blob: d9909deccac0d3da4ee2349f93b4a1ad4ee242ef [file] [log] [blame]
drh4f26d6c2004-05-26 23:25:30 +00001/*
2** 2004 May 26
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains code use to manipulate "Mem" structure. A "Mem"
14** stores a single value in the VDBE. Mem is an opaque structure visible
15** only within the VDBE. Interface routines refer to a Mem using the
16** name sqlite_value
17*/
18#include "sqliteInt.h"
drh4f26d6c2004-05-26 23:25:30 +000019#include "vdbeInt.h"
20
drh169f0772019-05-02 21:36:26 +000021/* True if X is a power of two. 0 is considered a power of two here.
22** In other words, return true if X has at most one bit set.
23*/
24#define ISPOWEROF2(X) (((X)&((X)-1))==0)
25
drh75fd0542014-03-01 16:24:44 +000026#ifdef SQLITE_DEBUG
27/*
28** Check invariants on a Mem object.
29**
30** This routine is intended for use inside of assert() statements, like
31** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
32*/
33int sqlite3VdbeCheckMemInvariants(Mem *p){
drhd3b74202014-09-17 16:41:15 +000034 /* If MEM_Dyn is set then Mem.xDel!=0.
drha0024e62017-07-27 15:53:24 +000035 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
drhc91b2fd2014-03-01 18:13:23 +000036 */
37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
drhc91b2fd2014-03-01 18:13:23 +000038
drh722246e2014-10-07 23:02:24 +000039 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
drh1eda9f72014-09-19 22:30:49 +000043 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
44
drh169f0772019-05-02 21:36:26 +000045 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
drh74eaba42014-09-18 17:52:15 +000047
drha0024e62017-07-27 15:53:24 +000048 if( p->flags & MEM_Null ){
49 /* Cannot be both MEM_Null and some other type */
drh9d67afc2018-08-29 20:24:03 +000050 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
drha0024e62017-07-27 15:53:24 +000051
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
55 ** set.
56 */
57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
63
64 /* No other bits set */
drhe0f20b42019-04-01 20:57:11 +000065 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
drha0024e62017-07-27 15:53:24 +000066 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67 }else{
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
70 }
71 }else{
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p->flags & MEM_Cleared)==0 );
74 }
drhe2bc6552017-04-17 20:50:34 +000075
drh17bcb102014-09-18 21:25:33 +000076 /* The szMalloc field holds the correct memory allocation size */
77 assert( p->szMalloc==0
drh2454e4a2021-05-15 19:36:36 +000078 || (p->flags==MEM_Undefined
79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
drhc91b2fd2014-03-01 18:13:23 +000081
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
84 **
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
peter.d.reid60ec9142014-09-06 16:39:46 +000087 ** (3) An ephemeral string or blob
drhc91b2fd2014-03-01 18:13:23 +000088 ** (4) A static string or blob
89 */
drh17bcb102014-09-18 21:25:33 +000090 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
drhc91b2fd2014-03-01 18:13:23 +000091 assert(
drh17bcb102014-09-18 21:25:33 +000092 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
drhc91b2fd2014-03-01 18:13:23 +000093 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
96 );
97 }
drh75fd0542014-03-01 16:24:44 +000098 return 1;
99}
100#endif
101
drh83a1daf2019-05-01 18:59:33 +0000102/*
drh169f0772019-05-02 21:36:26 +0000103** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
104** into a buffer.
drh83a1daf2019-05-01 18:59:33 +0000105*/
106static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
107 StrAccum acc;
drh169f0772019-05-02 21:36:26 +0000108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
drh82b0f102020-07-21 18:25:19 +0000109 assert( sz>22 );
drh169f0772019-05-02 21:36:26 +0000110 if( p->flags & MEM_Int ){
drh2f045832020-07-21 18:36:06 +0000111#if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
114 i64 x;
115 assert( (p->flags&MEM_Int)*2==sizeof(x) );
116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
drhfbde3f52023-01-03 18:51:18 +0000117 p->n = sqlite3Int64ToText(x, zBuf);
drh2f045832020-07-21 18:36:06 +0000118#else
drhfbde3f52023-01-03 18:51:18 +0000119 p->n = sqlite3Int64ToText(p->u.i, zBuf);
drh2f045832020-07-21 18:36:06 +0000120#endif
drh83a1daf2019-05-01 18:59:33 +0000121 }else{
drh82b0f102020-07-21 18:25:19 +0000122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
123 sqlite3_str_appendf(&acc, "%!.15g",
124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
125 assert( acc.zText==zBuf && acc.mxAlloc<=0 );
126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
drhfbde3f52023-01-03 18:51:18 +0000127 p->n = acc.nChar;
drh83a1daf2019-05-01 18:59:33 +0000128 }
drh83a1daf2019-05-01 18:59:33 +0000129}
130
drh563ddbe2018-02-01 15:57:00 +0000131#ifdef SQLITE_DEBUG
132/*
drhdf82afc2019-05-16 01:22:21 +0000133** Validity checks on pMem. pMem holds a string.
134**
135** (1) Check that string value of pMem agrees with its integer or real value.
136** (2) Check that the string is correctly zero terminated
drh563ddbe2018-02-01 15:57:00 +0000137**
138** A single int or real value always converts to the same strings. But
139** many different strings can be converted into the same int or real.
140** If a table contains a numeric value and an index is based on the
141** corresponding string value, then it is important that the string be
142** derived from the numeric value, not the other way around, to ensure
143** that the index and table are consistent. See ticket
144** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
145** an example.
146**
147** This routine looks at pMem to verify that if it has both a numeric
148** representation and a string representation then the string rep has
149** been derived from the numeric and not the other way around. It returns
150** true if everything is ok and false if there is a problem.
151**
152** This routine is for use inside of assert() statements only.
153*/
drhdf82afc2019-05-16 01:22:21 +0000154int sqlite3VdbeMemValidStrRep(Mem *p){
drhfbde3f52023-01-03 18:51:18 +0000155 Mem tmp;
drh563ddbe2018-02-01 15:57:00 +0000156 char zBuf[100];
157 char *z;
158 int i, j, incr;
159 if( (p->flags & MEM_Str)==0 ) return 1;
drhdf82afc2019-05-16 01:22:21 +0000160 if( p->flags & MEM_Term ){
161 /* Insure that the string is properly zero-terminated. Pay particular
162 ** attention to the case where p->n is odd */
drhe72d1a82019-05-16 11:47:16 +0000163 if( p->szMalloc>0 && p->z==p->zMalloc ){
drhdf82afc2019-05-16 01:22:21 +0000164 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
165 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
166 }
167 assert( p->z[p->n]==0 );
168 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
169 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
170 }
drh169f0772019-05-02 21:36:26 +0000171 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
drhfbde3f52023-01-03 18:51:18 +0000172 memcpy(&tmp, p, sizeof(tmp));
173 vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp);
drh563ddbe2018-02-01 15:57:00 +0000174 z = p->z;
175 i = j = 0;
176 incr = 1;
177 if( p->enc!=SQLITE_UTF8 ){
178 incr = 2;
179 if( p->enc==SQLITE_UTF16BE ) z++;
180 }
181 while( zBuf[j] ){
182 if( zBuf[j++]!=z[i] ) return 0;
183 i += incr;
184 }
185 return 1;
186}
187#endif /* SQLITE_DEBUG */
drh75fd0542014-03-01 16:24:44 +0000188
drh4f26d6c2004-05-26 23:25:30 +0000189/*
danielk1977bfd6cce2004-06-18 04:24:54 +0000190** If pMem is an object with a valid string representation, this routine
191** ensures the internal encoding for the string representation is
192** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
drh4f26d6c2004-05-26 23:25:30 +0000193**
danielk1977bfd6cce2004-06-18 04:24:54 +0000194** If pMem is not a string object, or the encoding of the string
195** representation is already stored using the requested encoding, then this
196** routine is a no-op.
drh4f26d6c2004-05-26 23:25:30 +0000197**
198** SQLITE_OK is returned if the conversion is successful (or not required).
199** SQLITE_NOMEM may be returned if a malloc() fails during conversion
200** between formats.
201*/
drhb21c8cd2007-08-21 19:33:56 +0000202int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
mistachkinef593f22013-03-07 06:42:53 +0000203#ifndef SQLITE_OMIT_UTF16
danielk19772c336542005-01-13 02:14:23 +0000204 int rc;
mistachkinef593f22013-03-07 06:42:53 +0000205#endif
drh7d4c94b2021-10-04 22:34:38 +0000206 assert( pMem!=0 );
drh9d67afc2018-08-29 20:24:03 +0000207 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhb27b7f52008-12-10 18:03:45 +0000208 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
209 || desiredEnc==SQLITE_UTF16BE );
drhfb92e072022-03-29 01:43:09 +0000210 if( !(pMem->flags&MEM_Str) ){
211 pMem->enc = desiredEnc;
drh4f26d6c2004-05-26 23:25:30 +0000212 return SQLITE_OK;
213 }
drh555db972022-03-29 19:19:23 +0000214 if( pMem->enc==desiredEnc ){
215 return SQLITE_OK;
216 }
drhb21c8cd2007-08-21 19:33:56 +0000217 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh6c626082004-11-14 21:56:29 +0000218#ifdef SQLITE_OMIT_UTF16
219 return SQLITE_ERROR;
220#else
danielk197700fd9572005-12-07 06:27:43 +0000221
222 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
223 ** then the encoding of the value may not have changed.
224 */
drhb27b7f52008-12-10 18:03:45 +0000225 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
danielk197700fd9572005-12-07 06:27:43 +0000226 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
227 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
228 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
danielk19772c336542005-01-13 02:14:23 +0000229 return rc;
drh6c626082004-11-14 21:56:29 +0000230#endif
drh4f26d6c2004-05-26 23:25:30 +0000231}
232
drheb2e1762004-05-27 01:53:56 +0000233/*
drh6ff74272019-02-08 15:59:20 +0000234** Make sure pMem->z points to a writable allocation of at least n bytes.
danielk1977a7a8e142008-02-13 18:25:27 +0000235**
drhb0e77042013-12-10 19:49:00 +0000236** If the bPreserve argument is true, then copy of the content of
237** pMem->z into the new allocation. pMem must be either a string or
238** blob if bPreserve is true. If bPreserve is false, any prior content
239** in pMem->z is discarded.
danielk1977a7a8e142008-02-13 18:25:27 +0000240*/
drh322f2852014-09-19 00:43:39 +0000241SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
drh75fd0542014-03-01 16:24:44 +0000242 assert( sqlite3VdbeCheckMemInvariants(pMem) );
drh9d67afc2018-08-29 20:24:03 +0000243 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh575fad62016-02-05 13:38:36 +0000244 testcase( pMem->db==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000245
drhb0e77042013-12-10 19:49:00 +0000246 /* If the bPreserve flag is set to true, then the memory cell must already
dan2b9ee772012-03-31 09:59:44 +0000247 ** contain a valid string or blob value. */
drh0364f222019-04-10 13:24:35 +0000248 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
drhb0e77042013-12-10 19:49:00 +0000249 testcase( bPreserve && pMem->z==0 );
dan2b9ee772012-03-31 09:59:44 +0000250
drh17bcb102014-09-18 21:25:33 +0000251 assert( pMem->szMalloc==0
drh2454e4a2021-05-15 19:36:36 +0000252 || (pMem->flags==MEM_Undefined
253 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
254 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
drh762dffa2017-09-20 18:47:51 +0000255 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
drh97b02502019-09-17 03:16:29 +0000256 if( pMem->db ){
257 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
258 }else{
259 pMem->zMalloc = sqlite3Realloc(pMem->z, n);
260 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
261 pMem->z = pMem->zMalloc;
262 }
drh4c6463c2017-04-10 20:27:54 +0000263 bPreserve = 0;
264 }else{
265 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
266 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
267 }
268 if( pMem->zMalloc==0 ){
269 sqlite3VdbeMemSetNull(pMem);
270 pMem->z = 0;
271 pMem->szMalloc = 0;
272 return SQLITE_NOMEM_BKPT;
273 }else{
274 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
danielk1977a7a8e142008-02-13 18:25:27 +0000275 }
danielk19775f096132008-03-28 15:44:09 +0000276
drh762dffa2017-09-20 18:47:51 +0000277 if( bPreserve && pMem->z ){
278 assert( pMem->z!=pMem->zMalloc );
danielk19775f096132008-03-28 15:44:09 +0000279 memcpy(pMem->zMalloc, pMem->z, pMem->n);
280 }
drhc91b2fd2014-03-01 18:13:23 +0000281 if( (pMem->flags&MEM_Dyn)!=0 ){
282 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
danielk19775f096132008-03-28 15:44:09 +0000283 pMem->xDel((void *)(pMem->z));
284 }
285
286 pMem->z = pMem->zMalloc;
drhc91b2fd2014-03-01 18:13:23 +0000287 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
drhb0e77042013-12-10 19:49:00 +0000288 return SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000289}
290
291/*
drh322f2852014-09-19 00:43:39 +0000292** Change the pMem->zMalloc allocation to be at least szNew bytes.
293** If pMem->zMalloc already meets or exceeds the requested size, this
294** routine is a no-op.
295**
296** Any prior string or blob content in the pMem object may be discarded.
drha5476e92014-09-19 04:42:38 +0000297** The pMem->xDel destructor is called, if it exists. Though MEM_Str
drh169f0772019-05-02 21:36:26 +0000298** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
299** and MEM_Null values are preserved.
drh322f2852014-09-19 00:43:39 +0000300**
301** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
302** if unable to complete the resizing.
303*/
304int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
danb4738dd2019-01-23 20:31:56 +0000305 assert( CORRUPT_DB || szNew>0 );
drh722246e2014-10-07 23:02:24 +0000306 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
drh1eda9f72014-09-19 22:30:49 +0000307 if( pMem->szMalloc<szNew ){
drh322f2852014-09-19 00:43:39 +0000308 return sqlite3VdbeMemGrow(pMem, szNew, 0);
309 }
drh1eda9f72014-09-19 22:30:49 +0000310 assert( (pMem->flags & MEM_Dyn)==0 );
drh322f2852014-09-19 00:43:39 +0000311 pMem->z = pMem->zMalloc;
drh83a1daf2019-05-01 18:59:33 +0000312 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
drh322f2852014-09-19 00:43:39 +0000313 return SQLITE_OK;
314}
315
316/*
drh97397a72017-09-20 17:49:12 +0000317** It is already known that pMem contains an unterminated string.
318** Add the zero terminator.
drh30d3b0c2019-05-03 19:34:41 +0000319**
320** Three bytes of zero are added. In this way, there is guaranteed
321** to be a double-zero byte at an even byte boundary in order to
322** terminate a UTF16 string, even if the initial size of the buffer
323** is an odd number of bytes.
drh97397a72017-09-20 17:49:12 +0000324*/
325static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
drh30d3b0c2019-05-03 19:34:41 +0000326 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
drh97397a72017-09-20 17:49:12 +0000327 return SQLITE_NOMEM_BKPT;
328 }
329 pMem->z[pMem->n] = 0;
330 pMem->z[pMem->n+1] = 0;
drh30d3b0c2019-05-03 19:34:41 +0000331 pMem->z[pMem->n+2] = 0;
drh97397a72017-09-20 17:49:12 +0000332 pMem->flags |= MEM_Term;
333 return SQLITE_OK;
334}
335
336/*
drh1eda9f72014-09-19 22:30:49 +0000337** Change pMem so that its MEM_Str or MEM_Blob value is stored in
338** MEM.zMalloc, where it can be safely written.
drheb2e1762004-05-27 01:53:56 +0000339**
340** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
341*/
drhdab898f2008-07-30 13:14:55 +0000342int sqlite3VdbeMemMakeWriteable(Mem *pMem){
drh7d4c94b2021-10-04 22:34:38 +0000343 assert( pMem!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000344 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +0000345 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh8aaf7bc2016-09-20 01:19:18 +0000346 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
347 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
348 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
drh97397a72017-09-20 17:49:12 +0000349 int rc = vdbeMemAddTerminator(pMem);
350 if( rc ) return rc;
danielk1977a7a8e142008-02-13 18:25:27 +0000351 }
drheb2e1762004-05-27 01:53:56 +0000352 }
drhbd6789e2015-04-28 14:00:02 +0000353 pMem->flags &= ~MEM_Ephem;
354#ifdef SQLITE_DEBUG
355 pMem->pScopyFrom = 0;
356#endif
danielk1977a7a8e142008-02-13 18:25:27 +0000357
drhf4479502004-05-27 03:12:53 +0000358 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000359}
360
361/*
drhfdf972a2007-05-02 13:30:27 +0000362** If the given Mem* has a zero-filled tail, turn it into an ordinary
drhb026e052007-05-02 01:34:31 +0000363** blob stored in dynamically allocated space.
364*/
danielk1977246ad312007-05-16 14:23:00 +0000365#ifndef SQLITE_OMIT_INCRBLOB
drhb21c8cd2007-08-21 19:33:56 +0000366int sqlite3VdbeMemExpandBlob(Mem *pMem){
drhff535a22016-09-20 01:46:15 +0000367 int nByte;
drh7d4c94b2021-10-04 22:34:38 +0000368 assert( pMem!=0 );
drhff535a22016-09-20 01:46:15 +0000369 assert( pMem->flags & MEM_Zero );
drh7d683392019-04-07 18:04:57 +0000370 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
drh427db2d2019-04-07 18:21:12 +0000371 testcase( sqlite3_value_nochange(pMem) );
drh9d67afc2018-08-29 20:24:03 +0000372 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhff535a22016-09-20 01:46:15 +0000373 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977a7a8e142008-02-13 18:25:27 +0000374
drhff535a22016-09-20 01:46:15 +0000375 /* Set nByte to the number of bytes required to store the expanded blob. */
376 nByte = pMem->n + pMem->u.nZero;
377 if( nByte<=0 ){
drh0364f222019-04-10 13:24:35 +0000378 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
drhff535a22016-09-20 01:46:15 +0000379 nByte = 1;
drhb026e052007-05-02 01:34:31 +0000380 }
drhff535a22016-09-20 01:46:15 +0000381 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
382 return SQLITE_NOMEM_BKPT;
383 }
drh9b2adcc2021-10-27 19:05:04 +0000384 assert( pMem->z!=0 );
385 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
drhff535a22016-09-20 01:46:15 +0000386
387 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
388 pMem->n += pMem->u.nZero;
389 pMem->flags &= ~(MEM_Zero|MEM_Term);
drhb026e052007-05-02 01:34:31 +0000390 return SQLITE_OK;
391}
danielk1977246ad312007-05-16 14:23:00 +0000392#endif
drhb026e052007-05-02 01:34:31 +0000393
drhb026e052007-05-02 01:34:31 +0000394/*
drhb63388b2014-08-27 00:50:11 +0000395** Make sure the given Mem is \u0000 terminated.
396*/
397int sqlite3VdbeMemNulTerminate(Mem *pMem){
drh7d4c94b2021-10-04 22:34:38 +0000398 assert( pMem!=0 );
drhb63388b2014-08-27 00:50:11 +0000399 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
400 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
401 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
402 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
403 return SQLITE_OK; /* Nothing to do */
404 }else{
405 return vdbeMemAddTerminator(pMem);
406 }
407}
408
409/*
drh30d3b0c2019-05-03 19:34:41 +0000410** Add MEM_Str to the set of representations for the given Mem. This
411** routine is only called if pMem is a number of some kind, not a NULL
412** or a BLOB.
drheb2e1762004-05-27 01:53:56 +0000413**
drh169f0772019-05-02 21:36:26 +0000414** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
415** if bForce is true but are retained if bForce is false.
danielk197713073932004-06-30 11:54:06 +0000416**
417** A MEM_Null value will never be passed to this function. This function is
418** used for converting values to text for returning to the user (i.e. via
419** sqlite3_value_text()), or for ensuring that values to be used as btree
420** keys are strings. In the former case a NULL pointer is returned the
peter.d.reid60ec9142014-09-06 16:39:46 +0000421** user and the latter is an internal programming error.
drheb2e1762004-05-27 01:53:56 +0000422*/
drhbd9507c2014-08-23 17:21:37 +0000423int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
danielk1977a7a8e142008-02-13 18:25:27 +0000424 const int nByte = 32;
drheb2e1762004-05-27 01:53:56 +0000425
drh7d4c94b2021-10-04 22:34:38 +0000426 assert( pMem!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000427 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh83a1daf2019-05-01 18:59:33 +0000428 assert( !(pMem->flags&MEM_Zero) );
429 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
drh169f0772019-05-02 21:36:26 +0000430 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
drh9d67afc2018-08-29 20:24:03 +0000431 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhea598cb2009-04-05 12:22:08 +0000432 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000433
drheb2e1762004-05-27 01:53:56 +0000434
drh322f2852014-09-19 00:43:39 +0000435 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drh2a1df932016-09-30 17:46:44 +0000436 pMem->enc = 0;
mistachkinfad30392016-02-13 23:43:46 +0000437 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +0000438 }
439
drh83a1daf2019-05-01 18:59:33 +0000440 vdbeMemRenderNum(nByte, pMem->z, pMem);
drh7301e772018-10-31 20:52:00 +0000441 assert( pMem->z!=0 );
drhfbde3f52023-01-03 18:51:18 +0000442 assert( pMem->n==sqlite3Strlen30NN(pMem->z) );
danielk197713073932004-06-30 11:54:06 +0000443 pMem->enc = SQLITE_UTF8;
danielk1977a7a8e142008-02-13 18:25:27 +0000444 pMem->flags |= MEM_Str|MEM_Term;
drh83a1daf2019-05-01 18:59:33 +0000445 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
drhb21c8cd2007-08-21 19:33:56 +0000446 sqlite3VdbeChangeEncoding(pMem, enc);
drhbd9507c2014-08-23 17:21:37 +0000447 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000448}
449
450/*
drhabfcea22005-09-06 20:36:48 +0000451** Memory cell pMem contains the context of an aggregate function.
452** This routine calls the finalize method for that function. The
453** result of the aggregate is stored back into pMem.
drh90669c12006-01-20 15:45:36 +0000454**
455** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
456** otherwise.
drhabfcea22005-09-06 20:36:48 +0000457*/
drh90669c12006-01-20 15:45:36 +0000458int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
drh9d9c41e2017-10-31 03:40:15 +0000459 sqlite3_context ctx;
460 Mem t;
461 assert( pFunc!=0 );
drh7d4c94b2021-10-04 22:34:38 +0000462 assert( pMem!=0 );
drhc3810562022-04-07 10:11:35 +0000463 assert( pMem->db!=0 );
drh9d9c41e2017-10-31 03:40:15 +0000464 assert( pFunc->xFinalize!=0 );
465 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
drhc3810562022-04-07 10:11:35 +0000466 assert( sqlite3_mutex_held(pMem->db->mutex) );
drh9d9c41e2017-10-31 03:40:15 +0000467 memset(&ctx, 0, sizeof(ctx));
468 memset(&t, 0, sizeof(t));
469 t.flags = MEM_Null;
470 t.db = pMem->db;
471 ctx.pOut = &t;
472 ctx.pMem = pMem;
473 ctx.pFunc = pFunc;
drh659fdb42022-04-01 15:31:58 +0000474 ctx.enc = ENC(t.db);
drh9d9c41e2017-10-31 03:40:15 +0000475 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
476 assert( (pMem->flags & MEM_Dyn)==0 );
477 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
478 memcpy(pMem, &t, sizeof(t));
479 return ctx.isError;
drhabfcea22005-09-06 20:36:48 +0000480}
481
dan9a947222018-06-14 19:06:36 +0000482/*
483** Memory cell pAccum contains the context of an aggregate function.
484** This routine calls the xValue method for that function and stores
485** the results in memory cell pMem.
486**
487** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
488** otherwise.
489*/
dan67a9b8e2018-06-22 20:51:35 +0000490#ifndef SQLITE_OMIT_WINDOWFUNC
dan86fb6e12018-05-16 20:58:07 +0000491int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
492 sqlite3_context ctx;
dan86fb6e12018-05-16 20:58:07 +0000493 assert( pFunc!=0 );
494 assert( pFunc->xValue!=0 );
495 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
drhc3810562022-04-07 10:11:35 +0000496 assert( pAccum->db!=0 );
497 assert( sqlite3_mutex_held(pAccum->db->mutex) );
dan86fb6e12018-05-16 20:58:07 +0000498 memset(&ctx, 0, sizeof(ctx));
drh8f26da62018-07-05 21:22:57 +0000499 sqlite3VdbeMemSetNull(pOut);
dan86fb6e12018-05-16 20:58:07 +0000500 ctx.pOut = pOut;
501 ctx.pMem = pAccum;
502 ctx.pFunc = pFunc;
drh659fdb42022-04-01 15:31:58 +0000503 ctx.enc = ENC(pAccum->db);
dan86fb6e12018-05-16 20:58:07 +0000504 pFunc->xValue(&ctx);
505 return ctx.isError;
506}
dan67a9b8e2018-06-22 20:51:35 +0000507#endif /* SQLITE_OMIT_WINDOWFUNC */
dan9a947222018-06-14 19:06:36 +0000508
drhabfcea22005-09-06 20:36:48 +0000509/*
drh8740a602014-09-16 20:05:21 +0000510** If the memory cell contains a value that must be freed by
drh0725cab2014-09-17 14:52:46 +0000511** invoking the external callback in Mem.xDel, then this routine
512** will free that value. It also sets Mem.flags to MEM_Null.
drh12b7c7d2014-08-25 11:20:27 +0000513**
drh0725cab2014-09-17 14:52:46 +0000514** This is a helper routine for sqlite3VdbeMemSetNull() and
515** for sqlite3VdbeMemRelease(). Use those other routines as the
516** entry point for releasing Mem resources.
danielk19775f096132008-03-28 15:44:09 +0000517*/
drh0725cab2014-09-17 14:52:46 +0000518static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
danielk19775f096132008-03-28 15:44:09 +0000519 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
drh0725cab2014-09-17 14:52:46 +0000520 assert( VdbeMemDynamic(p) );
drh2d36eb42011-08-29 02:49:41 +0000521 if( p->flags&MEM_Agg ){
522 sqlite3VdbeMemFinalize(p, p->u.pDef);
523 assert( (p->flags & MEM_Agg)==0 );
drh0725cab2014-09-17 14:52:46 +0000524 testcase( p->flags & MEM_Dyn );
525 }
526 if( p->flags&MEM_Dyn ){
drhc91b2fd2014-03-01 18:13:23 +0000527 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
drh2d36eb42011-08-29 02:49:41 +0000528 p->xDel((void *)p->z);
danielk19775f096132008-03-28 15:44:09 +0000529 }
drh6b478bc2014-09-16 21:54:11 +0000530 p->flags = MEM_Null;
danielk19775f096132008-03-28 15:44:09 +0000531}
532
533/*
drh12b7c7d2014-08-25 11:20:27 +0000534** Release memory held by the Mem p, both external memory cleared
535** by p->xDel and memory in p->zMalloc.
536**
537** This is a helper routine invoked by sqlite3VdbeMemRelease() in
drh0725cab2014-09-17 14:52:46 +0000538** the unusual case where there really is memory in p that needs
539** to be freed.
drh12b7c7d2014-08-25 11:20:27 +0000540*/
drh0725cab2014-09-17 14:52:46 +0000541static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
drh12b7c7d2014-08-25 11:20:27 +0000542 if( VdbeMemDynamic(p) ){
drh0725cab2014-09-17 14:52:46 +0000543 vdbeMemClearExternAndSetNull(p);
drh12b7c7d2014-08-25 11:20:27 +0000544 }
drh17bcb102014-09-18 21:25:33 +0000545 if( p->szMalloc ){
drhdbd6a7d2017-04-05 12:39:49 +0000546 sqlite3DbFreeNN(p->db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +0000547 p->szMalloc = 0;
drh12b7c7d2014-08-25 11:20:27 +0000548 }
549 p->z = 0;
550}
551
552/*
drh0725cab2014-09-17 14:52:46 +0000553** Release any memory resources held by the Mem. Both the memory that is
554** free by Mem.xDel and the Mem.zMalloc allocation are freed.
drh8740a602014-09-16 20:05:21 +0000555**
drh0725cab2014-09-17 14:52:46 +0000556** Use this routine prior to clean up prior to abandoning a Mem, or to
557** reset a Mem back to its minimum memory utilization.
558**
559** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
560** prior to inserting new content into the Mem.
drhf4479502004-05-27 03:12:53 +0000561*/
danielk1977d8123362004-06-12 09:25:12 +0000562void sqlite3VdbeMemRelease(Mem *p){
drh75fd0542014-03-01 16:24:44 +0000563 assert( sqlite3VdbeCheckMemInvariants(p) );
drh17bcb102014-09-18 21:25:33 +0000564 if( VdbeMemDynamic(p) || p->szMalloc ){
drh0725cab2014-09-17 14:52:46 +0000565 vdbeMemClear(p);
drh7250c542013-12-09 03:07:21 +0000566 }
drhf4479502004-05-27 03:12:53 +0000567}
568
drhfc854502022-03-02 17:50:59 +0000569/* Like sqlite3VdbeMemRelease() but faster for cases where we
570** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
571*/
572void sqlite3VdbeMemReleaseMalloc(Mem *p){
573 assert( !VdbeMemDynamic(p) );
574 if( p->szMalloc ) vdbeMemClear(p);
575}
576
drhf4479502004-05-27 03:12:53 +0000577/*
drhd8c303f2008-01-11 15:27:03 +0000578** Convert a 64-bit IEEE double into a 64-bit signed integer.
drhde1a8b82013-11-26 15:45:02 +0000579** If the double is out of range of a 64-bit signed integer then
580** return the closest available 64-bit signed integer.
drhd8c303f2008-01-11 15:27:03 +0000581*/
drhb808d772017-04-01 11:59:36 +0000582static SQLITE_NOINLINE i64 doubleToInt64(double r){
drh52d14522010-01-13 15:15:40 +0000583#ifdef SQLITE_OMIT_FLOATING_POINT
584 /* When floating-point is omitted, double and int64 are the same thing */
585 return r;
586#else
drhd8c303f2008-01-11 15:27:03 +0000587 /*
588 ** Many compilers we encounter do not define constants for the
589 ** minimum and maximum 64-bit integers, or they define them
590 ** inconsistently. And many do not understand the "LL" notation.
591 ** So we define our own static constants here using nothing
592 ** larger than a 32-bit integer constant.
593 */
drh0f050352008-05-09 18:03:13 +0000594 static const i64 maxInt = LARGEST_INT64;
595 static const i64 minInt = SMALLEST_INT64;
drhd8c303f2008-01-11 15:27:03 +0000596
drhde1a8b82013-11-26 15:45:02 +0000597 if( r<=(double)minInt ){
drhd8c303f2008-01-11 15:27:03 +0000598 return minInt;
drhde1a8b82013-11-26 15:45:02 +0000599 }else if( r>=(double)maxInt ){
600 return maxInt;
drhd8c303f2008-01-11 15:27:03 +0000601 }else{
602 return (i64)r;
603 }
drh52d14522010-01-13 15:15:40 +0000604#endif
drhd8c303f2008-01-11 15:27:03 +0000605}
606
607/*
drh6a6124e2004-06-27 01:56:33 +0000608** Return some kind of integer value which is the best we can do
609** at representing the value that *pMem describes as an integer.
610** If pMem is an integer, then the value is exact. If pMem is
611** a floating-point then the value returned is the integer part.
612** If pMem is a string or blob, then we make an attempt to convert
peter.d.reid60ec9142014-09-06 16:39:46 +0000613** it into an integer and return that. If pMem represents an
drh347a7cb2009-03-23 21:37:04 +0000614** an SQL-NULL value, return 0.
drh6a6124e2004-06-27 01:56:33 +0000615**
drh347a7cb2009-03-23 21:37:04 +0000616** If pMem represents a string value, its encoding might be changed.
drheb2e1762004-05-27 01:53:56 +0000617*/
drh2db144c2021-12-01 16:31:02 +0000618static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
drhb808d772017-04-01 11:59:36 +0000619 i64 value = 0;
620 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
621 return value;
622}
drh2db144c2021-12-01 16:31:02 +0000623i64 sqlite3VdbeIntValue(const Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000624 int flags;
drh7d4c94b2021-10-04 22:34:38 +0000625 assert( pMem!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000626 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000627 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000628 flags = pMem->flags;
drh169f0772019-05-02 21:36:26 +0000629 if( flags & (MEM_Int|MEM_IntReal) ){
drh3242c692019-05-04 01:29:13 +0000630 testcase( flags & MEM_IntReal );
drh3c024d62007-03-30 11:23:45 +0000631 return pMem->u.i;
drh6fec0762004-05-30 01:38:43 +0000632 }else if( flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000633 return doubleToInt64(pMem->u.r);
drh22e6f672019-12-03 02:51:50 +0000634 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
drhb808d772017-04-01 11:59:36 +0000635 return memIntValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000636 }else{
drh6a6124e2004-06-27 01:56:33 +0000637 return 0;
drheb2e1762004-05-27 01:53:56 +0000638 }
drh6a6124e2004-06-27 01:56:33 +0000639}
640
641/*
drh6a6124e2004-06-27 01:56:33 +0000642** Return the best representation of pMem that we can get into a
643** double. If pMem is already a double or an integer, return its
644** value. If it is a string or blob, try to convert it to a double.
645** If it is a NULL, return 0.0.
drheb2e1762004-05-27 01:53:56 +0000646*/
drhb808d772017-04-01 11:59:36 +0000647static SQLITE_NOINLINE double memRealValue(Mem *pMem){
648 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
649 double val = (double)0;
650 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
651 return val;
652}
drh6a6124e2004-06-27 01:56:33 +0000653double sqlite3VdbeRealValue(Mem *pMem){
drh7d4c94b2021-10-04 22:34:38 +0000654 assert( pMem!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000655 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000656 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
danielk1977f93bbbe2004-05-27 10:30:52 +0000657 if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000658 return pMem->u.r;
drh169f0772019-05-02 21:36:26 +0000659 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
drh3242c692019-05-04 01:29:13 +0000660 testcase( pMem->flags & MEM_IntReal );
drh3c024d62007-03-30 11:23:45 +0000661 return (double)pMem->u.i;
drheb2e1762004-05-27 01:53:56 +0000662 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhb808d772017-04-01 11:59:36 +0000663 return memRealValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000664 }else{
shanefbd60f82009-02-04 03:59:25 +0000665 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
666 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000667 }
drh6a6124e2004-06-27 01:56:33 +0000668}
669
670/*
drh1fcfa722018-02-26 15:27:31 +0000671** Return 1 if pMem represents true, and return 0 if pMem represents false.
672** Return the value ifNull if pMem is NULL.
673*/
674int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
drh3242c692019-05-04 01:29:13 +0000675 testcase( pMem->flags & MEM_IntReal );
drh169f0772019-05-02 21:36:26 +0000676 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
drh1fcfa722018-02-26 15:27:31 +0000677 if( pMem->flags & MEM_Null ) return ifNull;
678 return sqlite3VdbeRealValue(pMem)!=0.0;
679}
680
681/*
dane3b1c382023-01-05 13:35:23 +0000682** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
683** make it a MEM_Int if we can.
drh8df447f2005-11-01 15:48:24 +0000684*/
685void sqlite3VdbeIntegerAffinity(Mem *pMem){
drh7d4c94b2021-10-04 22:34:38 +0000686 assert( pMem!=0 );
dane3b1c382023-01-05 13:35:23 +0000687 assert( pMem->flags & (MEM_Real|MEM_IntReal) );
drh9d67afc2018-08-29 20:24:03 +0000688 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000689 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000690 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhefe3d652008-01-11 00:06:10 +0000691
dane3b1c382023-01-05 13:35:23 +0000692 if( pMem->flags & MEM_IntReal ){
drh74eaba42014-09-18 17:52:15 +0000693 MemSetTypeFlag(pMem, MEM_Int);
dane3b1c382023-01-05 13:35:23 +0000694 }else{
695 i64 ix = doubleToInt64(pMem->u.r);
696
697 /* Only mark the value as an integer if
698 **
699 ** (1) the round-trip conversion real->int->real is a no-op, and
700 ** (2) The integer is neither the largest nor the smallest
701 ** possible integer (ticket #3922)
702 **
703 ** The second and third terms in the following conditional enforces
704 ** the second condition under the assumption that addition overflow causes
705 ** values to wrap around.
706 */
707 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
708 pMem->u.i = ix;
709 MemSetTypeFlag(pMem, MEM_Int);
710 }
drh8df447f2005-11-01 15:48:24 +0000711 }
712}
713
drh8a512562005-11-14 22:29:05 +0000714/*
715** Convert pMem to type integer. Invalidate any prior representations.
716*/
717int sqlite3VdbeMemIntegerify(Mem *pMem){
drh7d4c94b2021-10-04 22:34:38 +0000718 assert( pMem!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000719 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +0000720 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhea598cb2009-04-05 12:22:08 +0000721 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
722
drh3c024d62007-03-30 11:23:45 +0000723 pMem->u.i = sqlite3VdbeIntValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000724 MemSetTypeFlag(pMem, MEM_Int);
drh8a512562005-11-14 22:29:05 +0000725 return SQLITE_OK;
726}
drh8df447f2005-11-01 15:48:24 +0000727
728/*
drh8a512562005-11-14 22:29:05 +0000729** Convert pMem so that it is of type MEM_Real.
730** Invalidate any prior representations.
drh6a6124e2004-06-27 01:56:33 +0000731*/
732int sqlite3VdbeMemRealify(Mem *pMem){
drh7d4c94b2021-10-04 22:34:38 +0000733 assert( pMem!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000734 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000735 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
736
drh74eaba42014-09-18 17:52:15 +0000737 pMem->u.r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000738 MemSetTypeFlag(pMem, MEM_Real);
drh8a512562005-11-14 22:29:05 +0000739 return SQLITE_OK;
740}
741
drhd15046a2018-01-23 17:33:42 +0000742/* Compare a floating point value to an integer. Return true if the two
743** values are the same within the precision of the floating point value.
744**
drh13d04022019-06-12 20:51:38 +0000745** This function assumes that i was obtained by assignment from r1.
746**
drhd15046a2018-01-23 17:33:42 +0000747** For some versions of GCC on 32-bit machines, if you do the more obvious
748** comparison of "r1==(double)i" you sometimes get an answer of false even
749** though the r1 and (double)i values are bit-for-bit the same.
750*/
drh8a3884e2019-05-29 21:18:27 +0000751int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
drhd15046a2018-01-23 17:33:42 +0000752 double r2 = (double)i;
drh13d04022019-06-12 20:51:38 +0000753 return r1==0.0
754 || (memcmp(&r1, &r2, sizeof(r1))==0
drhea9b5642019-07-09 23:35:50 +0000755 && i >= -2251799813685248LL && i < 2251799813685248LL);
drhd15046a2018-01-23 17:33:42 +0000756}
757
drh26e817f2022-08-08 16:25:13 +0000758/* Convert a floating point value to its closest integer. Do so in
759** a way that avoids 'outside the range of representable values' warnings
760** from UBSAN.
761*/
762i64 sqlite3RealToI64(double r){
763 if( r<=(double)SMALLEST_INT64 ) return SMALLEST_INT64;
764 if( r>=(double)LARGEST_INT64) return LARGEST_INT64;
765 return (i64)r;
766}
767
drh8a512562005-11-14 22:29:05 +0000768/*
drh169f0772019-05-02 21:36:26 +0000769** Convert pMem so that it has type MEM_Real or MEM_Int.
drh8a512562005-11-14 22:29:05 +0000770** Invalidate any prior representations.
drh4b5db5a2010-01-21 01:53:07 +0000771**
772** Every effort is made to force the conversion, even if the input
773** is a string that does not look completely like a number. Convert
774** as much of the string as we can and ignore the rest.
drh8a512562005-11-14 22:29:05 +0000775*/
776int sqlite3VdbeMemNumerify(Mem *pMem){
drh7d4c94b2021-10-04 22:34:38 +0000777 assert( pMem!=0 );
drh3242c692019-05-04 01:29:13 +0000778 testcase( pMem->flags & MEM_Int );
779 testcase( pMem->flags & MEM_Real );
780 testcase( pMem->flags & MEM_IntReal );
781 testcase( pMem->flags & MEM_Null );
drh169f0772019-05-02 21:36:26 +0000782 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
drh84d4f1a2017-09-20 10:47:10 +0000783 int rc;
drh9a278222019-06-07 22:26:08 +0000784 sqlite3_int64 ix;
drh93518622010-09-30 14:48:06 +0000785 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
786 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9a278222019-06-07 22:26:08 +0000787 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
drhc285ded2019-06-10 18:33:16 +0000788 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
drh26e817f2022-08-08 16:25:13 +0000789 || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r)))
drhc285ded2019-06-10 18:33:16 +0000790 ){
drh9a278222019-06-07 22:26:08 +0000791 pMem->u.i = ix;
792 MemSetTypeFlag(pMem, MEM_Int);
793 }else{
794 MemSetTypeFlag(pMem, MEM_Real);
drh93518622010-09-30 14:48:06 +0000795 }
drhcd7b46d2007-05-16 11:55:56 +0000796 }
drh169f0772019-05-02 21:36:26 +0000797 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
drh27fe1c32016-09-09 20:23:59 +0000798 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
drhf4479502004-05-27 03:12:53 +0000799 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000800}
801
802/*
drh4169e432014-08-25 20:11:52 +0000803** Cast the datatype of the value in pMem according to the affinity
804** "aff". Casting is different from applying affinity in that a cast
805** is forced. In other words, the value is converted into the desired
806** affinity even if that results in loss of data. This routine is
807** used (for example) to implement the SQL "cast()" operator.
808*/
drh0af6ddd2019-12-23 03:37:46 +0000809int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
810 if( pMem->flags & MEM_Null ) return SQLITE_OK;
drh4169e432014-08-25 20:11:52 +0000811 switch( aff ){
drh05883a32015-06-02 15:32:08 +0000812 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
drh4169e432014-08-25 20:11:52 +0000813 if( (pMem->flags & MEM_Blob)==0 ){
814 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
815 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
drhda5c6242016-10-05 15:02:00 +0000816 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
drh4169e432014-08-25 20:11:52 +0000817 }else{
818 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
819 }
820 break;
821 }
822 case SQLITE_AFF_NUMERIC: {
823 sqlite3VdbeMemNumerify(pMem);
824 break;
825 }
826 case SQLITE_AFF_INTEGER: {
827 sqlite3VdbeMemIntegerify(pMem);
828 break;
829 }
830 case SQLITE_AFF_REAL: {
831 sqlite3VdbeMemRealify(pMem);
832 break;
833 }
834 default: {
835 assert( aff==SQLITE_AFF_TEXT );
836 assert( MEM_Str==(MEM_Blob>>3) );
837 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
838 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
839 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
drh83a1daf2019-05-01 18:59:33 +0000840 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
drh211a1a72022-10-08 17:27:05 +0000841 if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1;
drh0af6ddd2019-12-23 03:37:46 +0000842 return sqlite3VdbeChangeEncoding(pMem, encoding);
drh4169e432014-08-25 20:11:52 +0000843 }
844 }
drh0af6ddd2019-12-23 03:37:46 +0000845 return SQLITE_OK;
drh4169e432014-08-25 20:11:52 +0000846}
847
drhd3b74202014-09-17 16:41:15 +0000848/*
849** Initialize bulk memory to be a consistent Mem object.
850**
851** The minimum amount of initialization feasible is performed.
852*/
853void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
854 assert( (flags & ~MEM_TypeMask)==0 );
855 pMem->flags = flags;
856 pMem->db = db;
drh17bcb102014-09-18 21:25:33 +0000857 pMem->szMalloc = 0;
drhd3b74202014-09-17 16:41:15 +0000858}
859
drh4169e432014-08-25 20:11:52 +0000860
861/*
drh4f26d6c2004-05-26 23:25:30 +0000862** Delete any previous value and set the value stored in *pMem to NULL.
drh0725cab2014-09-17 14:52:46 +0000863**
864** This routine calls the Mem.xDel destructor to dispose of values that
865** require the destructor. But it preserves the Mem.zMalloc memory allocation.
866** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
867** routine to invoke the destructor and deallocates Mem.zMalloc.
868**
869** Use this routine to reset the Mem prior to insert a new value.
870**
871** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
drh4f26d6c2004-05-26 23:25:30 +0000872*/
873void sqlite3VdbeMemSetNull(Mem *pMem){
drh6b478bc2014-09-16 21:54:11 +0000874 if( VdbeMemDynamic(pMem) ){
drh0725cab2014-09-17 14:52:46 +0000875 vdbeMemClearExternAndSetNull(pMem);
drh6b478bc2014-09-16 21:54:11 +0000876 }else{
877 pMem->flags = MEM_Null;
dan165921a2009-08-28 18:53:45 +0000878 }
drh4f26d6c2004-05-26 23:25:30 +0000879}
drha3cc0072013-12-13 16:23:55 +0000880void sqlite3ValueSetNull(sqlite3_value *p){
881 sqlite3VdbeMemSetNull((Mem*)p);
882}
drh4f26d6c2004-05-26 23:25:30 +0000883
884/*
drhb026e052007-05-02 01:34:31 +0000885** Delete any previous value and set the value to be a BLOB of length
886** n containing all zeros.
887*/
dana32536b2021-11-08 19:35:26 +0000888#ifndef SQLITE_OMIT_INCRBLOB
drhb026e052007-05-02 01:34:31 +0000889void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
890 sqlite3VdbeMemRelease(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000891 pMem->flags = MEM_Blob|MEM_Zero;
drhb026e052007-05-02 01:34:31 +0000892 pMem->n = 0;
drh98640a32007-06-07 19:08:32 +0000893 if( n<0 ) n = 0;
drh8df32842008-12-09 02:51:23 +0000894 pMem->u.nZero = n;
danielk1977def0fec2007-05-10 15:37:52 +0000895 pMem->enc = SQLITE_UTF8;
drh0725cab2014-09-17 14:52:46 +0000896 pMem->z = 0;
drhb026e052007-05-02 01:34:31 +0000897}
dana32536b2021-11-08 19:35:26 +0000898#else
899int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
900 int nByte = n>0?n:1;
901 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
902 return SQLITE_NOMEM_BKPT;
903 }
904 assert( pMem->z!=0 );
905 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
906 memset(pMem->z, 0, nByte);
907 pMem->n = n>0?n:0;
908 pMem->flags = MEM_Blob;
909 pMem->enc = SQLITE_UTF8;
910 return SQLITE_OK;
911}
912#endif
drhb026e052007-05-02 01:34:31 +0000913
914/*
drh9bd038f2014-08-27 14:14:06 +0000915** The pMem is known to contain content that needs to be destroyed prior
916** to a value change. So invoke the destructor, then set the value to
917** a 64-bit integer.
918*/
919static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
drh0725cab2014-09-17 14:52:46 +0000920 sqlite3VdbeMemSetNull(pMem);
drh9bd038f2014-08-27 14:14:06 +0000921 pMem->u.i = val;
922 pMem->flags = MEM_Int;
923}
924
925/*
drh4f26d6c2004-05-26 23:25:30 +0000926** Delete any previous value and set the value stored in *pMem to val,
927** manifest type INTEGER.
928*/
drheb2e1762004-05-27 01:53:56 +0000929void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
drh9bd038f2014-08-27 14:14:06 +0000930 if( VdbeMemDynamic(pMem) ){
931 vdbeReleaseAndSetInt64(pMem, val);
932 }else{
933 pMem->u.i = val;
934 pMem->flags = MEM_Int;
935 }
drh4f26d6c2004-05-26 23:25:30 +0000936}
937
drha0024e62017-07-27 15:53:24 +0000938/* A no-op destructor */
drh92011842018-05-26 16:00:26 +0000939void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
drha0024e62017-07-27 15:53:24 +0000940
drh3a96a5d2017-06-30 23:09:03 +0000941/*
942** Set the value stored in *pMem should already be a NULL.
943** Also store a pointer to go with it.
944*/
drh22930062017-07-27 03:48:02 +0000945void sqlite3VdbeMemSetPointer(
946 Mem *pMem,
947 void *pPtr,
948 const char *zPType,
949 void (*xDestructor)(void*)
950){
drh3a96a5d2017-06-30 23:09:03 +0000951 assert( pMem->flags==MEM_Null );
drh6f9d6882022-03-04 16:28:24 +0000952 vdbeMemClear(pMem);
drha0024e62017-07-27 15:53:24 +0000953 pMem->u.zPType = zPType ? zPType : "";
drh22930062017-07-27 03:48:02 +0000954 pMem->z = pPtr;
drha0024e62017-07-27 15:53:24 +0000955 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
956 pMem->eSubtype = 'p';
957 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
drh3a96a5d2017-06-30 23:09:03 +0000958}
959
drh7ec5ea92010-01-13 00:04:13 +0000960#ifndef SQLITE_OMIT_FLOATING_POINT
drh4f26d6c2004-05-26 23:25:30 +0000961/*
962** Delete any previous value and set the value stored in *pMem to val,
963** manifest type REAL.
964*/
drheb2e1762004-05-27 01:53:56 +0000965void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
drh0725cab2014-09-17 14:52:46 +0000966 sqlite3VdbeMemSetNull(pMem);
967 if( !sqlite3IsNaN(val) ){
drh74eaba42014-09-18 17:52:15 +0000968 pMem->u.r = val;
drh53c14022007-05-10 17:23:11 +0000969 pMem->flags = MEM_Real;
drh53c14022007-05-10 17:23:11 +0000970 }
drh4f26d6c2004-05-26 23:25:30 +0000971}
drh7ec5ea92010-01-13 00:04:13 +0000972#endif
drh4f26d6c2004-05-26 23:25:30 +0000973
drh9d67afc2018-08-29 20:24:03 +0000974#ifdef SQLITE_DEBUG
975/*
976** Return true if the Mem holds a RowSet object. This routine is intended
977** for use inside of assert() statements.
978*/
979int sqlite3VdbeMemIsRowSet(const Mem *pMem){
980 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
981 && pMem->xDel==sqlite3RowSetDelete;
982}
983#endif
984
drh4f26d6c2004-05-26 23:25:30 +0000985/*
drh3d4501e2008-12-04 20:40:10 +0000986** Delete any previous value and set the value of pMem to be an
987** empty boolean index.
drh9d67afc2018-08-29 20:24:03 +0000988**
989** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
990** error occurs.
drh3d4501e2008-12-04 20:40:10 +0000991*/
drh9d67afc2018-08-29 20:24:03 +0000992int sqlite3VdbeMemSetRowSet(Mem *pMem){
drh3d4501e2008-12-04 20:40:10 +0000993 sqlite3 *db = pMem->db;
drh9d67afc2018-08-29 20:24:03 +0000994 RowSet *p;
drh3d4501e2008-12-04 20:40:10 +0000995 assert( db!=0 );
drh9d67afc2018-08-29 20:24:03 +0000996 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh4c8555f2009-06-25 01:47:11 +0000997 sqlite3VdbeMemRelease(pMem);
drh9d67afc2018-08-29 20:24:03 +0000998 p = sqlite3RowSetInit(db);
999 if( p==0 ) return SQLITE_NOMEM;
1000 pMem->z = (char*)p;
1001 pMem->flags = MEM_Blob|MEM_Dyn;
1002 pMem->xDel = sqlite3RowSetDelete;
1003 return SQLITE_OK;
drh3d4501e2008-12-04 20:40:10 +00001004}
1005
1006/*
drh023ae032007-05-08 12:12:16 +00001007** Return true if the Mem object contains a TEXT or BLOB that is
1008** too large - whose size exceeds SQLITE_MAX_LENGTH.
1009*/
1010int sqlite3VdbeMemTooBig(Mem *p){
drhfa4a4b92008-03-19 21:45:51 +00001011 assert( p->db!=0 );
drh023ae032007-05-08 12:12:16 +00001012 if( p->flags & (MEM_Str|MEM_Blob) ){
1013 int n = p->n;
1014 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001015 n += p->u.nZero;
drh023ae032007-05-08 12:12:16 +00001016 }
drhbb4957f2008-03-20 14:03:29 +00001017 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
drh023ae032007-05-08 12:12:16 +00001018 }
1019 return 0;
1020}
1021
drh2b4ded92010-09-27 21:09:31 +00001022#ifdef SQLITE_DEBUG
1023/*
peter.d.reid60ec9142014-09-06 16:39:46 +00001024** This routine prepares a memory cell for modification by breaking
drh2b4ded92010-09-27 21:09:31 +00001025** its link to a shallow copy and by marking any current shallow
1026** copies of this cell as invalid.
1027**
drh52f11b82020-01-02 13:26:49 +00001028** This is used for testing and debugging only - to help ensure that shallow
1029** copies (created by OP_SCopy) are not misused.
drh2b4ded92010-09-27 21:09:31 +00001030*/
drhe4c88c02012-01-04 12:57:45 +00001031void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
drh2b4ded92010-09-27 21:09:31 +00001032 int i;
1033 Mem *pX;
drh4cbd8472020-01-02 15:02:08 +00001034 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
drh2b4ded92010-09-27 21:09:31 +00001035 if( pX->pScopyFrom==pMem ){
mistachkin65cdae02020-01-06 18:44:56 +00001036 u16 mFlags;
drh22e95fb2020-01-02 14:42:42 +00001037 if( pVdbe->db->flags & SQLITE_VdbeTrace ){
1038 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1039 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
1040 }
drhd346fe02020-03-03 20:04:29 +00001041 /* If pX is marked as a shallow copy of pMem, then try to verify that
drh8d7b2122018-06-11 13:10:45 +00001042 ** no significant changes have been made to pX since the OP_SCopy.
1043 ** A significant change would indicated a missed call to this
1044 ** function for pX. Minor changes, such as adding or removing a
1045 ** dual type, are allowed, as long as the underlying value is the
1046 ** same. */
mistachkin65cdae02020-01-06 18:44:56 +00001047 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
drh169f0772019-05-02 21:36:26 +00001048 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
drh8d7b2122018-06-11 13:10:45 +00001049
1050 /* pMem is the register that is changing. But also mark pX as
1051 ** undefined so that we can quickly detect the shallow-copy error */
1052 pX->flags = MEM_Undefined;
drh2b4ded92010-09-27 21:09:31 +00001053 pX->pScopyFrom = 0;
1054 }
1055 }
1056 pMem->pScopyFrom = 0;
1057}
1058#endif /* SQLITE_DEBUG */
1059
drh023ae032007-05-08 12:12:16 +00001060/*
drhfebe1062004-08-28 18:17:48 +00001061** Make an shallow copy of pFrom into pTo. Prior contents of
drha05a7222008-01-19 03:35:58 +00001062** pTo are freed. The pFrom->z field is not duplicated. If
drhfebe1062004-08-28 18:17:48 +00001063** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1064** and flags gets srcType (either MEM_Ephem or MEM_Static).
drh4f26d6c2004-05-26 23:25:30 +00001065*/
drh14e06742015-06-17 23:28:03 +00001066static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
1067 vdbeMemClearExternAndSetNull(pTo);
1068 assert( !VdbeMemDynamic(pTo) );
1069 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
1070}
drhfebe1062004-08-28 18:17:48 +00001071void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
drh9d67afc2018-08-29 20:24:03 +00001072 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
drh035e5632014-09-16 14:16:31 +00001073 assert( pTo->db==pFrom->db );
drh14e06742015-06-17 23:28:03 +00001074 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
danielk19775f096132008-03-28 15:44:09 +00001075 memcpy(pTo, pFrom, MEMCELLSIZE);
dan5fea9072010-03-05 18:46:12 +00001076 if( (pFrom->flags&MEM_Static)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +00001077 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
drhfebe1062004-08-28 18:17:48 +00001078 assert( srcType==MEM_Ephem || srcType==MEM_Static );
1079 pTo->flags |= srcType;
1080 }
1081}
1082
1083/*
1084** Make a full copy of pFrom into pTo. Prior contents of pTo are
1085** freed before the copy is made.
1086*/
drhb21c8cd2007-08-21 19:33:56 +00001087int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
danielk1977a7a8e142008-02-13 18:25:27 +00001088 int rc = SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +00001089
drh9d67afc2018-08-29 20:24:03 +00001090 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
drh0725cab2014-09-17 14:52:46 +00001091 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
danielk19775f096132008-03-28 15:44:09 +00001092 memcpy(pTo, pFrom, MEMCELLSIZE);
1093 pTo->flags &= ~MEM_Dyn;
danielk19775f096132008-03-28 15:44:09 +00001094 if( pTo->flags&(MEM_Str|MEM_Blob) ){
1095 if( 0==(pFrom->flags&MEM_Static) ){
1096 pTo->flags |= MEM_Ephem;
1097 rc = sqlite3VdbeMemMakeWriteable(pTo);
danielk19779172fd82008-02-14 15:31:52 +00001098 }
danielk1977a7a8e142008-02-13 18:25:27 +00001099 }
1100
drh71c697e2004-08-08 23:39:19 +00001101 return rc;
drh4f26d6c2004-05-26 23:25:30 +00001102}
1103
drheb2e1762004-05-27 01:53:56 +00001104/*
danielk1977369f27e2004-06-15 11:40:04 +00001105** Transfer the contents of pFrom to pTo. Any existing value in pTo is
drhfebe1062004-08-28 18:17:48 +00001106** freed. If pFrom contains ephemeral data, a copy is made.
1107**
drh643167f2008-01-22 21:30:53 +00001108** pFrom contains an SQL NULL when this routine returns.
danielk1977369f27e2004-06-15 11:40:04 +00001109*/
drh643167f2008-01-22 21:30:53 +00001110void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
drhb21c8cd2007-08-21 19:33:56 +00001111 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1112 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1113 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
danielk19775f096132008-03-28 15:44:09 +00001114
1115 sqlite3VdbeMemRelease(pTo);
danielk197713073932004-06-30 11:54:06 +00001116 memcpy(pTo, pFrom, sizeof(Mem));
danielk197713073932004-06-30 11:54:06 +00001117 pFrom->flags = MEM_Null;
drh17bcb102014-09-18 21:25:33 +00001118 pFrom->szMalloc = 0;
danielk1977369f27e2004-06-15 11:40:04 +00001119}
1120
1121/*
drheb2e1762004-05-27 01:53:56 +00001122** Change the value of a Mem to be a string or a BLOB.
danielk1977a7a8e142008-02-13 18:25:27 +00001123**
1124** The memory management strategy depends on the value of the xDel
1125** parameter. If the value passed is SQLITE_TRANSIENT, then the
1126** string is copied into a (possibly existing) buffer managed by the
1127** Mem structure. Otherwise, any existing buffer is freed and the
1128** pointer copied.
drh9a65f2c2009-06-22 19:05:40 +00001129**
1130** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1131** size limit) then no memory allocation occurs. If the string can be
1132** stored without allocating memory, then it is. If a memory allocation
1133** is required to store the string, then value of pMem is unchanged. In
1134** either case, SQLITE_TOOBIG is returned.
drhf4dd18e2022-03-28 17:34:46 +00001135**
1136** The "enc" parameter is the text encoding for the string, or zero
1137** to store a blob.
1138**
1139** If n is negative, then the string consists of all bytes up to but
1140** excluding the first zero character. The n parameter must be
1141** non-negative for blobs.
drheb2e1762004-05-27 01:53:56 +00001142*/
drh4f26d6c2004-05-26 23:25:30 +00001143int sqlite3VdbeMemSetStr(
1144 Mem *pMem, /* Memory cell to set to string value */
1145 const char *z, /* String pointer */
drhd6228552021-06-09 14:45:02 +00001146 i64 n, /* Bytes in string, or negative */
drheb2e1762004-05-27 01:53:56 +00001147 u8 enc, /* Encoding of z. 0 for BLOBs */
danielk1977d8123362004-06-12 09:25:12 +00001148 void (*xDel)(void*) /* Destructor function */
drh4f26d6c2004-05-26 23:25:30 +00001149){
drhd6228552021-06-09 14:45:02 +00001150 i64 nByte = n; /* New value for pMem->n */
drh0a687d12008-07-08 14:52:07 +00001151 int iLimit; /* Maximum allowed string or blob size */
drhbcedbb22022-03-28 18:34:40 +00001152 u16 flags; /* New value for pMem->flags */
danielk1977a7a8e142008-02-13 18:25:27 +00001153
drh7d4c94b2021-10-04 22:34:38 +00001154 assert( pMem!=0 );
drhb21c8cd2007-08-21 19:33:56 +00001155 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +00001156 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhf4dd18e2022-03-28 17:34:46 +00001157 assert( enc!=0 || n>=0 );
danielk1977a7a8e142008-02-13 18:25:27 +00001158
1159 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
drh4f26d6c2004-05-26 23:25:30 +00001160 if( !z ){
danielk1977a7a8e142008-02-13 18:25:27 +00001161 sqlite3VdbeMemSetNull(pMem);
drh4f26d6c2004-05-26 23:25:30 +00001162 return SQLITE_OK;
1163 }
danielk1977a7a8e142008-02-13 18:25:27 +00001164
drh0a687d12008-07-08 14:52:07 +00001165 if( pMem->db ){
1166 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1167 }else{
1168 iLimit = SQLITE_MAX_LENGTH;
1169 }
danielk1977a7a8e142008-02-13 18:25:27 +00001170 if( nByte<0 ){
1171 assert( enc!=0 );
drh8fd38972008-02-19 15:44:09 +00001172 if( enc==SQLITE_UTF8 ){
drhd6228552021-06-09 14:45:02 +00001173 nByte = strlen(z);
drh8fd38972008-02-19 15:44:09 +00001174 }else{
drh0a687d12008-07-08 14:52:07 +00001175 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
drh8fd38972008-02-19 15:44:09 +00001176 }
drhbcedbb22022-03-28 18:34:40 +00001177 flags= MEM_Str|MEM_Term;
1178 }else if( enc==0 ){
1179 flags = MEM_Blob;
drhfb92e072022-03-29 01:43:09 +00001180 enc = SQLITE_UTF8;
drhf4dd18e2022-03-28 17:34:46 +00001181 }else{
drhbcedbb22022-03-28 18:34:40 +00001182 flags = MEM_Str;
1183 }
1184 if( nByte>iLimit ){
1185 if( xDel && xDel!=SQLITE_TRANSIENT ){
1186 if( xDel==SQLITE_DYNAMIC ){
1187 sqlite3DbFree(pMem->db, (void*)z);
1188 }else{
1189 xDel((void*)z);
1190 }
1191 }
drh4cb32b72022-03-29 20:50:20 +00001192 sqlite3VdbeMemSetNull(pMem);
drhbcedbb22022-03-28 18:34:40 +00001193 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
drh4f26d6c2004-05-26 23:25:30 +00001194 }
danielk1977d8123362004-06-12 09:25:12 +00001195
danielk1977a7a8e142008-02-13 18:25:27 +00001196 /* The following block sets the new values of Mem.z and Mem.xDel. It
1197 ** also sets a flag in local variable "flags" to indicate the memory
1198 ** management (one of MEM_Dyn or MEM_Static).
1199 */
1200 if( xDel==SQLITE_TRANSIENT ){
drhd6228552021-06-09 14:45:02 +00001201 i64 nAlloc = nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00001202 if( flags&MEM_Term ){
1203 nAlloc += (enc==SQLITE_UTF8?1:2);
1204 }
drh722246e2014-10-07 23:02:24 +00001205 testcase( nAlloc==0 );
1206 testcase( nAlloc==31 );
1207 testcase( nAlloc==32 );
drh16d7e872019-02-08 17:28:20 +00001208 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
mistachkinfad30392016-02-13 23:43:46 +00001209 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +00001210 }
1211 memcpy(pMem->z, z, nAlloc);
danielk1977a7a8e142008-02-13 18:25:27 +00001212 }else{
1213 sqlite3VdbeMemRelease(pMem);
1214 pMem->z = (char *)z;
drh16d7e872019-02-08 17:28:20 +00001215 if( xDel==SQLITE_DYNAMIC ){
1216 pMem->zMalloc = pMem->z;
1217 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1218 }else{
1219 pMem->xDel = xDel;
1220 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1221 }
danielk1977a7a8e142008-02-13 18:25:27 +00001222 }
danielk1977d8123362004-06-12 09:25:12 +00001223
drhd6228552021-06-09 14:45:02 +00001224 pMem->n = (int)(nByte & 0x7fffffff);
danielk1977a7a8e142008-02-13 18:25:27 +00001225 pMem->flags = flags;
drhbcedbb22022-03-28 18:34:40 +00001226 pMem->enc = enc;
dan9f3e6fa2020-01-02 16:24:22 +00001227
drh6c626082004-11-14 21:56:29 +00001228#ifndef SQLITE_OMIT_UTF16
drhfb92e072022-03-29 01:43:09 +00001229 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
mistachkinfad30392016-02-13 23:43:46 +00001230 return SQLITE_NOMEM_BKPT;
drh4f26d6c2004-05-26 23:25:30 +00001231 }
danielk1977a7a8e142008-02-13 18:25:27 +00001232#endif
1233
drh9a65f2c2009-06-22 19:05:40 +00001234
drhf4479502004-05-27 03:12:53 +00001235 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +00001236}
1237
1238/*
drhd5788202004-05-28 08:21:05 +00001239** Move data out of a btree key or data field and into a Mem structure.
drhcb3cabd2016-11-25 19:18:28 +00001240** The data is payload from the entry that pCur is currently pointing
drhd5788202004-05-28 08:21:05 +00001241** to. offset and amt determine what portion of the data or key to retrieve.
drhcb3cabd2016-11-25 19:18:28 +00001242** The result is written into the pMem element.
drhd5788202004-05-28 08:21:05 +00001243**
drh2a2a6962014-09-16 18:22:44 +00001244** The pMem object must have been initialized. This routine will use
1245** pMem->zMalloc to hold the content from the btree, if possible. New
1246** pMem->zMalloc space will be allocated if necessary. The calling routine
1247** is responsible for making sure that the pMem object is eventually
1248** destroyed.
drhd5788202004-05-28 08:21:05 +00001249**
1250** If this routine fails for any reason (malloc returns NULL or unable
1251** to read from the disk) then the pMem is left in an inconsistent state.
1252*/
drh2a740062020-02-05 18:28:17 +00001253int sqlite3VdbeMemFromBtree(
drhf1aabd62015-06-17 01:31:28 +00001254 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1255 u32 offset, /* Offset from the start of data to return bytes from. */
1256 u32 amt, /* Number of bytes to return. */
drhf1aabd62015-06-17 01:31:28 +00001257 Mem *pMem /* OUT: Return data in this Mem structure. */
1258){
1259 int rc;
1260 pMem->flags = MEM_Null;
drh53d30dd2019-02-04 21:10:24 +00001261 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1262 return SQLITE_CORRUPT_BKPT;
1263 }
drh24ddadf2017-09-22 12:52:31 +00001264 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
drhcb3cabd2016-11-25 19:18:28 +00001265 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
drhf1aabd62015-06-17 01:31:28 +00001266 if( rc==SQLITE_OK ){
drh24ddadf2017-09-22 12:52:31 +00001267 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
drh63d16322017-09-20 18:07:50 +00001268 pMem->flags = MEM_Blob;
drhf1aabd62015-06-17 01:31:28 +00001269 pMem->n = (int)amt;
1270 }else{
1271 sqlite3VdbeMemRelease(pMem);
1272 }
1273 }
1274 return rc;
1275}
drh2a740062020-02-05 18:28:17 +00001276int sqlite3VdbeMemFromBtreeZeroOffset(
drhd5788202004-05-28 08:21:05 +00001277 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
drh501932c2013-11-21 21:59:53 +00001278 u32 amt, /* Number of bytes to return. */
drhd5788202004-05-28 08:21:05 +00001279 Mem *pMem /* OUT: Return data in this Mem structure. */
1280){
drh501932c2013-11-21 21:59:53 +00001281 u32 available = 0; /* Number of bytes available on the local btree page */
danielk19774b0aa4c2009-05-28 11:05:57 +00001282 int rc = SQLITE_OK; /* Return code */
drhd5788202004-05-28 08:21:05 +00001283
drh5d1a8722009-07-22 18:07:40 +00001284 assert( sqlite3BtreeCursorIsValid(pCur) );
drhd3b74202014-09-17 16:41:15 +00001285 assert( !VdbeMemDynamic(pMem) );
drh5d1a8722009-07-22 18:07:40 +00001286
danielk19774b0aa4c2009-05-28 11:05:57 +00001287 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1288 ** that both the BtShared and database handle mutexes are held. */
drh9d67afc2018-08-29 20:24:03 +00001289 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh2a740062020-02-05 18:28:17 +00001290 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1291 assert( pMem->z!=0 );
drhd5788202004-05-28 08:21:05 +00001292
drh2a740062020-02-05 18:28:17 +00001293 if( amt<=available ){
drhd5788202004-05-28 08:21:05 +00001294 pMem->flags = MEM_Blob|MEM_Ephem;
drh5f1d5362014-03-04 13:18:23 +00001295 pMem->n = (int)amt;
drh8740a602014-09-16 20:05:21 +00001296 }else{
drh2a740062020-02-05 18:28:17 +00001297 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
drhd5788202004-05-28 08:21:05 +00001298 }
1299
danielk1977a7a8e142008-02-13 18:25:27 +00001300 return rc;
drhd5788202004-05-28 08:21:05 +00001301}
1302
drh6c9f8e62014-08-27 03:28:50 +00001303/*
1304** The pVal argument is known to be a value other than NULL.
1305** Convert it into a string with encoding enc and return a pointer
1306** to a zero-terminated version of that string.
1307*/
drh3b335fc2014-10-07 16:59:22 +00001308static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
drh6c9f8e62014-08-27 03:28:50 +00001309 assert( pVal!=0 );
1310 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1311 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh9d67afc2018-08-29 20:24:03 +00001312 assert( !sqlite3VdbeMemIsRowSet(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001313 assert( (pVal->flags & (MEM_Null))==0 );
1314 if( pVal->flags & (MEM_Blob|MEM_Str) ){
drh34d04d62017-01-05 07:58:29 +00001315 if( ExpandBlob(pVal) ) return 0;
drh6c9f8e62014-08-27 03:28:50 +00001316 pVal->flags |= MEM_Str;
drh6c9f8e62014-08-27 03:28:50 +00001317 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1318 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1319 }
1320 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1321 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1322 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1323 return 0;
1324 }
1325 }
1326 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1327 }else{
1328 sqlite3VdbeMemStringify(pVal, enc, 0);
1329 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1330 }
1331 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1332 || pVal->db->mallocFailed );
1333 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
drhdf82afc2019-05-16 01:22:21 +00001334 assert( sqlite3VdbeMemValidStrRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001335 return pVal->z;
1336 }else{
1337 return 0;
1338 }
1339}
1340
danielk19774e6af132004-06-10 14:01:08 +00001341/* This function is only available internally, it is not part of the
1342** external API. It works in a similar way to sqlite3_value_text(),
1343** except the data returned is in the encoding specified by the second
1344** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1345** SQLITE_UTF8.
drh7d9bd4e2006-02-16 18:16:36 +00001346**
1347** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1348** If that is the case, then the result must be aligned on an even byte
1349** boundary.
danielk19774e6af132004-06-10 14:01:08 +00001350*/
drhb21c8cd2007-08-21 19:33:56 +00001351const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
danielk1977bfd6cce2004-06-18 04:24:54 +00001352 if( !pVal ) return 0;
drhb21c8cd2007-08-21 19:33:56 +00001353 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
drh7d9bd4e2006-02-16 18:16:36 +00001354 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh9d67afc2018-08-29 20:24:03 +00001355 assert( !sqlite3VdbeMemIsRowSet(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001356 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
drhdf82afc2019-05-16 01:22:21 +00001357 assert( sqlite3VdbeMemValidStrRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001358 return pVal->z;
1359 }
danielk19774e6af132004-06-10 14:01:08 +00001360 if( pVal->flags&MEM_Null ){
danielk19774e6af132004-06-10 14:01:08 +00001361 return 0;
1362 }
drh6c9f8e62014-08-27 03:28:50 +00001363 return valueToText(pVal, enc);
danielk19774e6af132004-06-10 14:01:08 +00001364}
1365
drh6a6124e2004-06-27 01:56:33 +00001366/*
1367** Create a new sqlite3_value object.
1368*/
drh17435752007-08-16 04:30:38 +00001369sqlite3_value *sqlite3ValueNew(sqlite3 *db){
danielk197726783a52007-08-29 14:06:22 +00001370 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
danielk19774e6af132004-06-10 14:01:08 +00001371 if( p ){
1372 p->flags = MEM_Null;
drhb21c8cd2007-08-21 19:33:56 +00001373 p->db = db;
danielk19774e6af132004-06-10 14:01:08 +00001374 }
1375 return p;
1376}
1377
drh6a6124e2004-06-27 01:56:33 +00001378/*
danaf2583c2013-08-15 18:43:21 +00001379** Context object passed by sqlite3Stat4ProbeSetValue() through to
1380** valueNew(). See comments above valueNew() for details.
danielk1977aee18ef2005-03-09 12:26:50 +00001381*/
danaf2583c2013-08-15 18:43:21 +00001382struct ValueNewStat4Ctx {
1383 Parse *pParse;
1384 Index *pIdx;
1385 UnpackedRecord **ppRec;
1386 int iVal;
1387};
1388
1389/*
1390** Allocate and return a pointer to a new sqlite3_value object. If
1391** the second argument to this function is NULL, the object is allocated
1392** by calling sqlite3ValueNew().
1393**
1394** Otherwise, if the second argument is non-zero, then this function is
1395** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1396** already been allocated, allocate the UnpackedRecord structure that
drh96f4ad22015-03-12 21:02:36 +00001397** that function will return to its caller here. Then return a pointer to
danaf2583c2013-08-15 18:43:21 +00001398** an sqlite3_value within the UnpackedRecord.a[] array.
1399*/
1400static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
drh175b8f02019-08-08 15:24:17 +00001401#ifdef SQLITE_ENABLE_STAT4
danaf2583c2013-08-15 18:43:21 +00001402 if( p ){
1403 UnpackedRecord *pRec = p->ppRec[0];
1404
1405 if( pRec==0 ){
1406 Index *pIdx = p->pIdx; /* Index being probed */
1407 int nByte; /* Bytes of space to allocate */
1408 int i; /* Counter variable */
drhd2694612013-11-04 22:04:17 +00001409 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
danaf2583c2013-08-15 18:43:21 +00001410
danb5f68b02013-12-03 18:26:56 +00001411 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
danaf2583c2013-08-15 18:43:21 +00001412 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1413 if( pRec ){
drh2ec2fb22013-11-06 19:59:23 +00001414 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
danaf2583c2013-08-15 18:43:21 +00001415 if( pRec->pKeyInfo ){
drha485ad12017-08-02 22:43:14 +00001416 assert( pRec->pKeyInfo->nAllField==nCol );
drh2ec2fb22013-11-06 19:59:23 +00001417 assert( pRec->pKeyInfo->enc==ENC(db) );
danb5f68b02013-12-03 18:26:56 +00001418 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
danaf2583c2013-08-15 18:43:21 +00001419 for(i=0; i<nCol; i++){
1420 pRec->aMem[i].flags = MEM_Null;
danaf2583c2013-08-15 18:43:21 +00001421 pRec->aMem[i].db = db;
1422 }
1423 }else{
drhdbd6a7d2017-04-05 12:39:49 +00001424 sqlite3DbFreeNN(db, pRec);
danaf2583c2013-08-15 18:43:21 +00001425 pRec = 0;
1426 }
1427 }
1428 if( pRec==0 ) return 0;
1429 p->ppRec[0] = pRec;
1430 }
1431
1432 pRec->nField = p->iVal+1;
1433 return &pRec->aMem[p->iVal];
1434 }
drh4f991892013-10-11 15:05:05 +00001435#else
1436 UNUSED_PARAMETER(p);
drh175b8f02019-08-08 15:24:17 +00001437#endif /* defined(SQLITE_ENABLE_STAT4) */
danaf2583c2013-08-15 18:43:21 +00001438 return sqlite3ValueNew(db);
dan7a419232013-08-06 20:01:43 +00001439}
1440
drh6a6124e2004-06-27 01:56:33 +00001441/*
dan18bf8072015-03-11 20:06:40 +00001442** The expression object indicated by the second argument is guaranteed
1443** to be a scalar SQL function. If
1444**
1445** * all function arguments are SQL literals,
drhe3a73072015-09-05 19:07:08 +00001446** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
dancdcc11d2015-03-11 20:59:42 +00001447** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
dan18bf8072015-03-11 20:06:40 +00001448**
1449** then this routine attempts to invoke the SQL function. Assuming no
1450** error occurs, output parameter (*ppVal) is set to point to a value
1451** object containing the result before returning SQLITE_OK.
1452**
1453** Affinity aff is applied to the result of the function before returning.
1454** If the result is a text value, the sqlite3_value object uses encoding
1455** enc.
1456**
1457** If the conditions above are not met, this function returns SQLITE_OK
1458** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1459** NULL and an SQLite error code returned.
1460*/
drh175b8f02019-08-08 15:24:17 +00001461#ifdef SQLITE_ENABLE_STAT4
dan18bf8072015-03-11 20:06:40 +00001462static int valueFromFunction(
1463 sqlite3 *db, /* The database connection */
drh1580d502021-09-25 17:07:57 +00001464 const Expr *p, /* The expression to evaluate */
dan18bf8072015-03-11 20:06:40 +00001465 u8 enc, /* Encoding to use */
1466 u8 aff, /* Affinity to use */
1467 sqlite3_value **ppVal, /* Write the new value here */
1468 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1469){
1470 sqlite3_context ctx; /* Context object for function invocation */
1471 sqlite3_value **apVal = 0; /* Function arguments */
1472 int nVal = 0; /* Size of apVal[] array */
1473 FuncDef *pFunc = 0; /* Function definition */
1474 sqlite3_value *pVal = 0; /* New value */
1475 int rc = SQLITE_OK; /* Return code */
dancdcc11d2015-03-11 20:59:42 +00001476 ExprList *pList = 0; /* Function arguments */
dan18bf8072015-03-11 20:06:40 +00001477 int i; /* Iterator variable */
1478
drh96f4ad22015-03-12 21:02:36 +00001479 assert( pCtx!=0 );
1480 assert( (p->flags & EP_TokenOnly)==0 );
drha4eeccd2021-10-07 17:43:30 +00001481 assert( ExprUseXList(p) );
drh96f4ad22015-03-12 21:02:36 +00001482 pList = p->x.pList;
1483 if( pList ) nVal = pList->nExpr;
drhf9751072021-10-07 13:40:29 +00001484 assert( !ExprHasProperty(p, EP_IntValue) );
drh80738d92016-02-15 00:34:16 +00001485 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
dan18bf8072015-03-11 20:06:40 +00001486 assert( pFunc );
drhe3a73072015-09-05 19:07:08 +00001487 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
dan18bf8072015-03-11 20:06:40 +00001488 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1489 ){
1490 return SQLITE_OK;
1491 }
1492
1493 if( pList ){
1494 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1495 if( apVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001496 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001497 goto value_from_function_out;
1498 }
1499 for(i=0; i<nVal; i++){
1500 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
drha9e03b12015-03-12 06:46:52 +00001501 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
dan18bf8072015-03-11 20:06:40 +00001502 }
1503 }
1504
1505 pVal = valueNew(db, pCtx);
1506 if( pVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001507 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001508 goto value_from_function_out;
1509 }
1510
drha36fedb2022-06-25 02:39:29 +00001511 testcase( pCtx->pParse->rc==SQLITE_ERROR );
1512 testcase( pCtx->pParse->rc==SQLITE_OK );
dan18bf8072015-03-11 20:06:40 +00001513 memset(&ctx, 0, sizeof(ctx));
1514 ctx.pOut = pVal;
1515 ctx.pFunc = pFunc;
drh659fdb42022-04-01 15:31:58 +00001516 ctx.enc = ENC(db);
drh2d801512016-01-14 22:19:58 +00001517 pFunc->xSFunc(&ctx, nVal, apVal);
dan18bf8072015-03-11 20:06:40 +00001518 if( ctx.isError ){
1519 rc = ctx.isError;
drh96f4ad22015-03-12 21:02:36 +00001520 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
dan18bf8072015-03-11 20:06:40 +00001521 }else{
1522 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
drh96f4ad22015-03-12 21:02:36 +00001523 assert( rc==SQLITE_OK );
1524 rc = sqlite3VdbeChangeEncoding(pVal, enc);
dan18bf8072015-03-11 20:06:40 +00001525 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1526 rc = SQLITE_TOOBIG;
dan3df30592015-03-13 08:31:54 +00001527 pCtx->pParse->nErr++;
dan18bf8072015-03-11 20:06:40 +00001528 }
1529 }
dan3df30592015-03-13 08:31:54 +00001530 pCtx->pParse->rc = rc;
dan18bf8072015-03-11 20:06:40 +00001531
1532 value_from_function_out:
1533 if( rc!=SQLITE_OK ){
dan18bf8072015-03-11 20:06:40 +00001534 pVal = 0;
1535 }
drha9e03b12015-03-12 06:46:52 +00001536 if( apVal ){
1537 for(i=0; i<nVal; i++){
1538 sqlite3ValueFree(apVal[i]);
1539 }
drhdbd6a7d2017-04-05 12:39:49 +00001540 sqlite3DbFreeNN(db, apVal);
dan18bf8072015-03-11 20:06:40 +00001541 }
dan18bf8072015-03-11 20:06:40 +00001542
1543 *ppVal = pVal;
1544 return rc;
1545}
1546#else
1547# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
drh175b8f02019-08-08 15:24:17 +00001548#endif /* defined(SQLITE_ENABLE_STAT4) */
dan18bf8072015-03-11 20:06:40 +00001549
1550/*
danaf2583c2013-08-15 18:43:21 +00001551** Extract a value from the supplied expression in the manner described
1552** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1553** using valueNew().
1554**
1555** If pCtx is NULL and an error occurs after the sqlite3_value object
1556** has been allocated, it is freed before returning. Or, if pCtx is not
1557** NULL, it is assumed that the caller will free any allocated object
1558** in all cases.
danielk1977aee18ef2005-03-09 12:26:50 +00001559*/
drha7f4bf32013-10-14 13:21:00 +00001560static int valueFromExpr(
danaf2583c2013-08-15 18:43:21 +00001561 sqlite3 *db, /* The database connection */
drh1580d502021-09-25 17:07:57 +00001562 const Expr *pExpr, /* The expression to evaluate */
danaf2583c2013-08-15 18:43:21 +00001563 u8 enc, /* Encoding to use */
1564 u8 affinity, /* Affinity to use */
1565 sqlite3_value **ppVal, /* Write the new value here */
1566 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
danielk1977aee18ef2005-03-09 12:26:50 +00001567){
1568 int op;
1569 char *zVal = 0;
1570 sqlite3_value *pVal = 0;
drh93518622010-09-30 14:48:06 +00001571 int negInt = 1;
1572 const char *zNeg = "";
drh0e1f0022013-08-16 14:49:00 +00001573 int rc = SQLITE_OK;
danielk1977aee18ef2005-03-09 12:26:50 +00001574
drh42735c72016-09-29 19:27:16 +00001575 assert( pExpr!=0 );
drh94fa9c42016-02-27 21:16:04 +00001576 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
dan7ac2d482017-11-27 17:56:14 +00001577 if( op==TK_REGISTER ) op = pExpr->op2;
danielk1977aee18ef2005-03-09 12:26:50 +00001578
drh96f4ad22015-03-12 21:02:36 +00001579 /* Compressed expressions only appear when parsing the DEFAULT clause
1580 ** on a table column definition, and hence only when pCtx==0. This
1581 ** check ensures that an EP_TokenOnly expression is never passed down
1582 ** into valueFromFunction(). */
1583 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1584
drh4169e432014-08-25 20:11:52 +00001585 if( op==TK_CAST ){
drhf9751072021-10-07 13:40:29 +00001586 u8 aff;
1587 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1588 aff = sqlite3AffinityType(pExpr->u.zToken,0);
drh4169e432014-08-25 20:11:52 +00001589 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
drhec3e4f72014-08-25 21:11:01 +00001590 testcase( rc!=SQLITE_OK );
1591 if( *ppVal ){
drhd580bea2022-06-07 10:14:22 +00001592 sqlite3VdbeMemCast(*ppVal, aff, enc);
1593 sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
drh4169e432014-08-25 20:11:52 +00001594 }
1595 return rc;
1596 }
1597
drh93518622010-09-30 14:48:06 +00001598 /* Handle negative integers in a single step. This is needed in the
1599 ** case when the value is -9223372036854775808.
1600 */
1601 if( op==TK_UMINUS
1602 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1603 pExpr = pExpr->pLeft;
1604 op = pExpr->op;
1605 negInt = -1;
1606 zNeg = "-";
1607 }
1608
danielk1977aee18ef2005-03-09 12:26:50 +00001609 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
danaf2583c2013-08-15 18:43:21 +00001610 pVal = valueNew(db, pCtx);
drh33e619f2009-05-28 01:00:55 +00001611 if( pVal==0 ) goto no_mem;
1612 if( ExprHasProperty(pExpr, EP_IntValue) ){
drh93518622010-09-30 14:48:06 +00001613 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
drh33e619f2009-05-28 01:00:55 +00001614 }else{
drh93518622010-09-30 14:48:06 +00001615 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
drh33e619f2009-05-28 01:00:55 +00001616 if( zVal==0 ) goto no_mem;
1617 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1618 }
drh05883a32015-06-02 15:32:08 +00001619 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
drhe3b9bfe2009-05-05 12:54:50 +00001620 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
danielk1977aee18ef2005-03-09 12:26:50 +00001621 }else{
drhe3b9bfe2009-05-05 12:54:50 +00001622 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1623 }
drh3242c692019-05-04 01:29:13 +00001624 assert( (pVal->flags & MEM_IntReal)==0 );
1625 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1626 testcase( pVal->flags & MEM_Int );
1627 testcase( pVal->flags & MEM_Real );
1628 pVal->flags &= ~MEM_Str;
1629 }
drhe3b9bfe2009-05-05 12:54:50 +00001630 if( enc!=SQLITE_UTF8 ){
drh0e1f0022013-08-16 14:49:00 +00001631 rc = sqlite3VdbeChangeEncoding(pVal, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001632 }
1633 }else if( op==TK_UMINUS ) {
drh93518622010-09-30 14:48:06 +00001634 /* This branch happens for multiple negative signs. Ex: -(-5) */
drh6e3bccd2017-06-13 04:31:54 +00001635 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
danad45ed72013-08-08 12:21:32 +00001636 && pVal!=0
1637 ){
drh93518622010-09-30 14:48:06 +00001638 sqlite3VdbeMemNumerify(pVal);
drh74eaba42014-09-18 17:52:15 +00001639 if( pVal->flags & MEM_Real ){
1640 pVal->u.r = -pVal->u.r;
1641 }else if( pVal->u.i==SMALLEST_INT64 ){
drhef9f7192020-01-17 19:14:08 +00001642#ifndef SQLITE_OMIT_FLOATING_POINT
drh74eaba42014-09-18 17:52:15 +00001643 pVal->u.r = -(double)SMALLEST_INT64;
drhef9f7192020-01-17 19:14:08 +00001644#else
1645 pVal->u.r = LARGEST_INT64;
1646#endif
drh74eaba42014-09-18 17:52:15 +00001647 MemSetTypeFlag(pVal, MEM_Real);
drhd50ffc42011-03-08 02:38:28 +00001648 }else{
1649 pVal->u.i = -pVal->u.i;
1650 }
drh93518622010-09-30 14:48:06 +00001651 sqlite3ValueApplyAffinity(pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001652 }
drh9b3eb0a2011-01-21 14:37:04 +00001653 }else if( op==TK_NULL ){
danaf2583c2013-08-15 18:43:21 +00001654 pVal = valueNew(db, pCtx);
drhb1aa0ab2011-02-18 17:23:23 +00001655 if( pVal==0 ) goto no_mem;
mistachkin7a3e50d2019-04-18 19:21:19 +00001656 sqlite3VdbeMemSetNull(pVal);
danielk1977aee18ef2005-03-09 12:26:50 +00001657 }
1658#ifndef SQLITE_OMIT_BLOB_LITERAL
1659 else if( op==TK_BLOB ){
1660 int nVal;
drhf9751072021-10-07 13:40:29 +00001661 assert( !ExprHasProperty(pExpr, EP_IntValue) );
drh33e619f2009-05-28 01:00:55 +00001662 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1663 assert( pExpr->u.zToken[1]=='\'' );
danaf2583c2013-08-15 18:43:21 +00001664 pVal = valueNew(db, pCtx);
danielk1977f150c9d2008-10-30 17:21:12 +00001665 if( !pVal ) goto no_mem;
drh33e619f2009-05-28 01:00:55 +00001666 zVal = &pExpr->u.zToken[2];
drhb7916a72009-05-27 10:31:29 +00001667 nVal = sqlite3Strlen30(zVal)-1;
1668 assert( zVal[nVal]=='\'' );
drhca48c902008-01-18 14:08:24 +00001669 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
drh633e6d52008-07-28 19:34:53 +00001670 0, SQLITE_DYNAMIC);
danielk1977aee18ef2005-03-09 12:26:50 +00001671 }
1672#endif
drh175b8f02019-08-08 15:24:17 +00001673#ifdef SQLITE_ENABLE_STAT4
drh96f4ad22015-03-12 21:02:36 +00001674 else if( op==TK_FUNCTION && pCtx!=0 ){
dan18bf8072015-03-11 20:06:40 +00001675 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1676 }
drh8cdcd872015-03-16 13:48:23 +00001677#endif
drh3bc43152018-04-18 11:35:35 +00001678 else if( op==TK_TRUEFALSE ){
drhf9751072021-10-07 13:40:29 +00001679 assert( !ExprHasProperty(pExpr, EP_IntValue) );
danc2ea77e2019-01-25 17:26:59 +00001680 pVal = valueNew(db, pCtx);
1681 if( pVal ){
1682 pVal->flags = MEM_Int;
1683 pVal->u.i = pExpr->u.zToken[4]==0;
1684 }
drh3bc43152018-04-18 11:35:35 +00001685 }
dan18bf8072015-03-11 20:06:40 +00001686
danielk1977aee18ef2005-03-09 12:26:50 +00001687 *ppVal = pVal;
drh0e1f0022013-08-16 14:49:00 +00001688 return rc;
danielk1977aee18ef2005-03-09 12:26:50 +00001689
1690no_mem:
drh175b8f02019-08-08 15:24:17 +00001691#ifdef SQLITE_ENABLE_STAT4
drh1ff855b2022-02-19 15:57:28 +00001692 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
drh84a6c852017-12-13 23:47:55 +00001693#endif
1694 sqlite3OomFault(db);
drh633e6d52008-07-28 19:34:53 +00001695 sqlite3DbFree(db, zVal);
danaf2583c2013-08-15 18:43:21 +00001696 assert( *ppVal==0 );
drh175b8f02019-08-08 15:24:17 +00001697#ifdef SQLITE_ENABLE_STAT4
danaf2583c2013-08-15 18:43:21 +00001698 if( pCtx==0 ) sqlite3ValueFree(pVal);
drh1435a9a2013-08-27 23:15:44 +00001699#else
1700 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1701#endif
mistachkinfad30392016-02-13 23:43:46 +00001702 return SQLITE_NOMEM_BKPT;
danielk1977aee18ef2005-03-09 12:26:50 +00001703}
1704
1705/*
dan87cd9322013-08-07 15:52:41 +00001706** Create a new sqlite3_value object, containing the value of pExpr.
1707**
1708** This only works for very simple expressions that consist of one constant
1709** token (i.e. "5", "5.1", "'a string'"). If the expression can
1710** be converted directly into a value, then the value is allocated and
1711** a pointer written to *ppVal. The caller is responsible for deallocating
1712** the value by passing it to sqlite3ValueFree() later on. If the expression
1713** cannot be converted to a value, then *ppVal is set to NULL.
1714*/
1715int sqlite3ValueFromExpr(
1716 sqlite3 *db, /* The database connection */
drh1580d502021-09-25 17:07:57 +00001717 const Expr *pExpr, /* The expression to evaluate */
dan87cd9322013-08-07 15:52:41 +00001718 u8 enc, /* Encoding to use */
1719 u8 affinity, /* Affinity to use */
1720 sqlite3_value **ppVal /* Write the new value here */
1721){
drh42735c72016-09-29 19:27:16 +00001722 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
dan87cd9322013-08-07 15:52:41 +00001723}
1724
drh175b8f02019-08-08 15:24:17 +00001725#ifdef SQLITE_ENABLE_STAT4
drh0288b212014-06-28 16:06:44 +00001726/*
1727** Attempt to extract a value from pExpr and use it to construct *ppVal.
1728**
1729** If pAlloc is not NULL, then an UnpackedRecord object is created for
1730** pAlloc if one does not exist and the new value is added to the
1731** UnpackedRecord object.
1732**
1733** A value is extracted in the following cases:
1734**
1735** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1736**
1737** * The expression is a bound variable, and this is a reprepare, or
1738**
1739** * The expression is a literal value.
1740**
1741** On success, *ppVal is made to point to the extracted value. The caller
1742** is responsible for ensuring that the value is eventually freed.
1743*/
danb0b82902014-06-26 20:21:46 +00001744static int stat4ValueFromExpr(
1745 Parse *pParse, /* Parse context */
1746 Expr *pExpr, /* The expression to extract a value from */
1747 u8 affinity, /* Affinity to use */
drh0288b212014-06-28 16:06:44 +00001748 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
danb0b82902014-06-26 20:21:46 +00001749 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1750){
1751 int rc = SQLITE_OK;
1752 sqlite3_value *pVal = 0;
1753 sqlite3 *db = pParse->db;
1754
1755 /* Skip over any TK_COLLATE nodes */
1756 pExpr = sqlite3ExprSkipCollate(pExpr);
1757
drh7df74752017-06-26 14:46:05 +00001758 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
danb0b82902014-06-26 20:21:46 +00001759 if( !pExpr ){
1760 pVal = valueNew(db, pAlloc);
1761 if( pVal ){
1762 sqlite3VdbeMemSetNull((Mem*)pVal);
1763 }
drh7df74752017-06-26 14:46:05 +00001764 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
danb0b82902014-06-26 20:21:46 +00001765 Vdbe *v;
1766 int iBindVar = pExpr->iColumn;
1767 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
drh7df74752017-06-26 14:46:05 +00001768 if( (v = pParse->pReprepare)!=0 ){
danb0b82902014-06-26 20:21:46 +00001769 pVal = valueNew(db, pAlloc);
1770 if( pVal ){
1771 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
drh169dd922017-06-26 13:57:49 +00001772 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
danb0b82902014-06-26 20:21:46 +00001773 pVal->db = pParse->db;
1774 }
1775 }
1776 }else{
1777 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1778 }
1779
1780 assert( pVal==0 || pVal->db==db );
1781 *ppVal = pVal;
1782 return rc;
1783}
1784
dan87cd9322013-08-07 15:52:41 +00001785/*
dan87cd9322013-08-07 15:52:41 +00001786** This function is used to allocate and populate UnpackedRecord
1787** structures intended to be compared against sample index keys stored
1788** in the sqlite_stat4 table.
1789**
dand66e5792016-08-03 16:14:33 +00001790** A single call to this function populates zero or more fields of the
1791** record starting with field iVal (fields are numbered from left to
1792** right starting with 0). A single field is populated if:
dan87cd9322013-08-07 15:52:41 +00001793**
1794** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1795**
1796** * The expression is a bound variable, and this is a reprepare, or
1797**
1798** * The sqlite3ValueFromExpr() function is able to extract a value
1799** from the expression (i.e. the expression is a literal value).
1800**
dand66e5792016-08-03 16:14:33 +00001801** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1802** vector components that match either of the two latter criteria listed
1803** above.
1804**
1805** Before any value is appended to the record, the affinity of the
1806** corresponding column within index pIdx is applied to it. Before
1807** this function returns, output parameter *pnExtract is set to the
1808** number of values appended to the record.
dan87cd9322013-08-07 15:52:41 +00001809**
1810** When this function is called, *ppRec must either point to an object
1811** allocated by an earlier call to this function, or must be NULL. If it
1812** is NULL and a value can be successfully extracted, a new UnpackedRecord
1813** is allocated (and *ppRec set to point to it) before returning.
1814**
1815** Unless an error is encountered, SQLITE_OK is returned. It is not an
1816** error if a value cannot be extracted from pExpr. If an error does
1817** occur, an SQLite error code is returned.
1818*/
dan7a419232013-08-06 20:01:43 +00001819int sqlite3Stat4ProbeSetValue(
1820 Parse *pParse, /* Parse context */
dan87cd9322013-08-07 15:52:41 +00001821 Index *pIdx, /* Index being probed */
1822 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
dan7a419232013-08-06 20:01:43 +00001823 Expr *pExpr, /* The expression to extract a value from */
dand66e5792016-08-03 16:14:33 +00001824 int nElem, /* Maximum number of values to append */
dan7a419232013-08-06 20:01:43 +00001825 int iVal, /* Array element to populate */
dand66e5792016-08-03 16:14:33 +00001826 int *pnExtract /* OUT: Values appended to the record */
dan7a419232013-08-06 20:01:43 +00001827){
dand66e5792016-08-03 16:14:33 +00001828 int rc = SQLITE_OK;
1829 int nExtract = 0;
danb0b82902014-06-26 20:21:46 +00001830
dand66e5792016-08-03 16:14:33 +00001831 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1832 int i;
1833 struct ValueNewStat4Ctx alloc;
dan7a419232013-08-06 20:01:43 +00001834
dand66e5792016-08-03 16:14:33 +00001835 alloc.pParse = pParse;
1836 alloc.pIdx = pIdx;
1837 alloc.ppRec = ppRec;
1838
1839 for(i=0; i<nElem; i++){
1840 sqlite3_value *pVal = 0;
drhfc7f27b2016-08-20 00:07:01 +00001841 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
dand66e5792016-08-03 16:14:33 +00001842 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1843 alloc.iVal = iVal+i;
1844 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1845 if( !pVal ) break;
1846 nExtract++;
1847 }
1848 }
1849
1850 *pnExtract = nExtract;
danb0b82902014-06-26 20:21:46 +00001851 return rc;
1852}
dan87cd9322013-08-07 15:52:41 +00001853
danb0b82902014-06-26 20:21:46 +00001854/*
1855** Attempt to extract a value from expression pExpr using the methods
1856** as described for sqlite3Stat4ProbeSetValue() above.
1857**
1858** If successful, set *ppVal to point to a new value object and return
1859** SQLITE_OK. If no value can be extracted, but no other error occurs
1860** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1861** does occur, return an SQLite error code. The final value of *ppVal
1862** is undefined in this case.
1863*/
1864int sqlite3Stat4ValueFromExpr(
1865 Parse *pParse, /* Parse context */
1866 Expr *pExpr, /* The expression to extract a value from */
1867 u8 affinity, /* Affinity to use */
1868 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1869){
1870 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1871}
1872
drh0288b212014-06-28 16:06:44 +00001873/*
1874** Extract the iCol-th column from the nRec-byte record in pRec. Write
1875** the column value into *ppVal. If *ppVal is initially NULL then a new
1876** sqlite3_value object is allocated.
1877**
1878** If *ppVal is initially NULL then the caller is responsible for
1879** ensuring that the value written into *ppVal is eventually freed.
1880*/
danb0b82902014-06-26 20:21:46 +00001881int sqlite3Stat4Column(
1882 sqlite3 *db, /* Database handle */
1883 const void *pRec, /* Pointer to buffer containing record */
1884 int nRec, /* Size of buffer pRec in bytes */
1885 int iCol, /* Column to extract */
1886 sqlite3_value **ppVal /* OUT: Extracted value */
1887){
mistachkined5e7722018-08-17 21:14:28 +00001888 u32 t = 0; /* a column type code */
drh0288b212014-06-28 16:06:44 +00001889 int nHdr; /* Size of the header in the record */
1890 int iHdr; /* Next unread header byte */
1891 int iField; /* Next unread data byte */
mistachkined5e7722018-08-17 21:14:28 +00001892 int szField = 0; /* Size of the current data field */
drh0288b212014-06-28 16:06:44 +00001893 int i; /* Column index */
1894 u8 *a = (u8*)pRec; /* Typecast byte array */
1895 Mem *pMem = *ppVal; /* Write result into this Mem object */
1896
1897 assert( iCol>0 );
1898 iHdr = getVarint32(a, nHdr);
1899 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1900 iField = nHdr;
1901 for(i=0; i<=iCol; i++){
1902 iHdr += getVarint32(&a[iHdr], t);
1903 testcase( iHdr==nHdr );
1904 testcase( iHdr==nHdr+1 );
1905 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1906 szField = sqlite3VdbeSerialTypeLen(t);
1907 iField += szField;
1908 }
1909 testcase( iField==nRec );
1910 testcase( iField==nRec+1 );
1911 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
danb0b82902014-06-26 20:21:46 +00001912 if( pMem==0 ){
drh0288b212014-06-28 16:06:44 +00001913 pMem = *ppVal = sqlite3ValueNew(db);
mistachkinfad30392016-02-13 23:43:46 +00001914 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
danb0b82902014-06-26 20:21:46 +00001915 }
drh0288b212014-06-28 16:06:44 +00001916 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1917 pMem->enc = ENC(db);
1918 return SQLITE_OK;
dan7a419232013-08-06 20:01:43 +00001919}
1920
dan87cd9322013-08-07 15:52:41 +00001921/*
1922** Unless it is NULL, the argument must be an UnpackedRecord object returned
1923** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1924** the object.
1925*/
dan7a419232013-08-06 20:01:43 +00001926void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1927 if( pRec ){
1928 int i;
drha485ad12017-08-02 22:43:14 +00001929 int nCol = pRec->pKeyInfo->nAllField;
dan7a419232013-08-06 20:01:43 +00001930 Mem *aMem = pRec->aMem;
1931 sqlite3 *db = aMem[0].db;
dandd6e1f12013-08-10 19:08:30 +00001932 for(i=0; i<nCol; i++){
drhcef25842015-04-20 13:59:18 +00001933 sqlite3VdbeMemRelease(&aMem[i]);
dan7a419232013-08-06 20:01:43 +00001934 }
drh2ec2fb22013-11-06 19:59:23 +00001935 sqlite3KeyInfoUnref(pRec->pKeyInfo);
drhdbd6a7d2017-04-05 12:39:49 +00001936 sqlite3DbFreeNN(db, pRec);
dan7a419232013-08-06 20:01:43 +00001937 }
1938}
dan7a419232013-08-06 20:01:43 +00001939#endif /* ifdef SQLITE_ENABLE_STAT4 */
1940
drh4f26d6c2004-05-26 23:25:30 +00001941/*
1942** Change the string value of an sqlite3_value object
1943*/
1944void sqlite3ValueSetStr(
drh17435752007-08-16 04:30:38 +00001945 sqlite3_value *v, /* Value to be set */
1946 int n, /* Length of string z */
1947 const void *z, /* Text of the new string */
1948 u8 enc, /* Encoding to use */
1949 void (*xDel)(void*) /* Destructor for the string */
drh4f26d6c2004-05-26 23:25:30 +00001950){
drhb21c8cd2007-08-21 19:33:56 +00001951 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
drh4f26d6c2004-05-26 23:25:30 +00001952}
1953
1954/*
1955** Free an sqlite3_value object
1956*/
1957void sqlite3ValueFree(sqlite3_value *v){
1958 if( !v ) return;
danielk1977a7a8e142008-02-13 18:25:27 +00001959 sqlite3VdbeMemRelease((Mem *)v);
drhdbd6a7d2017-04-05 12:39:49 +00001960 sqlite3DbFreeNN(((Mem*)v)->db, v);
drh4f26d6c2004-05-26 23:25:30 +00001961}
1962
1963/*
drh591909c2015-06-25 23:52:48 +00001964** The sqlite3ValueBytes() routine returns the number of bytes in the
1965** sqlite3_value object assuming that it uses the encoding "enc".
1966** The valueBytes() routine is a helper function.
drh4f26d6c2004-05-26 23:25:30 +00001967*/
drh591909c2015-06-25 23:52:48 +00001968static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1969 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1970}
drhb21c8cd2007-08-21 19:33:56 +00001971int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
drh4f26d6c2004-05-26 23:25:30 +00001972 Mem *p = (Mem*)pVal;
drh591909c2015-06-25 23:52:48 +00001973 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1974 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1975 return p->n;
1976 }
drh47996ea2022-10-12 12:49:29 +00001977 if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){
1978 return p->n;
1979 }
drh591909c2015-06-25 23:52:48 +00001980 if( (p->flags & MEM_Blob)!=0 ){
drhb026e052007-05-02 01:34:31 +00001981 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001982 return p->n + p->u.nZero;
drhb026e052007-05-02 01:34:31 +00001983 }else{
1984 return p->n;
1985 }
drh4f26d6c2004-05-26 23:25:30 +00001986 }
drh591909c2015-06-25 23:52:48 +00001987 if( p->flags & MEM_Null ) return 0;
1988 return valueBytes(pVal, enc);
drh4f26d6c2004-05-26 23:25:30 +00001989}