blob: cf9237f286871a87670f8eeae02e8e79a9fb6bfc [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
danielk1977fc57d7b2004-05-26 02:04:57 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
drh9a324642003-09-06 20:12:01 +000014** to version 2.8.7, all this code was combined into the vdbe.c source file.
15** But that file was getting too big so this subroutines were split out.
16*/
17#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000018#include "vdbeInt.h"
19
drh9a324642003-09-06 20:12:01 +000020/*
21** Create a new virtual database engine.
22*/
drh9bb575f2004-09-06 17:24:11 +000023Vdbe *sqlite3VdbeCreate(sqlite3 *db){
drh9a324642003-09-06 20:12:01 +000024 Vdbe *p;
drh17435752007-08-16 04:30:38 +000025 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000026 if( p==0 ) return 0;
27 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
30 }
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
35 return p;
36}
37
38/*
drhb900aaf2006-11-09 00:24:53 +000039** Remember the SQL string for a prepared statement.
40*/
danielk19776ab3a2e2009-02-19 14:39:25 +000041void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000042 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000043 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000044#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000045 if( !isPrepareV2 ) return;
46#endif
drhb900aaf2006-11-09 00:24:53 +000047 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000048 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000049 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000050}
51
52/*
53** Return the SQL associated with a prepared statement
54*/
danielk1977d0e2a852007-11-14 06:48:48 +000055const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000056 Vdbe *p = (Vdbe *)pStmt;
drh87f5c5f2010-01-20 01:20:56 +000057 return (p && p->isPrepareV2) ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000058}
59
60/*
drhc5155252007-01-08 21:07:17 +000061** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000062*/
drhc5155252007-01-08 21:07:17 +000063void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
64 Vdbe tmp, *pTmp;
65 char *zTmp;
drhc5155252007-01-08 21:07:17 +000066 tmp = *pA;
67 *pA = *pB;
68 *pB = tmp;
69 pTmp = pA->pNext;
70 pA->pNext = pB->pNext;
71 pB->pNext = pTmp;
72 pTmp = pA->pPrev;
73 pA->pPrev = pB->pPrev;
74 pB->pPrev = pTmp;
75 zTmp = pA->zSql;
76 pA->zSql = pB->zSql;
77 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000078 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000079}
80
drhcf1023c2007-05-08 20:59:49 +000081#ifdef SQLITE_DEBUG
drhb900aaf2006-11-09 00:24:53 +000082/*
drh9a324642003-09-06 20:12:01 +000083** Turn tracing on or off
84*/
danielk19774adee202004-05-08 08:23:19 +000085void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
drh9a324642003-09-06 20:12:01 +000086 p->trace = trace;
87}
drhcf1023c2007-05-08 20:59:49 +000088#endif
drh9a324642003-09-06 20:12:01 +000089
90/*
danielk197700e13612008-11-17 19:18:54 +000091** Resize the Vdbe.aOp array so that it is at least one op larger than
92** it was.
danielk1977ace3eb22006-01-26 10:35:04 +000093**
danielk197700e13612008-11-17 19:18:54 +000094** If an out-of-memory error occurs while resizing the array, return
95** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
96** unchanged (this is so that any opcodes already allocated can be
97** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +000098*/
danielk197700e13612008-11-17 19:18:54 +000099static int growOpArray(Vdbe *p){
drha4e5d582007-10-20 15:41:57 +0000100 VdbeOp *pNew;
danielk197700e13612008-11-17 19:18:54 +0000101 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
102 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000103 if( pNew ){
drhb45f65d2009-03-01 19:42:11 +0000104 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
drha4e5d582007-10-20 15:41:57 +0000105 p->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000106 }
danielk197700e13612008-11-17 19:18:54 +0000107 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
drh76ff3a02004-09-24 22:32:30 +0000108}
109
110/*
drh9a324642003-09-06 20:12:01 +0000111** Add a new instruction to the list of instructions current in the
112** VDBE. Return the address of the new instruction.
113**
114** Parameters:
115**
116** p Pointer to the VDBE
117**
118** op The opcode for this instruction
119**
drh66a51672008-01-03 00:01:23 +0000120** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000121**
danielk19774adee202004-05-08 08:23:19 +0000122** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000123** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000124** operand.
125*/
drh66a51672008-01-03 00:01:23 +0000126int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000127 int i;
drh701a0ae2004-02-22 20:05:00 +0000128 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000129
130 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000131 assert( p->magic==VDBE_MAGIC_INIT );
drh8df32842008-12-09 02:51:23 +0000132 assert( op>0 && op<0xff );
drhfd2d26b2006-03-15 22:44:36 +0000133 if( p->nOpAlloc<=i ){
danielk197700e13612008-11-17 19:18:54 +0000134 if( growOpArray(p) ){
drhc42ed162009-06-26 14:04:51 +0000135 return 1;
drhfd2d26b2006-03-15 22:44:36 +0000136 }
drh9a324642003-09-06 20:12:01 +0000137 }
danielk197701256832007-04-18 14:24:32 +0000138 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000139 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000140 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000141 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000142 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000143 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000144 pOp->p3 = p3;
145 pOp->p4.p = 0;
146 pOp->p4type = P4_NOTUSED;
danielk19778b60e0f2005-01-12 09:10:39 +0000147#ifdef SQLITE_DEBUG
drh26c9b5e2008-04-11 14:56:53 +0000148 pOp->zComment = 0;
drhe0962052013-01-29 19:14:31 +0000149 if( p->db->flags & SQLITE_VdbeAddopTrace ){
150 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
151 }
drh9a324642003-09-06 20:12:01 +0000152#endif
drh26c9b5e2008-04-11 14:56:53 +0000153#ifdef VDBE_PROFILE
154 pOp->cycles = 0;
155 pOp->cnt = 0;
156#endif
drh9a324642003-09-06 20:12:01 +0000157 return i;
158}
drh66a51672008-01-03 00:01:23 +0000159int sqlite3VdbeAddOp0(Vdbe *p, int op){
160 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
161}
162int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
163 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
164}
165int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
166 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000167}
168
drh66a51672008-01-03 00:01:23 +0000169
drh701a0ae2004-02-22 20:05:00 +0000170/*
drh66a51672008-01-03 00:01:23 +0000171** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000172*/
drh66a51672008-01-03 00:01:23 +0000173int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000174 Vdbe *p, /* Add the opcode to this VM */
175 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000176 int p1, /* The P1 operand */
177 int p2, /* The P2 operand */
178 int p3, /* The P3 operand */
179 const char *zP4, /* The P4 operand */
180 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000181){
drh66a51672008-01-03 00:01:23 +0000182 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
183 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000184 return addr;
185}
186
187/*
drh5d9c9da2011-06-03 20:11:17 +0000188** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000189** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
190** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000191**
192** The zWhere string must have been obtained from sqlite3_malloc().
193** This routine will take ownership of the allocated memory.
194*/
195void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
196 int j;
197 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
198 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
199 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
200}
201
202/*
drh8cff69d2009-11-12 19:59:44 +0000203** Add an opcode that includes the p4 value as an integer.
204*/
205int sqlite3VdbeAddOp4Int(
206 Vdbe *p, /* Add the opcode to this VM */
207 int op, /* The new opcode */
208 int p1, /* The P1 operand */
209 int p2, /* The P2 operand */
210 int p3, /* The P3 operand */
211 int p4 /* The P4 operand as an integer */
212){
213 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
214 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
215 return addr;
216}
217
218/*
drh9a324642003-09-06 20:12:01 +0000219** Create a new symbolic label for an instruction that has yet to be
220** coded. The symbolic label is really just a negative number. The
221** label can be used as the P2 value of an operation. Later, when
222** the label is resolved to a specific address, the VDBE will scan
223** through its operation list and change all values of P2 which match
224** the label into the resolved address.
225**
226** The VDBE knows that a P2 value is a label because labels are
227** always negative and P2 values are suppose to be non-negative.
228** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000229**
230** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000231*/
danielk19774adee202004-05-08 08:23:19 +0000232int sqlite3VdbeMakeLabel(Vdbe *p){
drhc35f3d52012-02-01 19:03:38 +0000233 int i = p->nLabel++;
drh9a324642003-09-06 20:12:01 +0000234 assert( p->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000235 if( (i & (i-1))==0 ){
236 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
237 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000238 }
drh76ff3a02004-09-24 22:32:30 +0000239 if( p->aLabel ){
240 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000241 }
drh9a324642003-09-06 20:12:01 +0000242 return -1-i;
243}
244
245/*
246** Resolve label "x" to be the address of the next instruction to
247** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000248** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000249*/
danielk19774adee202004-05-08 08:23:19 +0000250void sqlite3VdbeResolveLabel(Vdbe *p, int x){
drh76ff3a02004-09-24 22:32:30 +0000251 int j = -1-x;
drh9a324642003-09-06 20:12:01 +0000252 assert( p->magic==VDBE_MAGIC_INIT );
drh76ff3a02004-09-24 22:32:30 +0000253 assert( j>=0 && j<p->nLabel );
254 if( p->aLabel ){
255 p->aLabel[j] = p->nOp;
drh9a324642003-09-06 20:12:01 +0000256 }
257}
258
drh4611d922010-02-25 14:47:01 +0000259/*
260** Mark the VDBE as one that can only be run one time.
261*/
262void sqlite3VdbeRunOnlyOnce(Vdbe *p){
263 p->runOnlyOnce = 1;
264}
265
drhff738bc2009-09-24 00:09:58 +0000266#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000267
268/*
269** The following type and function are used to iterate through all opcodes
270** in a Vdbe main program and each of the sub-programs (triggers) it may
271** invoke directly or indirectly. It should be used as follows:
272**
273** Op *pOp;
274** VdbeOpIter sIter;
275**
276** memset(&sIter, 0, sizeof(sIter));
277** sIter.v = v; // v is of type Vdbe*
278** while( (pOp = opIterNext(&sIter)) ){
279** // Do something with pOp
280** }
281** sqlite3DbFree(v->db, sIter.apSub);
282**
283*/
284typedef struct VdbeOpIter VdbeOpIter;
285struct VdbeOpIter {
286 Vdbe *v; /* Vdbe to iterate through the opcodes of */
287 SubProgram **apSub; /* Array of subprograms */
288 int nSub; /* Number of entries in apSub */
289 int iAddr; /* Address of next instruction to return */
290 int iSub; /* 0 = main program, 1 = first sub-program etc. */
291};
292static Op *opIterNext(VdbeOpIter *p){
293 Vdbe *v = p->v;
294 Op *pRet = 0;
295 Op *aOp;
296 int nOp;
297
298 if( p->iSub<=p->nSub ){
299
300 if( p->iSub==0 ){
301 aOp = v->aOp;
302 nOp = v->nOp;
303 }else{
304 aOp = p->apSub[p->iSub-1]->aOp;
305 nOp = p->apSub[p->iSub-1]->nOp;
306 }
307 assert( p->iAddr<nOp );
308
309 pRet = &aOp[p->iAddr];
310 p->iAddr++;
311 if( p->iAddr==nOp ){
312 p->iSub++;
313 p->iAddr = 0;
314 }
315
316 if( pRet->p4type==P4_SUBPROGRAM ){
317 int nByte = (p->nSub+1)*sizeof(SubProgram*);
318 int j;
319 for(j=0; j<p->nSub; j++){
320 if( p->apSub[j]==pRet->p4.pProgram ) break;
321 }
322 if( j==p->nSub ){
323 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
324 if( !p->apSub ){
325 pRet = 0;
326 }else{
327 p->apSub[p->nSub++] = pRet->p4.pProgram;
328 }
329 }
330 }
331 }
332
333 return pRet;
334}
335
336/*
danf3677212009-09-10 16:14:50 +0000337** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000338** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000339** to be rolled back). This condition is true if the main program or any
340** sub-programs contains any of the following:
341**
342** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
343** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
344** * OP_Destroy
345** * OP_VUpdate
346** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000347** * OP_FkCounter with P2==0 (immediate foreign key constraint)
dan144926d2009-09-09 11:37:20 +0000348**
danf3677212009-09-10 16:14:50 +0000349** Then check that the value of Parse.mayAbort is true if an
350** ABORT may be thrown, or false otherwise. Return true if it does
351** match, or false otherwise. This function is intended to be used as
352** part of an assert statement in the compiler. Similar to:
353**
354** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000355*/
danf3677212009-09-10 16:14:50 +0000356int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
357 int hasAbort = 0;
dan144926d2009-09-09 11:37:20 +0000358 Op *pOp;
359 VdbeOpIter sIter;
360 memset(&sIter, 0, sizeof(sIter));
361 sIter.v = v;
362
363 while( (pOp = opIterNext(&sIter))!=0 ){
364 int opcode = pOp->opcode;
365 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
dan32b09f22009-09-23 17:29:59 +0000366#ifndef SQLITE_OMIT_FOREIGN_KEY
dan0ff297e2009-09-25 17:03:14 +0000367 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
dan32b09f22009-09-23 17:29:59 +0000368#endif
dan144926d2009-09-09 11:37:20 +0000369 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000370 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000371 ){
danf3677212009-09-10 16:14:50 +0000372 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000373 break;
374 }
375 }
dan144926d2009-09-09 11:37:20 +0000376 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000377
378 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
379 ** If malloc failed, then the while() loop above may not have iterated
380 ** through all opcodes and hasAbort may be set incorrectly. Return
381 ** true for this case to prevent the assert() in the callers frame
382 ** from failing. */
383 return ( v->db->mallocFailed || hasAbort==mayAbort );
dan144926d2009-09-09 11:37:20 +0000384}
drhff738bc2009-09-24 00:09:58 +0000385#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000386
drh9a324642003-09-06 20:12:01 +0000387/*
drh9cbf3422008-01-17 16:22:13 +0000388** Loop through the program looking for P2 values that are negative
389** on jump instructions. Each such value is a label. Resolve the
390** label by setting the P2 value to its correct non-zero value.
drh76ff3a02004-09-24 22:32:30 +0000391**
392** This routine is called once after all opcodes have been inserted.
danielk1977634f2982005-03-28 08:44:07 +0000393**
drh13449892005-09-07 21:22:45 +0000394** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
danielk1977399918f2006-06-14 13:03:23 +0000395** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
danielk1977634f2982005-03-28 08:44:07 +0000396** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
drha6c2ed92009-11-14 23:22:23 +0000397**
398** The Op.opflags field is set on all opcodes.
drh76ff3a02004-09-24 22:32:30 +0000399*/
drh9cbf3422008-01-17 16:22:13 +0000400static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000401 int i;
dan165921a2009-08-28 18:53:45 +0000402 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000403 Op *pOp;
404 int *aLabel = p->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000405 p->readOnly = 1;
drh76ff3a02004-09-24 22:32:30 +0000406 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000407 u8 opcode = pOp->opcode;
408
drha6c2ed92009-11-14 23:22:23 +0000409 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha2baf3a2008-06-18 15:34:09 +0000410 if( opcode==OP_Function || opcode==OP_AggStep ){
drh98757152008-01-09 23:04:12 +0000411 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
drh10fc7272010-12-08 18:30:19 +0000412 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
drhad4a4b82008-11-05 16:37:34 +0000413 p->readOnly = 0;
danielk1977182c4ba2007-06-27 15:53:34 +0000414#ifndef SQLITE_OMIT_VIRTUALTABLE
drha6c2ed92009-11-14 23:22:23 +0000415 }else if( opcode==OP_VUpdate ){
416 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
drh4be8b512006-06-13 23:51:34 +0000417 }else if( opcode==OP_VFilter ){
418 int n;
419 assert( p->nOp - i >= 3 );
drh4c583122008-01-04 22:01:03 +0000420 assert( pOp[-1].opcode==OP_Integer );
danielk19776dbee812008-01-03 18:39:41 +0000421 n = pOp[-1].p1;
drh4be8b512006-06-13 23:51:34 +0000422 if( n>nMaxArgs ) nMaxArgs = n;
danielk1977182c4ba2007-06-27 15:53:34 +0000423#endif
drhc6aff302011-09-01 15:32:47 +0000424 }else if( opcode==OP_Next || opcode==OP_SorterNext ){
dana205a482011-08-27 18:48:57 +0000425 pOp->p4.xAdvance = sqlite3BtreeNext;
426 pOp->p4type = P4_ADVANCE;
427 }else if( opcode==OP_Prev ){
428 pOp->p4.xAdvance = sqlite3BtreePrevious;
429 pOp->p4type = P4_ADVANCE;
danielk1977bc04f852005-03-29 08:26:13 +0000430 }
danielk1977634f2982005-03-28 08:44:07 +0000431
drha6c2ed92009-11-14 23:22:23 +0000432 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drhd2981512008-01-04 19:33:49 +0000433 assert( -1-pOp->p2<p->nLabel );
434 pOp->p2 = aLabel[-1-pOp->p2];
435 }
drh76ff3a02004-09-24 22:32:30 +0000436 }
drh633e6d52008-07-28 19:34:53 +0000437 sqlite3DbFree(p->db, p->aLabel);
drh76ff3a02004-09-24 22:32:30 +0000438 p->aLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000439
440 *pMaxFuncArgs = nMaxArgs;
drh76ff3a02004-09-24 22:32:30 +0000441}
442
443/*
drh9a324642003-09-06 20:12:01 +0000444** Return the address of the next instruction to be inserted.
445*/
danielk19774adee202004-05-08 08:23:19 +0000446int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000447 assert( p->magic==VDBE_MAGIC_INIT );
448 return p->nOp;
449}
450
dan65a7cd12009-09-01 12:16:01 +0000451/*
452** This function returns a pointer to the array of opcodes associated with
453** the Vdbe passed as the first argument. It is the callers responsibility
454** to arrange for the returned array to be eventually freed using the
455** vdbeFreeOpArray() function.
456**
457** Before returning, *pnOp is set to the number of entries in the returned
458** array. Also, *pnMaxArg is set to the larger of its current value and
459** the number of entries in the Vdbe.apArg[] array required to execute the
460** returned program.
461*/
dan165921a2009-08-28 18:53:45 +0000462VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
463 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000464 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000465
466 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drhbdaec522011-04-04 00:14:43 +0000467 assert( p->btreeMask==0 );
dan65a7cd12009-09-01 12:16:01 +0000468
dan165921a2009-08-28 18:53:45 +0000469 resolveP2Values(p, pnMaxArg);
470 *pnOp = p->nOp;
471 p->aOp = 0;
472 return aOp;
473}
474
drh9a324642003-09-06 20:12:01 +0000475/*
476** Add a whole list of operations to the operation stack. Return the
477** address of the first operation added.
478*/
danielk19774adee202004-05-08 08:23:19 +0000479int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
drh9a324642003-09-06 20:12:01 +0000480 int addr;
481 assert( p->magic==VDBE_MAGIC_INIT );
danielk197700e13612008-11-17 19:18:54 +0000482 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
drh76ff3a02004-09-24 22:32:30 +0000483 return 0;
drh9a324642003-09-06 20:12:01 +0000484 }
485 addr = p->nOp;
drh7b746032009-06-26 12:15:22 +0000486 if( ALWAYS(nOp>0) ){
drh9a324642003-09-06 20:12:01 +0000487 int i;
drh905793e2004-02-21 13:31:09 +0000488 VdbeOpList const *pIn = aOp;
489 for(i=0; i<nOp; i++, pIn++){
490 int p2 = pIn->p2;
491 VdbeOp *pOut = &p->aOp[i+addr];
492 pOut->opcode = pIn->opcode;
493 pOut->p1 = pIn->p1;
drha6c2ed92009-11-14 23:22:23 +0000494 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
drh8558cde2008-01-05 05:20:10 +0000495 pOut->p2 = addr + ADDR(p2);
496 }else{
497 pOut->p2 = p2;
498 }
drh24003452008-01-03 01:28:59 +0000499 pOut->p3 = pIn->p3;
500 pOut->p4type = P4_NOTUSED;
501 pOut->p4.p = 0;
502 pOut->p5 = 0;
danielk19778b60e0f2005-01-12 09:10:39 +0000503#ifdef SQLITE_DEBUG
drh26c9b5e2008-04-11 14:56:53 +0000504 pOut->zComment = 0;
drhe0962052013-01-29 19:14:31 +0000505 if( p->db->flags & SQLITE_VdbeAddopTrace ){
danielk19774adee202004-05-08 08:23:19 +0000506 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
drh9a324642003-09-06 20:12:01 +0000507 }
508#endif
509 }
510 p->nOp += nOp;
511 }
512 return addr;
513}
514
515/*
516** Change the value of the P1 operand for a specific instruction.
517** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000518** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000519** few minor changes to the program.
520*/
drh88caeac2011-08-24 15:12:08 +0000521void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000522 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000523 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000524 p->aOp[addr].p1 = val;
525 }
526}
527
528/*
529** Change the value of the P2 operand for a specific instruction.
530** This routine is useful for setting a jump destination.
531*/
drh88caeac2011-08-24 15:12:08 +0000532void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000533 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000534 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000535 p->aOp[addr].p2 = val;
536 }
537}
538
drhd654be82005-09-20 17:42:23 +0000539/*
danielk19771f4aa332008-01-03 09:51:55 +0000540** Change the value of the P3 operand for a specific instruction.
danielk1977207872a2008-01-03 07:54:23 +0000541*/
drh88caeac2011-08-24 15:12:08 +0000542void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000543 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000544 if( ((u32)p->nOp)>addr ){
danielk1977207872a2008-01-03 07:54:23 +0000545 p->aOp[addr].p3 = val;
546 }
547}
548
549/*
drh35573352008-01-08 23:54:25 +0000550** Change the value of the P5 operand for the most recently
551** added operation.
danielk19771f4aa332008-01-03 09:51:55 +0000552*/
drh35573352008-01-08 23:54:25 +0000553void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
drh7b746032009-06-26 12:15:22 +0000554 assert( p!=0 );
555 if( p->aOp ){
drh35573352008-01-08 23:54:25 +0000556 assert( p->nOp>0 );
557 p->aOp[p->nOp-1].p5 = val;
danielk19771f4aa332008-01-03 09:51:55 +0000558 }
559}
560
561/*
drhf8875402006-03-17 13:56:34 +0000562** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000563** the address of the next instruction to be coded.
564*/
565void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh8c2cd5d2011-08-16 02:07:04 +0000566 assert( addr>=0 || p->db->mallocFailed );
567 if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000568}
drhb38ad992005-09-16 00:27:01 +0000569
drhb7f6f682006-07-08 17:06:43 +0000570
571/*
572** If the input FuncDef structure is ephemeral, then free it. If
573** the FuncDef is not ephermal, then do nothing.
574*/
drh633e6d52008-07-28 19:34:53 +0000575static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drh7b746032009-06-26 12:15:22 +0000576 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000577 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000578 }
579}
580
dand46def72010-07-24 11:28:28 +0000581static void vdbeFreeOpArray(sqlite3 *, Op *, int);
582
drhb38ad992005-09-16 00:27:01 +0000583/*
drh66a51672008-01-03 00:01:23 +0000584** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000585*/
drh633e6d52008-07-28 19:34:53 +0000586static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000587 if( p4 ){
dand46def72010-07-24 11:28:28 +0000588 assert( db );
drh66a51672008-01-03 00:01:23 +0000589 switch( p4type ){
590 case P4_REAL:
591 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000592 case P4_DYNAMIC:
593 case P4_KEYINFO:
drh0acb7e42008-06-25 00:12:41 +0000594 case P4_INTARRAY:
drh66a51672008-01-03 00:01:23 +0000595 case P4_KEYINFO_HANDOFF: {
drh633e6d52008-07-28 19:34:53 +0000596 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000597 break;
598 }
drhb9755982010-07-24 16:34:37 +0000599 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000600 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000601 break;
602 }
drh66a51672008-01-03 00:01:23 +0000603 case P4_VDBEFUNC: {
drh0acb7e42008-06-25 00:12:41 +0000604 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
drh633e6d52008-07-28 19:34:53 +0000605 freeEphemeralFunction(db, pVdbeFunc->pFunc);
dand46def72010-07-24 11:28:28 +0000606 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
drh633e6d52008-07-28 19:34:53 +0000607 sqlite3DbFree(db, pVdbeFunc);
drhac1733d2005-09-17 17:58:22 +0000608 break;
609 }
drh66a51672008-01-03 00:01:23 +0000610 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000611 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000612 break;
613 }
drh66a51672008-01-03 00:01:23 +0000614 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000615 if( db->pnBytesFreed==0 ){
616 sqlite3ValueFree((sqlite3_value*)p4);
617 }else{
drhf37c68e2010-07-26 14:20:06 +0000618 Mem *p = (Mem*)p4;
619 sqlite3DbFree(db, p->zMalloc);
620 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000621 }
drhac1733d2005-09-17 17:58:22 +0000622 break;
623 }
danielk1977595a5232009-07-24 17:58:53 +0000624 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000625 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000626 break;
627 }
drhb38ad992005-09-16 00:27:01 +0000628 }
629 }
630}
631
dan65a7cd12009-09-01 12:16:01 +0000632/*
633** Free the space allocated for aOp and any p4 values allocated for the
634** opcodes contained within. If aOp is not NULL it is assumed to contain
635** nOp entries.
636*/
dan165921a2009-08-28 18:53:45 +0000637static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
638 if( aOp ){
639 Op *pOp;
640 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
641 freeP4(db, pOp->p4type, pOp->p4.p);
642#ifdef SQLITE_DEBUG
643 sqlite3DbFree(db, pOp->zComment);
644#endif
645 }
646 }
647 sqlite3DbFree(db, aOp);
648}
649
dan65a7cd12009-09-01 12:16:01 +0000650/*
dand19c9332010-07-26 12:05:17 +0000651** Link the SubProgram object passed as the second argument into the linked
652** list at Vdbe.pSubProgram. This list is used to delete all sub-program
653** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000654*/
dand19c9332010-07-26 12:05:17 +0000655void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
656 p->pNext = pVdbe->pProgram;
657 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000658}
659
drh9a324642003-09-06 20:12:01 +0000660/*
drh48f2d3b2011-09-16 01:34:43 +0000661** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000662*/
drh48f2d3b2011-09-16 01:34:43 +0000663void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
drh7b746032009-06-26 12:15:22 +0000664 if( p->aOp ){
danielk197792d4d7a2007-05-04 12:05:56 +0000665 VdbeOp *pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000666 sqlite3 *db = p->db;
drh48f2d3b2011-09-16 01:34:43 +0000667 freeP4(db, pOp->p4type, pOp->p4.p);
668 memset(pOp, 0, sizeof(pOp[0]));
669 pOp->opcode = OP_Noop;
drhf8875402006-03-17 13:56:34 +0000670 }
671}
672
673/*
drh66a51672008-01-03 00:01:23 +0000674** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000675** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000676** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000677** few minor changes to the program.
678**
drh66a51672008-01-03 00:01:23 +0000679** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000680** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000681** A value of n==0 means copy bytes of zP4 up to and including the
682** first null byte. If n>0 then copy n+1 bytes of zP4.
drh9a324642003-09-06 20:12:01 +0000683**
drh66a51672008-01-03 00:01:23 +0000684** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
danielk19771f55c052005-05-19 08:42:59 +0000685** A copy is made of the KeyInfo structure into memory obtained from
drh17435752007-08-16 04:30:38 +0000686** sqlite3_malloc, to be freed when the Vdbe is finalized.
drh66a51672008-01-03 00:01:23 +0000687** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
drh17435752007-08-16 04:30:38 +0000688** stored in memory that the caller has obtained from sqlite3_malloc. The
danielk19771f55c052005-05-19 08:42:59 +0000689** caller should not free the allocation, it will be freed when the Vdbe is
690** finalized.
691**
drh66a51672008-01-03 00:01:23 +0000692** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000693** to a string or structure that is guaranteed to exist for the lifetime of
694** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000695**
drh66a51672008-01-03 00:01:23 +0000696** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000697*/
drh66a51672008-01-03 00:01:23 +0000698void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000699 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000700 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000701 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000702 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000703 assert( p->magic==VDBE_MAGIC_INIT );
drh633e6d52008-07-28 19:34:53 +0000704 if( p->aOp==0 || db->mallocFailed ){
danielk1977595a5232009-07-24 17:58:53 +0000705 if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
drh633e6d52008-07-28 19:34:53 +0000706 freeP4(db, n, (void*)*(char**)&zP4);
danielk1977261919c2005-12-06 12:52:59 +0000707 }
danielk1977d5d56522005-03-16 12:15:20 +0000708 return;
709 }
drh7b746032009-06-26 12:15:22 +0000710 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000711 assert( addr<p->nOp );
712 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000713 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000714 }
715 pOp = &p->aOp[addr];
drhfc5e5462012-12-03 17:04:40 +0000716 assert( pOp->p4type==P4_NOTUSED || pOp->p4type==P4_INT32 );
drh633e6d52008-07-28 19:34:53 +0000717 freeP4(db, pOp->p4type, pOp->p4.p);
drh66a51672008-01-03 00:01:23 +0000718 pOp->p4.p = 0;
drh98757152008-01-09 23:04:12 +0000719 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000720 /* Note: this cast is safe, because the origin data point was an int
721 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000722 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000723 pOp->p4type = P4_INT32;
drh98757152008-01-09 23:04:12 +0000724 }else if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000725 pOp->p4.p = 0;
726 pOp->p4type = P4_NOTUSED;
727 }else if( n==P4_KEYINFO ){
drhd3d39e92004-05-20 22:16:29 +0000728 KeyInfo *pKeyInfo;
729 int nField, nByte;
drh4db38a72005-09-01 12:16:28 +0000730
drh66a51672008-01-03 00:01:23 +0000731 nField = ((KeyInfo*)zP4)->nField;
drhfdd6e852005-12-16 01:06:16 +0000732 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
drhb9755982010-07-24 16:34:37 +0000733 pKeyInfo = sqlite3DbMallocRaw(0, nByte);
danielk19772dca4ac2008-01-03 11:50:29 +0000734 pOp->p4.pKeyInfo = pKeyInfo;
drhd3d39e92004-05-20 22:16:29 +0000735 if( pKeyInfo ){
drhb21e7c72008-06-22 12:37:57 +0000736 u8 *aSortOrder;
drha378c562010-04-02 12:55:38 +0000737 memcpy((char*)pKeyInfo, zP4, nByte - nField);
drhfdd6e852005-12-16 01:06:16 +0000738 aSortOrder = pKeyInfo->aSortOrder;
drhe1a022e2012-09-17 17:16:53 +0000739 assert( aSortOrder!=0 );
740 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
741 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
drh66a51672008-01-03 00:01:23 +0000742 pOp->p4type = P4_KEYINFO;
drhd3d39e92004-05-20 22:16:29 +0000743 }else{
drh17435752007-08-16 04:30:38 +0000744 p->db->mallocFailed = 1;
drh66a51672008-01-03 00:01:23 +0000745 pOp->p4type = P4_NOTUSED;
drhd3d39e92004-05-20 22:16:29 +0000746 }
drh66a51672008-01-03 00:01:23 +0000747 }else if( n==P4_KEYINFO_HANDOFF ){
danielk19772dca4ac2008-01-03 11:50:29 +0000748 pOp->p4.p = (void*)zP4;
drh66a51672008-01-03 00:01:23 +0000749 pOp->p4type = P4_KEYINFO;
danielk1977595a5232009-07-24 17:58:53 +0000750 }else if( n==P4_VTAB ){
751 pOp->p4.p = (void*)zP4;
752 pOp->p4type = P4_VTAB;
753 sqlite3VtabLock((VTable *)zP4);
754 assert( ((VTable *)zP4)->db==p->db );
drh9a324642003-09-06 20:12:01 +0000755 }else if( n<0 ){
danielk19772dca4ac2008-01-03 11:50:29 +0000756 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000757 pOp->p4type = (signed char)n;
drh9a324642003-09-06 20:12:01 +0000758 }else{
drhea678832008-12-10 19:26:22 +0000759 if( n==0 ) n = sqlite3Strlen30(zP4);
danielk19772dca4ac2008-01-03 11:50:29 +0000760 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
drh66a51672008-01-03 00:01:23 +0000761 pOp->p4type = P4_DYNAMIC;
drh9a324642003-09-06 20:12:01 +0000762 }
763}
764
drhad6d9462004-09-19 02:15:24 +0000765#ifndef NDEBUG
766/*
mistachkind5578432012-08-25 10:01:29 +0000767** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000768** insert a No-op and add the comment to that new instruction. This
769** makes the code easier to read during debugging. None of this happens
770** in a production build.
drhad6d9462004-09-19 02:15:24 +0000771*/
drhb07028f2011-10-14 21:49:18 +0000772static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000773 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000774 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000775 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000776 assert( p->aOp );
777 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
778 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
779 }
780}
781void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
782 va_list ap;
783 if( p ){
danielk1977dba01372008-01-05 18:44:29 +0000784 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000785 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +0000786 va_end(ap);
787 }
drhad6d9462004-09-19 02:15:24 +0000788}
drh16ee60f2008-06-20 18:13:25 +0000789void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
790 va_list ap;
drhb07028f2011-10-14 21:49:18 +0000791 if( p ){
792 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +0000793 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000794 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +0000795 va_end(ap);
796 }
797}
798#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +0000799
drh9a324642003-09-06 20:12:01 +0000800/*
drh20411ea2009-05-29 19:00:12 +0000801** Return the opcode for a given address. If the address is -1, then
802** return the most recently inserted opcode.
803**
804** If a memory allocation error has occurred prior to the calling of this
805** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +0000806** is readable but not writable, though it is cast to a writable value.
807** The return of a dummy opcode allows the call to continue functioning
808** after a OOM fault without having to check to see if the return from
809** this routine is a valid pointer. But because the dummy.opcode is 0,
810** dummy will never be written to. This is verified by code inspection and
811** by running with Valgrind.
drh37b89a02009-06-19 00:33:31 +0000812**
813** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
814** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
815** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
816** a new VDBE is created. So we are free to set addr to p->nOp-1 without
817** having to double-check to make sure that the result is non-negative. But
818** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
819** check the value of p->nOp-1 before continuing.
drh9a324642003-09-06 20:12:01 +0000820*/
danielk19774adee202004-05-08 08:23:19 +0000821VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +0000822 /* C89 specifies that the constant "dummy" will be initialized to all
823 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +0000824 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +0000825 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +0000826 if( addr<0 ){
827#ifdef SQLITE_OMIT_TRACE
drhf83dc1e2010-06-03 12:09:52 +0000828 if( p->nOp==0 ) return (VdbeOp*)&dummy;
drh37b89a02009-06-19 00:33:31 +0000829#endif
830 addr = p->nOp - 1;
831 }
drh17435752007-08-16 04:30:38 +0000832 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +0000833 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +0000834 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +0000835 }else{
836 return &p->aOp[addr];
837 }
drh9a324642003-09-06 20:12:01 +0000838}
839
drhb7f91642004-10-31 02:22:47 +0000840#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
841 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +0000842/*
drh66a51672008-01-03 00:01:23 +0000843** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +0000844** Use zTemp for any required temporary buffer space.
845*/
drh66a51672008-01-03 00:01:23 +0000846static char *displayP4(Op *pOp, char *zTemp, int nTemp){
847 char *zP4 = zTemp;
drhd3d39e92004-05-20 22:16:29 +0000848 assert( nTemp>=20 );
drh66a51672008-01-03 00:01:23 +0000849 switch( pOp->p4type ){
drh16ee60f2008-06-20 18:13:25 +0000850 case P4_KEYINFO_STATIC:
drh66a51672008-01-03 00:01:23 +0000851 case P4_KEYINFO: {
drhd3d39e92004-05-20 22:16:29 +0000852 int i, j;
danielk19772dca4ac2008-01-03 11:50:29 +0000853 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +0000854 assert( pKeyInfo->aSortOrder!=0 );
drh5bb3eb92007-05-04 13:15:55 +0000855 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
drhea678832008-12-10 19:26:22 +0000856 i = sqlite3Strlen30(zTemp);
drhd3d39e92004-05-20 22:16:29 +0000857 for(j=0; j<pKeyInfo->nField; j++){
858 CollSeq *pColl = pKeyInfo->aColl[j];
drh261d8a52012-12-08 21:36:26 +0000859 const char *zColl = pColl ? pColl->zName : "nil";
860 int n = sqlite3Strlen30(zColl);
861 if( i+n>nTemp-6 ){
862 memcpy(&zTemp[i],",...",4);
863 break;
drhd3d39e92004-05-20 22:16:29 +0000864 }
drh261d8a52012-12-08 21:36:26 +0000865 zTemp[i++] = ',';
866 if( pKeyInfo->aSortOrder[j] ){
867 zTemp[i++] = '-';
868 }
869 memcpy(&zTemp[i], zColl, n+1);
870 i += n;
drhd3d39e92004-05-20 22:16:29 +0000871 }
872 zTemp[i++] = ')';
873 zTemp[i] = 0;
874 assert( i<nTemp );
drhd3d39e92004-05-20 22:16:29 +0000875 break;
876 }
drh66a51672008-01-03 00:01:23 +0000877 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +0000878 CollSeq *pColl = pOp->p4.pColl;
drh5bb3eb92007-05-04 13:15:55 +0000879 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +0000880 break;
881 }
drh66a51672008-01-03 00:01:23 +0000882 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +0000883 FuncDef *pDef = pOp->p4.pFunc;
drha967e882006-06-13 01:04:52 +0000884 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +0000885 break;
886 }
drh66a51672008-01-03 00:01:23 +0000887 case P4_INT64: {
danielk19772dca4ac2008-01-03 11:50:29 +0000888 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +0000889 break;
890 }
drh66a51672008-01-03 00:01:23 +0000891 case P4_INT32: {
892 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +0000893 break;
894 }
drh66a51672008-01-03 00:01:23 +0000895 case P4_REAL: {
danielk19772dca4ac2008-01-03 11:50:29 +0000896 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +0000897 break;
898 }
drh66a51672008-01-03 00:01:23 +0000899 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +0000900 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +0000901 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +0000902 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +0000903 }else if( pMem->flags & MEM_Int ){
904 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
905 }else if( pMem->flags & MEM_Real ){
906 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
drhb8475df2011-12-09 16:21:19 +0000907 }else if( pMem->flags & MEM_Null ){
908 sqlite3_snprintf(nTemp, zTemp, "NULL");
drh56016892009-08-25 14:24:04 +0000909 }else{
910 assert( pMem->flags & MEM_Blob );
911 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +0000912 }
drh598f1342007-10-23 15:39:45 +0000913 break;
914 }
drha967e882006-06-13 01:04:52 +0000915#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +0000916 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +0000917 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh19146192006-06-26 19:10:32 +0000918 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
drha967e882006-06-13 01:04:52 +0000919 break;
920 }
921#endif
drh0acb7e42008-06-25 00:12:41 +0000922 case P4_INTARRAY: {
923 sqlite3_snprintf(nTemp, zTemp, "intarray");
924 break;
925 }
dan165921a2009-08-28 18:53:45 +0000926 case P4_SUBPROGRAM: {
927 sqlite3_snprintf(nTemp, zTemp, "program");
928 break;
929 }
drh4a6f3aa2011-08-28 00:19:26 +0000930 case P4_ADVANCE: {
931 zTemp[0] = 0;
932 break;
933 }
drhd3d39e92004-05-20 22:16:29 +0000934 default: {
danielk19772dca4ac2008-01-03 11:50:29 +0000935 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +0000936 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000937 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +0000938 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +0000939 }
940 }
941 }
drh66a51672008-01-03 00:01:23 +0000942 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +0000943 return zP4;
drhd3d39e92004-05-20 22:16:29 +0000944}
drhb7f91642004-10-31 02:22:47 +0000945#endif
drhd3d39e92004-05-20 22:16:29 +0000946
drh900b31e2007-08-28 02:27:51 +0000947/*
drhd0679ed2007-08-28 22:24:34 +0000948** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +0000949**
drhbdaec522011-04-04 00:14:43 +0000950** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +0000951** attached databases that will be use. A mask of these databases
952** is maintained in p->btreeMask. The p->lockMask value is the subset of
953** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +0000954*/
drhfb982642007-08-30 01:19:59 +0000955void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +0000956 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +0000957 assert( i<(int)sizeof(p->btreeMask)*8 );
drhbdaec522011-04-04 00:14:43 +0000958 p->btreeMask |= ((yDbMask)1)<<i;
drhdc5b0472011-04-06 22:05:53 +0000959 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
960 p->lockMask |= ((yDbMask)1)<<i;
961 }
drh900b31e2007-08-28 02:27:51 +0000962}
963
drhe54e0512011-04-05 17:31:56 +0000964#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +0000965/*
966** If SQLite is compiled to support shared-cache mode and to be threadsafe,
967** this routine obtains the mutex associated with each BtShared structure
968** that may be accessed by the VM passed as an argument. In doing so it also
969** sets the BtShared.db member of each of the BtShared structures, ensuring
970** that the correct busy-handler callback is invoked if required.
971**
972** If SQLite is not threadsafe but does support shared-cache mode, then
973** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
974** of all of BtShared structures accessible via the database handle
975** associated with the VM.
976**
977** If SQLite is not threadsafe and does not support shared-cache mode, this
978** function is a no-op.
979**
980** The p->btreeMask field is a bitmask of all btrees that the prepared
981** statement p will ever use. Let N be the number of bits in p->btreeMask
982** corresponding to btrees that use shared cache. Then the runtime of
983** this routine is N*N. But as N is rarely more than 1, this should not
984** be a problem.
985*/
986void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +0000987 int i;
988 yDbMask mask;
drhdc5b0472011-04-06 22:05:53 +0000989 sqlite3 *db;
990 Db *aDb;
991 int nDb;
992 if( p->lockMask==0 ) return; /* The common case */
993 db = p->db;
994 aDb = db->aDb;
995 nDb = db->nDb;
drhbdaec522011-04-04 00:14:43 +0000996 for(i=0, mask=1; i<nDb; i++, mask += mask){
drhdc5b0472011-04-06 22:05:53 +0000997 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +0000998 sqlite3BtreeEnter(aDb[i].pBt);
999 }
1000 }
drhbdaec522011-04-04 00:14:43 +00001001}
drhe54e0512011-04-05 17:31:56 +00001002#endif
drhbdaec522011-04-04 00:14:43 +00001003
drhe54e0512011-04-05 17:31:56 +00001004#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001005/*
1006** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1007*/
1008void sqlite3VdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001009 int i;
1010 yDbMask mask;
drhdc5b0472011-04-06 22:05:53 +00001011 sqlite3 *db;
1012 Db *aDb;
1013 int nDb;
1014 if( p->lockMask==0 ) return; /* The common case */
1015 db = p->db;
1016 aDb = db->aDb;
1017 nDb = db->nDb;
drhbdaec522011-04-04 00:14:43 +00001018 for(i=0, mask=1; i<nDb; i++, mask += mask){
drhdc5b0472011-04-06 22:05:53 +00001019 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001020 sqlite3BtreeLeave(aDb[i].pBt);
1021 }
1022 }
drhbdaec522011-04-04 00:14:43 +00001023}
drhbdaec522011-04-04 00:14:43 +00001024#endif
drhd3d39e92004-05-20 22:16:29 +00001025
danielk19778b60e0f2005-01-12 09:10:39 +00001026#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001027/*
1028** Print a single opcode. This routine is used for debugging only.
1029*/
danielk19774adee202004-05-08 08:23:19 +00001030void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001031 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001032 char zPtr[50];
drh1db639c2008-01-17 02:36:28 +00001033 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001034 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001035 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
danielk197711641c12008-01-03 08:18:30 +00001036 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001037 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1038#ifdef SQLITE_DEBUG
1039 pOp->zComment ? pOp->zComment : ""
1040#else
1041 ""
1042#endif
1043 );
drh9a324642003-09-06 20:12:01 +00001044 fflush(pOut);
1045}
1046#endif
1047
1048/*
drh76ff3a02004-09-24 22:32:30 +00001049** Release an array of N Mem elements
1050*/
drhc890fec2008-08-01 20:10:08 +00001051static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001052 if( p && N ){
danielk1977e972e032008-09-19 18:32:26 +00001053 Mem *pEnd;
danielk1977a7a8e142008-02-13 18:25:27 +00001054 sqlite3 *db = p->db;
drh8df32842008-12-09 02:51:23 +00001055 u8 malloc_failed = db->mallocFailed;
dand46def72010-07-24 11:28:28 +00001056 if( db->pnBytesFreed ){
1057 for(pEnd=&p[N]; p<pEnd; p++){
1058 sqlite3DbFree(db, p->zMalloc);
1059 }
drhc176c272010-07-26 13:57:59 +00001060 return;
1061 }
danielk1977e972e032008-09-19 18:32:26 +00001062 for(pEnd=&p[N]; p<pEnd; p++){
1063 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1064
1065 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1066 ** that takes advantage of the fact that the memory cell value is
1067 ** being set to NULL after releasing any dynamic resources.
1068 **
1069 ** The justification for duplicating code is that according to
1070 ** callgrind, this causes a certain test case to hit the CPU 4.7
1071 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1072 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1073 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1074 ** with no indexes using a single prepared INSERT statement, bind()
1075 ** and reset(). Inserts are grouped into a transaction.
1076 */
dan165921a2009-08-28 18:53:45 +00001077 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001078 sqlite3VdbeMemRelease(p);
1079 }else if( p->zMalloc ){
1080 sqlite3DbFree(db, p->zMalloc);
1081 p->zMalloc = 0;
1082 }
1083
drhb8475df2011-12-09 16:21:19 +00001084 p->flags = MEM_Invalid;
drh76ff3a02004-09-24 22:32:30 +00001085 }
danielk1977a7a8e142008-02-13 18:25:27 +00001086 db->mallocFailed = malloc_failed;
drh76ff3a02004-09-24 22:32:30 +00001087 }
1088}
1089
dan65a7cd12009-09-01 12:16:01 +00001090/*
1091** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1092** allocated by the OP_Program opcode in sqlite3VdbeExec().
1093*/
dan165921a2009-08-28 18:53:45 +00001094void sqlite3VdbeFrameDelete(VdbeFrame *p){
1095 int i;
1096 Mem *aMem = VdbeFrameMem(p);
1097 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1098 for(i=0; i<p->nChildCsr; i++){
1099 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1100 }
1101 releaseMemArray(aMem, p->nChildMem);
1102 sqlite3DbFree(p->v->db, p);
1103}
1104
drhb7f91642004-10-31 02:22:47 +00001105#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001106/*
drh9a324642003-09-06 20:12:01 +00001107** Give a listing of the program in the virtual machine.
1108**
danielk19774adee202004-05-08 08:23:19 +00001109** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001110** running the code, it invokes the callback once for each instruction.
1111** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001112**
1113** When p->explain==1, each instruction is listed. When
1114** p->explain==2, only OP_Explain instructions are listed and these
1115** are shown in a different format. p->explain==2 is used to implement
1116** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001117**
1118** When p->explain==1, first the main program is listed, then each of
1119** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001120*/
danielk19774adee202004-05-08 08:23:19 +00001121int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001122 Vdbe *p /* The VDBE */
1123){
drh5cfa5842009-12-31 20:35:08 +00001124 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001125 int nSub = 0; /* Number of sub-vdbes seen so far */
1126 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001127 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1128 sqlite3 *db = p->db; /* The database connection */
1129 int i; /* Loop counter */
1130 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001131 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001132
drh9a324642003-09-06 20:12:01 +00001133 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001134 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001135 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001136
drh9cbf3422008-01-17 16:22:13 +00001137 /* Even though this opcode does not use dynamic strings for
1138 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001139 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001140 */
dan165921a2009-08-28 18:53:45 +00001141 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001142 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001143
danielk19776c359f02008-11-21 16:58:03 +00001144 if( p->rc==SQLITE_NOMEM ){
1145 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1146 ** sqlite3_column_text16() failed. */
1147 db->mallocFailed = 1;
1148 return SQLITE_ERROR;
1149 }
1150
drh5cfa5842009-12-31 20:35:08 +00001151 /* When the number of output rows reaches nRow, that means the
1152 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1153 ** nRow is the sum of the number of rows in the main program, plus
1154 ** the sum of the number of rows in all trigger subprograms encountered
1155 ** so far. The nRow value will increase as new trigger subprograms are
1156 ** encountered, but p->pc will eventually catch up to nRow.
1157 */
dan165921a2009-08-28 18:53:45 +00001158 nRow = p->nOp;
1159 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001160 /* The first 8 memory cells are used for the result set. So we will
1161 ** commandeer the 9th cell to use as storage for an array of pointers
1162 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1163 ** cells. */
1164 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001165 pSub = &p->aMem[9];
1166 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001167 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1168 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001169 nSub = pSub->n/sizeof(Vdbe*);
1170 apSub = (SubProgram **)pSub->z;
1171 }
1172 for(i=0; i<nSub; i++){
1173 nRow += apSub[i]->nOp;
1174 }
1175 }
1176
drhecc92422005-09-10 16:46:12 +00001177 do{
1178 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001179 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1180 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001181 p->rc = SQLITE_OK;
1182 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001183 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001184 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001185 rc = SQLITE_ERROR;
drhf089aa42008-07-08 19:34:06 +00001186 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001187 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001188 char *z;
dan165921a2009-08-28 18:53:45 +00001189 Op *pOp;
1190 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001191 /* The output line number is small enough that we are still in the
1192 ** main program. */
dan165921a2009-08-28 18:53:45 +00001193 pOp = &p->aOp[i];
1194 }else{
drh5cfa5842009-12-31 20:35:08 +00001195 /* We are currently listing subprograms. Figure out which one and
1196 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001197 int j;
1198 i -= p->nOp;
1199 for(j=0; i>=apSub[j]->nOp; j++){
1200 i -= apSub[j]->nOp;
1201 }
1202 pOp = &apSub[j]->aOp[i];
1203 }
danielk19770d78bae2008-01-03 07:09:48 +00001204 if( p->explain==1 ){
1205 pMem->flags = MEM_Int;
1206 pMem->type = SQLITE_INTEGER;
1207 pMem->u.i = i; /* Program counter */
1208 pMem++;
1209
1210 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1211 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1212 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001213 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001214 pMem->type = SQLITE_TEXT;
1215 pMem->enc = SQLITE_UTF8;
1216 pMem++;
dan165921a2009-08-28 18:53:45 +00001217
drh5cfa5842009-12-31 20:35:08 +00001218 /* When an OP_Program opcode is encounter (the only opcode that has
1219 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1220 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1221 ** has not already been seen.
1222 */
dan165921a2009-08-28 18:53:45 +00001223 if( pOp->p4type==P4_SUBPROGRAM ){
1224 int nByte = (nSub+1)*sizeof(SubProgram*);
1225 int j;
1226 for(j=0; j<nSub; j++){
1227 if( apSub[j]==pOp->p4.pProgram ) break;
1228 }
dan2b9ee772012-03-31 09:59:44 +00001229 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001230 apSub = (SubProgram **)pSub->z;
1231 apSub[nSub++] = pOp->p4.pProgram;
1232 pSub->flags |= MEM_Blob;
1233 pSub->n = nSub*sizeof(SubProgram*);
1234 }
1235 }
danielk19770d78bae2008-01-03 07:09:48 +00001236 }
drheb2e1762004-05-27 01:53:56 +00001237
1238 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001239 pMem->u.i = pOp->p1; /* P1 */
drh9c054832004-05-31 18:51:57 +00001240 pMem->type = SQLITE_INTEGER;
drheb2e1762004-05-27 01:53:56 +00001241 pMem++;
1242
1243 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001244 pMem->u.i = pOp->p2; /* P2 */
drh9c054832004-05-31 18:51:57 +00001245 pMem->type = SQLITE_INTEGER;
drheb2e1762004-05-27 01:53:56 +00001246 pMem++;
1247
dan2ce22452010-11-08 19:01:16 +00001248 pMem->flags = MEM_Int;
1249 pMem->u.i = pOp->p3; /* P3 */
1250 pMem->type = SQLITE_INTEGER;
1251 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001252
danielk1977a7a8e142008-02-13 18:25:27 +00001253 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001254 assert( p->db->mallocFailed );
1255 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001256 }
1257 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1258 z = displayP4(pOp, pMem->z, 32);
1259 if( z!=pMem->z ){
1260 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
1261 }else{
1262 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001263 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001264 pMem->enc = SQLITE_UTF8;
1265 }
drh9c054832004-05-31 18:51:57 +00001266 pMem->type = SQLITE_TEXT;
danielk19770d78bae2008-01-03 07:09:48 +00001267 pMem++;
drheb2e1762004-05-27 01:53:56 +00001268
danielk19770d78bae2008-01-03 07:09:48 +00001269 if( p->explain==1 ){
drh85e5f0d2008-02-19 18:28:13 +00001270 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
danielk1977357864e2009-03-25 15:43:08 +00001271 assert( p->db->mallocFailed );
1272 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001273 }
1274 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001275 pMem->n = 2;
1276 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001277 pMem->type = SQLITE_TEXT;
1278 pMem->enc = SQLITE_UTF8;
1279 pMem++;
1280
drhaa9b8962008-01-08 02:57:55 +00001281#ifdef SQLITE_DEBUG
danielk19770d78bae2008-01-03 07:09:48 +00001282 if( pOp->zComment ){
1283 pMem->flags = MEM_Str|MEM_Term;
1284 pMem->z = pOp->zComment;
drhea678832008-12-10 19:26:22 +00001285 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001286 pMem->enc = SQLITE_UTF8;
danielk19771e522b42008-09-16 09:09:19 +00001287 pMem->type = SQLITE_TEXT;
drh52391cb2008-02-14 23:44:13 +00001288 }else
drhaa9b8962008-01-08 02:57:55 +00001289#endif
drh52391cb2008-02-14 23:44:13 +00001290 {
1291 pMem->flags = MEM_Null; /* Comment */
1292 pMem->type = SQLITE_NULL;
1293 }
danielk19770d78bae2008-01-03 07:09:48 +00001294 }
1295
dan2ce22452010-11-08 19:01:16 +00001296 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001297 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001298 p->rc = SQLITE_OK;
1299 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001300 }
drh826fb5a2004-02-14 23:59:57 +00001301 return rc;
drh9a324642003-09-06 20:12:01 +00001302}
drhb7f91642004-10-31 02:22:47 +00001303#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001304
drh7c4ac0c2007-04-05 11:25:58 +00001305#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001306/*
drh3f7d4e42004-07-24 14:35:58 +00001307** Print the SQL that was used to generate a VDBE program.
1308*/
1309void sqlite3VdbePrintSql(Vdbe *p){
drh3f7d4e42004-07-24 14:35:58 +00001310 int nOp = p->nOp;
1311 VdbeOp *pOp;
drhc16a03b2004-09-15 13:38:10 +00001312 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001313 pOp = &p->aOp[0];
1314 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
danielk19772dca4ac2008-01-03 11:50:29 +00001315 const char *z = pOp->p4.z;
danielk197778ca0e72009-01-20 16:53:39 +00001316 while( sqlite3Isspace(*z) ) z++;
drh3f7d4e42004-07-24 14:35:58 +00001317 printf("SQL: [%s]\n", z);
1318 }
drh3f7d4e42004-07-24 14:35:58 +00001319}
drh7c4ac0c2007-04-05 11:25:58 +00001320#endif
drh3f7d4e42004-07-24 14:35:58 +00001321
drh602c2372007-03-01 00:29:13 +00001322#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1323/*
1324** Print an IOTRACE message showing SQL content.
1325*/
1326void sqlite3VdbeIOTraceSql(Vdbe *p){
1327 int nOp = p->nOp;
1328 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001329 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001330 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001331 pOp = &p->aOp[0];
1332 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001333 int i, j;
drh00a18e42007-08-13 11:10:34 +00001334 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001335 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001336 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001337 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001338 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001339 if( z[i-1]!=' ' ){
1340 z[j++] = ' ';
1341 }
1342 }else{
1343 z[j++] = z[i];
1344 }
1345 }
1346 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001347 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001348 }
1349}
1350#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1351
drhb2771ce2009-02-20 01:28:59 +00001352/*
drh4800b2e2009-12-08 15:35:22 +00001353** Allocate space from a fixed size buffer and return a pointer to
1354** that space. If insufficient space is available, return NULL.
1355**
1356** The pBuf parameter is the initial value of a pointer which will
1357** receive the new memory. pBuf is normally NULL. If pBuf is not
1358** NULL, it means that memory space has already been allocated and that
1359** this routine should not allocate any new memory. When pBuf is not
1360** NULL simply return pBuf. Only allocate new memory space when pBuf
1361** is NULL.
drhb2771ce2009-02-20 01:28:59 +00001362**
1363** nByte is the number of bytes of space needed.
1364**
drh19875c82009-12-08 19:58:19 +00001365** *ppFrom points to available space and pEnd points to the end of the
1366** available space. When space is allocated, *ppFrom is advanced past
1367** the end of the allocated space.
drhb2771ce2009-02-20 01:28:59 +00001368**
1369** *pnByte is a counter of the number of bytes of space that have failed
1370** to allocate. If there is insufficient space in *ppFrom to satisfy the
danielk1977d336e222009-02-20 10:58:41 +00001371** request, then increment *pnByte by the amount of the request.
drhb2771ce2009-02-20 01:28:59 +00001372*/
drh4800b2e2009-12-08 15:35:22 +00001373static void *allocSpace(
1374 void *pBuf, /* Where return pointer will be stored */
drhb2771ce2009-02-20 01:28:59 +00001375 int nByte, /* Number of bytes to allocate */
1376 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
danielk1977d336e222009-02-20 10:58:41 +00001377 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
drhb2771ce2009-02-20 01:28:59 +00001378 int *pnByte /* If allocation cannot be made, increment *pnByte */
1379){
drhea598cb2009-04-05 12:22:08 +00001380 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
drh4800b2e2009-12-08 15:35:22 +00001381 if( pBuf ) return pBuf;
1382 nByte = ROUND8(nByte);
1383 if( &(*ppFrom)[nByte] <= pEnd ){
1384 pBuf = (void*)*ppFrom;
1385 *ppFrom += nByte;
1386 }else{
1387 *pnByte += nByte;
drhb2771ce2009-02-20 01:28:59 +00001388 }
drh4800b2e2009-12-08 15:35:22 +00001389 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001390}
drh602c2372007-03-01 00:29:13 +00001391
drh3f7d4e42004-07-24 14:35:58 +00001392/*
drh124c0b42011-06-01 18:15:55 +00001393** Rewind the VDBE back to the beginning in preparation for
1394** running it.
drh9a324642003-09-06 20:12:01 +00001395*/
drh124c0b42011-06-01 18:15:55 +00001396void sqlite3VdbeRewind(Vdbe *p){
1397#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1398 int i;
1399#endif
drh9a324642003-09-06 20:12:01 +00001400 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001401 assert( p->magic==VDBE_MAGIC_INIT );
1402
drhc16a03b2004-09-15 13:38:10 +00001403 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001404 */
drhc16a03b2004-09-15 13:38:10 +00001405 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001406
danielk197700e13612008-11-17 19:18:54 +00001407 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001408 p->magic = VDBE_MAGIC_RUN;
1409
drh124c0b42011-06-01 18:15:55 +00001410#ifdef SQLITE_DEBUG
1411 for(i=1; i<p->nMem; i++){
1412 assert( p->aMem[i].db==p->db );
1413 }
1414#endif
1415 p->pc = -1;
1416 p->rc = SQLITE_OK;
1417 p->errorAction = OE_Abort;
1418 p->magic = VDBE_MAGIC_RUN;
1419 p->nChange = 0;
1420 p->cacheCtr = 1;
1421 p->minWriteFileFormat = 255;
1422 p->iStatement = 0;
1423 p->nFkConstraint = 0;
1424#ifdef VDBE_PROFILE
1425 for(i=0; i<p->nOp; i++){
1426 p->aOp[i].cnt = 0;
1427 p->aOp[i].cycles = 0;
1428 }
1429#endif
1430}
1431
1432/*
1433** Prepare a virtual machine for execution for the first time after
1434** creating the virtual machine. This involves things such
1435** as allocating stack space and initializing the program counter.
1436** After the VDBE has be prepped, it can be executed by one or more
1437** calls to sqlite3VdbeExec().
1438**
1439** This function may be called exact once on a each virtual machine.
1440** After this routine is called the VM has been "packaged" and is ready
1441** to run. After this routine is called, futher calls to
1442** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1443** the Vdbe from the Parse object that helped generate it so that the
1444** the Vdbe becomes an independent entity and the Parse object can be
1445** destroyed.
1446**
1447** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1448** to its initial state after it has been run.
1449*/
1450void sqlite3VdbeMakeReady(
1451 Vdbe *p, /* The VDBE */
1452 Parse *pParse /* Parsing context */
1453){
1454 sqlite3 *db; /* The database connection */
1455 int nVar; /* Number of parameters */
1456 int nMem; /* Number of VM memory registers */
1457 int nCursor; /* Number of cursors required */
1458 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001459 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001460 int n; /* Loop counter */
1461 u8 *zCsr; /* Memory available for allocation */
1462 u8 *zEnd; /* First byte past allocated memory */
1463 int nByte; /* How much extra memory is needed */
1464
1465 assert( p!=0 );
1466 assert( p->nOp>0 );
1467 assert( pParse!=0 );
1468 assert( p->magic==VDBE_MAGIC_INIT );
1469 db = p->db;
1470 assert( db->mallocFailed==0 );
1471 nVar = pParse->nVar;
1472 nMem = pParse->nMem;
1473 nCursor = pParse->nTab;
1474 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001475 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001476 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001477
danielk1977cd3e8f72008-03-25 09:47:35 +00001478 /* For each cursor required, also allocate a memory cell. Memory
1479 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1480 ** the vdbe program. Instead they are used to allocate space for
drhdfe88ec2008-11-03 20:55:06 +00001481 ** VdbeCursor/BtCursor structures. The blob of memory associated with
danielk1977cd3e8f72008-03-25 09:47:35 +00001482 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1483 ** stores the blob of memory associated with cursor 1, etc.
1484 **
1485 ** See also: allocateCursor().
1486 */
1487 nMem += nCursor;
1488
danielk19776ab3a2e2009-02-19 14:39:25 +00001489 /* Allocate space for memory registers, SQL variables, VDBE cursors and
drh124c0b42011-06-01 18:15:55 +00001490 ** an array to marshal SQL function arguments in.
drh9a324642003-09-06 20:12:01 +00001491 */
drh124c0b42011-06-01 18:15:55 +00001492 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1493 zEnd = (u8*)&p->aOp[p->nOpAlloc]; /* First byte past end of zCsr[] */
drh19875c82009-12-08 19:58:19 +00001494
drh124c0b42011-06-01 18:15:55 +00001495 resolveP2Values(p, &nArg);
1496 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1497 if( pParse->explain && nMem<10 ){
1498 nMem = 10;
1499 }
1500 memset(zCsr, 0, zEnd-zCsr);
1501 zCsr += (zCsr - (u8*)0)&7;
1502 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
drhaab910c2011-06-27 00:01:22 +00001503 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001504
1505 /* Memory for registers, parameters, cursor, etc, is allocated in two
1506 ** passes. On the first pass, we try to reuse unused space at the
1507 ** end of the opcode array. If we are unable to satisfy all memory
1508 ** requirements by reusing the opcode array tail, then the second
1509 ** pass will fill in the rest using a fresh allocation.
1510 **
1511 ** This two-pass approach that reuses as much memory as possible from
1512 ** the leftover space at the end of the opcode array can significantly
1513 ** reduce the amount of memory held by a prepared statement.
1514 */
1515 do {
1516 nByte = 0;
1517 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1518 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1519 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1520 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1521 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1522 &zCsr, zEnd, &nByte);
drhb8475df2011-12-09 16:21:19 +00001523 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
drh124c0b42011-06-01 18:15:55 +00001524 if( nByte ){
1525 p->pFree = sqlite3DbMallocZero(db, nByte);
drh0f7eb612006-08-08 13:51:43 +00001526 }
drh124c0b42011-06-01 18:15:55 +00001527 zCsr = p->pFree;
1528 zEnd = &zCsr[nByte];
1529 }while( nByte && !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001530
drhd2a56232013-01-28 19:00:20 +00001531 p->nCursor = nCursor;
dan1d8cb212011-12-09 13:24:16 +00001532 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001533 if( p->aVar ){
1534 p->nVar = (ynVar)nVar;
1535 for(n=0; n<nVar; n++){
1536 p->aVar[n].flags = MEM_Null;
1537 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001538 }
drh82a48512003-09-06 22:45:20 +00001539 }
drh124c0b42011-06-01 18:15:55 +00001540 if( p->azVar ){
1541 p->nzVar = pParse->nzVar;
1542 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1543 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
danielk1977b3bce662005-01-29 08:32:43 +00001544 }
drh124c0b42011-06-01 18:15:55 +00001545 if( p->aMem ){
1546 p->aMem--; /* aMem[] goes from 1..nMem */
1547 p->nMem = nMem; /* not from 0..nMem-1 */
1548 for(n=1; n<=nMem; n++){
drhb8475df2011-12-09 16:21:19 +00001549 p->aMem[n].flags = MEM_Invalid;
drh124c0b42011-06-01 18:15:55 +00001550 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001551 }
drh9a324642003-09-06 20:12:01 +00001552 }
drh124c0b42011-06-01 18:15:55 +00001553 p->explain = pParse->explain;
1554 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001555}
1556
drh9a324642003-09-06 20:12:01 +00001557/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001558** Close a VDBE cursor and release all the resources that cursor
1559** happens to hold.
drh9a324642003-09-06 20:12:01 +00001560*/
drhdfe88ec2008-11-03 20:55:06 +00001561void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001562 if( pCx==0 ){
1563 return;
1564 }
dana20fde62011-07-12 14:28:05 +00001565 sqlite3VdbeSorterClose(p->db, pCx);
drh9a324642003-09-06 20:12:01 +00001566 if( pCx->pBt ){
danielk19774adee202004-05-08 08:23:19 +00001567 sqlite3BtreeClose(pCx->pBt);
drh34004ce2008-07-11 16:15:17 +00001568 /* The pCx->pCursor will be close automatically, if it exists, by
1569 ** the call above. */
1570 }else if( pCx->pCursor ){
1571 sqlite3BtreeCloseCursor(pCx->pCursor);
drh9a324642003-09-06 20:12:01 +00001572 }
drh9eff6162006-06-12 21:59:13 +00001573#ifndef SQLITE_OMIT_VIRTUALTABLE
1574 if( pCx->pVtabCursor ){
1575 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
danielk1977be718892006-06-23 08:05:19 +00001576 const sqlite3_module *pModule = pCx->pModule;
1577 p->inVtabMethod = 1;
drh9eff6162006-06-12 21:59:13 +00001578 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00001579 p->inVtabMethod = 0;
drh9eff6162006-06-12 21:59:13 +00001580 }
1581#endif
drh9a324642003-09-06 20:12:01 +00001582}
1583
dan65a7cd12009-09-01 12:16:01 +00001584/*
1585** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1586** is used, for example, when a trigger sub-program is halted to restore
1587** control to the main program.
1588*/
dan165921a2009-08-28 18:53:45 +00001589int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1590 Vdbe *v = pFrame->v;
dan1d8cb212011-12-09 13:24:16 +00001591 v->aOnceFlag = pFrame->aOnceFlag;
1592 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00001593 v->aOp = pFrame->aOp;
1594 v->nOp = pFrame->nOp;
1595 v->aMem = pFrame->aMem;
1596 v->nMem = pFrame->nMem;
1597 v->apCsr = pFrame->apCsr;
1598 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00001599 v->db->lastRowid = pFrame->lastRowid;
1600 v->nChange = pFrame->nChange;
dan165921a2009-08-28 18:53:45 +00001601 return pFrame->pc;
1602}
1603
drh9a324642003-09-06 20:12:01 +00001604/*
drh5f82e3c2009-07-06 00:44:08 +00001605** Close all cursors.
dan165921a2009-08-28 18:53:45 +00001606**
1607** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1608** cell array. This is necessary as the memory cell array may contain
1609** pointers to VdbeFrame objects, which may in turn contain pointers to
1610** open cursors.
drh9a324642003-09-06 20:12:01 +00001611*/
drh5f82e3c2009-07-06 00:44:08 +00001612static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00001613 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00001614 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00001615 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1616 sqlite3VdbeFrameRestore(pFrame);
1617 }
1618 p->pFrame = 0;
1619 p->nFrame = 0;
1620
dan523a0872009-08-31 05:23:32 +00001621 if( p->apCsr ){
1622 int i;
1623 for(i=0; i<p->nCursor; i++){
1624 VdbeCursor *pC = p->apCsr[i];
1625 if( pC ){
1626 sqlite3VdbeFreeCursor(p, pC);
1627 p->apCsr[i] = 0;
1628 }
danielk1977be718892006-06-23 08:05:19 +00001629 }
drh9a324642003-09-06 20:12:01 +00001630 }
dan523a0872009-08-31 05:23:32 +00001631 if( p->aMem ){
1632 releaseMemArray(&p->aMem[1], p->nMem);
1633 }
dan27106572010-12-01 08:04:47 +00001634 while( p->pDelFrame ){
1635 VdbeFrame *pDel = p->pDelFrame;
1636 p->pDelFrame = pDel->pParent;
1637 sqlite3VdbeFrameDelete(pDel);
1638 }
drh9a324642003-09-06 20:12:01 +00001639}
1640
1641/*
drh9a324642003-09-06 20:12:01 +00001642** Clean up the VM after execution.
1643**
1644** This routine will automatically close any cursors, lists, and/or
1645** sorters that were left open. It also deletes the values of
drh5a12e682004-05-19 11:24:25 +00001646** variables in the aVar[] array.
drh9a324642003-09-06 20:12:01 +00001647*/
drhc890fec2008-08-01 20:10:08 +00001648static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00001649 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00001650
1651#ifdef SQLITE_DEBUG
1652 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1653 ** Vdbe.aMem[] arrays have already been cleaned up. */
1654 int i;
drhb8475df2011-12-09 16:21:19 +00001655 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1656 if( p->aMem ){
1657 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid );
1658 }
dan165921a2009-08-28 18:53:45 +00001659#endif
1660
drh633e6d52008-07-28 19:34:53 +00001661 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00001662 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00001663 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00001664}
1665
1666/*
danielk197722322fd2004-05-25 23:35:17 +00001667** Set the number of result columns that will be returned by this SQL
1668** statement. This is now set at compile time, rather than during
1669** execution of the vdbe program so that sqlite3_column_count() can
1670** be called on an SQL statement before sqlite3_step().
1671*/
1672void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00001673 Mem *pColName;
1674 int n;
drh633e6d52008-07-28 19:34:53 +00001675 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001676
drhc890fec2008-08-01 20:10:08 +00001677 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00001678 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00001679 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00001680 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00001681 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00001682 if( p->aColName==0 ) return;
1683 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00001684 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00001685 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001686 pColName++;
drh76ff3a02004-09-24 22:32:30 +00001687 }
danielk197722322fd2004-05-25 23:35:17 +00001688}
1689
1690/*
danielk19773cf86062004-05-26 10:11:05 +00001691** Set the name of the idx'th column to be returned by the SQL statement.
1692** zName must be a pointer to a nul terminated string.
1693**
1694** This call must be made after a call to sqlite3VdbeSetNumCols().
1695**
danielk197710fb7492008-10-31 10:53:22 +00001696** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1697** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1698** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00001699*/
danielk197710fb7492008-10-31 10:53:22 +00001700int sqlite3VdbeSetColName(
1701 Vdbe *p, /* Vdbe being configured */
1702 int idx, /* Index of column zName applies to */
1703 int var, /* One of the COLNAME_* constants */
1704 const char *zName, /* Pointer to buffer containing name */
1705 void (*xDel)(void*) /* Memory management strategy for zName */
1706){
danielk19773cf86062004-05-26 10:11:05 +00001707 int rc;
1708 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00001709 assert( idx<p->nResColumn );
1710 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00001711 if( p->db->mallocFailed ){
1712 assert( !zName || xDel!=SQLITE_DYNAMIC );
1713 return SQLITE_NOMEM;
1714 }
drh76ff3a02004-09-24 22:32:30 +00001715 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00001716 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00001717 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00001718 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00001719 return rc;
1720}
1721
danielk197713adf8a2004-06-03 16:08:41 +00001722/*
1723** A read or write transaction may or may not be active on database handle
1724** db. If a transaction is active, commit it. If there is a
1725** write-transaction spanning more than one database file, this routine
1726** takes care of the master journal trickery.
1727*/
danielk19773e3a84d2008-08-01 17:37:40 +00001728static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00001729 int i;
1730 int nTrans = 0; /* Number of databases with an active write-transaction */
1731 int rc = SQLITE_OK;
1732 int needXcommit = 0;
1733
shane36840fd2009-06-26 16:32:13 +00001734#ifdef SQLITE_OMIT_VIRTUALTABLE
1735 /* With this option, sqlite3VtabSync() is defined to be simply
1736 ** SQLITE_OK so p is not used.
1737 */
1738 UNUSED_PARAMETER(p);
1739#endif
1740
danielk19775bd270b2006-07-25 15:14:52 +00001741 /* Before doing anything else, call the xSync() callback for any
1742 ** virtual module tables written in this transaction. This has to
1743 ** be done before determining whether a master journal file is
1744 ** required, as an xSync() callback may add an attached database
1745 ** to the transaction.
1746 */
danielk19773e3a84d2008-08-01 17:37:40 +00001747 rc = sqlite3VtabSync(db, &p->zErrMsg);
danielk19775bd270b2006-07-25 15:14:52 +00001748
1749 /* This loop determines (a) if the commit hook should be invoked and
1750 ** (b) how many database files have open write transactions, not
1751 ** including the temp database. (b) is important because if more than
1752 ** one database file has an open write transaction, a master journal
1753 ** file is required for an atomic commit.
1754 */
drhabfb62f2010-07-30 11:20:35 +00001755 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001756 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001757 if( sqlite3BtreeIsInTrans(pBt) ){
danielk197713adf8a2004-06-03 16:08:41 +00001758 needXcommit = 1;
1759 if( i!=1 ) nTrans++;
dan6b9bb592012-10-05 19:43:02 +00001760 sqlite3BtreeEnter(pBt);
drhabfb62f2010-07-30 11:20:35 +00001761 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
dan6b9bb592012-10-05 19:43:02 +00001762 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00001763 }
1764 }
drhabfb62f2010-07-30 11:20:35 +00001765 if( rc!=SQLITE_OK ){
1766 return rc;
1767 }
danielk197713adf8a2004-06-03 16:08:41 +00001768
1769 /* If there are any write-transactions at all, invoke the commit hook */
1770 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00001771 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00001772 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00001773 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00001774 }
1775 }
1776
danielk197740b38dc2004-06-26 08:38:24 +00001777 /* The simple case - no more than one database file (not counting the
1778 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00001779 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00001780 **
danielk197740b38dc2004-06-26 08:38:24 +00001781 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00001782 ** string, it means the main database is :memory: or a temp file. In
1783 ** that case we do not support atomic multi-file commits, so use the
1784 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00001785 */
drhea678832008-12-10 19:26:22 +00001786 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1787 || nTrans<=1
1788 ){
danielk197704103022009-02-03 16:51:24 +00001789 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001790 Btree *pBt = db->aDb[i].pBt;
1791 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00001792 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00001793 }
1794 }
1795
drh80e35f42007-03-30 14:06:34 +00001796 /* Do the commit only if all databases successfully complete phase 1.
1797 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1798 ** IO error while deleting or truncating a journal file. It is unlikely,
1799 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00001800 */
1801 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1802 Btree *pBt = db->aDb[i].pBt;
1803 if( pBt ){
dan60939d02011-03-29 15:40:55 +00001804 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00001805 }
danielk1977979f38e2007-03-27 16:19:51 +00001806 }
1807 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00001808 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00001809 }
1810 }
1811
1812 /* The complex case - There is a multi-file write-transaction active.
1813 ** This requires a master journal file to ensure the transaction is
1814 ** committed atomicly.
1815 */
danielk197744ee5bf2005-05-27 09:41:12 +00001816#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00001817 else{
danielk1977b4b47412007-08-17 15:53:36 +00001818 sqlite3_vfs *pVfs = db->pVfs;
drh2c8997b2005-08-27 16:36:48 +00001819 int needSync = 0;
danielk197713adf8a2004-06-03 16:08:41 +00001820 char *zMaster = 0; /* File-name for the master journal */
1821 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00001822 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00001823 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00001824 int res;
drhf5808602011-12-16 00:33:04 +00001825 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00001826 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00001827
1828 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00001829 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00001830 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
drh5c531a42011-12-16 01:21:31 +00001831 if( zMaster==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00001832 do {
drhdc5ea5c2008-12-10 17:19:59 +00001833 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00001834 if( retryCount ){
1835 if( retryCount>100 ){
1836 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
1837 sqlite3OsDelete(pVfs, zMaster, 0);
1838 break;
1839 }else if( retryCount==1 ){
1840 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
1841 }
danielk197713adf8a2004-06-03 16:08:41 +00001842 }
drh84968c02011-12-16 15:11:39 +00001843 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00001844 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00001845 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00001846 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00001847 /* The antipenultimate character of the master journal name must
1848 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00001849 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00001850 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00001851 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1852 }while( rc==SQLITE_OK && res );
1853 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00001854 /* Open the master journal. */
1855 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1856 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1857 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1858 );
1859 }
danielk197713adf8a2004-06-03 16:08:41 +00001860 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00001861 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00001862 return rc;
1863 }
1864
1865 /* Write the name of each database file in the transaction into the new
1866 ** master journal file. If an error occurs at this point close
1867 ** and delete the master journal file. All the individual journal files
1868 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00001869 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00001870 */
danielk19771e536952007-08-16 10:09:01 +00001871 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001872 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001873 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00001874 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00001875 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00001876 continue; /* Ignore TEMP and :memory: databases */
1877 }
drh8c96a6e2010-08-31 01:09:15 +00001878 assert( zFile[0]!=0 );
drh2c8997b2005-08-27 16:36:48 +00001879 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1880 needSync = 1;
1881 }
drhea678832008-12-10 19:26:22 +00001882 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
1883 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00001884 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00001885 sqlite3OsCloseFree(pMaster);
1886 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00001887 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00001888 return rc;
1889 }
1890 }
1891 }
1892
danielk19779663b8f2007-08-24 11:52:28 +00001893 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1894 ** flag is set this is not required.
1895 */
danielk1977bea2a942009-01-20 17:06:27 +00001896 if( needSync
1897 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
1898 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
1899 ){
danielk1977fee2d252007-08-18 10:59:19 +00001900 sqlite3OsCloseFree(pMaster);
1901 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00001902 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00001903 return rc;
1904 }
drhc9e06862004-06-09 20:03:08 +00001905
danielk197713adf8a2004-06-03 16:08:41 +00001906 /* Sync all the db files involved in the transaction. The same call
1907 ** sets the master journal pointer in each individual journal. If
1908 ** an error occurs here, do not delete the master journal file.
1909 **
drh80e35f42007-03-30 14:06:34 +00001910 ** If the error occurs during the first call to
1911 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1912 ** master journal file will be orphaned. But we cannot delete it,
1913 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00001914 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00001915 */
danielk19775bd270b2006-07-25 15:14:52 +00001916 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001917 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001918 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00001919 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00001920 }
1921 }
danielk1977fee2d252007-08-18 10:59:19 +00001922 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00001923 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00001924 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00001925 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00001926 return rc;
1927 }
danielk197713adf8a2004-06-03 16:08:41 +00001928
danielk1977962398d2004-06-14 09:35:16 +00001929 /* Delete the master journal file. This commits the transaction. After
1930 ** doing this the directory is synced again before any individual
1931 ** transaction files are deleted.
1932 */
danielk1977fee2d252007-08-18 10:59:19 +00001933 rc = sqlite3OsDelete(pVfs, zMaster, 1);
drh633e6d52008-07-28 19:34:53 +00001934 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00001935 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00001936 if( rc ){
1937 return rc;
1938 }
danielk197713adf8a2004-06-03 16:08:41 +00001939
1940 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00001941 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1942 ** deleting or truncating journals. If something goes wrong while
1943 ** this is happening we don't really care. The integrity of the
1944 ** transaction is already guaranteed, but some stray 'cold' journals
1945 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00001946 */
danielk1977979f38e2007-03-27 16:19:51 +00001947 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00001948 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00001949 for(i=0; i<db->nDb; i++){
1950 Btree *pBt = db->aDb[i].pBt;
1951 if( pBt ){
dan60939d02011-03-29 15:40:55 +00001952 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00001953 }
1954 }
danielk19772d1d86f2008-06-20 14:59:51 +00001955 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00001956 enable_simulated_io_errors();
1957
danielk1977f9e7dda2006-06-16 16:08:53 +00001958 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00001959 }
danielk197744ee5bf2005-05-27 09:41:12 +00001960#endif
danielk1977026d2702004-06-14 13:14:59 +00001961
drh2ac3ee92004-06-07 16:27:46 +00001962 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00001963}
1964
danielk19771d850a72004-05-31 08:26:49 +00001965/*
1966** This routine checks that the sqlite3.activeVdbeCnt count variable
1967** matches the number of vdbe's in the list sqlite3.pVdbe that are
1968** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00001969** This is an internal self-check only - it is not an essential processing
1970** step.
danielk19771d850a72004-05-31 08:26:49 +00001971**
1972** This is a no-op if NDEBUG is defined.
1973*/
1974#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00001975static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00001976 Vdbe *p;
1977 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00001978 int nWrite = 0;
danielk19771d850a72004-05-31 08:26:49 +00001979 p = db->pVdbe;
1980 while( p ){
drh92f02c32004-09-02 14:57:08 +00001981 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
danielk19771d850a72004-05-31 08:26:49 +00001982 cnt++;
drhad4a4b82008-11-05 16:37:34 +00001983 if( p->readOnly==0 ) nWrite++;
danielk19771d850a72004-05-31 08:26:49 +00001984 }
1985 p = p->pNext;
1986 }
danielk19771d850a72004-05-31 08:26:49 +00001987 assert( cnt==db->activeVdbeCnt );
drhad4a4b82008-11-05 16:37:34 +00001988 assert( nWrite==db->writeVdbeCnt );
danielk19771d850a72004-05-31 08:26:49 +00001989}
1990#else
1991#define checkActiveVdbeCnt(x)
1992#endif
1993
danielk19773cf86062004-05-26 10:11:05 +00001994/*
danielk1977bd434552009-03-18 10:33:00 +00001995** If the Vdbe passed as the first argument opened a statement-transaction,
1996** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
1997** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
1998** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
1999** statement transaction is commtted.
2000**
2001** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2002** Otherwise SQLITE_OK.
2003*/
2004int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002005 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002006 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002007
danielk1977e4948172009-07-17 17:25:43 +00002008 /* If p->iStatement is greater than zero, then this Vdbe opened a
2009 ** statement transaction that should be closed here. The only exception
2010 ** is that an IO error may have occured, causing an emergency rollback.
2011 ** In this case (db->nStatement==0), and there is nothing to do.
2012 */
2013 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002014 int i;
2015 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002016
2017 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2018 assert( db->nStatement>0 );
2019 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2020
2021 for(i=0; i<db->nDb; i++){
2022 int rc2 = SQLITE_OK;
2023 Btree *pBt = db->aDb[i].pBt;
2024 if( pBt ){
2025 if( eOp==SAVEPOINT_ROLLBACK ){
2026 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2027 }
2028 if( rc2==SQLITE_OK ){
2029 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2030 }
2031 if( rc==SQLITE_OK ){
2032 rc = rc2;
2033 }
2034 }
2035 }
2036 db->nStatement--;
2037 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002038
dana311b802011-04-26 19:21:34 +00002039 if( rc==SQLITE_OK ){
2040 if( eOp==SAVEPOINT_ROLLBACK ){
2041 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2042 }
2043 if( rc==SQLITE_OK ){
2044 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2045 }
2046 }
2047
dan1da40a32009-09-19 17:00:31 +00002048 /* If the statement transaction is being rolled back, also restore the
2049 ** database handles deferred constraint counter to the value it had when
2050 ** the statement transaction was opened. */
2051 if( eOp==SAVEPOINT_ROLLBACK ){
2052 db->nDeferredCons = p->nStmtDefCons;
2053 }
danielk1977bd434552009-03-18 10:33:00 +00002054 }
2055 return rc;
2056}
2057
2058/*
dan1da40a32009-09-19 17:00:31 +00002059** This function is called when a transaction opened by the database
2060** handle associated with the VM passed as an argument is about to be
2061** committed. If there are outstanding deferred foreign key constraint
2062** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2063**
2064** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002065** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2066** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002067*/
2068#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002069int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002070 sqlite3 *db = p->db;
dan32b09f22009-09-23 17:29:59 +00002071 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
drhd91c1a12013-02-09 13:58:25 +00002072 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002073 p->errorAction = OE_Abort;
dan1da40a32009-09-19 17:00:31 +00002074 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
2075 return SQLITE_ERROR;
2076 }
2077 return SQLITE_OK;
2078}
2079#endif
2080
2081/*
drh92f02c32004-09-02 14:57:08 +00002082** This routine is called the when a VDBE tries to halt. If the VDBE
2083** has made changes and is in autocommit mode, then commit those
2084** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002085**
drh92f02c32004-09-02 14:57:08 +00002086** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002087** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2088** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002089**
2090** Return an error code. If the commit could not complete because of
2091** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2092** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002093*/
drhff0587c2007-08-29 17:43:19 +00002094int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002095 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002096 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002097
2098 /* This function contains the logic that determines if a statement or
2099 ** transaction will be committed or rolled back as a result of the
2100 ** execution of this virtual machine.
2101 **
drh71b890a2007-10-03 15:30:52 +00002102 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002103 **
drh71b890a2007-10-03 15:30:52 +00002104 ** SQLITE_NOMEM
2105 ** SQLITE_IOERR
2106 ** SQLITE_FULL
2107 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002108 **
drh71b890a2007-10-03 15:30:52 +00002109 ** Then the internal cache might have been left in an inconsistent
2110 ** state. We need to rollback the statement transaction, if there is
2111 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002112 */
drh9a324642003-09-06 20:12:01 +00002113
drh17435752007-08-16 04:30:38 +00002114 if( p->db->mallocFailed ){
danielk1977261919c2005-12-06 12:52:59 +00002115 p->rc = SQLITE_NOMEM;
2116 }
drh6e856bc2011-12-09 18:06:44 +00002117 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002118 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002119 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002120 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002121 }
danielk19771d850a72004-05-31 08:26:49 +00002122 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002123
danielk197707cb5602006-01-20 10:55:05 +00002124 /* No commit or rollback needed if the program never started */
2125 if( p->pc>=0 ){
drhaac2f552006-09-23 21:44:23 +00002126 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002127 int eStatementOp = 0;
2128 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002129
2130 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002131 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002132
drh71b890a2007-10-03 15:30:52 +00002133 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002134 mrc = p->rc & 0xff;
drhfa3be902009-07-07 02:44:07 +00002135 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
drh71b890a2007-10-03 15:30:52 +00002136 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002137 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002138 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002139 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2140 ** no rollback is necessary. Otherwise, at least a savepoint
2141 ** transaction must be rolled back to restore the database to a
2142 ** consistent state.
2143 **
2144 ** Even if the statement is read-only, it is important to perform
2145 ** a statement or transaction rollback operation. If the error
2146 ** occured while writing to the journal, sub-journal or database
2147 ** file as part of an effort to free up cache space (see function
2148 ** pagerStress() in pager.c), the rollback is required to restore
2149 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002150 */
drhad4a4b82008-11-05 16:37:34 +00002151 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002152 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002153 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002154 }else{
2155 /* We are forced to roll back the active transaction. Before doing
2156 ** so, abort any other statements this handle currently has active.
2157 */
drh21021a52012-02-13 17:01:51 +00002158 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002159 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002160 db->autoCommit = 1;
2161 }
danielk1977261919c2005-12-06 12:52:59 +00002162 }
2163 }
dan32b09f22009-09-23 17:29:59 +00002164
2165 /* Check for immediate foreign key violations. */
2166 if( p->rc==SQLITE_OK ){
2167 sqlite3VdbeCheckFk(p, 0);
2168 }
danielk197707cb5602006-01-20 10:55:05 +00002169
danielk1977bd434552009-03-18 10:33:00 +00002170 /* If the auto-commit flag is set and this is the only active writer
2171 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002172 **
2173 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002174 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002175 */
danielk1977093e0f62008-11-13 18:00:14 +00002176 if( !sqlite3VtabInSync(db)
2177 && db->autoCommit
2178 && db->writeVdbeCnt==(p->readOnly==0)
2179 ){
danielk197707cb5602006-01-20 10:55:05 +00002180 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002181 rc = sqlite3VdbeCheckFk(p, 1);
2182 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002183 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002184 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002185 return SQLITE_ERROR;
2186 }
drhd91c1a12013-02-09 13:58:25 +00002187 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002188 }else{
2189 /* The auto-commit flag is true, the vdbe program was successful
2190 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2191 ** key constraints to hold up the transaction. This means a commit
2192 ** is required. */
2193 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002194 }
dan19611b12011-01-24 16:00:58 +00002195 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002196 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002197 return SQLITE_BUSY;
2198 }else if( rc!=SQLITE_OK ){
2199 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002200 sqlite3RollbackAll(db, SQLITE_OK);
danielk197707cb5602006-01-20 10:55:05 +00002201 }else{
dan1da40a32009-09-19 17:00:31 +00002202 db->nDeferredCons = 0;
danielk197707cb5602006-01-20 10:55:05 +00002203 sqlite3CommitInternalChanges(db);
2204 }
2205 }else{
drh0f198a72012-02-13 16:43:16 +00002206 sqlite3RollbackAll(db, SQLITE_OK);
danielk197707cb5602006-01-20 10:55:05 +00002207 }
danielk1977bd434552009-03-18 10:33:00 +00002208 db->nStatement = 0;
2209 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002210 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002211 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002212 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002213 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002214 }else{
drh21021a52012-02-13 17:01:51 +00002215 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002216 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002217 db->autoCommit = 1;
2218 }
danielk19771d850a72004-05-31 08:26:49 +00002219 }
danielk197707cb5602006-01-20 10:55:05 +00002220
danielk1977bd434552009-03-18 10:33:00 +00002221 /* If eStatementOp is non-zero, then a statement transaction needs to
2222 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2223 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002224 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2225 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002226 */
danielk1977bd434552009-03-18 10:33:00 +00002227 if( eStatementOp ){
2228 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002229 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002230 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002231 p->rc = rc;
2232 sqlite3DbFree(db, p->zErrMsg);
2233 p->zErrMsg = 0;
2234 }
drh21021a52012-02-13 17:01:51 +00002235 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002236 sqlite3CloseSavepoints(db);
2237 db->autoCommit = 1;
danielk197707cb5602006-01-20 10:55:05 +00002238 }
danielk197777d83ba2004-05-31 10:08:14 +00002239 }
danielk197707cb5602006-01-20 10:55:05 +00002240
danielk1977bd434552009-03-18 10:33:00 +00002241 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2242 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002243 */
drh6be240e2009-07-14 02:33:02 +00002244 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002245 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002246 sqlite3VdbeSetChanges(db, p->nChange);
2247 }else{
2248 sqlite3VdbeSetChanges(db, 0);
2249 }
2250 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002251 }
drhff0587c2007-08-29 17:43:19 +00002252
2253 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002254 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002255 }
danielk19771d850a72004-05-31 08:26:49 +00002256
danielk197765fd59f2006-06-24 11:51:33 +00002257 /* We have successfully halted and closed the VM. Record this fact. */
2258 if( p->pc>=0 ){
danielk19771d850a72004-05-31 08:26:49 +00002259 db->activeVdbeCnt--;
drhad4a4b82008-11-05 16:37:34 +00002260 if( !p->readOnly ){
2261 db->writeVdbeCnt--;
2262 }
2263 assert( db->activeVdbeCnt>=db->writeVdbeCnt );
drh9a324642003-09-06 20:12:01 +00002264 }
drh92f02c32004-09-02 14:57:08 +00002265 p->magic = VDBE_MAGIC_HALT;
2266 checkActiveVdbeCnt(db);
drhff0587c2007-08-29 17:43:19 +00002267 if( p->db->mallocFailed ){
2268 p->rc = SQLITE_NOMEM;
2269 }
danielk19771d850a72004-05-31 08:26:49 +00002270
danielk1977404ca072009-03-16 13:19:36 +00002271 /* If the auto-commit flag is set to true, then any locks that were held
2272 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2273 ** to invoke any required unlock-notify callbacks.
2274 */
2275 if( db->autoCommit ){
2276 sqlite3ConnectionUnlocked(db);
2277 }
2278
danielk1977bd434552009-03-18 10:33:00 +00002279 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002280 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002281}
drh4cf7c7f2007-08-28 23:28:07 +00002282
drh92f02c32004-09-02 14:57:08 +00002283
2284/*
drh3c23a882007-01-09 14:01:13 +00002285** Each VDBE holds the result of the most recent sqlite3_step() call
2286** in p->rc. This routine sets that result back to SQLITE_OK.
2287*/
2288void sqlite3VdbeResetStepResult(Vdbe *p){
2289 p->rc = SQLITE_OK;
2290}
2291
2292/*
dan029ead62011-10-27 15:19:58 +00002293** Copy the error code and error message belonging to the VDBE passed
2294** as the first argument to its database handle (so that they will be
2295** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2296**
2297** This function does not clear the VDBE error code or message, just
2298** copies them to the database handle.
2299*/
2300int sqlite3VdbeTransferError(Vdbe *p){
2301 sqlite3 *db = p->db;
2302 int rc = p->rc;
2303 if( p->zErrMsg ){
drh81bdd6d2011-10-29 01:33:24 +00002304 u8 mallocFailed = db->mallocFailed;
dan029ead62011-10-27 15:19:58 +00002305 sqlite3BeginBenignMalloc();
2306 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2307 sqlite3EndBenignMalloc();
drh81bdd6d2011-10-29 01:33:24 +00002308 db->mallocFailed = mallocFailed;
dan029ead62011-10-27 15:19:58 +00002309 db->errCode = rc;
2310 }else{
2311 sqlite3Error(db, rc, 0);
2312 }
2313 return rc;
2314}
2315
danac455932012-11-26 19:50:41 +00002316#ifdef SQLITE_ENABLE_SQLLOG
2317/*
2318** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2319** invoke it.
2320*/
2321static void vdbeInvokeSqllog(Vdbe *v){
2322 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2323 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2324 assert( v->db->init.busy==0 );
2325 if( zExpanded ){
2326 sqlite3GlobalConfig.xSqllog(
2327 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2328 );
2329 sqlite3DbFree(v->db, zExpanded);
2330 }
2331 }
2332}
2333#else
2334# define vdbeInvokeSqllog(x)
2335#endif
2336
dan029ead62011-10-27 15:19:58 +00002337/*
drh92f02c32004-09-02 14:57:08 +00002338** Clean up a VDBE after execution but do not delete the VDBE just yet.
2339** Write any error messages into *pzErrMsg. Return the result code.
2340**
2341** After this routine is run, the VDBE should be ready to be executed
2342** again.
2343**
2344** To look at it another way, this routine resets the state of the
2345** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2346** VDBE_MAGIC_INIT.
2347*/
drhc890fec2008-08-01 20:10:08 +00002348int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002349 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002350 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002351
2352 /* If the VM did not run to completion or if it encountered an
2353 ** error, then it might not have been halted properly. So halt
2354 ** it now.
2355 */
2356 sqlite3VdbeHalt(p);
2357
drhfb7e7652005-01-24 00:28:42 +00002358 /* If the VDBE has be run even partially, then transfer the error code
2359 ** and error message from the VDBE into the main database structure. But
2360 ** if the VDBE has just been set to run but has not actually executed any
2361 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002362 */
drhfb7e7652005-01-24 00:28:42 +00002363 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002364 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002365 sqlite3VdbeTransferError(p);
2366 sqlite3DbFree(db, p->zErrMsg);
2367 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002368 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002369 }else if( p->rc && p->expired ){
2370 /* The expired flag was set on the VDBE before the first call
2371 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2372 ** called), set the database error in this case as well.
2373 */
drh4ac285a2006-09-15 07:28:50 +00002374 sqlite3Error(db, p->rc, 0);
drh633e6d52008-07-28 19:34:53 +00002375 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2376 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002377 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002378 }
2379
2380 /* Reclaim all memory used by the VDBE
2381 */
drhc890fec2008-08-01 20:10:08 +00002382 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002383
2384 /* Save profiling information from this VDBE run.
2385 */
drh9a324642003-09-06 20:12:01 +00002386#ifdef VDBE_PROFILE
2387 {
2388 FILE *out = fopen("vdbe_profile.out", "a");
2389 if( out ){
2390 int i;
2391 fprintf(out, "---- ");
2392 for(i=0; i<p->nOp; i++){
2393 fprintf(out, "%02x", p->aOp[i].opcode);
2394 }
2395 fprintf(out, "\n");
2396 for(i=0; i<p->nOp; i++){
2397 fprintf(out, "%6d %10lld %8lld ",
2398 p->aOp[i].cnt,
2399 p->aOp[i].cycles,
2400 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2401 );
danielk19774adee202004-05-08 08:23:19 +00002402 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002403 }
2404 fclose(out);
2405 }
2406 }
2407#endif
2408 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002409 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002410}
drh92f02c32004-09-02 14:57:08 +00002411
drh9a324642003-09-06 20:12:01 +00002412/*
2413** Clean up and delete a VDBE after execution. Return an integer which is
2414** the result code. Write any error message text into *pzErrMsg.
2415*/
danielk19779e6db7d2004-06-21 08:18:51 +00002416int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002417 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002418 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002419 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002420 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002421 }
danielk19774adee202004-05-08 08:23:19 +00002422 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002423 return rc;
2424}
2425
2426/*
drhf92c7ff2004-06-19 15:40:23 +00002427** Call the destructor for each auxdata entry in pVdbeFunc for which
danielk1977e159fdf2004-06-21 10:45:06 +00002428** the corresponding bit in mask is clear. Auxdata entries beyond 31
drhf92c7ff2004-06-19 15:40:23 +00002429** are always destroyed. To destroy all auxdata entries, call this
danielk1977e159fdf2004-06-21 10:45:06 +00002430** routine with mask==0.
drhf92c7ff2004-06-19 15:40:23 +00002431*/
2432void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
2433 int i;
2434 for(i=0; i<pVdbeFunc->nAux; i++){
2435 struct AuxData *pAux = &pVdbeFunc->apAux[i];
drh3500ed62009-05-05 15:46:43 +00002436 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
drhf92c7ff2004-06-19 15:40:23 +00002437 if( pAux->xDelete ){
2438 pAux->xDelete(pAux->pAux);
2439 }
2440 pAux->pAux = 0;
2441 }
2442 }
2443}
2444
2445/*
drhcb103b92012-10-26 00:11:23 +00002446** Free all memory associated with the Vdbe passed as the second argument,
2447** except for object itself, which is preserved.
2448**
dand46def72010-07-24 11:28:28 +00002449** The difference between this function and sqlite3VdbeDelete() is that
2450** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002451** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002452*/
drhcb103b92012-10-26 00:11:23 +00002453void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002454 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002455 int i;
dand46def72010-07-24 11:28:28 +00002456 assert( p->db==0 || p->db==db );
2457 releaseMemArray(p->aVar, p->nVar);
2458 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002459 for(pSub=p->pProgram; pSub; pSub=pNext){
2460 pNext = pSub->pNext;
2461 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2462 sqlite3DbFree(db, pSub);
2463 }
drh124c0b42011-06-01 18:15:55 +00002464 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
dand46def72010-07-24 11:28:28 +00002465 vdbeFreeOpArray(db, p->aOp, p->nOp);
2466 sqlite3DbFree(db, p->aLabel);
2467 sqlite3DbFree(db, p->aColName);
2468 sqlite3DbFree(db, p->zSql);
2469 sqlite3DbFree(db, p->pFree);
drh678a9aa2011-12-10 15:55:01 +00002470#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
drh25fe97a2013-01-23 18:44:22 +00002471 sqlite3DbFree(db, p->zExplain);
drh678a9aa2011-12-10 15:55:01 +00002472 sqlite3DbFree(db, p->pExplain);
drh7e02e5e2011-12-06 19:44:51 +00002473#endif
dand46def72010-07-24 11:28:28 +00002474}
2475
2476/*
drh9a324642003-09-06 20:12:01 +00002477** Delete an entire VDBE.
2478*/
danielk19774adee202004-05-08 08:23:19 +00002479void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002480 sqlite3 *db;
2481
drhfa3be902009-07-07 02:44:07 +00002482 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002483 db = p->db;
drh4245c402012-06-02 14:32:21 +00002484 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002485 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002486 if( p->pPrev ){
2487 p->pPrev->pNext = p->pNext;
2488 }else{
drh633e6d52008-07-28 19:34:53 +00002489 assert( db->pVdbe==p );
2490 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002491 }
2492 if( p->pNext ){
2493 p->pNext->pPrev = p->pPrev;
2494 }
drh9a324642003-09-06 20:12:01 +00002495 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002496 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002497 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002498}
drha11846b2004-01-07 18:52:56 +00002499
2500/*
drh9a65f2c2009-06-22 19:05:40 +00002501** Make sure the cursor p is ready to read or write the row to which it
2502** was last positioned. Return an error code if an OOM fault or I/O error
2503** prevents us from positioning the cursor to its correct position.
2504**
drha11846b2004-01-07 18:52:56 +00002505** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00002506** MoveTo now. If no move is pending, check to see if the row has been
2507** deleted out from under the cursor and if it has, mark the row as
2508** a NULL row.
2509**
2510** If the cursor is already pointing to the correct row and that row has
2511** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00002512*/
drhdfe88ec2008-11-03 20:55:06 +00002513int sqlite3VdbeCursorMoveto(VdbeCursor *p){
drha11846b2004-01-07 18:52:56 +00002514 if( p->deferredMoveto ){
drh536065a2005-01-26 21:55:31 +00002515 int res, rc;
adamd4fc93082006-09-14 16:57:19 +00002516#ifdef SQLITE_TEST
danielk1977132872b2004-05-10 10:37:18 +00002517 extern int sqlite3_search_count;
adamd4fc93082006-09-14 16:57:19 +00002518#endif
drhf0863fe2005-06-12 21:35:51 +00002519 assert( p->isTable );
drhe63d9992008-08-13 19:11:48 +00002520 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
drh536065a2005-01-26 21:55:31 +00002521 if( rc ) return rc;
drhaa736092009-06-22 00:55:30 +00002522 p->lastRowid = p->movetoTarget;
drhbe0b2372010-07-30 18:40:55 +00002523 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2524 p->rowidIsValid = 1;
drh10cfdd52006-08-08 15:42:59 +00002525#ifdef SQLITE_TEST
danielk1977132872b2004-05-10 10:37:18 +00002526 sqlite3_search_count++;
drh10cfdd52006-08-08 15:42:59 +00002527#endif
drha11846b2004-01-07 18:52:56 +00002528 p->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00002529 p->cacheStatus = CACHE_STALE;
drh6be240e2009-07-14 02:33:02 +00002530 }else if( ALWAYS(p->pCursor) ){
drha3460582008-07-11 21:02:53 +00002531 int hasMoved;
2532 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2533 if( rc ) return rc;
2534 if( hasMoved ){
2535 p->cacheStatus = CACHE_STALE;
2536 p->nullRow = 1;
2537 }
drha11846b2004-01-07 18:52:56 +00002538 }
2539 return SQLITE_OK;
2540}
danielk19774adee202004-05-08 08:23:19 +00002541
drhab9f7f12004-05-08 10:56:11 +00002542/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002543** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00002544**
danielk1977cfcdaef2004-05-12 07:33:33 +00002545** sqlite3VdbeSerialType()
2546** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00002547** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00002548** sqlite3VdbeSerialPut()
2549** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00002550**
2551** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00002552** data and index records. Each serialized value consists of a
2553** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2554** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00002555**
danielk1977cfcdaef2004-05-12 07:33:33 +00002556** In an SQLite index record, the serial type is stored directly before
2557** the blob of data that it corresponds to. In a table record, all serial
2558** types are stored at the start of the record, and the blobs of data at
2559** the end. Hence these functions allow the caller to handle the
2560** serial-type and data blob seperately.
2561**
2562** The following table describes the various storage classes for data:
2563**
2564** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00002565** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00002566** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00002567** 1 1 signed integer
2568** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00002569** 3 3 signed integer
2570** 4 4 signed integer
2571** 5 6 signed integer
2572** 6 8 signed integer
2573** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00002574** 8 0 Integer constant 0
2575** 9 0 Integer constant 1
2576** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00002577** N>=12 and even (N-12)/2 BLOB
2578** N>=13 and odd (N-13)/2 text
2579**
drh35a59652006-01-02 18:24:40 +00002580** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2581** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00002582*/
2583
2584/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002585** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00002586*/
drhd946db02005-12-29 19:23:06 +00002587u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
danielk1977cfcdaef2004-05-12 07:33:33 +00002588 int flags = pMem->flags;
drhfdf972a2007-05-02 13:30:27 +00002589 int n;
danielk1977cfcdaef2004-05-12 07:33:33 +00002590
2591 if( flags&MEM_Null ){
drha19b7752004-05-30 21:14:58 +00002592 return 0;
danielk197790e4d952004-05-10 10:05:53 +00002593 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002594 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00002595 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00002596# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00002597 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00002598 u64 u;
drhcfd654b2011-03-05 13:54:15 +00002599 if( i<0 ){
2600 if( i<(-MAX_6BYTE) ) return 6;
2601 /* Previous test prevents: u = -(-9223372036854775808) */
2602 u = -i;
2603 }else{
2604 u = i;
2605 }
drh56690b32012-09-17 15:36:31 +00002606 if( u<=127 ){
2607 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2608 }
drh5742b632005-01-26 17:47:02 +00002609 if( u<=32767 ) return 2;
2610 if( u<=8388607 ) return 3;
2611 if( u<=2147483647 ) return 4;
2612 if( u<=MAX_6BYTE ) return 5;
drha19b7752004-05-30 21:14:58 +00002613 return 6;
danielk197790e4d952004-05-10 10:05:53 +00002614 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002615 if( flags&MEM_Real ){
drha19b7752004-05-30 21:14:58 +00002616 return 7;
danielk197790e4d952004-05-10 10:05:53 +00002617 }
danielk1977e4359752008-11-03 09:39:45 +00002618 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drhfdf972a2007-05-02 13:30:27 +00002619 n = pMem->n;
2620 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00002621 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00002622 }
drhfdf972a2007-05-02 13:30:27 +00002623 assert( n>=0 );
2624 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00002625}
2626
2627/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002628** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00002629*/
drh35cd6432009-06-05 14:17:21 +00002630u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drha19b7752004-05-30 21:14:58 +00002631 if( serial_type>=12 ){
drh51846b52004-05-28 16:00:21 +00002632 return (serial_type-12)/2;
2633 }else{
drh57196282004-10-06 15:41:16 +00002634 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
drh51846b52004-05-28 16:00:21 +00002635 return aSize[serial_type];
2636 }
danielk1977192ac1d2004-05-10 07:17:30 +00002637}
2638
2639/*
drh110daac2007-05-04 11:59:31 +00002640** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00002641** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00002642** upper 4 bytes. Return the result.
2643**
drh7a4f5022007-05-23 07:20:08 +00002644** For most architectures, this is a no-op.
2645**
2646** (later): It is reported to me that the mixed-endian problem
2647** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2648** that early versions of GCC stored the two words of a 64-bit
2649** float in the wrong order. And that error has been propagated
2650** ever since. The blame is not necessarily with GCC, though.
2651** GCC might have just copying the problem from a prior compiler.
2652** I am also told that newer versions of GCC that follow a different
2653** ABI get the byte order right.
2654**
2655** Developers using SQLite on an ARM7 should compile and run their
2656** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2657** enabled, some asserts below will ensure that the byte order of
2658** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00002659**
2660** (2007-08-30) Frank van Vugt has studied this problem closely
2661** and has send his findings to the SQLite developers. Frank
2662** writes that some Linux kernels offer floating point hardware
2663** emulation that uses only 32-bit mantissas instead of a full
2664** 48-bits as required by the IEEE standard. (This is the
2665** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2666** byte swapping becomes very complicated. To avoid problems,
2667** the necessary byte swapping is carried out using a 64-bit integer
2668** rather than a 64-bit float. Frank assures us that the code here
2669** works for him. We, the developers, have no way to independently
2670** verify this, but Frank seems to know what he is talking about
2671** so we trust him.
drh110daac2007-05-04 11:59:31 +00002672*/
2673#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00002674static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00002675 union {
drh60d09a72007-08-30 15:05:08 +00002676 u64 r;
drh110daac2007-05-04 11:59:31 +00002677 u32 i[2];
2678 } u;
2679 u32 t;
2680
2681 u.r = in;
2682 t = u.i[0];
2683 u.i[0] = u.i[1];
2684 u.i[1] = t;
2685 return u.r;
2686}
2687# define swapMixedEndianFloat(X) X = floatSwap(X)
2688#else
2689# define swapMixedEndianFloat(X)
2690#endif
2691
2692/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002693** Write the serialized data blob for the value stored in pMem into
2694** buf. It is assumed that the caller has allocated sufficient space.
2695** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00002696**
2697** nBuf is the amount of space left in buf[]. nBuf must always be
2698** large enough to hold the entire field. Except, if the field is
2699** a blob with a zero-filled tail, then buf[] might be just the right
2700** size to hold everything except for the zero-filled tail. If buf[]
2701** is only big enough to hold the non-zero prefix, then only write that
2702** prefix into buf[]. But if buf[] is large enough to hold both the
2703** prefix and the tail then write the prefix and set the tail to all
2704** zeros.
2705**
2706** Return the number of bytes actually written into buf[]. The number
2707** of bytes in the zero-filled tail is included in the return value only
2708** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00002709*/
drh35cd6432009-06-05 14:17:21 +00002710u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
drhd946db02005-12-29 19:23:06 +00002711 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
drh35cd6432009-06-05 14:17:21 +00002712 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00002713
drh1483e142004-05-21 21:12:42 +00002714 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00002715 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00002716 u64 v;
drh35cd6432009-06-05 14:17:21 +00002717 u32 i;
drha19b7752004-05-30 21:14:58 +00002718 if( serial_type==7 ){
drh4f0c5872007-03-26 22:05:01 +00002719 assert( sizeof(v)==sizeof(pMem->r) );
2720 memcpy(&v, &pMem->r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00002721 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00002722 }else{
drh3c024d62007-03-30 11:23:45 +00002723 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00002724 }
drh1483e142004-05-21 21:12:42 +00002725 len = i = sqlite3VdbeSerialTypeLen(serial_type);
shane75ac1de2009-06-09 18:58:52 +00002726 assert( len<=(u32)nBuf );
drh1483e142004-05-21 21:12:42 +00002727 while( i-- ){
drh8df32842008-12-09 02:51:23 +00002728 buf[i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00002729 v >>= 8;
2730 }
2731 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00002732 }
drhd946db02005-12-29 19:23:06 +00002733
danielk1977cfcdaef2004-05-12 07:33:33 +00002734 /* String or blob */
drhd946db02005-12-29 19:23:06 +00002735 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00002736 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00002737 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00002738 assert( pMem->n<=nBuf );
2739 len = pMem->n;
drhd946db02005-12-29 19:23:06 +00002740 memcpy(buf, pMem->z, len);
drhfdf972a2007-05-02 13:30:27 +00002741 if( pMem->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00002742 len += pMem->u.nZero;
drh35cd6432009-06-05 14:17:21 +00002743 assert( nBuf>=0 );
2744 if( len > (u32)nBuf ){
2745 len = (u32)nBuf;
drhfdf972a2007-05-02 13:30:27 +00002746 }
2747 memset(&buf[pMem->n], 0, len-pMem->n);
2748 }
drhd946db02005-12-29 19:23:06 +00002749 return len;
2750 }
2751
2752 /* NULL or constants 0 or 1 */
2753 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002754}
2755
2756/*
2757** Deserialize the data blob pointed to by buf as serial type serial_type
2758** and store the result in pMem. Return the number of bytes read.
2759*/
drh35cd6432009-06-05 14:17:21 +00002760u32 sqlite3VdbeSerialGet(
danielk197793d46752004-05-23 13:30:58 +00002761 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00002762 u32 serial_type, /* Serial type to deserialize */
2763 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00002764){
drh3c685822005-05-21 18:32:18 +00002765 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00002766 case 10: /* Reserved for future use */
2767 case 11: /* Reserved for future use */
2768 case 0: { /* NULL */
2769 pMem->flags = MEM_Null;
2770 break;
2771 }
2772 case 1: { /* 1-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002773 pMem->u.i = (signed char)buf[0];
drh1483e142004-05-21 21:12:42 +00002774 pMem->flags = MEM_Int;
drh3c685822005-05-21 18:32:18 +00002775 return 1;
drh1483e142004-05-21 21:12:42 +00002776 }
drh3c685822005-05-21 18:32:18 +00002777 case 2: { /* 2-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002778 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
drh3c685822005-05-21 18:32:18 +00002779 pMem->flags = MEM_Int;
2780 return 2;
2781 }
2782 case 3: { /* 3-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002783 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
drh3c685822005-05-21 18:32:18 +00002784 pMem->flags = MEM_Int;
2785 return 3;
2786 }
2787 case 4: { /* 4-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002788 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
drh3c685822005-05-21 18:32:18 +00002789 pMem->flags = MEM_Int;
2790 return 4;
2791 }
2792 case 5: { /* 6-byte signed integer */
2793 u64 x = (((signed char)buf[0])<<8) | buf[1];
2794 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2795 x = (x<<32) | y;
drh3c024d62007-03-30 11:23:45 +00002796 pMem->u.i = *(i64*)&x;
drh3c685822005-05-21 18:32:18 +00002797 pMem->flags = MEM_Int;
2798 return 6;
2799 }
drh91124b32005-08-18 18:15:05 +00002800 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00002801 case 7: { /* IEEE floating point */
drhd81bd4e2005-09-05 20:06:49 +00002802 u64 x;
2803 u32 y;
drh2a3e4a72006-01-23 21:44:53 +00002804#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
drhde941c62005-08-28 01:34:21 +00002805 /* Verify that integers and floating point values use the same
drh110daac2007-05-04 11:59:31 +00002806 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2807 ** defined that 64-bit floating point values really are mixed
2808 ** endian.
drhbfd6b032005-08-28 01:38:44 +00002809 */
drhde941c62005-08-28 01:34:21 +00002810 static const u64 t1 = ((u64)0x3ff00000)<<32;
drh4f0c5872007-03-26 22:05:01 +00002811 static const double r1 = 1.0;
drh60d09a72007-08-30 15:05:08 +00002812 u64 t2 = t1;
2813 swapMixedEndianFloat(t2);
2814 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
drhde941c62005-08-28 01:34:21 +00002815#endif
drhbfd6b032005-08-28 01:38:44 +00002816
drhd81bd4e2005-09-05 20:06:49 +00002817 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2818 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
drh3c685822005-05-21 18:32:18 +00002819 x = (x<<32) | y;
2820 if( serial_type==6 ){
drh3c024d62007-03-30 11:23:45 +00002821 pMem->u.i = *(i64*)&x;
drh3c685822005-05-21 18:32:18 +00002822 pMem->flags = MEM_Int;
2823 }else{
drh4f0c5872007-03-26 22:05:01 +00002824 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
drh60d09a72007-08-30 15:05:08 +00002825 swapMixedEndianFloat(x);
drh4f0c5872007-03-26 22:05:01 +00002826 memcpy(&pMem->r, &x, sizeof(x));
drh2eaf93d2008-04-29 00:15:20 +00002827 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
drh3c685822005-05-21 18:32:18 +00002828 }
2829 return 8;
2830 }
drhd946db02005-12-29 19:23:06 +00002831 case 8: /* Integer 0 */
2832 case 9: { /* Integer 1 */
drh3c024d62007-03-30 11:23:45 +00002833 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00002834 pMem->flags = MEM_Int;
2835 return 0;
2836 }
drh3c685822005-05-21 18:32:18 +00002837 default: {
drh35cd6432009-06-05 14:17:21 +00002838 u32 len = (serial_type-12)/2;
drh3c685822005-05-21 18:32:18 +00002839 pMem->z = (char *)buf;
2840 pMem->n = len;
2841 pMem->xDel = 0;
2842 if( serial_type&0x01 ){
2843 pMem->flags = MEM_Str | MEM_Ephem;
2844 }else{
2845 pMem->flags = MEM_Blob | MEM_Ephem;
2846 }
2847 return len;
drh696b32f2004-05-30 01:51:52 +00002848 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002849 }
drh3c685822005-05-21 18:32:18 +00002850 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002851}
2852
drh1e968a02008-03-25 00:22:21 +00002853/*
dan03e9cfc2011-09-05 14:20:27 +00002854** This routine is used to allocate sufficient space for an UnpackedRecord
2855** structure large enough to be used with sqlite3VdbeRecordUnpack() if
2856** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00002857**
dan03e9cfc2011-09-05 14:20:27 +00002858** The space is either allocated using sqlite3DbMallocRaw() or from within
2859** the unaligned buffer passed via the second and third arguments (presumably
2860** stack space). If the former, then *ppFree is set to a pointer that should
2861** be eventually freed by the caller using sqlite3DbFree(). Or, if the
2862** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
2863** before returning.
drh1e968a02008-03-25 00:22:21 +00002864**
dan03e9cfc2011-09-05 14:20:27 +00002865** If an OOM error occurs, NULL is returned.
2866*/
2867UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
2868 KeyInfo *pKeyInfo, /* Description of the record */
2869 char *pSpace, /* Unaligned space available */
2870 int szSpace, /* Size of pSpace[] in bytes */
2871 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00002872){
dan03e9cfc2011-09-05 14:20:27 +00002873 UnpackedRecord *p; /* Unpacked record to return */
2874 int nOff; /* Increment pSpace by nOff to align it */
2875 int nByte; /* Number of bytes required for *p */
2876
2877 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00002878 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2879 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
2880 */
2881 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00002882 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00002883 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00002884 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2885 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00002886 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00002887 }else{
dan42acb3e2011-09-05 20:16:38 +00002888 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00002889 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00002890 }
dan42acb3e2011-09-05 20:16:38 +00002891
2892 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00002893 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00002894 p->pKeyInfo = pKeyInfo;
2895 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00002896 return p;
2897}
2898
2899/*
2900** Given the nKey-byte encoding of a record in pKey[], populate the
2901** UnpackedRecord structure indicated by the fourth argument with the
2902** contents of the decoded record.
2903*/
2904void sqlite3VdbeRecordUnpack(
2905 KeyInfo *pKeyInfo, /* Information about the record format */
2906 int nKey, /* Size of the binary record */
2907 const void *pKey, /* The binary record */
2908 UnpackedRecord *p /* Populate this structure before returning. */
2909){
2910 const unsigned char *aKey = (const unsigned char *)pKey;
2911 int d;
2912 u32 idx; /* Offset in aKey[] to read from */
2913 u16 u; /* Unsigned loop counter */
2914 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00002915 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00002916
2917 p->flags = 0;
drh8c5d1522009-04-10 00:56:28 +00002918 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00002919 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00002920 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00002921 u = 0;
drh2fa34d32009-07-15 16:30:50 +00002922 while( idx<szHdr && u<p->nField && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00002923 u32 serial_type;
2924
danielk197700e13612008-11-17 19:18:54 +00002925 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00002926 pMem->enc = pKeyInfo->enc;
2927 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00002928 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
danielk19775f096132008-03-28 15:44:09 +00002929 pMem->zMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00002930 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00002931 pMem++;
shane0b8d2762008-07-22 05:18:00 +00002932 u++;
drh1e968a02008-03-25 00:22:21 +00002933 }
drh7d10d5a2008-08-20 16:35:10 +00002934 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00002935 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00002936}
2937
2938/*
2939** This function compares the two table rows or index records
2940** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
drhe63d9992008-08-13 19:11:48 +00002941** or positive integer if key1 is less than, equal to or
2942** greater than key2. The {nKey1, pKey1} key must be a blob
drh1e968a02008-03-25 00:22:21 +00002943** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2944** key must be a parsed key such as obtained from
2945** sqlite3VdbeParseRecord.
2946**
2947** Key1 and Key2 do not have to contain the same number of fields.
drhe63d9992008-08-13 19:11:48 +00002948** The key with fewer fields is usually compares less than the
2949** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2950** and the common prefixes are equal, then key1 is less than key2.
2951** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2952** equal, then the keys are considered to be equal and
drhec1fc802008-08-13 14:07:40 +00002953** the parts beyond the common prefix are ignored.
drh1e968a02008-03-25 00:22:21 +00002954*/
drhe14006d2008-03-25 17:23:32 +00002955int sqlite3VdbeRecordCompare(
drhec1fc802008-08-13 14:07:40 +00002956 int nKey1, const void *pKey1, /* Left key */
drhec1fc802008-08-13 14:07:40 +00002957 UnpackedRecord *pPKey2 /* Right key */
drh1e968a02008-03-25 00:22:21 +00002958){
danielk197700e13612008-11-17 19:18:54 +00002959 int d1; /* Offset into aKey[] of next data element */
drh1e968a02008-03-25 00:22:21 +00002960 u32 idx1; /* Offset into aKey[] of next header element */
2961 u32 szHdr1; /* Number of bytes in header */
2962 int i = 0;
2963 int nField;
2964 int rc = 0;
2965 const unsigned char *aKey1 = (const unsigned char *)pKey1;
2966 KeyInfo *pKeyInfo;
2967 Mem mem1;
2968
2969 pKeyInfo = pPKey2->pKeyInfo;
2970 mem1.enc = pKeyInfo->enc;
drh37272632009-11-16 21:28:45 +00002971 mem1.db = pKeyInfo->db;
drhd93a8b22009-11-16 03:13:40 +00002972 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
2973 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
drh8b249a82009-11-16 02:14:00 +00002974
2975 /* Compilers may complain that mem1.u.i is potentially uninitialized.
2976 ** We could initialize it, as shown here, to silence those complaints.
drh5275d2e2011-04-27 01:00:17 +00002977 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
drh8b249a82009-11-16 02:14:00 +00002978 ** the unnecessary initialization has a measurable negative performance
2979 ** impact, since this routine is a very high runner. And so, we choose
2980 ** to ignore the compiler warnings and leave this variable uninitialized.
2981 */
2982 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
drh1e968a02008-03-25 00:22:21 +00002983
shane3f8d5cf2008-04-24 19:15:09 +00002984 idx1 = getVarint32(aKey1, szHdr1);
drh1e968a02008-03-25 00:22:21 +00002985 d1 = szHdr1;
2986 nField = pKeyInfo->nField;
drhe1a022e2012-09-17 17:16:53 +00002987 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00002988 while( idx1<szHdr1 && i<pPKey2->nField ){
2989 u32 serial_type1;
2990
2991 /* Read the serial types for the next element in each key. */
shane3f8d5cf2008-04-24 19:15:09 +00002992 idx1 += getVarint32( aKey1+idx1, serial_type1 );
drh1e968a02008-03-25 00:22:21 +00002993 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
2994
2995 /* Extract the values to be compared.
2996 */
2997 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
2998
2999 /* Do the comparison
3000 */
drhe14006d2008-03-25 17:23:32 +00003001 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
drh1e968a02008-03-25 00:22:21 +00003002 i<nField ? pKeyInfo->aColl[i] : 0);
drh1e968a02008-03-25 00:22:21 +00003003 if( rc!=0 ){
drh8b249a82009-11-16 02:14:00 +00003004 assert( mem1.zMalloc==0 ); /* See comment below */
3005
3006 /* Invert the result if we are using DESC sort order. */
drhe1a022e2012-09-17 17:16:53 +00003007 if( i<nField && pKeyInfo->aSortOrder[i] ){
drh8b249a82009-11-16 02:14:00 +00003008 rc = -rc;
3009 }
3010
3011 /* If the PREFIX_SEARCH flag is set and all fields except the final
3012 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
3013 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
3014 ** This is used by the OP_IsUnique opcode.
3015 */
3016 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
3017 assert( idx1==szHdr1 && rc );
3018 assert( mem1.flags & MEM_Int );
3019 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
3020 pPKey2->rowid = mem1.u.i;
3021 }
3022
3023 return rc;
drh1e968a02008-03-25 00:22:21 +00003024 }
3025 i++;
3026 }
drh407414c2009-07-14 14:15:27 +00003027
drh8b249a82009-11-16 02:14:00 +00003028 /* No memory allocation is ever used on mem1. Prove this using
3029 ** the following assert(). If the assert() fails, it indicates a
3030 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
danielk1977de630352009-05-04 11:42:29 +00003031 */
drh8b249a82009-11-16 02:14:00 +00003032 assert( mem1.zMalloc==0 );
danielk1977de630352009-05-04 11:42:29 +00003033
drh8b249a82009-11-16 02:14:00 +00003034 /* rc==0 here means that one of the keys ran out of fields and
3035 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
3036 ** flag is set, then break the tie by treating key2 as larger.
3037 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
3038 ** are considered to be equal. Otherwise, the longer key is the
3039 ** larger. As it happens, the pPKey2 will always be the longer
3040 ** if there is a difference.
3041 */
3042 assert( rc==0 );
3043 if( pPKey2->flags & UNPACKED_INCRKEY ){
3044 rc = -1;
3045 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
3046 /* Leave rc==0 */
3047 }else if( idx1<szHdr1 ){
3048 rc = 1;
drh1e968a02008-03-25 00:22:21 +00003049 }
drh1e968a02008-03-25 00:22:21 +00003050 return rc;
3051}
drhec1fc802008-08-13 14:07:40 +00003052
danielk1977eb015e02004-05-18 01:31:14 +00003053
3054/*
drh7a224de2004-06-02 01:22:02 +00003055** pCur points at an index entry created using the OP_MakeRecord opcode.
3056** Read the rowid (the last field in the record) and store it in *rowid.
3057** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00003058**
3059** pCur might be pointing to text obtained from a corrupt database file.
3060** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00003061*/
drh35f6b932009-06-23 14:15:04 +00003062int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00003063 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00003064 int rc;
drhd5788202004-05-28 08:21:05 +00003065 u32 szHdr; /* Size of the header */
3066 u32 typeRowid; /* Serial type of the rowid */
3067 u32 lenRowid; /* Size of the rowid */
3068 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00003069
shanecea72b22009-09-07 04:38:36 +00003070 UNUSED_PARAMETER(db);
3071
drh88a003e2008-12-11 16:17:03 +00003072 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00003073 ** than 2GiB are support - anything large must be database corruption.
3074 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00003075 ** this code can safely assume that nCellKey is 32-bits
3076 */
drhea8ffdf2009-07-22 00:35:23 +00003077 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00003078 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00003079 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00003080 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00003081
3082 /* Read in the complete content of the index entry */
drhff104c12009-08-25 13:10:27 +00003083 memset(&m, 0, sizeof(m));
drh8df32842008-12-09 02:51:23 +00003084 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00003085 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00003086 return rc;
3087 }
drh88a003e2008-12-11 16:17:03 +00003088
3089 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00003090 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00003091 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00003092 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00003093 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00003094 goto idx_rowid_corruption;
3095 }
3096
3097 /* The last field of the index should be an integer - the ROWID.
3098 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00003099 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00003100 testcase( typeRowid==1 );
3101 testcase( typeRowid==2 );
3102 testcase( typeRowid==3 );
3103 testcase( typeRowid==4 );
3104 testcase( typeRowid==5 );
3105 testcase( typeRowid==6 );
3106 testcase( typeRowid==8 );
3107 testcase( typeRowid==9 );
3108 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3109 goto idx_rowid_corruption;
3110 }
drhd5788202004-05-28 08:21:05 +00003111 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
drheeb844a2009-08-08 18:01:07 +00003112 testcase( (u32)m.n==szHdr+lenRowid );
3113 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00003114 goto idx_rowid_corruption;
3115 }
3116
3117 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00003118 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00003119 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00003120 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00003121 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00003122
3123 /* Jump here if database corruption is detected after m has been
3124 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3125idx_rowid_corruption:
3126 testcase( m.zMalloc!=0 );
3127 sqlite3VdbeMemRelease(&m);
3128 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00003129}
3130
drh7cf6e4d2004-05-19 14:56:55 +00003131/*
drh5f82e3c2009-07-06 00:44:08 +00003132** Compare the key of the index entry that cursor pC is pointing to against
3133** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00003134** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00003135** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00003136**
drh5f82e3c2009-07-06 00:44:08 +00003137** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00003138** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00003139** is ignored as well. Hence, this routine only compares the prefixes
3140** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00003141*/
danielk1977183f9f72004-05-13 05:20:26 +00003142int sqlite3VdbeIdxKeyCompare(
drhdfe88ec2008-11-03 20:55:06 +00003143 VdbeCursor *pC, /* The cursor to compare against */
drh5f82e3c2009-07-06 00:44:08 +00003144 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
drh7cf6e4d2004-05-19 14:56:55 +00003145 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00003146){
drh61fc5952007-04-01 23:49:51 +00003147 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00003148 int rc;
danielk19773d1bfea2004-05-14 11:00:53 +00003149 BtCursor *pCur = pC->pCursor;
drhd5788202004-05-28 08:21:05 +00003150 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00003151
drhea8ffdf2009-07-22 00:35:23 +00003152 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00003153 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00003154 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh407414c2009-07-14 14:15:27 +00003155 /* nCellKey will always be between 0 and 0xffffffff because of the say
3156 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00003157 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00003158 *res = 0;
drh9978c972010-02-23 17:36:32 +00003159 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00003160 }
drhfd3ca1c2009-08-25 12:11:00 +00003161 memset(&m, 0, sizeof(m));
drh8df32842008-12-09 02:51:23 +00003162 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00003163 if( rc ){
drhd5788202004-05-28 08:21:05 +00003164 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00003165 }
dan6f133232011-11-16 15:41:29 +00003166 assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
drhe63d9992008-08-13 19:11:48 +00003167 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00003168 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00003169 return SQLITE_OK;
3170}
danielk1977b28af712004-06-21 06:50:26 +00003171
3172/*
3173** This routine sets the value to be returned by subsequent calls to
3174** sqlite3_changes() on the database handle 'db'.
3175*/
3176void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00003177 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00003178 db->nChange = nChange;
3179 db->nTotalChange += nChange;
3180}
3181
3182/*
3183** Set a flag in the vdbe to update the change counter when it is finalised
3184** or reset.
3185*/
drh4794f732004-11-05 17:17:50 +00003186void sqlite3VdbeCountChanges(Vdbe *v){
3187 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00003188}
drhd89bd002005-01-22 03:03:54 +00003189
3190/*
3191** Mark every prepared statement associated with a database connection
3192** as expired.
3193**
3194** An expired statement means that recompilation of the statement is
3195** recommend. Statements expire when things happen that make their
3196** programs obsolete. Removing user-defined functions or collating
3197** sequences, or changing an authorization function are the types of
3198** things that make prepared statements obsolete.
3199*/
3200void sqlite3ExpirePreparedStatements(sqlite3 *db){
3201 Vdbe *p;
3202 for(p = db->pVdbe; p; p=p->pNext){
3203 p->expired = 1;
3204 }
3205}
danielk1977aee18ef2005-03-09 12:26:50 +00003206
3207/*
3208** Return the database associated with the Vdbe.
3209*/
3210sqlite3 *sqlite3VdbeDb(Vdbe *v){
3211 return v->db;
3212}
dan937d0de2009-10-15 18:35:38 +00003213
3214/*
3215** Return a pointer to an sqlite3_value structure containing the value bound
3216** parameter iVar of VM v. Except, if the value is an SQL NULL, return
3217** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
3218** constants) to the value before returning it.
3219**
3220** The returned value must be freed by the caller using sqlite3ValueFree().
3221*/
3222sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
3223 assert( iVar>0 );
3224 if( v ){
3225 Mem *pMem = &v->aVar[iVar-1];
3226 if( 0==(pMem->flags & MEM_Null) ){
3227 sqlite3_value *pRet = sqlite3ValueNew(v->db);
3228 if( pRet ){
3229 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3230 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
3231 sqlite3VdbeMemStoreType((Mem *)pRet);
3232 }
3233 return pRet;
3234 }
3235 }
3236 return 0;
3237}
3238
3239/*
3240** Configure SQL variable iVar so that binding a new value to it signals
3241** to sqlite3_reoptimize() that re-preparing the statement may result
3242** in a better query plan.
3243*/
dan1d2ce4f2009-10-19 18:11:09 +00003244void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00003245 assert( iVar>0 );
3246 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00003247 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00003248 }else{
dan1d2ce4f2009-10-19 18:11:09 +00003249 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00003250 }
3251}