh3f7d4e42004-07-24 14:35:58 +00001698** Print the SQL that was used to generate a VDBE program.
1699*/
1700void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001701 const char *z = 0;
1702 if( p->zSql ){
1703 z = p->zSql;
1704 }else if( p->nOp>=1 ){
1705 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001706 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001707 z = pOp->p4.z;
1708 while( sqlite3Isspace(*z) ) z++;
1709 }
drh3f7d4e42004-07-24 14:35:58 +00001710 }
drh84e55a82013-11-13 17:58:23 +00001711 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001712}
drh7c4ac0c2007-04-05 11:25:58 +00001713#endif
drh3f7d4e42004-07-24 14:35:58 +00001714
drh602c2372007-03-01 00:29:13 +00001715#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1716/*
1717** Print an IOTRACE message showing SQL content.
1718*/
1719void sqlite3VdbeIOTraceSql(Vdbe *p){
1720 int nOp = p->nOp;
1721 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001722 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001723 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001724 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001725 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001726 int i, j;
drh00a18e42007-08-13 11:10:34 +00001727 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001728 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001729 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001730 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001731 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001732 if( z[i-1]!=' ' ){
1733 z[j++] = ' ';
1734 }
1735 }else{
1736 z[j++] = z[i];
1737 }
1738 }
1739 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001740 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001741 }
1742}
1743#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1744
drha7dc4a32016-01-25 02:15:02 +00001745/* An instance of this object describes bulk memory available for use
1746** by subcomponents of a prepared statement. Space is allocated out
1747** of a ReusableSpace object by the allocSpace() routine below.
1748*/
1749struct ReusableSpace {
1750 u8 *pSpace; /* Available memory */
1751 int nFree; /* Bytes of available memory */
1752 int nNeeded; /* Total bytes that could not be allocated */
1753};
1754
1755/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1756** from the ReusableSpace object. Return a pointer to the allocated
1757** memory on success. If insufficient memory is available in the
1758** ReusableSpace object, increase the ReusableSpace.nNeeded
1759** value by the amount needed and return NULL.
drh4800b2e2009-12-08 15:35:22 +00001760**
drha7dc4a32016-01-25 02:15:02 +00001761** If pBuf is not initially NULL, that means that the memory has already
1762** been allocated by a prior call to this routine, so just return a copy
1763** of pBuf and leave ReusableSpace unchanged.
drhb2771ce2009-02-20 01:28:59 +00001764**
drha7dc4a32016-01-25 02:15:02 +00001765** This allocator is employed to repurpose unused slots at the end of the
1766** opcode array of prepared state for other memory needs of the prepared
1767** statement.
drhb2771ce2009-02-20 01:28:59 +00001768*/
drh4800b2e2009-12-08 15:35:22 +00001769static void *allocSpace(
drha7dc4a32016-01-25 02:15:02 +00001770 struct ReusableSpace *p, /* Bulk memory available for allocation */
1771 void *pBuf, /* Pointer to a prior allocation */
1772 int nByte /* Bytes of memory needed */
drhb2771ce2009-02-20 01:28:59 +00001773){
drha7dc4a32016-01-25 02:15:02 +00001774 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
drhd797a9b2015-12-07 16:43:44 +00001775 if( pBuf==0 ){
1776 nByte = ROUND8(nByte);
drha7dc4a32016-01-25 02:15:02 +00001777 if( nByte <= p->nFree ){
1778 p->nFree -= nByte;
1779 pBuf = &p->pSpace[p->nFree];
drhd797a9b2015-12-07 16:43:44 +00001780 }else{
drha7dc4a32016-01-25 02:15:02 +00001781 p->nNeeded += nByte;
drhd797a9b2015-12-07 16:43:44 +00001782 }
drhb2771ce2009-02-20 01:28:59 +00001783 }
drhd797a9b2015-12-07 16:43:44 +00001784 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
drh4800b2e2009-12-08 15:35:22 +00001785 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001786}
drh602c2372007-03-01 00:29:13 +00001787
drh3f7d4e42004-07-24 14:35:58 +00001788/*
drh124c0b42011-06-01 18:15:55 +00001789** Rewind the VDBE back to the beginning in preparation for
1790** running it.
drh9a324642003-09-06 20:12:01 +00001791*/
drh124c0b42011-06-01 18:15:55 +00001792void sqlite3VdbeRewind(Vdbe *p){
1793#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1794 int i;
1795#endif
drh9a324642003-09-06 20:12:01 +00001796 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001797 assert( p->magic==VDBE_MAGIC_INIT );
1798
drhc16a03b2004-09-15 13:38:10 +00001799 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001800 */
drhc16a03b2004-09-15 13:38:10 +00001801 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001802
danielk197700e13612008-11-17 19:18:54 +00001803 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001804 p->magic = VDBE_MAGIC_RUN;
1805
drh124c0b42011-06-01 18:15:55 +00001806#ifdef SQLITE_DEBUG
drh9f6168b2016-03-19 23:32:58 +00001807 for(i=0; i<p->nMem; i++){
drh124c0b42011-06-01 18:15:55 +00001808 assert( p->aMem[i].db==p->db );
1809 }
1810#endif
1811 p->pc = -1;
1812 p->rc = SQLITE_OK;
1813 p->errorAction = OE_Abort;
drh124c0b42011-06-01 18:15:55 +00001814 p->nChange = 0;
1815 p->cacheCtr = 1;
1816 p->minWriteFileFormat = 255;
1817 p->iStatement = 0;
1818 p->nFkConstraint = 0;
1819#ifdef VDBE_PROFILE
1820 for(i=0; i<p->nOp; i++){
1821 p->aOp[i].cnt = 0;
1822 p->aOp[i].cycles = 0;
1823 }
1824#endif
1825}
1826
1827/*
1828** Prepare a virtual machine for execution for the first time after
1829** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001830** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001831** After the VDBE has be prepped, it can be executed by one or more
1832** calls to sqlite3VdbeExec().
1833**
peter.d.reid60ec9142014-09-06 16:39:46 +00001834** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001835** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001836** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001837** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1838** the Vdbe from the Parse object that helped generate it so that the
1839** the Vdbe becomes an independent entity and the Parse object can be
1840** destroyed.
1841**
1842** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1843** to its initial state after it has been run.
1844*/
1845void sqlite3VdbeMakeReady(
1846 Vdbe *p, /* The VDBE */
1847 Parse *pParse /* Parsing context */
1848){
1849 sqlite3 *db; /* The database connection */
1850 int nVar; /* Number of parameters */
1851 int nMem; /* Number of VM memory registers */
1852 int nCursor; /* Number of cursors required */
1853 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001854 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001855 int n; /* Loop counter */
drha7dc4a32016-01-25 02:15:02 +00001856 struct ReusableSpace x; /* Reusable bulk memory */
drh124c0b42011-06-01 18:15:55 +00001857
1858 assert( p!=0 );
1859 assert( p->nOp>0 );
1860 assert( pParse!=0 );
1861 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001862 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001863 db = p->db;
1864 assert( db->mallocFailed==0 );
1865 nVar = pParse->nVar;
1866 nMem = pParse->nMem;
1867 nCursor = pParse->nTab;
1868 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001869 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001870 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001871
drh3cdce922016-03-21 00:30:40 +00001872 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1873 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1874 ** space at the end of aMem[] for cursors 1 and greater.
danielk1977cd3e8f72008-03-25 09:47:35 +00001875 ** See also: allocateCursor().
1876 */
1877 nMem += nCursor;
drh9f6168b2016-03-19 23:32:58 +00001878 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
danielk1977cd3e8f72008-03-25 09:47:35 +00001879
drha7dc4a32016-01-25 02:15:02 +00001880 /* Figure out how much reusable memory is available at the end of the
1881 ** opcode array. This extra memory will be reallocated for other elements
1882 ** of the prepared statement.
drh9a324642003-09-06 20:12:01 +00001883 */
drha7dc4a32016-01-25 02:15:02 +00001884 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
1885 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
1886 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1887 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
1888 assert( x.nFree>=0 );
1889 if( x.nFree>0 ){
1890 memset(x.pSpace, 0, x.nFree);
1891 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
drh08169052016-01-05 03:39:25 +00001892 }
drh19875c82009-12-08 19:58:19 +00001893
drh124c0b42011-06-01 18:15:55 +00001894 resolveP2Values(p, &nArg);
1895 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1896 if( pParse->explain && nMem<10 ){
1897 nMem = 10;
1898 }
drhaab910c2011-06-27 00:01:22 +00001899 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001900
drha7dc4a32016-01-25 02:15:02 +00001901 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1902 ** passes. On the first pass, we try to reuse unused memory at the
drh124c0b42011-06-01 18:15:55 +00001903 ** end of the opcode array. If we are unable to satisfy all memory
1904 ** requirements by reusing the opcode array tail, then the second
drha7dc4a32016-01-25 02:15:02 +00001905 ** pass will fill in the remainder using a fresh memory allocation.
drh124c0b42011-06-01 18:15:55 +00001906 **
1907 ** This two-pass approach that reuses as much memory as possible from
drha7dc4a32016-01-25 02:15:02 +00001908 ** the leftover memory at the end of the opcode array. This can significantly
drh124c0b42011-06-01 18:15:55 +00001909 ** reduce the amount of memory held by a prepared statement.
1910 */
1911 do {
drha7dc4a32016-01-25 02:15:02 +00001912 x.nNeeded = 0;
1913 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
1914 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
1915 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
1916 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
1917 p->aOnceFlag = allocSpace(&x, p->aOnceFlag, nOnce);
dane2f771b2014-11-03 15:33:17 +00001918#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drha7dc4a32016-01-25 02:15:02 +00001919 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
dane2f771b2014-11-03 15:33:17 +00001920#endif
drha7dc4a32016-01-25 02:15:02 +00001921 if( x.nNeeded==0 ) break;
1922 x.pSpace = p->pFree = sqlite3DbMallocZero(db, x.nNeeded);
1923 x.nFree = x.nNeeded;
1924 }while( !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001925
drhd2a56232013-01-28 19:00:20 +00001926 p->nCursor = nCursor;
dan1d8cb212011-12-09 13:24:16 +00001927 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001928 if( p->aVar ){
1929 p->nVar = (ynVar)nVar;
1930 for(n=0; n<nVar; n++){
1931 p->aVar[n].flags = MEM_Null;
1932 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001933 }
drh82a48512003-09-06 22:45:20 +00001934 }
drh6d664b42016-01-20 01:48:25 +00001935 p->nzVar = pParse->nzVar;
1936 p->azVar = pParse->azVar;
1937 pParse->nzVar = 0;
1938 pParse->azVar = 0;
drh124c0b42011-06-01 18:15:55 +00001939 if( p->aMem ){
drh9f6168b2016-03-19 23:32:58 +00001940 p->nMem = nMem;
1941 for(n=0; n<nMem; n++){
drha5750cf2014-02-07 13:20:31 +00001942 p->aMem[n].flags = MEM_Undefined;
drh124c0b42011-06-01 18:15:55 +00001943 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001944 }
drh9a324642003-09-06 20:12:01 +00001945 }
drh124c0b42011-06-01 18:15:55 +00001946 p->explain = pParse->explain;
1947 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001948}
1949
drh9a324642003-09-06 20:12:01 +00001950/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001951** Close a VDBE cursor and release all the resources that cursor
1952** happens to hold.
drh9a324642003-09-06 20:12:01 +00001953*/
drhdfe88ec2008-11-03 20:55:06 +00001954void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001955 if( pCx==0 ){
1956 return;
1957 }
drhc960dcb2015-11-20 19:22:01 +00001958 assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE );
1959 switch( pCx->eCurType ){
1960 case CURTYPE_SORTER: {
1961 sqlite3VdbeSorterClose(p->db, pCx);
1962 break;
1963 }
1964 case CURTYPE_BTREE: {
1965 if( pCx->pBt ){
1966 sqlite3BtreeClose(pCx->pBt);
1967 /* The pCx->pCursor will be close automatically, if it exists, by
1968 ** the call above. */
1969 }else{
1970 assert( pCx->uc.pCursor!=0 );
1971 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
1972 }
1973 break;
1974 }
drh9eff6162006-06-12 21:59:13 +00001975#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00001976 case CURTYPE_VTAB: {
1977 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
1978 const sqlite3_module *pModule = pVCur->pVtab->pModule;
1979 assert( pVCur->pVtab->nRef>0 );
1980 pVCur->pVtab->nRef--;
1981 pModule->xClose(pVCur);
1982 break;
1983 }
drh9eff6162006-06-12 21:59:13 +00001984#endif
drhc960dcb2015-11-20 19:22:01 +00001985 }
drh9a324642003-09-06 20:12:01 +00001986}
1987
dan65a7cd12009-09-01 12:16:01 +00001988/*
drhab4e7f32015-04-16 18:11:50 +00001989** Close all cursors in the current frame.
1990*/
1991static void closeCursorsInFrame(Vdbe *p){
1992 if( p->apCsr ){
1993 int i;
1994 for(i=0; i<p->nCursor; i++){
1995 VdbeCursor *pC = p->apCsr[i];
1996 if( pC ){
1997 sqlite3VdbeFreeCursor(p, pC);
1998 p->apCsr[i] = 0;
1999 }
2000 }
2001 }
2002}
2003
2004/*
dan65a7cd12009-09-01 12:16:01 +00002005** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2006** is used, for example, when a trigger sub-program is halted to restore
2007** control to the main program.
2008*/
dan165921a2009-08-28 18:53:45 +00002009int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2010 Vdbe *v = pFrame->v;
drhab4e7f32015-04-16 18:11:50 +00002011 closeCursorsInFrame(v);
dane2f771b2014-11-03 15:33:17 +00002012#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00002013 v->anExec = pFrame->anExec;
dane2f771b2014-11-03 15:33:17 +00002014#endif
dan1d8cb212011-12-09 13:24:16 +00002015 v->aOnceFlag = pFrame->aOnceFlag;
2016 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00002017 v->aOp = pFrame->aOp;
2018 v->nOp = pFrame->nOp;
2019 v->aMem = pFrame->aMem;
2020 v->nMem = pFrame->nMem;
2021 v->apCsr = pFrame->apCsr;
2022 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00002023 v->db->lastRowid = pFrame->lastRowid;
2024 v->nChange = pFrame->nChange;
danc3da6672014-10-28 18:24:16 +00002025 v->db->nChange = pFrame->nDbChange;
drhb9626cf2016-02-22 16:04:31 +00002026 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
dan32001322016-02-19 18:54:29 +00002027 v->pAuxData = pFrame->pAuxData;
2028 pFrame->pAuxData = 0;
dan165921a2009-08-28 18:53:45 +00002029 return pFrame->pc;
2030}
2031
drh9a324642003-09-06 20:12:01 +00002032/*
drh5f82e3c2009-07-06 00:44:08 +00002033** Close all cursors.
dan165921a2009-08-28 18:53:45 +00002034**
2035** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2036** cell array. This is necessary as the memory cell array may contain
2037** pointers to VdbeFrame objects, which may in turn contain pointers to
2038** open cursors.
drh9a324642003-09-06 20:12:01 +00002039*/
drh5f82e3c2009-07-06 00:44:08 +00002040static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00002041 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00002042 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00002043 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2044 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00002045 p->pFrame = 0;
2046 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00002047 }
drhf526dca2014-10-13 17:42:05 +00002048 assert( p->nFrame==0 );
drhab4e7f32015-04-16 18:11:50 +00002049 closeCursorsInFrame(p);
dan523a0872009-08-31 05:23:32 +00002050 if( p->aMem ){
drh9f6168b2016-03-19 23:32:58 +00002051 releaseMemArray(p->aMem, p->nMem);
dan523a0872009-08-31 05:23:32 +00002052 }
dan27106572010-12-01 08:04:47 +00002053 while( p->pDelFrame ){
2054 VdbeFrame *pDel = p->pDelFrame;
2055 p->pDelFrame = pDel->pParent;
2056 sqlite3VdbeFrameDelete(pDel);
2057 }
dan0c547792013-07-18 17:12:08 +00002058
2059 /* Delete any auxdata allocations made by the VM */
drhb9626cf2016-02-22 16:04:31 +00002060 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
dan0c547792013-07-18 17:12:08 +00002061 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00002062}
2063
2064/*
drh7abda852014-09-19 16:02:06 +00002065** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00002066*/
drhc890fec2008-08-01 20:10:08 +00002067static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002068 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00002069
2070#ifdef SQLITE_DEBUG
2071 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2072 ** Vdbe.aMem[] arrays have already been cleaned up. */
2073 int i;
drhb8475df2011-12-09 16:21:19 +00002074 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2075 if( p->aMem ){
drh9f6168b2016-03-19 23:32:58 +00002076 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00002077 }
dan165921a2009-08-28 18:53:45 +00002078#endif
2079
drh633e6d52008-07-28 19:34:53 +00002080 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00002081 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00002082 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00002083}
2084
2085/*
danielk197722322fd2004-05-25 23:35:17 +00002086** Set the number of result columns that will be returned by this SQL
2087** statement. This is now set at compile time, rather than during
2088** execution of the vdbe program so that sqlite3_column_count() can
2089** be called on an SQL statement before sqlite3_step().
2090*/
2091void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00002092 Mem *pColName;
2093 int n;
drh633e6d52008-07-28 19:34:53 +00002094 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002095
drhc890fec2008-08-01 20:10:08 +00002096 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00002097 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00002098 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00002099 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00002100 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00002101 if( p->aColName==0 ) return;
2102 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00002103 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00002104 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002105 pColName++;
drh76ff3a02004-09-24 22:32:30 +00002106 }
danielk197722322fd2004-05-25 23:35:17 +00002107}
2108
2109/*
danielk19773cf86062004-05-26 10:11:05 +00002110** Set the name of the idx'th column to be returned by the SQL statement.
2111** zName must be a pointer to a nul terminated string.
2112**
2113** This call must be made after a call to sqlite3VdbeSetNumCols().
2114**
danielk197710fb7492008-10-31 10:53:22 +00002115** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2116** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2117** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00002118*/
danielk197710fb7492008-10-31 10:53:22 +00002119int sqlite3VdbeSetColName(
2120 Vdbe *p, /* Vdbe being configured */
2121 int idx, /* Index of column zName applies to */
2122 int var, /* One of the COLNAME_* constants */
2123 const char *zName, /* Pointer to buffer containing name */
2124 void (*xDel)(void*) /* Memory management strategy for zName */
2125){
danielk19773cf86062004-05-26 10:11:05 +00002126 int rc;
2127 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00002128 assert( idx<p->nResColumn );
2129 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00002130 if( p->db->mallocFailed ){
2131 assert( !zName || xDel!=SQLITE_DYNAMIC );
mistachkinfad30392016-02-13 23:43:46 +00002132 return SQLITE_NOMEM_BKPT;
danielk197710fb7492008-10-31 10:53:22 +00002133 }
drh76ff3a02004-09-24 22:32:30 +00002134 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00002135 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00002136 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00002137 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00002138 return rc;
2139}
2140
danielk197713adf8a2004-06-03 16:08:41 +00002141/*
2142** A read or write transaction may or may not be active on database handle
2143** db. If a transaction is active, commit it. If there is a
2144** write-transaction spanning more than one database file, this routine
2145** takes care of the master journal trickery.
2146*/
danielk19773e3a84d2008-08-01 17:37:40 +00002147static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00002148 int i;
drh8e6cf0a2016-02-22 14:57:38 +00002149 int nTrans = 0; /* Number of databases with an active write-transaction
2150 ** that are candidates for a two-phase commit using a
2151 ** master-journal */
danielk197713adf8a2004-06-03 16:08:41 +00002152 int rc = SQLITE_OK;
2153 int needXcommit = 0;
2154
shane36840fd2009-06-26 16:32:13 +00002155#ifdef SQLITE_OMIT_VIRTUALTABLE
2156 /* With this option, sqlite3VtabSync() is defined to be simply
2157 ** SQLITE_OK so p is not used.
2158 */
2159 UNUSED_PARAMETER(p);
2160#endif
2161
danielk19775bd270b2006-07-25 15:14:52 +00002162 /* Before doing anything else, call the xSync() callback for any
2163 ** virtual module tables written in this transaction. This has to
2164 ** be done before determining whether a master journal file is
2165 ** required, as an xSync() callback may add an attached database
2166 ** to the transaction.
2167 */
dan016f7812013-08-21 17:35:48 +00002168 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00002169
2170 /* This loop determines (a) if the commit hook should be invoked and
2171 ** (b) how many database files have open write transactions, not
2172 ** including the temp database. (b) is important because if more than
2173 ** one database file has an open write transaction, a master journal
2174 ** file is required for an atomic commit.
2175 */
drhabfb62f2010-07-30 11:20:35 +00002176 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002177 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002178 if( sqlite3BtreeIsInTrans(pBt) ){
drh8e6cf0a2016-02-22 14:57:38 +00002179 /* Whether or not a database might need a master journal depends upon
2180 ** its journal mode (among other things). This matrix determines which
2181 ** journal modes use a master journal and which do not */
2182 static const u8 aMJNeeded[] = {
2183 /* DELETE */ 1,
2184 /* PERSIST */ 1,
2185 /* OFF */ 0,
2186 /* TRUNCATE */ 1,
2187 /* MEMORY */ 0,
2188 /* WAL */ 0
2189 };
2190 Pager *pPager; /* Pager associated with pBt */
danielk197713adf8a2004-06-03 16:08:41 +00002191 needXcommit = 1;
dan6b9bb592012-10-05 19:43:02 +00002192 sqlite3BtreeEnter(pBt);
drh8e6cf0a2016-02-22 14:57:38 +00002193 pPager = sqlite3BtreePager(pBt);
2194 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2195 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2196 ){
2197 assert( i!=1 );
2198 nTrans++;
2199 }
2200 rc = sqlite3PagerExclusiveLock(pPager);
dan6b9bb592012-10-05 19:43:02 +00002201 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00002202 }
2203 }
drhabfb62f2010-07-30 11:20:35 +00002204 if( rc!=SQLITE_OK ){
2205 return rc;
2206 }
danielk197713adf8a2004-06-03 16:08:41 +00002207
2208 /* If there are any write-transactions at all, invoke the commit hook */
2209 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00002210 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00002211 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002212 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00002213 }
2214 }
2215
danielk197740b38dc2004-06-26 08:38:24 +00002216 /* The simple case - no more than one database file (not counting the
2217 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00002218 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00002219 **
danielk197740b38dc2004-06-26 08:38:24 +00002220 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00002221 ** string, it means the main database is :memory: or a temp file. In
2222 ** that case we do not support atomic multi-file commits, so use the
2223 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00002224 */
drhea678832008-12-10 19:26:22 +00002225 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2226 || nTrans<=1
2227 ){
danielk197704103022009-02-03 16:51:24 +00002228 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002229 Btree *pBt = db->aDb[i].pBt;
2230 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002231 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00002232 }
2233 }
2234
drh80e35f42007-03-30 14:06:34 +00002235 /* Do the commit only if all databases successfully complete phase 1.
2236 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2237 ** IO error while deleting or truncating a journal file. It is unlikely,
2238 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002239 */
2240 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2241 Btree *pBt = db->aDb[i].pBt;
2242 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002243 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002244 }
danielk1977979f38e2007-03-27 16:19:51 +00002245 }
2246 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002247 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002248 }
2249 }
2250
2251 /* The complex case - There is a multi-file write-transaction active.
2252 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002253 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002254 */
danielk197744ee5bf2005-05-27 09:41:12 +00002255#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002256 else{
danielk1977b4b47412007-08-17 15:53:36 +00002257 sqlite3_vfs *pVfs = db->pVfs;
danielk197713adf8a2004-06-03 16:08:41 +00002258 char *zMaster = 0; /* File-name for the master journal */
2259 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002260 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002261 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002262 int res;
drhf5808602011-12-16 00:33:04 +00002263 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002264 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002265
2266 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002267 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002268 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
mistachkinfad30392016-02-13 23:43:46 +00002269 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
danielk197713adf8a2004-06-03 16:08:41 +00002270 do {
drhdc5ea5c2008-12-10 17:19:59 +00002271 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002272 if( retryCount ){
2273 if( retryCount>100 ){
2274 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2275 sqlite3OsDelete(pVfs, zMaster, 0);
2276 break;
2277 }else if( retryCount==1 ){
2278 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2279 }
danielk197713adf8a2004-06-03 16:08:41 +00002280 }
drh84968c02011-12-16 15:11:39 +00002281 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002282 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002283 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002284 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002285 /* The antipenultimate character of the master journal name must
2286 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002287 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002288 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002289 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2290 }while( rc==SQLITE_OK && res );
2291 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002292 /* Open the master journal. */
2293 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2294 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2295 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2296 );
2297 }
danielk197713adf8a2004-06-03 16:08:41 +00002298 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002299 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002300 return rc;
2301 }
2302
2303 /* Write the name of each database file in the transaction into the new
2304 ** master journal file. If an error occurs at this point close
2305 ** and delete the master journal file. All the individual journal files
2306 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002307 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002308 */
danielk19771e536952007-08-16 10:09:01 +00002309 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002310 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002311 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002312 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002313 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002314 continue; /* Ignore TEMP and :memory: databases */
2315 }
drh8c96a6e2010-08-31 01:09:15 +00002316 assert( zFile[0]!=0 );
drhea678832008-12-10 19:26:22 +00002317 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2318 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002319 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002320 sqlite3OsCloseFree(pMaster);
2321 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002322 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002323 return rc;
2324 }
2325 }
2326 }
2327
danielk19779663b8f2007-08-24 11:52:28 +00002328 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2329 ** flag is set this is not required.
2330 */
drhb0529582016-02-22 23:44:42 +00002331 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
danielk1977bea2a942009-01-20 17:06:27 +00002332 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2333 ){
danielk1977fee2d252007-08-18 10:59:19 +00002334 sqlite3OsCloseFree(pMaster);
2335 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002336 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002337 return rc;
2338 }
drhc9e06862004-06-09 20:03:08 +00002339
danielk197713adf8a2004-06-03 16:08:41 +00002340 /* Sync all the db files involved in the transaction. The same call
2341 ** sets the master journal pointer in each individual journal. If
2342 ** an error occurs here, do not delete the master journal file.
2343 **
drh80e35f42007-03-30 14:06:34 +00002344 ** If the error occurs during the first call to
2345 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2346 ** master journal file will be orphaned. But we cannot delete it,
2347 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002348 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002349 */
danielk19775bd270b2006-07-25 15:14:52 +00002350 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002351 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002352 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002353 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002354 }
2355 }
danielk1977fee2d252007-08-18 10:59:19 +00002356 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002357 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002358 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002359 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002360 return rc;
2361 }
danielk197713adf8a2004-06-03 16:08:41 +00002362
danielk1977962398d2004-06-14 09:35:16 +00002363 /* Delete the master journal file. This commits the transaction. After
2364 ** doing this the directory is synced again before any individual
2365 ** transaction files are deleted.
2366 */
drhb0529582016-02-22 23:44:42 +00002367 rc = sqlite3OsDelete(pVfs, zMaster, 1);
drh633e6d52008-07-28 19:34:53 +00002368 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002369 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002370 if( rc ){
2371 return rc;
2372 }
danielk197713adf8a2004-06-03 16:08:41 +00002373
2374 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002375 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2376 ** deleting or truncating journals. If something goes wrong while
2377 ** this is happening we don't really care. The integrity of the
2378 ** transaction is already guaranteed, but some stray 'cold' journals
2379 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002380 */
danielk1977979f38e2007-03-27 16:19:51 +00002381 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002382 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002383 for(i=0; i<db->nDb; i++){
2384 Btree *pBt = db->aDb[i].pBt;
2385 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002386 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002387 }
2388 }
danielk19772d1d86f2008-06-20 14:59:51 +00002389 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002390 enable_simulated_io_errors();
2391
danielk1977f9e7dda2006-06-16 16:08:53 +00002392 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002393 }
danielk197744ee5bf2005-05-27 09:41:12 +00002394#endif
danielk1977026d2702004-06-14 13:14:59 +00002395
drh2ac3ee92004-06-07 16:27:46 +00002396 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002397}
2398
danielk19771d850a72004-05-31 08:26:49 +00002399/*
drh4f7d3a52013-06-27 23:54:02 +00002400** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002401** matches the number of vdbe's in the list sqlite3.pVdbe that are
2402** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002403** This is an internal self-check only - it is not an essential processing
2404** step.
danielk19771d850a72004-05-31 08:26:49 +00002405**
2406** This is a no-op if NDEBUG is defined.
2407*/
2408#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002409static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002410 Vdbe *p;
2411 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002412 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002413 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002414 p = db->pVdbe;
2415 while( p ){
dan857745c2014-07-19 17:57:10 +00002416 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002417 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002418 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002419 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002420 }
2421 p = p->pNext;
2422 }
drh4f7d3a52013-06-27 23:54:02 +00002423 assert( cnt==db->nVdbeActive );
2424 assert( nWrite==db->nVdbeWrite );
2425 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002426}
2427#else
2428#define checkActiveVdbeCnt(x)
2429#endif
2430
danielk19773cf86062004-05-26 10:11:05 +00002431/*
danielk1977bd434552009-03-18 10:33:00 +00002432** If the Vdbe passed as the first argument opened a statement-transaction,
2433** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2434** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2435** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002436** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002437**
2438** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2439** Otherwise SQLITE_OK.
2440*/
2441int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002442 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002443 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002444
danielk1977e4948172009-07-17 17:25:43 +00002445 /* If p->iStatement is greater than zero, then this Vdbe opened a
2446 ** statement transaction that should be closed here. The only exception
mistachkin48864df2013-03-21 21:20:32 +00002447 ** is that an IO error may have occurred, causing an emergency rollback.
danielk1977e4948172009-07-17 17:25:43 +00002448 ** In this case (db->nStatement==0), and there is nothing to do.
2449 */
2450 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002451 int i;
2452 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002453
2454 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2455 assert( db->nStatement>0 );
2456 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2457
2458 for(i=0; i<db->nDb; i++){
2459 int rc2 = SQLITE_OK;
2460 Btree *pBt = db->aDb[i].pBt;
2461 if( pBt ){
2462 if( eOp==SAVEPOINT_ROLLBACK ){
2463 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2464 }
2465 if( rc2==SQLITE_OK ){
2466 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2467 }
2468 if( rc==SQLITE_OK ){
2469 rc = rc2;
2470 }
2471 }
2472 }
2473 db->nStatement--;
2474 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002475
dana311b802011-04-26 19:21:34 +00002476 if( rc==SQLITE_OK ){
2477 if( eOp==SAVEPOINT_ROLLBACK ){
2478 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2479 }
2480 if( rc==SQLITE_OK ){
2481 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2482 }
2483 }
2484
dan1da40a32009-09-19 17:00:31 +00002485 /* If the statement transaction is being rolled back, also restore the
2486 ** database handles deferred constraint counter to the value it had when
2487 ** the statement transaction was opened. */
2488 if( eOp==SAVEPOINT_ROLLBACK ){
2489 db->nDeferredCons = p->nStmtDefCons;
drh648e2642013-07-11 15:03:32 +00002490 db->nDeferredImmCons = p->nStmtDefImmCons;
dan1da40a32009-09-19 17:00:31 +00002491 }
danielk1977bd434552009-03-18 10:33:00 +00002492 }
2493 return rc;
2494}
2495
2496/*
dan1da40a32009-09-19 17:00:31 +00002497** This function is called when a transaction opened by the database
2498** handle associated with the VM passed as an argument is about to be
2499** committed. If there are outstanding deferred foreign key constraint
2500** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2501**
2502** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002503** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2504** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002505*/
2506#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002507int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002508 sqlite3 *db = p->db;
drh648e2642013-07-11 15:03:32 +00002509 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2510 || (!deferred && p->nFkConstraint>0)
2511 ){
drhd91c1a12013-02-09 13:58:25 +00002512 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002513 p->errorAction = OE_Abort;
drh22c17b82015-05-15 04:13:15 +00002514 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002515 return SQLITE_ERROR;
2516 }
2517 return SQLITE_OK;
2518}
2519#endif
2520
2521/*
drh92f02c32004-09-02 14:57:08 +00002522** This routine is called the when a VDBE tries to halt. If the VDBE
2523** has made changes and is in autocommit mode, then commit those
2524** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002525**
drh92f02c32004-09-02 14:57:08 +00002526** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002527** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2528** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002529**
2530** Return an error code. If the commit could not complete because of
2531** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2532** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002533*/
drhff0587c2007-08-29 17:43:19 +00002534int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002535 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002536 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002537
2538 /* This function contains the logic that determines if a statement or
2539 ** transaction will be committed or rolled back as a result of the
2540 ** execution of this virtual machine.
2541 **
drh71b890a2007-10-03 15:30:52 +00002542 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002543 **
drh71b890a2007-10-03 15:30:52 +00002544 ** SQLITE_NOMEM
2545 ** SQLITE_IOERR
2546 ** SQLITE_FULL
2547 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002548 **
drh71b890a2007-10-03 15:30:52 +00002549 ** Then the internal cache might have been left in an inconsistent
2550 ** state. We need to rollback the statement transaction, if there is
2551 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002552 */
drh9a324642003-09-06 20:12:01 +00002553
drhb84e5742016-02-05 02:42:54 +00002554 if( db->mallocFailed ){
mistachkinfad30392016-02-13 23:43:46 +00002555 p->rc = SQLITE_NOMEM_BKPT;
danielk1977261919c2005-12-06 12:52:59 +00002556 }
drh6e856bc2011-12-09 18:06:44 +00002557 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002558 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002559 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002560 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002561 }
danielk19771d850a72004-05-31 08:26:49 +00002562 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002563
danc0537fe2013-06-28 19:41:43 +00002564 /* No commit or rollback needed if the program never started or if the
2565 ** SQL statement does not read or write a database file. */
2566 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002567 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002568 int eStatementOp = 0;
2569 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002570
2571 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002572 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002573
drh71b890a2007-10-03 15:30:52 +00002574 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002575 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002576 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002577 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002578 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002579 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2580 ** no rollback is necessary. Otherwise, at least a savepoint
2581 ** transaction must be rolled back to restore the database to a
2582 ** consistent state.
2583 **
2584 ** Even if the statement is read-only, it is important to perform
2585 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002586 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002587 ** file as part of an effort to free up cache space (see function
2588 ** pagerStress() in pager.c), the rollback is required to restore
2589 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002590 */
drhad4a4b82008-11-05 16:37:34 +00002591 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002592 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002593 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002594 }else{
2595 /* We are forced to roll back the active transaction. Before doing
2596 ** so, abort any other statements this handle currently has active.
2597 */
drh21021a52012-02-13 17:01:51 +00002598 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002599 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002600 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002601 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002602 }
danielk1977261919c2005-12-06 12:52:59 +00002603 }
2604 }
dan32b09f22009-09-23 17:29:59 +00002605
2606 /* Check for immediate foreign key violations. */
2607 if( p->rc==SQLITE_OK ){
2608 sqlite3VdbeCheckFk(p, 0);
2609 }
danielk197707cb5602006-01-20 10:55:05 +00002610
danielk1977bd434552009-03-18 10:33:00 +00002611 /* If the auto-commit flag is set and this is the only active writer
2612 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002613 **
2614 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002615 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002616 */
danielk1977093e0f62008-11-13 18:00:14 +00002617 if( !sqlite3VtabInSync(db)
2618 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002619 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002620 ){
danielk197707cb5602006-01-20 10:55:05 +00002621 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002622 rc = sqlite3VdbeCheckFk(p, 1);
2623 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002624 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002625 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002626 return SQLITE_ERROR;
2627 }
drhd91c1a12013-02-09 13:58:25 +00002628 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002629 }else{
2630 /* The auto-commit flag is true, the vdbe program was successful
2631 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2632 ** key constraints to hold up the transaction. This means a commit
2633 ** is required. */
2634 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002635 }
dan19611b12011-01-24 16:00:58 +00002636 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002637 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002638 return SQLITE_BUSY;
2639 }else if( rc!=SQLITE_OK ){
2640 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002641 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002642 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002643 }else{
dan1da40a32009-09-19 17:00:31 +00002644 db->nDeferredCons = 0;
drh648e2642013-07-11 15:03:32 +00002645 db->nDeferredImmCons = 0;
2646 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002647 sqlite3CommitInternalChanges(db);
2648 }
2649 }else{
drh0f198a72012-02-13 16:43:16 +00002650 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002651 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002652 }
danielk1977bd434552009-03-18 10:33:00 +00002653 db->nStatement = 0;
2654 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002655 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002656 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002657 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002658 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002659 }else{
drh21021a52012-02-13 17:01:51 +00002660 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002661 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002662 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002663 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002664 }
danielk19771d850a72004-05-31 08:26:49 +00002665 }
danielk197707cb5602006-01-20 10:55:05 +00002666
danielk1977bd434552009-03-18 10:33:00 +00002667 /* If eStatementOp is non-zero, then a statement transaction needs to
2668 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2669 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002670 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2671 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002672 */
danielk1977bd434552009-03-18 10:33:00 +00002673 if( eStatementOp ){
2674 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002675 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002676 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002677 p->rc = rc;
2678 sqlite3DbFree(db, p->zErrMsg);
2679 p->zErrMsg = 0;
2680 }
drh21021a52012-02-13 17:01:51 +00002681 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002682 sqlite3CloseSavepoints(db);
2683 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002684 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002685 }
danielk197777d83ba2004-05-31 10:08:14 +00002686 }
danielk197707cb5602006-01-20 10:55:05 +00002687
danielk1977bd434552009-03-18 10:33:00 +00002688 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2689 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002690 */
drh6be240e2009-07-14 02:33:02 +00002691 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002692 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002693 sqlite3VdbeSetChanges(db, p->nChange);
2694 }else{
2695 sqlite3VdbeSetChanges(db, 0);
2696 }
2697 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002698 }
drhff0587c2007-08-29 17:43:19 +00002699
2700 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002701 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002702 }
danielk19771d850a72004-05-31 08:26:49 +00002703
danielk197765fd59f2006-06-24 11:51:33 +00002704 /* We have successfully halted and closed the VM. Record this fact. */
2705 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002706 db->nVdbeActive--;
2707 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002708 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002709 assert( db->nVdbeActive>=db->nVdbeRead );
2710 assert( db->nVdbeRead>=db->nVdbeWrite );
2711 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002712 }
drh92f02c32004-09-02 14:57:08 +00002713 p->magic = VDBE_MAGIC_HALT;
2714 checkActiveVdbeCnt(db);
drhb84e5742016-02-05 02:42:54 +00002715 if( db->mallocFailed ){
mistachkinfad30392016-02-13 23:43:46 +00002716 p->rc = SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002717 }
danielk19771d850a72004-05-31 08:26:49 +00002718
danielk1977404ca072009-03-16 13:19:36 +00002719 /* If the auto-commit flag is set to true, then any locks that were held
2720 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2721 ** to invoke any required unlock-notify callbacks.
2722 */
2723 if( db->autoCommit ){
2724 sqlite3ConnectionUnlocked(db);
2725 }
2726
drh4f7d3a52013-06-27 23:54:02 +00002727 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002728 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002729}
drh4cf7c7f2007-08-28 23:28:07 +00002730
drh92f02c32004-09-02 14:57:08 +00002731
2732/*
drh3c23a882007-01-09 14:01:13 +00002733** Each VDBE holds the result of the most recent sqlite3_step() call
2734** in p->rc. This routine sets that result back to SQLITE_OK.
2735*/
2736void sqlite3VdbeResetStepResult(Vdbe *p){
2737 p->rc = SQLITE_OK;
2738}
2739
2740/*
dan029ead62011-10-27 15:19:58 +00002741** Copy the error code and error message belonging to the VDBE passed
2742** as the first argument to its database handle (so that they will be
2743** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2744**
2745** This function does not clear the VDBE error code or message, just
2746** copies them to the database handle.
2747*/
2748int sqlite3VdbeTransferError(Vdbe *p){
2749 sqlite3 *db = p->db;
2750 int rc = p->rc;
2751 if( p->zErrMsg ){
drh4a642b62016-02-05 01:55:27 +00002752 db->bBenignMalloc++;
dan029ead62011-10-27 15:19:58 +00002753 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002754 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002755 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2756 sqlite3EndBenignMalloc();
drh4a642b62016-02-05 01:55:27 +00002757 db->bBenignMalloc--;
dan029ead62011-10-27 15:19:58 +00002758 db->errCode = rc;
2759 }else{
drh13f40da2014-08-22 18:00:11 +00002760 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002761 }
2762 return rc;
2763}
2764
danac455932012-11-26 19:50:41 +00002765#ifdef SQLITE_ENABLE_SQLLOG
2766/*
2767** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2768** invoke it.
2769*/
2770static void vdbeInvokeSqllog(Vdbe *v){
2771 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2772 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2773 assert( v->db->init.busy==0 );
2774 if( zExpanded ){
2775 sqlite3GlobalConfig.xSqllog(
2776 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2777 );
2778 sqlite3DbFree(v->db, zExpanded);
2779 }
2780 }
2781}
2782#else
2783# define vdbeInvokeSqllog(x)
2784#endif
2785
dan029ead62011-10-27 15:19:58 +00002786/*
drh92f02c32004-09-02 14:57:08 +00002787** Clean up a VDBE after execution but do not delete the VDBE just yet.
2788** Write any error messages into *pzErrMsg. Return the result code.
2789**
2790** After this routine is run, the VDBE should be ready to be executed
2791** again.
2792**
2793** To look at it another way, this routine resets the state of the
2794** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2795** VDBE_MAGIC_INIT.
2796*/
drhc890fec2008-08-01 20:10:08 +00002797int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002798 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002799 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002800
2801 /* If the VM did not run to completion or if it encountered an
2802 ** error, then it might not have been halted properly. So halt
2803 ** it now.
2804 */
2805 sqlite3VdbeHalt(p);
2806
drhfb7e7652005-01-24 00:28:42 +00002807 /* If the VDBE has be run even partially, then transfer the error code
2808 ** and error message from the VDBE into the main database structure. But
2809 ** if the VDBE has just been set to run but has not actually executed any
2810 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002811 */
drhfb7e7652005-01-24 00:28:42 +00002812 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002813 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002814 sqlite3VdbeTransferError(p);
2815 sqlite3DbFree(db, p->zErrMsg);
2816 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002817 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002818 }else if( p->rc && p->expired ){
2819 /* The expired flag was set on the VDBE before the first call
2820 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2821 ** called), set the database error in this case as well.
2822 */
drh13f40da2014-08-22 18:00:11 +00002823 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002824 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002825 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002826 }
2827
2828 /* Reclaim all memory used by the VDBE
2829 */
drhc890fec2008-08-01 20:10:08 +00002830 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002831
2832 /* Save profiling information from this VDBE run.
2833 */
drh9a324642003-09-06 20:12:01 +00002834#ifdef VDBE_PROFILE
2835 {
2836 FILE *out = fopen("vdbe_profile.out", "a");
2837 if( out ){
2838 int i;
2839 fprintf(out, "---- ");
2840 for(i=0; i<p->nOp; i++){
2841 fprintf(out, "%02x", p->aOp[i].opcode);
2842 }
2843 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002844 if( p->zSql ){
2845 char c, pc = 0;
2846 fprintf(out, "-- ");
2847 for(i=0; (c = p->zSql[i])!=0; i++){
2848 if( pc=='\n' ) fprintf(out, "-- ");
2849 putc(c, out);
2850 pc = c;
2851 }
2852 if( pc!='\n' ) fprintf(out, "\n");
2853 }
drh9a324642003-09-06 20:12:01 +00002854 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002855 char zHdr[100];
2856 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002857 p->aOp[i].cnt,
2858 p->aOp[i].cycles,
2859 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2860 );
drh15ab9412014-02-24 14:24:01 +00002861 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002862 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002863 }
2864 fclose(out);
2865 }
2866 }
2867#endif
drh7fa20922013-09-17 23:36:33 +00002868 p->iCurrentTime = 0;
drh9a324642003-09-06 20:12:01 +00002869 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002870 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002871}
drh92f02c32004-09-02 14:57:08 +00002872
drh9a324642003-09-06 20:12:01 +00002873/*
2874** Clean up and delete a VDBE after execution. Return an integer which is
2875** the result code. Write any error message text into *pzErrMsg.
2876*/
danielk19779e6db7d2004-06-21 08:18:51 +00002877int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002878 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002879 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002880 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002881 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002882 }
danielk19774adee202004-05-08 08:23:19 +00002883 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002884 return rc;
2885}
2886
2887/*
dan0c547792013-07-18 17:12:08 +00002888** If parameter iOp is less than zero, then invoke the destructor for
2889** all auxiliary data pointers currently cached by the VM passed as
2890** the first argument.
2891**
2892** Or, if iOp is greater than or equal to zero, then the destructor is
2893** only invoked for those auxiliary data pointers created by the user
2894** function invoked by the OP_Function opcode at instruction iOp of
2895** VM pVdbe, and only then if:
2896**
2897** * the associated function parameter is the 32nd or later (counting
2898** from left to right), or
2899**
2900** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002901** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002902*/
drhb9626cf2016-02-22 16:04:31 +00002903void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
dan0c547792013-07-18 17:12:08 +00002904 while( *pp ){
2905 AuxData *pAux = *pp;
2906 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002907 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002908 ){
drh693e6712014-01-24 22:58:00 +00002909 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002910 if( pAux->xDelete ){
2911 pAux->xDelete(pAux->pAux);
2912 }
dan0c547792013-07-18 17:12:08 +00002913 *pp = pAux->pNext;
drhb9626cf2016-02-22 16:04:31 +00002914 sqlite3DbFree(db, pAux);
dan0c547792013-07-18 17:12:08 +00002915 }else{
2916 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002917 }
2918 }
2919}
2920
2921/*
drhcb103b92012-10-26 00:11:23 +00002922** Free all memory associated with the Vdbe passed as the second argument,
2923** except for object itself, which is preserved.
2924**
dand46def72010-07-24 11:28:28 +00002925** The difference between this function and sqlite3VdbeDelete() is that
2926** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002927** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002928*/
drhcb103b92012-10-26 00:11:23 +00002929void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002930 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002931 int i;
dand46def72010-07-24 11:28:28 +00002932 assert( p->db==0 || p->db==db );
2933 releaseMemArray(p->aVar, p->nVar);
2934 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002935 for(pSub=p->pProgram; pSub; pSub=pNext){
2936 pNext = pSub->pNext;
2937 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2938 sqlite3DbFree(db, pSub);
2939 }
drh124c0b42011-06-01 18:15:55 +00002940 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
drh6d664b42016-01-20 01:48:25 +00002941 sqlite3DbFree(db, p->azVar);
dand46def72010-07-24 11:28:28 +00002942 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00002943 sqlite3DbFree(db, p->aColName);
2944 sqlite3DbFree(db, p->zSql);
2945 sqlite3DbFree(db, p->pFree);
dan6f9702e2014-11-01 20:38:06 +00002946#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan6f9702e2014-11-01 20:38:06 +00002947 for(i=0; i<p->nScan; i++){
2948 sqlite3DbFree(db, p->aScan[i].zName);
2949 }
2950 sqlite3DbFree(db, p->aScan);
drh7e02e5e2011-12-06 19:44:51 +00002951#endif
dand46def72010-07-24 11:28:28 +00002952}
2953
2954/*
drh9a324642003-09-06 20:12:01 +00002955** Delete an entire VDBE.
2956*/
danielk19774adee202004-05-08 08:23:19 +00002957void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002958 sqlite3 *db;
2959
drhfa3be902009-07-07 02:44:07 +00002960 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002961 db = p->db;
drh4245c402012-06-02 14:32:21 +00002962 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002963 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002964 if( p->pPrev ){
2965 p->pPrev->pNext = p->pNext;
2966 }else{
drh633e6d52008-07-28 19:34:53 +00002967 assert( db->pVdbe==p );
2968 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002969 }
2970 if( p->pNext ){
2971 p->pNext->pPrev = p->pPrev;
2972 }
drh9a324642003-09-06 20:12:01 +00002973 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002974 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002975 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002976}
drha11846b2004-01-07 18:52:56 +00002977
2978/*
drh6848dad2014-08-22 23:33:03 +00002979** The cursor "p" has a pending seek operation that has not yet been
2980** carried out. Seek the cursor now. If an error occurs, return
2981** the appropriate error code.
2982*/
2983static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2984 int res, rc;
2985#ifdef SQLITE_TEST
2986 extern int sqlite3_search_count;
2987#endif
2988 assert( p->deferredMoveto );
2989 assert( p->isTable );
drhc960dcb2015-11-20 19:22:01 +00002990 assert( p->eCurType==CURTYPE_BTREE );
2991 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
drh6848dad2014-08-22 23:33:03 +00002992 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00002993 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00002994#ifdef SQLITE_TEST
2995 sqlite3_search_count++;
2996#endif
2997 p->deferredMoveto = 0;
2998 p->cacheStatus = CACHE_STALE;
2999 return SQLITE_OK;
3000}
3001
3002/*
3003** Something has moved cursor "p" out of place. Maybe the row it was
3004** pointed to was deleted out from under it. Or maybe the btree was
3005** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00003006** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00003007** cursor, set the cursor to point to a NULL row.
3008*/
3009static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3010 int isDifferentRow, rc;
drhc960dcb2015-11-20 19:22:01 +00003011 assert( p->eCurType==CURTYPE_BTREE );
3012 assert( p->uc.pCursor!=0 );
3013 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3014 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
drh6848dad2014-08-22 23:33:03 +00003015 p->cacheStatus = CACHE_STALE;
3016 if( isDifferentRow ) p->nullRow = 1;
3017 return rc;
3018}
3019
3020/*
drhc22284f2014-10-13 16:02:20 +00003021** Check to ensure that the cursor is valid. Restore the cursor
3022** if need be. Return any I/O error from the restore operation.
3023*/
3024int sqlite3VdbeCursorRestore(VdbeCursor *p){
drhc960dcb2015-11-20 19:22:01 +00003025 assert( p->eCurType==CURTYPE_BTREE );
3026 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
drhc22284f2014-10-13 16:02:20 +00003027 return handleMovedCursor(p);
3028 }
3029 return SQLITE_OK;
3030}
3031
3032/*
drh9a65f2c2009-06-22 19:05:40 +00003033** Make sure the cursor p is ready to read or write the row to which it
3034** was last positioned. Return an error code if an OOM fault or I/O error
3035** prevents us from positioning the cursor to its correct position.
3036**
drha11846b2004-01-07 18:52:56 +00003037** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00003038** MoveTo now. If no move is pending, check to see if the row has been
3039** deleted out from under the cursor and if it has, mark the row as
3040** a NULL row.
3041**
3042** If the cursor is already pointing to the correct row and that row has
3043** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00003044*/
dande892d92016-01-29 19:29:45 +00003045int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3046 VdbeCursor *p = *pp;
drhc960dcb2015-11-20 19:22:01 +00003047 if( p->eCurType==CURTYPE_BTREE ){
3048 if( p->deferredMoveto ){
drhb1702022016-01-30 00:45:18 +00003049 int iMap;
3050 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
dande892d92016-01-29 19:29:45 +00003051 *pp = p->pAltCursor;
drhb1702022016-01-30 00:45:18 +00003052 *piCol = iMap - 1;
dande892d92016-01-29 19:29:45 +00003053 return SQLITE_OK;
3054 }
drhc960dcb2015-11-20 19:22:01 +00003055 return handleDeferredMoveto(p);
3056 }
3057 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3058 return handleMovedCursor(p);
3059 }
drha11846b2004-01-07 18:52:56 +00003060 }
3061 return SQLITE_OK;
3062}
danielk19774adee202004-05-08 08:23:19 +00003063
drhab9f7f12004-05-08 10:56:11 +00003064/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003065** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00003066**
danielk1977cfcdaef2004-05-12 07:33:33 +00003067** sqlite3VdbeSerialType()
3068** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00003069** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00003070** sqlite3VdbeSerialPut()
3071** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00003072**
3073** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00003074** data and index records. Each serialized value consists of a
3075** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3076** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00003077**
danielk1977cfcdaef2004-05-12 07:33:33 +00003078** In an SQLite index record, the serial type is stored directly before
3079** the blob of data that it corresponds to. In a table record, all serial
3080** types are stored at the start of the record, and the blobs of data at
3081** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00003082** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00003083**
3084** The following table describes the various storage classes for data:
3085**
3086** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00003087** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00003088** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00003089** 1 1 signed integer
3090** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00003091** 3 3 signed integer
3092** 4 4 signed integer
3093** 5 6 signed integer
3094** 6 8 signed integer
3095** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00003096** 8 0 Integer constant 0
3097** 9 0 Integer constant 1
3098** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00003099** N>=12 and even (N-12)/2 BLOB
3100** N>=13 and odd (N-13)/2 text
3101**
drh35a59652006-01-02 18:24:40 +00003102** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3103** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00003104*/
3105
3106/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003107** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00003108*/
drhbe37c122015-10-16 14:54:17 +00003109u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
danielk1977cfcdaef2004-05-12 07:33:33 +00003110 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00003111 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00003112
drhbe37c122015-10-16 14:54:17 +00003113 assert( pLen!=0 );
danielk1977cfcdaef2004-05-12 07:33:33 +00003114 if( flags&MEM_Null ){
drhbe37c122015-10-16 14:54:17 +00003115 *pLen = 0;
drha19b7752004-05-30 21:14:58 +00003116 return 0;
danielk197790e4d952004-05-10 10:05:53 +00003117 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003118 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00003119 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00003120# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00003121 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00003122 u64 u;
drhcfd654b2011-03-05 13:54:15 +00003123 if( i<0 ){
drh1b40e632014-11-20 02:58:10 +00003124 u = ~i;
drhcfd654b2011-03-05 13:54:15 +00003125 }else{
3126 u = i;
3127 }
drh56690b32012-09-17 15:36:31 +00003128 if( u<=127 ){
drhbe37c122015-10-16 14:54:17 +00003129 if( (i&1)==i && file_format>=4 ){
3130 *pLen = 0;
3131 return 8+(u32)u;
3132 }else{
3133 *pLen = 1;
3134 return 1;
3135 }
drh56690b32012-09-17 15:36:31 +00003136 }
drhbe37c122015-10-16 14:54:17 +00003137 if( u<=32767 ){ *pLen = 2; return 2; }
3138 if( u<=8388607 ){ *pLen = 3; return 3; }
3139 if( u<=2147483647 ){ *pLen = 4; return 4; }
3140 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3141 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003142 return 6;
danielk197790e4d952004-05-10 10:05:53 +00003143 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003144 if( flags&MEM_Real ){
drhbe37c122015-10-16 14:54:17 +00003145 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003146 return 7;
danielk197790e4d952004-05-10 10:05:53 +00003147 }
danielk1977e4359752008-11-03 09:39:45 +00003148 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00003149 assert( pMem->n>=0 );
3150 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00003151 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00003152 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00003153 }
drhbe37c122015-10-16 14:54:17 +00003154 *pLen = n;
drhfdf972a2007-05-02 13:30:27 +00003155 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00003156}
3157
3158/*
drhfaf37272015-10-16 14:23:42 +00003159** The sizes for serial types less than 128
drhc5ef7152015-06-28 02:58:51 +00003160*/
3161static const u8 sqlite3SmallTypeSizes[] = {
drhfaf37272015-10-16 14:23:42 +00003162 /* 0 1 2 3 4 5 6 7 8 9 */
3163/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3164/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3165/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3166/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3167/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3168/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3169/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3170/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3171/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3172/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3173/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3174/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3175/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
drhc5ef7152015-06-28 02:58:51 +00003176};
3177
3178/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003179** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00003180*/
drh35cd6432009-06-05 14:17:21 +00003181u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drhfaf37272015-10-16 14:23:42 +00003182 if( serial_type>=128 ){
drh51846b52004-05-28 16:00:21 +00003183 return (serial_type-12)/2;
3184 }else{
drhfaf37272015-10-16 14:23:42 +00003185 assert( serial_type<12
3186 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
drhc5ef7152015-06-28 02:58:51 +00003187 return sqlite3SmallTypeSizes[serial_type];
drh51846b52004-05-28 16:00:21 +00003188 }
danielk1977192ac1d2004-05-10 07:17:30 +00003189}
drhfaf37272015-10-16 14:23:42 +00003190u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3191 assert( serial_type<128 );
3192 return sqlite3SmallTypeSizes[serial_type];
3193}
danielk1977192ac1d2004-05-10 07:17:30 +00003194
3195/*
drh110daac2007-05-04 11:59:31 +00003196** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00003197** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00003198** upper 4 bytes. Return the result.
3199**
drh7a4f5022007-05-23 07:20:08 +00003200** For most architectures, this is a no-op.
3201**
3202** (later): It is reported to me that the mixed-endian problem
3203** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3204** that early versions of GCC stored the two words of a 64-bit
3205** float in the wrong order. And that error has been propagated
3206** ever since. The blame is not necessarily with GCC, though.
3207** GCC might have just copying the problem from a prior compiler.
3208** I am also told that newer versions of GCC that follow a different
3209** ABI get the byte order right.
3210**
3211** Developers using SQLite on an ARM7 should compile and run their
3212** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3213** enabled, some asserts below will ensure that the byte order of
3214** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00003215**
3216** (2007-08-30) Frank van Vugt has studied this problem closely
3217** and has send his findings to the SQLite developers. Frank
3218** writes that some Linux kernels offer floating point hardware
3219** emulation that uses only 32-bit mantissas instead of a full
3220** 48-bits as required by the IEEE standard. (This is the
3221** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3222** byte swapping becomes very complicated. To avoid problems,
3223** the necessary byte swapping is carried out using a 64-bit integer
3224** rather than a 64-bit float. Frank assures us that the code here
3225** works for him. We, the developers, have no way to independently
3226** verify this, but Frank seems to know what he is talking about
3227** so we trust him.
drh110daac2007-05-04 11:59:31 +00003228*/
3229#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00003230static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00003231 union {
drh60d09a72007-08-30 15:05:08 +00003232 u64 r;
drh110daac2007-05-04 11:59:31 +00003233 u32 i[2];
3234 } u;
3235 u32 t;
3236
3237 u.r = in;
3238 t = u.i[0];
3239 u.i[0] = u.i[1];
3240 u.i[1] = t;
3241 return u.r;
3242}
3243# define swapMixedEndianFloat(X) X = floatSwap(X)
3244#else
3245# define swapMixedEndianFloat(X)
3246#endif
3247
3248/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003249** Write the serialized data blob for the value stored in pMem into
3250** buf. It is assumed that the caller has allocated sufficient space.
3251** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00003252**
drh038b7bc2013-12-09 23:17:22 +00003253** nBuf is the amount of space left in buf[]. The caller is responsible
3254** for allocating enough space to buf[] to hold the entire field, exclusive
3255** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00003256**
3257** Return the number of bytes actually written into buf[]. The number
3258** of bytes in the zero-filled tail is included in the return value only
3259** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00003260*/
drha9ab4812013-12-11 11:00:44 +00003261u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00003262 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00003263
drh1483e142004-05-21 21:12:42 +00003264 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00003265 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00003266 u64 v;
drh35cd6432009-06-05 14:17:21 +00003267 u32 i;
drha19b7752004-05-30 21:14:58 +00003268 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003269 assert( sizeof(v)==sizeof(pMem->u.r) );
3270 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00003271 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00003272 }else{
drh3c024d62007-03-30 11:23:45 +00003273 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00003274 }
drhc5ef7152015-06-28 02:58:51 +00003275 len = i = sqlite3SmallTypeSizes[serial_type];
drh3f5b1992014-08-22 13:22:32 +00003276 assert( i>0 );
3277 do{
3278 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00003279 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00003280 }while( i );
drh1483e142004-05-21 21:12:42 +00003281 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00003282 }
drhd946db02005-12-29 19:23:06 +00003283
danielk1977cfcdaef2004-05-12 07:33:33 +00003284 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003285 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003286 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003287 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003288 len = pMem->n;
drh72ea29d2015-12-08 16:58:45 +00003289 if( len>0 ) memcpy(buf, pMem->z, len);
drhd946db02005-12-29 19:23:06 +00003290 return len;
3291 }
3292
3293 /* NULL or constants 0 or 1 */
3294 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003295}
3296
drhf926d1e2014-03-04 04:04:33 +00003297/* Input "x" is a sequence of unsigned characters that represent a
3298** big-endian integer. Return the equivalent native integer
3299*/
3300#define ONE_BYTE_INT(x) ((i8)(x)[0])
3301#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3302#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3303#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003304#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003305
danielk1977cfcdaef2004-05-12 07:33:33 +00003306/*
3307** Deserialize the data blob pointed to by buf as serial type serial_type
3308** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003309**
3310** This function is implemented as two separate routines for performance.
3311** The few cases that require local variables are broken out into a separate
3312** routine so that in most cases the overhead of moving the stack pointer
3313** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003314*/
drh14a924a2014-08-22 14:34:05 +00003315static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003316 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003317 u32 serial_type, /* Serial type to deserialize */
3318 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003319){
drh8932bec2014-08-22 14:56:13 +00003320 u64 x = FOUR_BYTE_UINT(buf);
3321 u32 y = FOUR_BYTE_UINT(buf+4);
3322 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003323 if( serial_type==6 ){
drh654858d2014-11-20 02:18:14 +00003324 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3325 ** twos-complement integer. */
drh14a924a2014-08-22 14:34:05 +00003326 pMem->u.i = *(i64*)&x;
3327 pMem->flags = MEM_Int;
3328 testcase( pMem->u.i<0 );
3329 }else{
drh654858d2014-11-20 02:18:14 +00003330 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3331 ** floating point number. */
drh14a924a2014-08-22 14:34:05 +00003332#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3333 /* Verify that integers and floating point values use the same
3334 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3335 ** defined that 64-bit floating point values really are mixed
3336 ** endian.
3337 */
3338 static const u64 t1 = ((u64)0x3ff00000)<<32;
3339 static const double r1 = 1.0;
3340 u64 t2 = t1;
3341 swapMixedEndianFloat(t2);
3342 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3343#endif
drh74eaba42014-09-18 17:52:15 +00003344 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003345 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003346 memcpy(&pMem->u.r, &x, sizeof(x));
3347 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003348 }
3349 return 8;
3350}
danielk1977b1bc9532004-05-22 03:05:33 +00003351u32 sqlite3VdbeSerialGet(
3352 const unsigned char *buf, /* Buffer to deserialize from */
3353 u32 serial_type, /* Serial type to deserialize */
3354 Mem *pMem /* Memory cell to write value into */
3355){
drh3c685822005-05-21 18:32:18 +00003356 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003357 case 10: /* Reserved for future use */
3358 case 11: /* Reserved for future use */
drh654858d2014-11-20 02:18:14 +00003359 case 0: { /* Null */
3360 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
drh3c685822005-05-21 18:32:18 +00003361 pMem->flags = MEM_Null;
3362 break;
3363 }
drh654858d2014-11-20 02:18:14 +00003364 case 1: {
3365 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3366 ** integer. */
drhf926d1e2014-03-04 04:04:33 +00003367 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003368 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003369 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003370 return 1;
drh1483e142004-05-21 21:12:42 +00003371 }
drh3c685822005-05-21 18:32:18 +00003372 case 2: { /* 2-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003373 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3374 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003375 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003376 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003377 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003378 return 2;
3379 }
3380 case 3: { /* 3-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003381 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3382 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003383 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003384 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003385 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003386 return 3;
3387 }
3388 case 4: { /* 4-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003389 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3390 ** twos-complement integer. */
drh8932bec2014-08-22 14:56:13 +00003391 pMem->u.i = FOUR_BYTE_INT(buf);
drhc8bb4302015-11-06 17:28:00 +00003392#ifdef __HP_cc
3393 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3394 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3395#endif
drh3c685822005-05-21 18:32:18 +00003396 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003397 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003398 return 4;
3399 }
3400 case 5: { /* 6-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003401 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3402 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003403 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003404 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003405 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003406 return 6;
3407 }
drh91124b32005-08-18 18:15:05 +00003408 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003409 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003410 /* These use local variables, so do them in a separate routine
3411 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003412 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003413 }
drhd946db02005-12-29 19:23:06 +00003414 case 8: /* Integer 0 */
3415 case 9: { /* Integer 1 */
drh654858d2014-11-20 02:18:14 +00003416 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3417 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
drh3c024d62007-03-30 11:23:45 +00003418 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003419 pMem->flags = MEM_Int;
3420 return 0;
3421 }
drh3c685822005-05-21 18:32:18 +00003422 default: {
drh654858d2014-11-20 02:18:14 +00003423 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3424 ** length.
3425 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3426 ** (N-13)/2 bytes in length. */
drhc138daf2013-11-19 13:55:34 +00003427 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003428 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003429 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003430 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003431 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003432 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003433 }
drh3c685822005-05-21 18:32:18 +00003434 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003435}
drh1e968a02008-03-25 00:22:21 +00003436/*
dan03e9cfc2011-09-05 14:20:27 +00003437** This routine is used to allocate sufficient space for an UnpackedRecord
3438** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3439** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003440**
dan03e9cfc2011-09-05 14:20:27 +00003441** The space is either allocated using sqlite3DbMallocRaw() or from within
3442** the unaligned buffer passed via the second and third arguments (presumably
3443** stack space). If the former, then *ppFree is set to a pointer that should
3444** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3445** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3446** before returning.
drh1e968a02008-03-25 00:22:21 +00003447**
dan03e9cfc2011-09-05 14:20:27 +00003448** If an OOM error occurs, NULL is returned.
3449*/
3450UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3451 KeyInfo *pKeyInfo, /* Description of the record */
3452 char *pSpace, /* Unaligned space available */
3453 int szSpace, /* Size of pSpace[] in bytes */
3454 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00003455){
dan03e9cfc2011-09-05 14:20:27 +00003456 UnpackedRecord *p; /* Unpacked record to return */
3457 int nOff; /* Increment pSpace by nOff to align it */
3458 int nByte; /* Number of bytes required for *p */
3459
3460 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00003461 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3462 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3463 */
3464 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00003465 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00003466 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00003467 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3468 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00003469 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00003470 }else{
dan42acb3e2011-09-05 20:16:38 +00003471 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00003472 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00003473 }
dan42acb3e2011-09-05 20:16:38 +00003474
3475 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003476 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003477 p->pKeyInfo = pKeyInfo;
3478 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003479 return p;
3480}
3481
3482/*
3483** Given the nKey-byte encoding of a record in pKey[], populate the
3484** UnpackedRecord structure indicated by the fourth argument with the
3485** contents of the decoded record.
3486*/
3487void sqlite3VdbeRecordUnpack(
3488 KeyInfo *pKeyInfo, /* Information about the record format */
3489 int nKey, /* Size of the binary record */
3490 const void *pKey, /* The binary record */
3491 UnpackedRecord *p /* Populate this structure before returning. */
3492){
3493 const unsigned char *aKey = (const unsigned char *)pKey;
3494 int d;
3495 u32 idx; /* Offset in aKey[] to read from */
3496 u16 u; /* Unsigned loop counter */
3497 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003498 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003499
dan1fed5da2014-02-25 21:01:25 +00003500 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003501 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003502 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003503 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003504 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003505 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003506 u32 serial_type;
3507
danielk197700e13612008-11-17 19:18:54 +00003508 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003509 pMem->enc = pKeyInfo->enc;
3510 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003511 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003512 pMem->szMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00003513 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003514 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003515 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003516 }
drh7d10d5a2008-08-20 16:35:10 +00003517 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003518 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003519}
3520
dan3833e932014-03-01 19:44:56 +00003521#if SQLITE_DEBUG
drh1e968a02008-03-25 00:22:21 +00003522/*
dan3833e932014-03-01 19:44:56 +00003523** This function compares two index or table record keys in the same way
3524** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3525** this function deserializes and compares values using the
3526** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3527** in assert() statements to ensure that the optimized code in
3528** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh1e968a02008-03-25 00:22:21 +00003529**
drh79211e12014-05-02 17:33:16 +00003530** Return true if the result of comparison is equivalent to desiredResult.
3531** Return false if there is a disagreement.
drh1e968a02008-03-25 00:22:21 +00003532*/
dan3833e932014-03-01 19:44:56 +00003533static int vdbeRecordCompareDebug(
drhec1fc802008-08-13 14:07:40 +00003534 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003535 const UnpackedRecord *pPKey2, /* Right key */
3536 int desiredResult /* Correct answer */
drh1e968a02008-03-25 00:22:21 +00003537){
drhdf003d62013-08-01 19:17:39 +00003538 u32 d1; /* Offset into aKey[] of next data element */
drh1e968a02008-03-25 00:22:21 +00003539 u32 idx1; /* Offset into aKey[] of next header element */
3540 u32 szHdr1; /* Number of bytes in header */
3541 int i = 0;
drh1e968a02008-03-25 00:22:21 +00003542 int rc = 0;
3543 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3544 KeyInfo *pKeyInfo;
3545 Mem mem1;
3546
3547 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003548 if( pKeyInfo->db==0 ) return 1;
drh1e968a02008-03-25 00:22:21 +00003549 mem1.enc = pKeyInfo->enc;
drh37272632009-11-16 21:28:45 +00003550 mem1.db = pKeyInfo->db;
drhd93a8b22009-11-16 03:13:40 +00003551 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003552 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
drh8b249a82009-11-16 02:14:00 +00003553
3554 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3555 ** We could initialize it, as shown here, to silence those complaints.
drh5275d2e2011-04-27 01:00:17 +00003556 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
drh8b249a82009-11-16 02:14:00 +00003557 ** the unnecessary initialization has a measurable negative performance
3558 ** impact, since this routine is a very high runner. And so, we choose
3559 ** to ignore the compiler warnings and leave this variable uninitialized.
3560 */
3561 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
drh1e968a02008-03-25 00:22:21 +00003562
shane3f8d5cf2008-04-24 19:15:09 +00003563 idx1 = getVarint32(aKey1, szHdr1);
drh46981362015-07-08 12:25:38 +00003564 if( szHdr1>98307 ) return SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00003565 d1 = szHdr1;
drhb2023662013-11-29 15:39:36 +00003566 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
drhe1a022e2012-09-17 17:16:53 +00003567 assert( pKeyInfo->aSortOrder!=0 );
dan89bc0212013-12-03 09:49:52 +00003568 assert( pKeyInfo->nField>0 );
3569 assert( idx1<=szHdr1 || CORRUPT_DB );
drh0b9dada2013-11-25 22:24:36 +00003570 do{
drh1e968a02008-03-25 00:22:21 +00003571 u32 serial_type1;
3572
3573 /* Read the serial types for the next element in each key. */
shane3f8d5cf2008-04-24 19:15:09 +00003574 idx1 += getVarint32( aKey1+idx1, serial_type1 );
drhaf5b2af2013-08-05 15:32:09 +00003575
3576 /* Verify that there is enough key space remaining to avoid
3577 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3578 ** always be greater than or equal to the amount of required key space.
3579 ** Use that approximation to avoid the more expensive call to
3580 ** sqlite3VdbeSerialTypeLen() in the common case.
3581 */
3582 if( d1+serial_type1+2>(u32)nKey1
3583 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3584 ){
3585 break;
3586 }
drh1e968a02008-03-25 00:22:21 +00003587
3588 /* Extract the values to be compared.
3589 */
3590 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3591
3592 /* Do the comparison
3593 */
drh323df792013-08-05 19:11:29 +00003594 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
drh1e968a02008-03-25 00:22:21 +00003595 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003596 assert( mem1.szMalloc==0 ); /* See comment below */
drh323df792013-08-05 19:11:29 +00003597 if( pKeyInfo->aSortOrder[i] ){
drh6f225d02013-10-26 13:36:51 +00003598 rc = -rc; /* Invert the result for DESC sort order. */
drh8b249a82009-11-16 02:14:00 +00003599 }
drh79211e12014-05-02 17:33:16 +00003600 goto debugCompareEnd;
drh1e968a02008-03-25 00:22:21 +00003601 }
3602 i++;
drh0b9dada2013-11-25 22:24:36 +00003603 }while( idx1<szHdr1 && i<pPKey2->nField );
drh407414c2009-07-14 14:15:27 +00003604
drh8b249a82009-11-16 02:14:00 +00003605 /* No memory allocation is ever used on mem1. Prove this using
3606 ** the following assert(). If the assert() fails, it indicates a
3607 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
danielk1977de630352009-05-04 11:42:29 +00003608 */
drh17bcb102014-09-18 21:25:33 +00003609 assert( mem1.szMalloc==0 );
danielk1977de630352009-05-04 11:42:29 +00003610
drh8b249a82009-11-16 02:14:00 +00003611 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003612 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003613 ** value. */
drh79211e12014-05-02 17:33:16 +00003614 rc = pPKey2->default_rc;
3615
3616debugCompareEnd:
3617 if( desiredResult==0 && rc==0 ) return 1;
3618 if( desiredResult<0 && rc<0 ) return 1;
3619 if( desiredResult>0 && rc>0 ) return 1;
3620 if( CORRUPT_DB ) return 1;
3621 if( pKeyInfo->db->mallocFailed ) return 1;
3622 return 0;
drh1e968a02008-03-25 00:22:21 +00003623}
dan3833e932014-03-01 19:44:56 +00003624#endif
dan1fed5da2014-02-25 21:01:25 +00003625
drhe1bb8022015-01-19 19:48:52 +00003626#if SQLITE_DEBUG
3627/*
3628** Count the number of fields (a.k.a. columns) in the record given by
3629** pKey,nKey. The verify that this count is less than or equal to the
3630** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3631**
3632** If this constraint is not satisfied, it means that the high-speed
3633** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3634** not work correctly. If this assert() ever fires, it probably means
3635** that the KeyInfo.nField or KeyInfo.nXField values were computed
3636** incorrectly.
3637*/
3638static void vdbeAssertFieldCountWithinLimits(
3639 int nKey, const void *pKey, /* The record to verify */
3640 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3641){
3642 int nField = 0;
3643 u32 szHdr;
3644 u32 idx;
3645 u32 notUsed;
3646 const unsigned char *aKey = (const unsigned char*)pKey;
3647
3648 if( CORRUPT_DB ) return;
3649 idx = getVarint32(aKey, szHdr);
mistachkin1b3ee492015-01-21 00:51:08 +00003650 assert( nKey>=0 );
3651 assert( szHdr<=(u32)nKey );
drhe1bb8022015-01-19 19:48:52 +00003652 while( idx<szHdr ){
3653 idx += getVarint32(aKey+idx, notUsed);
3654 nField++;
3655 }
3656 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3657}
drh1af3c642015-01-19 20:57:19 +00003658#else
3659# define vdbeAssertFieldCountWithinLimits(A,B,C)
drhe1bb8022015-01-19 19:48:52 +00003660#endif
3661
dan3833e932014-03-01 19:44:56 +00003662/*
3663** Both *pMem1 and *pMem2 contain string values. Compare the two values
3664** using the collation sequence pColl. As usual, return a negative , zero
3665** or positive value if *pMem1 is less than, equal to or greater than
3666** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3667*/
dan1fed5da2014-02-25 21:01:25 +00003668static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003669 const Mem *pMem1,
3670 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003671 const CollSeq *pColl,
3672 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003673){
3674 if( pMem1->enc==pColl->enc ){
3675 /* The strings are already in the correct encoding. Call the
3676 ** comparison function directly */
3677 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3678 }else{
3679 int rc;
3680 const void *v1, *v2;
3681 int n1, n2;
3682 Mem c1;
3683 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003684 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3685 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003686 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3687 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3688 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3689 n1 = v1==0 ? 0 : c1.n;
3690 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3691 n2 = v2==0 ? 0 : c2.n;
3692 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
mistachkinfad30392016-02-13 23:43:46 +00003693 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
dan1fed5da2014-02-25 21:01:25 +00003694 sqlite3VdbeMemRelease(&c1);
3695 sqlite3VdbeMemRelease(&c2);
3696 return rc;
3697 }
3698}
3699
3700/*
drh982ff722014-09-16 03:24:43 +00003701** Compare two blobs. Return negative, zero, or positive if the first
3702** is less than, equal to, or greater than the second, respectively.
3703** If one blob is a prefix of the other, then the shorter is the lessor.
3704*/
3705static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3706 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3707 if( c ) return c;
3708 return pB1->n - pB2->n;
3709}
3710
drh2ab410a2015-11-06 14:59:07 +00003711/*
3712** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3713** number. Return negative, zero, or positive if the first (i64) is less than,
3714** equal to, or greater than the second (double).
3715*/
3716static int sqlite3IntFloatCompare(i64 i, double r){
3717 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3718 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3719 if( x<r ) return -1;
3720 if( x>r ) return +1;
3721 return 0;
3722 }else{
3723 i64 y;
3724 double s;
3725 if( r<-9223372036854775808.0 ) return +1;
3726 if( r>9223372036854775807.0 ) return -1;
3727 y = (i64)r;
3728 if( i<y ) return -1;
3729 if( i>y ){
3730 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3731 return +1;
3732 }
3733 s = (double)i;
3734 if( s<r ) return -1;
3735 if( s>r ) return +1;
3736 return 0;
3737 }
3738}
drh982ff722014-09-16 03:24:43 +00003739
3740/*
dan1fed5da2014-02-25 21:01:25 +00003741** Compare the values contained by the two memory cells, returning
3742** negative, zero or positive if pMem1 is less than, equal to, or greater
3743** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3744** and reals) sorted numerically, followed by text ordered by the collating
3745** sequence pColl and finally blob's ordered by memcmp().
3746**
3747** Two NULL values are considered equal by this function.
3748*/
3749int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003750 int f1, f2;
3751 int combined_flags;
3752
3753 f1 = pMem1->flags;
3754 f2 = pMem2->flags;
3755 combined_flags = f1|f2;
3756 assert( (combined_flags & MEM_RowSet)==0 );
drhec1fc802008-08-13 14:07:40 +00003757
dan1fed5da2014-02-25 21:01:25 +00003758 /* If one value is NULL, it is less than the other. If both values
3759 ** are NULL, return 0.
3760 */
3761 if( combined_flags&MEM_Null ){
3762 return (f2&MEM_Null) - (f1&MEM_Null);
3763 }
3764
drh2ab410a2015-11-06 14:59:07 +00003765 /* At least one of the two values is a number
dan1fed5da2014-02-25 21:01:25 +00003766 */
3767 if( combined_flags&(MEM_Int|MEM_Real) ){
dan1fed5da2014-02-25 21:01:25 +00003768 if( (f1 & f2 & MEM_Int)!=0 ){
3769 if( pMem1->u.i < pMem2->u.i ) return -1;
drh2ab410a2015-11-06 14:59:07 +00003770 if( pMem1->u.i > pMem2->u.i ) return +1;
dan1fed5da2014-02-25 21:01:25 +00003771 return 0;
3772 }
drh2ab410a2015-11-06 14:59:07 +00003773 if( (f1 & f2 & MEM_Real)!=0 ){
3774 if( pMem1->u.r < pMem2->u.r ) return -1;
3775 if( pMem1->u.r > pMem2->u.r ) return +1;
3776 return 0;
3777 }
3778 if( (f1&MEM_Int)!=0 ){
3779 if( (f2&MEM_Real)!=0 ){
3780 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3781 }else{
3782 return -1;
3783 }
3784 }
dan1fed5da2014-02-25 21:01:25 +00003785 if( (f1&MEM_Real)!=0 ){
drh2ab410a2015-11-06 14:59:07 +00003786 if( (f2&MEM_Int)!=0 ){
3787 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3788 }else{
3789 return -1;
3790 }
dan1fed5da2014-02-25 21:01:25 +00003791 }
drh2ab410a2015-11-06 14:59:07 +00003792 return +1;
dan1fed5da2014-02-25 21:01:25 +00003793 }
3794
3795 /* If one value is a string and the other is a blob, the string is less.
3796 ** If both are strings, compare using the collating functions.
3797 */
3798 if( combined_flags&MEM_Str ){
3799 if( (f1 & MEM_Str)==0 ){
3800 return 1;
3801 }
3802 if( (f2 & MEM_Str)==0 ){
3803 return -1;
3804 }
3805
drhe5520e22015-12-31 04:34:26 +00003806 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
dan1fed5da2014-02-25 21:01:25 +00003807 assert( pMem1->enc==SQLITE_UTF8 ||
3808 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3809
3810 /* The collation sequence must be defined at this point, even if
3811 ** the user deletes the collation sequence after the vdbe program is
3812 ** compiled (this was not always the case).
3813 */
3814 assert( !pColl || pColl->xCmp );
3815
3816 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003817 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003818 }
3819 /* If a NULL pointer was passed as the collate function, fall through
3820 ** to the blob case and use memcmp(). */
3821 }
3822
3823 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003824 return sqlite3BlobCompare(pMem1, pMem2);
dan1fed5da2014-02-25 21:01:25 +00003825}
3826
3827
dan3833e932014-03-01 19:44:56 +00003828/*
3829** The first argument passed to this function is a serial-type that
3830** corresponds to an integer - all values between 1 and 9 inclusive
3831** except 7. The second points to a buffer containing an integer value
3832** serialized according to serial_type. This function deserializes
3833** and returns the value.
3834*/
dan3b9330f2014-02-27 20:44:18 +00003835static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003836 u32 y;
dan3833e932014-03-01 19:44:56 +00003837 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003838 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003839 case 0:
dan3b9330f2014-02-27 20:44:18 +00003840 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003841 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003842 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003843 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003844 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003845 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003846 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003847 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003848 return THREE_BYTE_INT(aKey);
3849 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003850 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003851 y = FOUR_BYTE_UINT(aKey);
3852 return (i64)*(int*)&y;
3853 }
dan3b9330f2014-02-27 20:44:18 +00003854 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003855 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003856 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
danielk19779a96b662007-11-29 17:05:18 +00003857 }
dan3b9330f2014-02-27 20:44:18 +00003858 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003859 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003860 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003861 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3862 return (i64)*(i64*)&x;
drh7a224de2004-06-02 01:22:02 +00003863 }
dan3b9330f2014-02-27 20:44:18 +00003864 }
danielk1977161546c2008-07-26 18:26:10 +00003865
dan3b9330f2014-02-27 20:44:18 +00003866 return (serial_type - 8);
drhd5788202004-05-28 08:21:05 +00003867}
danielk1977eb015e02004-05-18 01:31:14 +00003868
dan3833e932014-03-01 19:44:56 +00003869/*
3870** This function compares the two table rows or index records
3871** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3872** or positive integer if key1 is less than, equal to or
3873** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003874** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003875** key must be a parsed key such as obtained from
3876** sqlite3VdbeParseRecord.
3877**
3878** If argument bSkip is non-zero, it is assumed that the caller has already
3879** determined that the first fields of the keys are equal.
3880**
3881** Key1 and Key2 do not have to contain the same number of fields. If all
3882** fields that appear in both keys are equal, then pPKey2->default_rc is
3883** returned.
drha1f7c0a2014-03-28 03:12:48 +00003884**
dan38fdead2014-04-01 10:19:02 +00003885** If database corruption is discovered, set pPKey2->errCode to
3886** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3887** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3888** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003889*/
dan7004f3f2015-03-30 12:06:26 +00003890int sqlite3VdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003891 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003892 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003893 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003894){
dan3833e932014-03-01 19:44:56 +00003895 u32 d1; /* Offset into aKey[] of next data element */
3896 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003897 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003898 u32 idx1; /* Offset of first type in header */
3899 int rc = 0; /* Return value */
3900 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003901 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3902 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3903 Mem mem1;
3904
dan3833e932014-03-01 19:44:56 +00003905 /* If bSkip is true, then the caller has already determined that the first
3906 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00003907 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00003908 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00003909 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00003910 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00003911 szHdr1 = aKey1[0];
3912 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00003913 i = 1;
3914 pRhs++;
dan3833e932014-03-01 19:44:56 +00003915 }else{
3916 idx1 = getVarint32(aKey1, szHdr1);
3917 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00003918 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003919 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003920 return 0; /* Corruption */
3921 }
dan3833e932014-03-01 19:44:56 +00003922 i = 0;
dan3b9330f2014-02-27 20:44:18 +00003923 }
3924
drh17bcb102014-09-18 21:25:33 +00003925 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003926 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3927 || CORRUPT_DB );
3928 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3929 assert( pPKey2->pKeyInfo->nField>0 );
3930 assert( idx1<=szHdr1 || CORRUPT_DB );
3931 do{
dan1fed5da2014-02-25 21:01:25 +00003932 u32 serial_type;
3933
3934 /* RHS is an integer */
3935 if( pRhs->flags & MEM_Int ){
3936 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00003937 testcase( serial_type==12 );
danb95e1192015-05-26 20:31:20 +00003938 if( serial_type>=10 ){
dan1fed5da2014-02-25 21:01:25 +00003939 rc = +1;
3940 }else if( serial_type==0 ){
3941 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00003942 }else if( serial_type==7 ){
dan1fed5da2014-02-25 21:01:25 +00003943 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh2ab410a2015-11-06 14:59:07 +00003944 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
dan3b9330f2014-02-27 20:44:18 +00003945 }else{
3946 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3947 i64 rhs = pRhs->u.i;
3948 if( lhs<rhs ){
3949 rc = -1;
3950 }else if( lhs>rhs ){
3951 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00003952 }
3953 }
3954 }
3955
3956 /* RHS is real */
3957 else if( pRhs->flags & MEM_Real ){
3958 serial_type = aKey1[idx1];
dancc7aa1f2015-05-26 20:07:32 +00003959 if( serial_type>=10 ){
3960 /* Serial types 12 or greater are strings and blobs (greater than
3961 ** numbers). Types 10 and 11 are currently "reserved for future
3962 ** use", so it doesn't really matter what the results of comparing
3963 ** them to numberic values are. */
dan1fed5da2014-02-25 21:01:25 +00003964 rc = +1;
3965 }else if( serial_type==0 ){
3966 rc = -1;
3967 }else{
dan1fed5da2014-02-25 21:01:25 +00003968 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3969 if( serial_type==7 ){
drh2ab410a2015-11-06 14:59:07 +00003970 if( mem1.u.r<pRhs->u.r ){
3971 rc = -1;
3972 }else if( mem1.u.r>pRhs->u.r ){
3973 rc = +1;
3974 }
dan1fed5da2014-02-25 21:01:25 +00003975 }else{
drh2ab410a2015-11-06 14:59:07 +00003976 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
dan1fed5da2014-02-25 21:01:25 +00003977 }
3978 }
3979 }
3980
3981 /* RHS is a string */
3982 else if( pRhs->flags & MEM_Str ){
3983 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003984 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003985 if( serial_type<12 ){
3986 rc = -1;
3987 }else if( !(serial_type & 0x01) ){
3988 rc = +1;
3989 }else{
3990 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003991 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3992 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003993 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003994 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003995 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003996 }else if( pKeyInfo->aColl[i] ){
3997 mem1.enc = pKeyInfo->enc;
3998 mem1.db = pKeyInfo->db;
3999 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00004000 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00004001 rc = vdbeCompareMemString(
4002 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4003 );
dan1fed5da2014-02-25 21:01:25 +00004004 }else{
4005 int nCmp = MIN(mem1.n, pRhs->n);
4006 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4007 if( rc==0 ) rc = mem1.n - pRhs->n;
4008 }
4009 }
4010 }
4011
4012 /* RHS is a blob */
4013 else if( pRhs->flags & MEM_Blob ){
4014 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00004015 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00004016 if( serial_type<12 || (serial_type & 0x01) ){
4017 rc = -1;
4018 }else{
4019 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00004020 testcase( (d1+nStr)==(unsigned)nKey1 );
4021 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00004022 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004023 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004024 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00004025 }else{
4026 int nCmp = MIN(nStr, pRhs->n);
4027 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4028 if( rc==0 ) rc = nStr - pRhs->n;
4029 }
4030 }
4031 }
4032
4033 /* RHS is null */
4034 else{
4035 serial_type = aKey1[idx1];
4036 rc = (serial_type!=0);
4037 }
4038
4039 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00004040 if( pKeyInfo->aSortOrder[i] ){
4041 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00004042 }
drh79211e12014-05-02 17:33:16 +00004043 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00004044 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00004045 return rc;
4046 }
4047
4048 i++;
dan3b9330f2014-02-27 20:44:18 +00004049 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00004050 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4051 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00004052 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00004053
4054 /* No memory allocation is ever used on mem1. Prove this using
4055 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00004056 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00004057 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00004058
4059 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00004060 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00004061 ** value. */
dan3833e932014-03-01 19:44:56 +00004062 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00004063 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00004064 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00004065 );
drh70528d72015-11-05 20:25:09 +00004066 pPKey2->eqSeen = 1;
dan1fed5da2014-02-25 21:01:25 +00004067 return pPKey2->default_rc;
4068}
drh75179de2014-09-16 14:37:35 +00004069int sqlite3VdbeRecordCompare(
4070 int nKey1, const void *pKey1, /* Left key */
4071 UnpackedRecord *pPKey2 /* Right key */
4072){
dan7004f3f2015-03-30 12:06:26 +00004073 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
drh75179de2014-09-16 14:37:35 +00004074}
4075
dan1fed5da2014-02-25 21:01:25 +00004076
dan3833e932014-03-01 19:44:56 +00004077/*
4078** This function is an optimized version of sqlite3VdbeRecordCompare()
4079** that (a) the first field of pPKey2 is an integer, and (b) the
4080** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4081** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00004082**
4083** To avoid concerns about buffer overreads, this routine is only used
4084** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00004085*/
dan3b9330f2014-02-27 20:44:18 +00004086static int vdbeRecordCompareInt(
4087 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004088 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004089){
dan9b8afef2014-03-03 20:48:50 +00004090 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00004091 int serial_type = ((const u8*)pKey1)[1];
4092 int res;
drhf926d1e2014-03-04 04:04:33 +00004093 u32 y;
4094 u64 x;
dan3b9330f2014-02-27 20:44:18 +00004095 i64 v = pPKey2->aMem[0].u.i;
4096 i64 lhs;
4097
drhe1bb8022015-01-19 19:48:52 +00004098 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
drhe2ac5062014-03-26 12:02:38 +00004099 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00004100 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00004101 case 1: { /* 1-byte signed integer */
4102 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004103 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004104 break;
4105 }
drhf926d1e2014-03-04 04:04:33 +00004106 case 2: { /* 2-byte signed integer */
4107 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004108 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004109 break;
4110 }
4111 case 3: { /* 3-byte signed integer */
4112 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004113 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004114 break;
4115 }
4116 case 4: { /* 4-byte signed integer */
4117 y = FOUR_BYTE_UINT(aKey);
4118 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00004119 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004120 break;
4121 }
4122 case 5: { /* 6-byte signed integer */
4123 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004124 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004125 break;
4126 }
4127 case 6: { /* 8-byte signed integer */
4128 x = FOUR_BYTE_UINT(aKey);
4129 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4130 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00004131 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004132 break;
4133 }
dan3b9330f2014-02-27 20:44:18 +00004134 case 8:
4135 lhs = 0;
4136 break;
dan3b9330f2014-02-27 20:44:18 +00004137 case 9:
4138 lhs = 1;
4139 break;
4140
dan063d4a02014-02-28 09:48:30 +00004141 /* This case could be removed without changing the results of running
4142 ** this code. Including it causes gcc to generate a faster switch
4143 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00004144 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00004145 ** (as gcc is clever enough to combine the two like cases). Other
4146 ** compilers might be similar. */
4147 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00004148 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00004149
dan3b9330f2014-02-27 20:44:18 +00004150 default:
drh75179de2014-09-16 14:37:35 +00004151 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00004152 }
4153
4154 if( v>lhs ){
4155 res = pPKey2->r1;
4156 }else if( v<lhs ){
4157 res = pPKey2->r2;
4158 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00004159 /* The first fields of the two keys are equal. Compare the trailing
4160 ** fields. */
dan7004f3f2015-03-30 12:06:26 +00004161 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004162 }else{
dan063d4a02014-02-28 09:48:30 +00004163 /* The first fields of the two keys are equal and there are no trailing
4164 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00004165 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004166 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004167 }
4168
drh79211e12014-05-02 17:33:16 +00004169 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00004170 return res;
4171}
4172
dan3833e932014-03-01 19:44:56 +00004173/*
4174** This function is an optimized version of sqlite3VdbeRecordCompare()
4175** that (a) the first field of pPKey2 is a string, that (b) the first field
4176** uses the collation sequence BINARY and (c) that the size-of-header varint
4177** at the start of (pKey1/nKey1) fits in a single byte.
4178*/
dan3b9330f2014-02-27 20:44:18 +00004179static int vdbeRecordCompareString(
4180 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004181 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004182){
4183 const u8 *aKey1 = (const u8*)pKey1;
4184 int serial_type;
4185 int res;
4186
drh2ab410a2015-11-06 14:59:07 +00004187 assert( pPKey2->aMem[0].flags & MEM_Str );
drhe1bb8022015-01-19 19:48:52 +00004188 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
dan3b9330f2014-02-27 20:44:18 +00004189 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00004190 if( serial_type<12 ){
4191 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4192 }else if( !(serial_type & 0x01) ){
4193 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4194 }else{
4195 int nCmp;
4196 int nStr;
dan3833e932014-03-01 19:44:56 +00004197 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00004198
4199 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00004200 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004201 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004202 return 0; /* Corruption */
4203 }
dan3b9330f2014-02-27 20:44:18 +00004204 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00004205 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00004206
4207 if( res==0 ){
4208 res = nStr - pPKey2->aMem[0].n;
4209 if( res==0 ){
4210 if( pPKey2->nField>1 ){
dan7004f3f2015-03-30 12:06:26 +00004211 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004212 }else{
4213 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004214 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004215 }
4216 }else if( res>0 ){
4217 res = pPKey2->r2;
4218 }else{
4219 res = pPKey2->r1;
4220 }
4221 }else if( res>0 ){
4222 res = pPKey2->r2;
4223 }else{
4224 res = pPKey2->r1;
4225 }
4226 }
4227
drh66141812014-06-30 20:25:03 +00004228 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00004229 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00004230 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00004231 );
4232 return res;
4233}
4234
dan3833e932014-03-01 19:44:56 +00004235/*
4236** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4237** suitable for comparing serialized records to the unpacked record passed
4238** as the only argument.
4239*/
dan1fed5da2014-02-25 21:01:25 +00004240RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00004241 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4242 ** that the size-of-header varint that occurs at the start of each record
4243 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4244 ** also assumes that it is safe to overread a buffer by at least the
4245 ** maximum possible legal header size plus 8 bytes. Because there is
4246 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4247 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4248 ** limit the size of the header to 64 bytes in cases where the first field
4249 ** is an integer.
4250 **
4251 ** The easiest way to enforce this limit is to consider only records with
4252 ** 13 fields or less. If the first field is an integer, the maximum legal
4253 ** header size is (12*5 + 1 + 1) bytes. */
4254 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00004255 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00004256 if( p->pKeyInfo->aSortOrder[0] ){
4257 p->r1 = 1;
4258 p->r2 = -1;
4259 }else{
4260 p->r1 = -1;
4261 p->r2 = 1;
4262 }
dan1fed5da2014-02-25 21:01:25 +00004263 if( (flags & MEM_Int) ){
4264 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00004265 }
drhb6e8fd12014-03-06 01:56:33 +00004266 testcase( flags & MEM_Real );
4267 testcase( flags & MEM_Null );
4268 testcase( flags & MEM_Blob );
4269 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4270 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00004271 return vdbeRecordCompareString;
4272 }
4273 }
dan3b9330f2014-02-27 20:44:18 +00004274
dan3833e932014-03-01 19:44:56 +00004275 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00004276}
danielk1977eb015e02004-05-18 01:31:14 +00004277
4278/*
drh7a224de2004-06-02 01:22:02 +00004279** pCur points at an index entry created using the OP_MakeRecord opcode.
4280** Read the rowid (the last field in the record) and store it in *rowid.
4281** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00004282**
4283** pCur might be pointing to text obtained from a corrupt database file.
4284** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00004285*/
drh35f6b932009-06-23 14:15:04 +00004286int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00004287 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004288 int rc;
drhd5788202004-05-28 08:21:05 +00004289 u32 szHdr; /* Size of the header */
4290 u32 typeRowid; /* Serial type of the rowid */
4291 u32 lenRowid; /* Size of the rowid */
4292 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00004293
drh88a003e2008-12-11 16:17:03 +00004294 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00004295 ** than 2GiB are support - anything large must be database corruption.
4296 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00004297 ** this code can safely assume that nCellKey is 32-bits
4298 */
drhea8ffdf2009-07-22 00:35:23 +00004299 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004300 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004301 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00004302 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00004303
4304 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00004305 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004306 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00004307 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00004308 return rc;
4309 }
drh88a003e2008-12-11 16:17:03 +00004310
4311 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00004312 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00004313 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00004314 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00004315 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00004316 goto idx_rowid_corruption;
4317 }
4318
4319 /* The last field of the index should be an integer - the ROWID.
4320 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00004321 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00004322 testcase( typeRowid==1 );
4323 testcase( typeRowid==2 );
4324 testcase( typeRowid==3 );
4325 testcase( typeRowid==4 );
4326 testcase( typeRowid==5 );
4327 testcase( typeRowid==6 );
4328 testcase( typeRowid==8 );
4329 testcase( typeRowid==9 );
4330 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4331 goto idx_rowid_corruption;
4332 }
drhc5ef7152015-06-28 02:58:51 +00004333 lenRowid = sqlite3SmallTypeSizes[typeRowid];
drheeb844a2009-08-08 18:01:07 +00004334 testcase( (u32)m.n==szHdr+lenRowid );
4335 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00004336 goto idx_rowid_corruption;
4337 }
4338
4339 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00004340 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00004341 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00004342 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004343 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00004344
4345 /* Jump here if database corruption is detected after m has been
4346 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4347idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00004348 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00004349 sqlite3VdbeMemRelease(&m);
4350 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004351}
4352
drh7cf6e4d2004-05-19 14:56:55 +00004353/*
drh5f82e3c2009-07-06 00:44:08 +00004354** Compare the key of the index entry that cursor pC is pointing to against
4355** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00004356** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00004357** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00004358**
drh5f82e3c2009-07-06 00:44:08 +00004359** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00004360** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00004361** is ignored as well. Hence, this routine only compares the prefixes
4362** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00004363*/
danielk1977183f9f72004-05-13 05:20:26 +00004364int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00004365 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00004366 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00004367 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00004368 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00004369){
drh61fc5952007-04-01 23:49:51 +00004370 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004371 int rc;
drhc960dcb2015-11-20 19:22:01 +00004372 BtCursor *pCur;
drhd5788202004-05-28 08:21:05 +00004373 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00004374
drhc960dcb2015-11-20 19:22:01 +00004375 assert( pC->eCurType==CURTYPE_BTREE );
4376 pCur = pC->uc.pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004377 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00004378 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004379 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh56689692014-03-03 19:29:28 +00004380 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004381 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004382 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004383 *res = 0;
drh9978c972010-02-23 17:36:32 +00004384 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004385 }
drhd3b74202014-09-17 16:41:15 +00004386 sqlite3VdbeMemInit(&m, db, 0);
drhc960dcb2015-11-20 19:22:01 +00004387 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00004388 if( rc ){
drhd5788202004-05-28 08:21:05 +00004389 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004390 }
drhe63d9992008-08-13 19:11:48 +00004391 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004392 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004393 return SQLITE_OK;
4394}
danielk1977b28af712004-06-21 06:50:26 +00004395
4396/*
4397** This routine sets the value to be returned by subsequent calls to
4398** sqlite3_changes() on the database handle 'db'.
4399*/
4400void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004401 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004402 db->nChange = nChange;
4403 db->nTotalChange += nChange;
4404}
4405
4406/*
4407** Set a flag in the vdbe to update the change counter when it is finalised
4408** or reset.
4409*/
drh4794f732004-11-05 17:17:50 +00004410void sqlite3VdbeCountChanges(Vdbe *v){
4411 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004412}
drhd89bd002005-01-22 03:03:54 +00004413
4414/*
4415** Mark every prepared statement associated with a database connection
4416** as expired.
4417**
4418** An expired statement means that recompilation of the statement is
4419** recommend. Statements expire when things happen that make their
4420** programs obsolete. Removing user-defined functions or collating
4421** sequences, or changing an authorization function are the types of
4422** things that make prepared statements obsolete.
4423*/
4424void sqlite3ExpirePreparedStatements(sqlite3 *db){
4425 Vdbe *p;
4426 for(p = db->pVdbe; p; p=p->pNext){
4427 p->expired = 1;
4428 }
4429}
danielk1977aee18ef2005-03-09 12:26:50 +00004430
4431/*
4432** Return the database associated with the Vdbe.
4433*/
4434sqlite3 *sqlite3VdbeDb(Vdbe *v){
4435 return v->db;
4436}
dan937d0de2009-10-15 18:35:38 +00004437
4438/*
4439** Return a pointer to an sqlite3_value structure containing the value bound
4440** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4441** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4442** constants) to the value before returning it.
4443**
4444** The returned value must be freed by the caller using sqlite3ValueFree().
4445*/
drhcf0fd4a2013-08-01 12:21:58 +00004446sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004447 assert( iVar>0 );
4448 if( v ){
4449 Mem *pMem = &v->aVar[iVar-1];
4450 if( 0==(pMem->flags & MEM_Null) ){
4451 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4452 if( pRet ){
4453 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4454 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004455 }
4456 return pRet;
4457 }
4458 }
4459 return 0;
4460}
4461
4462/*
4463** Configure SQL variable iVar so that binding a new value to it signals
4464** to sqlite3_reoptimize() that re-preparing the statement may result
4465** in a better query plan.
4466*/
dan1d2ce4f2009-10-19 18:11:09 +00004467void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004468 assert( iVar>0 );
4469 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00004470 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00004471 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004472 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004473 }
4474}
dan016f7812013-08-21 17:35:48 +00004475
4476#ifndef SQLITE_OMIT_VIRTUALTABLE
4477/*
4478** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4479** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4480** in memory obtained from sqlite3DbMalloc).
4481*/
4482void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
dan5c3aa052016-01-20 08:47:55 +00004483 if( pVtab->zErrMsg ){
4484 sqlite3 *db = p->db;
4485 sqlite3DbFree(db, p->zErrMsg);
4486 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4487 sqlite3_free(pVtab->zErrMsg);
4488 pVtab->zErrMsg = 0;
4489 }
dan016f7812013-08-21 17:35:48 +00004490}
4491#endif /* SQLITE_OMIT_VIRTUALTABLE */