blob: 3d4a541d5ef5844bf0b1cdc8d8f52cbc913142ae [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
drh07dae082017-10-30 20:44:36 +0000135** In the default unix and windows implementation, the wal-index is a mmapped
136** file whose name is the database name with a "-shm" suffix added. For that
137** reason, the wal-index is sometimes called the "shm" file.
138**
drh29d4dbe2010-05-18 23:29:52 +0000139** The wal-index is transient. After a crash, the wal-index can (and should
140** be) reconstructed from the original WAL file. In fact, the VFS is required
141** to either truncate or zero the header of the wal-index when the last
142** connection to it closes. Because the wal-index is transient, it can
143** use an architecture-specific format; it does not have to be cross-platform.
144** Hence, unlike the database and WAL file formats which store all values
145** as big endian, the wal-index can store multi-byte values in the native
146** byte order of the host computer.
147**
148** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000149** a page number P and a maximum frame index M, return the index of the
150** last frame in the wal before frame M for page P in the WAL, or return
151** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000152**
153** The wal-index consists of a header region, followed by an one or
154** more index blocks.
155**
drh027a1282010-05-19 01:53:53 +0000156** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000157** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000158**
159** Each index block except for the first contains information on
160** HASHTABLE_NPAGE frames. The first index block contains information on
161** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162** HASHTABLE_NPAGE are selected so that together the wal-index header and
163** first index block are the same size as all other index blocks in the
164** wal-index.
165**
166** Each index block contains two sections, a page-mapping that contains the
167** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000168** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000169** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170** for the first index block) 32-bit page numbers. The first entry in the
171** first index-block contains the database page number corresponding to the
172** first frame in the WAL file. The first entry in the second index block
173** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174** the log, and so on.
175**
176** The last index block in a wal-index usually contains less than the full
177** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178** depending on the contents of the WAL file. This does not change the
179** allocated size of the page-mapping array - the page-mapping array merely
180** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000181**
182** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000183** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000184** starting with the last index block and moving toward the first, and
185** within each index block, starting at the end and moving toward the
186** beginning. The first entry that equals P corresponds to the frame
187** holding the content for that page.
188**
189** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191** hash table for each page number in the mapping section, so the hash
192** table is never more than half full. The expected number of collisions
193** prior to finding a match is 1. Each entry of the hash table is an
194** 1-based index of an entry in the mapping section of the same
195** index block. Let K be the 1-based index of the largest entry in
196** the mapping section. (For index blocks other than the last, K will
197** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000199** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000200**
201** To look for page P in the hash table, first compute a hash iKey on
202** P as follows:
203**
204** iKey = (P * 383) % HASHTABLE_NSLOT
205**
206** Then start scanning entries of the hash table, starting with iKey
207** (wrapping around to the beginning when the end of the hash table is
208** reached) until an unused hash slot is found. Let the first unused slot
209** be at index iUnused. (iUnused might be less than iKey if there was
210** wrap-around.) Because the hash table is never more than half full,
211** the search is guaranteed to eventually hit an unused entry. Let
212** iMax be the value between iKey and iUnused, closest to iUnused,
213** where aHash[iMax]==P. If there is no iMax entry (if there exists
214** no hash slot such that aHash[i]==p) then page P is not in the
215** current index block. Otherwise the iMax-th mapping entry of the
216** current index block corresponds to the last entry that references
217** page P.
218**
219** A hash search begins with the last index block and moves toward the
220** first index block, looking for entries corresponding to page P. On
221** average, only two or three slots in each index block need to be
222** examined in order to either find the last entry for page P, or to
223** establish that no such entry exists in the block. Each index block
224** holds over 4000 entries. So two or three index blocks are sufficient
225** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226** comparisons (on average) suffice to either locate a frame in the
227** WAL or to establish that the frame does not exist in the WAL. This
228** is much faster than scanning the entire 10MB WAL.
229**
230** Note that entries are added in order of increasing K. Hence, one
231** reader might be using some value K0 and a second reader that started
232** at a later time (after additional transactions were added to the WAL
233** and to the wal-index) might be using a different value K1, where K1>K0.
234** Both readers can use the same hash table and mapping section to get
235** the correct result. There may be entries in the hash table with
236** K>K0 but to the first reader, those entries will appear to be unused
237** slots in the hash table and so the first reader will get an answer as
238** if no values greater than K0 had ever been inserted into the hash table
239** in the first place - which is what reader one wants. Meanwhile, the
240** second reader using K1 will see additional values that were inserted
241** later, which is exactly what reader two wants.
242**
dan6f150142010-05-21 15:31:56 +0000243** When a rollback occurs, the value of K is decreased. Hash table entries
244** that correspond to frames greater than the new K value are removed
245** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000246*/
drh29d4dbe2010-05-18 23:29:52 +0000247#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000248
drh29d4dbe2010-05-18 23:29:52 +0000249#include "wal.h"
250
drh73b64e42010-05-30 19:55:15 +0000251/*
drhc74c3332010-05-31 12:15:19 +0000252** Trace output macros
253*/
drhc74c3332010-05-31 12:15:19 +0000254#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000255int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000256# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257#else
258# define WALTRACE(X)
259#endif
260
dan10f5a502010-06-23 15:55:43 +0000261/*
drh876c7ea2018-08-30 20:28:18 +0000262** WAL mode depends on atomic aligned 32-bit loads and stores in a few
263** places. The following macros try to make this explicit.
264*/
265#if GCC_VESRION>=5004000
266# define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED)
267# define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
268#else
269# define AtomicLoad(PTR) (*(PTR))
270# define AtomicStore(PTR,VAL) (*(PTR) = (VAL))
271#endif
272
273/*
dan10f5a502010-06-23 15:55:43 +0000274** The maximum (and only) versions of the wal and wal-index formats
275** that may be interpreted by this version of SQLite.
276**
277** If a client begins recovering a WAL file and finds that (a) the checksum
278** values in the wal-header are correct and (b) the version field is not
279** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
280**
281** Similarly, if a client successfully reads a wal-index header (i.e. the
282** checksum test is successful) and finds that the version field is not
283** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
284** returns SQLITE_CANTOPEN.
285*/
286#define WAL_MAX_VERSION 3007000
287#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000288
289/*
drh07dae082017-10-30 20:44:36 +0000290** Index numbers for various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000291** of available reader locks and should be at least 3. The default
292** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh07dae082017-10-30 20:44:36 +0000293**
294** Technically, the various VFSes are free to implement these locks however
295** they see fit. However, compatibility is encouraged so that VFSes can
296** interoperate. The standard implemention used on both unix and windows
297** is for the index number to indicate a byte offset into the
298** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
299** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
300** should be 120) is the location in the shm file for the first locking
301** byte.
drh73b64e42010-05-30 19:55:15 +0000302*/
303#define WAL_WRITE_LOCK 0
304#define WAL_ALL_BUT_WRITE 1
305#define WAL_CKPT_LOCK 1
306#define WAL_RECOVER_LOCK 2
307#define WAL_READ_LOCK(I) (3+(I))
308#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
309
dan97a31352010-04-16 13:59:31 +0000310
drh7ed91f22010-04-29 22:34:07 +0000311/* Object declarations */
312typedef struct WalIndexHdr WalIndexHdr;
313typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000314typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000315
316
317/*
drh286a2882010-05-20 23:51:06 +0000318** The following object holds a copy of the wal-index header content.
319**
320** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000321** object followed by one instance of the WalCkptInfo object.
322** For all versions of SQLite through 3.10.0 and probably beyond,
323** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
324** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000325**
326** The szPage value can be any power of 2 between 512 and 32768, inclusive.
327** Or it can be 1 to represent a 65536-byte page. The latter case was
328** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000329*/
drh7ed91f22010-04-29 22:34:07 +0000330struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000331 u32 iVersion; /* Wal-index version */
332 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000333 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000334 u8 isInit; /* 1 when initialized */
335 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000336 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000337 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000338 u32 nPage; /* Size of database in pages */
339 u32 aFrameCksum[2]; /* Checksum of last frame in log */
340 u32 aSalt[2]; /* Two salt values copied from WAL header */
341 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000342};
343
drh73b64e42010-05-30 19:55:15 +0000344/*
345** A copy of the following object occurs in the wal-index immediately
346** following the second copy of the WalIndexHdr. This object stores
347** information used by checkpoint.
348**
349** nBackfill is the number of frames in the WAL that have been written
350** back into the database. (We call the act of moving content from WAL to
351** database "backfilling".) The nBackfill number is never greater than
352** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
353** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
354** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
355** mxFrame back to zero when the WAL is reset.
356**
drh998147e2015-12-10 02:15:03 +0000357** nBackfillAttempted is the largest value of nBackfill that a checkpoint
358** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
359** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000360** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000361** crashes, nBackfillAttempted might be larger than nBackfill. The
362** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
363**
364** The aLock[] field is a set of bytes used for locking. These bytes should
365** never be read or written.
366**
drh73b64e42010-05-30 19:55:15 +0000367** There is one entry in aReadMark[] for each reader lock. If a reader
368** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000369** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
370** for any aReadMark[] means that entry is unused. aReadMark[0] is
371** a special case; its value is never used and it exists as a place-holder
372** to avoid having to offset aReadMark[] indexs by one. Readers holding
373** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
374** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000375**
376** The value of aReadMark[K] may only be changed by a thread that
377** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
378** aReadMark[K] cannot changed while there is a reader is using that mark
379** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
380**
381** The checkpointer may only transfer frames from WAL to database where
382** the frame numbers are less than or equal to every aReadMark[] that is
383** in use (that is, every aReadMark[j] for which there is a corresponding
384** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
385** largest value and will increase an unused aReadMark[] to mxFrame if there
386** is not already an aReadMark[] equal to mxFrame. The exception to the
387** previous sentence is when nBackfill equals mxFrame (meaning that everything
388** in the WAL has been backfilled into the database) then new readers
389** will choose aReadMark[0] which has value 0 and hence such reader will
390** get all their all content directly from the database file and ignore
391** the WAL.
392**
393** Writers normally append new frames to the end of the WAL. However,
394** if nBackfill equals mxFrame (meaning that all WAL content has been
395** written back into the database) and if no readers are using the WAL
396** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
397** the writer will first "reset" the WAL back to the beginning and start
398** writing new content beginning at frame 1.
399**
400** We assume that 32-bit loads are atomic and so no locks are needed in
401** order to read from any aReadMark[] entries.
402*/
403struct WalCkptInfo {
404 u32 nBackfill; /* Number of WAL frames backfilled into DB */
405 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000406 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
407 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
408 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000409};
drhdb7f6472010-06-09 14:45:12 +0000410#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000411
412
drh7e263722010-05-20 21:21:09 +0000413/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
414** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
415** only support mandatory file-locks, we do not read or write data
416** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000417*/
drh998147e2015-12-10 02:15:03 +0000418#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
419#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000420
drh7ed91f22010-04-29 22:34:07 +0000421/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000422#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000423
dan10f5a502010-06-23 15:55:43 +0000424/* Size of write ahead log header, including checksum. */
dan10f5a502010-06-23 15:55:43 +0000425#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000426
danb8fd6c22010-05-24 10:39:36 +0000427/* WAL magic value. Either this value, or the same value with the least
428** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
429** big-endian format in the first 4 bytes of a WAL file.
430**
431** If the LSB is set, then the checksums for each frame within the WAL
432** file are calculated by treating all data as an array of 32-bit
433** big-endian words. Otherwise, they are calculated by interpreting
434** all data as 32-bit little-endian words.
435*/
436#define WAL_MAGIC 0x377f0682
437
dan97a31352010-04-16 13:59:31 +0000438/*
drh7ed91f22010-04-29 22:34:07 +0000439** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000440** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000441** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000442*/
drh6e810962010-05-19 17:49:50 +0000443#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000444 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000445)
dan7c246102010-04-12 19:00:29 +0000446
447/*
drh7ed91f22010-04-29 22:34:07 +0000448** An open write-ahead log file is represented by an instance of the
449** following object.
dance4f05f2010-04-22 19:14:13 +0000450*/
drh7ed91f22010-04-29 22:34:07 +0000451struct Wal {
drh73b64e42010-05-30 19:55:15 +0000452 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000453 sqlite3_file *pDbFd; /* File handle for the database file */
454 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000455 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000456 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000457 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000458 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000459 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000460 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000461 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000462 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000463 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000464 u8 writeLock; /* True if in a write transaction */
465 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000466 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000467 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000468 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000469 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh85bc6df2017-11-10 20:00:50 +0000470 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
drh73b64e42010-05-30 19:55:15 +0000471 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000472 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000473 u32 iReCksum; /* On commit, recalculate checksums from here */
dan3e875ef2010-07-05 19:03:35 +0000474 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000475 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000476#ifdef SQLITE_DEBUG
477 u8 lockError; /* True if a locking error has occurred */
478#endif
danfc1acf32015-12-05 20:51:54 +0000479#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000480 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
danfc1acf32015-12-05 20:51:54 +0000481#endif
dan7c246102010-04-12 19:00:29 +0000482};
483
drh73b64e42010-05-30 19:55:15 +0000484/*
dan8c408002010-11-01 17:38:24 +0000485** Candidate values for Wal.exclusiveMode.
486*/
487#define WAL_NORMAL_MODE 0
488#define WAL_EXCLUSIVE_MODE 1
489#define WAL_HEAPMEMORY_MODE 2
490
491/*
drh66dfec8b2011-06-01 20:01:49 +0000492** Possible values for WAL.readOnly
493*/
494#define WAL_RDWR 0 /* Normal read/write connection */
495#define WAL_RDONLY 1 /* The WAL file is readonly */
496#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
497
498/*
dan067f3162010-06-14 10:30:12 +0000499** Each page of the wal-index mapping contains a hash-table made up of
500** an array of HASHTABLE_NSLOT elements of the following type.
501*/
502typedef u16 ht_slot;
503
504/*
danad3cadd2010-06-14 11:49:26 +0000505** This structure is used to implement an iterator that loops through
506** all frames in the WAL in database page order. Where two or more frames
507** correspond to the same database page, the iterator visits only the
508** frame most recently written to the WAL (in other words, the frame with
509** the largest index).
510**
511** The internals of this structure are only accessed by:
512**
513** walIteratorInit() - Create a new iterator,
514** walIteratorNext() - Step an iterator,
515** walIteratorFree() - Free an iterator.
516**
517** This functionality is used by the checkpoint code (see walCheckpoint()).
518*/
519struct WalIterator {
520 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000521 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000522 struct WalSegment {
523 int iNext; /* Next slot in aIndex[] not yet returned */
524 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
525 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000526 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000527 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000528 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000529};
530
531/*
dan13a3cb82010-06-11 19:04:21 +0000532** Define the parameters of the hash tables in the wal-index file. There
533** is a hash-table following every HASHTABLE_NPAGE page numbers in the
534** wal-index.
535**
536** Changing any of these constants will alter the wal-index format and
537** create incompatibilities.
538*/
dan067f3162010-06-14 10:30:12 +0000539#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000540#define HASHTABLE_HASH_1 383 /* Should be prime */
541#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000542
danad3cadd2010-06-14 11:49:26 +0000543/*
544** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000545** wal-index is smaller than usual. This is so that there is a complete
546** hash-table on each aligned 32KB page of the wal-index.
547*/
dan067f3162010-06-14 10:30:12 +0000548#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000549
dan067f3162010-06-14 10:30:12 +0000550/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
551#define WALINDEX_PGSZ ( \
552 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
553)
dan13a3cb82010-06-11 19:04:21 +0000554
555/*
556** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000557** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000558** numbered from zero.
559**
drhc05a0632017-11-11 20:11:01 +0000560** If the wal-index is currently smaller the iPage pages then the size
561** of the wal-index might be increased, but only if it is safe to do
562** so. It is safe to enlarge the wal-index if pWal->writeLock is true
563** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
564**
dan13a3cb82010-06-11 19:04:21 +0000565** If this call is successful, *ppPage is set to point to the wal-index
566** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
567** then an SQLite error code is returned and *ppPage is set to 0.
568*/
drh2e178d72018-02-20 22:20:57 +0000569static SQLITE_NOINLINE int walIndexPageRealloc(
570 Wal *pWal, /* The WAL context */
571 int iPage, /* The page we seek */
572 volatile u32 **ppPage /* Write the page pointer here */
573){
dan13a3cb82010-06-11 19:04:21 +0000574 int rc = SQLITE_OK;
575
576 /* Enlarge the pWal->apWiData[] array if required */
577 if( pWal->nWiData<=iPage ){
drhf6ad2012019-04-13 14:07:57 +0000578 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000579 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000580 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000581 if( !apNew ){
582 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000583 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000584 }
drh519426a2010-07-09 03:19:07 +0000585 memset((void*)&apNew[pWal->nWiData], 0,
586 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000587 pWal->apWiData = apNew;
588 pWal->nWiData = iPage+1;
589 }
590
591 /* Request a pointer to the required page from the VFS */
drhc0ec2f72018-02-21 01:48:22 +0000592 assert( pWal->apWiData[iPage]==0 );
593 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
594 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
595 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
596 }else{
597 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
598 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
599 );
600 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
601 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
602 if( (rc&0xff)==SQLITE_READONLY ){
603 pWal->readOnly |= WAL_SHM_RDONLY;
604 if( rc==SQLITE_READONLY ){
605 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000606 }
dan8c408002010-11-01 17:38:24 +0000607 }
dan13a3cb82010-06-11 19:04:21 +0000608 }
danb6d2f9c2011-05-11 14:57:33 +0000609
drh66dfec8b2011-06-01 20:01:49 +0000610 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000611 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
612 return rc;
613}
drh2e178d72018-02-20 22:20:57 +0000614static int walIndexPage(
615 Wal *pWal, /* The WAL context */
616 int iPage, /* The page we seek */
617 volatile u32 **ppPage /* Write the page pointer here */
618){
619 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
620 return walIndexPageRealloc(pWal, iPage, ppPage);
621 }
622 return SQLITE_OK;
623}
dan13a3cb82010-06-11 19:04:21 +0000624
625/*
drh73b64e42010-05-30 19:55:15 +0000626** Return a pointer to the WalCkptInfo structure in the wal-index.
627*/
628static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000629 assert( pWal->nWiData>0 && pWal->apWiData[0] );
630 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
631}
632
633/*
634** Return a pointer to the WalIndexHdr structure in the wal-index.
635*/
636static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
637 assert( pWal->nWiData>0 && pWal->apWiData[0] );
638 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000639}
640
dan7c246102010-04-12 19:00:29 +0000641/*
danb8fd6c22010-05-24 10:39:36 +0000642** The argument to this macro must be of type u32. On a little-endian
643** architecture, it returns the u32 value that results from interpreting
644** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000645** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000646** of the input value as a little-endian integer.
647*/
648#define BYTESWAP32(x) ( \
649 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
650 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
651)
dan64d039e2010-04-13 19:27:31 +0000652
dan7c246102010-04-12 19:00:29 +0000653/*
drh7e263722010-05-20 21:21:09 +0000654** Generate or extend an 8 byte checksum based on the data in
655** array aByte[] and the initial values of aIn[0] and aIn[1] (or
656** initial values of 0 and 0 if aIn==NULL).
657**
658** The checksum is written back into aOut[] before returning.
659**
660** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000661*/
drh7e263722010-05-20 21:21:09 +0000662static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000663 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000664 u8 *a, /* Content to be checksummed */
665 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
666 const u32 *aIn, /* Initial checksum value input */
667 u32 *aOut /* OUT: Final checksum value output */
668){
669 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000670 u32 *aData = (u32 *)a;
671 u32 *aEnd = (u32 *)&a[nByte];
672
drh7e263722010-05-20 21:21:09 +0000673 if( aIn ){
674 s1 = aIn[0];
675 s2 = aIn[1];
676 }else{
677 s1 = s2 = 0;
678 }
dan7c246102010-04-12 19:00:29 +0000679
drh584c7542010-05-19 18:08:10 +0000680 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000681 assert( (nByte&0x00000007)==0 );
drhf6ad2012019-04-13 14:07:57 +0000682 assert( nByte<=65536 );
dan7c246102010-04-12 19:00:29 +0000683
danb8fd6c22010-05-24 10:39:36 +0000684 if( nativeCksum ){
685 do {
686 s1 += *aData++ + s2;
687 s2 += *aData++ + s1;
688 }while( aData<aEnd );
689 }else{
690 do {
691 s1 += BYTESWAP32(aData[0]) + s2;
692 s2 += BYTESWAP32(aData[1]) + s1;
693 aData += 2;
694 }while( aData<aEnd );
695 }
696
drh7e263722010-05-20 21:21:09 +0000697 aOut[0] = s1;
698 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000699}
700
dan8c408002010-11-01 17:38:24 +0000701static void walShmBarrier(Wal *pWal){
702 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
703 sqlite3OsShmBarrier(pWal->pDbFd);
704 }
705}
706
dan7c246102010-04-12 19:00:29 +0000707/*
drh7e263722010-05-20 21:21:09 +0000708** Write the header information in pWal->hdr into the wal-index.
709**
710** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000711*/
drh7e263722010-05-20 21:21:09 +0000712static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000713 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
714 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000715
716 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000717 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000718 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000719 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf6bff3f2015-07-17 01:16:10 +0000720 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000721 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000722 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000723}
724
725/*
726** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000727** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000728** 4-byte big-endian integers, as follows:
729**
drh23ea97b2010-05-20 16:45:58 +0000730** 0: Page number.
731** 4: For commit records, the size of the database image in pages
732** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000733** 8: Salt-1 (copied from the wal-header)
734** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000735** 16: Checksum-1.
736** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000737*/
drh7ed91f22010-04-29 22:34:07 +0000738static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000739 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000740 u32 iPage, /* Database page number for frame */
741 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000742 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000743 u8 *aFrame /* OUT: Write encoded frame here */
744){
danb8fd6c22010-05-24 10:39:36 +0000745 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000746 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000747 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000748 sqlite3Put4byte(&aFrame[0], iPage);
749 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000750 if( pWal->iReCksum==0 ){
751 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000752
danc9a90222016-01-09 18:57:35 +0000753 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
754 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
755 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000756
danc9a90222016-01-09 18:57:35 +0000757 sqlite3Put4byte(&aFrame[16], aCksum[0]);
758 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000759 }else{
760 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000761 }
dan7c246102010-04-12 19:00:29 +0000762}
763
764/*
drh7e263722010-05-20 21:21:09 +0000765** Check to see if the frame with header in aFrame[] and content
766** in aData[] is valid. If it is a valid frame, fill *piPage and
767** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000768*/
drh7ed91f22010-04-29 22:34:07 +0000769static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000770 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000771 u32 *piPage, /* OUT: Database page number for frame */
772 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000773 u8 *aData, /* Pointer to page data (for checksum) */
774 u8 *aFrame /* Frame data */
775){
danb8fd6c22010-05-24 10:39:36 +0000776 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000777 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000778 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000779 assert( WAL_FRAME_HDRSIZE==24 );
780
drh7e263722010-05-20 21:21:09 +0000781 /* A frame is only valid if the salt values in the frame-header
782 ** match the salt values in the wal-header.
783 */
784 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000785 return 0;
786 }
dan4a4b01d2010-04-16 11:30:18 +0000787
drhc8179152010-05-24 13:28:36 +0000788 /* A frame is only valid if the page number is creater than zero.
789 */
790 pgno = sqlite3Get4byte(&aFrame[0]);
791 if( pgno==0 ){
792 return 0;
793 }
794
drh519426a2010-07-09 03:19:07 +0000795 /* A frame is only valid if a checksum of the WAL header,
796 ** all prior frams, the first 16 bytes of this frame-header,
797 ** and the frame-data matches the checksum in the last 8
798 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000799 */
danb8fd6c22010-05-24 10:39:36 +0000800 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000801 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000802 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000803 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
804 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000805 ){
806 /* Checksum failed. */
807 return 0;
808 }
809
drh7e263722010-05-20 21:21:09 +0000810 /* If we reach this point, the frame is valid. Return the page number
811 ** and the new database size.
812 */
drhc8179152010-05-24 13:28:36 +0000813 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000814 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000815 return 1;
816}
817
dan7c246102010-04-12 19:00:29 +0000818
drhc74c3332010-05-31 12:15:19 +0000819#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
820/*
drh181e0912010-06-01 01:08:08 +0000821** Names of locks. This routine is used to provide debugging output and is not
822** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000823*/
824static const char *walLockName(int lockIdx){
825 if( lockIdx==WAL_WRITE_LOCK ){
826 return "WRITE-LOCK";
827 }else if( lockIdx==WAL_CKPT_LOCK ){
828 return "CKPT-LOCK";
829 }else if( lockIdx==WAL_RECOVER_LOCK ){
830 return "RECOVER-LOCK";
831 }else{
832 static char zName[15];
833 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
834 lockIdx-WAL_READ_LOCK(0));
835 return zName;
836 }
837}
838#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
839
840
dan7c246102010-04-12 19:00:29 +0000841/*
drh181e0912010-06-01 01:08:08 +0000842** Set or release locks on the WAL. Locks are either shared or exclusive.
843** A lock cannot be moved directly between shared and exclusive - it must go
844** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000845**
846** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
847*/
848static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000849 int rc;
drh73b64e42010-05-30 19:55:15 +0000850 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000851 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
852 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
853 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
854 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000855 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000856 return rc;
drh73b64e42010-05-30 19:55:15 +0000857}
858static void walUnlockShared(Wal *pWal, int lockIdx){
859 if( pWal->exclusiveMode ) return;
860 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
861 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000862 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000863}
drhab372772015-12-02 16:10:16 +0000864static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000865 int rc;
drh73b64e42010-05-30 19:55:15 +0000866 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000867 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
868 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
869 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
870 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000871 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000872 return rc;
drh73b64e42010-05-30 19:55:15 +0000873}
874static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
875 if( pWal->exclusiveMode ) return;
876 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
877 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000878 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
879 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000880}
881
882/*
drh29d4dbe2010-05-18 23:29:52 +0000883** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000884** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
885** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000886*/
887static int walHash(u32 iPage){
888 assert( iPage>0 );
889 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
890 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
891}
892static int walNextHash(int iPriorHash){
893 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000894}
895
drh4ece2f22018-06-09 16:49:00 +0000896/*
897** An instance of the WalHashLoc object is used to describe the location
898** of a page hash table in the wal-index. This becomes the return value
899** from walHashGet().
900*/
901typedef struct WalHashLoc WalHashLoc;
902struct WalHashLoc {
903 volatile ht_slot *aHash; /* Start of the wal-index hash table */
904 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
905 u32 iZero; /* One less than the frame number of first indexed*/
906};
907
dan4280eb32010-06-12 12:02:35 +0000908/*
909** Return pointers to the hash table and page number array stored on
910** page iHash of the wal-index. The wal-index is broken into 32KB pages
911** numbered starting from 0.
912**
drh4ece2f22018-06-09 16:49:00 +0000913** Set output variable pLoc->aHash to point to the start of the hash table
914** in the wal-index file. Set pLoc->iZero to one less than the frame
dan4280eb32010-06-12 12:02:35 +0000915** number of the first frame indexed by this hash table. If a
916** slot in the hash table is set to N, it refers to frame number
drh4ece2f22018-06-09 16:49:00 +0000917** (pLoc->iZero+N) in the log.
dan4280eb32010-06-12 12:02:35 +0000918**
drh4ece2f22018-06-09 16:49:00 +0000919** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
920** first frame indexed by the hash table, frame (pLoc->iZero+1).
dan4280eb32010-06-12 12:02:35 +0000921*/
922static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000923 Wal *pWal, /* WAL handle */
924 int iHash, /* Find the iHash'th table */
drh4ece2f22018-06-09 16:49:00 +0000925 WalHashLoc *pLoc /* OUT: Hash table location */
dan13a3cb82010-06-11 19:04:21 +0000926){
dan4280eb32010-06-12 12:02:35 +0000927 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000928
drh4ece2f22018-06-09 16:49:00 +0000929 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
dan4280eb32010-06-12 12:02:35 +0000930 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000931
dan4280eb32010-06-12 12:02:35 +0000932 if( rc==SQLITE_OK ){
drh4ece2f22018-06-09 16:49:00 +0000933 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000934 if( iHash==0 ){
drh4ece2f22018-06-09 16:49:00 +0000935 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
936 pLoc->iZero = 0;
dan4280eb32010-06-12 12:02:35 +0000937 }else{
drh4ece2f22018-06-09 16:49:00 +0000938 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000939 }
drh4ece2f22018-06-09 16:49:00 +0000940 pLoc->aPgno = &pLoc->aPgno[-1];
dan13a3cb82010-06-11 19:04:21 +0000941 }
dan4280eb32010-06-12 12:02:35 +0000942 return rc;
dan13a3cb82010-06-11 19:04:21 +0000943}
944
dan4280eb32010-06-12 12:02:35 +0000945/*
946** Return the number of the wal-index page that contains the hash-table
947** and page-number array that contain entries corresponding to WAL frame
948** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
949** are numbered starting from 0.
950*/
dan13a3cb82010-06-11 19:04:21 +0000951static int walFramePage(u32 iFrame){
952 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
953 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
954 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
955 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
956 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
957 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
958 );
959 return iHash;
960}
961
962/*
963** Return the page number associated with frame iFrame in this WAL.
964*/
965static u32 walFramePgno(Wal *pWal, u32 iFrame){
966 int iHash = walFramePage(iFrame);
967 if( iHash==0 ){
968 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
969 }
970 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
971}
danbb23aff2010-05-10 14:46:09 +0000972
danca6b5ba2010-05-25 10:50:56 +0000973/*
974** Remove entries from the hash table that point to WAL slots greater
975** than pWal->hdr.mxFrame.
976**
977** This function is called whenever pWal->hdr.mxFrame is decreased due
978** to a rollback or savepoint.
979**
drh181e0912010-06-01 01:08:08 +0000980** At most only the hash table containing pWal->hdr.mxFrame needs to be
981** updated. Any later hash tables will be automatically cleared when
982** pWal->hdr.mxFrame advances to the point where those hash tables are
983** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000984*/
985static void walCleanupHash(Wal *pWal){
drh4ece2f22018-06-09 16:49:00 +0000986 WalHashLoc sLoc; /* Hash table location */
dan067f3162010-06-14 10:30:12 +0000987 int iLimit = 0; /* Zero values greater than this */
988 int nByte; /* Number of bytes to zero in aPgno[] */
989 int i; /* Used to iterate through aHash[] */
drhb92d7d22019-04-03 17:48:10 +0000990 int rc; /* Return code form walHashGet() */
danca6b5ba2010-05-25 10:50:56 +0000991
drh73b64e42010-05-30 19:55:15 +0000992 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000993 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
994 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
995 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000996
dan4280eb32010-06-12 12:02:35 +0000997 if( pWal->hdr.mxFrame==0 ) return;
998
999 /* Obtain pointers to the hash-table and page-number array containing
1000 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
drhb92d7d22019-04-03 17:48:10 +00001001 ** that the page said hash-table and array reside on is already mapped.(1)
dan4280eb32010-06-12 12:02:35 +00001002 */
1003 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1004 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
drhb92d7d22019-04-03 17:48:10 +00001005 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1006 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
dan4280eb32010-06-12 12:02:35 +00001007
1008 /* Zero all hash-table entries that correspond to frame numbers greater
1009 ** than pWal->hdr.mxFrame.
1010 */
drh4ece2f22018-06-09 16:49:00 +00001011 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001012 assert( iLimit>0 );
1013 for(i=0; i<HASHTABLE_NSLOT; i++){
drh4ece2f22018-06-09 16:49:00 +00001014 if( sLoc.aHash[i]>iLimit ){
1015 sLoc.aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +00001016 }
danca6b5ba2010-05-25 10:50:56 +00001017 }
dan4280eb32010-06-12 12:02:35 +00001018
1019 /* Zero the entries in the aPgno array that correspond to frames with
1020 ** frame numbers greater than pWal->hdr.mxFrame.
1021 */
drh4ece2f22018-06-09 16:49:00 +00001022 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1023 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001024
1025#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1026 /* Verify that the every entry in the mapping region is still reachable
1027 ** via the hash table even after the cleanup.
1028 */
drhf77bbd92010-06-01 13:17:44 +00001029 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +00001030 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +00001031 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +00001032 for(j=1; j<=iLimit; j++){
drh4ece2f22018-06-09 16:49:00 +00001033 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1034 if( sLoc.aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +00001035 }
drh4ece2f22018-06-09 16:49:00 +00001036 assert( sLoc.aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +00001037 }
1038 }
1039#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1040}
1041
danbb23aff2010-05-10 14:46:09 +00001042
drh7ed91f22010-04-29 22:34:07 +00001043/*
drh29d4dbe2010-05-18 23:29:52 +00001044** Set an entry in the wal-index that will map database page number
1045** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +00001046*/
drh7ed91f22010-04-29 22:34:07 +00001047static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +00001048 int rc; /* Return code */
drh4ece2f22018-06-09 16:49:00 +00001049 WalHashLoc sLoc; /* Wal-index hash table location */
dance4f05f2010-04-22 19:14:13 +00001050
drh4ece2f22018-06-09 16:49:00 +00001051 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
dan4280eb32010-06-12 12:02:35 +00001052
1053 /* Assuming the wal-index file was successfully mapped, populate the
1054 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001055 */
danbb23aff2010-05-10 14:46:09 +00001056 if( rc==SQLITE_OK ){
1057 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001058 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001059 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001060
drh4ece2f22018-06-09 16:49:00 +00001061 idx = iFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001062 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1063
1064 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001065 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001066 */
danca6b5ba2010-05-25 10:50:56 +00001067 if( idx==1 ){
drh4ece2f22018-06-09 16:49:00 +00001068 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1069 - (u8 *)&sLoc.aPgno[1]);
1070 memset((void*)&sLoc.aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001071 }
danca6b5ba2010-05-25 10:50:56 +00001072
dan4280eb32010-06-12 12:02:35 +00001073 /* If the entry in aPgno[] is already set, then the previous writer
1074 ** must have exited unexpectedly in the middle of a transaction (after
1075 ** writing one or more dirty pages to the WAL to free up memory).
1076 ** Remove the remnants of that writers uncommitted transaction from
1077 ** the hash-table before writing any new entries.
1078 */
drh4ece2f22018-06-09 16:49:00 +00001079 if( sLoc.aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001080 walCleanupHash(pWal);
drh4ece2f22018-06-09 16:49:00 +00001081 assert( !sLoc.aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001082 }
dan4280eb32010-06-12 12:02:35 +00001083
1084 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001085 nCollide = idx;
drh4ece2f22018-06-09 16:49:00 +00001086 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001087 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001088 }
drh4ece2f22018-06-09 16:49:00 +00001089 sLoc.aPgno[idx] = iPage;
1090 sLoc.aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001091
1092#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1093 /* Verify that the number of entries in the hash table exactly equals
1094 ** the number of entries in the mapping region.
1095 */
1096 {
1097 int i; /* Loop counter */
1098 int nEntry = 0; /* Number of entries in the hash table */
drh4ece2f22018-06-09 16:49:00 +00001099 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
drh4fa95bf2010-05-22 00:55:39 +00001100 assert( nEntry==idx );
1101 }
1102
1103 /* Verify that the every entry in the mapping region is reachable
1104 ** via the hash table. This turns out to be a really, really expensive
1105 ** thing to check, so only do this occasionally - not on every
1106 ** iteration.
1107 */
1108 if( (idx&0x3ff)==0 ){
1109 int i; /* Loop counter */
1110 for(i=1; i<=idx; i++){
drh4ece2f22018-06-09 16:49:00 +00001111 for(iKey=walHash(sLoc.aPgno[i]);
1112 sLoc.aHash[iKey];
1113 iKey=walNextHash(iKey)){
1114 if( sLoc.aHash[iKey]==i ) break;
drh4fa95bf2010-05-22 00:55:39 +00001115 }
drh4ece2f22018-06-09 16:49:00 +00001116 assert( sLoc.aHash[iKey]==i );
drh4fa95bf2010-05-22 00:55:39 +00001117 }
1118 }
1119#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001120 }
dan31f98fc2010-04-27 05:42:32 +00001121
drh4fa95bf2010-05-22 00:55:39 +00001122
danbb23aff2010-05-10 14:46:09 +00001123 return rc;
dan7c246102010-04-12 19:00:29 +00001124}
1125
1126
1127/*
drh7ed91f22010-04-29 22:34:07 +00001128** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001129**
1130** This routine first tries to establish an exclusive lock on the
1131** wal-index to prevent other threads/processes from doing anything
1132** with the WAL or wal-index while recovery is running. The
1133** WAL_RECOVER_LOCK is also held so that other threads will know
1134** that this thread is running recovery. If unable to establish
1135** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001136*/
drh7ed91f22010-04-29 22:34:07 +00001137static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001138 int rc; /* Return Code */
1139 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001140 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001141 int iLock; /* Lock offset to lock for checkpoint */
dan7c246102010-04-12 19:00:29 +00001142
dand0aa3422010-05-31 16:41:53 +00001143 /* Obtain an exclusive lock on all byte in the locking range not already
1144 ** locked by the caller. The caller is guaranteed to have locked the
1145 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1146 ** If successful, the same bytes that are locked here are unlocked before
1147 ** this function returns.
1148 */
1149 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1150 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1151 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1152 assert( pWal->writeLock );
1153 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
dandea5ce32017-11-02 11:12:03 +00001154 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1155 if( rc==SQLITE_OK ){
1156 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1157 if( rc!=SQLITE_OK ){
1158 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1159 }
1160 }
drh73b64e42010-05-30 19:55:15 +00001161 if( rc ){
1162 return rc;
1163 }
dandea5ce32017-11-02 11:12:03 +00001164
drhc74c3332010-05-31 12:15:19 +00001165 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001166
dan71d89912010-05-24 13:57:42 +00001167 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001168
drhd9e5c4f2010-05-12 18:01:39 +00001169 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001170 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001171 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001172 }
1173
danb8fd6c22010-05-24 10:39:36 +00001174 if( nSize>WAL_HDRSIZE ){
1175 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001176 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001177 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001178 u8 *aData; /* Pointer to data part of aFrame buffer */
1179 int iFrame; /* Index of last frame read */
1180 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001181 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001182 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001183 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001184 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001185
danb8fd6c22010-05-24 10:39:36 +00001186 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001187 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001188 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001189 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001190 }
1191
1192 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001193 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1194 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1195 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001196 */
danb8fd6c22010-05-24 10:39:36 +00001197 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001198 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001199 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1200 || szPage&(szPage-1)
1201 || szPage>SQLITE_MAX_PAGE_SIZE
1202 || szPage<512
1203 ){
dan7c246102010-04-12 19:00:29 +00001204 goto finished;
1205 }
shaneh5eba1f62010-07-02 17:05:03 +00001206 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001207 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001208 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001209 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001210
1211 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001212 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001213 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001214 );
dan10f5a502010-06-23 15:55:43 +00001215 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1216 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1217 ){
1218 goto finished;
1219 }
1220
drhcd285082010-06-23 22:00:35 +00001221 /* Verify that the version number on the WAL format is one that
1222 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001223 version = sqlite3Get4byte(&aBuf[4]);
1224 if( version!=WAL_MAX_VERSION ){
1225 rc = SQLITE_CANTOPEN_BKPT;
1226 goto finished;
1227 }
1228
dan7c246102010-04-12 19:00:29 +00001229 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001230 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001231 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001232 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001233 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001234 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001235 }
drh7ed91f22010-04-29 22:34:07 +00001236 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001237
1238 /* Read all frames from the log file. */
1239 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001240 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001241 u32 pgno; /* Database page number for frame */
1242 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001243
1244 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001245 iFrame++;
drh584c7542010-05-19 18:08:10 +00001246 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001247 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001248 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001249 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001250 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001251 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001252
1253 /* If nTruncate is non-zero, this is a commit record. */
1254 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001255 pWal->hdr.mxFrame = iFrame;
1256 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001257 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001258 testcase( szPage<=32768 );
1259 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001260 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1261 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001262 }
1263 }
1264
1265 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001266 }
1267
1268finished:
dan576bc322010-05-06 18:04:50 +00001269 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001270 volatile WalCkptInfo *pInfo;
1271 int i;
dan71d89912010-05-24 13:57:42 +00001272 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1273 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001274 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001275
drhdb7f6472010-06-09 14:45:12 +00001276 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001277 ** currently holding locks that exclude all other readers, writers and
1278 ** checkpointers.
1279 */
drhdb7f6472010-06-09 14:45:12 +00001280 pInfo = walCkptInfo(pWal);
1281 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001282 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001283 pInfo->aReadMark[0] = 0;
1284 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001285 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001286
1287 /* If more than one frame was recovered from the log file, report an
1288 ** event via sqlite3_log(). This is to help with identifying performance
1289 ** problems caused by applications routinely shutting down without
1290 ** checkpointing the log file.
1291 */
1292 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001293 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1294 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001295 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001296 );
1297 }
dan576bc322010-05-06 18:04:50 +00001298 }
drh73b64e42010-05-30 19:55:15 +00001299
1300recovery_error:
drhc74c3332010-05-31 12:15:19 +00001301 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dandea5ce32017-11-02 11:12:03 +00001302 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1303 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan7c246102010-04-12 19:00:29 +00001304 return rc;
1305}
1306
drha8e654e2010-05-04 17:38:42 +00001307/*
dan1018e902010-05-05 15:33:05 +00001308** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001309*/
dan1018e902010-05-05 15:33:05 +00001310static void walIndexClose(Wal *pWal, int isDelete){
drh85bc6df2017-11-10 20:00:50 +00001311 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
dan8c408002010-11-01 17:38:24 +00001312 int i;
1313 for(i=0; i<pWal->nWiData; i++){
1314 sqlite3_free((void *)pWal->apWiData[i]);
1315 pWal->apWiData[i] = 0;
1316 }
dan11caf4f2017-11-04 18:10:03 +00001317 }
1318 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
dan8c408002010-11-01 17:38:24 +00001319 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1320 }
drha8e654e2010-05-04 17:38:42 +00001321}
1322
dan7c246102010-04-12 19:00:29 +00001323/*
dan3e875ef2010-07-05 19:03:35 +00001324** Open a connection to the WAL file zWalName. The database file must
1325** already be opened on connection pDbFd. The buffer that zWalName points
1326** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001327**
1328** A SHARED lock should be held on the database file when this function
1329** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001330** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001331** were to do this just after this client opened one of these files, the
1332** system would be badly broken.
danef378022010-05-04 11:06:03 +00001333**
1334** If the log file is successfully opened, SQLITE_OK is returned and
1335** *ppWal is set to point to a new WAL handle. If an error occurs,
1336** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001337*/
drhc438efd2010-04-26 00:19:45 +00001338int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001339 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001340 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001341 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001342 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001343 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001344 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001345){
danef378022010-05-04 11:06:03 +00001346 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001347 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001348 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001349
dan3e875ef2010-07-05 19:03:35 +00001350 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001351 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001352
drh1b78eaf2010-05-25 13:40:03 +00001353 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1354 ** this source file. Verify that the #defines of the locking byte offsets
1355 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001356 ** For that matter, if the lock offset ever changes from its initial design
1357 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001358 */
drh998147e2015-12-10 02:15:03 +00001359 assert( 120==WALINDEX_LOCK_OFFSET );
1360 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001361#ifdef WIN_SHM_BASE
1362 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1363#endif
1364#ifdef UNIX_SHM_BASE
1365 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1366#endif
1367
1368
drh7ed91f22010-04-29 22:34:07 +00001369 /* Allocate an instance of struct Wal to return. */
1370 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001371 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001372 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001373 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001374 }
1375
dan7c246102010-04-12 19:00:29 +00001376 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001377 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1378 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001379 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001380 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001381 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001382 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001383 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001384 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001385
drh7ed91f22010-04-29 22:34:07 +00001386 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001387 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001388 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001389 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001390 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001391 }
dan7c246102010-04-12 19:00:29 +00001392
dan7c246102010-04-12 19:00:29 +00001393 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001394 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001395 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001396 sqlite3_free(pRet);
1397 }else{
dandd973542014-02-13 19:27:08 +00001398 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001399 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001400 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1401 pRet->padToSectorBoundary = 0;
1402 }
danef378022010-05-04 11:06:03 +00001403 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001404 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001405 }
dan7c246102010-04-12 19:00:29 +00001406 return rc;
1407}
1408
drha2a42012010-05-18 18:01:08 +00001409/*
drh85a83752011-05-16 21:00:27 +00001410** Change the size to which the WAL file is trucated on each reset.
1411*/
1412void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1413 if( pWal ) pWal->mxWalSize = iLimit;
1414}
1415
1416/*
drha2a42012010-05-18 18:01:08 +00001417** Find the smallest page number out of all pages held in the WAL that
1418** has not been returned by any prior invocation of this method on the
1419** same WalIterator object. Write into *piFrame the frame index where
1420** that page was last written into the WAL. Write into *piPage the page
1421** number.
1422**
1423** Return 0 on success. If there are no pages in the WAL with a page
1424** number larger than *piPage, then return 1.
1425*/
drh7ed91f22010-04-29 22:34:07 +00001426static int walIteratorNext(
1427 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001428 u32 *piPage, /* OUT: The page number of the next page */
1429 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001430){
drha2a42012010-05-18 18:01:08 +00001431 u32 iMin; /* Result pgno must be greater than iMin */
1432 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1433 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001434
drha2a42012010-05-18 18:01:08 +00001435 iMin = p->iPrior;
1436 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001437 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001438 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001439 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001440 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001441 if( iPg>iMin ){
1442 if( iPg<iRet ){
1443 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001444 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001445 }
1446 break;
1447 }
1448 pSegment->iNext++;
1449 }
dan7c246102010-04-12 19:00:29 +00001450 }
1451
drha2a42012010-05-18 18:01:08 +00001452 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001453 return (iRet==0xFFFFFFFF);
1454}
1455
danf544b4c2010-06-25 11:35:52 +00001456/*
1457** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001458**
1459** aLeft[] and aRight[] are arrays of indices. The sort key is
1460** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1461** is guaranteed for all J<K:
1462**
1463** aContent[aLeft[J]] < aContent[aLeft[K]]
1464** aContent[aRight[J]] < aContent[aRight[K]]
1465**
1466** This routine overwrites aRight[] with a new (probably longer) sequence
1467** of indices such that the aRight[] contains every index that appears in
1468** either aLeft[] or the old aRight[] and such that the second condition
1469** above is still met.
1470**
1471** The aContent[aLeft[X]] values will be unique for all X. And the
1472** aContent[aRight[X]] values will be unique too. But there might be
1473** one or more combinations of X and Y such that
1474**
1475** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1476**
1477** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001478*/
1479static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001480 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001481 ht_slot *aLeft, /* IN: Left hand input list */
1482 int nLeft, /* IN: Elements in array *paLeft */
1483 ht_slot **paRight, /* IN/OUT: Right hand input list */
1484 int *pnRight, /* IN/OUT: Elements in *paRight */
1485 ht_slot *aTmp /* Temporary buffer */
1486){
1487 int iLeft = 0; /* Current index in aLeft */
1488 int iRight = 0; /* Current index in aRight */
1489 int iOut = 0; /* Current index in output buffer */
1490 int nRight = *pnRight;
1491 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001492
danf544b4c2010-06-25 11:35:52 +00001493 assert( nLeft>0 && nRight>0 );
1494 while( iRight<nRight || iLeft<nLeft ){
1495 ht_slot logpage;
1496 Pgno dbpage;
1497
1498 if( (iLeft<nLeft)
1499 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1500 ){
1501 logpage = aLeft[iLeft++];
1502 }else{
1503 logpage = aRight[iRight++];
1504 }
1505 dbpage = aContent[logpage];
1506
1507 aTmp[iOut++] = logpage;
1508 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1509
1510 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1511 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1512 }
1513
1514 *paRight = aLeft;
1515 *pnRight = iOut;
1516 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1517}
1518
1519/*
drhd9c9b782010-12-15 21:02:06 +00001520** Sort the elements in list aList using aContent[] as the sort key.
1521** Remove elements with duplicate keys, preferring to keep the
1522** larger aList[] values.
1523**
1524** The aList[] entries are indices into aContent[]. The values in
1525** aList[] are to be sorted so that for all J<K:
1526**
1527** aContent[aList[J]] < aContent[aList[K]]
1528**
1529** For any X and Y such that
1530**
1531** aContent[aList[X]] == aContent[aList[Y]]
1532**
1533** Keep the larger of the two values aList[X] and aList[Y] and discard
1534** the smaller.
danf544b4c2010-06-25 11:35:52 +00001535*/
dan13a3cb82010-06-11 19:04:21 +00001536static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001537 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001538 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1539 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001540 int *pnList /* IN/OUT: Number of elements in aList[] */
1541){
danf544b4c2010-06-25 11:35:52 +00001542 struct Sublist {
1543 int nList; /* Number of elements in aList */
1544 ht_slot *aList; /* Pointer to sub-list content */
1545 };
drha2a42012010-05-18 18:01:08 +00001546
danf544b4c2010-06-25 11:35:52 +00001547 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001548 int nMerge = 0; /* Number of elements in list aMerge */
1549 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001550 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001551 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001552 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001553
danf544b4c2010-06-25 11:35:52 +00001554 memset(aSub, 0, sizeof(aSub));
1555 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1556 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001557
danf544b4c2010-06-25 11:35:52 +00001558 for(iList=0; iList<nList; iList++){
1559 nMerge = 1;
1560 aMerge = &aList[iList];
1561 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001562 struct Sublist *p;
1563 assert( iSub<ArraySize(aSub) );
1564 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001565 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001566 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001567 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001568 }
danf544b4c2010-06-25 11:35:52 +00001569 aSub[iSub].aList = aMerge;
1570 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001571 }
1572
danf544b4c2010-06-25 11:35:52 +00001573 for(iSub++; iSub<ArraySize(aSub); iSub++){
1574 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001575 struct Sublist *p;
1576 assert( iSub<ArraySize(aSub) );
1577 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001578 assert( p->nList<=(1<<iSub) );
1579 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001580 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1581 }
1582 }
1583 assert( aMerge==aList );
1584 *pnList = nMerge;
1585
drha2a42012010-05-18 18:01:08 +00001586#ifdef SQLITE_DEBUG
1587 {
1588 int i;
1589 for(i=1; i<*pnList; i++){
1590 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1591 }
1592 }
1593#endif
1594}
1595
dan5d656852010-06-14 07:53:26 +00001596/*
1597** Free an iterator allocated by walIteratorInit().
1598*/
1599static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001600 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001601}
1602
drha2a42012010-05-18 18:01:08 +00001603/*
danbdf1e242010-06-25 15:16:25 +00001604** Construct a WalInterator object that can be used to loop over all
dan302ce472018-03-02 15:42:20 +00001605** pages in the WAL following frame nBackfill in ascending order. Frames
1606** nBackfill or earlier may be included - excluding them is an optimization
1607** only. The caller must hold the checkpoint lock.
drha2a42012010-05-18 18:01:08 +00001608**
1609** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001610** return SQLITE_OK. Otherwise, return an error code. If this routine
1611** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001612**
1613** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001614** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001615*/
dan302ce472018-03-02 15:42:20 +00001616static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001617 WalIterator *p; /* Return value */
1618 int nSegment; /* Number of segments to merge */
1619 u32 iLast; /* Last frame in log */
drhf6ad2012019-04-13 14:07:57 +00001620 sqlite3_int64 nByte; /* Number of bytes to allocate */
dan067f3162010-06-14 10:30:12 +00001621 int i; /* Iterator variable */
1622 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001623 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001624
danbdf1e242010-06-25 15:16:25 +00001625 /* This routine only runs while holding the checkpoint lock. And
1626 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001627 */
danbdf1e242010-06-25 15:16:25 +00001628 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001629 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001630
danbdf1e242010-06-25 15:16:25 +00001631 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001632 nSegment = walFramePage(iLast) + 1;
1633 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001634 + (nSegment-1)*sizeof(struct WalSegment)
1635 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001636 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001637 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001638 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001639 }
1640 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001641 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001642
1643 /* Allocate temporary space used by the merge-sort routine. This block
1644 ** of memory will be freed before this function returns.
1645 */
drhf3cdcdc2015-04-29 16:50:28 +00001646 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001647 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1648 );
danbdf1e242010-06-25 15:16:25 +00001649 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001650 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001651 }
1652
dan302ce472018-03-02 15:42:20 +00001653 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
drh4ece2f22018-06-09 16:49:00 +00001654 WalHashLoc sLoc;
dan13a3cb82010-06-11 19:04:21 +00001655
drh4ece2f22018-06-09 16:49:00 +00001656 rc = walHashGet(pWal, i, &sLoc);
danbdf1e242010-06-25 15:16:25 +00001657 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001658 int j; /* Counter variable */
1659 int nEntry; /* Number of entries in this segment */
1660 ht_slot *aIndex; /* Sorted index for this segment */
1661
drh4ece2f22018-06-09 16:49:00 +00001662 sLoc.aPgno++;
drh519426a2010-07-09 03:19:07 +00001663 if( (i+1)==nSegment ){
drh4ece2f22018-06-09 16:49:00 +00001664 nEntry = (int)(iLast - sLoc.iZero);
drh519426a2010-07-09 03:19:07 +00001665 }else{
drh4ece2f22018-06-09 16:49:00 +00001666 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
drh519426a2010-07-09 03:19:07 +00001667 }
drh4ece2f22018-06-09 16:49:00 +00001668 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1669 sLoc.iZero++;
danbdf1e242010-06-25 15:16:25 +00001670
danbdf1e242010-06-25 15:16:25 +00001671 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001672 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001673 }
drh4ece2f22018-06-09 16:49:00 +00001674 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1675 p->aSegment[i].iZero = sLoc.iZero;
danbdf1e242010-06-25 15:16:25 +00001676 p->aSegment[i].nEntry = nEntry;
1677 p->aSegment[i].aIndex = aIndex;
drh4ece2f22018-06-09 16:49:00 +00001678 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
dan13a3cb82010-06-11 19:04:21 +00001679 }
dan7c246102010-04-12 19:00:29 +00001680 }
drhcbd55b02014-11-04 14:22:27 +00001681 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001682
danbdf1e242010-06-25 15:16:25 +00001683 if( rc!=SQLITE_OK ){
1684 walIteratorFree(p);
drh49cc2f32018-03-05 23:23:28 +00001685 p = 0;
danbdf1e242010-06-25 15:16:25 +00001686 }
dan8f6097c2010-05-06 07:43:58 +00001687 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001688 return rc;
dan7c246102010-04-12 19:00:29 +00001689}
1690
dan7c246102010-04-12 19:00:29 +00001691/*
dana58f26f2010-11-16 18:56:51 +00001692** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1693** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1694** busy-handler function. Invoke it and retry the lock until either the
1695** lock is successfully obtained or the busy-handler returns 0.
1696*/
1697static int walBusyLock(
1698 Wal *pWal, /* WAL connection */
1699 int (*xBusy)(void*), /* Function to call when busy */
1700 void *pBusyArg, /* Context argument for xBusyHandler */
1701 int lockIdx, /* Offset of first byte to lock */
1702 int n /* Number of bytes to lock */
1703){
1704 int rc;
1705 do {
drhab372772015-12-02 16:10:16 +00001706 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001707 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1708 return rc;
1709}
1710
1711/*
danf2b8dd52010-11-18 19:28:01 +00001712** The cache of the wal-index header must be valid to call this function.
1713** Return the page-size in bytes used by the database.
1714*/
1715static int walPagesize(Wal *pWal){
1716 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1717}
1718
1719/*
danf26a1542014-12-02 19:04:54 +00001720** The following is guaranteed when this function is called:
1721**
1722** a) the WRITER lock is held,
1723** b) the entire log file has been checkpointed, and
1724** c) any existing readers are reading exclusively from the database
1725** file - there are no readers that may attempt to read a frame from
1726** the log file.
1727**
1728** This function updates the shared-memory structures so that the next
1729** client to write to the database (which may be this one) does so by
1730** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001731**
1732** The value of parameter salt1 is used as the aSalt[1] value in the
1733** new wal-index header. It should be passed a pseudo-random value (i.e.
1734** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001735*/
dan0fe8c1b2014-12-02 19:35:09 +00001736static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001737 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1738 int i; /* Loop counter */
1739 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1740 pWal->nCkpt++;
1741 pWal->hdr.mxFrame = 0;
1742 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001743 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001744 walIndexWriteHdr(pWal);
1745 pInfo->nBackfill = 0;
drh998147e2015-12-10 02:15:03 +00001746 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001747 pInfo->aReadMark[1] = 0;
1748 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1749 assert( pInfo->aReadMark[0]==0 );
1750}
1751
1752/*
drh73b64e42010-05-30 19:55:15 +00001753** Copy as much content as we can from the WAL back into the database file
1754** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1755**
1756** The amount of information copies from WAL to database might be limited
1757** by active readers. This routine will never overwrite a database page
1758** that a concurrent reader might be using.
1759**
1760** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1761** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1762** checkpoints are always run by a background thread or background
1763** process, foreground threads will never block on a lengthy fsync call.
1764**
1765** Fsync is called on the WAL before writing content out of the WAL and
1766** into the database. This ensures that if the new content is persistent
1767** in the WAL and can be recovered following a power-loss or hard reset.
1768**
1769** Fsync is also called on the database file if (and only if) the entire
1770** WAL content is copied into the database file. This second fsync makes
1771** it safe to delete the WAL since the new content will persist in the
1772** database file.
1773**
1774** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001775** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001776** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1777** its value.)
1778**
1779** The caller must be holding sufficient locks to ensure that no other
1780** checkpoint is running (in any other thread or process) at the same
1781** time.
dan7c246102010-04-12 19:00:29 +00001782*/
drh7ed91f22010-04-29 22:34:07 +00001783static int walCheckpoint(
1784 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00001785 sqlite3 *db, /* Check for interrupts on this handle */
dancdc1f042010-11-18 12:11:05 +00001786 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001787 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001788 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001789 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001790 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001791){
dan976b0032015-01-29 19:12:12 +00001792 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001793 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001794 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001795 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001796 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001797 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001798 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001799 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001800 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001801
danf2b8dd52010-11-18 19:28:01 +00001802 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001803 testcase( szPage<=32768 );
1804 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001805 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001806 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001807
dan976b0032015-01-29 19:12:12 +00001808 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1809 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1810 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001811
dan976b0032015-01-29 19:12:12 +00001812 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1813 ** safe to write into the database. Frames beyond mxSafeFrame might
1814 ** overwrite database pages that are in use by active readers and thus
1815 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001816 */
dan976b0032015-01-29 19:12:12 +00001817 mxSafeFrame = pWal->hdr.mxFrame;
1818 mxPage = pWal->hdr.nPage;
1819 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001820 /* Thread-sanitizer reports that the following is an unsafe read,
1821 ** as some other thread may be in the process of updating the value
1822 ** of the aReadMark[] slot. The assumption here is that if that is
1823 ** happening, the other client may only be increasing the value,
1824 ** not decreasing it. So assuming either that either the "old" or
1825 ** "new" version of the value is read, and not some arbitrary value
1826 ** that would never be written by a real client, things are still
drh2ecf9282019-11-27 20:40:44 +00001827 ** safe.
1828 **
1829 ** Astute readers have pointed out that the assumption stated in the
1830 ** last sentence of the previous paragraph is not guaranteed to be
1831 ** true for all conforming systems. However, the assumption is true
1832 ** for all compilers and architectures in common use today (circa
1833 ** 2019-11-27) and the alternatives are both slow and complex, and
1834 ** so we will continue to go with the current design for now. If this
1835 ** bothers you, or if you really are running on a system where aligned
1836 ** 32-bit reads and writes are not atomic, then you can simply avoid
1837 ** the use of WAL mode, or only use WAL mode together with
1838 ** PRAGMA locking_mode=EXCLUSIVE and all will be well.
1839 */
dan976b0032015-01-29 19:12:12 +00001840 u32 y = pInfo->aReadMark[i];
1841 if( mxSafeFrame>y ){
1842 assert( y<=pWal->hdr.mxFrame );
1843 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1844 if( rc==SQLITE_OK ){
1845 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1846 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1847 }else if( rc==SQLITE_BUSY ){
1848 mxSafeFrame = y;
1849 xBusy = 0;
1850 }else{
1851 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001852 }
1853 }
1854 }
1855
danf0cb61d2018-03-02 16:52:47 +00001856 /* Allocate the iterator */
1857 if( pInfo->nBackfill<mxSafeFrame ){
1858 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1859 assert( rc==SQLITE_OK || pIter==0 );
1860 }
1861
1862 if( pIter
dan976b0032015-01-29 19:12:12 +00001863 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1864 ){
dan976b0032015-01-29 19:12:12 +00001865 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001866
dan3bf83cc2015-12-10 15:45:15 +00001867 pInfo->nBackfillAttempted = mxSafeFrame;
1868
dan976b0032015-01-29 19:12:12 +00001869 /* Sync the WAL to disk */
drhdaaae7b2017-08-25 01:14:43 +00001870 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001871
1872 /* If the database may grow as a result of this checkpoint, hint
1873 ** about the eventual size of the db file to the VFS layer.
1874 */
1875 if( rc==SQLITE_OK ){
1876 i64 nReq = ((i64)mxPage * szPage);
mistachkin6389a7b2018-08-08 20:46:35 +00001877 i64 nSize; /* Current size of database file */
dan976b0032015-01-29 19:12:12 +00001878 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1879 if( rc==SQLITE_OK && nSize<nReq ){
1880 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1881 }
1882 }
1883
1884
1885 /* Iterate through the contents of the WAL, copying data to the db file */
1886 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1887 i64 iOffset;
1888 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan7fb89902016-08-12 16:21:15 +00001889 if( db->u1.isInterrupted ){
1890 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1891 break;
1892 }
dan976b0032015-01-29 19:12:12 +00001893 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1894 continue;
1895 }
1896 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1897 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1898 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1899 if( rc!=SQLITE_OK ) break;
1900 iOffset = (iDbpage-1)*(i64)szPage;
1901 testcase( IS_BIG_INT(iOffset) );
1902 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1903 if( rc!=SQLITE_OK ) break;
1904 }
1905
1906 /* If work was actually accomplished... */
1907 if( rc==SQLITE_OK ){
1908 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1909 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1910 testcase( IS_BIG_INT(szDb) );
1911 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drhdaaae7b2017-08-25 01:14:43 +00001912 if( rc==SQLITE_OK ){
1913 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001914 }
1915 }
1916 if( rc==SQLITE_OK ){
1917 pInfo->nBackfill = mxSafeFrame;
1918 }
1919 }
1920
1921 /* Release the reader lock held while backfilling */
1922 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1923 }
1924
1925 if( rc==SQLITE_BUSY ){
1926 /* Reset the return code so as not to report a checkpoint failure
1927 ** just because there are active readers. */
1928 rc = SQLITE_OK;
1929 }
dan7c246102010-04-12 19:00:29 +00001930 }
1931
danf26a1542014-12-02 19:04:54 +00001932 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1933 ** entire wal file has been copied into the database file, then block
1934 ** until all readers have finished using the wal file. This ensures that
1935 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001936 */
1937 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001938 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001939 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1940 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001941 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001942 u32 salt1;
1943 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001944 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001945 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1946 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001947 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001948 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1949 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1950 ** truncates the log file to zero bytes just prior to a
1951 ** successful return.
danf26a1542014-12-02 19:04:54 +00001952 **
1953 ** In theory, it might be safe to do this without updating the
1954 ** wal-index header in shared memory, as all subsequent reader or
1955 ** writer clients should see that the entire log file has been
1956 ** checkpointed and behave accordingly. This seems unsafe though,
1957 ** as it would leave the system in a state where the contents of
1958 ** the wal-index header do not match the contents of the
1959 ** file-system. To avoid this, update the wal-index header to
1960 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001961 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001962 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1963 }
danf2b8dd52010-11-18 19:28:01 +00001964 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1965 }
dancdc1f042010-11-18 12:11:05 +00001966 }
1967 }
1968
dan83f42d12010-06-04 10:37:05 +00001969 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001970 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001971 return rc;
1972}
1973
1974/*
danf60b7f32011-12-16 13:24:27 +00001975** If the WAL file is currently larger than nMax bytes in size, truncate
1976** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001977*/
danf60b7f32011-12-16 13:24:27 +00001978static void walLimitSize(Wal *pWal, i64 nMax){
1979 i64 sz;
1980 int rx;
1981 sqlite3BeginBenignMalloc();
1982 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1983 if( rx==SQLITE_OK && (sz > nMax ) ){
1984 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1985 }
1986 sqlite3EndBenignMalloc();
1987 if( rx ){
1988 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001989 }
1990}
1991
1992/*
dan7c246102010-04-12 19:00:29 +00001993** Close a connection to a log file.
1994*/
drhc438efd2010-04-26 00:19:45 +00001995int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001996 Wal *pWal, /* Wal to close */
dan7fb89902016-08-12 16:21:15 +00001997 sqlite3 *db, /* For interrupt flag */
danc5118782010-04-17 17:34:41 +00001998 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001999 int nBuf,
2000 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00002001){
2002 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00002003 if( pWal ){
dan30c86292010-04-30 16:24:46 +00002004 int isDelete = 0; /* True to unlink wal and wal-index files */
2005
2006 /* If an EXCLUSIVE lock can be obtained on the database file (using the
2007 ** ordinary, rollback-mode locking methods, this guarantees that the
2008 ** connection associated with this log file is the only connection to
2009 ** the database. In this case checkpoint the database and unlink both
2010 ** the wal and wal-index files.
2011 **
2012 ** The EXCLUSIVE lock is not released before returning.
2013 */
dan4a5bad52016-11-11 17:08:51 +00002014 if( zBuf!=0
dan298af022016-10-31 16:16:49 +00002015 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2016 ){
dan8c408002010-11-01 17:38:24 +00002017 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2018 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2019 }
dan7fb89902016-08-12 16:21:15 +00002020 rc = sqlite3WalCheckpoint(pWal, db,
2021 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
dancdc1f042010-11-18 12:11:05 +00002022 );
drheed42502011-12-16 15:38:52 +00002023 if( rc==SQLITE_OK ){
2024 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00002025 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00002026 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2027 );
drheed42502011-12-16 15:38:52 +00002028 if( bPersist!=1 ){
2029 /* Try to delete the WAL file if the checkpoint completed and
2030 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2031 ** mode (!bPersist) */
2032 isDelete = 1;
2033 }else if( pWal->mxWalSize>=0 ){
2034 /* Try to truncate the WAL file to zero bytes if the checkpoint
2035 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2036 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2037 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2038 ** to zero bytes as truncating to the journal_size_limit might
2039 ** leave a corrupt WAL file on disk. */
2040 walLimitSize(pWal, 0);
2041 }
dan30c86292010-04-30 16:24:46 +00002042 }
dan30c86292010-04-30 16:24:46 +00002043 }
2044
dan1018e902010-05-05 15:33:05 +00002045 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00002046 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00002047 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00002048 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00002049 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00002050 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00002051 }
drhc74c3332010-05-31 12:15:19 +00002052 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00002053 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00002054 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00002055 }
2056 return rc;
2057}
2058
2059/*
drha2a42012010-05-18 18:01:08 +00002060** Try to read the wal-index header. Return 0 on success and 1 if
2061** there is a problem.
2062**
2063** The wal-index is in shared memory. Another thread or process might
2064** be writing the header at the same time this procedure is trying to
2065** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00002066** by verifying that both copies of the header are the same and also by
2067** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00002068**
2069** If and only if the read is consistent and the header is different from
2070** pWal->hdr, then pWal->hdr is updated to the content of the new header
2071** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002072**
dan84670502010-05-07 05:46:23 +00002073** If the checksum cannot be verified return non-zero. If the header
2074** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002075*/
drh7750ab42010-06-26 22:16:02 +00002076static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00002077 u32 aCksum[2]; /* Checksum on the header content */
2078 WalIndexHdr h1, h2; /* Two copies of the header content */
2079 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002080
dan4280eb32010-06-12 12:02:35 +00002081 /* The first page of the wal-index must be mapped at this point. */
2082 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002083
drh6cef0cf2010-08-16 16:31:43 +00002084 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002085 ** same area of shared memory on a different CPU in a SMP,
2086 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002087 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002088 **
2089 ** There are two copies of the header at the beginning of the wal-index.
2090 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2091 ** Memory barriers are used to prevent the compiler or the hardware from
2092 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00002093 */
dan4280eb32010-06-12 12:02:35 +00002094 aHdr = walIndexHdr(pWal);
2095 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00002096 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002097 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002098
drhf0b20f82010-05-21 13:16:18 +00002099 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2100 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002101 }
drh4b82c382010-05-31 18:24:19 +00002102 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002103 return 1; /* Malformed header - probably all zeros */
2104 }
danb8fd6c22010-05-24 10:39:36 +00002105 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002106 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2107 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002108 }
2109
drhf0b20f82010-05-21 13:16:18 +00002110 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002111 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002112 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002113 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2114 testcase( pWal->szPage<=32768 );
2115 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002116 }
dan84670502010-05-07 05:46:23 +00002117
2118 /* The header was successfully read. Return zero. */
2119 return 0;
danb9bf16b2010-04-14 11:23:30 +00002120}
2121
2122/*
dan08ecefc2017-11-07 21:15:07 +00002123** This is the value that walTryBeginRead returns when it needs to
2124** be retried.
2125*/
2126#define WAL_RETRY (-1)
2127
2128/*
drha2a42012010-05-18 18:01:08 +00002129** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002130** If the wal-header appears to be corrupt, try to reconstruct the
2131** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002132**
2133** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002134** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002135** to 0.
2136**
drh7ed91f22010-04-29 22:34:07 +00002137** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002138** Otherwise an SQLite error code.
2139*/
drh7ed91f22010-04-29 22:34:07 +00002140static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002141 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002142 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002143 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002144
dan4280eb32010-06-12 12:02:35 +00002145 /* Ensure that page 0 of the wal-index (the page that contains the
2146 ** wal-index header) is mapped. Return early if an error occurs here.
2147 */
dana8614692010-05-06 14:42:34 +00002148 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002149 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002150 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002151 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2152 if( rc==SQLITE_READONLY_CANTINIT ){
2153 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2154 ** was openable but is not writable, and this thread is unable to
2155 ** confirm that another write-capable connection has the shared-memory
2156 ** open, and hence the content of the shared-memory is unreliable,
2157 ** since the shared-memory might be inconsistent with the WAL file
2158 ** and there is no writer on hand to fix it. */
drhc05a0632017-11-11 20:11:01 +00002159 assert( page0==0 );
2160 assert( pWal->writeLock==0 );
2161 assert( pWal->readOnly & WAL_SHM_RDONLY );
drh85bc6df2017-11-10 20:00:50 +00002162 pWal->bShmUnreliable = 1;
2163 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2164 *pChanged = 1;
2165 }else{
2166 return rc; /* Any other non-OK return is just an error */
2167 }
drhc05a0632017-11-11 20:11:01 +00002168 }else{
2169 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2170 ** is zero, which prevents the SHM from growing */
2171 testcase( page0!=0 );
2172 }
2173 assert( page0!=0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002174
dan4280eb32010-06-12 12:02:35 +00002175 /* If the first page of the wal-index has been mapped, try to read the
2176 ** wal-index header immediately, without holding any lock. This usually
2177 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002178 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002179 */
dan4280eb32010-06-12 12:02:35 +00002180 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002181
drh73b64e42010-05-30 19:55:15 +00002182 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002183 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002184 */
dand54ff602010-05-31 11:16:30 +00002185 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002186 if( badHdr ){
drh85bc6df2017-11-10 20:00:50 +00002187 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
dan4edc6bf2011-05-10 17:31:29 +00002188 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2189 walUnlockShared(pWal, WAL_WRITE_LOCK);
2190 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002191 }
drhab372772015-12-02 16:10:16 +00002192 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002193 pWal->writeLock = 1;
2194 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2195 badHdr = walIndexTryHdr(pWal, pChanged);
2196 if( badHdr ){
2197 /* If the wal-index header is still malformed even while holding
2198 ** a WRITE lock, it can only mean that the header is corrupted and
2199 ** needs to be reconstructed. So run recovery to do exactly that.
2200 */
2201 rc = walIndexRecover(pWal);
2202 *pChanged = 1;
2203 }
2204 }
2205 pWal->writeLock = 0;
2206 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002207 }
danb9bf16b2010-04-14 11:23:30 +00002208 }
2209
drha927e942010-06-24 02:46:48 +00002210 /* If the header is read successfully, check the version number to make
2211 ** sure the wal-index was not constructed with some future format that
2212 ** this version of SQLite cannot understand.
2213 */
2214 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2215 rc = SQLITE_CANTOPEN_BKPT;
2216 }
drh85bc6df2017-11-10 20:00:50 +00002217 if( pWal->bShmUnreliable ){
dan11caf4f2017-11-04 18:10:03 +00002218 if( rc!=SQLITE_OK ){
2219 walIndexClose(pWal, 0);
drh85bc6df2017-11-10 20:00:50 +00002220 pWal->bShmUnreliable = 0;
dan08ecefc2017-11-07 21:15:07 +00002221 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
drh8b17ac12017-11-14 03:42:52 +00002222 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2223 ** writer truncated the WAL out from under it. If that happens, it
2224 ** indicates that a writer has fixed the SHM file for us, so retry */
dan08ecefc2017-11-07 21:15:07 +00002225 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
dan11caf4f2017-11-04 18:10:03 +00002226 }
2227 pWal->exclusiveMode = WAL_NORMAL_MODE;
2228 }
drha927e942010-06-24 02:46:48 +00002229
danb9bf16b2010-04-14 11:23:30 +00002230 return rc;
2231}
2232
2233/*
drh85bc6df2017-11-10 20:00:50 +00002234** Open a transaction in a connection where the shared-memory is read-only
2235** and where we cannot verify that there is a separate write-capable connection
2236** on hand to keep the shared-memory up-to-date with the WAL file.
2237**
2238** This can happen, for example, when the shared-memory is implemented by
2239** memory-mapping a *-shm file, where a prior writer has shut down and
2240** left the *-shm file on disk, and now the present connection is trying
2241** to use that database but lacks write permission on the *-shm file.
2242** Other scenarios are also possible, depending on the VFS implementation.
2243**
2244** Precondition:
2245**
2246** The *-wal file has been read and an appropriate wal-index has been
2247** constructed in pWal->apWiData[] using heap memory instead of shared
2248** memory.
dan11caf4f2017-11-04 18:10:03 +00002249**
2250** If this function returns SQLITE_OK, then the read transaction has
2251** been successfully opened. In this case output variable (*pChanged)
2252** is set to true before returning if the caller should discard the
2253** contents of the page cache before proceeding. Or, if it returns
2254** WAL_RETRY, then the heap memory wal-index has been discarded and
2255** the caller should retry opening the read transaction from the
2256** beginning (including attempting to map the *-shm file).
2257**
2258** If an error occurs, an SQLite error code is returned.
2259*/
drh85bc6df2017-11-10 20:00:50 +00002260static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
dan11caf4f2017-11-04 18:10:03 +00002261 i64 szWal; /* Size of wal file on disk in bytes */
2262 i64 iOffset; /* Current offset when reading wal file */
2263 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2264 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2265 int szFrame; /* Number of bytes in buffer aFrame[] */
2266 u8 *aData; /* Pointer to data part of aFrame buffer */
2267 volatile void *pDummy; /* Dummy argument for xShmMap */
2268 int rc; /* Return code */
2269 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2270
drh85bc6df2017-11-10 20:00:50 +00002271 assert( pWal->bShmUnreliable );
dan11caf4f2017-11-04 18:10:03 +00002272 assert( pWal->readOnly & WAL_SHM_RDONLY );
2273 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2274
2275 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
drh85bc6df2017-11-10 20:00:50 +00002276 ** writers from running a checkpoint, but does not stop them
dan11caf4f2017-11-04 18:10:03 +00002277 ** from running recovery. */
2278 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2279 if( rc!=SQLITE_OK ){
danab548382017-11-06 19:49:34 +00002280 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002281 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002282 }
2283 pWal->readLock = 0;
2284
drh85bc6df2017-11-10 20:00:50 +00002285 /* Check to see if a separate writer has attached to the shared-memory area,
2286 ** thus making the shared-memory "reliable" again. Do this by invoking
2287 ** the xShmMap() routine of the VFS and looking to see if the return
2288 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
drh9214c1e2017-11-08 19:26:27 +00002289 **
drh85bc6df2017-11-10 20:00:50 +00002290 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2291 ** cause the heap-memory WAL-index to be discarded and the actual
2292 ** shared memory to be used in its place.
drh870655b2017-11-11 13:30:44 +00002293 **
2294 ** This step is important because, even though this connection is holding
2295 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2296 ** have already checkpointed the WAL file and, while the current
2297 ** is active, wrap the WAL and start overwriting frames that this
2298 ** process wants to use.
2299 **
2300 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2301 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2302 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2303 ** even if some external agent does a "chmod" to make the shared-memory
2304 ** writable by us, until sqlite3OsShmUnmap() has been called.
2305 ** This is a requirement on the VFS implementation.
2306 */
dan11caf4f2017-11-04 18:10:03 +00002307 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
drh9214c1e2017-11-08 19:26:27 +00002308 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
drh7e45e3a2017-11-08 17:32:12 +00002309 if( rc!=SQLITE_READONLY_CANTINIT ){
dan11caf4f2017-11-04 18:10:03 +00002310 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
drh85bc6df2017-11-10 20:00:50 +00002311 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002312 }
2313
drh870655b2017-11-11 13:30:44 +00002314 /* We reach this point only if the real shared-memory is still unreliable.
drh85bc6df2017-11-10 20:00:50 +00002315 ** Assume the in-memory WAL-index substitute is correct and load it
2316 ** into pWal->hdr.
2317 */
dan11caf4f2017-11-04 18:10:03 +00002318 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
drh85bc6df2017-11-10 20:00:50 +00002319
drh870655b2017-11-11 13:30:44 +00002320 /* Make sure some writer hasn't come in and changed the WAL file out
2321 ** from under us, then disconnected, while we were not looking.
drh85bc6df2017-11-10 20:00:50 +00002322 */
dan11caf4f2017-11-04 18:10:03 +00002323 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
danab548382017-11-06 19:49:34 +00002324 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002325 goto begin_unreliable_shm_out;
danab548382017-11-06 19:49:34 +00002326 }
2327 if( szWal<WAL_HDRSIZE ){
dan11caf4f2017-11-04 18:10:03 +00002328 /* If the wal file is too small to contain a wal-header and the
2329 ** wal-index header has mxFrame==0, then it must be safe to proceed
2330 ** reading the database file only. However, the page cache cannot
2331 ** be trusted, as a read/write connection may have connected, written
2332 ** the db, run a checkpoint, truncated the wal file and disconnected
2333 ** since this client's last read transaction. */
2334 *pChanged = 1;
danab548382017-11-06 19:49:34 +00002335 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
drh85bc6df2017-11-10 20:00:50 +00002336 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002337 }
2338
2339 /* Check the salt keys at the start of the wal file still match. */
2340 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2341 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002342 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002343 }
2344 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
drh870655b2017-11-11 13:30:44 +00002345 /* Some writer has wrapped the WAL file while we were not looking.
2346 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2347 ** rebuilt. */
dan11caf4f2017-11-04 18:10:03 +00002348 rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002349 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002350 }
2351
2352 /* Allocate a buffer to read frames into */
2353 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2354 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2355 if( aFrame==0 ){
2356 rc = SQLITE_NOMEM_BKPT;
drh85bc6df2017-11-10 20:00:50 +00002357 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002358 }
2359 aData = &aFrame[WAL_FRAME_HDRSIZE];
2360
dancbd33212017-11-04 21:06:35 +00002361 /* Check to see if a complete transaction has been appended to the
2362 ** wal file since the heap-memory wal-index was created. If so, the
2363 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2364 ** the caller. */
dan11caf4f2017-11-04 18:10:03 +00002365 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2366 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2367 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2368 iOffset+szFrame<=szWal;
2369 iOffset+=szFrame
2370 ){
2371 u32 pgno; /* Database page number for frame */
2372 u32 nTruncate; /* dbsize field from frame header */
2373
2374 /* Read and decode the next log frame. */
2375 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
danab548382017-11-06 19:49:34 +00002376 if( rc!=SQLITE_OK ) break;
dan11caf4f2017-11-04 18:10:03 +00002377 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2378
dancbd33212017-11-04 21:06:35 +00002379 /* If nTruncate is non-zero, then a complete transaction has been
2380 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2381 ** the loop. */
dan11caf4f2017-11-04 18:10:03 +00002382 if( nTruncate ){
2383 rc = WAL_RETRY;
2384 break;
2385 }
2386 }
2387 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2388 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2389
drh85bc6df2017-11-10 20:00:50 +00002390 begin_unreliable_shm_out:
dan11caf4f2017-11-04 18:10:03 +00002391 sqlite3_free(aFrame);
2392 if( rc!=SQLITE_OK ){
2393 int i;
2394 for(i=0; i<pWal->nWiData; i++){
2395 sqlite3_free((void*)pWal->apWiData[i]);
2396 pWal->apWiData[i] = 0;
2397 }
drh85bc6df2017-11-10 20:00:50 +00002398 pWal->bShmUnreliable = 0;
dan11caf4f2017-11-04 18:10:03 +00002399 sqlite3WalEndReadTransaction(pWal);
2400 *pChanged = 1;
2401 }
2402 return rc;
2403}
2404
2405/*
drh73b64e42010-05-30 19:55:15 +00002406** Attempt to start a read transaction. This might fail due to a race or
2407** other transient condition. When that happens, it returns WAL_RETRY to
2408** indicate to the caller that it is safe to retry immediately.
2409**
drha927e942010-06-24 02:46:48 +00002410** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002411** I/O error or an SQLITE_BUSY because another process is running
2412** recovery) return a positive error code.
2413**
drha927e942010-06-24 02:46:48 +00002414** The useWal parameter is true to force the use of the WAL and disable
2415** the case where the WAL is bypassed because it has been completely
2416** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2417** to make a copy of the wal-index header into pWal->hdr. If the
2418** wal-index header has changed, *pChanged is set to 1 (as an indication
drh183f0aa2017-10-31 12:06:29 +00002419** to the caller that the local page cache is obsolete and needs to be
drha927e942010-06-24 02:46:48 +00002420** flushed.) When useWal==1, the wal-index header is assumed to already
2421** be loaded and the pChanged parameter is unused.
2422**
2423** The caller must set the cnt parameter to the number of prior calls to
2424** this routine during the current read attempt that returned WAL_RETRY.
2425** This routine will start taking more aggressive measures to clear the
2426** race conditions after multiple WAL_RETRY returns, and after an excessive
2427** number of errors will ultimately return SQLITE_PROTOCOL. The
2428** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2429** and is not honoring the locking protocol. There is a vanishingly small
2430** chance that SQLITE_PROTOCOL could be returned because of a run of really
2431** bad luck when there is lots of contention for the wal-index, but that
2432** possibility is so small that it can be safely neglected, we believe.
2433**
drh73b64e42010-05-30 19:55:15 +00002434** On success, this routine obtains a read lock on
2435** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2436** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2437** that means the Wal does not hold any read lock. The reader must not
2438** access any database page that is modified by a WAL frame up to and
2439** including frame number aReadMark[pWal->readLock]. The reader will
2440** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2441** Or if pWal->readLock==0, then the reader will ignore the WAL
2442** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002443** If the useWal parameter is 1 then the WAL will never be ignored and
2444** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002445** When the read transaction is completed, the caller must release the
2446** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2447**
2448** This routine uses the nBackfill and aReadMark[] fields of the header
2449** to select a particular WAL_READ_LOCK() that strives to let the
2450** checkpoint process do as much work as possible. This routine might
2451** update values of the aReadMark[] array in the header, but if it does
2452** so it takes care to hold an exclusive lock on the corresponding
2453** WAL_READ_LOCK() while changing values.
2454*/
drhaab4c022010-06-02 14:45:51 +00002455static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002456 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2457 u32 mxReadMark; /* Largest aReadMark[] value */
2458 int mxI; /* Index of largest aReadMark[] value */
2459 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002460 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002461 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002462
drh61e4ace2010-05-31 20:28:37 +00002463 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002464
drh2e9b0922017-11-13 05:51:37 +00002465 /* useWal may only be set for read/write connections */
2466 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2467
drh658d76c2011-02-19 15:22:14 +00002468 /* Take steps to avoid spinning forever if there is a protocol error.
2469 **
2470 ** Circumstances that cause a RETRY should only last for the briefest
2471 ** instances of time. No I/O or other system calls are done while the
2472 ** locks are held, so the locks should not be held for very long. But
2473 ** if we are unlucky, another process that is holding a lock might get
2474 ** paged out or take a page-fault that is time-consuming to resolve,
2475 ** during the few nanoseconds that it is holding the lock. In that case,
2476 ** it might take longer than normal for the lock to free.
2477 **
2478 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2479 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2480 ** is more of a scheduler yield than an actual delay. But on the 10th
2481 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002482 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2483 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002484 */
drhaab4c022010-06-02 14:45:51 +00002485 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002486 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002487 if( cnt>100 ){
2488 VVA_ONLY( pWal->lockError = 1; )
2489 return SQLITE_PROTOCOL;
2490 }
drh5b6e3b92014-06-12 17:10:18 +00002491 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002492 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002493 }
2494
drh73b64e42010-05-30 19:55:15 +00002495 if( !useWal ){
dan11caf4f2017-11-04 18:10:03 +00002496 assert( rc==SQLITE_OK );
drh85bc6df2017-11-10 20:00:50 +00002497 if( pWal->bShmUnreliable==0 ){
dan11caf4f2017-11-04 18:10:03 +00002498 rc = walIndexReadHdr(pWal, pChanged);
2499 }
drh73b64e42010-05-30 19:55:15 +00002500 if( rc==SQLITE_BUSY ){
2501 /* If there is not a recovery running in another thread or process
2502 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2503 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2504 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2505 ** would be technically correct. But the race is benign since with
2506 ** WAL_RETRY this routine will be called again and will probably be
2507 ** right on the second iteration.
2508 */
dan7d4514a2010-07-15 17:54:14 +00002509 if( pWal->apWiData[0]==0 ){
2510 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2511 ** We assume this is a transient condition, so return WAL_RETRY. The
2512 ** xShmMap() implementation used by the default unix and win32 VFS
2513 ** modules may return SQLITE_BUSY due to a race condition in the
2514 ** code that determines whether or not the shared-memory region
2515 ** must be zeroed before the requested page is returned.
2516 */
2517 rc = WAL_RETRY;
2518 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002519 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2520 rc = WAL_RETRY;
2521 }else if( rc==SQLITE_BUSY ){
2522 rc = SQLITE_BUSY_RECOVERY;
2523 }
2524 }
drha927e942010-06-24 02:46:48 +00002525 if( rc!=SQLITE_OK ){
2526 return rc;
2527 }
drh85bc6df2017-11-10 20:00:50 +00002528 else if( pWal->bShmUnreliable ){
2529 return walBeginShmUnreliable(pWal, pChanged);
dan11caf4f2017-11-04 18:10:03 +00002530 }
drh73b64e42010-05-30 19:55:15 +00002531 }
2532
dan92c02da2017-11-01 20:59:28 +00002533 assert( pWal->nWiData>0 );
drh2e9b0922017-11-13 05:51:37 +00002534 assert( pWal->apWiData[0]!=0 );
2535 pInfo = walCkptInfo(pWal);
2536 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
danfc1acf32015-12-05 20:51:54 +00002537#ifdef SQLITE_ENABLE_SNAPSHOT
dan21f2baf2017-09-23 07:46:54 +00002538 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
danfc1acf32015-12-05 20:51:54 +00002539#endif
2540 ){
drh73b64e42010-05-30 19:55:15 +00002541 /* The WAL has been completely backfilled (or it is empty).
2542 ** and can be safely ignored.
2543 */
2544 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002545 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002546 if( rc==SQLITE_OK ){
drh2e9b0922017-11-13 05:51:37 +00002547 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002548 /* It is not safe to allow the reader to continue here if frames
2549 ** may have been appended to the log before READ_LOCK(0) was obtained.
2550 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2551 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002552 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002553 ** happening, this is usually correct.
2554 **
2555 ** However, if frames have been appended to the log (or if the log
2556 ** is wrapped and written for that matter) before the READ_LOCK(0)
2557 ** is obtained, that is not necessarily true. A checkpointer may
2558 ** have started to backfill the appended frames but crashed before
2559 ** it finished. Leaving a corrupt image in the database file.
2560 */
drh73b64e42010-05-30 19:55:15 +00002561 walUnlockShared(pWal, WAL_READ_LOCK(0));
2562 return WAL_RETRY;
2563 }
2564 pWal->readLock = 0;
2565 return SQLITE_OK;
2566 }else if( rc!=SQLITE_BUSY ){
2567 return rc;
dan64d039e2010-04-13 19:27:31 +00002568 }
dan7c246102010-04-12 19:00:29 +00002569 }
danba515902010-04-30 09:32:06 +00002570
drh73b64e42010-05-30 19:55:15 +00002571 /* If we get this far, it means that the reader will want to use
2572 ** the WAL to get at content from recent commits. The job now is
2573 ** to select one of the aReadMark[] entries that is closest to
2574 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2575 */
2576 mxReadMark = 0;
2577 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002578 mxFrame = pWal->hdr.mxFrame;
2579#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002580 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2581 mxFrame = pWal->pSnapshot->mxFrame;
2582 }
danfc1acf32015-12-05 20:51:54 +00002583#endif
drh73b64e42010-05-30 19:55:15 +00002584 for(i=1; i<WAL_NREADER; i++){
drh876c7ea2018-08-30 20:28:18 +00002585 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
danfc1acf32015-12-05 20:51:54 +00002586 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002587 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002588 mxReadMark = thisMark;
2589 mxI = i;
2590 }
2591 }
drh998147e2015-12-10 02:15:03 +00002592 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2593 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002594 ){
2595 for(i=1; i<WAL_NREADER; i++){
2596 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2597 if( rc==SQLITE_OK ){
drh876c7ea2018-08-30 20:28:18 +00002598 mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame);
drh998147e2015-12-10 02:15:03 +00002599 mxI = i;
2600 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2601 break;
2602 }else if( rc!=SQLITE_BUSY ){
2603 return rc;
drh73b64e42010-05-30 19:55:15 +00002604 }
2605 }
drh998147e2015-12-10 02:15:03 +00002606 }
2607 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002608 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
drh7e45e3a2017-11-08 17:32:12 +00002609 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
drh998147e2015-12-10 02:15:03 +00002610 }
drh73b64e42010-05-30 19:55:15 +00002611
drh998147e2015-12-10 02:15:03 +00002612 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2613 if( rc ){
2614 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2615 }
2616 /* Now that the read-lock has been obtained, check that neither the
2617 ** value in the aReadMark[] array or the contents of the wal-index
2618 ** header have changed.
2619 **
2620 ** It is necessary to check that the wal-index header did not change
2621 ** between the time it was read and when the shared-lock was obtained
2622 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2623 ** that the log file may have been wrapped by a writer, or that frames
2624 ** that occur later in the log than pWal->hdr.mxFrame may have been
2625 ** copied into the database by a checkpointer. If either of these things
2626 ** happened, then reading the database with the current value of
2627 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2628 ** instead.
2629 **
2630 ** Before checking that the live wal-index header has not changed
2631 ** since it was read, set Wal.minFrame to the first frame in the wal
2632 ** file that has not yet been checkpointed. This client will not need
2633 ** to read any frames earlier than minFrame from the wal file - they
2634 ** can be safely read directly from the database file.
2635 **
2636 ** Because a ShmBarrier() call is made between taking the copy of
2637 ** nBackfill and checking that the wal-header in shared-memory still
2638 ** matches the one cached in pWal->hdr, it is guaranteed that the
2639 ** checkpointer that set nBackfill was not working with a wal-index
2640 ** header newer than that cached in pWal->hdr. If it were, that could
2641 ** cause a problem. The checkpointer could omit to checkpoint
2642 ** a version of page X that lies before pWal->minFrame (call that version
2643 ** A) on the basis that there is a newer version (version B) of the same
2644 ** page later in the wal file. But if version B happens to like past
2645 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2646 ** that it can read version A from the database file. However, since
2647 ** we can guarantee that the checkpointer that set nBackfill could not
2648 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2649 */
drh876c7ea2018-08-30 20:28:18 +00002650 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
drh998147e2015-12-10 02:15:03 +00002651 walShmBarrier(pWal);
drh876c7ea2018-08-30 20:28:18 +00002652 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
drh998147e2015-12-10 02:15:03 +00002653 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2654 ){
2655 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2656 return WAL_RETRY;
2657 }else{
2658 assert( mxReadMark<=pWal->hdr.mxFrame );
2659 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002660 }
2661 return rc;
2662}
2663
drhbc887112016-11-22 21:11:59 +00002664#ifdef SQLITE_ENABLE_SNAPSHOT
drh73b64e42010-05-30 19:55:15 +00002665/*
dan93f51132016-11-19 18:31:37 +00002666** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2667** variable so that older snapshots can be accessed. To do this, loop
2668** through all wal frames from nBackfillAttempted to (nBackfill+1),
2669** comparing their content to the corresponding page with the database
2670** file, if any. Set nBackfillAttempted to the frame number of the
2671** first frame for which the wal file content matches the db file.
2672**
2673** This is only really safe if the file-system is such that any page
2674** writes made by earlier checkpointers were atomic operations, which
2675** is not always true. It is also possible that nBackfillAttempted
2676** may be left set to a value larger than expected, if a wal frame
2677** contains content that duplicate of an earlier version of the same
2678** page.
2679**
2680** SQLITE_OK is returned if successful, or an SQLite error code if an
2681** error occurs. It is not an error if nBackfillAttempted cannot be
2682** decreased at all.
dan11584982016-11-18 20:49:43 +00002683*/
2684int sqlite3WalSnapshotRecover(Wal *pWal){
dan11584982016-11-18 20:49:43 +00002685 int rc;
2686
dan93f51132016-11-19 18:31:37 +00002687 assert( pWal->readLock>=0 );
2688 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002689 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002690 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2691 int szPage = (int)pWal->szPage;
2692 i64 szDb; /* Size of db file in bytes */
2693
2694 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
dan11584982016-11-18 20:49:43 +00002695 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002696 void *pBuf1 = sqlite3_malloc(szPage);
2697 void *pBuf2 = sqlite3_malloc(szPage);
2698 if( pBuf1==0 || pBuf2==0 ){
2699 rc = SQLITE_NOMEM;
2700 }else{
2701 u32 i = pInfo->nBackfillAttempted;
2702 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
drh4ece2f22018-06-09 16:49:00 +00002703 WalHashLoc sLoc; /* Hash table location */
dan93f51132016-11-19 18:31:37 +00002704 u32 pgno; /* Page number in db file */
2705 i64 iDbOff; /* Offset of db file entry */
2706 i64 iWalOff; /* Offset of wal file entry */
dan11584982016-11-18 20:49:43 +00002707
drh4ece2f22018-06-09 16:49:00 +00002708 rc = walHashGet(pWal, walFramePage(i), &sLoc);
dan93f51132016-11-19 18:31:37 +00002709 if( rc!=SQLITE_OK ) break;
drh4ece2f22018-06-09 16:49:00 +00002710 pgno = sLoc.aPgno[i-sLoc.iZero];
dan93f51132016-11-19 18:31:37 +00002711 iDbOff = (i64)(pgno-1) * szPage;
dan11584982016-11-18 20:49:43 +00002712
dan93f51132016-11-19 18:31:37 +00002713 if( iDbOff+szPage<=szDb ){
2714 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2715 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
dan11584982016-11-18 20:49:43 +00002716
dan93f51132016-11-19 18:31:37 +00002717 if( rc==SQLITE_OK ){
2718 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
dan6a9e7f12016-11-19 16:35:53 +00002719 }
2720
dan93f51132016-11-19 18:31:37 +00002721 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2722 break;
2723 }
dan6a9e7f12016-11-19 16:35:53 +00002724 }
dan93f51132016-11-19 18:31:37 +00002725
2726 pInfo->nBackfillAttempted = i-1;
dan11584982016-11-18 20:49:43 +00002727 }
dan6a9e7f12016-11-19 16:35:53 +00002728 }
dan11584982016-11-18 20:49:43 +00002729
dan93f51132016-11-19 18:31:37 +00002730 sqlite3_free(pBuf1);
2731 sqlite3_free(pBuf2);
2732 }
2733 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002734 }
2735
2736 return rc;
2737}
drhbc887112016-11-22 21:11:59 +00002738#endif /* SQLITE_ENABLE_SNAPSHOT */
dan11584982016-11-18 20:49:43 +00002739
2740/*
drh73b64e42010-05-30 19:55:15 +00002741** Begin a read transaction on the database.
2742**
2743** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2744** it takes a snapshot of the state of the WAL and wal-index for the current
2745** instant in time. The current thread will continue to use this snapshot.
2746** Other threads might append new content to the WAL and wal-index but
2747** that extra content is ignored by the current thread.
2748**
2749** If the database contents have changes since the previous read
2750** transaction, then *pChanged is set to 1 before returning. The
drh8741d0d2018-09-12 00:21:11 +00002751** Pager layer will use this to know that its cache is stale and
drh73b64e42010-05-30 19:55:15 +00002752** needs to be flushed.
2753*/
drh66dfec8b2011-06-01 20:01:49 +00002754int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002755 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002756 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002757
danfc1acf32015-12-05 20:51:54 +00002758#ifdef SQLITE_ENABLE_SNAPSHOT
2759 int bChanged = 0;
2760 WalIndexHdr *pSnapshot = pWal->pSnapshot;
drh998147e2015-12-10 02:15:03 +00002761 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
danfc1acf32015-12-05 20:51:54 +00002762 bChanged = 1;
2763 }
2764#endif
2765
drh73b64e42010-05-30 19:55:15 +00002766 do{
drhaab4c022010-06-02 14:45:51 +00002767 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002768 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002769 testcase( (rc&0xff)==SQLITE_BUSY );
2770 testcase( (rc&0xff)==SQLITE_IOERR );
2771 testcase( rc==SQLITE_PROTOCOL );
2772 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002773
2774#ifdef SQLITE_ENABLE_SNAPSHOT
2775 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002776 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002777 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002778 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2779 ** is populated with the wal-index header corresponding to the head
2780 ** of the wal file. Verify that pSnapshot is still valid before
2781 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002782 **
drh998147e2015-12-10 02:15:03 +00002783 ** (1) The WAL file has been reset since the snapshot was taken.
2784 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002785 **
drh998147e2015-12-10 02:15:03 +00002786 ** (2) A checkpoint as been attempted that wrote frames past
2787 ** pSnapshot->mxFrame into the database file. Note that the
2788 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002789 */
danfc1acf32015-12-05 20:51:54 +00002790 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002791
drh71b62fa2015-12-11 01:22:22 +00002792 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002793 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2794
dan3bf83cc2015-12-10 15:45:15 +00002795 /* It is possible that there is a checkpointer thread running
2796 ** concurrent with this code. If this is the case, it may be that the
2797 ** checkpointer has already determined that it will checkpoint
2798 ** snapshot X, where X is later in the wal file than pSnapshot, but
2799 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2800 ** its intent. To avoid the race condition this leads to, ensure that
2801 ** there is no checkpointer process by taking a shared CKPT lock
dan11584982016-11-18 20:49:43 +00002802 ** before checking pInfo->nBackfillAttempted.
2803 **
2804 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2805 ** this already?
2806 */
dan3bf83cc2015-12-10 15:45:15 +00002807 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2808
dana7aeb392015-12-10 19:11:34 +00002809 if( rc==SQLITE_OK ){
2810 /* Check that the wal file has not been wrapped. Assuming that it has
2811 ** not, also check that no checkpointer has attempted to checkpoint any
2812 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
dan8d4b7a32018-08-31 19:00:16 +00002813 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
dana7aeb392015-12-10 19:11:34 +00002814 ** with *pSnapshot and set *pChanged as appropriate for opening the
2815 ** snapshot. */
2816 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2817 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2818 ){
dan0f308f52015-12-11 14:59:49 +00002819 assert( pWal->readLock>0 );
dana7aeb392015-12-10 19:11:34 +00002820 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2821 *pChanged = bChanged;
2822 }else{
dan8d4b7a32018-08-31 19:00:16 +00002823 rc = SQLITE_ERROR_SNAPSHOT;
dana7aeb392015-12-10 19:11:34 +00002824 }
2825
2826 /* Release the shared CKPT lock obtained above. */
2827 walUnlockShared(pWal, WAL_CKPT_LOCK);
danf5778752018-08-28 11:23:52 +00002828 pWal->minFrame = 1;
danfc1acf32015-12-05 20:51:54 +00002829 }
dan65127cd2015-12-09 20:05:27 +00002830
dan3bf83cc2015-12-10 15:45:15 +00002831
danfc1acf32015-12-05 20:51:54 +00002832 if( rc!=SQLITE_OK ){
2833 sqlite3WalEndReadTransaction(pWal);
2834 }
2835 }
2836 }
2837#endif
dan7c246102010-04-12 19:00:29 +00002838 return rc;
2839}
2840
2841/*
drh73b64e42010-05-30 19:55:15 +00002842** Finish with a read transaction. All this does is release the
2843** read-lock.
dan7c246102010-04-12 19:00:29 +00002844*/
drh73b64e42010-05-30 19:55:15 +00002845void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002846 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002847 if( pWal->readLock>=0 ){
2848 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2849 pWal->readLock = -1;
2850 }
dan7c246102010-04-12 19:00:29 +00002851}
2852
dan5e0ce872010-04-28 17:48:44 +00002853/*
dan99bd1092013-03-22 18:20:14 +00002854** Search the wal file for page pgno. If found, set *piRead to the frame that
2855** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2856** to zero.
drh73b64e42010-05-30 19:55:15 +00002857**
dan99bd1092013-03-22 18:20:14 +00002858** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2859** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002860*/
dan99bd1092013-03-22 18:20:14 +00002861int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002862 Wal *pWal, /* WAL handle */
2863 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002864 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002865){
danbb23aff2010-05-10 14:46:09 +00002866 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002867 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002868 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00002869 int iMinHash;
dan7c246102010-04-12 19:00:29 +00002870
drhaab4c022010-06-02 14:45:51 +00002871 /* This routine is only be called from within a read transaction. */
2872 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002873
danbb23aff2010-05-10 14:46:09 +00002874 /* If the "last page" field of the wal-index header snapshot is 0, then
2875 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002876 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2877 ** then the WAL is ignored by the reader so return early, as if the
2878 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002879 */
drh85bc6df2017-11-10 20:00:50 +00002880 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
dan99bd1092013-03-22 18:20:14 +00002881 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002882 return SQLITE_OK;
2883 }
2884
danbb23aff2010-05-10 14:46:09 +00002885 /* Search the hash table or tables for an entry matching page number
2886 ** pgno. Each iteration of the following for() loop searches one
2887 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2888 **
drha927e942010-06-24 02:46:48 +00002889 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002890 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002891 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002892 ** slot (aHash[iKey]) may have been added before or after the
2893 ** current read transaction was opened. Values added after the
2894 ** read transaction was opened may have been written incorrectly -
2895 ** i.e. these slots may contain garbage data. However, we assume
2896 ** that any slots written before the current read transaction was
2897 ** opened remain unmodified.
2898 **
2899 ** For the reasons above, the if(...) condition featured in the inner
2900 ** loop of the following block is more stringent that would be required
2901 ** if we had exclusive access to the hash-table:
2902 **
2903 ** (aPgno[iFrame]==pgno):
2904 ** This condition filters out normal hash-table collisions.
2905 **
2906 ** (iFrame<=iLast):
2907 ** This condition filters out entries that were added to the hash
2908 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002909 */
danb8c7cfb2015-08-13 20:23:46 +00002910 iMinHash = walFramePage(pWal->minFrame);
drh8d3e15e2018-02-21 01:05:37 +00002911 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
drh4ece2f22018-06-09 16:49:00 +00002912 WalHashLoc sLoc; /* Hash table location */
danbb23aff2010-05-10 14:46:09 +00002913 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002914 int nCollide; /* Number of hash collisions remaining */
2915 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002916
drh4ece2f22018-06-09 16:49:00 +00002917 rc = walHashGet(pWal, iHash, &sLoc);
dan4280eb32010-06-12 12:02:35 +00002918 if( rc!=SQLITE_OK ){
2919 return rc;
2920 }
drh519426a2010-07-09 03:19:07 +00002921 nCollide = HASHTABLE_NSLOT;
drh4ece2f22018-06-09 16:49:00 +00002922 for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
drh680f0fe2019-04-17 21:12:05 +00002923 u32 iH = sLoc.aHash[iKey];
2924 u32 iFrame = iH + sLoc.iZero;
2925 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002926 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002927 iRead = iFrame;
2928 }
drh519426a2010-07-09 03:19:07 +00002929 if( (nCollide--)==0 ){
2930 return SQLITE_CORRUPT_BKPT;
2931 }
dan7c246102010-04-12 19:00:29 +00002932 }
drh8d3e15e2018-02-21 01:05:37 +00002933 if( iRead ) break;
dan7c246102010-04-12 19:00:29 +00002934 }
dan7c246102010-04-12 19:00:29 +00002935
danbb23aff2010-05-10 14:46:09 +00002936#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2937 /* If expensive assert() statements are available, do a linear search
2938 ** of the wal-index file content. Make sure the results agree with the
2939 ** result obtained using the hash indexes above. */
2940 {
2941 u32 iRead2 = 0;
2942 u32 iTest;
drh85bc6df2017-11-10 20:00:50 +00002943 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
dan6c9d8f62017-11-07 21:25:15 +00002944 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002945 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002946 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002947 break;
2948 }
dan7c246102010-04-12 19:00:29 +00002949 }
danbb23aff2010-05-10 14:46:09 +00002950 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002951 }
danbb23aff2010-05-10 14:46:09 +00002952#endif
dancd11fb22010-04-26 10:40:52 +00002953
dan99bd1092013-03-22 18:20:14 +00002954 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002955 return SQLITE_OK;
2956}
2957
dan99bd1092013-03-22 18:20:14 +00002958/*
2959** Read the contents of frame iRead from the wal file into buffer pOut
2960** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2961** error code otherwise.
2962*/
2963int sqlite3WalReadFrame(
2964 Wal *pWal, /* WAL handle */
2965 u32 iRead, /* Frame to read */
2966 int nOut, /* Size of buffer pOut in bytes */
2967 u8 *pOut /* Buffer to write page data to */
2968){
2969 int sz;
2970 i64 iOffset;
2971 sz = pWal->hdr.szPage;
2972 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2973 testcase( sz<=32768 );
2974 testcase( sz>=65536 );
2975 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2976 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2977 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2978}
dan7c246102010-04-12 19:00:29 +00002979
2980/*
dan763afe62010-08-03 06:42:39 +00002981** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002982*/
dan763afe62010-08-03 06:42:39 +00002983Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002984 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002985 return pWal->hdr.nPage;
2986 }
2987 return 0;
dan7c246102010-04-12 19:00:29 +00002988}
2989
dan30c86292010-04-30 16:24:46 +00002990
drh73b64e42010-05-30 19:55:15 +00002991/*
2992** This function starts a write transaction on the WAL.
2993**
2994** A read transaction must have already been started by a prior call
2995** to sqlite3WalBeginReadTransaction().
2996**
2997** If another thread or process has written into the database since
2998** the read transaction was started, then it is not possible for this
2999** thread to write as doing so would cause a fork. So this routine
3000** returns SQLITE_BUSY in that case and no write transaction is started.
3001**
3002** There can only be a single writer active at a time.
3003*/
3004int sqlite3WalBeginWriteTransaction(Wal *pWal){
3005 int rc;
drh73b64e42010-05-30 19:55:15 +00003006
3007 /* Cannot start a write transaction without first holding a read
3008 ** transaction. */
3009 assert( pWal->readLock>=0 );
danc9a90222016-01-09 18:57:35 +00003010 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
drh73b64e42010-05-30 19:55:15 +00003011
dan1e5de5a2010-07-15 18:20:53 +00003012 if( pWal->readOnly ){
3013 return SQLITE_READONLY;
3014 }
3015
drh73b64e42010-05-30 19:55:15 +00003016 /* Only one writer allowed at a time. Get the write lock. Return
3017 ** SQLITE_BUSY if unable.
3018 */
drhab372772015-12-02 16:10:16 +00003019 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003020 if( rc ){
3021 return rc;
3022 }
drhc99597c2010-05-31 01:41:15 +00003023 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00003024
3025 /* If another connection has written to the database file since the
3026 ** time the read transaction on this connection was started, then
3027 ** the write is disallowed.
3028 */
dan4280eb32010-06-12 12:02:35 +00003029 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00003030 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00003031 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00003032 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00003033 }
3034
drh7ed91f22010-04-29 22:34:07 +00003035 return rc;
dan7c246102010-04-12 19:00:29 +00003036}
3037
dan74d6cd82010-04-24 18:44:05 +00003038/*
drh73b64e42010-05-30 19:55:15 +00003039** End a write transaction. The commit has already been done. This
3040** routine merely releases the lock.
3041*/
3042int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00003043 if( pWal->writeLock ){
3044 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3045 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00003046 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00003047 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00003048 }
drh73b64e42010-05-30 19:55:15 +00003049 return SQLITE_OK;
3050}
3051
3052/*
dan74d6cd82010-04-24 18:44:05 +00003053** If any data has been written (but not committed) to the log file, this
3054** function moves the write-pointer back to the start of the transaction.
3055**
3056** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00003057** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00003058** other than SQLITE_OK, it is not invoked again and the error code is
3059** returned to the caller.
3060**
3061** Otherwise, if the callback function does not return an error, this
3062** function returns SQLITE_OK.
3063*/
drh7ed91f22010-04-29 22:34:07 +00003064int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00003065 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00003066 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00003067 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00003068 Pgno iFrame;
3069
dan5d656852010-06-14 07:53:26 +00003070 /* Restore the clients cache of the wal-index header to the state it
3071 ** was in before the client began writing to the database.
3072 */
dan067f3162010-06-14 10:30:12 +00003073 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00003074
3075 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00003076 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00003077 iFrame++
3078 ){
3079 /* This call cannot fail. Unless the page for which the page number
3080 ** is passed as the second argument is (a) in the cache and
3081 ** (b) has an outstanding reference, then xUndo is either a no-op
3082 ** (if (a) is false) or simply expels the page from the cache (if (b)
3083 ** is false).
3084 **
3085 ** If the upper layer is doing a rollback, it is guaranteed that there
3086 ** are no outstanding references to any page other than page 1. And
3087 ** page 1 is never written to the log until the transaction is
3088 ** committed. As a result, the call to xUndo may not fail.
3089 */
dan5d656852010-06-14 07:53:26 +00003090 assert( walFramePgno(pWal, iFrame)!=1 );
3091 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00003092 }
dan7eb05752012-10-15 11:28:24 +00003093 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00003094 }
3095 return rc;
3096}
3097
dan71d89912010-05-24 13:57:42 +00003098/*
3099** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3100** values. This function populates the array with values required to
3101** "rollback" the write position of the WAL handle back to the current
3102** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00003103*/
dan71d89912010-05-24 13:57:42 +00003104void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00003105 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00003106 aWalData[0] = pWal->hdr.mxFrame;
3107 aWalData[1] = pWal->hdr.aFrameCksum[0];
3108 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00003109 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00003110}
3111
dan71d89912010-05-24 13:57:42 +00003112/*
3113** Move the write position of the WAL back to the point identified by
3114** the values in the aWalData[] array. aWalData must point to an array
3115** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3116** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00003117*/
dan71d89912010-05-24 13:57:42 +00003118int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00003119 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00003120
dan6e6bd562010-06-02 18:59:03 +00003121 assert( pWal->writeLock );
3122 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3123
3124 if( aWalData[3]!=pWal->nCkpt ){
3125 /* This savepoint was opened immediately after the write-transaction
3126 ** was started. Right after that, the writer decided to wrap around
3127 ** to the start of the log. Update the savepoint values to match.
3128 */
3129 aWalData[0] = 0;
3130 aWalData[3] = pWal->nCkpt;
3131 }
3132
dan71d89912010-05-24 13:57:42 +00003133 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00003134 pWal->hdr.mxFrame = aWalData[0];
3135 pWal->hdr.aFrameCksum[0] = aWalData[1];
3136 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00003137 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00003138 }
dan6e6bd562010-06-02 18:59:03 +00003139
dan4cd78b42010-04-26 16:57:10 +00003140 return rc;
3141}
3142
dan9971e712010-06-01 15:44:57 +00003143/*
3144** This function is called just before writing a set of frames to the log
3145** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3146** to the current log file, it is possible to overwrite the start of the
3147** existing log file with the new frames (i.e. "reset" the log). If so,
3148** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3149** unchanged.
3150**
3151** SQLITE_OK is returned if no error is encountered (regardless of whether
3152** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00003153** if an error occurs.
dan9971e712010-06-01 15:44:57 +00003154*/
3155static int walRestartLog(Wal *pWal){
3156 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00003157 int cnt;
3158
dan13a3cb82010-06-11 19:04:21 +00003159 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00003160 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3161 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3162 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00003163 u32 salt1;
3164 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00003165 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00003166 if( rc==SQLITE_OK ){
3167 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3168 ** readers are currently using the WAL), then the transactions
3169 ** frames will overwrite the start of the existing log. Update the
3170 ** wal-index header to reflect this.
3171 **
3172 ** In theory it would be Ok to update the cache of the header only
3173 ** at this point. But updating the actual wal-index header is also
3174 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00003175 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00003176 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00003177 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00003178 }else if( rc!=SQLITE_BUSY ){
3179 return rc;
dan9971e712010-06-01 15:44:57 +00003180 }
3181 }
3182 walUnlockShared(pWal, WAL_READ_LOCK(0));
3183 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00003184 cnt = 0;
dan9971e712010-06-01 15:44:57 +00003185 do{
3186 int notUsed;
drhaab4c022010-06-02 14:45:51 +00003187 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00003188 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00003189 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00003190 testcase( (rc&0xff)==SQLITE_IOERR );
3191 testcase( rc==SQLITE_PROTOCOL );
3192 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00003193 }
3194 return rc;
3195}
3196
drh88f975a2011-12-16 19:34:36 +00003197/*
drhd992b152011-12-20 20:13:25 +00003198** Information about the current state of the WAL file and where
3199** the next fsync should occur - passed from sqlite3WalFrames() into
3200** walWriteToLog().
3201*/
3202typedef struct WalWriter {
3203 Wal *pWal; /* The complete WAL information */
3204 sqlite3_file *pFd; /* The WAL file to which we write */
3205 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3206 int syncFlags; /* Flags for the fsync */
3207 int szPage; /* Size of one page */
3208} WalWriter;
3209
3210/*
drh88f975a2011-12-16 19:34:36 +00003211** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00003212** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00003213**
drhd992b152011-12-20 20:13:25 +00003214** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3215** first write the part before iSyncPoint, then sync, then write the
3216** rest.
drh88f975a2011-12-16 19:34:36 +00003217*/
3218static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00003219 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00003220 void *pContent, /* Content to be written */
3221 int iAmt, /* Number of bytes to write */
3222 sqlite3_int64 iOffset /* Start writing at this offset */
3223){
3224 int rc;
drhd992b152011-12-20 20:13:25 +00003225 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3226 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3227 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00003228 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00003229 iOffset += iFirstAmt;
3230 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00003231 pContent = (void*)(iFirstAmt + (char*)pContent);
drhdaaae7b2017-08-25 01:14:43 +00003232 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3233 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
drhcc8d10a2011-12-23 02:07:10 +00003234 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00003235 }
drhd992b152011-12-20 20:13:25 +00003236 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3237 return rc;
3238}
3239
3240/*
3241** Write out a single frame of the WAL
3242*/
3243static int walWriteOneFrame(
3244 WalWriter *p, /* Where to write the frame */
3245 PgHdr *pPage, /* The page of the frame to be written */
3246 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3247 sqlite3_int64 iOffset /* Byte offset at which to write */
3248){
3249 int rc; /* Result code from subfunctions */
3250 void *pData; /* Data actually written */
3251 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
3252#if defined(SQLITE_HAS_CODEC)
mistachkinfad30392016-02-13 23:43:46 +00003253 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
drhd992b152011-12-20 20:13:25 +00003254#else
3255 pData = pPage->pData;
3256#endif
3257 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3258 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3259 if( rc ) return rc;
3260 /* Write the page data */
3261 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00003262 return rc;
3263}
3264
dand6f7c972016-01-09 16:39:29 +00003265/*
3266** This function is called as part of committing a transaction within which
3267** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00003268** all frames written to the wal file by the current transaction starting
3269** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00003270**
3271** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3272*/
danc9a90222016-01-09 18:57:35 +00003273static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00003274 const int szPage = pWal->szPage;/* Database page size */
3275 int rc = SQLITE_OK; /* Return code */
3276 u8 *aBuf; /* Buffer to load data from wal file into */
3277 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3278 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00003279 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00003280
3281 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00003282 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00003283
danc9a90222016-01-09 18:57:35 +00003284 /* Find the checksum values to use as input for the recalculating the
3285 ** first checksum. If the first frame is frame 1 (implying that the current
3286 ** transaction restarted the wal file), these values must be read from the
3287 ** wal-file header. Otherwise, read them from the frame header of the
3288 ** previous frame. */
3289 assert( pWal->iReCksum>0 );
3290 if( pWal->iReCksum==1 ){
3291 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00003292 }else{
danc9a90222016-01-09 18:57:35 +00003293 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00003294 }
danc9a90222016-01-09 18:57:35 +00003295 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3296 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3297 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00003298
danc9a90222016-01-09 18:57:35 +00003299 iRead = pWal->iReCksum;
3300 pWal->iReCksum = 0;
3301 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00003302 i64 iOff = walFrameOffset(iRead, szPage);
3303 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3304 if( rc==SQLITE_OK ){
3305 u32 iPgno, nDbSize;
3306 iPgno = sqlite3Get4byte(aBuf);
3307 nDbSize = sqlite3Get4byte(&aBuf[4]);
3308
3309 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3310 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3311 }
3312 }
3313
3314 sqlite3_free(aBuf);
3315 return rc;
3316}
3317
dan7c246102010-04-12 19:00:29 +00003318/*
dan4cd78b42010-04-26 16:57:10 +00003319** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00003320** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00003321*/
drhc438efd2010-04-26 00:19:45 +00003322int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00003323 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00003324 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00003325 PgHdr *pList, /* List of dirty pages to write */
3326 Pgno nTruncate, /* Database size after this commit */
3327 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00003328 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00003329){
dan7c246102010-04-12 19:00:29 +00003330 int rc; /* Used to catch return codes */
3331 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00003332 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00003333 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00003334 int nExtra = 0; /* Number of extra copies of last page */
3335 int szFrame; /* The size of a single frame */
3336 i64 iOffset; /* Next byte to write in WAL file */
3337 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00003338 u32 iFirst = 0; /* First frame that may be overwritten */
3339 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00003340
dan7c246102010-04-12 19:00:29 +00003341 assert( pList );
drh73b64e42010-05-30 19:55:15 +00003342 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00003343
drh41209942011-12-20 13:13:09 +00003344 /* If this frame set completes a transaction, then nTruncate>0. If
3345 ** nTruncate==0 then this frame set does not complete the transaction. */
3346 assert( (isCommit!=0)==(nTruncate!=0) );
3347
drhc74c3332010-05-31 12:15:19 +00003348#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3349 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3350 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3351 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3352 }
3353#endif
3354
dand6f7c972016-01-09 16:39:29 +00003355 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003356 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003357 iFirst = pLive->mxFrame+1;
3358 }
3359
dan9971e712010-06-01 15:44:57 +00003360 /* See if it is possible to write these frames into the start of the
3361 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3362 */
3363 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003364 return rc;
3365 }
dan9971e712010-06-01 15:44:57 +00003366
drha2a42012010-05-18 18:01:08 +00003367 /* If this is the first frame written into the log, write the WAL
3368 ** header to the start of the WAL file. See comments at the top of
3369 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003370 */
drh027a1282010-05-19 01:53:53 +00003371 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003372 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003373 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3374 u32 aCksum[2]; /* Checksum for wal-header */
3375
danb8fd6c22010-05-24 10:39:36 +00003376 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003377 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003378 sqlite3Put4byte(&aWalHdr[8], szPage);
3379 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00003380 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003381 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003382 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3383 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3384 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3385
drhb2eced52010-08-12 02:41:12 +00003386 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003387 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3388 pWal->hdr.aFrameCksum[0] = aCksum[0];
3389 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003390 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003391
drh23ea97b2010-05-20 16:45:58 +00003392 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003393 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003394 if( rc!=SQLITE_OK ){
3395 return rc;
3396 }
drhd992b152011-12-20 20:13:25 +00003397
3398 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3399 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3400 ** an out-of-order write following a WAL restart could result in
3401 ** database corruption. See the ticket:
3402 **
drh9c6e07d2017-08-24 20:54:42 +00003403 ** https://sqlite.org/src/info/ff5be73dee
drhd992b152011-12-20 20:13:25 +00003404 */
drhdaaae7b2017-08-25 01:14:43 +00003405 if( pWal->syncHeader ){
3406 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
drhd992b152011-12-20 20:13:25 +00003407 if( rc ) return rc;
3408 }
dan97a31352010-04-16 13:59:31 +00003409 }
shanehbd2aaf92010-09-01 02:38:21 +00003410 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003411
drhd992b152011-12-20 20:13:25 +00003412 /* Setup information needed to write frames into the WAL */
3413 w.pWal = pWal;
3414 w.pFd = pWal->pWalFd;
3415 w.iSyncPoint = 0;
3416 w.syncFlags = sync_flags;
3417 w.szPage = szPage;
3418 iOffset = walFrameOffset(iFrame+1, szPage);
3419 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00003420
drhd992b152011-12-20 20:13:25 +00003421 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003422 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003423 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003424
3425 /* Check if this page has already been written into the wal file by
3426 ** the current transaction. If so, overwrite the existing frame and
3427 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3428 ** checksums must be recomputed when the transaction is committed. */
3429 if( iFirst && (p->pDirty || isCommit==0) ){
3430 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003431 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3432 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003433 if( iWrite>=iFirst ){
3434 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003435 void *pData;
danc9a90222016-01-09 18:57:35 +00003436 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3437 pWal->iReCksum = iWrite;
3438 }
drh8e0cea12016-02-15 15:06:47 +00003439#if defined(SQLITE_HAS_CODEC)
3440 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3441#else
3442 pData = p->pData;
3443#endif
3444 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003445 if( rc ) return rc;
3446 p->flags &= ~PGHDR_WAL_APPEND;
3447 continue;
3448 }
3449 }
3450
drhd992b152011-12-20 20:13:25 +00003451 iFrame++;
3452 assert( iOffset==walFrameOffset(iFrame, szPage) );
3453 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3454 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3455 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003456 pLast = p;
drhd992b152011-12-20 20:13:25 +00003457 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003458 p->flags |= PGHDR_WAL_APPEND;
3459 }
3460
3461 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003462 if( isCommit && pWal->iReCksum ){
3463 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003464 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003465 }
3466
drhd992b152011-12-20 20:13:25 +00003467 /* If this is the end of a transaction, then we might need to pad
3468 ** the transaction and/or sync the WAL file.
3469 **
3470 ** Padding and syncing only occur if this set of frames complete a
3471 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003472 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003473 **
drhcb15f352011-12-23 01:04:17 +00003474 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3475 ** needed and only the sync is done. If padding is needed, then the
3476 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003477 ** boundary is crossed. Only the part of the WAL prior to the last
3478 ** sector boundary is synced; the part of the last frame that extends
3479 ** past the sector boundary is written after the sync.
3480 */
drhdaaae7b2017-08-25 01:14:43 +00003481 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
danfe912512016-05-24 16:20:51 +00003482 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003483 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003484 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003485 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003486 bSync = (w.iSyncPoint==iOffset);
3487 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003488 while( iOffset<w.iSyncPoint ){
3489 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3490 if( rc ) return rc;
3491 iOffset += szFrame;
3492 nExtra++;
drh55f66b32019-07-16 19:44:32 +00003493 assert( pLast!=0 );
dan7c246102010-04-12 19:00:29 +00003494 }
danfe912512016-05-24 16:20:51 +00003495 }
3496 if( bSync ){
3497 assert( rc==SQLITE_OK );
drhdaaae7b2017-08-25 01:14:43 +00003498 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
dan7c246102010-04-12 19:00:29 +00003499 }
dan7c246102010-04-12 19:00:29 +00003500 }
3501
drhd992b152011-12-20 20:13:25 +00003502 /* If this frame set completes the first transaction in the WAL and
3503 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3504 ** journal size limit, if possible.
3505 */
danf60b7f32011-12-16 13:24:27 +00003506 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3507 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003508 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3509 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003510 }
3511 walLimitSize(pWal, sz);
3512 pWal->truncateOnCommit = 0;
3513 }
3514
drhe730fec2010-05-18 12:56:50 +00003515 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003516 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003517 ** guarantees that there are no other writers, and no data that may
3518 ** be in use by existing readers is being overwritten.
3519 */
drh027a1282010-05-19 01:53:53 +00003520 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003521 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003522 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003523 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003524 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003525 }
drh55f66b32019-07-16 19:44:32 +00003526 assert( pLast!=0 || nExtra==0 );
drh20e226d2012-01-01 13:58:53 +00003527 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003528 iFrame++;
drhd992b152011-12-20 20:13:25 +00003529 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003530 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003531 }
3532
danc7991bd2010-05-05 19:04:59 +00003533 if( rc==SQLITE_OK ){
3534 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003535 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003536 testcase( szPage<=32768 );
3537 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003538 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003539 if( isCommit ){
3540 pWal->hdr.iChange++;
3541 pWal->hdr.nPage = nTruncate;
3542 }
danc7991bd2010-05-05 19:04:59 +00003543 /* If this is a commit, update the wal-index header too. */
3544 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003545 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003546 pWal->iCallback = iFrame;
3547 }
dan7c246102010-04-12 19:00:29 +00003548 }
danc7991bd2010-05-05 19:04:59 +00003549
drhc74c3332010-05-31 12:15:19 +00003550 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003551 return rc;
dan7c246102010-04-12 19:00:29 +00003552}
3553
3554/*
drh73b64e42010-05-30 19:55:15 +00003555** This routine is called to implement sqlite3_wal_checkpoint() and
3556** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003557**
drh73b64e42010-05-30 19:55:15 +00003558** Obtain a CHECKPOINT lock and then backfill as much information as
3559** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003560**
3561** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3562** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003563*/
drhc438efd2010-04-26 00:19:45 +00003564int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003565 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00003566 sqlite3 *db, /* Check this handle's interrupt flag */
drhdd90d7e2014-12-03 19:25:41 +00003567 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003568 int (*xBusy)(void*), /* Function to call when busy */
3569 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003570 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003571 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003572 u8 *zBuf, /* Temporary buffer to use */
3573 int *pnLog, /* OUT: Number of frames in WAL */
3574 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003575){
danb9bf16b2010-04-14 11:23:30 +00003576 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003577 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003578 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003579 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003580
dand54ff602010-05-31 11:16:30 +00003581 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003582 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003583
drhdd90d7e2014-12-03 19:25:41 +00003584 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3585 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3586 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3587
drh66dfec8b2011-06-01 20:01:49 +00003588 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003589 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003590
3591 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3592 ** "checkpoint" lock on the database file. */
drhab372772015-12-02 16:10:16 +00003593 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003594 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00003595 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3596 ** checkpoint operation at the same time, the lock cannot be obtained and
3597 ** SQLITE_BUSY is returned.
3598 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3599 ** it will not be invoked in this case.
3600 */
3601 testcase( rc==SQLITE_BUSY );
3602 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00003603 return rc;
3604 }
dand54ff602010-05-31 11:16:30 +00003605 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003606
drhdd90d7e2014-12-03 19:25:41 +00003607 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3608 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3609 ** file.
danf2b8dd52010-11-18 19:28:01 +00003610 **
drhdd90d7e2014-12-03 19:25:41 +00003611 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3612 ** immediately, and a busy-handler is configured, it is invoked and the
3613 ** writer lock retried until either the busy-handler returns 0 or the
3614 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003615 */
dancdc1f042010-11-18 12:11:05 +00003616 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003617 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003618 if( rc==SQLITE_OK ){
3619 pWal->writeLock = 1;
3620 }else if( rc==SQLITE_BUSY ){
3621 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003622 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003623 rc = SQLITE_OK;
3624 }
danb9bf16b2010-04-14 11:23:30 +00003625 }
dana58f26f2010-11-16 18:56:51 +00003626
danf2b8dd52010-11-18 19:28:01 +00003627 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003628 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003629 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003630 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3631 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3632 }
dana58f26f2010-11-16 18:56:51 +00003633 }
danf2b8dd52010-11-18 19:28:01 +00003634
3635 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003636 if( rc==SQLITE_OK ){
dand6f7c972016-01-09 16:39:29 +00003637
dan9c5e3682011-02-07 15:12:12 +00003638 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003639 rc = SQLITE_CORRUPT_BKPT;
3640 }else{
dan7fb89902016-08-12 16:21:15 +00003641 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003642 }
3643
3644 /* If no error occurred, set the output variables. */
3645 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003646 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003647 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003648 }
danb9bf16b2010-04-14 11:23:30 +00003649 }
danf2b8dd52010-11-18 19:28:01 +00003650
dan31c03902010-04-29 14:51:33 +00003651 if( isChanged ){
3652 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003653 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003654 ** out of date. So zero the cached wal-index header to ensure that
3655 ** next time the pager opens a snapshot on this database it knows that
3656 ** the cache needs to be reset.
3657 */
3658 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3659 }
danb9bf16b2010-04-14 11:23:30 +00003660
3661 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003662 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003663 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003664 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003665 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003666 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003667}
3668
drh7ed91f22010-04-29 22:34:07 +00003669/* Return the value to pass to a sqlite3_wal_hook callback, the
3670** number of frames in the WAL at the point of the last commit since
3671** sqlite3WalCallback() was called. If no commits have occurred since
3672** the last call, then return 0.
3673*/
3674int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003675 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003676 if( pWal ){
3677 ret = pWal->iCallback;
3678 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003679 }
3680 return (int)ret;
3681}
dan55437592010-05-11 12:19:26 +00003682
3683/*
drh61e4ace2010-05-31 20:28:37 +00003684** This function is called to change the WAL subsystem into or out
3685** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003686**
drh61e4ace2010-05-31 20:28:37 +00003687** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3688** into locking_mode=NORMAL. This means that we must acquire a lock
3689** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3690** or if the acquisition of the lock fails, then return 0. If the
3691** transition out of exclusive-mode is successful, return 1. This
3692** operation must occur while the pager is still holding the exclusive
3693** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003694**
drh61e4ace2010-05-31 20:28:37 +00003695** If op is one, then change from locking_mode=NORMAL into
3696** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3697** be released. Return 1 if the transition is made and 0 if the
3698** WAL is already in exclusive-locking mode - meaning that this
3699** routine is a no-op. The pager must already hold the exclusive lock
3700** on the main database file before invoking this operation.
3701**
3702** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003703** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003704** should acquire the database exclusive lock prior to invoking
3705** the op==1 case.
dan55437592010-05-11 12:19:26 +00003706*/
3707int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003708 int rc;
drhaab4c022010-06-02 14:45:51 +00003709 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003710 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003711
3712 /* pWal->readLock is usually set, but might be -1 if there was a
3713 ** prior error while attempting to acquire are read-lock. This cannot
3714 ** happen if the connection is actually in exclusive mode (as no xShmLock
3715 ** locks are taken in this case). Nor should the pager attempt to
3716 ** upgrade to exclusive-mode following such an error.
3717 */
drhaab4c022010-06-02 14:45:51 +00003718 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003719 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3720
drh61e4ace2010-05-31 20:28:37 +00003721 if( op==0 ){
drhc05a0632017-11-11 20:11:01 +00003722 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3723 pWal->exclusiveMode = WAL_NORMAL_MODE;
dan3cac5dc2010-06-04 18:37:59 +00003724 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drhc05a0632017-11-11 20:11:01 +00003725 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003726 }
drhc05a0632017-11-11 20:11:01 +00003727 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
drh61e4ace2010-05-31 20:28:37 +00003728 }else{
drhaab4c022010-06-02 14:45:51 +00003729 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003730 rc = 0;
3731 }
3732 }else if( op>0 ){
drhc05a0632017-11-11 20:11:01 +00003733 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
drhaab4c022010-06-02 14:45:51 +00003734 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003735 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
drhc05a0632017-11-11 20:11:01 +00003736 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003737 rc = 1;
3738 }else{
drhc05a0632017-11-11 20:11:01 +00003739 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
dan55437592010-05-11 12:19:26 +00003740 }
drh61e4ace2010-05-31 20:28:37 +00003741 return rc;
dan55437592010-05-11 12:19:26 +00003742}
3743
dan8c408002010-11-01 17:38:24 +00003744/*
3745** Return true if the argument is non-NULL and the WAL module is using
3746** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3747** WAL module is using shared-memory, return false.
3748*/
3749int sqlite3WalHeapMemory(Wal *pWal){
3750 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3751}
3752
danfc1acf32015-12-05 20:51:54 +00003753#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003754/* Create a snapshot object. The content of a snapshot is opaque to
3755** every other subsystem, so the WAL module can put whatever it needs
3756** in the object.
3757*/
danfc1acf32015-12-05 20:51:54 +00003758int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3759 int rc = SQLITE_OK;
3760 WalIndexHdr *pRet;
drhba6eb872016-11-15 17:37:56 +00003761 static const u32 aZero[4] = { 0, 0, 0, 0 };
danfc1acf32015-12-05 20:51:54 +00003762
3763 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3764
drhba6eb872016-11-15 17:37:56 +00003765 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3766 *ppSnapshot = 0;
3767 return SQLITE_ERROR;
3768 }
danfc1acf32015-12-05 20:51:54 +00003769 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3770 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00003771 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00003772 }else{
3773 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3774 *ppSnapshot = (sqlite3_snapshot*)pRet;
3775 }
3776
3777 return rc;
3778}
3779
drhe230a892015-12-10 22:48:22 +00003780/* Try to open on pSnapshot when the next read-transaction starts
3781*/
danfc1acf32015-12-05 20:51:54 +00003782void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3783 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3784}
danad2d5ba2016-04-11 19:59:52 +00003785
3786/*
3787** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3788** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3789*/
3790int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3791 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3792 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3793
3794 /* aSalt[0] is a copy of the value stored in the wal file header. It
3795 ** is incremented each time the wal file is restarted. */
3796 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3797 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3798 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3799 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3800 return 0;
3801}
danfa3d4c12018-08-06 17:12:36 +00003802
3803/*
3804** The caller currently has a read transaction open on the database.
3805** This function takes a SHARED lock on the CHECKPOINTER slot and then
3806** checks if the snapshot passed as the second argument is still
3807** available. If so, SQLITE_OK is returned.
3808**
3809** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3810** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3811** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3812** lock is released before returning.
3813*/
3814int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3815 int rc;
3816 rc = walLockShared(pWal, WAL_CKPT_LOCK);
3817 if( rc==SQLITE_OK ){
3818 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3819 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3820 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3821 ){
dan8d4b7a32018-08-31 19:00:16 +00003822 rc = SQLITE_ERROR_SNAPSHOT;
danfa3d4c12018-08-06 17:12:36 +00003823 walUnlockShared(pWal, WAL_CKPT_LOCK);
3824 }
3825 }
3826 return rc;
3827}
3828
3829/*
3830** Release a lock obtained by an earlier successful call to
3831** sqlite3WalSnapshotCheck().
3832*/
3833void sqlite3WalSnapshotUnlock(Wal *pWal){
3834 assert( pWal );
3835 walUnlockShared(pWal, WAL_CKPT_LOCK);
3836}
3837
3838
danfc1acf32015-12-05 20:51:54 +00003839#endif /* SQLITE_ENABLE_SNAPSHOT */
3840
drh70708602012-02-24 14:33:28 +00003841#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003842/*
3843** If the argument is not NULL, it points to a Wal object that holds a
3844** read-lock. This function returns the database page-size if it is known,
3845** or zero if it is not (or if pWal is NULL).
3846*/
3847int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003848 assert( pWal==0 || pWal->readLock>=0 );
3849 return (pWal ? pWal->szPage : 0);
3850}
drh70708602012-02-24 14:33:28 +00003851#endif
danb3bdc722012-02-23 15:35:49 +00003852
drh21d61852016-01-08 02:27:01 +00003853/* Return the sqlite3_file object for the WAL file
3854*/
3855sqlite3_file *sqlite3WalFile(Wal *pWal){
3856 return pWal->pWalFd;
3857}
3858
dan5cf53532010-05-01 16:40:20 +00003859#endif /* #ifndef SQLITE_OMIT_WAL */