blob: 51ea18fb21677476c9f4ac626c41c1b1a8ef6267 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
145** a page number P, return the index of the last frame for page P in the WAL,
146** or return NULL if there are no frames for page P in the WAL.
147**
148** The wal-index consists of a header region, followed by an one or
149** more index blocks.
150**
drh027a1282010-05-19 01:53:53 +0000151** The wal-index header contains the total number of frames within the WAL
danad3cadd2010-06-14 11:49:26 +0000152** in the the mxFrame field.
153**
154** Each index block except for the first contains information on
155** HASHTABLE_NPAGE frames. The first index block contains information on
156** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157** HASHTABLE_NPAGE are selected so that together the wal-index header and
158** first index block are the same size as all other index blocks in the
159** wal-index.
160**
161** Each index block contains two sections, a page-mapping that contains the
162** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000163** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000164** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165** for the first index block) 32-bit page numbers. The first entry in the
166** first index-block contains the database page number corresponding to the
167** first frame in the WAL file. The first entry in the second index block
168** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169** the log, and so on.
170**
171** The last index block in a wal-index usually contains less than the full
172** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173** depending on the contents of the WAL file. This does not change the
174** allocated size of the page-mapping array - the page-mapping array merely
175** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000176**
177** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000178** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000179** starting with the last index block and moving toward the first, and
180** within each index block, starting at the end and moving toward the
181** beginning. The first entry that equals P corresponds to the frame
182** holding the content for that page.
183**
184** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186** hash table for each page number in the mapping section, so the hash
187** table is never more than half full. The expected number of collisions
188** prior to finding a match is 1. Each entry of the hash table is an
189** 1-based index of an entry in the mapping section of the same
190** index block. Let K be the 1-based index of the largest entry in
191** the mapping section. (For index blocks other than the last, K will
192** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000194** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000195**
196** To look for page P in the hash table, first compute a hash iKey on
197** P as follows:
198**
199** iKey = (P * 383) % HASHTABLE_NSLOT
200**
201** Then start scanning entries of the hash table, starting with iKey
202** (wrapping around to the beginning when the end of the hash table is
203** reached) until an unused hash slot is found. Let the first unused slot
204** be at index iUnused. (iUnused might be less than iKey if there was
205** wrap-around.) Because the hash table is never more than half full,
206** the search is guaranteed to eventually hit an unused entry. Let
207** iMax be the value between iKey and iUnused, closest to iUnused,
208** where aHash[iMax]==P. If there is no iMax entry (if there exists
209** no hash slot such that aHash[i]==p) then page P is not in the
210** current index block. Otherwise the iMax-th mapping entry of the
211** current index block corresponds to the last entry that references
212** page P.
213**
214** A hash search begins with the last index block and moves toward the
215** first index block, looking for entries corresponding to page P. On
216** average, only two or three slots in each index block need to be
217** examined in order to either find the last entry for page P, or to
218** establish that no such entry exists in the block. Each index block
219** holds over 4000 entries. So two or three index blocks are sufficient
220** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221** comparisons (on average) suffice to either locate a frame in the
222** WAL or to establish that the frame does not exist in the WAL. This
223** is much faster than scanning the entire 10MB WAL.
224**
225** Note that entries are added in order of increasing K. Hence, one
226** reader might be using some value K0 and a second reader that started
227** at a later time (after additional transactions were added to the WAL
228** and to the wal-index) might be using a different value K1, where K1>K0.
229** Both readers can use the same hash table and mapping section to get
230** the correct result. There may be entries in the hash table with
231** K>K0 but to the first reader, those entries will appear to be unused
232** slots in the hash table and so the first reader will get an answer as
233** if no values greater than K0 had ever been inserted into the hash table
234** in the first place - which is what reader one wants. Meanwhile, the
235** second reader using K1 will see additional values that were inserted
236** later, which is exactly what reader two wants.
237**
dan6f150142010-05-21 15:31:56 +0000238** When a rollback occurs, the value of K is decreased. Hash table entries
239** that correspond to frames greater than the new K value are removed
240** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000241*/
drh29d4dbe2010-05-18 23:29:52 +0000242#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000243
drh29d4dbe2010-05-18 23:29:52 +0000244#include "wal.h"
245
drh73b64e42010-05-30 19:55:15 +0000246/*
drhc74c3332010-05-31 12:15:19 +0000247** Trace output macros
248*/
drhc74c3332010-05-31 12:15:19 +0000249#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000250int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000251# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252#else
253# define WALTRACE(X)
254#endif
255
dan10f5a502010-06-23 15:55:43 +0000256/*
257** The maximum (and only) versions of the wal and wal-index formats
258** that may be interpreted by this version of SQLite.
259**
260** If a client begins recovering a WAL file and finds that (a) the checksum
261** values in the wal-header are correct and (b) the version field is not
262** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263**
264** Similarly, if a client successfully reads a wal-index header (i.e. the
265** checksum test is successful) and finds that the version field is not
266** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267** returns SQLITE_CANTOPEN.
268*/
269#define WAL_MAX_VERSION 3007000
270#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000271
272/*
drh73b64e42010-05-30 19:55:15 +0000273** Indices of various locking bytes. WAL_NREADER is the number
274** of available reader locks and should be at least 3.
275*/
276#define WAL_WRITE_LOCK 0
277#define WAL_ALL_BUT_WRITE 1
278#define WAL_CKPT_LOCK 1
279#define WAL_RECOVER_LOCK 2
280#define WAL_READ_LOCK(I) (3+(I))
281#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
dan97a31352010-04-16 13:59:31 +0000283
drh7ed91f22010-04-29 22:34:07 +0000284/* Object declarations */
285typedef struct WalIndexHdr WalIndexHdr;
286typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000287typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000288
289
290/*
drh286a2882010-05-20 23:51:06 +0000291** The following object holds a copy of the wal-index header content.
292**
293** The actual header in the wal-index consists of two copies of this
294** object.
drh9b78f792010-08-14 21:21:24 +0000295**
296** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297** Or it can be 1 to represent a 65536-byte page. The latter case was
298** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000299*/
drh7ed91f22010-04-29 22:34:07 +0000300struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000301 u32 iVersion; /* Wal-index version */
302 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000303 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000304 u8 isInit; /* 1 when initialized */
305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000306 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000307 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000308 u32 nPage; /* Size of database in pages */
309 u32 aFrameCksum[2]; /* Checksum of last frame in log */
310 u32 aSalt[2]; /* Two salt values copied from WAL header */
311 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000312};
313
drh73b64e42010-05-30 19:55:15 +0000314/*
315** A copy of the following object occurs in the wal-index immediately
316** following the second copy of the WalIndexHdr. This object stores
317** information used by checkpoint.
318**
319** nBackfill is the number of frames in the WAL that have been written
320** back into the database. (We call the act of moving content from WAL to
321** database "backfilling".) The nBackfill number is never greater than
322** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
323** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325** mxFrame back to zero when the WAL is reset.
326**
327** There is one entry in aReadMark[] for each reader lock. If a reader
328** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000329** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
330** for any aReadMark[] means that entry is unused. aReadMark[0] is
331** a special case; its value is never used and it exists as a place-holder
332** to avoid having to offset aReadMark[] indexs by one. Readers holding
333** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000335**
336** The value of aReadMark[K] may only be changed by a thread that
337** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
338** aReadMark[K] cannot changed while there is a reader is using that mark
339** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340**
341** The checkpointer may only transfer frames from WAL to database where
342** the frame numbers are less than or equal to every aReadMark[] that is
343** in use (that is, every aReadMark[j] for which there is a corresponding
344** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
345** largest value and will increase an unused aReadMark[] to mxFrame if there
346** is not already an aReadMark[] equal to mxFrame. The exception to the
347** previous sentence is when nBackfill equals mxFrame (meaning that everything
348** in the WAL has been backfilled into the database) then new readers
349** will choose aReadMark[0] which has value 0 and hence such reader will
350** get all their all content directly from the database file and ignore
351** the WAL.
352**
353** Writers normally append new frames to the end of the WAL. However,
354** if nBackfill equals mxFrame (meaning that all WAL content has been
355** written back into the database) and if no readers are using the WAL
356** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357** the writer will first "reset" the WAL back to the beginning and start
358** writing new content beginning at frame 1.
359**
360** We assume that 32-bit loads are atomic and so no locks are needed in
361** order to read from any aReadMark[] entries.
362*/
363struct WalCkptInfo {
364 u32 nBackfill; /* Number of WAL frames backfilled into DB */
365 u32 aReadMark[WAL_NREADER]; /* Reader marks */
366};
drhdb7f6472010-06-09 14:45:12 +0000367#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000368
369
drh7e263722010-05-20 21:21:09 +0000370/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372** only support mandatory file-locks, we do not read or write data
373** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000374*/
drh73b64e42010-05-30 19:55:15 +0000375#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000377#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000378
drh7ed91f22010-04-29 22:34:07 +0000379/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000380#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000381
dan10f5a502010-06-23 15:55:43 +0000382/* Size of write ahead log header, including checksum. */
383/* #define WAL_HDRSIZE 24 */
384#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000385
danb8fd6c22010-05-24 10:39:36 +0000386/* WAL magic value. Either this value, or the same value with the least
387** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388** big-endian format in the first 4 bytes of a WAL file.
389**
390** If the LSB is set, then the checksums for each frame within the WAL
391** file are calculated by treating all data as an array of 32-bit
392** big-endian words. Otherwise, they are calculated by interpreting
393** all data as 32-bit little-endian words.
394*/
395#define WAL_MAGIC 0x377f0682
396
dan97a31352010-04-16 13:59:31 +0000397/*
drh7ed91f22010-04-29 22:34:07 +0000398** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000399** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000400** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000401*/
drh6e810962010-05-19 17:49:50 +0000402#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000404)
dan7c246102010-04-12 19:00:29 +0000405
406/*
drh7ed91f22010-04-29 22:34:07 +0000407** An open write-ahead log file is represented by an instance of the
408** following object.
dance4f05f2010-04-22 19:14:13 +0000409*/
drh7ed91f22010-04-29 22:34:07 +0000410struct Wal {
drh73b64e42010-05-30 19:55:15 +0000411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000412 sqlite3_file *pDbFd; /* File handle for the database file */
413 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000414 u32 iCallback; /* Value to pass to log callback (or 0) */
dan13a3cb82010-06-11 19:04:21 +0000415 int nWiData; /* Size of array apWiData */
416 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000417 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000418 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000419 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000420 u8 writeLock; /* True if in a write transaction */
421 u8 ckptLock; /* True if holding a checkpoint lock */
dan1e5de5a2010-07-15 18:20:53 +0000422 u8 readOnly; /* True if the WAL file is open read-only */
drh73b64e42010-05-30 19:55:15 +0000423 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000424 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000425 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000426#ifdef SQLITE_DEBUG
427 u8 lockError; /* True if a locking error has occurred */
428#endif
dan7c246102010-04-12 19:00:29 +0000429};
430
drh73b64e42010-05-30 19:55:15 +0000431/*
dan8c408002010-11-01 17:38:24 +0000432** Candidate values for Wal.exclusiveMode.
433*/
434#define WAL_NORMAL_MODE 0
435#define WAL_EXCLUSIVE_MODE 1
436#define WAL_HEAPMEMORY_MODE 2
437
438/*
dan067f3162010-06-14 10:30:12 +0000439** Each page of the wal-index mapping contains a hash-table made up of
440** an array of HASHTABLE_NSLOT elements of the following type.
441*/
442typedef u16 ht_slot;
443
444/*
danad3cadd2010-06-14 11:49:26 +0000445** This structure is used to implement an iterator that loops through
446** all frames in the WAL in database page order. Where two or more frames
447** correspond to the same database page, the iterator visits only the
448** frame most recently written to the WAL (in other words, the frame with
449** the largest index).
450**
451** The internals of this structure are only accessed by:
452**
453** walIteratorInit() - Create a new iterator,
454** walIteratorNext() - Step an iterator,
455** walIteratorFree() - Free an iterator.
456**
457** This functionality is used by the checkpoint code (see walCheckpoint()).
458*/
459struct WalIterator {
460 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000461 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000462 struct WalSegment {
463 int iNext; /* Next slot in aIndex[] not yet returned */
464 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
465 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000466 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000467 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000468 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000469};
470
471/*
dan13a3cb82010-06-11 19:04:21 +0000472** Define the parameters of the hash tables in the wal-index file. There
473** is a hash-table following every HASHTABLE_NPAGE page numbers in the
474** wal-index.
475**
476** Changing any of these constants will alter the wal-index format and
477** create incompatibilities.
478*/
dan067f3162010-06-14 10:30:12 +0000479#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000480#define HASHTABLE_HASH_1 383 /* Should be prime */
481#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000482
danad3cadd2010-06-14 11:49:26 +0000483/*
484** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000485** wal-index is smaller than usual. This is so that there is a complete
486** hash-table on each aligned 32KB page of the wal-index.
487*/
dan067f3162010-06-14 10:30:12 +0000488#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000489
dan067f3162010-06-14 10:30:12 +0000490/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
491#define WALINDEX_PGSZ ( \
492 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
493)
dan13a3cb82010-06-11 19:04:21 +0000494
495/*
496** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000497** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000498** numbered from zero.
499**
500** If this call is successful, *ppPage is set to point to the wal-index
501** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
502** then an SQLite error code is returned and *ppPage is set to 0.
503*/
504static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
505 int rc = SQLITE_OK;
506
507 /* Enlarge the pWal->apWiData[] array if required */
508 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000509 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000510 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000511 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000512 if( !apNew ){
513 *ppPage = 0;
514 return SQLITE_NOMEM;
515 }
drh519426a2010-07-09 03:19:07 +0000516 memset((void*)&apNew[pWal->nWiData], 0,
517 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000518 pWal->apWiData = apNew;
519 pWal->nWiData = iPage+1;
520 }
521
522 /* Request a pointer to the required page from the VFS */
523 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000524 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
525 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
526 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
527 }else{
528 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
529 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
530 );
531 }
dan13a3cb82010-06-11 19:04:21 +0000532 }
533
534 *ppPage = pWal->apWiData[iPage];
535 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
536 return rc;
537}
538
539/*
drh73b64e42010-05-30 19:55:15 +0000540** Return a pointer to the WalCkptInfo structure in the wal-index.
541*/
542static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000543 assert( pWal->nWiData>0 && pWal->apWiData[0] );
544 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
545}
546
547/*
548** Return a pointer to the WalIndexHdr structure in the wal-index.
549*/
550static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
551 assert( pWal->nWiData>0 && pWal->apWiData[0] );
552 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000553}
554
dan7c246102010-04-12 19:00:29 +0000555/*
danb8fd6c22010-05-24 10:39:36 +0000556** The argument to this macro must be of type u32. On a little-endian
557** architecture, it returns the u32 value that results from interpreting
558** the 4 bytes as a big-endian value. On a big-endian architecture, it
559** returns the value that would be produced by intepreting the 4 bytes
560** of the input value as a little-endian integer.
561*/
562#define BYTESWAP32(x) ( \
563 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
564 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
565)
dan64d039e2010-04-13 19:27:31 +0000566
dan7c246102010-04-12 19:00:29 +0000567/*
drh7e263722010-05-20 21:21:09 +0000568** Generate or extend an 8 byte checksum based on the data in
569** array aByte[] and the initial values of aIn[0] and aIn[1] (or
570** initial values of 0 and 0 if aIn==NULL).
571**
572** The checksum is written back into aOut[] before returning.
573**
574** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000575*/
drh7e263722010-05-20 21:21:09 +0000576static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000577 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000578 u8 *a, /* Content to be checksummed */
579 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
580 const u32 *aIn, /* Initial checksum value input */
581 u32 *aOut /* OUT: Final checksum value output */
582){
583 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000584 u32 *aData = (u32 *)a;
585 u32 *aEnd = (u32 *)&a[nByte];
586
drh7e263722010-05-20 21:21:09 +0000587 if( aIn ){
588 s1 = aIn[0];
589 s2 = aIn[1];
590 }else{
591 s1 = s2 = 0;
592 }
dan7c246102010-04-12 19:00:29 +0000593
drh584c7542010-05-19 18:08:10 +0000594 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000595 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000596
danb8fd6c22010-05-24 10:39:36 +0000597 if( nativeCksum ){
598 do {
599 s1 += *aData++ + s2;
600 s2 += *aData++ + s1;
601 }while( aData<aEnd );
602 }else{
603 do {
604 s1 += BYTESWAP32(aData[0]) + s2;
605 s2 += BYTESWAP32(aData[1]) + s1;
606 aData += 2;
607 }while( aData<aEnd );
608 }
609
drh7e263722010-05-20 21:21:09 +0000610 aOut[0] = s1;
611 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000612}
613
dan8c408002010-11-01 17:38:24 +0000614static void walShmBarrier(Wal *pWal){
615 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
616 sqlite3OsShmBarrier(pWal->pDbFd);
617 }
618}
619
dan7c246102010-04-12 19:00:29 +0000620/*
drh7e263722010-05-20 21:21:09 +0000621** Write the header information in pWal->hdr into the wal-index.
622**
623** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000624*/
drh7e263722010-05-20 21:21:09 +0000625static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000626 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
627 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000628
629 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000630 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000631 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000632 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
633 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000634 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +0000635 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000636}
637
638/*
639** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000640** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000641** 4-byte big-endian integers, as follows:
642**
drh23ea97b2010-05-20 16:45:58 +0000643** 0: Page number.
644** 4: For commit records, the size of the database image in pages
645** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000646** 8: Salt-1 (copied from the wal-header)
647** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000648** 16: Checksum-1.
649** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000650*/
drh7ed91f22010-04-29 22:34:07 +0000651static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000652 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000653 u32 iPage, /* Database page number for frame */
654 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000655 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000656 u8 *aFrame /* OUT: Write encoded frame here */
657){
danb8fd6c22010-05-24 10:39:36 +0000658 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000659 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000660 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000661 sqlite3Put4byte(&aFrame[0], iPage);
662 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000663 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000664
danb8fd6c22010-05-24 10:39:36 +0000665 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000666 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000667 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000668
drh23ea97b2010-05-20 16:45:58 +0000669 sqlite3Put4byte(&aFrame[16], aCksum[0]);
670 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000671}
672
673/*
drh7e263722010-05-20 21:21:09 +0000674** Check to see if the frame with header in aFrame[] and content
675** in aData[] is valid. If it is a valid frame, fill *piPage and
676** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000677*/
drh7ed91f22010-04-29 22:34:07 +0000678static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000679 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000680 u32 *piPage, /* OUT: Database page number for frame */
681 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000682 u8 *aData, /* Pointer to page data (for checksum) */
683 u8 *aFrame /* Frame data */
684){
danb8fd6c22010-05-24 10:39:36 +0000685 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000686 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000687 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000688 assert( WAL_FRAME_HDRSIZE==24 );
689
drh7e263722010-05-20 21:21:09 +0000690 /* A frame is only valid if the salt values in the frame-header
691 ** match the salt values in the wal-header.
692 */
693 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000694 return 0;
695 }
dan4a4b01d2010-04-16 11:30:18 +0000696
drhc8179152010-05-24 13:28:36 +0000697 /* A frame is only valid if the page number is creater than zero.
698 */
699 pgno = sqlite3Get4byte(&aFrame[0]);
700 if( pgno==0 ){
701 return 0;
702 }
703
drh519426a2010-07-09 03:19:07 +0000704 /* A frame is only valid if a checksum of the WAL header,
705 ** all prior frams, the first 16 bytes of this frame-header,
706 ** and the frame-data matches the checksum in the last 8
707 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000708 */
danb8fd6c22010-05-24 10:39:36 +0000709 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000710 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000711 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000712 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
713 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000714 ){
715 /* Checksum failed. */
716 return 0;
717 }
718
drh7e263722010-05-20 21:21:09 +0000719 /* If we reach this point, the frame is valid. Return the page number
720 ** and the new database size.
721 */
drhc8179152010-05-24 13:28:36 +0000722 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000723 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000724 return 1;
725}
726
dan7c246102010-04-12 19:00:29 +0000727
drhc74c3332010-05-31 12:15:19 +0000728#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
729/*
drh181e0912010-06-01 01:08:08 +0000730** Names of locks. This routine is used to provide debugging output and is not
731** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000732*/
733static const char *walLockName(int lockIdx){
734 if( lockIdx==WAL_WRITE_LOCK ){
735 return "WRITE-LOCK";
736 }else if( lockIdx==WAL_CKPT_LOCK ){
737 return "CKPT-LOCK";
738 }else if( lockIdx==WAL_RECOVER_LOCK ){
739 return "RECOVER-LOCK";
740 }else{
741 static char zName[15];
742 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
743 lockIdx-WAL_READ_LOCK(0));
744 return zName;
745 }
746}
747#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
748
749
dan7c246102010-04-12 19:00:29 +0000750/*
drh181e0912010-06-01 01:08:08 +0000751** Set or release locks on the WAL. Locks are either shared or exclusive.
752** A lock cannot be moved directly between shared and exclusive - it must go
753** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000754**
755** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
756*/
757static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000758 int rc;
drh73b64e42010-05-30 19:55:15 +0000759 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000760 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
761 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
762 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
763 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000764 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000765 return rc;
drh73b64e42010-05-30 19:55:15 +0000766}
767static void walUnlockShared(Wal *pWal, int lockIdx){
768 if( pWal->exclusiveMode ) return;
769 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
770 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000771 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000772}
773static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000774 int rc;
drh73b64e42010-05-30 19:55:15 +0000775 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000776 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
777 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
778 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
779 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000780 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000781 return rc;
drh73b64e42010-05-30 19:55:15 +0000782}
783static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
784 if( pWal->exclusiveMode ) return;
785 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
786 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000787 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
788 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000789}
790
791/*
drh29d4dbe2010-05-18 23:29:52 +0000792** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000793** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
794** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000795*/
796static int walHash(u32 iPage){
797 assert( iPage>0 );
798 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
799 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
800}
801static int walNextHash(int iPriorHash){
802 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000803}
804
dan4280eb32010-06-12 12:02:35 +0000805/*
806** Return pointers to the hash table and page number array stored on
807** page iHash of the wal-index. The wal-index is broken into 32KB pages
808** numbered starting from 0.
809**
810** Set output variable *paHash to point to the start of the hash table
811** in the wal-index file. Set *piZero to one less than the frame
812** number of the first frame indexed by this hash table. If a
813** slot in the hash table is set to N, it refers to frame number
814** (*piZero+N) in the log.
815**
dand60bf112010-06-14 11:18:50 +0000816** Finally, set *paPgno so that *paPgno[1] is the page number of the
817** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000818*/
819static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000820 Wal *pWal, /* WAL handle */
821 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000822 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000823 volatile u32 **paPgno, /* OUT: Pointer to page number array */
824 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
825){
dan4280eb32010-06-12 12:02:35 +0000826 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000827 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000828
dan4280eb32010-06-12 12:02:35 +0000829 rc = walIndexPage(pWal, iHash, &aPgno);
830 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000831
dan4280eb32010-06-12 12:02:35 +0000832 if( rc==SQLITE_OK ){
833 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000834 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000835
dan067f3162010-06-14 10:30:12 +0000836 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000837 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000838 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000839 iZero = 0;
840 }else{
841 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000842 }
843
dand60bf112010-06-14 11:18:50 +0000844 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000845 *paHash = aHash;
846 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000847 }
dan4280eb32010-06-12 12:02:35 +0000848 return rc;
dan13a3cb82010-06-11 19:04:21 +0000849}
850
dan4280eb32010-06-12 12:02:35 +0000851/*
852** Return the number of the wal-index page that contains the hash-table
853** and page-number array that contain entries corresponding to WAL frame
854** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
855** are numbered starting from 0.
856*/
dan13a3cb82010-06-11 19:04:21 +0000857static int walFramePage(u32 iFrame){
858 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
859 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
860 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
861 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
862 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
863 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
864 );
865 return iHash;
866}
867
868/*
869** Return the page number associated with frame iFrame in this WAL.
870*/
871static u32 walFramePgno(Wal *pWal, u32 iFrame){
872 int iHash = walFramePage(iFrame);
873 if( iHash==0 ){
874 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
875 }
876 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
877}
danbb23aff2010-05-10 14:46:09 +0000878
danca6b5ba2010-05-25 10:50:56 +0000879/*
880** Remove entries from the hash table that point to WAL slots greater
881** than pWal->hdr.mxFrame.
882**
883** This function is called whenever pWal->hdr.mxFrame is decreased due
884** to a rollback or savepoint.
885**
drh181e0912010-06-01 01:08:08 +0000886** At most only the hash table containing pWal->hdr.mxFrame needs to be
887** updated. Any later hash tables will be automatically cleared when
888** pWal->hdr.mxFrame advances to the point where those hash tables are
889** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000890*/
891static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000892 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
893 volatile u32 *aPgno = 0; /* Page number array for hash table */
894 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000895 int iLimit = 0; /* Zero values greater than this */
896 int nByte; /* Number of bytes to zero in aPgno[] */
897 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000898
drh73b64e42010-05-30 19:55:15 +0000899 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000900 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
901 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
902 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000903
dan4280eb32010-06-12 12:02:35 +0000904 if( pWal->hdr.mxFrame==0 ) return;
905
906 /* Obtain pointers to the hash-table and page-number array containing
907 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
908 ** that the page said hash-table and array reside on is already mapped.
909 */
910 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
911 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
912 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
913
914 /* Zero all hash-table entries that correspond to frame numbers greater
915 ** than pWal->hdr.mxFrame.
916 */
917 iLimit = pWal->hdr.mxFrame - iZero;
918 assert( iLimit>0 );
919 for(i=0; i<HASHTABLE_NSLOT; i++){
920 if( aHash[i]>iLimit ){
921 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000922 }
danca6b5ba2010-05-25 10:50:56 +0000923 }
dan4280eb32010-06-12 12:02:35 +0000924
925 /* Zero the entries in the aPgno array that correspond to frames with
926 ** frame numbers greater than pWal->hdr.mxFrame.
927 */
shaneh5eba1f62010-07-02 17:05:03 +0000928 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000929 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000930
931#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
932 /* Verify that the every entry in the mapping region is still reachable
933 ** via the hash table even after the cleanup.
934 */
drhf77bbd92010-06-01 13:17:44 +0000935 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000936 int i; /* Loop counter */
937 int iKey; /* Hash key */
938 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000939 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000940 if( aHash[iKey]==i ) break;
941 }
942 assert( aHash[iKey]==i );
943 }
944 }
945#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
946}
947
danbb23aff2010-05-10 14:46:09 +0000948
drh7ed91f22010-04-29 22:34:07 +0000949/*
drh29d4dbe2010-05-18 23:29:52 +0000950** Set an entry in the wal-index that will map database page number
951** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000952*/
drh7ed91f22010-04-29 22:34:07 +0000953static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000954 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000955 u32 iZero = 0; /* One less than frame number of aPgno[1] */
956 volatile u32 *aPgno = 0; /* Page number array */
957 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000958
dan4280eb32010-06-12 12:02:35 +0000959 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
960
961 /* Assuming the wal-index file was successfully mapped, populate the
962 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000963 */
danbb23aff2010-05-10 14:46:09 +0000964 if( rc==SQLITE_OK ){
965 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000966 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000967 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000968
danbb23aff2010-05-10 14:46:09 +0000969 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000970 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
971
972 /* If this is the first entry to be added to this hash-table, zero the
973 ** entire hash table and aPgno[] array before proceding.
974 */
danca6b5ba2010-05-25 10:50:56 +0000975 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000976 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000977 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000978 }
danca6b5ba2010-05-25 10:50:56 +0000979
dan4280eb32010-06-12 12:02:35 +0000980 /* If the entry in aPgno[] is already set, then the previous writer
981 ** must have exited unexpectedly in the middle of a transaction (after
982 ** writing one or more dirty pages to the WAL to free up memory).
983 ** Remove the remnants of that writers uncommitted transaction from
984 ** the hash-table before writing any new entries.
985 */
dand60bf112010-06-14 11:18:50 +0000986 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +0000987 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +0000988 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +0000989 }
dan4280eb32010-06-12 12:02:35 +0000990
991 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +0000992 nCollide = idx;
dan6f150142010-05-21 15:31:56 +0000993 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +0000994 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +0000995 }
dand60bf112010-06-14 11:18:50 +0000996 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +0000997 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +0000998
999#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1000 /* Verify that the number of entries in the hash table exactly equals
1001 ** the number of entries in the mapping region.
1002 */
1003 {
1004 int i; /* Loop counter */
1005 int nEntry = 0; /* Number of entries in the hash table */
1006 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1007 assert( nEntry==idx );
1008 }
1009
1010 /* Verify that the every entry in the mapping region is reachable
1011 ** via the hash table. This turns out to be a really, really expensive
1012 ** thing to check, so only do this occasionally - not on every
1013 ** iteration.
1014 */
1015 if( (idx&0x3ff)==0 ){
1016 int i; /* Loop counter */
1017 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001018 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001019 if( aHash[iKey]==i ) break;
1020 }
1021 assert( aHash[iKey]==i );
1022 }
1023 }
1024#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001025 }
dan31f98fc2010-04-27 05:42:32 +00001026
drh4fa95bf2010-05-22 00:55:39 +00001027
danbb23aff2010-05-10 14:46:09 +00001028 return rc;
dan7c246102010-04-12 19:00:29 +00001029}
1030
1031
1032/*
drh7ed91f22010-04-29 22:34:07 +00001033** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001034**
1035** This routine first tries to establish an exclusive lock on the
1036** wal-index to prevent other threads/processes from doing anything
1037** with the WAL or wal-index while recovery is running. The
1038** WAL_RECOVER_LOCK is also held so that other threads will know
1039** that this thread is running recovery. If unable to establish
1040** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001041*/
drh7ed91f22010-04-29 22:34:07 +00001042static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001043 int rc; /* Return Code */
1044 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001045 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001046 int iLock; /* Lock offset to lock for checkpoint */
1047 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001048
dand0aa3422010-05-31 16:41:53 +00001049 /* Obtain an exclusive lock on all byte in the locking range not already
1050 ** locked by the caller. The caller is guaranteed to have locked the
1051 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1052 ** If successful, the same bytes that are locked here are unlocked before
1053 ** this function returns.
1054 */
1055 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1056 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1057 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1058 assert( pWal->writeLock );
1059 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1060 nLock = SQLITE_SHM_NLOCK - iLock;
1061 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001062 if( rc ){
1063 return rc;
1064 }
drhc74c3332010-05-31 12:15:19 +00001065 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001066
dan71d89912010-05-24 13:57:42 +00001067 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001068
drhd9e5c4f2010-05-12 18:01:39 +00001069 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001070 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001071 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001072 }
1073
danb8fd6c22010-05-24 10:39:36 +00001074 if( nSize>WAL_HDRSIZE ){
1075 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001076 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001077 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001078 u8 *aData; /* Pointer to data part of aFrame buffer */
1079 int iFrame; /* Index of last frame read */
1080 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001081 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001082 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001083 u32 version; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001084
danb8fd6c22010-05-24 10:39:36 +00001085 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001086 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001087 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001088 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001089 }
1090
1091 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001092 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1093 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1094 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001095 */
danb8fd6c22010-05-24 10:39:36 +00001096 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001097 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001098 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1099 || szPage&(szPage-1)
1100 || szPage>SQLITE_MAX_PAGE_SIZE
1101 || szPage<512
1102 ){
dan7c246102010-04-12 19:00:29 +00001103 goto finished;
1104 }
shaneh5eba1f62010-07-02 17:05:03 +00001105 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001106 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001107 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001108 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001109
1110 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001111 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001112 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001113 );
dan10f5a502010-06-23 15:55:43 +00001114 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1115 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1116 ){
1117 goto finished;
1118 }
1119
drhcd285082010-06-23 22:00:35 +00001120 /* Verify that the version number on the WAL format is one that
1121 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001122 version = sqlite3Get4byte(&aBuf[4]);
1123 if( version!=WAL_MAX_VERSION ){
1124 rc = SQLITE_CANTOPEN_BKPT;
1125 goto finished;
1126 }
1127
dan7c246102010-04-12 19:00:29 +00001128 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001129 szFrame = szPage + WAL_FRAME_HDRSIZE;
1130 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001131 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001132 rc = SQLITE_NOMEM;
1133 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001134 }
drh7ed91f22010-04-29 22:34:07 +00001135 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001136
1137 /* Read all frames from the log file. */
1138 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001139 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001140 u32 pgno; /* Database page number for frame */
1141 u32 nTruncate; /* dbsize field from frame header */
1142 int isValid; /* True if this frame is valid */
1143
1144 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001145 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001146 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001147 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001148 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001149 rc = walIndexAppend(pWal, ++iFrame, pgno);
1150 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001151
1152 /* If nTruncate is non-zero, this is a commit record. */
1153 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001154 pWal->hdr.mxFrame = iFrame;
1155 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001156 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001157 testcase( szPage<=32768 );
1158 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001159 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1160 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001161 }
1162 }
1163
1164 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001165 }
1166
1167finished:
dan576bc322010-05-06 18:04:50 +00001168 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001169 volatile WalCkptInfo *pInfo;
1170 int i;
dan71d89912010-05-24 13:57:42 +00001171 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1172 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001173 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001174
drhdb7f6472010-06-09 14:45:12 +00001175 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001176 ** currently holding locks that exclude all other readers, writers and
1177 ** checkpointers.
1178 */
drhdb7f6472010-06-09 14:45:12 +00001179 pInfo = walCkptInfo(pWal);
1180 pInfo->nBackfill = 0;
1181 pInfo->aReadMark[0] = 0;
1182 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
daneb8763d2010-08-17 14:52:22 +00001183
1184 /* If more than one frame was recovered from the log file, report an
1185 ** event via sqlite3_log(). This is to help with identifying performance
1186 ** problems caused by applications routinely shutting down without
1187 ** checkpointing the log file.
1188 */
1189 if( pWal->hdr.nPage ){
1190 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1191 pWal->hdr.nPage, pWal->zWalName
1192 );
1193 }
dan576bc322010-05-06 18:04:50 +00001194 }
drh73b64e42010-05-30 19:55:15 +00001195
1196recovery_error:
drhc74c3332010-05-31 12:15:19 +00001197 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001198 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001199 return rc;
1200}
1201
drha8e654e2010-05-04 17:38:42 +00001202/*
dan1018e902010-05-05 15:33:05 +00001203** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001204*/
dan1018e902010-05-05 15:33:05 +00001205static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001206 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1207 int i;
1208 for(i=0; i<pWal->nWiData; i++){
1209 sqlite3_free((void *)pWal->apWiData[i]);
1210 pWal->apWiData[i] = 0;
1211 }
1212 }else{
1213 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1214 }
drha8e654e2010-05-04 17:38:42 +00001215}
1216
dan7c246102010-04-12 19:00:29 +00001217/*
dan3e875ef2010-07-05 19:03:35 +00001218** Open a connection to the WAL file zWalName. The database file must
1219** already be opened on connection pDbFd. The buffer that zWalName points
1220** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001221**
1222** A SHARED lock should be held on the database file when this function
1223** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001224** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001225** were to do this just after this client opened one of these files, the
1226** system would be badly broken.
danef378022010-05-04 11:06:03 +00001227**
1228** If the log file is successfully opened, SQLITE_OK is returned and
1229** *ppWal is set to point to a new WAL handle. If an error occurs,
1230** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001231*/
drhc438efd2010-04-26 00:19:45 +00001232int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001233 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001234 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001235 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001236 int bNoShm, /* True to run in heap-memory mode */
drh7ed91f22010-04-29 22:34:07 +00001237 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001238){
danef378022010-05-04 11:06:03 +00001239 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001240 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001241 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001242
dan3e875ef2010-07-05 19:03:35 +00001243 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001244 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001245
drh1b78eaf2010-05-25 13:40:03 +00001246 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1247 ** this source file. Verify that the #defines of the locking byte offsets
1248 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1249 */
1250#ifdef WIN_SHM_BASE
1251 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1252#endif
1253#ifdef UNIX_SHM_BASE
1254 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1255#endif
1256
1257
drh7ed91f22010-04-29 22:34:07 +00001258 /* Allocate an instance of struct Wal to return. */
1259 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001260 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001261 if( !pRet ){
1262 return SQLITE_NOMEM;
1263 }
1264
dan7c246102010-04-12 19:00:29 +00001265 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001266 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1267 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001268 pRet->readLock = -1;
dan3e875ef2010-07-05 19:03:35 +00001269 pRet->zWalName = zWalName;
dan8c408002010-11-01 17:38:24 +00001270 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001271
drh7ed91f22010-04-29 22:34:07 +00001272 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001273 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001274 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001275 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
dan1e5de5a2010-07-15 18:20:53 +00001276 pRet->readOnly = 1;
dan50833e32010-07-14 16:37:17 +00001277 }
dan7c246102010-04-12 19:00:29 +00001278
dan7c246102010-04-12 19:00:29 +00001279 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001280 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001281 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001282 sqlite3_free(pRet);
1283 }else{
1284 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001285 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001286 }
dan7c246102010-04-12 19:00:29 +00001287 return rc;
1288}
1289
drha2a42012010-05-18 18:01:08 +00001290/*
1291** Find the smallest page number out of all pages held in the WAL that
1292** has not been returned by any prior invocation of this method on the
1293** same WalIterator object. Write into *piFrame the frame index where
1294** that page was last written into the WAL. Write into *piPage the page
1295** number.
1296**
1297** Return 0 on success. If there are no pages in the WAL with a page
1298** number larger than *piPage, then return 1.
1299*/
drh7ed91f22010-04-29 22:34:07 +00001300static int walIteratorNext(
1301 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001302 u32 *piPage, /* OUT: The page number of the next page */
1303 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001304){
drha2a42012010-05-18 18:01:08 +00001305 u32 iMin; /* Result pgno must be greater than iMin */
1306 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1307 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001308
drha2a42012010-05-18 18:01:08 +00001309 iMin = p->iPrior;
1310 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001311 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001312 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001313 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001314 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001315 if( iPg>iMin ){
1316 if( iPg<iRet ){
1317 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001318 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001319 }
1320 break;
1321 }
1322 pSegment->iNext++;
1323 }
dan7c246102010-04-12 19:00:29 +00001324 }
1325
drha2a42012010-05-18 18:01:08 +00001326 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001327 return (iRet==0xFFFFFFFF);
1328}
1329
danf544b4c2010-06-25 11:35:52 +00001330/*
1331** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001332**
1333** aLeft[] and aRight[] are arrays of indices. The sort key is
1334** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1335** is guaranteed for all J<K:
1336**
1337** aContent[aLeft[J]] < aContent[aLeft[K]]
1338** aContent[aRight[J]] < aContent[aRight[K]]
1339**
1340** This routine overwrites aRight[] with a new (probably longer) sequence
1341** of indices such that the aRight[] contains every index that appears in
1342** either aLeft[] or the old aRight[] and such that the second condition
1343** above is still met.
1344**
1345** The aContent[aLeft[X]] values will be unique for all X. And the
1346** aContent[aRight[X]] values will be unique too. But there might be
1347** one or more combinations of X and Y such that
1348**
1349** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1350**
1351** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001352*/
1353static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001354 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001355 ht_slot *aLeft, /* IN: Left hand input list */
1356 int nLeft, /* IN: Elements in array *paLeft */
1357 ht_slot **paRight, /* IN/OUT: Right hand input list */
1358 int *pnRight, /* IN/OUT: Elements in *paRight */
1359 ht_slot *aTmp /* Temporary buffer */
1360){
1361 int iLeft = 0; /* Current index in aLeft */
1362 int iRight = 0; /* Current index in aRight */
1363 int iOut = 0; /* Current index in output buffer */
1364 int nRight = *pnRight;
1365 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001366
danf544b4c2010-06-25 11:35:52 +00001367 assert( nLeft>0 && nRight>0 );
1368 while( iRight<nRight || iLeft<nLeft ){
1369 ht_slot logpage;
1370 Pgno dbpage;
1371
1372 if( (iLeft<nLeft)
1373 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1374 ){
1375 logpage = aLeft[iLeft++];
1376 }else{
1377 logpage = aRight[iRight++];
1378 }
1379 dbpage = aContent[logpage];
1380
1381 aTmp[iOut++] = logpage;
1382 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1383
1384 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1385 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1386 }
1387
1388 *paRight = aLeft;
1389 *pnRight = iOut;
1390 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1391}
1392
1393/*
drhd9c9b782010-12-15 21:02:06 +00001394** Sort the elements in list aList using aContent[] as the sort key.
1395** Remove elements with duplicate keys, preferring to keep the
1396** larger aList[] values.
1397**
1398** The aList[] entries are indices into aContent[]. The values in
1399** aList[] are to be sorted so that for all J<K:
1400**
1401** aContent[aList[J]] < aContent[aList[K]]
1402**
1403** For any X and Y such that
1404**
1405** aContent[aList[X]] == aContent[aList[Y]]
1406**
1407** Keep the larger of the two values aList[X] and aList[Y] and discard
1408** the smaller.
danf544b4c2010-06-25 11:35:52 +00001409*/
dan13a3cb82010-06-11 19:04:21 +00001410static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001411 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001412 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1413 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001414 int *pnList /* IN/OUT: Number of elements in aList[] */
1415){
danf544b4c2010-06-25 11:35:52 +00001416 struct Sublist {
1417 int nList; /* Number of elements in aList */
1418 ht_slot *aList; /* Pointer to sub-list content */
1419 };
drha2a42012010-05-18 18:01:08 +00001420
danf544b4c2010-06-25 11:35:52 +00001421 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001422 int nMerge = 0; /* Number of elements in list aMerge */
1423 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001424 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001425 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001426 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001427
danf544b4c2010-06-25 11:35:52 +00001428 memset(aSub, 0, sizeof(aSub));
1429 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1430 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001431
danf544b4c2010-06-25 11:35:52 +00001432 for(iList=0; iList<nList; iList++){
1433 nMerge = 1;
1434 aMerge = &aList[iList];
1435 for(iSub=0; iList & (1<<iSub); iSub++){
1436 struct Sublist *p = &aSub[iSub];
1437 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001438 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001439 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001440 }
danf544b4c2010-06-25 11:35:52 +00001441 aSub[iSub].aList = aMerge;
1442 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001443 }
1444
danf544b4c2010-06-25 11:35:52 +00001445 for(iSub++; iSub<ArraySize(aSub); iSub++){
1446 if( nList & (1<<iSub) ){
1447 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001448 assert( p->nList<=(1<<iSub) );
1449 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001450 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1451 }
1452 }
1453 assert( aMerge==aList );
1454 *pnList = nMerge;
1455
drha2a42012010-05-18 18:01:08 +00001456#ifdef SQLITE_DEBUG
1457 {
1458 int i;
1459 for(i=1; i<*pnList; i++){
1460 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1461 }
1462 }
1463#endif
1464}
1465
dan5d656852010-06-14 07:53:26 +00001466/*
1467** Free an iterator allocated by walIteratorInit().
1468*/
1469static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001470 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001471}
1472
drha2a42012010-05-18 18:01:08 +00001473/*
danbdf1e242010-06-25 15:16:25 +00001474** Construct a WalInterator object that can be used to loop over all
1475** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001476** lock.
drha2a42012010-05-18 18:01:08 +00001477**
1478** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001479** return SQLITE_OK. Otherwise, return an error code. If this routine
1480** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001481**
1482** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001483** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001484*/
1485static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001486 WalIterator *p; /* Return value */
1487 int nSegment; /* Number of segments to merge */
1488 u32 iLast; /* Last frame in log */
1489 int nByte; /* Number of bytes to allocate */
1490 int i; /* Iterator variable */
1491 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001492 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001493
danbdf1e242010-06-25 15:16:25 +00001494 /* This routine only runs while holding the checkpoint lock. And
1495 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001496 */
danbdf1e242010-06-25 15:16:25 +00001497 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001498 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001499
danbdf1e242010-06-25 15:16:25 +00001500 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001501 nSegment = walFramePage(iLast) + 1;
1502 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001503 + (nSegment-1)*sizeof(struct WalSegment)
1504 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001505 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001506 if( !p ){
drha2a42012010-05-18 18:01:08 +00001507 return SQLITE_NOMEM;
1508 }
1509 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001510 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001511
1512 /* Allocate temporary space used by the merge-sort routine. This block
1513 ** of memory will be freed before this function returns.
1514 */
dan52d6fc02010-06-25 16:34:32 +00001515 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1516 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1517 );
danbdf1e242010-06-25 15:16:25 +00001518 if( !aTmp ){
1519 rc = SQLITE_NOMEM;
1520 }
1521
1522 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001523 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001524 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001525 volatile u32 *aPgno;
1526
dan4280eb32010-06-12 12:02:35 +00001527 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001528 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001529 int j; /* Counter variable */
1530 int nEntry; /* Number of entries in this segment */
1531 ht_slot *aIndex; /* Sorted index for this segment */
1532
danbdf1e242010-06-25 15:16:25 +00001533 aPgno++;
drh519426a2010-07-09 03:19:07 +00001534 if( (i+1)==nSegment ){
1535 nEntry = (int)(iLast - iZero);
1536 }else{
shaneh55897962010-07-09 12:57:53 +00001537 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001538 }
dan52d6fc02010-06-25 16:34:32 +00001539 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001540 iZero++;
1541
danbdf1e242010-06-25 15:16:25 +00001542 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001543 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001544 }
1545 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1546 p->aSegment[i].iZero = iZero;
1547 p->aSegment[i].nEntry = nEntry;
1548 p->aSegment[i].aIndex = aIndex;
1549 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001550 }
dan7c246102010-04-12 19:00:29 +00001551 }
danbdf1e242010-06-25 15:16:25 +00001552 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001553
danbdf1e242010-06-25 15:16:25 +00001554 if( rc!=SQLITE_OK ){
1555 walIteratorFree(p);
1556 }
dan8f6097c2010-05-06 07:43:58 +00001557 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001558 return rc;
dan7c246102010-04-12 19:00:29 +00001559}
1560
dan7c246102010-04-12 19:00:29 +00001561/*
dana58f26f2010-11-16 18:56:51 +00001562** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1563** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1564** busy-handler function. Invoke it and retry the lock until either the
1565** lock is successfully obtained or the busy-handler returns 0.
1566*/
1567static int walBusyLock(
1568 Wal *pWal, /* WAL connection */
1569 int (*xBusy)(void*), /* Function to call when busy */
1570 void *pBusyArg, /* Context argument for xBusyHandler */
1571 int lockIdx, /* Offset of first byte to lock */
1572 int n /* Number of bytes to lock */
1573){
1574 int rc;
1575 do {
1576 rc = walLockExclusive(pWal, lockIdx, n);
1577 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1578 return rc;
1579}
1580
1581/*
danf2b8dd52010-11-18 19:28:01 +00001582** The cache of the wal-index header must be valid to call this function.
1583** Return the page-size in bytes used by the database.
1584*/
1585static int walPagesize(Wal *pWal){
1586 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1587}
1588
1589/*
drh73b64e42010-05-30 19:55:15 +00001590** Copy as much content as we can from the WAL back into the database file
1591** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1592**
1593** The amount of information copies from WAL to database might be limited
1594** by active readers. This routine will never overwrite a database page
1595** that a concurrent reader might be using.
1596**
1597** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1598** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1599** checkpoints are always run by a background thread or background
1600** process, foreground threads will never block on a lengthy fsync call.
1601**
1602** Fsync is called on the WAL before writing content out of the WAL and
1603** into the database. This ensures that if the new content is persistent
1604** in the WAL and can be recovered following a power-loss or hard reset.
1605**
1606** Fsync is also called on the database file if (and only if) the entire
1607** WAL content is copied into the database file. This second fsync makes
1608** it safe to delete the WAL since the new content will persist in the
1609** database file.
1610**
1611** This routine uses and updates the nBackfill field of the wal-index header.
1612** This is the only routine tha will increase the value of nBackfill.
1613** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1614** its value.)
1615**
1616** The caller must be holding sufficient locks to ensure that no other
1617** checkpoint is running (in any other thread or process) at the same
1618** time.
dan7c246102010-04-12 19:00:29 +00001619*/
drh7ed91f22010-04-29 22:34:07 +00001620static int walCheckpoint(
1621 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001622 int eMode, /* One of PASSIVE, FULL or RESTART */
danf2b8dd52010-11-18 19:28:01 +00001623 int (*xBusyCall)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001624 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001625 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001626 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001627){
1628 int rc; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001629 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001630 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001631 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001632 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001633 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001634 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001635 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001636 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
danf2b8dd52010-11-18 19:28:01 +00001637 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
dan7c246102010-04-12 19:00:29 +00001638
danf2b8dd52010-11-18 19:28:01 +00001639 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001640 testcase( szPage<=32768 );
1641 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001642 pInfo = walCkptInfo(pWal);
1643 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
danf544b4c2010-06-25 11:35:52 +00001644
dan7c246102010-04-12 19:00:29 +00001645 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001646 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001647 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001648 return rc;
danb6e099a2010-05-04 14:47:39 +00001649 }
danf544b4c2010-06-25 11:35:52 +00001650 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001651
danf2b8dd52010-11-18 19:28:01 +00001652 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
danb6e099a2010-05-04 14:47:39 +00001653
drh73b64e42010-05-30 19:55:15 +00001654 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1655 ** safe to write into the database. Frames beyond mxSafeFrame might
1656 ** overwrite database pages that are in use by active readers and thus
1657 ** cannot be backfilled from the WAL.
1658 */
dand54ff602010-05-31 11:16:30 +00001659 mxSafeFrame = pWal->hdr.mxFrame;
dan502019c2010-07-28 14:26:17 +00001660 mxPage = pWal->hdr.nPage;
drh73b64e42010-05-30 19:55:15 +00001661 for(i=1; i<WAL_NREADER; i++){
1662 u32 y = pInfo->aReadMark[i];
danf2b8dd52010-11-18 19:28:01 +00001663 if( mxSafeFrame>y ){
dan83f42d12010-06-04 10:37:05 +00001664 assert( y<=pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001665 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
dan83f42d12010-06-04 10:37:05 +00001666 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001667 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001668 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001669 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001670 mxSafeFrame = y;
danf2b8dd52010-11-18 19:28:01 +00001671 xBusy = 0;
drh2d37e1c2010-06-02 20:38:20 +00001672 }else{
dan83f42d12010-06-04 10:37:05 +00001673 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001674 }
1675 }
danc5118782010-04-17 17:34:41 +00001676 }
dan7c246102010-04-12 19:00:29 +00001677
drh73b64e42010-05-30 19:55:15 +00001678 if( pInfo->nBackfill<mxSafeFrame
dana58f26f2010-11-16 18:56:51 +00001679 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
drh73b64e42010-05-30 19:55:15 +00001680 ){
dan502019c2010-07-28 14:26:17 +00001681 i64 nSize; /* Current size of database file */
drh73b64e42010-05-30 19:55:15 +00001682 u32 nBackfill = pInfo->nBackfill;
1683
1684 /* Sync the WAL to disk */
1685 if( sync_flags ){
1686 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1687 }
1688
dan502019c2010-07-28 14:26:17 +00001689 /* If the database file may grow as a result of this checkpoint, hint
1690 ** about the eventual size of the db file to the VFS layer.
1691 */
dan007820d2010-08-09 07:51:40 +00001692 if( rc==SQLITE_OK ){
1693 i64 nReq = ((i64)mxPage * szPage);
1694 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1695 if( rc==SQLITE_OK && nSize<nReq ){
1696 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1697 }
dan502019c2010-07-28 14:26:17 +00001698 }
1699
drh73b64e42010-05-30 19:55:15 +00001700 /* Iterate through the contents of the WAL, copying data to the db file. */
1701 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001702 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001703 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan502019c2010-07-28 14:26:17 +00001704 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001705 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001706 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001707 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1708 if( rc!=SQLITE_OK ) break;
1709 iOffset = (iDbpage-1)*(i64)szPage;
1710 testcase( IS_BIG_INT(iOffset) );
1711 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1712 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001713 }
1714
1715 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001716 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001717 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001718 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1719 testcase( IS_BIG_INT(szDb) );
1720 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001721 if( rc==SQLITE_OK && sync_flags ){
1722 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1723 }
1724 }
dand764c7d2010-06-04 11:56:22 +00001725 if( rc==SQLITE_OK ){
1726 pInfo->nBackfill = mxSafeFrame;
1727 }
drh73b64e42010-05-30 19:55:15 +00001728 }
1729
1730 /* Release the reader lock held while backfilling */
1731 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
dana58f26f2010-11-16 18:56:51 +00001732 }
1733
1734 if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001735 /* Reset the return code so as not to report a checkpoint failure
dana58f26f2010-11-16 18:56:51 +00001736 ** just because there are active readers. */
drh34116ea2010-05-31 12:30:52 +00001737 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001738 }
1739
danf2b8dd52010-11-18 19:28:01 +00001740 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1741 ** file has been copied into the database file, then block until all
1742 ** readers have finished using the wal file. This ensures that the next
1743 ** process to write to the database restarts the wal file.
1744 */
1745 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001746 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001747 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1748 rc = SQLITE_BUSY;
1749 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1750 assert( mxSafeFrame==pWal->hdr.mxFrame );
1751 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1752 if( rc==SQLITE_OK ){
1753 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1754 }
dancdc1f042010-11-18 12:11:05 +00001755 }
1756 }
1757
dan83f42d12010-06-04 10:37:05 +00001758 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001759 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001760 return rc;
1761}
1762
1763/*
1764** Close a connection to a log file.
1765*/
drhc438efd2010-04-26 00:19:45 +00001766int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001767 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001768 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001769 int nBuf,
1770 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001771){
1772 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001773 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001774 int isDelete = 0; /* True to unlink wal and wal-index files */
1775
1776 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1777 ** ordinary, rollback-mode locking methods, this guarantees that the
1778 ** connection associated with this log file is the only connection to
1779 ** the database. In this case checkpoint the database and unlink both
1780 ** the wal and wal-index files.
1781 **
1782 ** The EXCLUSIVE lock is not released before returning.
1783 */
drhd9e5c4f2010-05-12 18:01:39 +00001784 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001785 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001786 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1787 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1788 }
dancdc1f042010-11-18 12:11:05 +00001789 rc = sqlite3WalCheckpoint(
1790 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1791 );
dan30c86292010-04-30 16:24:46 +00001792 if( rc==SQLITE_OK ){
1793 isDelete = 1;
1794 }
dan30c86292010-04-30 16:24:46 +00001795 }
1796
dan1018e902010-05-05 15:33:05 +00001797 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001798 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001799 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001800 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001801 }
drhc74c3332010-05-31 12:15:19 +00001802 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001803 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001804 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001805 }
1806 return rc;
1807}
1808
1809/*
drha2a42012010-05-18 18:01:08 +00001810** Try to read the wal-index header. Return 0 on success and 1 if
1811** there is a problem.
1812**
1813** The wal-index is in shared memory. Another thread or process might
1814** be writing the header at the same time this procedure is trying to
1815** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001816** by verifying that both copies of the header are the same and also by
1817** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001818**
1819** If and only if the read is consistent and the header is different from
1820** pWal->hdr, then pWal->hdr is updated to the content of the new header
1821** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001822**
dan84670502010-05-07 05:46:23 +00001823** If the checksum cannot be verified return non-zero. If the header
1824** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001825*/
drh7750ab42010-06-26 22:16:02 +00001826static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001827 u32 aCksum[2]; /* Checksum on the header content */
1828 WalIndexHdr h1, h2; /* Two copies of the header content */
1829 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001830
dan4280eb32010-06-12 12:02:35 +00001831 /* The first page of the wal-index must be mapped at this point. */
1832 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001833
drh6cef0cf2010-08-16 16:31:43 +00001834 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001835 ** same area of shared memory on a different CPU in a SMP,
1836 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001837 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001838 **
1839 ** There are two copies of the header at the beginning of the wal-index.
1840 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1841 ** Memory barriers are used to prevent the compiler or the hardware from
1842 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001843 */
dan4280eb32010-06-12 12:02:35 +00001844 aHdr = walIndexHdr(pWal);
1845 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001846 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001847 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001848
drhf0b20f82010-05-21 13:16:18 +00001849 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1850 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001851 }
drh4b82c382010-05-31 18:24:19 +00001852 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001853 return 1; /* Malformed header - probably all zeros */
1854 }
danb8fd6c22010-05-24 10:39:36 +00001855 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001856 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1857 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001858 }
1859
drhf0b20f82010-05-21 13:16:18 +00001860 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001861 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001862 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00001863 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1864 testcase( pWal->szPage<=32768 );
1865 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00001866 }
dan84670502010-05-07 05:46:23 +00001867
1868 /* The header was successfully read. Return zero. */
1869 return 0;
danb9bf16b2010-04-14 11:23:30 +00001870}
1871
1872/*
drha2a42012010-05-18 18:01:08 +00001873** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001874** If the wal-header appears to be corrupt, try to reconstruct the
1875** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001876**
1877** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1878** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1879** to 0.
1880**
drh7ed91f22010-04-29 22:34:07 +00001881** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001882** Otherwise an SQLite error code.
1883*/
drh7ed91f22010-04-29 22:34:07 +00001884static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001885 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001886 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001887 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001888
dan4280eb32010-06-12 12:02:35 +00001889 /* Ensure that page 0 of the wal-index (the page that contains the
1890 ** wal-index header) is mapped. Return early if an error occurs here.
1891 */
dana8614692010-05-06 14:42:34 +00001892 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001893 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001894 if( rc!=SQLITE_OK ){
1895 return rc;
dan4280eb32010-06-12 12:02:35 +00001896 };
1897 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001898
dan4280eb32010-06-12 12:02:35 +00001899 /* If the first page of the wal-index has been mapped, try to read the
1900 ** wal-index header immediately, without holding any lock. This usually
1901 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001902 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001903 */
dan4280eb32010-06-12 12:02:35 +00001904 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001905
drh73b64e42010-05-30 19:55:15 +00001906 /* If the first attempt failed, it might have been due to a race
1907 ** with a writer. So get a WRITE lock and try again.
1908 */
dand54ff602010-05-31 11:16:30 +00001909 assert( badHdr==0 || pWal->writeLock==0 );
dan4280eb32010-06-12 12:02:35 +00001910 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1911 pWal->writeLock = 1;
1912 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
drh73b64e42010-05-30 19:55:15 +00001913 badHdr = walIndexTryHdr(pWal, pChanged);
1914 if( badHdr ){
1915 /* If the wal-index header is still malformed even while holding
1916 ** a WRITE lock, it can only mean that the header is corrupted and
1917 ** needs to be reconstructed. So run recovery to do exactly that.
1918 */
drhbab7b912010-05-26 17:31:58 +00001919 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001920 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001921 }
drhbab7b912010-05-26 17:31:58 +00001922 }
dan4280eb32010-06-12 12:02:35 +00001923 pWal->writeLock = 0;
1924 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
danb9bf16b2010-04-14 11:23:30 +00001925 }
1926
drha927e942010-06-24 02:46:48 +00001927 /* If the header is read successfully, check the version number to make
1928 ** sure the wal-index was not constructed with some future format that
1929 ** this version of SQLite cannot understand.
1930 */
1931 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1932 rc = SQLITE_CANTOPEN_BKPT;
1933 }
1934
danb9bf16b2010-04-14 11:23:30 +00001935 return rc;
1936}
1937
1938/*
drh73b64e42010-05-30 19:55:15 +00001939** This is the value that walTryBeginRead returns when it needs to
1940** be retried.
dan7c246102010-04-12 19:00:29 +00001941*/
drh73b64e42010-05-30 19:55:15 +00001942#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001943
drh73b64e42010-05-30 19:55:15 +00001944/*
1945** Attempt to start a read transaction. This might fail due to a race or
1946** other transient condition. When that happens, it returns WAL_RETRY to
1947** indicate to the caller that it is safe to retry immediately.
1948**
drha927e942010-06-24 02:46:48 +00001949** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00001950** I/O error or an SQLITE_BUSY because another process is running
1951** recovery) return a positive error code.
1952**
drha927e942010-06-24 02:46:48 +00001953** The useWal parameter is true to force the use of the WAL and disable
1954** the case where the WAL is bypassed because it has been completely
1955** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
1956** to make a copy of the wal-index header into pWal->hdr. If the
1957** wal-index header has changed, *pChanged is set to 1 (as an indication
1958** to the caller that the local paget cache is obsolete and needs to be
1959** flushed.) When useWal==1, the wal-index header is assumed to already
1960** be loaded and the pChanged parameter is unused.
1961**
1962** The caller must set the cnt parameter to the number of prior calls to
1963** this routine during the current read attempt that returned WAL_RETRY.
1964** This routine will start taking more aggressive measures to clear the
1965** race conditions after multiple WAL_RETRY returns, and after an excessive
1966** number of errors will ultimately return SQLITE_PROTOCOL. The
1967** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1968** and is not honoring the locking protocol. There is a vanishingly small
1969** chance that SQLITE_PROTOCOL could be returned because of a run of really
1970** bad luck when there is lots of contention for the wal-index, but that
1971** possibility is so small that it can be safely neglected, we believe.
1972**
drh73b64e42010-05-30 19:55:15 +00001973** On success, this routine obtains a read lock on
1974** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1975** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1976** that means the Wal does not hold any read lock. The reader must not
1977** access any database page that is modified by a WAL frame up to and
1978** including frame number aReadMark[pWal->readLock]. The reader will
1979** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1980** Or if pWal->readLock==0, then the reader will ignore the WAL
1981** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00001982** If the useWal parameter is 1 then the WAL will never be ignored and
1983** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00001984** When the read transaction is completed, the caller must release the
1985** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1986**
1987** This routine uses the nBackfill and aReadMark[] fields of the header
1988** to select a particular WAL_READ_LOCK() that strives to let the
1989** checkpoint process do as much work as possible. This routine might
1990** update values of the aReadMark[] array in the header, but if it does
1991** so it takes care to hold an exclusive lock on the corresponding
1992** WAL_READ_LOCK() while changing values.
1993*/
drhaab4c022010-06-02 14:45:51 +00001994static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001995 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1996 u32 mxReadMark; /* Largest aReadMark[] value */
1997 int mxI; /* Index of largest aReadMark[] value */
1998 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00001999 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00002000
drh61e4ace2010-05-31 20:28:37 +00002001 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002002
drh658d76c2011-02-19 15:22:14 +00002003 /* Take steps to avoid spinning forever if there is a protocol error.
2004 **
2005 ** Circumstances that cause a RETRY should only last for the briefest
2006 ** instances of time. No I/O or other system calls are done while the
2007 ** locks are held, so the locks should not be held for very long. But
2008 ** if we are unlucky, another process that is holding a lock might get
2009 ** paged out or take a page-fault that is time-consuming to resolve,
2010 ** during the few nanoseconds that it is holding the lock. In that case,
2011 ** it might take longer than normal for the lock to free.
2012 **
2013 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2014 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2015 ** is more of a scheduler yield than an actual delay. But on the 10th
2016 ** an subsequent retries, the delays start becoming longer and longer,
2017 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2018 ** The total delay time before giving up is less than 1 second.
2019 */
drhaab4c022010-06-02 14:45:51 +00002020 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002021 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002022 if( cnt>100 ){
2023 VVA_ONLY( pWal->lockError = 1; )
2024 return SQLITE_PROTOCOL;
2025 }
drh658d76c2011-02-19 15:22:14 +00002026 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
2027 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002028 }
2029
drh73b64e42010-05-30 19:55:15 +00002030 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002031 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002032 if( rc==SQLITE_BUSY ){
2033 /* If there is not a recovery running in another thread or process
2034 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2035 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2036 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2037 ** would be technically correct. But the race is benign since with
2038 ** WAL_RETRY this routine will be called again and will probably be
2039 ** right on the second iteration.
2040 */
dan7d4514a2010-07-15 17:54:14 +00002041 if( pWal->apWiData[0]==0 ){
2042 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2043 ** We assume this is a transient condition, so return WAL_RETRY. The
2044 ** xShmMap() implementation used by the default unix and win32 VFS
2045 ** modules may return SQLITE_BUSY due to a race condition in the
2046 ** code that determines whether or not the shared-memory region
2047 ** must be zeroed before the requested page is returned.
2048 */
2049 rc = WAL_RETRY;
2050 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002051 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2052 rc = WAL_RETRY;
2053 }else if( rc==SQLITE_BUSY ){
2054 rc = SQLITE_BUSY_RECOVERY;
2055 }
2056 }
drha927e942010-06-24 02:46:48 +00002057 if( rc!=SQLITE_OK ){
2058 return rc;
2059 }
drh73b64e42010-05-30 19:55:15 +00002060 }
2061
dan13a3cb82010-06-11 19:04:21 +00002062 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00002063 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2064 /* The WAL has been completely backfilled (or it is empty).
2065 ** and can be safely ignored.
2066 */
2067 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002068 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002069 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002070 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002071 /* It is not safe to allow the reader to continue here if frames
2072 ** may have been appended to the log before READ_LOCK(0) was obtained.
2073 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2074 ** which implies that the database file contains a trustworthy
2075 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2076 ** happening, this is usually correct.
2077 **
2078 ** However, if frames have been appended to the log (or if the log
2079 ** is wrapped and written for that matter) before the READ_LOCK(0)
2080 ** is obtained, that is not necessarily true. A checkpointer may
2081 ** have started to backfill the appended frames but crashed before
2082 ** it finished. Leaving a corrupt image in the database file.
2083 */
drh73b64e42010-05-30 19:55:15 +00002084 walUnlockShared(pWal, WAL_READ_LOCK(0));
2085 return WAL_RETRY;
2086 }
2087 pWal->readLock = 0;
2088 return SQLITE_OK;
2089 }else if( rc!=SQLITE_BUSY ){
2090 return rc;
dan64d039e2010-04-13 19:27:31 +00002091 }
dan7c246102010-04-12 19:00:29 +00002092 }
danba515902010-04-30 09:32:06 +00002093
drh73b64e42010-05-30 19:55:15 +00002094 /* If we get this far, it means that the reader will want to use
2095 ** the WAL to get at content from recent commits. The job now is
2096 ** to select one of the aReadMark[] entries that is closest to
2097 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2098 */
2099 mxReadMark = 0;
2100 mxI = 0;
2101 for(i=1; i<WAL_NREADER; i++){
2102 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00002103 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2104 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002105 mxReadMark = thisMark;
2106 mxI = i;
2107 }
2108 }
drh658d76c2011-02-19 15:22:14 +00002109 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2110 {
2111 if( mxReadMark < pWal->hdr.mxFrame || mxI==0 ){
dand54ff602010-05-31 11:16:30 +00002112 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00002113 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2114 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00002115 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00002116 mxI = i;
2117 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2118 break;
drh38933f22010-06-02 15:43:18 +00002119 }else if( rc!=SQLITE_BUSY ){
2120 return rc;
drh73b64e42010-05-30 19:55:15 +00002121 }
2122 }
2123 }
drh658d76c2011-02-19 15:22:14 +00002124 if( mxI==0 ){
2125 assert( rc==SQLITE_BUSY );
2126 return WAL_RETRY;
2127 }
drh73b64e42010-05-30 19:55:15 +00002128
2129 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2130 if( rc ){
2131 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2132 }
daneb8cb3a2010-06-05 18:34:26 +00002133 /* Now that the read-lock has been obtained, check that neither the
2134 ** value in the aReadMark[] array or the contents of the wal-index
2135 ** header have changed.
2136 **
2137 ** It is necessary to check that the wal-index header did not change
2138 ** between the time it was read and when the shared-lock was obtained
2139 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2140 ** that the log file may have been wrapped by a writer, or that frames
2141 ** that occur later in the log than pWal->hdr.mxFrame may have been
2142 ** copied into the database by a checkpointer. If either of these things
2143 ** happened, then reading the database with the current value of
2144 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2145 ** instead.
2146 **
dan640aac42010-06-05 19:18:59 +00002147 ** This does not guarantee that the copy of the wal-index header is up to
2148 ** date before proceeding. That would not be possible without somehow
2149 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002150 ** log-wrap (either of which would require an exclusive lock on
2151 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2152 */
dan8c408002010-11-01 17:38:24 +00002153 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002154 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002155 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002156 ){
2157 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2158 return WAL_RETRY;
2159 }else{
drhdb7f6472010-06-09 14:45:12 +00002160 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002161 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002162 }
2163 }
2164 return rc;
2165}
2166
2167/*
2168** Begin a read transaction on the database.
2169**
2170** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2171** it takes a snapshot of the state of the WAL and wal-index for the current
2172** instant in time. The current thread will continue to use this snapshot.
2173** Other threads might append new content to the WAL and wal-index but
2174** that extra content is ignored by the current thread.
2175**
2176** If the database contents have changes since the previous read
2177** transaction, then *pChanged is set to 1 before returning. The
2178** Pager layer will use this to know that is cache is stale and
2179** needs to be flushed.
2180*/
2181int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2182 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002183 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002184
2185 do{
drhaab4c022010-06-02 14:45:51 +00002186 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002187 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002188 testcase( (rc&0xff)==SQLITE_BUSY );
2189 testcase( (rc&0xff)==SQLITE_IOERR );
2190 testcase( rc==SQLITE_PROTOCOL );
2191 testcase( rc==SQLITE_OK );
dan7c246102010-04-12 19:00:29 +00002192 return rc;
2193}
2194
2195/*
drh73b64e42010-05-30 19:55:15 +00002196** Finish with a read transaction. All this does is release the
2197** read-lock.
dan7c246102010-04-12 19:00:29 +00002198*/
drh73b64e42010-05-30 19:55:15 +00002199void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002200 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002201 if( pWal->readLock>=0 ){
2202 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2203 pWal->readLock = -1;
2204 }
dan7c246102010-04-12 19:00:29 +00002205}
2206
dan5e0ce872010-04-28 17:48:44 +00002207/*
drh73b64e42010-05-30 19:55:15 +00002208** Read a page from the WAL, if it is present in the WAL and if the
2209** current read transaction is configured to use the WAL.
2210**
2211** The *pInWal is set to 1 if the requested page is in the WAL and
2212** has been loaded. Or *pInWal is set to 0 if the page was not in
2213** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00002214*/
danb6e099a2010-05-04 14:47:39 +00002215int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00002216 Wal *pWal, /* WAL handle */
2217 Pgno pgno, /* Database page number to read data for */
2218 int *pInWal, /* OUT: True if data is read from WAL */
2219 int nOut, /* Size of buffer pOut in bytes */
2220 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00002221){
danbb23aff2010-05-10 14:46:09 +00002222 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002223 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002224 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002225
drhaab4c022010-06-02 14:45:51 +00002226 /* This routine is only be called from within a read transaction. */
2227 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002228
danbb23aff2010-05-10 14:46:09 +00002229 /* If the "last page" field of the wal-index header snapshot is 0, then
2230 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002231 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2232 ** then the WAL is ignored by the reader so return early, as if the
2233 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002234 */
drh73b64e42010-05-30 19:55:15 +00002235 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00002236 *pInWal = 0;
2237 return SQLITE_OK;
2238 }
2239
danbb23aff2010-05-10 14:46:09 +00002240 /* Search the hash table or tables for an entry matching page number
2241 ** pgno. Each iteration of the following for() loop searches one
2242 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2243 **
drha927e942010-06-24 02:46:48 +00002244 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002245 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002246 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002247 ** slot (aHash[iKey]) may have been added before or after the
2248 ** current read transaction was opened. Values added after the
2249 ** read transaction was opened may have been written incorrectly -
2250 ** i.e. these slots may contain garbage data. However, we assume
2251 ** that any slots written before the current read transaction was
2252 ** opened remain unmodified.
2253 **
2254 ** For the reasons above, the if(...) condition featured in the inner
2255 ** loop of the following block is more stringent that would be required
2256 ** if we had exclusive access to the hash-table:
2257 **
2258 ** (aPgno[iFrame]==pgno):
2259 ** This condition filters out normal hash-table collisions.
2260 **
2261 ** (iFrame<=iLast):
2262 ** This condition filters out entries that were added to the hash
2263 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002264 */
dan13a3cb82010-06-11 19:04:21 +00002265 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002266 volatile ht_slot *aHash; /* Pointer to hash table */
2267 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002268 u32 iZero; /* Frame number corresponding to aPgno[0] */
2269 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002270 int nCollide; /* Number of hash collisions remaining */
2271 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002272
dan4280eb32010-06-12 12:02:35 +00002273 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2274 if( rc!=SQLITE_OK ){
2275 return rc;
2276 }
drh519426a2010-07-09 03:19:07 +00002277 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002278 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002279 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002280 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
dan493cc592010-06-05 18:12:23 +00002281 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00002282 iRead = iFrame;
2283 }
drh519426a2010-07-09 03:19:07 +00002284 if( (nCollide--)==0 ){
2285 return SQLITE_CORRUPT_BKPT;
2286 }
dan7c246102010-04-12 19:00:29 +00002287 }
2288 }
dan7c246102010-04-12 19:00:29 +00002289
danbb23aff2010-05-10 14:46:09 +00002290#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2291 /* If expensive assert() statements are available, do a linear search
2292 ** of the wal-index file content. Make sure the results agree with the
2293 ** result obtained using the hash indexes above. */
2294 {
2295 u32 iRead2 = 0;
2296 u32 iTest;
2297 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002298 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002299 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002300 break;
2301 }
dan7c246102010-04-12 19:00:29 +00002302 }
danbb23aff2010-05-10 14:46:09 +00002303 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002304 }
danbb23aff2010-05-10 14:46:09 +00002305#endif
dancd11fb22010-04-26 10:40:52 +00002306
dan7c246102010-04-12 19:00:29 +00002307 /* If iRead is non-zero, then it is the log frame number that contains the
2308 ** required page. Read and return data from the log file.
2309 */
2310 if( iRead ){
drhb2eced52010-08-12 02:41:12 +00002311 int sz;
2312 i64 iOffset;
2313 sz = pWal->hdr.szPage;
drh9b78f792010-08-14 21:21:24 +00002314 sz = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2315 testcase( sz<=32768 );
2316 testcase( sz>=65536 );
drhb2eced52010-08-12 02:41:12 +00002317 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00002318 *pInWal = 1;
drh09b5dbc2010-07-07 14:35:58 +00002319 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002320 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00002321 }
2322
drh7ed91f22010-04-29 22:34:07 +00002323 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002324 return SQLITE_OK;
2325}
2326
2327
2328/*
dan763afe62010-08-03 06:42:39 +00002329** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002330*/
dan763afe62010-08-03 06:42:39 +00002331Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002332 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002333 return pWal->hdr.nPage;
2334 }
2335 return 0;
dan7c246102010-04-12 19:00:29 +00002336}
2337
dan30c86292010-04-30 16:24:46 +00002338
drh73b64e42010-05-30 19:55:15 +00002339/*
2340** This function starts a write transaction on the WAL.
2341**
2342** A read transaction must have already been started by a prior call
2343** to sqlite3WalBeginReadTransaction().
2344**
2345** If another thread or process has written into the database since
2346** the read transaction was started, then it is not possible for this
2347** thread to write as doing so would cause a fork. So this routine
2348** returns SQLITE_BUSY in that case and no write transaction is started.
2349**
2350** There can only be a single writer active at a time.
2351*/
2352int sqlite3WalBeginWriteTransaction(Wal *pWal){
2353 int rc;
drh73b64e42010-05-30 19:55:15 +00002354
2355 /* Cannot start a write transaction without first holding a read
2356 ** transaction. */
2357 assert( pWal->readLock>=0 );
2358
dan1e5de5a2010-07-15 18:20:53 +00002359 if( pWal->readOnly ){
2360 return SQLITE_READONLY;
2361 }
2362
drh73b64e42010-05-30 19:55:15 +00002363 /* Only one writer allowed at a time. Get the write lock. Return
2364 ** SQLITE_BUSY if unable.
2365 */
2366 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2367 if( rc ){
2368 return rc;
2369 }
drhc99597c2010-05-31 01:41:15 +00002370 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002371
2372 /* If another connection has written to the database file since the
2373 ** time the read transaction on this connection was started, then
2374 ** the write is disallowed.
2375 */
dan4280eb32010-06-12 12:02:35 +00002376 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002377 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002378 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002379 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002380 }
2381
drh7ed91f22010-04-29 22:34:07 +00002382 return rc;
dan7c246102010-04-12 19:00:29 +00002383}
2384
dan74d6cd82010-04-24 18:44:05 +00002385/*
drh73b64e42010-05-30 19:55:15 +00002386** End a write transaction. The commit has already been done. This
2387** routine merely releases the lock.
2388*/
2389int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002390 if( pWal->writeLock ){
2391 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2392 pWal->writeLock = 0;
2393 }
drh73b64e42010-05-30 19:55:15 +00002394 return SQLITE_OK;
2395}
2396
2397/*
dan74d6cd82010-04-24 18:44:05 +00002398** If any data has been written (but not committed) to the log file, this
2399** function moves the write-pointer back to the start of the transaction.
2400**
2401** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002402** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002403** other than SQLITE_OK, it is not invoked again and the error code is
2404** returned to the caller.
2405**
2406** Otherwise, if the callback function does not return an error, this
2407** function returns SQLITE_OK.
2408*/
drh7ed91f22010-04-29 22:34:07 +00002409int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002410 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002411 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002412 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002413 Pgno iFrame;
2414
dan5d656852010-06-14 07:53:26 +00002415 /* Restore the clients cache of the wal-index header to the state it
2416 ** was in before the client began writing to the database.
2417 */
dan067f3162010-06-14 10:30:12 +00002418 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002419
2420 for(iFrame=pWal->hdr.mxFrame+1;
2421 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2422 iFrame++
2423 ){
2424 /* This call cannot fail. Unless the page for which the page number
2425 ** is passed as the second argument is (a) in the cache and
2426 ** (b) has an outstanding reference, then xUndo is either a no-op
2427 ** (if (a) is false) or simply expels the page from the cache (if (b)
2428 ** is false).
2429 **
2430 ** If the upper layer is doing a rollback, it is guaranteed that there
2431 ** are no outstanding references to any page other than page 1. And
2432 ** page 1 is never written to the log until the transaction is
2433 ** committed. As a result, the call to xUndo may not fail.
2434 */
dan5d656852010-06-14 07:53:26 +00002435 assert( walFramePgno(pWal, iFrame)!=1 );
2436 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002437 }
dan5d656852010-06-14 07:53:26 +00002438 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002439 }
dan5d656852010-06-14 07:53:26 +00002440 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002441 return rc;
2442}
2443
dan71d89912010-05-24 13:57:42 +00002444/*
2445** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2446** values. This function populates the array with values required to
2447** "rollback" the write position of the WAL handle back to the current
2448** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002449*/
dan71d89912010-05-24 13:57:42 +00002450void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002451 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002452 aWalData[0] = pWal->hdr.mxFrame;
2453 aWalData[1] = pWal->hdr.aFrameCksum[0];
2454 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002455 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002456}
2457
dan71d89912010-05-24 13:57:42 +00002458/*
2459** Move the write position of the WAL back to the point identified by
2460** the values in the aWalData[] array. aWalData must point to an array
2461** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2462** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002463*/
dan71d89912010-05-24 13:57:42 +00002464int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002465 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002466
dan6e6bd562010-06-02 18:59:03 +00002467 assert( pWal->writeLock );
2468 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2469
2470 if( aWalData[3]!=pWal->nCkpt ){
2471 /* This savepoint was opened immediately after the write-transaction
2472 ** was started. Right after that, the writer decided to wrap around
2473 ** to the start of the log. Update the savepoint values to match.
2474 */
2475 aWalData[0] = 0;
2476 aWalData[3] = pWal->nCkpt;
2477 }
2478
dan71d89912010-05-24 13:57:42 +00002479 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002480 pWal->hdr.mxFrame = aWalData[0];
2481 pWal->hdr.aFrameCksum[0] = aWalData[1];
2482 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002483 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002484 }
dan6e6bd562010-06-02 18:59:03 +00002485
dan4cd78b42010-04-26 16:57:10 +00002486 return rc;
2487}
2488
dan9971e712010-06-01 15:44:57 +00002489/*
2490** This function is called just before writing a set of frames to the log
2491** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2492** to the current log file, it is possible to overwrite the start of the
2493** existing log file with the new frames (i.e. "reset" the log). If so,
2494** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2495** unchanged.
2496**
2497** SQLITE_OK is returned if no error is encountered (regardless of whether
2498** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002499** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002500*/
2501static int walRestartLog(Wal *pWal){
2502 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002503 int cnt;
2504
dan13a3cb82010-06-11 19:04:21 +00002505 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002506 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2507 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2508 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002509 u32 salt1;
2510 sqlite3_randomness(4, &salt1);
dan9971e712010-06-01 15:44:57 +00002511 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2512 if( rc==SQLITE_OK ){
2513 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2514 ** readers are currently using the WAL), then the transactions
2515 ** frames will overwrite the start of the existing log. Update the
2516 ** wal-index header to reflect this.
2517 **
2518 ** In theory it would be Ok to update the cache of the header only
2519 ** at this point. But updating the actual wal-index header is also
2520 ** safe and means there is no special case for sqlite3WalUndo()
2521 ** to handle if this transaction is rolled back.
2522 */
dan199100e2010-06-09 16:58:49 +00002523 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002524 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2525 pWal->nCkpt++;
2526 pWal->hdr.mxFrame = 0;
2527 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
drh658d76c2011-02-19 15:22:14 +00002528 aSalt[1] = salt1;
dan9971e712010-06-01 15:44:57 +00002529 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002530 pInfo->nBackfill = 0;
2531 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2532 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002533 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002534 }else if( rc!=SQLITE_BUSY ){
2535 return rc;
dan9971e712010-06-01 15:44:57 +00002536 }
2537 }
2538 walUnlockShared(pWal, WAL_READ_LOCK(0));
2539 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002540 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002541 do{
2542 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002543 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002544 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002545 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002546 testcase( (rc&0xff)==SQLITE_IOERR );
2547 testcase( rc==SQLITE_PROTOCOL );
2548 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002549 }
2550 return rc;
2551}
2552
dan7c246102010-04-12 19:00:29 +00002553/*
dan4cd78b42010-04-26 16:57:10 +00002554** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002555** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002556*/
drhc438efd2010-04-26 00:19:45 +00002557int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002558 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002559 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002560 PgHdr *pList, /* List of dirty pages to write */
2561 Pgno nTruncate, /* Database size after this commit */
2562 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002563 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002564){
dan7c246102010-04-12 19:00:29 +00002565 int rc; /* Used to catch return codes */
2566 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002567 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002568 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002569 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002570 int nLast = 0; /* Number of extra copies of last page */
2571
dan7c246102010-04-12 19:00:29 +00002572 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002573 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002574
drhc74c3332010-05-31 12:15:19 +00002575#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2576 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2577 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2578 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2579 }
2580#endif
2581
dan9971e712010-06-01 15:44:57 +00002582 /* See if it is possible to write these frames into the start of the
2583 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2584 */
2585 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002586 return rc;
2587 }
dan9971e712010-06-01 15:44:57 +00002588
drha2a42012010-05-18 18:01:08 +00002589 /* If this is the first frame written into the log, write the WAL
2590 ** header to the start of the WAL file. See comments at the top of
2591 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002592 */
drh027a1282010-05-19 01:53:53 +00002593 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002594 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002595 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2596 u32 aCksum[2]; /* Checksum for wal-header */
2597
danb8fd6c22010-05-24 10:39:36 +00002598 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002599 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002600 sqlite3Put4byte(&aWalHdr[8], szPage);
2601 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh2327f5a2010-07-07 21:06:48 +00002602 sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002603 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002604 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2605 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2606 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2607
drhb2eced52010-08-12 02:41:12 +00002608 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002609 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2610 pWal->hdr.aFrameCksum[0] = aCksum[0];
2611 pWal->hdr.aFrameCksum[1] = aCksum[1];
2612
drh23ea97b2010-05-20 16:45:58 +00002613 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002614 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002615 if( rc!=SQLITE_OK ){
2616 return rc;
2617 }
2618 }
shanehbd2aaf92010-09-01 02:38:21 +00002619 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002620
dan9971e712010-06-01 15:44:57 +00002621 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002622 for(p=pList; p; p=p->pDirty){
2623 u32 nDbsize; /* Db-size field for frame header */
2624 i64 iOffset; /* Write offset in log file */
dan47ee3862010-06-22 15:18:44 +00002625 void *pData;
2626
drh6e810962010-05-19 17:49:50 +00002627 iOffset = walFrameOffset(++iFrame, szPage);
drhe9187b42010-07-07 14:39:59 +00002628 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
dan7c246102010-04-12 19:00:29 +00002629
2630 /* Populate and write the frame header */
2631 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drha7152112010-06-22 21:15:49 +00002632#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002633 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002634#else
2635 pData = p->pData;
2636#endif
dan47ee3862010-06-22 15:18:44 +00002637 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002638 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002639 if( rc!=SQLITE_OK ){
2640 return rc;
2641 }
2642
2643 /* Write the page data */
dan47ee3862010-06-22 15:18:44 +00002644 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002645 if( rc!=SQLITE_OK ){
2646 return rc;
2647 }
2648 pLast = p;
2649 }
2650
2651 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002652 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002653 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002654 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002655
2656 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002657 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002658
dan7c246102010-04-12 19:00:29 +00002659 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2660 while( iOffset<iSegment ){
dan47ee3862010-06-22 15:18:44 +00002661 void *pData;
drha7152112010-06-22 21:15:49 +00002662#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002663 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002664#else
2665 pData = pLast->pData;
2666#endif
dan47ee3862010-06-22 15:18:44 +00002667 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
drhe9187b42010-07-07 14:39:59 +00002668 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002669 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002670 if( rc!=SQLITE_OK ){
2671 return rc;
2672 }
drh7ed91f22010-04-29 22:34:07 +00002673 iOffset += WAL_FRAME_HDRSIZE;
dan47ee3862010-06-22 15:18:44 +00002674 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002675 if( rc!=SQLITE_OK ){
2676 return rc;
2677 }
2678 nLast++;
drh6e810962010-05-19 17:49:50 +00002679 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002680 }
dan7c246102010-04-12 19:00:29 +00002681
drhd9e5c4f2010-05-12 18:01:39 +00002682 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002683 }
2684
drhe730fec2010-05-18 12:56:50 +00002685 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002686 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002687 ** guarantees that there are no other writers, and no data that may
2688 ** be in use by existing readers is being overwritten.
2689 */
drh027a1282010-05-19 01:53:53 +00002690 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002691 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002692 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002693 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002694 }
danc7991bd2010-05-05 19:04:59 +00002695 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002696 iFrame++;
2697 nLast--;
danc7991bd2010-05-05 19:04:59 +00002698 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002699 }
2700
danc7991bd2010-05-05 19:04:59 +00002701 if( rc==SQLITE_OK ){
2702 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002703 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002704 testcase( szPage<=32768 );
2705 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002706 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002707 if( isCommit ){
2708 pWal->hdr.iChange++;
2709 pWal->hdr.nPage = nTruncate;
2710 }
danc7991bd2010-05-05 19:04:59 +00002711 /* If this is a commit, update the wal-index header too. */
2712 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002713 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002714 pWal->iCallback = iFrame;
2715 }
dan7c246102010-04-12 19:00:29 +00002716 }
danc7991bd2010-05-05 19:04:59 +00002717
drhc74c3332010-05-31 12:15:19 +00002718 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002719 return rc;
dan7c246102010-04-12 19:00:29 +00002720}
2721
2722/*
drh73b64e42010-05-30 19:55:15 +00002723** This routine is called to implement sqlite3_wal_checkpoint() and
2724** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002725**
drh73b64e42010-05-30 19:55:15 +00002726** Obtain a CHECKPOINT lock and then backfill as much information as
2727** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00002728**
2729** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2730** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00002731*/
drhc438efd2010-04-26 00:19:45 +00002732int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002733 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00002734 int eMode, /* PASSIVE, FULL or RESTART */
dana58f26f2010-11-16 18:56:51 +00002735 int (*xBusy)(void*), /* Function to call when busy */
2736 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00002737 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002738 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00002739 u8 *zBuf, /* Temporary buffer to use */
2740 int *pnLog, /* OUT: Number of frames in WAL */
2741 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00002742){
danb9bf16b2010-04-14 11:23:30 +00002743 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002744 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00002745 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
dan7c246102010-04-12 19:00:29 +00002746
dand54ff602010-05-31 11:16:30 +00002747 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00002748 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00002749
drhc74c3332010-05-31 12:15:19 +00002750 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002751 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2752 if( rc ){
2753 /* Usually this is SQLITE_BUSY meaning that another thread or process
2754 ** is already running a checkpoint, or maybe a recovery. But it might
2755 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002756 return rc;
2757 }
dand54ff602010-05-31 11:16:30 +00002758 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002759
dana58f26f2010-11-16 18:56:51 +00002760 /* If this is a blocking-checkpoint, then obtain the write-lock as well
2761 ** to prevent any writers from running while the checkpoint is underway.
2762 ** This has to be done before the call to walIndexReadHdr() below.
danf2b8dd52010-11-18 19:28:01 +00002763 **
2764 ** If the writer lock cannot be obtained, then a passive checkpoint is
2765 ** run instead. Since the checkpointer is not holding the writer lock,
2766 ** there is no point in blocking waiting for any readers. Assuming no
2767 ** other error occurs, this function will return SQLITE_BUSY to the caller.
dana58f26f2010-11-16 18:56:51 +00002768 */
dancdc1f042010-11-18 12:11:05 +00002769 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00002770 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00002771 if( rc==SQLITE_OK ){
2772 pWal->writeLock = 1;
2773 }else if( rc==SQLITE_BUSY ){
2774 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2775 rc = SQLITE_OK;
2776 }
danb9bf16b2010-04-14 11:23:30 +00002777 }
dana58f26f2010-11-16 18:56:51 +00002778
danf2b8dd52010-11-18 19:28:01 +00002779 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00002780 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00002781 rc = walIndexReadHdr(pWal, &isChanged);
2782 }
danf2b8dd52010-11-18 19:28:01 +00002783
2784 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00002785 if( rc==SQLITE_OK ){
2786 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00002787 rc = SQLITE_CORRUPT_BKPT;
2788 }else{
dan9c5e3682011-02-07 15:12:12 +00002789 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2790 }
2791
2792 /* If no error occurred, set the output variables. */
2793 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00002794 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00002795 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00002796 }
danb9bf16b2010-04-14 11:23:30 +00002797 }
danf2b8dd52010-11-18 19:28:01 +00002798
dan31c03902010-04-29 14:51:33 +00002799 if( isChanged ){
2800 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002801 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002802 ** out of date. So zero the cached wal-index header to ensure that
2803 ** next time the pager opens a snapshot on this database it knows that
2804 ** the cache needs to be reset.
2805 */
2806 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2807 }
danb9bf16b2010-04-14 11:23:30 +00002808
2809 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00002810 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002811 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002812 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002813 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00002814 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00002815}
2816
drh7ed91f22010-04-29 22:34:07 +00002817/* Return the value to pass to a sqlite3_wal_hook callback, the
2818** number of frames in the WAL at the point of the last commit since
2819** sqlite3WalCallback() was called. If no commits have occurred since
2820** the last call, then return 0.
2821*/
2822int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002823 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002824 if( pWal ){
2825 ret = pWal->iCallback;
2826 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002827 }
2828 return (int)ret;
2829}
dan55437592010-05-11 12:19:26 +00002830
2831/*
drh61e4ace2010-05-31 20:28:37 +00002832** This function is called to change the WAL subsystem into or out
2833** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002834**
drh61e4ace2010-05-31 20:28:37 +00002835** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2836** into locking_mode=NORMAL. This means that we must acquire a lock
2837** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2838** or if the acquisition of the lock fails, then return 0. If the
2839** transition out of exclusive-mode is successful, return 1. This
2840** operation must occur while the pager is still holding the exclusive
2841** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002842**
drh61e4ace2010-05-31 20:28:37 +00002843** If op is one, then change from locking_mode=NORMAL into
2844** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2845** be released. Return 1 if the transition is made and 0 if the
2846** WAL is already in exclusive-locking mode - meaning that this
2847** routine is a no-op. The pager must already hold the exclusive lock
2848** on the main database file before invoking this operation.
2849**
2850** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00002851** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00002852** should acquire the database exclusive lock prior to invoking
2853** the op==1 case.
dan55437592010-05-11 12:19:26 +00002854*/
2855int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002856 int rc;
drhaab4c022010-06-02 14:45:51 +00002857 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00002858 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00002859
2860 /* pWal->readLock is usually set, but might be -1 if there was a
2861 ** prior error while attempting to acquire are read-lock. This cannot
2862 ** happen if the connection is actually in exclusive mode (as no xShmLock
2863 ** locks are taken in this case). Nor should the pager attempt to
2864 ** upgrade to exclusive-mode following such an error.
2865 */
drhaab4c022010-06-02 14:45:51 +00002866 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002867 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2868
drh61e4ace2010-05-31 20:28:37 +00002869 if( op==0 ){
2870 if( pWal->exclusiveMode ){
2871 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002872 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002873 pWal->exclusiveMode = 1;
2874 }
2875 rc = pWal->exclusiveMode==0;
2876 }else{
drhaab4c022010-06-02 14:45:51 +00002877 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002878 rc = 0;
2879 }
2880 }else if( op>0 ){
2881 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002882 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002883 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2884 pWal->exclusiveMode = 1;
2885 rc = 1;
2886 }else{
2887 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002888 }
drh61e4ace2010-05-31 20:28:37 +00002889 return rc;
dan55437592010-05-11 12:19:26 +00002890}
2891
dan8c408002010-11-01 17:38:24 +00002892/*
2893** Return true if the argument is non-NULL and the WAL module is using
2894** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
2895** WAL module is using shared-memory, return false.
2896*/
2897int sqlite3WalHeapMemory(Wal *pWal){
2898 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
2899}
2900
dan5cf53532010-05-01 16:40:20 +00002901#endif /* #ifndef SQLITE_OMIT_WAL */