blob: ac0a03e93d5a13bce938f9e907c626218212f120 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
drh07dae082017-10-30 20:44:36 +0000135** In the default unix and windows implementation, the wal-index is a mmapped
136** file whose name is the database name with a "-shm" suffix added. For that
137** reason, the wal-index is sometimes called the "shm" file.
138**
drh29d4dbe2010-05-18 23:29:52 +0000139** The wal-index is transient. After a crash, the wal-index can (and should
140** be) reconstructed from the original WAL file. In fact, the VFS is required
141** to either truncate or zero the header of the wal-index when the last
142** connection to it closes. Because the wal-index is transient, it can
143** use an architecture-specific format; it does not have to be cross-platform.
144** Hence, unlike the database and WAL file formats which store all values
145** as big endian, the wal-index can store multi-byte values in the native
146** byte order of the host computer.
147**
148** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000149** a page number P and a maximum frame index M, return the index of the
150** last frame in the wal before frame M for page P in the WAL, or return
151** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000152**
153** The wal-index consists of a header region, followed by an one or
154** more index blocks.
155**
drh027a1282010-05-19 01:53:53 +0000156** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000157** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000158**
159** Each index block except for the first contains information on
160** HASHTABLE_NPAGE frames. The first index block contains information on
161** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162** HASHTABLE_NPAGE are selected so that together the wal-index header and
163** first index block are the same size as all other index blocks in the
164** wal-index.
165**
166** Each index block contains two sections, a page-mapping that contains the
167** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000168** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000169** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170** for the first index block) 32-bit page numbers. The first entry in the
171** first index-block contains the database page number corresponding to the
172** first frame in the WAL file. The first entry in the second index block
173** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174** the log, and so on.
175**
176** The last index block in a wal-index usually contains less than the full
177** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178** depending on the contents of the WAL file. This does not change the
179** allocated size of the page-mapping array - the page-mapping array merely
180** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000181**
182** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000183** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000184** starting with the last index block and moving toward the first, and
185** within each index block, starting at the end and moving toward the
186** beginning. The first entry that equals P corresponds to the frame
187** holding the content for that page.
188**
189** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191** hash table for each page number in the mapping section, so the hash
192** table is never more than half full. The expected number of collisions
193** prior to finding a match is 1. Each entry of the hash table is an
194** 1-based index of an entry in the mapping section of the same
195** index block. Let K be the 1-based index of the largest entry in
196** the mapping section. (For index blocks other than the last, K will
197** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000199** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000200**
201** To look for page P in the hash table, first compute a hash iKey on
202** P as follows:
203**
204** iKey = (P * 383) % HASHTABLE_NSLOT
205**
206** Then start scanning entries of the hash table, starting with iKey
207** (wrapping around to the beginning when the end of the hash table is
208** reached) until an unused hash slot is found. Let the first unused slot
209** be at index iUnused. (iUnused might be less than iKey if there was
210** wrap-around.) Because the hash table is never more than half full,
211** the search is guaranteed to eventually hit an unused entry. Let
212** iMax be the value between iKey and iUnused, closest to iUnused,
213** where aHash[iMax]==P. If there is no iMax entry (if there exists
214** no hash slot such that aHash[i]==p) then page P is not in the
215** current index block. Otherwise the iMax-th mapping entry of the
216** current index block corresponds to the last entry that references
217** page P.
218**
219** A hash search begins with the last index block and moves toward the
220** first index block, looking for entries corresponding to page P. On
221** average, only two or three slots in each index block need to be
222** examined in order to either find the last entry for page P, or to
223** establish that no such entry exists in the block. Each index block
224** holds over 4000 entries. So two or three index blocks are sufficient
225** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226** comparisons (on average) suffice to either locate a frame in the
227** WAL or to establish that the frame does not exist in the WAL. This
228** is much faster than scanning the entire 10MB WAL.
229**
230** Note that entries are added in order of increasing K. Hence, one
231** reader might be using some value K0 and a second reader that started
232** at a later time (after additional transactions were added to the WAL
233** and to the wal-index) might be using a different value K1, where K1>K0.
234** Both readers can use the same hash table and mapping section to get
235** the correct result. There may be entries in the hash table with
236** K>K0 but to the first reader, those entries will appear to be unused
237** slots in the hash table and so the first reader will get an answer as
238** if no values greater than K0 had ever been inserted into the hash table
239** in the first place - which is what reader one wants. Meanwhile, the
240** second reader using K1 will see additional values that were inserted
241** later, which is exactly what reader two wants.
242**
dan6f150142010-05-21 15:31:56 +0000243** When a rollback occurs, the value of K is decreased. Hash table entries
244** that correspond to frames greater than the new K value are removed
245** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000246*/
drh29d4dbe2010-05-18 23:29:52 +0000247#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000248
drh29d4dbe2010-05-18 23:29:52 +0000249#include "wal.h"
250
drh73b64e42010-05-30 19:55:15 +0000251/*
drhc74c3332010-05-31 12:15:19 +0000252** Trace output macros
253*/
drhc74c3332010-05-31 12:15:19 +0000254#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000255int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000256# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257#else
258# define WALTRACE(X)
259#endif
260
dan10f5a502010-06-23 15:55:43 +0000261/*
262** The maximum (and only) versions of the wal and wal-index formats
263** that may be interpreted by this version of SQLite.
264**
265** If a client begins recovering a WAL file and finds that (a) the checksum
266** values in the wal-header are correct and (b) the version field is not
267** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
268**
269** Similarly, if a client successfully reads a wal-index header (i.e. the
270** checksum test is successful) and finds that the version field is not
271** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
272** returns SQLITE_CANTOPEN.
273*/
274#define WAL_MAX_VERSION 3007000
275#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000276
277/*
drh07dae082017-10-30 20:44:36 +0000278** Index numbers for various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000279** of available reader locks and should be at least 3. The default
280** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh07dae082017-10-30 20:44:36 +0000281**
282** Technically, the various VFSes are free to implement these locks however
283** they see fit. However, compatibility is encouraged so that VFSes can
284** interoperate. The standard implemention used on both unix and windows
285** is for the index number to indicate a byte offset into the
286** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
287** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
288** should be 120) is the location in the shm file for the first locking
289** byte.
drh73b64e42010-05-30 19:55:15 +0000290*/
291#define WAL_WRITE_LOCK 0
292#define WAL_ALL_BUT_WRITE 1
293#define WAL_CKPT_LOCK 1
294#define WAL_RECOVER_LOCK 2
295#define WAL_READ_LOCK(I) (3+(I))
296#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
297
dan97a31352010-04-16 13:59:31 +0000298
drh7ed91f22010-04-29 22:34:07 +0000299/* Object declarations */
300typedef struct WalIndexHdr WalIndexHdr;
301typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000302typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000303
304
305/*
drh286a2882010-05-20 23:51:06 +0000306** The following object holds a copy of the wal-index header content.
307**
308** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000309** object followed by one instance of the WalCkptInfo object.
310** For all versions of SQLite through 3.10.0 and probably beyond,
311** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
312** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000313**
314** The szPage value can be any power of 2 between 512 and 32768, inclusive.
315** Or it can be 1 to represent a 65536-byte page. The latter case was
316** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000317*/
drh7ed91f22010-04-29 22:34:07 +0000318struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000319 u32 iVersion; /* Wal-index version */
320 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000321 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000322 u8 isInit; /* 1 when initialized */
323 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000324 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000325 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000326 u32 nPage; /* Size of database in pages */
327 u32 aFrameCksum[2]; /* Checksum of last frame in log */
328 u32 aSalt[2]; /* Two salt values copied from WAL header */
329 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000330};
331
drh73b64e42010-05-30 19:55:15 +0000332/*
333** A copy of the following object occurs in the wal-index immediately
334** following the second copy of the WalIndexHdr. This object stores
335** information used by checkpoint.
336**
337** nBackfill is the number of frames in the WAL that have been written
338** back into the database. (We call the act of moving content from WAL to
339** database "backfilling".) The nBackfill number is never greater than
340** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
341** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
342** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
343** mxFrame back to zero when the WAL is reset.
344**
drh998147e2015-12-10 02:15:03 +0000345** nBackfillAttempted is the largest value of nBackfill that a checkpoint
346** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
347** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000348** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000349** crashes, nBackfillAttempted might be larger than nBackfill. The
350** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
351**
352** The aLock[] field is a set of bytes used for locking. These bytes should
353** never be read or written.
354**
drh73b64e42010-05-30 19:55:15 +0000355** There is one entry in aReadMark[] for each reader lock. If a reader
356** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000357** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
358** for any aReadMark[] means that entry is unused. aReadMark[0] is
359** a special case; its value is never used and it exists as a place-holder
360** to avoid having to offset aReadMark[] indexs by one. Readers holding
361** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
362** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000363**
364** The value of aReadMark[K] may only be changed by a thread that
365** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
366** aReadMark[K] cannot changed while there is a reader is using that mark
367** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
368**
369** The checkpointer may only transfer frames from WAL to database where
370** the frame numbers are less than or equal to every aReadMark[] that is
371** in use (that is, every aReadMark[j] for which there is a corresponding
372** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
373** largest value and will increase an unused aReadMark[] to mxFrame if there
374** is not already an aReadMark[] equal to mxFrame. The exception to the
375** previous sentence is when nBackfill equals mxFrame (meaning that everything
376** in the WAL has been backfilled into the database) then new readers
377** will choose aReadMark[0] which has value 0 and hence such reader will
378** get all their all content directly from the database file and ignore
379** the WAL.
380**
381** Writers normally append new frames to the end of the WAL. However,
382** if nBackfill equals mxFrame (meaning that all WAL content has been
383** written back into the database) and if no readers are using the WAL
384** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
385** the writer will first "reset" the WAL back to the beginning and start
386** writing new content beginning at frame 1.
387**
388** We assume that 32-bit loads are atomic and so no locks are needed in
389** order to read from any aReadMark[] entries.
390*/
391struct WalCkptInfo {
392 u32 nBackfill; /* Number of WAL frames backfilled into DB */
393 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000394 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
395 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
396 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000397};
drhdb7f6472010-06-09 14:45:12 +0000398#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000399
400
drh7e263722010-05-20 21:21:09 +0000401/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
402** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
403** only support mandatory file-locks, we do not read or write data
404** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000405*/
drh998147e2015-12-10 02:15:03 +0000406#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
407#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000408
drh7ed91f22010-04-29 22:34:07 +0000409/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000410#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000411
dan10f5a502010-06-23 15:55:43 +0000412/* Size of write ahead log header, including checksum. */
dan10f5a502010-06-23 15:55:43 +0000413#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000414
danb8fd6c22010-05-24 10:39:36 +0000415/* WAL magic value. Either this value, or the same value with the least
416** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
417** big-endian format in the first 4 bytes of a WAL file.
418**
419** If the LSB is set, then the checksums for each frame within the WAL
420** file are calculated by treating all data as an array of 32-bit
421** big-endian words. Otherwise, they are calculated by interpreting
422** all data as 32-bit little-endian words.
423*/
424#define WAL_MAGIC 0x377f0682
425
dan97a31352010-04-16 13:59:31 +0000426/*
drh7ed91f22010-04-29 22:34:07 +0000427** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000428** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000429** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000430*/
drh6e810962010-05-19 17:49:50 +0000431#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000432 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000433)
dan7c246102010-04-12 19:00:29 +0000434
435/*
drh7ed91f22010-04-29 22:34:07 +0000436** An open write-ahead log file is represented by an instance of the
437** following object.
dance4f05f2010-04-22 19:14:13 +0000438*/
drh7ed91f22010-04-29 22:34:07 +0000439struct Wal {
drh73b64e42010-05-30 19:55:15 +0000440 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000441 sqlite3_file *pDbFd; /* File handle for the database file */
442 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000443 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000444 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000445 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000446 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000447 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000448 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000449 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000450 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000451 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000452 u8 writeLock; /* True if in a write transaction */
453 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000454 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000455 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000456 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000457 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh85bc6df2017-11-10 20:00:50 +0000458 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
drh73b64e42010-05-30 19:55:15 +0000459 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000460 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000461 u32 iReCksum; /* On commit, recalculate checksums from here */
dan3e875ef2010-07-05 19:03:35 +0000462 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000463 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000464#ifdef SQLITE_DEBUG
465 u8 lockError; /* True if a locking error has occurred */
466#endif
danfc1acf32015-12-05 20:51:54 +0000467#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000468 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
dan861fb1e2020-05-06 19:14:41 +0000469#endif
470#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
471 sqlite3 *db;
danfc1acf32015-12-05 20:51:54 +0000472#endif
dan7c246102010-04-12 19:00:29 +0000473};
474
drh73b64e42010-05-30 19:55:15 +0000475/*
dan8c408002010-11-01 17:38:24 +0000476** Candidate values for Wal.exclusiveMode.
477*/
478#define WAL_NORMAL_MODE 0
479#define WAL_EXCLUSIVE_MODE 1
480#define WAL_HEAPMEMORY_MODE 2
481
482/*
drh66dfec8b2011-06-01 20:01:49 +0000483** Possible values for WAL.readOnly
484*/
485#define WAL_RDWR 0 /* Normal read/write connection */
486#define WAL_RDONLY 1 /* The WAL file is readonly */
487#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
488
489/*
dan067f3162010-06-14 10:30:12 +0000490** Each page of the wal-index mapping contains a hash-table made up of
491** an array of HASHTABLE_NSLOT elements of the following type.
492*/
493typedef u16 ht_slot;
494
495/*
danad3cadd2010-06-14 11:49:26 +0000496** This structure is used to implement an iterator that loops through
497** all frames in the WAL in database page order. Where two or more frames
498** correspond to the same database page, the iterator visits only the
499** frame most recently written to the WAL (in other words, the frame with
500** the largest index).
501**
502** The internals of this structure are only accessed by:
503**
504** walIteratorInit() - Create a new iterator,
505** walIteratorNext() - Step an iterator,
506** walIteratorFree() - Free an iterator.
507**
508** This functionality is used by the checkpoint code (see walCheckpoint()).
509*/
510struct WalIterator {
drh8deae5a2020-07-29 12:23:20 +0000511 u32 iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000512 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000513 struct WalSegment {
514 int iNext; /* Next slot in aIndex[] not yet returned */
515 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
516 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000517 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000518 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000519 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000520};
521
522/*
dan13a3cb82010-06-11 19:04:21 +0000523** Define the parameters of the hash tables in the wal-index file. There
524** is a hash-table following every HASHTABLE_NPAGE page numbers in the
525** wal-index.
526**
527** Changing any of these constants will alter the wal-index format and
528** create incompatibilities.
529*/
dan067f3162010-06-14 10:30:12 +0000530#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000531#define HASHTABLE_HASH_1 383 /* Should be prime */
532#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000533
danad3cadd2010-06-14 11:49:26 +0000534/*
535** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000536** wal-index is smaller than usual. This is so that there is a complete
537** hash-table on each aligned 32KB page of the wal-index.
538*/
dan067f3162010-06-14 10:30:12 +0000539#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000540
dan067f3162010-06-14 10:30:12 +0000541/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
542#define WALINDEX_PGSZ ( \
543 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
544)
dan13a3cb82010-06-11 19:04:21 +0000545
546/*
547** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000548** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000549** numbered from zero.
550**
drhc05a0632017-11-11 20:11:01 +0000551** If the wal-index is currently smaller the iPage pages then the size
552** of the wal-index might be increased, but only if it is safe to do
553** so. It is safe to enlarge the wal-index if pWal->writeLock is true
554** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
555**
dan13a3cb82010-06-11 19:04:21 +0000556** If this call is successful, *ppPage is set to point to the wal-index
557** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
558** then an SQLite error code is returned and *ppPage is set to 0.
559*/
drh2e178d72018-02-20 22:20:57 +0000560static SQLITE_NOINLINE int walIndexPageRealloc(
561 Wal *pWal, /* The WAL context */
562 int iPage, /* The page we seek */
563 volatile u32 **ppPage /* Write the page pointer here */
564){
dan13a3cb82010-06-11 19:04:21 +0000565 int rc = SQLITE_OK;
566
567 /* Enlarge the pWal->apWiData[] array if required */
568 if( pWal->nWiData<=iPage ){
drhf6ad2012019-04-13 14:07:57 +0000569 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000570 volatile u32 **apNew;
drhd924e7b2020-05-17 00:26:44 +0000571 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000572 if( !apNew ){
573 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000574 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000575 }
drh519426a2010-07-09 03:19:07 +0000576 memset((void*)&apNew[pWal->nWiData], 0,
577 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000578 pWal->apWiData = apNew;
579 pWal->nWiData = iPage+1;
580 }
581
582 /* Request a pointer to the required page from the VFS */
drhc0ec2f72018-02-21 01:48:22 +0000583 assert( pWal->apWiData[iPage]==0 );
584 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
585 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
586 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
587 }else{
588 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
589 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
590 );
591 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
592 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
drhe7f3edc2020-07-28 17:17:36 +0000593 if( rc==SQLITE_OK ){
594 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
595 }else if( (rc&0xff)==SQLITE_READONLY ){
drhc0ec2f72018-02-21 01:48:22 +0000596 pWal->readOnly |= WAL_SHM_RDONLY;
597 if( rc==SQLITE_READONLY ){
598 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000599 }
dan8c408002010-11-01 17:38:24 +0000600 }
dan13a3cb82010-06-11 19:04:21 +0000601 }
danb6d2f9c2011-05-11 14:57:33 +0000602
drh66dfec8b2011-06-01 20:01:49 +0000603 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000604 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
605 return rc;
606}
drh2e178d72018-02-20 22:20:57 +0000607static int walIndexPage(
608 Wal *pWal, /* The WAL context */
609 int iPage, /* The page we seek */
610 volatile u32 **ppPage /* Write the page pointer here */
611){
612 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
613 return walIndexPageRealloc(pWal, iPage, ppPage);
614 }
615 return SQLITE_OK;
616}
dan13a3cb82010-06-11 19:04:21 +0000617
618/*
drh73b64e42010-05-30 19:55:15 +0000619** Return a pointer to the WalCkptInfo structure in the wal-index.
620*/
621static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000622 assert( pWal->nWiData>0 && pWal->apWiData[0] );
623 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
624}
625
626/*
627** Return a pointer to the WalIndexHdr structure in the wal-index.
628*/
629static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
630 assert( pWal->nWiData>0 && pWal->apWiData[0] );
631 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000632}
633
dan7c246102010-04-12 19:00:29 +0000634/*
danb8fd6c22010-05-24 10:39:36 +0000635** The argument to this macro must be of type u32. On a little-endian
636** architecture, it returns the u32 value that results from interpreting
637** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000638** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000639** of the input value as a little-endian integer.
640*/
641#define BYTESWAP32(x) ( \
642 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
643 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
644)
dan64d039e2010-04-13 19:27:31 +0000645
dan7c246102010-04-12 19:00:29 +0000646/*
drh7e263722010-05-20 21:21:09 +0000647** Generate or extend an 8 byte checksum based on the data in
648** array aByte[] and the initial values of aIn[0] and aIn[1] (or
649** initial values of 0 and 0 if aIn==NULL).
650**
651** The checksum is written back into aOut[] before returning.
652**
653** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000654*/
drh7e263722010-05-20 21:21:09 +0000655static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000656 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000657 u8 *a, /* Content to be checksummed */
658 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
659 const u32 *aIn, /* Initial checksum value input */
660 u32 *aOut /* OUT: Final checksum value output */
661){
662 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000663 u32 *aData = (u32 *)a;
664 u32 *aEnd = (u32 *)&a[nByte];
665
drh7e263722010-05-20 21:21:09 +0000666 if( aIn ){
667 s1 = aIn[0];
668 s2 = aIn[1];
669 }else{
670 s1 = s2 = 0;
671 }
dan7c246102010-04-12 19:00:29 +0000672
drh584c7542010-05-19 18:08:10 +0000673 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000674 assert( (nByte&0x00000007)==0 );
drhf6ad2012019-04-13 14:07:57 +0000675 assert( nByte<=65536 );
dan7c246102010-04-12 19:00:29 +0000676
danb8fd6c22010-05-24 10:39:36 +0000677 if( nativeCksum ){
678 do {
679 s1 += *aData++ + s2;
680 s2 += *aData++ + s1;
681 }while( aData<aEnd );
682 }else{
683 do {
684 s1 += BYTESWAP32(aData[0]) + s2;
685 s2 += BYTESWAP32(aData[1]) + s1;
686 aData += 2;
687 }while( aData<aEnd );
688 }
689
drh7e263722010-05-20 21:21:09 +0000690 aOut[0] = s1;
691 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000692}
693
drhf16cf652020-05-19 12:27:29 +0000694/*
695** If there is the possibility of concurrent access to the SHM file
696** from multiple threads and/or processes, then do a memory barrier.
697*/
dan8c408002010-11-01 17:38:24 +0000698static void walShmBarrier(Wal *pWal){
699 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
700 sqlite3OsShmBarrier(pWal->pDbFd);
701 }
702}
703
dan7c246102010-04-12 19:00:29 +0000704/*
drh5a8cd2e2020-05-19 15:51:10 +0000705** Add the SQLITE_NO_TSAN as part of the return-type of a function
706** definition as a hint that the function contains constructs that
707** might give false-positive TSAN warnings.
708**
709** See tag-20200519-1.
710*/
711#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
712# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
713#else
714# define SQLITE_NO_TSAN
715#endif
716
717/*
drh7e263722010-05-20 21:21:09 +0000718** Write the header information in pWal->hdr into the wal-index.
719**
720** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000721*/
drh5a8cd2e2020-05-19 15:51:10 +0000722static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000723 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
724 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000725
726 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000727 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000728 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000729 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf16cf652020-05-19 12:27:29 +0000730 /* Possible TSAN false-positive. See tag-20200519-1 */
drhf6bff3f2015-07-17 01:16:10 +0000731 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000732 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000733 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000734}
735
736/*
737** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000738** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000739** 4-byte big-endian integers, as follows:
740**
drh23ea97b2010-05-20 16:45:58 +0000741** 0: Page number.
742** 4: For commit records, the size of the database image in pages
743** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000744** 8: Salt-1 (copied from the wal-header)
745** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000746** 16: Checksum-1.
747** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000748*/
drh7ed91f22010-04-29 22:34:07 +0000749static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000750 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000751 u32 iPage, /* Database page number for frame */
752 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000753 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000754 u8 *aFrame /* OUT: Write encoded frame here */
755){
danb8fd6c22010-05-24 10:39:36 +0000756 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000757 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000758 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000759 sqlite3Put4byte(&aFrame[0], iPage);
760 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000761 if( pWal->iReCksum==0 ){
762 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000763
danc9a90222016-01-09 18:57:35 +0000764 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
765 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
766 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000767
danc9a90222016-01-09 18:57:35 +0000768 sqlite3Put4byte(&aFrame[16], aCksum[0]);
769 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000770 }else{
771 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000772 }
dan7c246102010-04-12 19:00:29 +0000773}
774
775/*
drh7e263722010-05-20 21:21:09 +0000776** Check to see if the frame with header in aFrame[] and content
777** in aData[] is valid. If it is a valid frame, fill *piPage and
778** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000779*/
drh7ed91f22010-04-29 22:34:07 +0000780static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000781 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000782 u32 *piPage, /* OUT: Database page number for frame */
783 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000784 u8 *aData, /* Pointer to page data (for checksum) */
785 u8 *aFrame /* Frame data */
786){
danb8fd6c22010-05-24 10:39:36 +0000787 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000788 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000789 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000790 assert( WAL_FRAME_HDRSIZE==24 );
791
drh7e263722010-05-20 21:21:09 +0000792 /* A frame is only valid if the salt values in the frame-header
793 ** match the salt values in the wal-header.
794 */
795 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000796 return 0;
797 }
dan4a4b01d2010-04-16 11:30:18 +0000798
drhc8179152010-05-24 13:28:36 +0000799 /* A frame is only valid if the page number is creater than zero.
800 */
801 pgno = sqlite3Get4byte(&aFrame[0]);
802 if( pgno==0 ){
803 return 0;
804 }
805
drh519426a2010-07-09 03:19:07 +0000806 /* A frame is only valid if a checksum of the WAL header,
807 ** all prior frams, the first 16 bytes of this frame-header,
808 ** and the frame-data matches the checksum in the last 8
809 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000810 */
danb8fd6c22010-05-24 10:39:36 +0000811 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000812 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000813 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000814 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
815 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000816 ){
817 /* Checksum failed. */
818 return 0;
819 }
820
drh7e263722010-05-20 21:21:09 +0000821 /* If we reach this point, the frame is valid. Return the page number
822 ** and the new database size.
823 */
drhc8179152010-05-24 13:28:36 +0000824 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000825 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000826 return 1;
827}
828
dan7c246102010-04-12 19:00:29 +0000829
drhc74c3332010-05-31 12:15:19 +0000830#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
831/*
drh181e0912010-06-01 01:08:08 +0000832** Names of locks. This routine is used to provide debugging output and is not
833** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000834*/
835static const char *walLockName(int lockIdx){
836 if( lockIdx==WAL_WRITE_LOCK ){
837 return "WRITE-LOCK";
838 }else if( lockIdx==WAL_CKPT_LOCK ){
839 return "CKPT-LOCK";
840 }else if( lockIdx==WAL_RECOVER_LOCK ){
841 return "RECOVER-LOCK";
842 }else{
843 static char zName[15];
844 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
845 lockIdx-WAL_READ_LOCK(0));
846 return zName;
847 }
848}
849#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
850
851
dan7c246102010-04-12 19:00:29 +0000852/*
drh181e0912010-06-01 01:08:08 +0000853** Set or release locks on the WAL. Locks are either shared or exclusive.
854** A lock cannot be moved directly between shared and exclusive - it must go
855** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000856**
857** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
858*/
859static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000860 int rc;
drh73b64e42010-05-30 19:55:15 +0000861 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000862 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
863 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
864 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
865 walLockName(lockIdx), rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +0000866 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000867 return rc;
drh73b64e42010-05-30 19:55:15 +0000868}
869static void walUnlockShared(Wal *pWal, int lockIdx){
870 if( pWal->exclusiveMode ) return;
871 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
872 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000873 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000874}
drhab372772015-12-02 16:10:16 +0000875static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000876 int rc;
drh73b64e42010-05-30 19:55:15 +0000877 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000878 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
879 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
880 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
881 walLockName(lockIdx), n, rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +0000882 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000883 return rc;
drh73b64e42010-05-30 19:55:15 +0000884}
885static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
886 if( pWal->exclusiveMode ) return;
887 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
888 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000889 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
890 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000891}
892
893/*
drh29d4dbe2010-05-18 23:29:52 +0000894** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000895** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
896** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000897*/
898static int walHash(u32 iPage){
899 assert( iPage>0 );
900 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
901 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
902}
903static int walNextHash(int iPriorHash){
904 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000905}
906
drh4ece2f22018-06-09 16:49:00 +0000907/*
908** An instance of the WalHashLoc object is used to describe the location
909** of a page hash table in the wal-index. This becomes the return value
910** from walHashGet().
911*/
912typedef struct WalHashLoc WalHashLoc;
913struct WalHashLoc {
914 volatile ht_slot *aHash; /* Start of the wal-index hash table */
915 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
916 u32 iZero; /* One less than the frame number of first indexed*/
917};
918
dan4280eb32010-06-12 12:02:35 +0000919/*
920** Return pointers to the hash table and page number array stored on
921** page iHash of the wal-index. The wal-index is broken into 32KB pages
922** numbered starting from 0.
923**
drh4ece2f22018-06-09 16:49:00 +0000924** Set output variable pLoc->aHash to point to the start of the hash table
925** in the wal-index file. Set pLoc->iZero to one less than the frame
dan4280eb32010-06-12 12:02:35 +0000926** number of the first frame indexed by this hash table. If a
927** slot in the hash table is set to N, it refers to frame number
drh4ece2f22018-06-09 16:49:00 +0000928** (pLoc->iZero+N) in the log.
dan4280eb32010-06-12 12:02:35 +0000929**
drh4ece2f22018-06-09 16:49:00 +0000930** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
931** first frame indexed by the hash table, frame (pLoc->iZero+1).
dan4280eb32010-06-12 12:02:35 +0000932*/
933static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000934 Wal *pWal, /* WAL handle */
935 int iHash, /* Find the iHash'th table */
drh4ece2f22018-06-09 16:49:00 +0000936 WalHashLoc *pLoc /* OUT: Hash table location */
dan13a3cb82010-06-11 19:04:21 +0000937){
dan4280eb32010-06-12 12:02:35 +0000938 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000939
drh4ece2f22018-06-09 16:49:00 +0000940 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
dan4280eb32010-06-12 12:02:35 +0000941 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000942
dan4280eb32010-06-12 12:02:35 +0000943 if( rc==SQLITE_OK ){
drh4ece2f22018-06-09 16:49:00 +0000944 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000945 if( iHash==0 ){
drh4ece2f22018-06-09 16:49:00 +0000946 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
947 pLoc->iZero = 0;
dan4280eb32010-06-12 12:02:35 +0000948 }else{
drh4ece2f22018-06-09 16:49:00 +0000949 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000950 }
drh4ece2f22018-06-09 16:49:00 +0000951 pLoc->aPgno = &pLoc->aPgno[-1];
dan13a3cb82010-06-11 19:04:21 +0000952 }
dan4280eb32010-06-12 12:02:35 +0000953 return rc;
dan13a3cb82010-06-11 19:04:21 +0000954}
955
dan4280eb32010-06-12 12:02:35 +0000956/*
957** Return the number of the wal-index page that contains the hash-table
958** and page-number array that contain entries corresponding to WAL frame
959** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
960** are numbered starting from 0.
961*/
dan13a3cb82010-06-11 19:04:21 +0000962static int walFramePage(u32 iFrame){
963 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
964 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
965 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
966 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
967 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
968 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
969 );
drh8deae5a2020-07-29 12:23:20 +0000970 assert( iHash>=0 );
dan13a3cb82010-06-11 19:04:21 +0000971 return iHash;
972}
973
974/*
975** Return the page number associated with frame iFrame in this WAL.
976*/
977static u32 walFramePgno(Wal *pWal, u32 iFrame){
978 int iHash = walFramePage(iFrame);
979 if( iHash==0 ){
980 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
981 }
982 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
983}
danbb23aff2010-05-10 14:46:09 +0000984
danca6b5ba2010-05-25 10:50:56 +0000985/*
986** Remove entries from the hash table that point to WAL slots greater
987** than pWal->hdr.mxFrame.
988**
989** This function is called whenever pWal->hdr.mxFrame is decreased due
990** to a rollback or savepoint.
991**
drh181e0912010-06-01 01:08:08 +0000992** At most only the hash table containing pWal->hdr.mxFrame needs to be
993** updated. Any later hash tables will be automatically cleared when
994** pWal->hdr.mxFrame advances to the point where those hash tables are
995** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000996*/
997static void walCleanupHash(Wal *pWal){
drh4ece2f22018-06-09 16:49:00 +0000998 WalHashLoc sLoc; /* Hash table location */
dan067f3162010-06-14 10:30:12 +0000999 int iLimit = 0; /* Zero values greater than this */
1000 int nByte; /* Number of bytes to zero in aPgno[] */
1001 int i; /* Used to iterate through aHash[] */
drhb92d7d22019-04-03 17:48:10 +00001002 int rc; /* Return code form walHashGet() */
danca6b5ba2010-05-25 10:50:56 +00001003
drh73b64e42010-05-30 19:55:15 +00001004 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +00001005 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1006 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1007 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +00001008
dan4280eb32010-06-12 12:02:35 +00001009 if( pWal->hdr.mxFrame==0 ) return;
1010
1011 /* Obtain pointers to the hash-table and page-number array containing
1012 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
drhb92d7d22019-04-03 17:48:10 +00001013 ** that the page said hash-table and array reside on is already mapped.(1)
dan4280eb32010-06-12 12:02:35 +00001014 */
1015 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1016 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
drhb92d7d22019-04-03 17:48:10 +00001017 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1018 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
dan4280eb32010-06-12 12:02:35 +00001019
1020 /* Zero all hash-table entries that correspond to frame numbers greater
1021 ** than pWal->hdr.mxFrame.
1022 */
drh4ece2f22018-06-09 16:49:00 +00001023 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001024 assert( iLimit>0 );
1025 for(i=0; i<HASHTABLE_NSLOT; i++){
drh4ece2f22018-06-09 16:49:00 +00001026 if( sLoc.aHash[i]>iLimit ){
1027 sLoc.aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +00001028 }
danca6b5ba2010-05-25 10:50:56 +00001029 }
dan4280eb32010-06-12 12:02:35 +00001030
1031 /* Zero the entries in the aPgno array that correspond to frames with
1032 ** frame numbers greater than pWal->hdr.mxFrame.
1033 */
drh4ece2f22018-06-09 16:49:00 +00001034 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1035 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001036
1037#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1038 /* Verify that the every entry in the mapping region is still reachable
1039 ** via the hash table even after the cleanup.
1040 */
drhf77bbd92010-06-01 13:17:44 +00001041 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +00001042 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +00001043 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +00001044 for(j=1; j<=iLimit; j++){
drh4ece2f22018-06-09 16:49:00 +00001045 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1046 if( sLoc.aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +00001047 }
drh4ece2f22018-06-09 16:49:00 +00001048 assert( sLoc.aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +00001049 }
1050 }
1051#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1052}
1053
danbb23aff2010-05-10 14:46:09 +00001054
drh7ed91f22010-04-29 22:34:07 +00001055/*
drh29d4dbe2010-05-18 23:29:52 +00001056** Set an entry in the wal-index that will map database page number
1057** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +00001058*/
drh7ed91f22010-04-29 22:34:07 +00001059static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +00001060 int rc; /* Return code */
drh4ece2f22018-06-09 16:49:00 +00001061 WalHashLoc sLoc; /* Wal-index hash table location */
dance4f05f2010-04-22 19:14:13 +00001062
drh4ece2f22018-06-09 16:49:00 +00001063 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
dan4280eb32010-06-12 12:02:35 +00001064
1065 /* Assuming the wal-index file was successfully mapped, populate the
1066 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001067 */
drhe7f3edc2020-07-28 17:17:36 +00001068 if( rc==SQLITE_OK ){
danbb23aff2010-05-10 14:46:09 +00001069 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001070 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001071 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001072
drh4ece2f22018-06-09 16:49:00 +00001073 idx = iFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001074 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1075
1076 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001077 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001078 */
danca6b5ba2010-05-25 10:50:56 +00001079 if( idx==1 ){
drh4ece2f22018-06-09 16:49:00 +00001080 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1081 - (u8 *)&sLoc.aPgno[1]);
1082 memset((void*)&sLoc.aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001083 }
danca6b5ba2010-05-25 10:50:56 +00001084
dan4280eb32010-06-12 12:02:35 +00001085 /* If the entry in aPgno[] is already set, then the previous writer
1086 ** must have exited unexpectedly in the middle of a transaction (after
1087 ** writing one or more dirty pages to the WAL to free up memory).
1088 ** Remove the remnants of that writers uncommitted transaction from
1089 ** the hash-table before writing any new entries.
1090 */
drh4ece2f22018-06-09 16:49:00 +00001091 if( sLoc.aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001092 walCleanupHash(pWal);
drh4ece2f22018-06-09 16:49:00 +00001093 assert( !sLoc.aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001094 }
dan4280eb32010-06-12 12:02:35 +00001095
1096 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001097 nCollide = idx;
drh4ece2f22018-06-09 16:49:00 +00001098 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001099 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001100 }
drh4ece2f22018-06-09 16:49:00 +00001101 sLoc.aPgno[idx] = iPage;
danec206a72020-06-04 16:07:51 +00001102 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
drh4fa95bf2010-05-22 00:55:39 +00001103
1104#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1105 /* Verify that the number of entries in the hash table exactly equals
1106 ** the number of entries in the mapping region.
1107 */
1108 {
1109 int i; /* Loop counter */
1110 int nEntry = 0; /* Number of entries in the hash table */
drh4ece2f22018-06-09 16:49:00 +00001111 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
drh4fa95bf2010-05-22 00:55:39 +00001112 assert( nEntry==idx );
1113 }
1114
1115 /* Verify that the every entry in the mapping region is reachable
1116 ** via the hash table. This turns out to be a really, really expensive
1117 ** thing to check, so only do this occasionally - not on every
1118 ** iteration.
1119 */
1120 if( (idx&0x3ff)==0 ){
1121 int i; /* Loop counter */
1122 for(i=1; i<=idx; i++){
drh4ece2f22018-06-09 16:49:00 +00001123 for(iKey=walHash(sLoc.aPgno[i]);
1124 sLoc.aHash[iKey];
1125 iKey=walNextHash(iKey)){
1126 if( sLoc.aHash[iKey]==i ) break;
drh4fa95bf2010-05-22 00:55:39 +00001127 }
drh4ece2f22018-06-09 16:49:00 +00001128 assert( sLoc.aHash[iKey]==i );
drh4fa95bf2010-05-22 00:55:39 +00001129 }
1130 }
1131#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001132 }
dan31f98fc2010-04-27 05:42:32 +00001133
drh4fa95bf2010-05-22 00:55:39 +00001134
danbb23aff2010-05-10 14:46:09 +00001135 return rc;
dan7c246102010-04-12 19:00:29 +00001136}
1137
1138
1139/*
drh7ed91f22010-04-29 22:34:07 +00001140** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001141**
1142** This routine first tries to establish an exclusive lock on the
1143** wal-index to prevent other threads/processes from doing anything
1144** with the WAL or wal-index while recovery is running. The
1145** WAL_RECOVER_LOCK is also held so that other threads will know
1146** that this thread is running recovery. If unable to establish
1147** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001148*/
drh7ed91f22010-04-29 22:34:07 +00001149static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001150 int rc; /* Return Code */
1151 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001152 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001153 int iLock; /* Lock offset to lock for checkpoint */
dan7c246102010-04-12 19:00:29 +00001154
dand0aa3422010-05-31 16:41:53 +00001155 /* Obtain an exclusive lock on all byte in the locking range not already
1156 ** locked by the caller. The caller is guaranteed to have locked the
1157 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1158 ** If successful, the same bytes that are locked here are unlocked before
1159 ** this function returns.
1160 */
1161 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1162 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1163 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1164 assert( pWal->writeLock );
1165 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
dandea5ce32017-11-02 11:12:03 +00001166 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
drh73b64e42010-05-30 19:55:15 +00001167 if( rc ){
1168 return rc;
1169 }
dandea5ce32017-11-02 11:12:03 +00001170
drhc74c3332010-05-31 12:15:19 +00001171 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001172
dan71d89912010-05-24 13:57:42 +00001173 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001174
drhd9e5c4f2010-05-12 18:01:39 +00001175 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001176 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001177 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001178 }
1179
danb8fd6c22010-05-24 10:39:36 +00001180 if( nSize>WAL_HDRSIZE ){
1181 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dand3e38b72020-07-25 20:16:27 +00001182 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
dan7c246102010-04-12 19:00:29 +00001183 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001184 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001185 u8 *aData; /* Pointer to data part of aFrame buffer */
drh6e810962010-05-19 17:49:50 +00001186 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001187 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001188 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001189 int isValid; /* True if this frame is valid */
drh8deae5a2020-07-29 12:23:20 +00001190 u32 iPg; /* Current 32KB wal-index page */
1191 u32 iLastFrame; /* Last frame in wal, based on nSize alone */
dan7c246102010-04-12 19:00:29 +00001192
danb8fd6c22010-05-24 10:39:36 +00001193 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001194 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001195 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001196 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001197 }
1198
1199 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001200 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1201 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1202 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001203 */
danb8fd6c22010-05-24 10:39:36 +00001204 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001205 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001206 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1207 || szPage&(szPage-1)
1208 || szPage>SQLITE_MAX_PAGE_SIZE
1209 || szPage<512
1210 ){
dan7c246102010-04-12 19:00:29 +00001211 goto finished;
1212 }
shaneh5eba1f62010-07-02 17:05:03 +00001213 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001214 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001215 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001216 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001217
1218 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001219 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001220 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001221 );
dan10f5a502010-06-23 15:55:43 +00001222 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1223 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1224 ){
1225 goto finished;
1226 }
1227
drhcd285082010-06-23 22:00:35 +00001228 /* Verify that the version number on the WAL format is one that
1229 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001230 version = sqlite3Get4byte(&aBuf[4]);
1231 if( version!=WAL_MAX_VERSION ){
1232 rc = SQLITE_CANTOPEN_BKPT;
1233 goto finished;
1234 }
1235
dan7c246102010-04-12 19:00:29 +00001236 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001237 szFrame = szPage + WAL_FRAME_HDRSIZE;
dand3e38b72020-07-25 20:16:27 +00001238 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
dan7c246102010-04-12 19:00:29 +00001239 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001240 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001241 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001242 }
drh7ed91f22010-04-29 22:34:07 +00001243 aData = &aFrame[WAL_FRAME_HDRSIZE];
dand3e38b72020-07-25 20:16:27 +00001244 aPrivate = (u32*)&aData[szPage];
dan7c246102010-04-12 19:00:29 +00001245
1246 /* Read all frames from the log file. */
dand3e38b72020-07-25 20:16:27 +00001247 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
drh8deae5a2020-07-29 12:23:20 +00001248 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
dand3e38b72020-07-25 20:16:27 +00001249 u32 *aShare;
drh8deae5a2020-07-29 12:23:20 +00001250 u32 iFrame; /* Index of last frame read */
1251 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1252 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1253 u32 nHdr, nHdr32;
dand3e38b72020-07-25 20:16:27 +00001254 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1255 if( rc ) break;
1256 pWal->apWiData[iPg] = aPrivate;
1257
1258 for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1259 i64 iOffset = walFrameOffset(iFrame, szPage);
1260 u32 pgno; /* Database page number for frame */
1261 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001262
dand3e38b72020-07-25 20:16:27 +00001263 /* Read and decode the next log frame. */
1264 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1265 if( rc!=SQLITE_OK ) break;
1266 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1267 if( !isValid ) break;
1268 rc = walIndexAppend(pWal, iFrame, pgno);
drhf31230a2020-07-27 20:16:37 +00001269 if( NEVER(rc!=SQLITE_OK) ) break;
dan7c246102010-04-12 19:00:29 +00001270
dand3e38b72020-07-25 20:16:27 +00001271 /* If nTruncate is non-zero, this is a commit record. */
1272 if( nTruncate ){
1273 pWal->hdr.mxFrame = iFrame;
1274 pWal->hdr.nPage = nTruncate;
1275 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1276 testcase( szPage<=32768 );
1277 testcase( szPage>=65536 );
1278 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1279 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1280 }
dan7c246102010-04-12 19:00:29 +00001281 }
dand3e38b72020-07-25 20:16:27 +00001282 pWal->apWiData[iPg] = aShare;
drhf31230a2020-07-27 20:16:37 +00001283 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1284 nHdr32 = nHdr / sizeof(u32);
drhe592c182020-07-30 22:33:36 +00001285#ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1286 /* Memcpy() should work fine here, on all reasonable implementations.
1287 ** Technically, memcpy() might change the destination to some
1288 ** intermediate value before setting to the final value, and that might
1289 ** cause a concurrent reader to malfunction. Memcpy() is allowed to
1290 ** do that, according to the spec, but no memcpy() implementation that
1291 ** we know of actually does that, which is why we say that memcpy()
1292 ** is safe for this. Memcpy() is certainly a lot faster.
1293 */
drhf31230a2020-07-27 20:16:37 +00001294 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
drhe592c182020-07-30 22:33:36 +00001295#else
1296 /* In the event that some platform is found for which memcpy()
1297 ** changes the destination to some intermediate value before
1298 ** setting the final value, this alternative copy routine is
1299 ** provided.
1300 */
1301 {
1302 int i;
1303 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1304 if( aShare[i]!=aPrivate[i] ){
1305 /* Atomic memory operations are not required here because if
1306 ** the value needs to be changed, that means it is not being
1307 ** accessed concurrently. */
1308 aShare[i] = aPrivate[i];
1309 }
1310 }
1311 }
1312#endif
dand3e38b72020-07-25 20:16:27 +00001313 if( iFrame<=iLast ) break;
dan7c246102010-04-12 19:00:29 +00001314 }
1315
1316 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001317 }
1318
1319finished:
dan576bc322010-05-06 18:04:50 +00001320 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001321 volatile WalCkptInfo *pInfo;
1322 int i;
dan71d89912010-05-24 13:57:42 +00001323 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1324 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001325 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001326
drhdb7f6472010-06-09 14:45:12 +00001327 /* Reset the checkpoint-header. This is safe because this thread is
dand3e38b72020-07-25 20:16:27 +00001328 ** currently holding locks that exclude all other writers and
1329 ** checkpointers. Then set the values of read-mark slots 1 through N.
dan3dee6da2010-05-31 16:17:54 +00001330 */
drhdb7f6472010-06-09 14:45:12 +00001331 pInfo = walCkptInfo(pWal);
1332 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001333 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001334 pInfo->aReadMark[0] = 0;
dand3e38b72020-07-25 20:16:27 +00001335 for(i=1; i<WAL_NREADER; i++){
1336 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1337 if( rc==SQLITE_OK ){
1338 if( i==1 && pWal->hdr.mxFrame ){
1339 pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1340 }else{
1341 pInfo->aReadMark[i] = READMARK_NOT_USED;
1342 }
1343 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh8caebb22020-07-27 15:01:10 +00001344 }else if( rc!=SQLITE_BUSY ){
1345 goto recovery_error;
dand3e38b72020-07-25 20:16:27 +00001346 }
1347 }
daneb8763d2010-08-17 14:52:22 +00001348
1349 /* If more than one frame was recovered from the log file, report an
1350 ** event via sqlite3_log(). This is to help with identifying performance
1351 ** problems caused by applications routinely shutting down without
1352 ** checkpointing the log file.
1353 */
1354 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001355 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1356 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001357 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001358 );
1359 }
dan576bc322010-05-06 18:04:50 +00001360 }
drh73b64e42010-05-30 19:55:15 +00001361
1362recovery_error:
drhc74c3332010-05-31 12:15:19 +00001363 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dandea5ce32017-11-02 11:12:03 +00001364 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
dan7c246102010-04-12 19:00:29 +00001365 return rc;
1366}
1367
drha8e654e2010-05-04 17:38:42 +00001368/*
dan1018e902010-05-05 15:33:05 +00001369** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001370*/
dan1018e902010-05-05 15:33:05 +00001371static void walIndexClose(Wal *pWal, int isDelete){
drh85bc6df2017-11-10 20:00:50 +00001372 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
dan8c408002010-11-01 17:38:24 +00001373 int i;
1374 for(i=0; i<pWal->nWiData; i++){
1375 sqlite3_free((void *)pWal->apWiData[i]);
1376 pWal->apWiData[i] = 0;
1377 }
dan11caf4f2017-11-04 18:10:03 +00001378 }
1379 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
dan8c408002010-11-01 17:38:24 +00001380 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1381 }
drha8e654e2010-05-04 17:38:42 +00001382}
1383
dan7c246102010-04-12 19:00:29 +00001384/*
dan3e875ef2010-07-05 19:03:35 +00001385** Open a connection to the WAL file zWalName. The database file must
1386** already be opened on connection pDbFd. The buffer that zWalName points
1387** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001388**
1389** A SHARED lock should be held on the database file when this function
1390** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001391** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001392** were to do this just after this client opened one of these files, the
1393** system would be badly broken.
danef378022010-05-04 11:06:03 +00001394**
1395** If the log file is successfully opened, SQLITE_OK is returned and
1396** *ppWal is set to point to a new WAL handle. If an error occurs,
1397** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001398*/
drhc438efd2010-04-26 00:19:45 +00001399int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001400 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001401 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001402 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001403 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001404 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001405 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001406){
danef378022010-05-04 11:06:03 +00001407 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001408 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001409 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001410
dan3e875ef2010-07-05 19:03:35 +00001411 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001412 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001413
drh1b78eaf2010-05-25 13:40:03 +00001414 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1415 ** this source file. Verify that the #defines of the locking byte offsets
1416 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001417 ** For that matter, if the lock offset ever changes from its initial design
1418 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001419 */
drh998147e2015-12-10 02:15:03 +00001420 assert( 120==WALINDEX_LOCK_OFFSET );
1421 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001422#ifdef WIN_SHM_BASE
1423 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1424#endif
1425#ifdef UNIX_SHM_BASE
1426 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1427#endif
1428
1429
drh7ed91f22010-04-29 22:34:07 +00001430 /* Allocate an instance of struct Wal to return. */
1431 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001432 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001433 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001434 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001435 }
1436
dan7c246102010-04-12 19:00:29 +00001437 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001438 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1439 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001440 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001441 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001442 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001443 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001444 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001445 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001446
drh7ed91f22010-04-29 22:34:07 +00001447 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001448 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001449 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001450 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001451 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001452 }
dan7c246102010-04-12 19:00:29 +00001453
dan7c246102010-04-12 19:00:29 +00001454 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001455 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001456 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001457 sqlite3_free(pRet);
1458 }else{
dandd973542014-02-13 19:27:08 +00001459 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001460 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001461 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1462 pRet->padToSectorBoundary = 0;
1463 }
danef378022010-05-04 11:06:03 +00001464 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001465 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001466 }
dan7c246102010-04-12 19:00:29 +00001467 return rc;
1468}
1469
drha2a42012010-05-18 18:01:08 +00001470/*
drh85a83752011-05-16 21:00:27 +00001471** Change the size to which the WAL file is trucated on each reset.
1472*/
1473void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1474 if( pWal ) pWal->mxWalSize = iLimit;
1475}
1476
1477/*
drha2a42012010-05-18 18:01:08 +00001478** Find the smallest page number out of all pages held in the WAL that
1479** has not been returned by any prior invocation of this method on the
1480** same WalIterator object. Write into *piFrame the frame index where
1481** that page was last written into the WAL. Write into *piPage the page
1482** number.
1483**
1484** Return 0 on success. If there are no pages in the WAL with a page
1485** number larger than *piPage, then return 1.
1486*/
drh7ed91f22010-04-29 22:34:07 +00001487static int walIteratorNext(
1488 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001489 u32 *piPage, /* OUT: The page number of the next page */
1490 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001491){
drha2a42012010-05-18 18:01:08 +00001492 u32 iMin; /* Result pgno must be greater than iMin */
1493 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1494 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001495
drha2a42012010-05-18 18:01:08 +00001496 iMin = p->iPrior;
1497 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001498 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001499 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001500 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001501 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001502 if( iPg>iMin ){
1503 if( iPg<iRet ){
1504 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001505 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001506 }
1507 break;
1508 }
1509 pSegment->iNext++;
1510 }
dan7c246102010-04-12 19:00:29 +00001511 }
1512
drha2a42012010-05-18 18:01:08 +00001513 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001514 return (iRet==0xFFFFFFFF);
1515}
1516
danf544b4c2010-06-25 11:35:52 +00001517/*
1518** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001519**
1520** aLeft[] and aRight[] are arrays of indices. The sort key is
1521** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1522** is guaranteed for all J<K:
1523**
1524** aContent[aLeft[J]] < aContent[aLeft[K]]
1525** aContent[aRight[J]] < aContent[aRight[K]]
1526**
1527** This routine overwrites aRight[] with a new (probably longer) sequence
1528** of indices such that the aRight[] contains every index that appears in
1529** either aLeft[] or the old aRight[] and such that the second condition
1530** above is still met.
1531**
1532** The aContent[aLeft[X]] values will be unique for all X. And the
1533** aContent[aRight[X]] values will be unique too. But there might be
1534** one or more combinations of X and Y such that
1535**
1536** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1537**
1538** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001539*/
1540static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001541 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001542 ht_slot *aLeft, /* IN: Left hand input list */
1543 int nLeft, /* IN: Elements in array *paLeft */
1544 ht_slot **paRight, /* IN/OUT: Right hand input list */
1545 int *pnRight, /* IN/OUT: Elements in *paRight */
1546 ht_slot *aTmp /* Temporary buffer */
1547){
1548 int iLeft = 0; /* Current index in aLeft */
1549 int iRight = 0; /* Current index in aRight */
1550 int iOut = 0; /* Current index in output buffer */
1551 int nRight = *pnRight;
1552 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001553
danf544b4c2010-06-25 11:35:52 +00001554 assert( nLeft>0 && nRight>0 );
1555 while( iRight<nRight || iLeft<nLeft ){
1556 ht_slot logpage;
1557 Pgno dbpage;
1558
1559 if( (iLeft<nLeft)
1560 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1561 ){
1562 logpage = aLeft[iLeft++];
1563 }else{
1564 logpage = aRight[iRight++];
1565 }
1566 dbpage = aContent[logpage];
1567
1568 aTmp[iOut++] = logpage;
1569 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1570
1571 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1572 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1573 }
1574
1575 *paRight = aLeft;
1576 *pnRight = iOut;
1577 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1578}
1579
1580/*
drhd9c9b782010-12-15 21:02:06 +00001581** Sort the elements in list aList using aContent[] as the sort key.
1582** Remove elements with duplicate keys, preferring to keep the
1583** larger aList[] values.
1584**
1585** The aList[] entries are indices into aContent[]. The values in
1586** aList[] are to be sorted so that for all J<K:
1587**
1588** aContent[aList[J]] < aContent[aList[K]]
1589**
1590** For any X and Y such that
1591**
1592** aContent[aList[X]] == aContent[aList[Y]]
1593**
1594** Keep the larger of the two values aList[X] and aList[Y] and discard
1595** the smaller.
danf544b4c2010-06-25 11:35:52 +00001596*/
dan13a3cb82010-06-11 19:04:21 +00001597static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001598 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001599 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1600 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001601 int *pnList /* IN/OUT: Number of elements in aList[] */
1602){
danf544b4c2010-06-25 11:35:52 +00001603 struct Sublist {
1604 int nList; /* Number of elements in aList */
1605 ht_slot *aList; /* Pointer to sub-list content */
1606 };
drha2a42012010-05-18 18:01:08 +00001607
danf544b4c2010-06-25 11:35:52 +00001608 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001609 int nMerge = 0; /* Number of elements in list aMerge */
1610 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001611 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001612 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001613 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001614
danf544b4c2010-06-25 11:35:52 +00001615 memset(aSub, 0, sizeof(aSub));
1616 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1617 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001618
danf544b4c2010-06-25 11:35:52 +00001619 for(iList=0; iList<nList; iList++){
1620 nMerge = 1;
1621 aMerge = &aList[iList];
1622 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001623 struct Sublist *p;
1624 assert( iSub<ArraySize(aSub) );
1625 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001626 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001627 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001628 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001629 }
danf544b4c2010-06-25 11:35:52 +00001630 aSub[iSub].aList = aMerge;
1631 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001632 }
1633
danf544b4c2010-06-25 11:35:52 +00001634 for(iSub++; iSub<ArraySize(aSub); iSub++){
1635 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001636 struct Sublist *p;
1637 assert( iSub<ArraySize(aSub) );
1638 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001639 assert( p->nList<=(1<<iSub) );
1640 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001641 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1642 }
1643 }
1644 assert( aMerge==aList );
1645 *pnList = nMerge;
1646
drha2a42012010-05-18 18:01:08 +00001647#ifdef SQLITE_DEBUG
1648 {
1649 int i;
1650 for(i=1; i<*pnList; i++){
1651 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1652 }
1653 }
1654#endif
1655}
1656
dan5d656852010-06-14 07:53:26 +00001657/*
1658** Free an iterator allocated by walIteratorInit().
1659*/
1660static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001661 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001662}
1663
drha2a42012010-05-18 18:01:08 +00001664/*
danbdf1e242010-06-25 15:16:25 +00001665** Construct a WalInterator object that can be used to loop over all
dan302ce472018-03-02 15:42:20 +00001666** pages in the WAL following frame nBackfill in ascending order. Frames
1667** nBackfill or earlier may be included - excluding them is an optimization
1668** only. The caller must hold the checkpoint lock.
drha2a42012010-05-18 18:01:08 +00001669**
1670** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001671** return SQLITE_OK. Otherwise, return an error code. If this routine
1672** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001673**
1674** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001675** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001676*/
dan302ce472018-03-02 15:42:20 +00001677static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001678 WalIterator *p; /* Return value */
1679 int nSegment; /* Number of segments to merge */
1680 u32 iLast; /* Last frame in log */
drhf6ad2012019-04-13 14:07:57 +00001681 sqlite3_int64 nByte; /* Number of bytes to allocate */
dan067f3162010-06-14 10:30:12 +00001682 int i; /* Iterator variable */
1683 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001684 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001685
danbdf1e242010-06-25 15:16:25 +00001686 /* This routine only runs while holding the checkpoint lock. And
1687 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001688 */
danbdf1e242010-06-25 15:16:25 +00001689 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001690 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001691
danbdf1e242010-06-25 15:16:25 +00001692 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001693 nSegment = walFramePage(iLast) + 1;
1694 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001695 + (nSegment-1)*sizeof(struct WalSegment)
1696 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001697 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001698 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001699 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001700 }
1701 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001702 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001703
1704 /* Allocate temporary space used by the merge-sort routine. This block
1705 ** of memory will be freed before this function returns.
1706 */
drhf3cdcdc2015-04-29 16:50:28 +00001707 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001708 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1709 );
danbdf1e242010-06-25 15:16:25 +00001710 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001711 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001712 }
1713
dan302ce472018-03-02 15:42:20 +00001714 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
drh4ece2f22018-06-09 16:49:00 +00001715 WalHashLoc sLoc;
dan13a3cb82010-06-11 19:04:21 +00001716
drh4ece2f22018-06-09 16:49:00 +00001717 rc = walHashGet(pWal, i, &sLoc);
danbdf1e242010-06-25 15:16:25 +00001718 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001719 int j; /* Counter variable */
1720 int nEntry; /* Number of entries in this segment */
1721 ht_slot *aIndex; /* Sorted index for this segment */
1722
drh4ece2f22018-06-09 16:49:00 +00001723 sLoc.aPgno++;
drh519426a2010-07-09 03:19:07 +00001724 if( (i+1)==nSegment ){
drh4ece2f22018-06-09 16:49:00 +00001725 nEntry = (int)(iLast - sLoc.iZero);
drh519426a2010-07-09 03:19:07 +00001726 }else{
drh4ece2f22018-06-09 16:49:00 +00001727 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
drh519426a2010-07-09 03:19:07 +00001728 }
drh4ece2f22018-06-09 16:49:00 +00001729 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1730 sLoc.iZero++;
danbdf1e242010-06-25 15:16:25 +00001731
danbdf1e242010-06-25 15:16:25 +00001732 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001733 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001734 }
drh4ece2f22018-06-09 16:49:00 +00001735 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1736 p->aSegment[i].iZero = sLoc.iZero;
danbdf1e242010-06-25 15:16:25 +00001737 p->aSegment[i].nEntry = nEntry;
1738 p->aSegment[i].aIndex = aIndex;
drh4ece2f22018-06-09 16:49:00 +00001739 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
dan13a3cb82010-06-11 19:04:21 +00001740 }
dan7c246102010-04-12 19:00:29 +00001741 }
drhcbd55b02014-11-04 14:22:27 +00001742 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001743
danbdf1e242010-06-25 15:16:25 +00001744 if( rc!=SQLITE_OK ){
1745 walIteratorFree(p);
drh49cc2f32018-03-05 23:23:28 +00001746 p = 0;
danbdf1e242010-06-25 15:16:25 +00001747 }
dan8f6097c2010-05-06 07:43:58 +00001748 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001749 return rc;
dan7c246102010-04-12 19:00:29 +00001750}
1751
dan7bb8b8a2020-05-06 20:27:18 +00001752#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1753/*
1754** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1755** they are supported by the VFS, and (b) the database handle is configured
1756** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1757** or 0 otherwise.
1758*/
1759static int walEnableBlocking(Wal *pWal){
1760 int res = 0;
1761 if( pWal->db ){
1762 int tmout = pWal->db->busyTimeout;
1763 if( tmout ){
1764 int rc;
1765 rc = sqlite3OsFileControl(
1766 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1767 );
1768 res = (rc==SQLITE_OK);
1769 }
1770 }
1771 return res;
1772}
1773
1774/*
1775** Disable blocking locks.
1776*/
1777static void walDisableBlocking(Wal *pWal){
1778 int tmout = 0;
1779 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1780}
1781
1782/*
1783** If parameter bLock is true, attempt to enable blocking locks, take
1784** the WRITER lock, and then disable blocking locks. If blocking locks
1785** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1786** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1787** an error if blocking locks can not be enabled.
1788**
1789** If the bLock parameter is false and the WRITER lock is held, release it.
1790*/
1791int sqlite3WalWriteLock(Wal *pWal, int bLock){
1792 int rc = SQLITE_OK;
1793 assert( pWal->readLock<0 || bLock==0 );
1794 if( bLock ){
1795 assert( pWal->db );
1796 if( walEnableBlocking(pWal) ){
1797 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1798 if( rc==SQLITE_OK ){
1799 pWal->writeLock = 1;
1800 }
1801 walDisableBlocking(pWal);
1802 }
1803 }else if( pWal->writeLock ){
1804 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1805 pWal->writeLock = 0;
1806 }
1807 return rc;
1808}
1809
1810/*
1811** Set the database handle used to determine if blocking locks are required.
1812*/
1813void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1814 pWal->db = db;
1815}
1816
1817/*
1818** Take an exclusive WRITE lock. Blocking if so configured.
1819*/
1820static int walLockWriter(Wal *pWal){
1821 int rc;
1822 walEnableBlocking(pWal);
1823 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1824 walDisableBlocking(pWal);
1825 return rc;
1826}
1827#else
1828# define walEnableBlocking(x) 0
1829# define walDisableBlocking(x)
1830# define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1831# define sqlite3WalDb(pWal, db)
1832#endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1833
1834
dan7c246102010-04-12 19:00:29 +00001835/*
dana58f26f2010-11-16 18:56:51 +00001836** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1837** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1838** busy-handler function. Invoke it and retry the lock until either the
1839** lock is successfully obtained or the busy-handler returns 0.
1840*/
1841static int walBusyLock(
1842 Wal *pWal, /* WAL connection */
1843 int (*xBusy)(void*), /* Function to call when busy */
1844 void *pBusyArg, /* Context argument for xBusyHandler */
1845 int lockIdx, /* Offset of first byte to lock */
1846 int n /* Number of bytes to lock */
1847){
1848 int rc;
1849 do {
drhab372772015-12-02 16:10:16 +00001850 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001851 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
dan7bb8b8a2020-05-06 20:27:18 +00001852#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1853 if( rc==SQLITE_BUSY_TIMEOUT ){
1854 walDisableBlocking(pWal);
1855 rc = SQLITE_BUSY;
1856 }
1857#endif
dana58f26f2010-11-16 18:56:51 +00001858 return rc;
1859}
1860
1861/*
danf2b8dd52010-11-18 19:28:01 +00001862** The cache of the wal-index header must be valid to call this function.
1863** Return the page-size in bytes used by the database.
1864*/
1865static int walPagesize(Wal *pWal){
1866 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1867}
1868
1869/*
danf26a1542014-12-02 19:04:54 +00001870** The following is guaranteed when this function is called:
1871**
1872** a) the WRITER lock is held,
1873** b) the entire log file has been checkpointed, and
1874** c) any existing readers are reading exclusively from the database
1875** file - there are no readers that may attempt to read a frame from
1876** the log file.
1877**
1878** This function updates the shared-memory structures so that the next
1879** client to write to the database (which may be this one) does so by
1880** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001881**
1882** The value of parameter salt1 is used as the aSalt[1] value in the
1883** new wal-index header. It should be passed a pseudo-random value (i.e.
1884** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001885*/
dan0fe8c1b2014-12-02 19:35:09 +00001886static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001887 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1888 int i; /* Loop counter */
1889 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1890 pWal->nCkpt++;
1891 pWal->hdr.mxFrame = 0;
1892 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001893 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001894 walIndexWriteHdr(pWal);
dan8b4f2312020-05-13 13:33:30 +00001895 AtomicStore(&pInfo->nBackfill, 0);
drh998147e2015-12-10 02:15:03 +00001896 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001897 pInfo->aReadMark[1] = 0;
1898 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1899 assert( pInfo->aReadMark[0]==0 );
1900}
1901
1902/*
drh73b64e42010-05-30 19:55:15 +00001903** Copy as much content as we can from the WAL back into the database file
1904** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1905**
1906** The amount of information copies from WAL to database might be limited
1907** by active readers. This routine will never overwrite a database page
1908** that a concurrent reader might be using.
1909**
1910** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1911** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1912** checkpoints are always run by a background thread or background
1913** process, foreground threads will never block on a lengthy fsync call.
1914**
1915** Fsync is called on the WAL before writing content out of the WAL and
1916** into the database. This ensures that if the new content is persistent
1917** in the WAL and can be recovered following a power-loss or hard reset.
1918**
1919** Fsync is also called on the database file if (and only if) the entire
1920** WAL content is copied into the database file. This second fsync makes
1921** it safe to delete the WAL since the new content will persist in the
1922** database file.
1923**
1924** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001925** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001926** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1927** its value.)
1928**
1929** The caller must be holding sufficient locks to ensure that no other
1930** checkpoint is running (in any other thread or process) at the same
1931** time.
dan7c246102010-04-12 19:00:29 +00001932*/
drh7ed91f22010-04-29 22:34:07 +00001933static int walCheckpoint(
1934 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00001935 sqlite3 *db, /* Check for interrupts on this handle */
dancdc1f042010-11-18 12:11:05 +00001936 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001937 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001938 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001939 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001940 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001941){
dan976b0032015-01-29 19:12:12 +00001942 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001943 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001944 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001945 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001946 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001947 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001948 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001949 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001950 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001951
danf2b8dd52010-11-18 19:28:01 +00001952 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001953 testcase( szPage<=32768 );
1954 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001955 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001956 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001957
dan976b0032015-01-29 19:12:12 +00001958 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1959 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1960 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001961
dan976b0032015-01-29 19:12:12 +00001962 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1963 ** safe to write into the database. Frames beyond mxSafeFrame might
1964 ** overwrite database pages that are in use by active readers and thus
1965 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001966 */
dan976b0032015-01-29 19:12:12 +00001967 mxSafeFrame = pWal->hdr.mxFrame;
1968 mxPage = pWal->hdr.nPage;
1969 for(i=1; i<WAL_NREADER; i++){
drhf16cf652020-05-19 12:27:29 +00001970 u32 y = AtomicLoad(pInfo->aReadMark+i);
dan976b0032015-01-29 19:12:12 +00001971 if( mxSafeFrame>y ){
1972 assert( y<=pWal->hdr.mxFrame );
1973 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1974 if( rc==SQLITE_OK ){
drhf16cf652020-05-19 12:27:29 +00001975 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1976 AtomicStore(pInfo->aReadMark+i, iMark);
dan976b0032015-01-29 19:12:12 +00001977 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1978 }else if( rc==SQLITE_BUSY ){
1979 mxSafeFrame = y;
1980 xBusy = 0;
1981 }else{
1982 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001983 }
1984 }
1985 }
1986
danf0cb61d2018-03-02 16:52:47 +00001987 /* Allocate the iterator */
1988 if( pInfo->nBackfill<mxSafeFrame ){
1989 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1990 assert( rc==SQLITE_OK || pIter==0 );
1991 }
1992
1993 if( pIter
drhf16cf652020-05-19 12:27:29 +00001994 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
dan976b0032015-01-29 19:12:12 +00001995 ){
dan976b0032015-01-29 19:12:12 +00001996 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001997
dan3bf83cc2015-12-10 15:45:15 +00001998 pInfo->nBackfillAttempted = mxSafeFrame;
1999
dan976b0032015-01-29 19:12:12 +00002000 /* Sync the WAL to disk */
drhdaaae7b2017-08-25 01:14:43 +00002001 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00002002
2003 /* If the database may grow as a result of this checkpoint, hint
2004 ** about the eventual size of the db file to the VFS layer.
2005 */
2006 if( rc==SQLITE_OK ){
2007 i64 nReq = ((i64)mxPage * szPage);
mistachkin6389a7b2018-08-08 20:46:35 +00002008 i64 nSize; /* Current size of database file */
drhfcf31b22020-05-01 18:37:34 +00002009 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
dan976b0032015-01-29 19:12:12 +00002010 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2011 if( rc==SQLITE_OK && nSize<nReq ){
dan91faeec2020-08-11 18:00:10 +00002012 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
drh799443b2020-08-07 19:52:01 +00002013 /* If the size of the final database is larger than the current
dan91faeec2020-08-11 18:00:10 +00002014 ** database plus the amount of data in the wal file, plus the
2015 ** maximum size of the pending-byte page (65536 bytes), then
drh799443b2020-08-07 19:52:01 +00002016 ** must be corruption somewhere. */
2017 rc = SQLITE_CORRUPT_BKPT;
2018 }else{
2019 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2020 }
dan976b0032015-01-29 19:12:12 +00002021 }
dan976b0032015-01-29 19:12:12 +00002022
dan88819d52020-08-07 16:28:02 +00002023 }
dan976b0032015-01-29 19:12:12 +00002024
2025 /* Iterate through the contents of the WAL, copying data to the db file */
2026 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2027 i64 iOffset;
2028 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan892edb62020-03-30 13:35:05 +00002029 if( AtomicLoad(&db->u1.isInterrupted) ){
dan7fb89902016-08-12 16:21:15 +00002030 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2031 break;
2032 }
dan976b0032015-01-29 19:12:12 +00002033 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2034 continue;
2035 }
2036 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2037 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2038 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2039 if( rc!=SQLITE_OK ) break;
2040 iOffset = (iDbpage-1)*(i64)szPage;
2041 testcase( IS_BIG_INT(iOffset) );
2042 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2043 if( rc!=SQLITE_OK ) break;
2044 }
drhfcf31b22020-05-01 18:37:34 +00002045 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
dan976b0032015-01-29 19:12:12 +00002046
2047 /* If work was actually accomplished... */
2048 if( rc==SQLITE_OK ){
2049 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2050 i64 szDb = pWal->hdr.nPage*(i64)szPage;
2051 testcase( IS_BIG_INT(szDb) );
2052 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drhdaaae7b2017-08-25 01:14:43 +00002053 if( rc==SQLITE_OK ){
2054 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00002055 }
2056 }
2057 if( rc==SQLITE_OK ){
dan8b4f2312020-05-13 13:33:30 +00002058 AtomicStore(&pInfo->nBackfill, mxSafeFrame);
dan976b0032015-01-29 19:12:12 +00002059 }
2060 }
2061
2062 /* Release the reader lock held while backfilling */
2063 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2064 }
2065
2066 if( rc==SQLITE_BUSY ){
2067 /* Reset the return code so as not to report a checkpoint failure
2068 ** just because there are active readers. */
2069 rc = SQLITE_OK;
2070 }
dan7c246102010-04-12 19:00:29 +00002071 }
2072
danf26a1542014-12-02 19:04:54 +00002073 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2074 ** entire wal file has been copied into the database file, then block
2075 ** until all readers have finished using the wal file. This ensures that
2076 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00002077 */
2078 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00002079 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00002080 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2081 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00002082 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00002083 u32 salt1;
2084 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00002085 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00002086 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2087 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00002088 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00002089 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2090 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2091 ** truncates the log file to zero bytes just prior to a
2092 ** successful return.
danf26a1542014-12-02 19:04:54 +00002093 **
2094 ** In theory, it might be safe to do this without updating the
2095 ** wal-index header in shared memory, as all subsequent reader or
2096 ** writer clients should see that the entire log file has been
2097 ** checkpointed and behave accordingly. This seems unsafe though,
2098 ** as it would leave the system in a state where the contents of
2099 ** the wal-index header do not match the contents of the
2100 ** file-system. To avoid this, update the wal-index header to
2101 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00002102 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00002103 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2104 }
danf2b8dd52010-11-18 19:28:01 +00002105 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2106 }
dancdc1f042010-11-18 12:11:05 +00002107 }
2108 }
2109
dan83f42d12010-06-04 10:37:05 +00002110 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00002111 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00002112 return rc;
2113}
2114
2115/*
danf60b7f32011-12-16 13:24:27 +00002116** If the WAL file is currently larger than nMax bytes in size, truncate
2117** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00002118*/
danf60b7f32011-12-16 13:24:27 +00002119static void walLimitSize(Wal *pWal, i64 nMax){
2120 i64 sz;
2121 int rx;
2122 sqlite3BeginBenignMalloc();
2123 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2124 if( rx==SQLITE_OK && (sz > nMax ) ){
2125 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2126 }
2127 sqlite3EndBenignMalloc();
2128 if( rx ){
2129 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00002130 }
2131}
2132
2133/*
dan7c246102010-04-12 19:00:29 +00002134** Close a connection to a log file.
2135*/
drhc438efd2010-04-26 00:19:45 +00002136int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00002137 Wal *pWal, /* Wal to close */
dan7fb89902016-08-12 16:21:15 +00002138 sqlite3 *db, /* For interrupt flag */
danc5118782010-04-17 17:34:41 +00002139 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00002140 int nBuf,
2141 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00002142){
2143 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00002144 if( pWal ){
dan30c86292010-04-30 16:24:46 +00002145 int isDelete = 0; /* True to unlink wal and wal-index files */
2146
2147 /* If an EXCLUSIVE lock can be obtained on the database file (using the
2148 ** ordinary, rollback-mode locking methods, this guarantees that the
2149 ** connection associated with this log file is the only connection to
2150 ** the database. In this case checkpoint the database and unlink both
2151 ** the wal and wal-index files.
2152 **
2153 ** The EXCLUSIVE lock is not released before returning.
2154 */
dan4a5bad52016-11-11 17:08:51 +00002155 if( zBuf!=0
dan298af022016-10-31 16:16:49 +00002156 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2157 ){
dan8c408002010-11-01 17:38:24 +00002158 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2159 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2160 }
dan7fb89902016-08-12 16:21:15 +00002161 rc = sqlite3WalCheckpoint(pWal, db,
2162 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
dancdc1f042010-11-18 12:11:05 +00002163 );
drheed42502011-12-16 15:38:52 +00002164 if( rc==SQLITE_OK ){
2165 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00002166 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00002167 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2168 );
drheed42502011-12-16 15:38:52 +00002169 if( bPersist!=1 ){
2170 /* Try to delete the WAL file if the checkpoint completed and
2171 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2172 ** mode (!bPersist) */
2173 isDelete = 1;
2174 }else if( pWal->mxWalSize>=0 ){
2175 /* Try to truncate the WAL file to zero bytes if the checkpoint
2176 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2177 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2178 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2179 ** to zero bytes as truncating to the journal_size_limit might
2180 ** leave a corrupt WAL file on disk. */
2181 walLimitSize(pWal, 0);
2182 }
dan30c86292010-04-30 16:24:46 +00002183 }
dan30c86292010-04-30 16:24:46 +00002184 }
2185
dan1018e902010-05-05 15:33:05 +00002186 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00002187 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00002188 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00002189 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00002190 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00002191 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00002192 }
drhc74c3332010-05-31 12:15:19 +00002193 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00002194 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00002195 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00002196 }
2197 return rc;
2198}
2199
2200/*
drha2a42012010-05-18 18:01:08 +00002201** Try to read the wal-index header. Return 0 on success and 1 if
2202** there is a problem.
2203**
2204** The wal-index is in shared memory. Another thread or process might
2205** be writing the header at the same time this procedure is trying to
2206** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00002207** by verifying that both copies of the header are the same and also by
2208** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00002209**
2210** If and only if the read is consistent and the header is different from
2211** pWal->hdr, then pWal->hdr is updated to the content of the new header
2212** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002213**
dan84670502010-05-07 05:46:23 +00002214** If the checksum cannot be verified return non-zero. If the header
2215** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002216*/
drh5a8cd2e2020-05-19 15:51:10 +00002217static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00002218 u32 aCksum[2]; /* Checksum on the header content */
2219 WalIndexHdr h1, h2; /* Two copies of the header content */
2220 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002221
dan4280eb32010-06-12 12:02:35 +00002222 /* The first page of the wal-index must be mapped at this point. */
2223 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002224
drh6cef0cf2010-08-16 16:31:43 +00002225 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002226 ** same area of shared memory on a different CPU in a SMP,
2227 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002228 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002229 **
drhf16cf652020-05-19 12:27:29 +00002230 ** tag-20200519-1:
drhf0b20f82010-05-21 13:16:18 +00002231 ** There are two copies of the header at the beginning of the wal-index.
2232 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2233 ** Memory barriers are used to prevent the compiler or the hardware from
drhf16cf652020-05-19 12:27:29 +00002234 ** reordering the reads and writes. TSAN and similar tools can sometimes
2235 ** give false-positive warnings about these accesses because the tools do not
2236 ** account for the double-read and the memory barrier. The use of mutexes
2237 ** here would be problematic as the memory being accessed is potentially
2238 ** shared among multiple processes and not all mutex implementions work
2239 ** reliably in that environment.
danb9bf16b2010-04-14 11:23:30 +00002240 */
dan4280eb32010-06-12 12:02:35 +00002241 aHdr = walIndexHdr(pWal);
drhf16cf652020-05-19 12:27:29 +00002242 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
dan8c408002010-11-01 17:38:24 +00002243 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002244 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002245
drhf0b20f82010-05-21 13:16:18 +00002246 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2247 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002248 }
drh4b82c382010-05-31 18:24:19 +00002249 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002250 return 1; /* Malformed header - probably all zeros */
2251 }
danb8fd6c22010-05-24 10:39:36 +00002252 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002253 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2254 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002255 }
2256
drhf0b20f82010-05-21 13:16:18 +00002257 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002258 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002259 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002260 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2261 testcase( pWal->szPage<=32768 );
2262 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002263 }
dan84670502010-05-07 05:46:23 +00002264
2265 /* The header was successfully read. Return zero. */
2266 return 0;
danb9bf16b2010-04-14 11:23:30 +00002267}
2268
2269/*
dan08ecefc2017-11-07 21:15:07 +00002270** This is the value that walTryBeginRead returns when it needs to
2271** be retried.
2272*/
2273#define WAL_RETRY (-1)
2274
2275/*
drha2a42012010-05-18 18:01:08 +00002276** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002277** If the wal-header appears to be corrupt, try to reconstruct the
2278** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002279**
2280** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002281** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002282** to 0.
2283**
drh7ed91f22010-04-29 22:34:07 +00002284** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002285** Otherwise an SQLite error code.
2286*/
drh7ed91f22010-04-29 22:34:07 +00002287static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002288 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002289 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002290 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002291
dan4280eb32010-06-12 12:02:35 +00002292 /* Ensure that page 0 of the wal-index (the page that contains the
2293 ** wal-index header) is mapped. Return early if an error occurs here.
2294 */
dana8614692010-05-06 14:42:34 +00002295 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002296 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002297 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002298 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2299 if( rc==SQLITE_READONLY_CANTINIT ){
2300 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2301 ** was openable but is not writable, and this thread is unable to
2302 ** confirm that another write-capable connection has the shared-memory
2303 ** open, and hence the content of the shared-memory is unreliable,
2304 ** since the shared-memory might be inconsistent with the WAL file
2305 ** and there is no writer on hand to fix it. */
drhc05a0632017-11-11 20:11:01 +00002306 assert( page0==0 );
2307 assert( pWal->writeLock==0 );
2308 assert( pWal->readOnly & WAL_SHM_RDONLY );
drh85bc6df2017-11-10 20:00:50 +00002309 pWal->bShmUnreliable = 1;
2310 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2311 *pChanged = 1;
2312 }else{
2313 return rc; /* Any other non-OK return is just an error */
2314 }
drhc05a0632017-11-11 20:11:01 +00002315 }else{
2316 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2317 ** is zero, which prevents the SHM from growing */
2318 testcase( page0!=0 );
2319 }
2320 assert( page0!=0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002321
dan4280eb32010-06-12 12:02:35 +00002322 /* If the first page of the wal-index has been mapped, try to read the
2323 ** wal-index header immediately, without holding any lock. This usually
2324 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002325 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002326 */
dan4280eb32010-06-12 12:02:35 +00002327 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002328
drh73b64e42010-05-30 19:55:15 +00002329 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002330 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002331 */
dan4edc6bf2011-05-10 17:31:29 +00002332 if( badHdr ){
drh85bc6df2017-11-10 20:00:50 +00002333 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
dan4edc6bf2011-05-10 17:31:29 +00002334 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2335 walUnlockShared(pWal, WAL_WRITE_LOCK);
2336 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002337 }
dand0e6d132020-05-06 17:18:57 +00002338 }else{
2339 int bWriteLock = pWal->writeLock;
dan861fb1e2020-05-06 19:14:41 +00002340 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
dand0e6d132020-05-06 17:18:57 +00002341 pWal->writeLock = 1;
2342 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2343 badHdr = walIndexTryHdr(pWal, pChanged);
2344 if( badHdr ){
2345 /* If the wal-index header is still malformed even while holding
2346 ** a WRITE lock, it can only mean that the header is corrupted and
2347 ** needs to be reconstructed. So run recovery to do exactly that.
2348 */
2349 rc = walIndexRecover(pWal);
2350 *pChanged = 1;
2351 }
2352 }
2353 if( bWriteLock==0 ){
2354 pWal->writeLock = 0;
2355 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dan4edc6bf2011-05-10 17:31:29 +00002356 }
2357 }
drhbab7b912010-05-26 17:31:58 +00002358 }
danb9bf16b2010-04-14 11:23:30 +00002359 }
2360
drha927e942010-06-24 02:46:48 +00002361 /* If the header is read successfully, check the version number to make
2362 ** sure the wal-index was not constructed with some future format that
2363 ** this version of SQLite cannot understand.
2364 */
2365 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2366 rc = SQLITE_CANTOPEN_BKPT;
2367 }
drh85bc6df2017-11-10 20:00:50 +00002368 if( pWal->bShmUnreliable ){
dan11caf4f2017-11-04 18:10:03 +00002369 if( rc!=SQLITE_OK ){
2370 walIndexClose(pWal, 0);
drh85bc6df2017-11-10 20:00:50 +00002371 pWal->bShmUnreliable = 0;
dan08ecefc2017-11-07 21:15:07 +00002372 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
drh8b17ac12017-11-14 03:42:52 +00002373 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2374 ** writer truncated the WAL out from under it. If that happens, it
2375 ** indicates that a writer has fixed the SHM file for us, so retry */
dan08ecefc2017-11-07 21:15:07 +00002376 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
dan11caf4f2017-11-04 18:10:03 +00002377 }
2378 pWal->exclusiveMode = WAL_NORMAL_MODE;
2379 }
drha927e942010-06-24 02:46:48 +00002380
danb9bf16b2010-04-14 11:23:30 +00002381 return rc;
2382}
2383
2384/*
drh85bc6df2017-11-10 20:00:50 +00002385** Open a transaction in a connection where the shared-memory is read-only
2386** and where we cannot verify that there is a separate write-capable connection
2387** on hand to keep the shared-memory up-to-date with the WAL file.
2388**
2389** This can happen, for example, when the shared-memory is implemented by
2390** memory-mapping a *-shm file, where a prior writer has shut down and
2391** left the *-shm file on disk, and now the present connection is trying
2392** to use that database but lacks write permission on the *-shm file.
2393** Other scenarios are also possible, depending on the VFS implementation.
2394**
2395** Precondition:
2396**
2397** The *-wal file has been read and an appropriate wal-index has been
2398** constructed in pWal->apWiData[] using heap memory instead of shared
2399** memory.
dan11caf4f2017-11-04 18:10:03 +00002400**
2401** If this function returns SQLITE_OK, then the read transaction has
2402** been successfully opened. In this case output variable (*pChanged)
2403** is set to true before returning if the caller should discard the
2404** contents of the page cache before proceeding. Or, if it returns
2405** WAL_RETRY, then the heap memory wal-index has been discarded and
2406** the caller should retry opening the read transaction from the
2407** beginning (including attempting to map the *-shm file).
2408**
2409** If an error occurs, an SQLite error code is returned.
2410*/
drh85bc6df2017-11-10 20:00:50 +00002411static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
dan11caf4f2017-11-04 18:10:03 +00002412 i64 szWal; /* Size of wal file on disk in bytes */
2413 i64 iOffset; /* Current offset when reading wal file */
2414 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2415 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2416 int szFrame; /* Number of bytes in buffer aFrame[] */
2417 u8 *aData; /* Pointer to data part of aFrame buffer */
2418 volatile void *pDummy; /* Dummy argument for xShmMap */
2419 int rc; /* Return code */
2420 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2421
drh85bc6df2017-11-10 20:00:50 +00002422 assert( pWal->bShmUnreliable );
dan11caf4f2017-11-04 18:10:03 +00002423 assert( pWal->readOnly & WAL_SHM_RDONLY );
2424 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2425
2426 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
drh85bc6df2017-11-10 20:00:50 +00002427 ** writers from running a checkpoint, but does not stop them
dan11caf4f2017-11-04 18:10:03 +00002428 ** from running recovery. */
2429 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2430 if( rc!=SQLITE_OK ){
danab548382017-11-06 19:49:34 +00002431 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002432 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002433 }
2434 pWal->readLock = 0;
2435
drh85bc6df2017-11-10 20:00:50 +00002436 /* Check to see if a separate writer has attached to the shared-memory area,
2437 ** thus making the shared-memory "reliable" again. Do this by invoking
2438 ** the xShmMap() routine of the VFS and looking to see if the return
2439 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
drh9214c1e2017-11-08 19:26:27 +00002440 **
drh85bc6df2017-11-10 20:00:50 +00002441 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2442 ** cause the heap-memory WAL-index to be discarded and the actual
2443 ** shared memory to be used in its place.
drh870655b2017-11-11 13:30:44 +00002444 **
2445 ** This step is important because, even though this connection is holding
2446 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2447 ** have already checkpointed the WAL file and, while the current
2448 ** is active, wrap the WAL and start overwriting frames that this
2449 ** process wants to use.
2450 **
2451 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2452 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2453 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2454 ** even if some external agent does a "chmod" to make the shared-memory
2455 ** writable by us, until sqlite3OsShmUnmap() has been called.
2456 ** This is a requirement on the VFS implementation.
2457 */
dan11caf4f2017-11-04 18:10:03 +00002458 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
drh9214c1e2017-11-08 19:26:27 +00002459 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
drh7e45e3a2017-11-08 17:32:12 +00002460 if( rc!=SQLITE_READONLY_CANTINIT ){
dan11caf4f2017-11-04 18:10:03 +00002461 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
drh85bc6df2017-11-10 20:00:50 +00002462 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002463 }
2464
drh870655b2017-11-11 13:30:44 +00002465 /* We reach this point only if the real shared-memory is still unreliable.
drh85bc6df2017-11-10 20:00:50 +00002466 ** Assume the in-memory WAL-index substitute is correct and load it
2467 ** into pWal->hdr.
2468 */
dan11caf4f2017-11-04 18:10:03 +00002469 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
drh85bc6df2017-11-10 20:00:50 +00002470
drh870655b2017-11-11 13:30:44 +00002471 /* Make sure some writer hasn't come in and changed the WAL file out
2472 ** from under us, then disconnected, while we were not looking.
drh85bc6df2017-11-10 20:00:50 +00002473 */
dan11caf4f2017-11-04 18:10:03 +00002474 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
danab548382017-11-06 19:49:34 +00002475 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002476 goto begin_unreliable_shm_out;
danab548382017-11-06 19:49:34 +00002477 }
2478 if( szWal<WAL_HDRSIZE ){
dan11caf4f2017-11-04 18:10:03 +00002479 /* If the wal file is too small to contain a wal-header and the
2480 ** wal-index header has mxFrame==0, then it must be safe to proceed
2481 ** reading the database file only. However, the page cache cannot
2482 ** be trusted, as a read/write connection may have connected, written
2483 ** the db, run a checkpoint, truncated the wal file and disconnected
2484 ** since this client's last read transaction. */
2485 *pChanged = 1;
danab548382017-11-06 19:49:34 +00002486 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
drh85bc6df2017-11-10 20:00:50 +00002487 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002488 }
2489
2490 /* Check the salt keys at the start of the wal file still match. */
2491 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2492 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002493 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002494 }
2495 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
drh870655b2017-11-11 13:30:44 +00002496 /* Some writer has wrapped the WAL file while we were not looking.
2497 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2498 ** rebuilt. */
dan11caf4f2017-11-04 18:10:03 +00002499 rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002500 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002501 }
2502
2503 /* Allocate a buffer to read frames into */
2504 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2505 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2506 if( aFrame==0 ){
2507 rc = SQLITE_NOMEM_BKPT;
drh85bc6df2017-11-10 20:00:50 +00002508 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002509 }
2510 aData = &aFrame[WAL_FRAME_HDRSIZE];
2511
dancbd33212017-11-04 21:06:35 +00002512 /* Check to see if a complete transaction has been appended to the
2513 ** wal file since the heap-memory wal-index was created. If so, the
2514 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2515 ** the caller. */
dan11caf4f2017-11-04 18:10:03 +00002516 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2517 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2518 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2519 iOffset+szFrame<=szWal;
2520 iOffset+=szFrame
2521 ){
2522 u32 pgno; /* Database page number for frame */
2523 u32 nTruncate; /* dbsize field from frame header */
2524
2525 /* Read and decode the next log frame. */
2526 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
danab548382017-11-06 19:49:34 +00002527 if( rc!=SQLITE_OK ) break;
dan11caf4f2017-11-04 18:10:03 +00002528 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2529
dancbd33212017-11-04 21:06:35 +00002530 /* If nTruncate is non-zero, then a complete transaction has been
2531 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2532 ** the loop. */
dan11caf4f2017-11-04 18:10:03 +00002533 if( nTruncate ){
2534 rc = WAL_RETRY;
2535 break;
2536 }
2537 }
2538 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2539 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2540
drh85bc6df2017-11-10 20:00:50 +00002541 begin_unreliable_shm_out:
dan11caf4f2017-11-04 18:10:03 +00002542 sqlite3_free(aFrame);
2543 if( rc!=SQLITE_OK ){
2544 int i;
2545 for(i=0; i<pWal->nWiData; i++){
2546 sqlite3_free((void*)pWal->apWiData[i]);
2547 pWal->apWiData[i] = 0;
2548 }
drh85bc6df2017-11-10 20:00:50 +00002549 pWal->bShmUnreliable = 0;
dan11caf4f2017-11-04 18:10:03 +00002550 sqlite3WalEndReadTransaction(pWal);
2551 *pChanged = 1;
2552 }
2553 return rc;
2554}
2555
2556/*
drh73b64e42010-05-30 19:55:15 +00002557** Attempt to start a read transaction. This might fail due to a race or
2558** other transient condition. When that happens, it returns WAL_RETRY to
2559** indicate to the caller that it is safe to retry immediately.
2560**
drha927e942010-06-24 02:46:48 +00002561** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002562** I/O error or an SQLITE_BUSY because another process is running
2563** recovery) return a positive error code.
2564**
drha927e942010-06-24 02:46:48 +00002565** The useWal parameter is true to force the use of the WAL and disable
2566** the case where the WAL is bypassed because it has been completely
2567** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2568** to make a copy of the wal-index header into pWal->hdr. If the
2569** wal-index header has changed, *pChanged is set to 1 (as an indication
drh183f0aa2017-10-31 12:06:29 +00002570** to the caller that the local page cache is obsolete and needs to be
drha927e942010-06-24 02:46:48 +00002571** flushed.) When useWal==1, the wal-index header is assumed to already
2572** be loaded and the pChanged parameter is unused.
2573**
2574** The caller must set the cnt parameter to the number of prior calls to
2575** this routine during the current read attempt that returned WAL_RETRY.
2576** This routine will start taking more aggressive measures to clear the
2577** race conditions after multiple WAL_RETRY returns, and after an excessive
2578** number of errors will ultimately return SQLITE_PROTOCOL. The
2579** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2580** and is not honoring the locking protocol. There is a vanishingly small
2581** chance that SQLITE_PROTOCOL could be returned because of a run of really
2582** bad luck when there is lots of contention for the wal-index, but that
2583** possibility is so small that it can be safely neglected, we believe.
2584**
drh73b64e42010-05-30 19:55:15 +00002585** On success, this routine obtains a read lock on
2586** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2587** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2588** that means the Wal does not hold any read lock. The reader must not
2589** access any database page that is modified by a WAL frame up to and
2590** including frame number aReadMark[pWal->readLock]. The reader will
2591** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2592** Or if pWal->readLock==0, then the reader will ignore the WAL
2593** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002594** If the useWal parameter is 1 then the WAL will never be ignored and
2595** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002596** When the read transaction is completed, the caller must release the
2597** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2598**
2599** This routine uses the nBackfill and aReadMark[] fields of the header
2600** to select a particular WAL_READ_LOCK() that strives to let the
2601** checkpoint process do as much work as possible. This routine might
2602** update values of the aReadMark[] array in the header, but if it does
2603** so it takes care to hold an exclusive lock on the corresponding
2604** WAL_READ_LOCK() while changing values.
2605*/
drhaab4c022010-06-02 14:45:51 +00002606static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002607 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2608 u32 mxReadMark; /* Largest aReadMark[] value */
2609 int mxI; /* Index of largest aReadMark[] value */
2610 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002611 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002612 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002613
drh61e4ace2010-05-31 20:28:37 +00002614 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002615
drh2e9b0922017-11-13 05:51:37 +00002616 /* useWal may only be set for read/write connections */
2617 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2618
drh658d76c2011-02-19 15:22:14 +00002619 /* Take steps to avoid spinning forever if there is a protocol error.
2620 **
2621 ** Circumstances that cause a RETRY should only last for the briefest
2622 ** instances of time. No I/O or other system calls are done while the
2623 ** locks are held, so the locks should not be held for very long. But
2624 ** if we are unlucky, another process that is holding a lock might get
2625 ** paged out or take a page-fault that is time-consuming to resolve,
2626 ** during the few nanoseconds that it is holding the lock. In that case,
2627 ** it might take longer than normal for the lock to free.
2628 **
2629 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2630 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2631 ** is more of a scheduler yield than an actual delay. But on the 10th
2632 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002633 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2634 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002635 */
drhaab4c022010-06-02 14:45:51 +00002636 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002637 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002638 if( cnt>100 ){
2639 VVA_ONLY( pWal->lockError = 1; )
2640 return SQLITE_PROTOCOL;
2641 }
drh5b6e3b92014-06-12 17:10:18 +00002642 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002643 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002644 }
2645
drh73b64e42010-05-30 19:55:15 +00002646 if( !useWal ){
dan11caf4f2017-11-04 18:10:03 +00002647 assert( rc==SQLITE_OK );
drh85bc6df2017-11-10 20:00:50 +00002648 if( pWal->bShmUnreliable==0 ){
dan11caf4f2017-11-04 18:10:03 +00002649 rc = walIndexReadHdr(pWal, pChanged);
2650 }
drh73b64e42010-05-30 19:55:15 +00002651 if( rc==SQLITE_BUSY ){
2652 /* If there is not a recovery running in another thread or process
2653 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2654 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2655 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2656 ** would be technically correct. But the race is benign since with
2657 ** WAL_RETRY this routine will be called again and will probably be
2658 ** right on the second iteration.
2659 */
dan7d4514a2010-07-15 17:54:14 +00002660 if( pWal->apWiData[0]==0 ){
2661 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2662 ** We assume this is a transient condition, so return WAL_RETRY. The
2663 ** xShmMap() implementation used by the default unix and win32 VFS
2664 ** modules may return SQLITE_BUSY due to a race condition in the
2665 ** code that determines whether or not the shared-memory region
2666 ** must be zeroed before the requested page is returned.
2667 */
2668 rc = WAL_RETRY;
2669 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002670 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2671 rc = WAL_RETRY;
2672 }else if( rc==SQLITE_BUSY ){
2673 rc = SQLITE_BUSY_RECOVERY;
2674 }
2675 }
drha927e942010-06-24 02:46:48 +00002676 if( rc!=SQLITE_OK ){
2677 return rc;
2678 }
drh85bc6df2017-11-10 20:00:50 +00002679 else if( pWal->bShmUnreliable ){
2680 return walBeginShmUnreliable(pWal, pChanged);
dan11caf4f2017-11-04 18:10:03 +00002681 }
drh73b64e42010-05-30 19:55:15 +00002682 }
2683
dan92c02da2017-11-01 20:59:28 +00002684 assert( pWal->nWiData>0 );
drh2e9b0922017-11-13 05:51:37 +00002685 assert( pWal->apWiData[0]!=0 );
2686 pInfo = walCkptInfo(pWal);
dan8b4f2312020-05-13 13:33:30 +00002687 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
danfc1acf32015-12-05 20:51:54 +00002688#ifdef SQLITE_ENABLE_SNAPSHOT
dan21f2baf2017-09-23 07:46:54 +00002689 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
danfc1acf32015-12-05 20:51:54 +00002690#endif
2691 ){
drh73b64e42010-05-30 19:55:15 +00002692 /* The WAL has been completely backfilled (or it is empty).
2693 ** and can be safely ignored.
2694 */
2695 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002696 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002697 if( rc==SQLITE_OK ){
drh2e9b0922017-11-13 05:51:37 +00002698 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002699 /* It is not safe to allow the reader to continue here if frames
2700 ** may have been appended to the log before READ_LOCK(0) was obtained.
2701 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2702 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002703 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002704 ** happening, this is usually correct.
2705 **
2706 ** However, if frames have been appended to the log (or if the log
2707 ** is wrapped and written for that matter) before the READ_LOCK(0)
2708 ** is obtained, that is not necessarily true. A checkpointer may
2709 ** have started to backfill the appended frames but crashed before
2710 ** it finished. Leaving a corrupt image in the database file.
2711 */
drh73b64e42010-05-30 19:55:15 +00002712 walUnlockShared(pWal, WAL_READ_LOCK(0));
2713 return WAL_RETRY;
2714 }
2715 pWal->readLock = 0;
2716 return SQLITE_OK;
2717 }else if( rc!=SQLITE_BUSY ){
2718 return rc;
dan64d039e2010-04-13 19:27:31 +00002719 }
dan7c246102010-04-12 19:00:29 +00002720 }
danba515902010-04-30 09:32:06 +00002721
drh73b64e42010-05-30 19:55:15 +00002722 /* If we get this far, it means that the reader will want to use
2723 ** the WAL to get at content from recent commits. The job now is
2724 ** to select one of the aReadMark[] entries that is closest to
2725 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2726 */
2727 mxReadMark = 0;
2728 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002729 mxFrame = pWal->hdr.mxFrame;
2730#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002731 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2732 mxFrame = pWal->pSnapshot->mxFrame;
2733 }
danfc1acf32015-12-05 20:51:54 +00002734#endif
drh73b64e42010-05-30 19:55:15 +00002735 for(i=1; i<WAL_NREADER; i++){
drh876c7ea2018-08-30 20:28:18 +00002736 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
danfc1acf32015-12-05 20:51:54 +00002737 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002738 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002739 mxReadMark = thisMark;
2740 mxI = i;
2741 }
2742 }
drh998147e2015-12-10 02:15:03 +00002743 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2744 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002745 ){
2746 for(i=1; i<WAL_NREADER; i++){
2747 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2748 if( rc==SQLITE_OK ){
dan3e42b992020-03-30 11:17:37 +00002749 AtomicStore(pInfo->aReadMark+i,mxFrame);
2750 mxReadMark = mxFrame;
drh998147e2015-12-10 02:15:03 +00002751 mxI = i;
2752 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2753 break;
2754 }else if( rc!=SQLITE_BUSY ){
2755 return rc;
drh73b64e42010-05-30 19:55:15 +00002756 }
2757 }
drh998147e2015-12-10 02:15:03 +00002758 }
2759 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002760 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
drh7e45e3a2017-11-08 17:32:12 +00002761 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
drh998147e2015-12-10 02:15:03 +00002762 }
drh73b64e42010-05-30 19:55:15 +00002763
drh998147e2015-12-10 02:15:03 +00002764 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2765 if( rc ){
2766 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2767 }
2768 /* Now that the read-lock has been obtained, check that neither the
2769 ** value in the aReadMark[] array or the contents of the wal-index
2770 ** header have changed.
2771 **
2772 ** It is necessary to check that the wal-index header did not change
2773 ** between the time it was read and when the shared-lock was obtained
2774 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2775 ** that the log file may have been wrapped by a writer, or that frames
2776 ** that occur later in the log than pWal->hdr.mxFrame may have been
2777 ** copied into the database by a checkpointer. If either of these things
2778 ** happened, then reading the database with the current value of
2779 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2780 ** instead.
2781 **
2782 ** Before checking that the live wal-index header has not changed
2783 ** since it was read, set Wal.minFrame to the first frame in the wal
2784 ** file that has not yet been checkpointed. This client will not need
2785 ** to read any frames earlier than minFrame from the wal file - they
2786 ** can be safely read directly from the database file.
2787 **
2788 ** Because a ShmBarrier() call is made between taking the copy of
2789 ** nBackfill and checking that the wal-header in shared-memory still
2790 ** matches the one cached in pWal->hdr, it is guaranteed that the
2791 ** checkpointer that set nBackfill was not working with a wal-index
2792 ** header newer than that cached in pWal->hdr. If it were, that could
2793 ** cause a problem. The checkpointer could omit to checkpoint
2794 ** a version of page X that lies before pWal->minFrame (call that version
2795 ** A) on the basis that there is a newer version (version B) of the same
2796 ** page later in the wal file. But if version B happens to like past
2797 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2798 ** that it can read version A from the database file. However, since
2799 ** we can guarantee that the checkpointer that set nBackfill could not
2800 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2801 */
drh876c7ea2018-08-30 20:28:18 +00002802 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
drh998147e2015-12-10 02:15:03 +00002803 walShmBarrier(pWal);
drh876c7ea2018-08-30 20:28:18 +00002804 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
drh998147e2015-12-10 02:15:03 +00002805 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2806 ){
2807 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2808 return WAL_RETRY;
2809 }else{
2810 assert( mxReadMark<=pWal->hdr.mxFrame );
2811 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002812 }
2813 return rc;
2814}
2815
drhbc887112016-11-22 21:11:59 +00002816#ifdef SQLITE_ENABLE_SNAPSHOT
drh73b64e42010-05-30 19:55:15 +00002817/*
dan93f51132016-11-19 18:31:37 +00002818** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2819** variable so that older snapshots can be accessed. To do this, loop
2820** through all wal frames from nBackfillAttempted to (nBackfill+1),
2821** comparing their content to the corresponding page with the database
2822** file, if any. Set nBackfillAttempted to the frame number of the
2823** first frame for which the wal file content matches the db file.
2824**
2825** This is only really safe if the file-system is such that any page
2826** writes made by earlier checkpointers were atomic operations, which
2827** is not always true. It is also possible that nBackfillAttempted
2828** may be left set to a value larger than expected, if a wal frame
2829** contains content that duplicate of an earlier version of the same
2830** page.
2831**
2832** SQLITE_OK is returned if successful, or an SQLite error code if an
2833** error occurs. It is not an error if nBackfillAttempted cannot be
2834** decreased at all.
dan11584982016-11-18 20:49:43 +00002835*/
2836int sqlite3WalSnapshotRecover(Wal *pWal){
dan11584982016-11-18 20:49:43 +00002837 int rc;
2838
dan93f51132016-11-19 18:31:37 +00002839 assert( pWal->readLock>=0 );
2840 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002841 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002842 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2843 int szPage = (int)pWal->szPage;
2844 i64 szDb; /* Size of db file in bytes */
2845
2846 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
dan11584982016-11-18 20:49:43 +00002847 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002848 void *pBuf1 = sqlite3_malloc(szPage);
2849 void *pBuf2 = sqlite3_malloc(szPage);
2850 if( pBuf1==0 || pBuf2==0 ){
2851 rc = SQLITE_NOMEM;
2852 }else{
2853 u32 i = pInfo->nBackfillAttempted;
dan8b4f2312020-05-13 13:33:30 +00002854 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
drh4ece2f22018-06-09 16:49:00 +00002855 WalHashLoc sLoc; /* Hash table location */
dan93f51132016-11-19 18:31:37 +00002856 u32 pgno; /* Page number in db file */
2857 i64 iDbOff; /* Offset of db file entry */
2858 i64 iWalOff; /* Offset of wal file entry */
dan11584982016-11-18 20:49:43 +00002859
drh4ece2f22018-06-09 16:49:00 +00002860 rc = walHashGet(pWal, walFramePage(i), &sLoc);
dan93f51132016-11-19 18:31:37 +00002861 if( rc!=SQLITE_OK ) break;
drh4ece2f22018-06-09 16:49:00 +00002862 pgno = sLoc.aPgno[i-sLoc.iZero];
dan93f51132016-11-19 18:31:37 +00002863 iDbOff = (i64)(pgno-1) * szPage;
dan11584982016-11-18 20:49:43 +00002864
dan93f51132016-11-19 18:31:37 +00002865 if( iDbOff+szPage<=szDb ){
2866 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2867 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
dan11584982016-11-18 20:49:43 +00002868
dan93f51132016-11-19 18:31:37 +00002869 if( rc==SQLITE_OK ){
2870 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
dan6a9e7f12016-11-19 16:35:53 +00002871 }
2872
dan93f51132016-11-19 18:31:37 +00002873 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2874 break;
2875 }
dan6a9e7f12016-11-19 16:35:53 +00002876 }
dan93f51132016-11-19 18:31:37 +00002877
2878 pInfo->nBackfillAttempted = i-1;
dan11584982016-11-18 20:49:43 +00002879 }
dan6a9e7f12016-11-19 16:35:53 +00002880 }
dan11584982016-11-18 20:49:43 +00002881
dan93f51132016-11-19 18:31:37 +00002882 sqlite3_free(pBuf1);
2883 sqlite3_free(pBuf2);
2884 }
2885 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002886 }
2887
2888 return rc;
2889}
drhbc887112016-11-22 21:11:59 +00002890#endif /* SQLITE_ENABLE_SNAPSHOT */
dan11584982016-11-18 20:49:43 +00002891
2892/*
drh73b64e42010-05-30 19:55:15 +00002893** Begin a read transaction on the database.
2894**
2895** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2896** it takes a snapshot of the state of the WAL and wal-index for the current
2897** instant in time. The current thread will continue to use this snapshot.
2898** Other threads might append new content to the WAL and wal-index but
2899** that extra content is ignored by the current thread.
2900**
2901** If the database contents have changes since the previous read
2902** transaction, then *pChanged is set to 1 before returning. The
drh8741d0d2018-09-12 00:21:11 +00002903** Pager layer will use this to know that its cache is stale and
drh73b64e42010-05-30 19:55:15 +00002904** needs to be flushed.
2905*/
drh66dfec8b2011-06-01 20:01:49 +00002906int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002907 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002908 int cnt = 0; /* Number of TryBeginRead attempts */
drh91960aa2020-05-25 12:02:12 +00002909#ifdef SQLITE_ENABLE_SNAPSHOT
2910 int bChanged = 0;
2911 WalIndexHdr *pSnapshot = pWal->pSnapshot;
2912#endif
dan8714de92020-05-04 19:42:35 +00002913
dand0e6d132020-05-06 17:18:57 +00002914 assert( pWal->ckptLock==0 );
drh73b64e42010-05-30 19:55:15 +00002915
danfc1acf32015-12-05 20:51:54 +00002916#ifdef SQLITE_ENABLE_SNAPSHOT
dan8714de92020-05-04 19:42:35 +00002917 if( pSnapshot ){
dan8714de92020-05-04 19:42:35 +00002918 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
2919 bChanged = 1;
2920 }
2921
2922 /* It is possible that there is a checkpointer thread running
2923 ** concurrent with this code. If this is the case, it may be that the
2924 ** checkpointer has already determined that it will checkpoint
2925 ** snapshot X, where X is later in the wal file than pSnapshot, but
2926 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2927 ** its intent. To avoid the race condition this leads to, ensure that
2928 ** there is no checkpointer process by taking a shared CKPT lock
2929 ** before checking pInfo->nBackfillAttempted. */
danfc87ab82020-05-06 19:22:59 +00002930 (void)walEnableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00002931 rc = walLockShared(pWal, WAL_CKPT_LOCK);
dan58021b22020-05-05 20:30:07 +00002932 walDisableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00002933
2934 if( rc!=SQLITE_OK ){
2935 return rc;
2936 }
dand0e6d132020-05-06 17:18:57 +00002937 pWal->ckptLock = 1;
dan8714de92020-05-04 19:42:35 +00002938 }
dan97ccc1b2020-03-27 17:23:17 +00002939#endif
2940
drh73b64e42010-05-30 19:55:15 +00002941 do{
drhaab4c022010-06-02 14:45:51 +00002942 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002943 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002944 testcase( (rc&0xff)==SQLITE_BUSY );
2945 testcase( (rc&0xff)==SQLITE_IOERR );
2946 testcase( rc==SQLITE_PROTOCOL );
2947 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002948
2949#ifdef SQLITE_ENABLE_SNAPSHOT
2950 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002951 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002952 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002953 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2954 ** is populated with the wal-index header corresponding to the head
2955 ** of the wal file. Verify that pSnapshot is still valid before
2956 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002957 **
drh998147e2015-12-10 02:15:03 +00002958 ** (1) The WAL file has been reset since the snapshot was taken.
2959 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002960 **
drh998147e2015-12-10 02:15:03 +00002961 ** (2) A checkpoint as been attempted that wrote frames past
2962 ** pSnapshot->mxFrame into the database file. Note that the
2963 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002964 */
danfc1acf32015-12-05 20:51:54 +00002965 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002966
drh71b62fa2015-12-11 01:22:22 +00002967 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002968 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2969
dan8714de92020-05-04 19:42:35 +00002970 /* Check that the wal file has not been wrapped. Assuming that it has
2971 ** not, also check that no checkpointer has attempted to checkpoint any
2972 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
2973 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
2974 ** with *pSnapshot and set *pChanged as appropriate for opening the
2975 ** snapshot. */
2976 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2977 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2978 ){
2979 assert( pWal->readLock>0 );
2980 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2981 *pChanged = bChanged;
2982 }else{
2983 rc = SQLITE_ERROR_SNAPSHOT;
danfc1acf32015-12-05 20:51:54 +00002984 }
dan65127cd2015-12-09 20:05:27 +00002985
dan8714de92020-05-04 19:42:35 +00002986 /* A client using a non-current snapshot may not ignore any frames
2987 ** from the start of the wal file. This is because, for a system
2988 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
2989 ** have omitted to checkpoint a frame earlier than minFrame in
2990 ** the file because there exists a frame after iSnapshot that
2991 ** is the same database page. */
2992 pWal->minFrame = 1;
dan3bf83cc2015-12-10 15:45:15 +00002993
danfc1acf32015-12-05 20:51:54 +00002994 if( rc!=SQLITE_OK ){
2995 sqlite3WalEndReadTransaction(pWal);
2996 }
2997 }
2998 }
dan8714de92020-05-04 19:42:35 +00002999
3000 /* Release the shared CKPT lock obtained above. */
dand0e6d132020-05-06 17:18:57 +00003001 if( pWal->ckptLock ){
3002 assert( pSnapshot );
dan8714de92020-05-04 19:42:35 +00003003 walUnlockShared(pWal, WAL_CKPT_LOCK);
dand0e6d132020-05-06 17:18:57 +00003004 pWal->ckptLock = 0;
dan8714de92020-05-04 19:42:35 +00003005 }
danfc1acf32015-12-05 20:51:54 +00003006#endif
dan7c246102010-04-12 19:00:29 +00003007 return rc;
3008}
3009
3010/*
drh73b64e42010-05-30 19:55:15 +00003011** Finish with a read transaction. All this does is release the
3012** read-lock.
dan7c246102010-04-12 19:00:29 +00003013*/
drh73b64e42010-05-30 19:55:15 +00003014void sqlite3WalEndReadTransaction(Wal *pWal){
danbc9fc182020-05-06 21:24:29 +00003015 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003016 if( pWal->readLock>=0 ){
3017 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3018 pWal->readLock = -1;
3019 }
dan7c246102010-04-12 19:00:29 +00003020}
3021
dan5e0ce872010-04-28 17:48:44 +00003022/*
dan99bd1092013-03-22 18:20:14 +00003023** Search the wal file for page pgno. If found, set *piRead to the frame that
3024** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3025** to zero.
drh73b64e42010-05-30 19:55:15 +00003026**
dan99bd1092013-03-22 18:20:14 +00003027** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3028** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00003029*/
dan99bd1092013-03-22 18:20:14 +00003030int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00003031 Wal *pWal, /* WAL handle */
3032 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00003033 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00003034){
danbb23aff2010-05-10 14:46:09 +00003035 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00003036 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00003037 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00003038 int iMinHash;
dan7c246102010-04-12 19:00:29 +00003039
drhaab4c022010-06-02 14:45:51 +00003040 /* This routine is only be called from within a read transaction. */
3041 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00003042
danbb23aff2010-05-10 14:46:09 +00003043 /* If the "last page" field of the wal-index header snapshot is 0, then
3044 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00003045 ** in this case as an optimization. Likewise, if pWal->readLock==0,
3046 ** then the WAL is ignored by the reader so return early, as if the
3047 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00003048 */
drh85bc6df2017-11-10 20:00:50 +00003049 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
dan99bd1092013-03-22 18:20:14 +00003050 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00003051 return SQLITE_OK;
3052 }
3053
danbb23aff2010-05-10 14:46:09 +00003054 /* Search the hash table or tables for an entry matching page number
3055 ** pgno. Each iteration of the following for() loop searches one
3056 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3057 **
drha927e942010-06-24 02:46:48 +00003058 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00003059 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00003060 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00003061 ** slot (aHash[iKey]) may have been added before or after the
3062 ** current read transaction was opened. Values added after the
3063 ** read transaction was opened may have been written incorrectly -
3064 ** i.e. these slots may contain garbage data. However, we assume
3065 ** that any slots written before the current read transaction was
3066 ** opened remain unmodified.
3067 **
3068 ** For the reasons above, the if(...) condition featured in the inner
3069 ** loop of the following block is more stringent that would be required
3070 ** if we had exclusive access to the hash-table:
3071 **
3072 ** (aPgno[iFrame]==pgno):
3073 ** This condition filters out normal hash-table collisions.
3074 **
3075 ** (iFrame<=iLast):
3076 ** This condition filters out entries that were added to the hash
3077 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00003078 */
danb8c7cfb2015-08-13 20:23:46 +00003079 iMinHash = walFramePage(pWal->minFrame);
drh8d3e15e2018-02-21 01:05:37 +00003080 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
drh4ece2f22018-06-09 16:49:00 +00003081 WalHashLoc sLoc; /* Hash table location */
danbb23aff2010-05-10 14:46:09 +00003082 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00003083 int nCollide; /* Number of hash collisions remaining */
3084 int rc; /* Error code */
drhf16cf652020-05-19 12:27:29 +00003085 u32 iH;
danbb23aff2010-05-10 14:46:09 +00003086
drh4ece2f22018-06-09 16:49:00 +00003087 rc = walHashGet(pWal, iHash, &sLoc);
dan4280eb32010-06-12 12:02:35 +00003088 if( rc!=SQLITE_OK ){
3089 return rc;
3090 }
drh519426a2010-07-09 03:19:07 +00003091 nCollide = HASHTABLE_NSLOT;
drhf16cf652020-05-19 12:27:29 +00003092 iKey = walHash(pgno);
3093 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
drh680f0fe2019-04-17 21:12:05 +00003094 u32 iFrame = iH + sLoc.iZero;
3095 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
drh622a53d2014-12-29 11:50:39 +00003096 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00003097 iRead = iFrame;
3098 }
drh519426a2010-07-09 03:19:07 +00003099 if( (nCollide--)==0 ){
3100 return SQLITE_CORRUPT_BKPT;
3101 }
drhf16cf652020-05-19 12:27:29 +00003102 iKey = walNextHash(iKey);
dan7c246102010-04-12 19:00:29 +00003103 }
drh8d3e15e2018-02-21 01:05:37 +00003104 if( iRead ) break;
dan7c246102010-04-12 19:00:29 +00003105 }
dan7c246102010-04-12 19:00:29 +00003106
danbb23aff2010-05-10 14:46:09 +00003107#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3108 /* If expensive assert() statements are available, do a linear search
3109 ** of the wal-index file content. Make sure the results agree with the
3110 ** result obtained using the hash indexes above. */
3111 {
3112 u32 iRead2 = 0;
3113 u32 iTest;
drh85bc6df2017-11-10 20:00:50 +00003114 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
dan6c9d8f62017-11-07 21:25:15 +00003115 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00003116 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00003117 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00003118 break;
3119 }
dan7c246102010-04-12 19:00:29 +00003120 }
danbb23aff2010-05-10 14:46:09 +00003121 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00003122 }
danbb23aff2010-05-10 14:46:09 +00003123#endif
dancd11fb22010-04-26 10:40:52 +00003124
dan99bd1092013-03-22 18:20:14 +00003125 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00003126 return SQLITE_OK;
3127}
3128
dan99bd1092013-03-22 18:20:14 +00003129/*
3130** Read the contents of frame iRead from the wal file into buffer pOut
3131** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3132** error code otherwise.
3133*/
3134int sqlite3WalReadFrame(
3135 Wal *pWal, /* WAL handle */
3136 u32 iRead, /* Frame to read */
3137 int nOut, /* Size of buffer pOut in bytes */
3138 u8 *pOut /* Buffer to write page data to */
3139){
3140 int sz;
3141 i64 iOffset;
3142 sz = pWal->hdr.szPage;
3143 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3144 testcase( sz<=32768 );
3145 testcase( sz>=65536 );
3146 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3147 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3148 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3149}
dan7c246102010-04-12 19:00:29 +00003150
3151/*
dan763afe62010-08-03 06:42:39 +00003152** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00003153*/
dan763afe62010-08-03 06:42:39 +00003154Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00003155 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00003156 return pWal->hdr.nPage;
3157 }
3158 return 0;
dan7c246102010-04-12 19:00:29 +00003159}
3160
dan30c86292010-04-30 16:24:46 +00003161
drh73b64e42010-05-30 19:55:15 +00003162/*
3163** This function starts a write transaction on the WAL.
3164**
3165** A read transaction must have already been started by a prior call
3166** to sqlite3WalBeginReadTransaction().
3167**
3168** If another thread or process has written into the database since
3169** the read transaction was started, then it is not possible for this
3170** thread to write as doing so would cause a fork. So this routine
3171** returns SQLITE_BUSY in that case and no write transaction is started.
3172**
3173** There can only be a single writer active at a time.
3174*/
3175int sqlite3WalBeginWriteTransaction(Wal *pWal){
3176 int rc;
drh73b64e42010-05-30 19:55:15 +00003177
dan58021b22020-05-05 20:30:07 +00003178#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3179 /* If the write-lock is already held, then it was obtained before the
3180 ** read-transaction was even opened, making this call a no-op.
3181 ** Return early. */
3182 if( pWal->writeLock ){
3183 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3184 return SQLITE_OK;
3185 }
3186#endif
3187
drh73b64e42010-05-30 19:55:15 +00003188 /* Cannot start a write transaction without first holding a read
3189 ** transaction. */
3190 assert( pWal->readLock>=0 );
danc9a90222016-01-09 18:57:35 +00003191 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
drh73b64e42010-05-30 19:55:15 +00003192
dan1e5de5a2010-07-15 18:20:53 +00003193 if( pWal->readOnly ){
3194 return SQLITE_READONLY;
3195 }
3196
drh73b64e42010-05-30 19:55:15 +00003197 /* Only one writer allowed at a time. Get the write lock. Return
3198 ** SQLITE_BUSY if unable.
3199 */
drhab372772015-12-02 16:10:16 +00003200 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003201 if( rc ){
3202 return rc;
3203 }
drhc99597c2010-05-31 01:41:15 +00003204 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00003205
3206 /* If another connection has written to the database file since the
3207 ** time the read transaction on this connection was started, then
3208 ** the write is disallowed.
3209 */
dan4280eb32010-06-12 12:02:35 +00003210 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00003211 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00003212 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00003213 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00003214 }
3215
drh7ed91f22010-04-29 22:34:07 +00003216 return rc;
dan7c246102010-04-12 19:00:29 +00003217}
3218
dan74d6cd82010-04-24 18:44:05 +00003219/*
drh73b64e42010-05-30 19:55:15 +00003220** End a write transaction. The commit has already been done. This
3221** routine merely releases the lock.
3222*/
3223int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00003224 if( pWal->writeLock ){
3225 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3226 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00003227 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00003228 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00003229 }
drh73b64e42010-05-30 19:55:15 +00003230 return SQLITE_OK;
3231}
3232
3233/*
dan74d6cd82010-04-24 18:44:05 +00003234** If any data has been written (but not committed) to the log file, this
3235** function moves the write-pointer back to the start of the transaction.
3236**
3237** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00003238** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00003239** other than SQLITE_OK, it is not invoked again and the error code is
3240** returned to the caller.
3241**
3242** Otherwise, if the callback function does not return an error, this
3243** function returns SQLITE_OK.
3244*/
drh7ed91f22010-04-29 22:34:07 +00003245int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00003246 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00003247 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00003248 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00003249 Pgno iFrame;
3250
dan5d656852010-06-14 07:53:26 +00003251 /* Restore the clients cache of the wal-index header to the state it
3252 ** was in before the client began writing to the database.
3253 */
dan067f3162010-06-14 10:30:12 +00003254 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00003255
3256 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00003257 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00003258 iFrame++
3259 ){
3260 /* This call cannot fail. Unless the page for which the page number
3261 ** is passed as the second argument is (a) in the cache and
3262 ** (b) has an outstanding reference, then xUndo is either a no-op
3263 ** (if (a) is false) or simply expels the page from the cache (if (b)
3264 ** is false).
3265 **
3266 ** If the upper layer is doing a rollback, it is guaranteed that there
3267 ** are no outstanding references to any page other than page 1. And
3268 ** page 1 is never written to the log until the transaction is
3269 ** committed. As a result, the call to xUndo may not fail.
3270 */
dan5d656852010-06-14 07:53:26 +00003271 assert( walFramePgno(pWal, iFrame)!=1 );
3272 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00003273 }
dan7eb05752012-10-15 11:28:24 +00003274 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00003275 }
3276 return rc;
3277}
3278
dan71d89912010-05-24 13:57:42 +00003279/*
3280** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3281** values. This function populates the array with values required to
3282** "rollback" the write position of the WAL handle back to the current
3283** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00003284*/
dan71d89912010-05-24 13:57:42 +00003285void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00003286 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00003287 aWalData[0] = pWal->hdr.mxFrame;
3288 aWalData[1] = pWal->hdr.aFrameCksum[0];
3289 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00003290 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00003291}
3292
dan71d89912010-05-24 13:57:42 +00003293/*
3294** Move the write position of the WAL back to the point identified by
3295** the values in the aWalData[] array. aWalData must point to an array
3296** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3297** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00003298*/
dan71d89912010-05-24 13:57:42 +00003299int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00003300 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00003301
dan6e6bd562010-06-02 18:59:03 +00003302 assert( pWal->writeLock );
3303 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3304
3305 if( aWalData[3]!=pWal->nCkpt ){
3306 /* This savepoint was opened immediately after the write-transaction
3307 ** was started. Right after that, the writer decided to wrap around
3308 ** to the start of the log. Update the savepoint values to match.
3309 */
3310 aWalData[0] = 0;
3311 aWalData[3] = pWal->nCkpt;
3312 }
3313
dan71d89912010-05-24 13:57:42 +00003314 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00003315 pWal->hdr.mxFrame = aWalData[0];
3316 pWal->hdr.aFrameCksum[0] = aWalData[1];
3317 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00003318 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00003319 }
dan6e6bd562010-06-02 18:59:03 +00003320
dan4cd78b42010-04-26 16:57:10 +00003321 return rc;
3322}
3323
dan9971e712010-06-01 15:44:57 +00003324/*
3325** This function is called just before writing a set of frames to the log
3326** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3327** to the current log file, it is possible to overwrite the start of the
3328** existing log file with the new frames (i.e. "reset" the log). If so,
3329** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3330** unchanged.
3331**
3332** SQLITE_OK is returned if no error is encountered (regardless of whether
3333** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00003334** if an error occurs.
dan9971e712010-06-01 15:44:57 +00003335*/
3336static int walRestartLog(Wal *pWal){
3337 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00003338 int cnt;
3339
dan13a3cb82010-06-11 19:04:21 +00003340 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00003341 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3342 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3343 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00003344 u32 salt1;
3345 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00003346 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00003347 if( rc==SQLITE_OK ){
3348 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3349 ** readers are currently using the WAL), then the transactions
3350 ** frames will overwrite the start of the existing log. Update the
3351 ** wal-index header to reflect this.
3352 **
3353 ** In theory it would be Ok to update the cache of the header only
3354 ** at this point. But updating the actual wal-index header is also
3355 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00003356 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00003357 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00003358 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00003359 }else if( rc!=SQLITE_BUSY ){
3360 return rc;
dan9971e712010-06-01 15:44:57 +00003361 }
3362 }
3363 walUnlockShared(pWal, WAL_READ_LOCK(0));
3364 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00003365 cnt = 0;
dan9971e712010-06-01 15:44:57 +00003366 do{
3367 int notUsed;
drhaab4c022010-06-02 14:45:51 +00003368 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00003369 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00003370 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00003371 testcase( (rc&0xff)==SQLITE_IOERR );
3372 testcase( rc==SQLITE_PROTOCOL );
3373 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00003374 }
3375 return rc;
3376}
3377
drh88f975a2011-12-16 19:34:36 +00003378/*
drhd992b152011-12-20 20:13:25 +00003379** Information about the current state of the WAL file and where
3380** the next fsync should occur - passed from sqlite3WalFrames() into
3381** walWriteToLog().
3382*/
3383typedef struct WalWriter {
3384 Wal *pWal; /* The complete WAL information */
3385 sqlite3_file *pFd; /* The WAL file to which we write */
3386 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3387 int syncFlags; /* Flags for the fsync */
3388 int szPage; /* Size of one page */
3389} WalWriter;
3390
3391/*
drh88f975a2011-12-16 19:34:36 +00003392** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00003393** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00003394**
drhd992b152011-12-20 20:13:25 +00003395** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3396** first write the part before iSyncPoint, then sync, then write the
3397** rest.
drh88f975a2011-12-16 19:34:36 +00003398*/
3399static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00003400 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00003401 void *pContent, /* Content to be written */
3402 int iAmt, /* Number of bytes to write */
3403 sqlite3_int64 iOffset /* Start writing at this offset */
3404){
3405 int rc;
drhd992b152011-12-20 20:13:25 +00003406 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3407 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3408 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00003409 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00003410 iOffset += iFirstAmt;
3411 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00003412 pContent = (void*)(iFirstAmt + (char*)pContent);
drhdaaae7b2017-08-25 01:14:43 +00003413 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3414 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
drhcc8d10a2011-12-23 02:07:10 +00003415 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00003416 }
drhd992b152011-12-20 20:13:25 +00003417 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3418 return rc;
3419}
3420
3421/*
3422** Write out a single frame of the WAL
3423*/
3424static int walWriteOneFrame(
3425 WalWriter *p, /* Where to write the frame */
3426 PgHdr *pPage, /* The page of the frame to be written */
3427 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3428 sqlite3_int64 iOffset /* Byte offset at which to write */
3429){
3430 int rc; /* Result code from subfunctions */
3431 void *pData; /* Data actually written */
3432 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
drhd992b152011-12-20 20:13:25 +00003433 pData = pPage->pData;
drhd992b152011-12-20 20:13:25 +00003434 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3435 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3436 if( rc ) return rc;
3437 /* Write the page data */
3438 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00003439 return rc;
3440}
3441
dand6f7c972016-01-09 16:39:29 +00003442/*
3443** This function is called as part of committing a transaction within which
3444** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00003445** all frames written to the wal file by the current transaction starting
3446** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00003447**
3448** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3449*/
danc9a90222016-01-09 18:57:35 +00003450static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00003451 const int szPage = pWal->szPage;/* Database page size */
3452 int rc = SQLITE_OK; /* Return code */
3453 u8 *aBuf; /* Buffer to load data from wal file into */
3454 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3455 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00003456 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00003457
3458 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00003459 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00003460
danc9a90222016-01-09 18:57:35 +00003461 /* Find the checksum values to use as input for the recalculating the
3462 ** first checksum. If the first frame is frame 1 (implying that the current
3463 ** transaction restarted the wal file), these values must be read from the
3464 ** wal-file header. Otherwise, read them from the frame header of the
3465 ** previous frame. */
3466 assert( pWal->iReCksum>0 );
3467 if( pWal->iReCksum==1 ){
3468 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00003469 }else{
danc9a90222016-01-09 18:57:35 +00003470 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00003471 }
danc9a90222016-01-09 18:57:35 +00003472 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3473 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3474 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00003475
danc9a90222016-01-09 18:57:35 +00003476 iRead = pWal->iReCksum;
3477 pWal->iReCksum = 0;
3478 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00003479 i64 iOff = walFrameOffset(iRead, szPage);
3480 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3481 if( rc==SQLITE_OK ){
3482 u32 iPgno, nDbSize;
3483 iPgno = sqlite3Get4byte(aBuf);
3484 nDbSize = sqlite3Get4byte(&aBuf[4]);
3485
3486 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3487 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3488 }
3489 }
3490
3491 sqlite3_free(aBuf);
3492 return rc;
3493}
3494
dan7c246102010-04-12 19:00:29 +00003495/*
dan4cd78b42010-04-26 16:57:10 +00003496** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00003497** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00003498*/
drhc438efd2010-04-26 00:19:45 +00003499int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00003500 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00003501 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00003502 PgHdr *pList, /* List of dirty pages to write */
3503 Pgno nTruncate, /* Database size after this commit */
3504 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00003505 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00003506){
dan7c246102010-04-12 19:00:29 +00003507 int rc; /* Used to catch return codes */
3508 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00003509 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00003510 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00003511 int nExtra = 0; /* Number of extra copies of last page */
3512 int szFrame; /* The size of a single frame */
3513 i64 iOffset; /* Next byte to write in WAL file */
3514 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00003515 u32 iFirst = 0; /* First frame that may be overwritten */
3516 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00003517
dan7c246102010-04-12 19:00:29 +00003518 assert( pList );
drh73b64e42010-05-30 19:55:15 +00003519 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00003520
drh41209942011-12-20 13:13:09 +00003521 /* If this frame set completes a transaction, then nTruncate>0. If
3522 ** nTruncate==0 then this frame set does not complete the transaction. */
3523 assert( (isCommit!=0)==(nTruncate!=0) );
3524
drhc74c3332010-05-31 12:15:19 +00003525#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3526 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3527 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3528 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3529 }
3530#endif
3531
dand6f7c972016-01-09 16:39:29 +00003532 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003533 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003534 iFirst = pLive->mxFrame+1;
3535 }
3536
dan9971e712010-06-01 15:44:57 +00003537 /* See if it is possible to write these frames into the start of the
3538 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3539 */
3540 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003541 return rc;
3542 }
dan9971e712010-06-01 15:44:57 +00003543
drha2a42012010-05-18 18:01:08 +00003544 /* If this is the first frame written into the log, write the WAL
3545 ** header to the start of the WAL file. See comments at the top of
3546 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003547 */
drh027a1282010-05-19 01:53:53 +00003548 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003549 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003550 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3551 u32 aCksum[2]; /* Checksum for wal-header */
3552
danb8fd6c22010-05-24 10:39:36 +00003553 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003554 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003555 sqlite3Put4byte(&aWalHdr[8], szPage);
3556 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00003557 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003558 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003559 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3560 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3561 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3562
drhb2eced52010-08-12 02:41:12 +00003563 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003564 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3565 pWal->hdr.aFrameCksum[0] = aCksum[0];
3566 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003567 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003568
drh23ea97b2010-05-20 16:45:58 +00003569 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003570 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003571 if( rc!=SQLITE_OK ){
3572 return rc;
3573 }
drhd992b152011-12-20 20:13:25 +00003574
3575 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3576 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3577 ** an out-of-order write following a WAL restart could result in
3578 ** database corruption. See the ticket:
3579 **
drh9c6e07d2017-08-24 20:54:42 +00003580 ** https://sqlite.org/src/info/ff5be73dee
drhd992b152011-12-20 20:13:25 +00003581 */
drhdaaae7b2017-08-25 01:14:43 +00003582 if( pWal->syncHeader ){
3583 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
drhd992b152011-12-20 20:13:25 +00003584 if( rc ) return rc;
3585 }
dan97a31352010-04-16 13:59:31 +00003586 }
shanehbd2aaf92010-09-01 02:38:21 +00003587 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003588
drhd992b152011-12-20 20:13:25 +00003589 /* Setup information needed to write frames into the WAL */
3590 w.pWal = pWal;
3591 w.pFd = pWal->pWalFd;
3592 w.iSyncPoint = 0;
3593 w.syncFlags = sync_flags;
3594 w.szPage = szPage;
3595 iOffset = walFrameOffset(iFrame+1, szPage);
3596 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00003597
drhd992b152011-12-20 20:13:25 +00003598 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003599 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003600 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003601
3602 /* Check if this page has already been written into the wal file by
3603 ** the current transaction. If so, overwrite the existing frame and
3604 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3605 ** checksums must be recomputed when the transaction is committed. */
3606 if( iFirst && (p->pDirty || isCommit==0) ){
3607 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003608 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3609 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003610 if( iWrite>=iFirst ){
3611 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003612 void *pData;
danc9a90222016-01-09 18:57:35 +00003613 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3614 pWal->iReCksum = iWrite;
3615 }
drh8e0cea12016-02-15 15:06:47 +00003616 pData = p->pData;
drh8e0cea12016-02-15 15:06:47 +00003617 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003618 if( rc ) return rc;
3619 p->flags &= ~PGHDR_WAL_APPEND;
3620 continue;
3621 }
3622 }
3623
drhd992b152011-12-20 20:13:25 +00003624 iFrame++;
3625 assert( iOffset==walFrameOffset(iFrame, szPage) );
3626 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3627 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3628 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003629 pLast = p;
drhd992b152011-12-20 20:13:25 +00003630 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003631 p->flags |= PGHDR_WAL_APPEND;
3632 }
3633
3634 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003635 if( isCommit && pWal->iReCksum ){
3636 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003637 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003638 }
3639
drhd992b152011-12-20 20:13:25 +00003640 /* If this is the end of a transaction, then we might need to pad
3641 ** the transaction and/or sync the WAL file.
3642 **
3643 ** Padding and syncing only occur if this set of frames complete a
3644 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003645 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003646 **
drhcb15f352011-12-23 01:04:17 +00003647 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3648 ** needed and only the sync is done. If padding is needed, then the
3649 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003650 ** boundary is crossed. Only the part of the WAL prior to the last
3651 ** sector boundary is synced; the part of the last frame that extends
3652 ** past the sector boundary is written after the sync.
3653 */
drhdaaae7b2017-08-25 01:14:43 +00003654 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
danfe912512016-05-24 16:20:51 +00003655 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003656 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003657 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003658 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003659 bSync = (w.iSyncPoint==iOffset);
3660 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003661 while( iOffset<w.iSyncPoint ){
3662 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3663 if( rc ) return rc;
3664 iOffset += szFrame;
3665 nExtra++;
drh55f66b32019-07-16 19:44:32 +00003666 assert( pLast!=0 );
dan7c246102010-04-12 19:00:29 +00003667 }
danfe912512016-05-24 16:20:51 +00003668 }
3669 if( bSync ){
3670 assert( rc==SQLITE_OK );
drhdaaae7b2017-08-25 01:14:43 +00003671 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
dan7c246102010-04-12 19:00:29 +00003672 }
dan7c246102010-04-12 19:00:29 +00003673 }
3674
drhd992b152011-12-20 20:13:25 +00003675 /* If this frame set completes the first transaction in the WAL and
3676 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3677 ** journal size limit, if possible.
3678 */
danf60b7f32011-12-16 13:24:27 +00003679 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3680 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003681 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3682 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003683 }
3684 walLimitSize(pWal, sz);
3685 pWal->truncateOnCommit = 0;
3686 }
3687
drhe730fec2010-05-18 12:56:50 +00003688 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003689 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003690 ** guarantees that there are no other writers, and no data that may
3691 ** be in use by existing readers is being overwritten.
3692 */
drh027a1282010-05-19 01:53:53 +00003693 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003694 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003695 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003696 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003697 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003698 }
drh55f66b32019-07-16 19:44:32 +00003699 assert( pLast!=0 || nExtra==0 );
drh20e226d2012-01-01 13:58:53 +00003700 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003701 iFrame++;
drhd992b152011-12-20 20:13:25 +00003702 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003703 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003704 }
3705
danc7991bd2010-05-05 19:04:59 +00003706 if( rc==SQLITE_OK ){
3707 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003708 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003709 testcase( szPage<=32768 );
3710 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003711 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003712 if( isCommit ){
3713 pWal->hdr.iChange++;
3714 pWal->hdr.nPage = nTruncate;
3715 }
danc7991bd2010-05-05 19:04:59 +00003716 /* If this is a commit, update the wal-index header too. */
3717 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003718 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003719 pWal->iCallback = iFrame;
3720 }
dan7c246102010-04-12 19:00:29 +00003721 }
danc7991bd2010-05-05 19:04:59 +00003722
drhc74c3332010-05-31 12:15:19 +00003723 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003724 return rc;
dan7c246102010-04-12 19:00:29 +00003725}
3726
3727/*
drh73b64e42010-05-30 19:55:15 +00003728** This routine is called to implement sqlite3_wal_checkpoint() and
3729** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003730**
drh73b64e42010-05-30 19:55:15 +00003731** Obtain a CHECKPOINT lock and then backfill as much information as
3732** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003733**
3734** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3735** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003736*/
drhc438efd2010-04-26 00:19:45 +00003737int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003738 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00003739 sqlite3 *db, /* Check this handle's interrupt flag */
drhdd90d7e2014-12-03 19:25:41 +00003740 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003741 int (*xBusy)(void*), /* Function to call when busy */
3742 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003743 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003744 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003745 u8 *zBuf, /* Temporary buffer to use */
3746 int *pnLog, /* OUT: Number of frames in WAL */
3747 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003748){
danb9bf16b2010-04-14 11:23:30 +00003749 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003750 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003751 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003752 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003753
dand54ff602010-05-31 11:16:30 +00003754 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003755 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003756
drhdd90d7e2014-12-03 19:25:41 +00003757 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3758 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3759 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3760
drh66dfec8b2011-06-01 20:01:49 +00003761 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003762 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003763
dan58021b22020-05-05 20:30:07 +00003764 /* Enable blocking locks, if possible. If blocking locks are successfully
3765 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
dan861fb1e2020-05-06 19:14:41 +00003766 sqlite3WalDb(pWal, db);
drh783e1592020-05-06 20:55:38 +00003767 (void)walEnableBlocking(pWal);
dan8714de92020-05-04 19:42:35 +00003768
3769 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3770 ** "checkpoint" lock on the database file.
3771 ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3772 ** checkpoint operation at the same time, the lock cannot be obtained and
3773 ** SQLITE_BUSY is returned.
3774 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3775 ** it will not be invoked in this case.
3776 */
3777 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3778 testcase( rc==SQLITE_BUSY );
3779 testcase( rc!=SQLITE_OK && xBusy2!=0 );
3780 if( rc==SQLITE_OK ){
3781 pWal->ckptLock = 1;
3782
3783 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3784 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3785 ** file.
3786 **
3787 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3788 ** immediately, and a busy-handler is configured, it is invoked and the
3789 ** writer lock retried until either the busy-handler returns 0 or the
3790 ** lock is successfully obtained.
3791 */
3792 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3793 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3794 if( rc==SQLITE_OK ){
3795 pWal->writeLock = 1;
3796 }else if( rc==SQLITE_BUSY ){
3797 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3798 xBusy2 = 0;
3799 rc = SQLITE_OK;
3800 }
3801 }
3802 }
3803
dana58f26f2010-11-16 18:56:51 +00003804
danf2b8dd52010-11-18 19:28:01 +00003805 /* Read the wal-index header. */
danb9bf16b2010-04-14 11:23:30 +00003806 if( rc==SQLITE_OK ){
dand0e6d132020-05-06 17:18:57 +00003807 walDisableBlocking(pWal);
dana58f26f2010-11-16 18:56:51 +00003808 rc = walIndexReadHdr(pWal, &isChanged);
danfc87ab82020-05-06 19:22:59 +00003809 (void)walEnableBlocking(pWal);
danf55a4cf2013-04-01 16:56:41 +00003810 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3811 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3812 }
dana58f26f2010-11-16 18:56:51 +00003813 }
danf2b8dd52010-11-18 19:28:01 +00003814
3815 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003816 if( rc==SQLITE_OK ){
dand6f7c972016-01-09 16:39:29 +00003817
dan9c5e3682011-02-07 15:12:12 +00003818 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003819 rc = SQLITE_CORRUPT_BKPT;
3820 }else{
dan7fb89902016-08-12 16:21:15 +00003821 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003822 }
3823
3824 /* If no error occurred, set the output variables. */
3825 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003826 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003827 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003828 }
danb9bf16b2010-04-14 11:23:30 +00003829 }
danf2b8dd52010-11-18 19:28:01 +00003830
dan31c03902010-04-29 14:51:33 +00003831 if( isChanged ){
3832 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003833 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003834 ** out of date. So zero the cached wal-index header to ensure that
3835 ** next time the pager opens a snapshot on this database it knows that
3836 ** the cache needs to be reset.
3837 */
drh7ed91f22010-04-29 22:34:07 +00003838 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00003839 }
danb9bf16b2010-04-14 11:23:30 +00003840
dan58021b22020-05-05 20:30:07 +00003841 walDisableBlocking(pWal);
dan861fb1e2020-05-06 19:14:41 +00003842 sqlite3WalDb(pWal, 0);
dan8714de92020-05-04 19:42:35 +00003843
danb9bf16b2010-04-14 11:23:30 +00003844 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003845 sqlite3WalEndWriteTransaction(pWal);
dan8714de92020-05-04 19:42:35 +00003846 if( pWal->ckptLock ){
3847 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3848 pWal->ckptLock = 0;
3849 }
drhc74c3332010-05-31 12:15:19 +00003850 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan7bb8b8a2020-05-06 20:27:18 +00003851#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3852 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3853#endif
danf2b8dd52010-11-18 19:28:01 +00003854 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003855}
3856
drh7ed91f22010-04-29 22:34:07 +00003857/* Return the value to pass to a sqlite3_wal_hook callback, the
3858** number of frames in the WAL at the point of the last commit since
3859** sqlite3WalCallback() was called. If no commits have occurred since
3860** the last call, then return 0.
3861*/
3862int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003863 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003864 if( pWal ){
3865 ret = pWal->iCallback;
3866 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003867 }
3868 return (int)ret;
3869}
dan55437592010-05-11 12:19:26 +00003870
3871/*
drh61e4ace2010-05-31 20:28:37 +00003872** This function is called to change the WAL subsystem into or out
3873** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003874**
drh61e4ace2010-05-31 20:28:37 +00003875** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3876** into locking_mode=NORMAL. This means that we must acquire a lock
3877** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3878** or if the acquisition of the lock fails, then return 0. If the
3879** transition out of exclusive-mode is successful, return 1. This
3880** operation must occur while the pager is still holding the exclusive
3881** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003882**
drh61e4ace2010-05-31 20:28:37 +00003883** If op is one, then change from locking_mode=NORMAL into
3884** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3885** be released. Return 1 if the transition is made and 0 if the
3886** WAL is already in exclusive-locking mode - meaning that this
3887** routine is a no-op. The pager must already hold the exclusive lock
3888** on the main database file before invoking this operation.
3889**
3890** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003891** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003892** should acquire the database exclusive lock prior to invoking
3893** the op==1 case.
dan55437592010-05-11 12:19:26 +00003894*/
3895int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003896 int rc;
drhaab4c022010-06-02 14:45:51 +00003897 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003898 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003899
3900 /* pWal->readLock is usually set, but might be -1 if there was a
3901 ** prior error while attempting to acquire are read-lock. This cannot
3902 ** happen if the connection is actually in exclusive mode (as no xShmLock
3903 ** locks are taken in this case). Nor should the pager attempt to
3904 ** upgrade to exclusive-mode following such an error.
3905 */
drhaab4c022010-06-02 14:45:51 +00003906 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003907 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3908
drh61e4ace2010-05-31 20:28:37 +00003909 if( op==0 ){
drhc05a0632017-11-11 20:11:01 +00003910 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3911 pWal->exclusiveMode = WAL_NORMAL_MODE;
dan3cac5dc2010-06-04 18:37:59 +00003912 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drhc05a0632017-11-11 20:11:01 +00003913 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003914 }
drhc05a0632017-11-11 20:11:01 +00003915 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
drh61e4ace2010-05-31 20:28:37 +00003916 }else{
drhaab4c022010-06-02 14:45:51 +00003917 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003918 rc = 0;
3919 }
3920 }else if( op>0 ){
drhc05a0632017-11-11 20:11:01 +00003921 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
drhaab4c022010-06-02 14:45:51 +00003922 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003923 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
drhc05a0632017-11-11 20:11:01 +00003924 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003925 rc = 1;
3926 }else{
drhc05a0632017-11-11 20:11:01 +00003927 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
dan55437592010-05-11 12:19:26 +00003928 }
drh61e4ace2010-05-31 20:28:37 +00003929 return rc;
dan55437592010-05-11 12:19:26 +00003930}
3931
dan8c408002010-11-01 17:38:24 +00003932/*
3933** Return true if the argument is non-NULL and the WAL module is using
3934** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3935** WAL module is using shared-memory, return false.
3936*/
3937int sqlite3WalHeapMemory(Wal *pWal){
3938 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3939}
3940
danfc1acf32015-12-05 20:51:54 +00003941#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003942/* Create a snapshot object. The content of a snapshot is opaque to
3943** every other subsystem, so the WAL module can put whatever it needs
3944** in the object.
3945*/
danfc1acf32015-12-05 20:51:54 +00003946int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3947 int rc = SQLITE_OK;
3948 WalIndexHdr *pRet;
drhba6eb872016-11-15 17:37:56 +00003949 static const u32 aZero[4] = { 0, 0, 0, 0 };
danfc1acf32015-12-05 20:51:54 +00003950
3951 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3952
drhba6eb872016-11-15 17:37:56 +00003953 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3954 *ppSnapshot = 0;
3955 return SQLITE_ERROR;
3956 }
danfc1acf32015-12-05 20:51:54 +00003957 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3958 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00003959 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00003960 }else{
3961 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3962 *ppSnapshot = (sqlite3_snapshot*)pRet;
3963 }
3964
3965 return rc;
3966}
3967
drhe230a892015-12-10 22:48:22 +00003968/* Try to open on pSnapshot when the next read-transaction starts
3969*/
dan8714de92020-05-04 19:42:35 +00003970void sqlite3WalSnapshotOpen(
3971 Wal *pWal,
dan8714de92020-05-04 19:42:35 +00003972 sqlite3_snapshot *pSnapshot
3973){
danfc1acf32015-12-05 20:51:54 +00003974 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3975}
danad2d5ba2016-04-11 19:59:52 +00003976
3977/*
3978** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3979** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3980*/
3981int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3982 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3983 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3984
3985 /* aSalt[0] is a copy of the value stored in the wal file header. It
3986 ** is incremented each time the wal file is restarted. */
3987 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3988 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3989 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3990 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3991 return 0;
3992}
danfa3d4c12018-08-06 17:12:36 +00003993
3994/*
3995** The caller currently has a read transaction open on the database.
3996** This function takes a SHARED lock on the CHECKPOINTER slot and then
3997** checks if the snapshot passed as the second argument is still
3998** available. If so, SQLITE_OK is returned.
3999**
4000** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4001** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4002** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4003** lock is released before returning.
4004*/
4005int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4006 int rc;
4007 rc = walLockShared(pWal, WAL_CKPT_LOCK);
4008 if( rc==SQLITE_OK ){
4009 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4010 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4011 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4012 ){
dan8d4b7a32018-08-31 19:00:16 +00004013 rc = SQLITE_ERROR_SNAPSHOT;
danfa3d4c12018-08-06 17:12:36 +00004014 walUnlockShared(pWal, WAL_CKPT_LOCK);
4015 }
4016 }
4017 return rc;
4018}
4019
4020/*
4021** Release a lock obtained by an earlier successful call to
4022** sqlite3WalSnapshotCheck().
4023*/
4024void sqlite3WalSnapshotUnlock(Wal *pWal){
4025 assert( pWal );
4026 walUnlockShared(pWal, WAL_CKPT_LOCK);
4027}
4028
4029
danfc1acf32015-12-05 20:51:54 +00004030#endif /* SQLITE_ENABLE_SNAPSHOT */
4031
drh70708602012-02-24 14:33:28 +00004032#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00004033/*
4034** If the argument is not NULL, it points to a Wal object that holds a
4035** read-lock. This function returns the database page-size if it is known,
4036** or zero if it is not (or if pWal is NULL).
4037*/
4038int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00004039 assert( pWal==0 || pWal->readLock>=0 );
4040 return (pWal ? pWal->szPage : 0);
4041}
drh70708602012-02-24 14:33:28 +00004042#endif
danb3bdc722012-02-23 15:35:49 +00004043
drh21d61852016-01-08 02:27:01 +00004044/* Return the sqlite3_file object for the WAL file
4045*/
4046sqlite3_file *sqlite3WalFile(Wal *pWal){
4047 return pWal->pWalFd;
4048}
4049
dan5cf53532010-05-01 16:40:20 +00004050#endif /* #ifndef SQLITE_OMIT_WAL */