blob: 244a4ad063ab7efa3011c456818c08818f76f505 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh9b1c62d2011-03-30 21:04:43 +000090** This macro evaluates to true if either the update hook or the preupdate
91** hook are enabled for database connect DB.
92*/
93#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
drh74c33022016-03-30 12:56:55 +000094# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000095#else
drh74c33022016-03-30 12:56:55 +000096# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000097#endif
98
99/*
drh0fd61352014-02-07 02:29:45 +0000100** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +0000101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drh678ccce2008-03-31 18:19:54 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh5655c542014-02-19 19:14:34 +0000121** Invoke the VDBE coverage callback, if that callback is defined. This
122** feature is used for test suite validation only and does not appear an
123** production builds.
124**
125** M is an integer, 2 or 3, that indices how many different ways the
126** branch can go. It is usually 2. "I" is the direction the branch
127** goes. 0 means falls through. 1 means branch is taken. 2 means the
128** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000129**
130** iSrcLine is the source code line (from the __LINE__ macro) that
131** generated the VDBE instruction. This instrumentation assumes that all
132** source code is in a single file (the amalgamation). Special values 1
133** and 2 for the iSrcLine parameter mean that this particular branch is
134** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000135*/
136#if !defined(SQLITE_VDBE_COVERAGE)
137# define VdbeBranchTaken(I,M)
138#else
drh5655c542014-02-19 19:14:34 +0000139# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
150 }
151 }
drh688852a2014-02-17 22:40:43 +0000152#endif
153
154/*
drh9cbf3422008-01-17 16:22:13 +0000155** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000156** already. Return non-zero if a malloc() fails.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000160 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000161
162/*
danielk1977bd7e4602004-05-24 07:34:48 +0000163** An ephemeral string value (signified by the MEM_Ephem flag) contains
164** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000165** is responsible for deallocating that string. Because the register
166** does not control the string, it might be deleted without the register
167** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000168**
169** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000170** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000171** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000172*/
drhb21c8cd2007-08-21 19:33:56 +0000173#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000174 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000176
dan689ab892011-08-12 15:02:00 +0000177/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drhc960dcb2015-11-20 19:22:01 +0000178#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
danielk19778a6b5412004-05-24 07:04:25 +0000179
180/*
drhdfe88ec2008-11-03 20:55:06 +0000181** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000182** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000183*/
drhdfe88ec2008-11-03 20:55:06 +0000184static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000187 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000188 int iDb, /* Database the cursor belongs to, or -1 */
drhc960dcb2015-11-20 19:22:01 +0000189 u8 eCurType /* Type of the new cursor */
danielk1977cd3e8f72008-03-25 09:47:35 +0000190){
191 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000192 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000193 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000194 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000195 **
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
200 **
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
204 **
drh3cdce922016-03-21 00:30:40 +0000205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
drh9f6168b2016-03-19 23:32:58 +0000206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 */
drh9f6168b2016-03-19 23:32:58 +0000209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
danielk1977cd3e8f72008-03-25 09:47:35 +0000210
danielk19775f096132008-03-28 15:44:09 +0000211 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000212 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000213 nByte =
drh5cc10232013-11-21 01:04:02 +0000214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
drhc960dcb2015-11-20 19:22:01 +0000215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000216
drh9f6168b2016-03-19 23:32:58 +0000217 assert( iCur>=0 && iCur<p->nCursor );
drh290c1942004-08-21 17:54:45 +0000218 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000221 }
drh322f2852014-09-19 00:43:39 +0000222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000224 memset(pCx, 0, sizeof(VdbeCursor));
drhc960dcb2015-11-20 19:22:01 +0000225 pCx->eCurType = eCurType;
danielk197794eb6a12005-12-15 15:22:08 +0000226 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000227 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000228 pCx->aOffset = &pCx->aType[nField];
drhc960dcb2015-11-20 19:22:01 +0000229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhc960dcb2015-11-20 19:22:01 +0000232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000233 }
danielk197794eb6a12005-12-15 15:22:08 +0000234 }
drh4774b132004-06-12 20:12:51 +0000235 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000236}
237
danielk19773d1bfea2004-05-14 11:00:53 +0000238/*
drh29d72102006-02-09 22:13:41 +0000239** Try to convert a value into a numeric representation if we can
240** do so without loss of information. In other words, if the string
241** looks like a number, convert it into a number. If it does not
242** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000243**
244** If the bTryForInt flag is true, then extra effort is made to give
245** an integer representation. Strings that look like floating point
246** values but which have no fractional component (example: '48.00')
247** will have a MEM_Int representation when bTryForInt is true.
248**
249** If bTryForInt is false, then if the input string contains a decimal
250** point or exponential notation, the result is only MEM_Real, even
251** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000252*/
drhbd9507c2014-08-23 17:21:37 +0000253static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
drh74eaba42014-09-18 17:52:15 +0000263 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000264 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000266 }
267}
268
269/*
drh8a512562005-11-14 22:29:05 +0000270** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000271**
drh8a512562005-11-14 22:29:05 +0000272** SQLITE_AFF_INTEGER:
273** SQLITE_AFF_REAL:
274** SQLITE_AFF_NUMERIC:
275** Try to convert pRec to an integer representation or a
276** floating-point representation if an integer representation
277** is not possible. Note that the integer representation is
278** always preferred, even if the affinity is REAL, because
279** an integer representation is more space efficient on disk.
280**
281** SQLITE_AFF_TEXT:
282** Convert pRec to a text representation.
283**
drh05883a32015-06-02 15:32:08 +0000284** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000285** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000286*/
drh17435752007-08-16 04:30:38 +0000287static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000288 Mem *pRec, /* The value to apply affinity to */
289 char affinity, /* The affinity to be applied */
290 u8 enc /* Use this text encoding */
291){
drh7ea31cc2014-09-18 14:36:00 +0000292 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000295 if( (pRec->flags & MEM_Int)==0 ){
296 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000298 }else{
299 sqlite3VdbeIntegerAffinity(pRec);
300 }
drh17c40292004-07-21 02:53:29 +0000301 }
drh7ea31cc2014-09-18 14:36:00 +0000302 }else if( affinity==SQLITE_AFF_TEXT ){
danielk19773d1bfea2004-05-14 11:00:53 +0000303 /* Only attempt the conversion to TEXT if there is an integer or real
drhf4479502004-05-27 03:12:53 +0000304 ** representation (blob and NULL do not get converted) but no string
danielk19773d1bfea2004-05-14 11:00:53 +0000305 ** representation.
306 */
307 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
danielk19773d1bfea2004-05-14 11:00:53 +0000308 sqlite3VdbeMemStringify(pRec, enc, 1);
309 }
dandde548c2015-05-19 19:44:25 +0000310 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000311 }
312}
313
danielk1977aee18ef2005-03-09 12:26:50 +0000314/*
drh29d72102006-02-09 22:13:41 +0000315** Try to convert the type of a function argument or a result column
316** into a numeric representation. Use either INTEGER or REAL whichever
317** is appropriate. But only do the conversion if it is possible without
318** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000319*/
320int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000321 int eType = sqlite3_value_type(pVal);
322 if( eType==SQLITE_TEXT ){
323 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000324 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000325 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000326 }
drh1b27b8c2014-02-10 03:21:57 +0000327 return eType;
drh29d72102006-02-09 22:13:41 +0000328}
329
330/*
danielk1977aee18ef2005-03-09 12:26:50 +0000331** Exported version of applyAffinity(). This one works on sqlite3_value*,
332** not the internal Mem* type.
333*/
danielk19771e536952007-08-16 10:09:01 +0000334void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000335 sqlite3_value *pVal,
336 u8 affinity,
337 u8 enc
338){
drhb21c8cd2007-08-21 19:33:56 +0000339 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000340}
341
drh3d1d90a2014-03-24 15:00:15 +0000342/*
drhf1a89ed2014-08-23 17:41:15 +0000343** pMem currently only holds a string type (or maybe a BLOB that we can
344** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000345** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000346** accordingly.
347*/
348static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
349 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
350 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000351 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000352 return 0;
353 }
354 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
355 return MEM_Int;
356 }
357 return MEM_Real;
358}
359
360/*
drh3d1d90a2014-03-24 15:00:15 +0000361** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
362** none.
363**
364** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000365** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000366*/
367static u16 numericType(Mem *pMem){
368 if( pMem->flags & (MEM_Int|MEM_Real) ){
369 return pMem->flags & (MEM_Int|MEM_Real);
370 }
371 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000372 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000373 }
374 return 0;
375}
376
danielk1977b5402fb2005-01-12 07:15:04 +0000377#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000378/*
danielk1977ca6b2912004-05-21 10:49:47 +0000379** Write a nice string representation of the contents of cell pMem
380** into buffer zBuf, length nBuf.
381*/
drh74161702006-02-24 02:53:49 +0000382void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000383 char *zCsr = zBuf;
384 int f = pMem->flags;
385
drh57196282004-10-06 15:41:16 +0000386 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000387
danielk1977ca6b2912004-05-21 10:49:47 +0000388 if( f&MEM_Blob ){
389 int i;
390 char c;
391 if( f & MEM_Dyn ){
392 c = 'z';
393 assert( (f & (MEM_Static|MEM_Ephem))==0 );
394 }else if( f & MEM_Static ){
395 c = 't';
396 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
397 }else if( f & MEM_Ephem ){
398 c = 'e';
399 assert( (f & (MEM_Static|MEM_Dyn))==0 );
400 }else{
401 c = 's';
402 }
403
drh5bb3eb92007-05-04 13:15:55 +0000404 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000405 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000406 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000407 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000408 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000409 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000410 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000411 }
412 for(i=0; i<16 && i<pMem->n; i++){
413 char z = pMem->z[i];
414 if( z<32 || z>126 ) *zCsr++ = '.';
415 else *zCsr++ = z;
416 }
417
drhe718efe2007-05-10 21:14:03 +0000418 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000419 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000420 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000421 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000422 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000423 }
danielk1977b1bc9532004-05-22 03:05:33 +0000424 *zCsr = '\0';
425 }else if( f & MEM_Str ){
426 int j, k;
427 zBuf[0] = ' ';
428 if( f & MEM_Dyn ){
429 zBuf[1] = 'z';
430 assert( (f & (MEM_Static|MEM_Ephem))==0 );
431 }else if( f & MEM_Static ){
432 zBuf[1] = 't';
433 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
434 }else if( f & MEM_Ephem ){
435 zBuf[1] = 'e';
436 assert( (f & (MEM_Static|MEM_Dyn))==0 );
437 }else{
438 zBuf[1] = 's';
439 }
440 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000441 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000442 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000443 zBuf[k++] = '[';
444 for(j=0; j<15 && j<pMem->n; j++){
445 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000446 if( c>=0x20 && c<0x7f ){
447 zBuf[k++] = c;
448 }else{
449 zBuf[k++] = '.';
450 }
451 }
452 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000453 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000454 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000455 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000456 }
danielk1977ca6b2912004-05-21 10:49:47 +0000457}
458#endif
459
drh5b6afba2008-01-05 16:29:28 +0000460#ifdef SQLITE_DEBUG
461/*
462** Print the value of a register for tracing purposes:
463*/
drh84e55a82013-11-13 17:58:23 +0000464static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000465 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000466 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000467 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000468 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000469 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000470 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000471 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000472 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000473#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000474 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000475 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000476#endif
drh733bf1b2009-04-22 00:47:00 +0000477 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000478 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000479 }else{
480 char zBuf[200];
481 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000482 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000483 }
dan5b6c8e42016-01-30 15:46:03 +0000484 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
drh5b6afba2008-01-05 16:29:28 +0000485}
drh84e55a82013-11-13 17:58:23 +0000486static void registerTrace(int iReg, Mem *p){
487 printf("REG[%d] = ", iReg);
488 memTracePrint(p);
489 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000490}
491#endif
492
493#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000494# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000495#else
496# define REGISTER_TRACE(R,M)
497#endif
498
danielk197784ac9d02004-05-18 09:58:06 +0000499
drh7b396862003-01-01 23:06:20 +0000500#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000501
502/*
503** hwtime.h contains inline assembler code for implementing
504** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000505*/
shane9bcbdad2008-05-29 20:22:37 +0000506#include "hwtime.h"
507
drh7b396862003-01-01 23:06:20 +0000508#endif
509
danielk1977fd7f0452008-12-17 17:30:26 +0000510#ifndef NDEBUG
511/*
512** This function is only called from within an assert() expression. It
513** checks that the sqlite3.nTransaction variable is correctly set to
514** the number of non-transaction savepoints currently in the
515** linked list starting at sqlite3.pSavepoint.
516**
517** Usage:
518**
519** assert( checkSavepointCount(db) );
520*/
521static int checkSavepointCount(sqlite3 *db){
522 int n = 0;
523 Savepoint *p;
524 for(p=db->pSavepoint; p; p=p->pNext) n++;
525 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
526 return 1;
527}
528#endif
529
drh27a348c2015-04-13 19:14:06 +0000530/*
531** Return the register of pOp->p2 after first preparing it to be
532** overwritten with an integer value.
drh9eef8c62015-10-15 17:31:41 +0000533*/
534static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
535 sqlite3VdbeMemSetNull(pOut);
536 pOut->flags = MEM_Int;
537 return pOut;
538}
drh27a348c2015-04-13 19:14:06 +0000539static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
540 Mem *pOut;
541 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000542 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh27a348c2015-04-13 19:14:06 +0000543 pOut = &p->aMem[pOp->p2];
544 memAboutToChange(p, pOut);
drh9eef8c62015-10-15 17:31:41 +0000545 if( VdbeMemDynamic(pOut) ){
546 return out2PrereleaseWithClear(pOut);
547 }else{
548 pOut->flags = MEM_Int;
549 return pOut;
550 }
drh27a348c2015-04-13 19:14:06 +0000551}
552
drhb9755982010-07-24 16:34:37 +0000553
554/*
drh0fd61352014-02-07 02:29:45 +0000555** Execute as much of a VDBE program as we can.
556** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000557*/
danielk19774adee202004-05-08 08:23:19 +0000558int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000559 Vdbe *p /* The VDBE */
560){
drhbbe879d2009-11-14 18:04:35 +0000561 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000562 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000563#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
564 Op *pOrigOp; /* Value of pOp at the top of the loop */
565#endif
drhb89aeb62016-01-27 15:49:32 +0000566#ifdef SQLITE_DEBUG
drhdef19e32016-01-27 16:26:25 +0000567 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
drhb89aeb62016-01-27 15:49:32 +0000568#endif
drhb86ccfb2003-01-28 23:13:10 +0000569 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000570 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000571 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000572 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000573 int iCompare = 0; /* Result of last OP_Compare operation */
574 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000575#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000576 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000577#endif
drha6c2ed92009-11-14 23:22:23 +0000578 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000579 Mem *pIn1 = 0; /* 1st input operand */
580 Mem *pIn2 = 0; /* 2nd input operand */
581 Mem *pIn3 = 0; /* 3rd input operand */
582 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000583 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000584 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000585#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000586 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000587#endif
drh856c1032009-06-02 15:21:42 +0000588 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000589
drhca48c902008-01-18 14:08:24 +0000590 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000591 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000592 if( p->rc==SQLITE_NOMEM ){
593 /* This happens if a malloc() inside a call to sqlite3_column_text() or
594 ** sqlite3_column_text16() failed. */
595 goto no_mem;
596 }
drhcbd8db32015-08-20 17:18:32 +0000597 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000598 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000599 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000600 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000601 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000602 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000603 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000604 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000605 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000606#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
607 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000608 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000609 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000610 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh0d1961e2013-07-25 16:27:51 +0000611 }
612#endif
drh3c23a882007-01-09 14:01:13 +0000613#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000614 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000615 if( p->pc==0
616 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
617 ){
drh3c23a882007-01-09 14:01:13 +0000618 int i;
drh84e55a82013-11-13 17:58:23 +0000619 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000620 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000621 if( p->db->flags & SQLITE_VdbeListing ){
622 printf("VDBE Program Listing:\n");
623 for(i=0; i<p->nOp; i++){
624 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
625 }
drh3c23a882007-01-09 14:01:13 +0000626 }
drh84e55a82013-11-13 17:58:23 +0000627 if( p->db->flags & SQLITE_VdbeEQP ){
628 for(i=0; i<p->nOp; i++){
629 if( aOp[i].opcode==OP_Explain ){
630 if( once ) printf("VDBE Query Plan:\n");
631 printf("%s\n", aOp[i].p4.z);
632 once = 0;
633 }
634 }
635 }
636 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000637 }
danielk19772d1d86f2008-06-20 14:59:51 +0000638 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000639#endif
drh9467abf2016-02-17 18:44:11 +0000640 for(pOp=&aOp[p->pc]; 1; pOp++){
641 /* Errors are detected by individual opcodes, with an immediate
642 ** jumps to abort_due_to_error. */
643 assert( rc==SQLITE_OK );
644
drhf56fa462015-04-13 21:39:54 +0000645 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh7b396862003-01-01 23:06:20 +0000646#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000647 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000648#endif
drhbf159fa2013-06-25 22:01:22 +0000649 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000650#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000651 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000652#endif
drh6e142f52000-06-08 13:36:40 +0000653
danielk19778b60e0f2005-01-12 09:10:39 +0000654 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000655 */
danielk19778b60e0f2005-01-12 09:10:39 +0000656#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000657 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000658 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000659 }
drh3f7d4e42004-07-24 14:35:58 +0000660#endif
661
drh6e142f52000-06-08 13:36:40 +0000662
drhf6038712004-02-08 18:07:34 +0000663 /* Check to see if we need to simulate an interrupt. This only happens
664 ** if we have a special test build.
665 */
666#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000667 if( sqlite3_interrupt_count>0 ){
668 sqlite3_interrupt_count--;
669 if( sqlite3_interrupt_count==0 ){
670 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000671 }
672 }
673#endif
674
drh3c657212009-11-17 23:59:58 +0000675 /* Sanity checking on other operands */
676#ifdef SQLITE_DEBUG
drh7cc84c22016-04-11 13:36:42 +0000677 {
678 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
679 if( (opProperty & OPFLG_IN1)!=0 ){
680 assert( pOp->p1>0 );
681 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
682 assert( memIsValid(&aMem[pOp->p1]) );
683 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
684 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
685 }
686 if( (opProperty & OPFLG_IN2)!=0 ){
687 assert( pOp->p2>0 );
688 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
689 assert( memIsValid(&aMem[pOp->p2]) );
690 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
691 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
692 }
693 if( (opProperty & OPFLG_IN3)!=0 ){
694 assert( pOp->p3>0 );
695 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
696 assert( memIsValid(&aMem[pOp->p3]) );
697 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
698 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
699 }
700 if( (opProperty & OPFLG_OUT2)!=0 ){
701 assert( pOp->p2>0 );
702 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
703 memAboutToChange(p, &aMem[pOp->p2]);
704 }
705 if( (opProperty & OPFLG_OUT3)!=0 ){
706 assert( pOp->p3>0 );
707 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
708 memAboutToChange(p, &aMem[pOp->p3]);
709 }
drh3c657212009-11-17 23:59:58 +0000710 }
711#endif
drh6dc41482015-04-16 17:31:02 +0000712#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
713 pOrigOp = pOp;
714#endif
drh93952eb2009-11-13 19:43:43 +0000715
drh75897232000-05-29 14:26:00 +0000716 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000717
drh5e00f6c2001-09-13 13:46:56 +0000718/*****************************************************************************
719** What follows is a massive switch statement where each case implements a
720** separate instruction in the virtual machine. If we follow the usual
721** indentation conventions, each case should be indented by 6 spaces. But
722** that is a lot of wasted space on the left margin. So the code within
723** the switch statement will break with convention and be flush-left. Another
724** big comment (similar to this one) will mark the point in the code where
725** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000726**
727** The formatting of each case is important. The makefile for SQLite
728** generates two C files "opcodes.h" and "opcodes.c" by scanning this
729** file looking for lines that begin with "case OP_". The opcodes.h files
730** will be filled with #defines that give unique integer values to each
731** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000732** each string is the symbolic name for the corresponding opcode. If the
733** case statement is followed by a comment of the form "/# same as ... #/"
734** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000735**
drh9cbf3422008-01-17 16:22:13 +0000736** Other keywords in the comment that follows each case are used to
737** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000738** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000739** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000740**
drhac82fcf2002-09-08 17:23:41 +0000741** Documentation about VDBE opcodes is generated by scanning this file
742** for lines of that contain "Opcode:". That line and all subsequent
743** comment lines are used in the generation of the opcode.html documentation
744** file.
745**
746** SUMMARY:
747**
748** Formatting is important to scripts that scan this file.
749** Do not deviate from the formatting style currently in use.
750**
drh5e00f6c2001-09-13 13:46:56 +0000751*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000752
drh9cbf3422008-01-17 16:22:13 +0000753/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000754**
755** An unconditional jump to address P2.
756** The next instruction executed will be
757** the one at index P2 from the beginning of
758** the program.
drhfe705102014-03-06 13:38:37 +0000759**
760** The P1 parameter is not actually used by this opcode. However, it
761** is sometimes set to 1 instead of 0 as a hint to the command-line shell
762** that this Goto is the bottom of a loop and that the lines from P2 down
763** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000764*/
drh9cbf3422008-01-17 16:22:13 +0000765case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000766jump_to_p2_and_check_for_interrupt:
767 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000768
769 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
770 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
771 ** completion. Check to see if sqlite3_interrupt() has been called
772 ** or if the progress callback needs to be invoked.
773 **
774 ** This code uses unstructured "goto" statements and does not look clean.
775 ** But that is not due to sloppy coding habits. The code is written this
776 ** way for performance, to avoid having to run the interrupt and progress
777 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
778 ** faster according to "valgrind --tool=cachegrind" */
779check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000780 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000781#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
782 /* Call the progress callback if it is configured and the required number
783 ** of VDBE ops have been executed (either since this invocation of
784 ** sqlite3VdbeExec() or since last time the progress callback was called).
785 ** If the progress callback returns non-zero, exit the virtual machine with
786 ** a return code SQLITE_ABORT.
787 */
drh0d1961e2013-07-25 16:27:51 +0000788 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000789 assert( db->nProgressOps!=0 );
790 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
791 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000792 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +0000793 goto abort_due_to_error;
drh49afe3a2013-07-10 03:05:14 +0000794 }
drh49afe3a2013-07-10 03:05:14 +0000795 }
796#endif
797
drh5e00f6c2001-09-13 13:46:56 +0000798 break;
799}
drh75897232000-05-29 14:26:00 +0000800
drh2eb95372008-06-06 15:04:36 +0000801/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000802**
drh2eb95372008-06-06 15:04:36 +0000803** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000804** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000805*/
drhb8475df2011-12-09 16:21:19 +0000806case OP_Gosub: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000807 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000808 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000809 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000810 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000811 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000812 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000813 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000814
815 /* Most jump operations do a goto to this spot in order to update
816 ** the pOp pointer. */
817jump_to_p2:
818 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000819 break;
820}
821
drh2eb95372008-06-06 15:04:36 +0000822/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000823**
drh81cf13e2014-02-07 18:27:53 +0000824** Jump to the next instruction after the address in register P1. After
825** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000826*/
drh2eb95372008-06-06 15:04:36 +0000827case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000828 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000829 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000830 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000831 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000832 break;
833}
834
drhed71a832014-02-07 19:18:10 +0000835/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000836**
drh5dad9a32014-07-25 18:37:42 +0000837** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000838** located at address P3.
839**
drh5dad9a32014-07-25 18:37:42 +0000840** If P2!=0 then the coroutine implementation immediately follows
841** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000842** address P2.
drh5dad9a32014-07-25 18:37:42 +0000843**
844** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000845*/
846case OP_InitCoroutine: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000847 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drhed71a832014-02-07 19:18:10 +0000848 assert( pOp->p2>=0 && pOp->p2<p->nOp );
849 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000850 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000851 assert( !VdbeMemDynamic(pOut) );
852 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000853 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000854 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000855 break;
856}
857
858/* Opcode: EndCoroutine P1 * * * *
859**
drhbc5cf382014-08-06 01:08:07 +0000860** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000861** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000862** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000863**
864** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000865*/
866case OP_EndCoroutine: { /* in1 */
867 VdbeOp *pCaller;
868 pIn1 = &aMem[pOp->p1];
869 assert( pIn1->flags==MEM_Int );
870 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
871 pCaller = &aOp[pIn1->u.i];
872 assert( pCaller->opcode==OP_Yield );
873 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000874 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000875 pIn1->flags = MEM_Undefined;
876 break;
877}
878
879/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000880**
drh5dad9a32014-07-25 18:37:42 +0000881** Swap the program counter with the value in register P1. This
882** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000883**
drh5dad9a32014-07-25 18:37:42 +0000884** If the coroutine that is launched by this instruction ends with
885** Yield or Return then continue to the next instruction. But if
886** the coroutine launched by this instruction ends with
887** EndCoroutine, then jump to P2 rather than continuing with the
888** next instruction.
889**
890** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000891*/
drh81cf13e2014-02-07 18:27:53 +0000892case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000893 int pcDest;
drh3c657212009-11-17 23:59:58 +0000894 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000895 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000896 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000897 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000898 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000899 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000900 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000901 break;
902}
903
drhf9c8ce32013-11-05 13:33:55 +0000904/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000905** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000906**
drhef8662b2011-06-20 21:47:58 +0000907** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000908** parameter P1, P2, and P4 as if this were a Halt instruction. If the
909** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000910** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000911*/
912case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000913 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000914 if( (pIn3->flags & MEM_Null)==0 ) break;
915 /* Fall through into OP_Halt */
916}
drhe00ee6e2008-06-20 15:24:01 +0000917
drhf9c8ce32013-11-05 13:33:55 +0000918/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000919**
drh3d4501e2008-12-04 20:40:10 +0000920** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000921** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000922**
drh92f02c32004-09-02 14:57:08 +0000923** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
924** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
925** For errors, it can be some other value. If P1!=0 then P2 will determine
926** whether or not to rollback the current transaction. Do not rollback
927** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
928** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000929** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000930**
drh66a51672008-01-03 00:01:23 +0000931** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000932**
drhf9c8ce32013-11-05 13:33:55 +0000933** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
934**
935** 0: (no change)
936** 1: NOT NULL contraint failed: P4
937** 2: UNIQUE constraint failed: P4
938** 3: CHECK constraint failed: P4
939** 4: FOREIGN KEY constraint failed: P4
940**
941** If P5 is not zero and P4 is NULL, then everything after the ":" is
942** omitted.
943**
drh9cfcf5d2002-01-29 18:41:24 +0000944** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000945** every program. So a jump past the last instruction of the program
946** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000947*/
drh9cbf3422008-01-17 16:22:13 +0000948case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000949 const char *zType;
950 const char *zLogFmt;
drhf56fa462015-04-13 21:39:54 +0000951 VdbeFrame *pFrame;
952 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000953
drhf56fa462015-04-13 21:39:54 +0000954 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000955 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000956 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000957 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000958 p->pFrame = pFrame->pParent;
959 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000960 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000961 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000962 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000963 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000964 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000965 ** currently being halted. If the p2 instruction of this OP_Halt
966 ** instruction is set to OE_Ignore, then the sub-program is throwing
967 ** an IGNORE exception. In this case jump to the address specified
968 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000969 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000970 }
drhbbe879d2009-11-14 18:04:35 +0000971 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000972 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000973 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000974 break;
975 }
drh92f02c32004-09-02 14:57:08 +0000976 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000977 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000978 p->pc = pcx;
drhf9c8ce32013-11-05 13:33:55 +0000979 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000980 if( pOp->p5 ){
981 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
982 "FOREIGN KEY" };
983 assert( pOp->p5>=1 && pOp->p5<=4 );
984 testcase( pOp->p5==1 );
985 testcase( pOp->p5==2 );
986 testcase( pOp->p5==3 );
987 testcase( pOp->p5==4 );
988 zType = azType[pOp->p5-1];
989 }else{
990 zType = 0;
991 }
drh4308e342013-11-11 16:55:52 +0000992 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000993 zLogFmt = "abort at %d in [%s]: %s";
994 if( zType && pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000995 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000996 }else if( pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000997 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000998 }else{
drh22c17b82015-05-15 04:13:15 +0000999 sqlite3VdbeError(p, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +00001000 }
drhf56fa462015-04-13 21:39:54 +00001001 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +00001002 }
drh92f02c32004-09-02 14:57:08 +00001003 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +00001004 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +00001005 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +00001006 p->rc = rc = SQLITE_BUSY;
1007 }else{
drhd91c1a12013-02-09 13:58:25 +00001008 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dancb3e4b72013-07-03 19:53:05 +00001009 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +00001010 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +00001011 }
drh900b31e2007-08-28 02:27:51 +00001012 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +00001013}
drhc61053b2000-06-04 12:58:36 +00001014
drh4c583122008-01-04 22:01:03 +00001015/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001016** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +00001017**
drh9cbf3422008-01-17 16:22:13 +00001018** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +00001019*/
drh27a348c2015-04-13 19:14:06 +00001020case OP_Integer: { /* out2 */
1021 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001022 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +00001023 break;
1024}
1025
drh4c583122008-01-04 22:01:03 +00001026/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001027** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001028**
drh66a51672008-01-03 00:01:23 +00001029** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001030** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001031*/
drh27a348c2015-04-13 19:14:06 +00001032case OP_Int64: { /* out2 */
1033 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001034 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001035 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001036 break;
1037}
drh4f26d6c2004-05-26 23:25:30 +00001038
drh13573c72010-01-12 17:04:07 +00001039#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001040/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001041** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001042**
drh4c583122008-01-04 22:01:03 +00001043** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001044** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001045*/
drh27a348c2015-04-13 19:14:06 +00001046case OP_Real: { /* same as TK_FLOAT, out2 */
1047 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001048 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001049 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001050 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001051 break;
1052}
drh13573c72010-01-12 17:04:07 +00001053#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001054
drh3c84ddf2008-01-09 02:15:38 +00001055/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001056** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001057**
drh66a51672008-01-03 00:01:23 +00001058** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001059** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001060** this transformation, the length of string P4 is computed and stored
1061** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001062*/
drh27a348c2015-04-13 19:14:06 +00001063case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001064 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001065 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001066 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001067 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001068
1069#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001070 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001071 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
drh9467abf2016-02-17 18:44:11 +00001072 if( rc ){
1073 assert( rc==SQLITE_TOOBIG ); /* This is the only possible error here */
1074 goto too_big;
1075 }
drh4c583122008-01-04 22:01:03 +00001076 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001077 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001078 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001079 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001080 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001081 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001082 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001083 }
drh66a51672008-01-03 00:01:23 +00001084 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001085 pOp->p4.z = pOut->z;
1086 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001087 }
danielk197793758c82005-01-21 08:13:14 +00001088#endif
drhbb4957f2008-03-20 14:03:29 +00001089 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001090 goto too_big;
1091 }
1092 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001093}
drhf4479502004-05-27 03:12:53 +00001094
drhf07cf6e2015-03-06 16:45:16 +00001095/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001096** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001097**
drh9cbf3422008-01-17 16:22:13 +00001098** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001099**
1100** If P5!=0 and the content of register P3 is greater than zero, then
drha9c18a92015-03-06 20:49:52 +00001101** the datatype of the register P2 is converted to BLOB. The content is
1102** the same sequence of bytes, it is merely interpreted as a BLOB instead
1103** of a string, as if it had been CAST.
drhf4479502004-05-27 03:12:53 +00001104*/
drh27a348c2015-04-13 19:14:06 +00001105case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001106 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001107 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001108 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1109 pOut->z = pOp->p4.z;
1110 pOut->n = pOp->p1;
1111 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001112 UPDATE_MAX_BLOBSIZE(pOut);
drh41d2e662015-12-01 21:23:07 +00001113#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drhf07cf6e2015-03-06 16:45:16 +00001114 if( pOp->p5 ){
1115 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00001116 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhf07cf6e2015-03-06 16:45:16 +00001117 pIn3 = &aMem[pOp->p3];
1118 assert( pIn3->flags & MEM_Int );
1119 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1120 }
drh41d2e662015-12-01 21:23:07 +00001121#endif
danielk1977c572ef72004-05-27 09:28:41 +00001122 break;
1123}
1124
drh053a1282012-09-19 21:15:46 +00001125/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001126** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001127**
drhb8475df2011-12-09 16:21:19 +00001128** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001129** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001130** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001131** set to NULL.
1132**
1133** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1134** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1135** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001136*/
drh27a348c2015-04-13 19:14:06 +00001137case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001138 int cnt;
drh053a1282012-09-19 21:15:46 +00001139 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001140 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001141 cnt = pOp->p3-pOp->p2;
drh9f6168b2016-03-19 23:32:58 +00001142 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001143 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001144 while( cnt>0 ){
1145 pOut++;
1146 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001147 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001148 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001149 cnt--;
1150 }
drhf0863fe2005-06-12 21:35:51 +00001151 break;
1152}
1153
drh05a86c52014-02-16 01:55:49 +00001154/* Opcode: SoftNull P1 * * * *
1155** Synopsis: r[P1]=NULL
1156**
1157** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1158** instruction, but do not free any string or blob memory associated with
1159** the register, so that if the value was a string or blob that was
1160** previously copied using OP_SCopy, the copies will continue to be valid.
1161*/
1162case OP_SoftNull: {
drh9f6168b2016-03-19 23:32:58 +00001163 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh05a86c52014-02-16 01:55:49 +00001164 pOut = &aMem[pOp->p1];
1165 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1166 break;
1167}
drhf0863fe2005-06-12 21:35:51 +00001168
drha5750cf2014-02-07 13:20:31 +00001169/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001170** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001171**
drh9de221d2008-01-05 06:51:30 +00001172** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001173** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001174*/
drh27a348c2015-04-13 19:14:06 +00001175case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001176 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001177 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001178 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001179 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001180 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001181 break;
1182}
1183
drheaf52d82010-05-12 13:50:23 +00001184/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001185** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001186**
drheaf52d82010-05-12 13:50:23 +00001187** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001188**
drh0fd61352014-02-07 02:29:45 +00001189** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001190** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001191*/
drh27a348c2015-04-13 19:14:06 +00001192case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001193 Mem *pVar; /* Value being transferred */
1194
drheaf52d82010-05-12 13:50:23 +00001195 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001196 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001197 pVar = &p->aVar[pOp->p1 - 1];
1198 if( sqlite3VdbeMemTooBig(pVar) ){
1199 goto too_big;
drh023ae032007-05-08 12:12:16 +00001200 }
drh27a348c2015-04-13 19:14:06 +00001201 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001202 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1203 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001204 break;
1205}
danielk1977295ba552004-05-19 10:34:51 +00001206
drhb21e7c72008-06-22 12:37:57 +00001207/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001208** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001209**
drh079a3072014-03-19 14:10:55 +00001210** Move the P3 values in register P1..P1+P3-1 over into
1211** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001212** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001213** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1214** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001215*/
drhe1349cb2008-04-01 00:36:10 +00001216case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001217 int n; /* Number of registers left to copy */
1218 int p1; /* Register to copy from */
1219 int p2; /* Register to copy to */
1220
drhe09f43f2013-11-21 04:18:31 +00001221 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001222 p1 = pOp->p1;
1223 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001224 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001225 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001226
drha6c2ed92009-11-14 23:22:23 +00001227 pIn1 = &aMem[p1];
1228 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001229 do{
drh9f6168b2016-03-19 23:32:58 +00001230 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1231 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001232 assert( memIsValid(pIn1) );
1233 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001234 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001235#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001236 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001237 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001238 }
1239#endif
drhbd6789e2015-04-28 14:00:02 +00001240 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001241 REGISTER_TRACE(p2++, pOut);
1242 pIn1++;
1243 pOut++;
drh079a3072014-03-19 14:10:55 +00001244 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001245 break;
1246}
1247
drhe8e4af72012-09-21 00:04:28 +00001248/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001249** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001250**
drhe8e4af72012-09-21 00:04:28 +00001251** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001252**
1253** This instruction makes a deep copy of the value. A duplicate
1254** is made of any string or blob constant. See also OP_SCopy.
1255*/
drhe8e4af72012-09-21 00:04:28 +00001256case OP_Copy: {
1257 int n;
1258
1259 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001260 pIn1 = &aMem[pOp->p1];
1261 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001262 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001263 while( 1 ){
1264 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1265 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001266#ifdef SQLITE_DEBUG
1267 pOut->pScopyFrom = 0;
1268#endif
drhe8e4af72012-09-21 00:04:28 +00001269 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1270 if( (n--)==0 ) break;
1271 pOut++;
1272 pIn1++;
1273 }
drhe1349cb2008-04-01 00:36:10 +00001274 break;
1275}
1276
drhb1fdb2a2008-01-05 04:06:03 +00001277/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001278** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001279**
drh9cbf3422008-01-17 16:22:13 +00001280** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001281**
1282** This instruction makes a shallow copy of the value. If the value
1283** is a string or blob, then the copy is only a pointer to the
1284** original and hence if the original changes so will the copy.
1285** Worse, if the original is deallocated, the copy becomes invalid.
1286** Thus the program must guarantee that the original will not change
1287** during the lifetime of the copy. Use OP_Copy to make a complete
1288** copy.
1289*/
drh26198bb2013-10-31 11:15:09 +00001290case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001291 pIn1 = &aMem[pOp->p1];
1292 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001293 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001294 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001295#ifdef SQLITE_DEBUG
1296 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1297#endif
drh5e00f6c2001-09-13 13:46:56 +00001298 break;
1299}
drh75897232000-05-29 14:26:00 +00001300
drhfed7ac62015-10-15 18:04:59 +00001301/* Opcode: IntCopy P1 P2 * * *
1302** Synopsis: r[P2]=r[P1]
1303**
1304** Transfer the integer value held in register P1 into register P2.
1305**
1306** This is an optimized version of SCopy that works only for integer
1307** values.
1308*/
1309case OP_IntCopy: { /* out2 */
1310 pIn1 = &aMem[pOp->p1];
1311 assert( (pIn1->flags & MEM_Int)!=0 );
1312 pOut = &aMem[pOp->p2];
1313 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1314 break;
1315}
1316
drh9cbf3422008-01-17 16:22:13 +00001317/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001318** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001319**
shane21e7feb2008-05-30 15:59:49 +00001320** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001321** results. This opcode causes the sqlite3_step() call to terminate
1322** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001323** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001324** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001325*/
drh9cbf3422008-01-17 16:22:13 +00001326case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001327 Mem *pMem;
1328 int i;
1329 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001330 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +00001331 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001332
drhe6400b92013-11-13 23:48:46 +00001333#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1334 /* Run the progress counter just before returning.
1335 */
1336 if( db->xProgress!=0
1337 && nVmStep>=nProgressLimit
1338 && db->xProgress(db->pProgressArg)!=0
1339 ){
1340 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +00001341 goto abort_due_to_error;
drhe6400b92013-11-13 23:48:46 +00001342 }
1343#endif
1344
dan32b09f22009-09-23 17:29:59 +00001345 /* If this statement has violated immediate foreign key constraints, do
1346 ** not return the number of rows modified. And do not RELEASE the statement
1347 ** transaction. It needs to be rolled back. */
1348 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1349 assert( db->flags&SQLITE_CountRows );
1350 assert( p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00001351 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00001352 }
1353
danielk1977bd434552009-03-18 10:33:00 +00001354 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1355 ** DML statements invoke this opcode to return the number of rows
1356 ** modified to the user. This is the only way that a VM that
1357 ** opens a statement transaction may invoke this opcode.
1358 **
1359 ** In case this is such a statement, close any statement transaction
1360 ** opened by this VM before returning control to the user. This is to
1361 ** ensure that statement-transactions are always nested, not overlapping.
1362 ** If the open statement-transaction is not closed here, then the user
1363 ** may step another VM that opens its own statement transaction. This
1364 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001365 **
1366 ** The statement transaction is never a top-level transaction. Hence
1367 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001368 */
1369 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001370 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
drh9467abf2016-02-17 18:44:11 +00001371 assert( rc==SQLITE_OK );
danielk1977bd434552009-03-18 10:33:00 +00001372
drhd4e70eb2008-01-02 00:34:36 +00001373 /* Invalidate all ephemeral cursor row caches */
1374 p->cacheCtr = (p->cacheCtr + 2)|1;
1375
1376 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001377 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001378 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001379 */
drha6c2ed92009-11-14 23:22:23 +00001380 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001381 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001382 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001383 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001384 assert( (pMem[i].flags & MEM_Ephem)==0
1385 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001386 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001387 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001388 }
drh28039692008-03-17 16:54:01 +00001389 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001390
1391 /* Return SQLITE_ROW
1392 */
drhf56fa462015-04-13 21:39:54 +00001393 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001394 rc = SQLITE_ROW;
1395 goto vdbe_return;
1396}
1397
drh5b6afba2008-01-05 16:29:28 +00001398/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001399** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001400**
drh5b6afba2008-01-05 16:29:28 +00001401** Add the text in register P1 onto the end of the text in
1402** register P2 and store the result in register P3.
1403** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001404**
1405** P3 = P2 || P1
1406**
1407** It is illegal for P1 and P3 to be the same register. Sometimes,
1408** if P3 is the same register as P2, the implementation is able
1409** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001410*/
drh5b6afba2008-01-05 16:29:28 +00001411case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001412 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001413
drh3c657212009-11-17 23:59:58 +00001414 pIn1 = &aMem[pOp->p1];
1415 pIn2 = &aMem[pOp->p2];
1416 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001417 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001418 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001419 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001420 break;
drh5e00f6c2001-09-13 13:46:56 +00001421 }
drha0c06522009-06-17 22:50:41 +00001422 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001423 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001424 Stringify(pIn2, encoding);
1425 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001426 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001427 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001428 }
drh9c1905f2008-12-10 22:32:56 +00001429 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001430 goto no_mem;
1431 }
drhc91b2fd2014-03-01 18:13:23 +00001432 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001433 if( pOut!=pIn2 ){
1434 memcpy(pOut->z, pIn2->z, pIn2->n);
1435 }
1436 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001437 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001438 pOut->z[nByte+1] = 0;
1439 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001440 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001441 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001442 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001443 break;
1444}
drh75897232000-05-29 14:26:00 +00001445
drh3c84ddf2008-01-09 02:15:38 +00001446/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001447** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001448**
drh60a713c2008-01-21 16:22:45 +00001449** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001450** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001451** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001452*/
drh3c84ddf2008-01-09 02:15:38 +00001453/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001454** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001455**
drh3c84ddf2008-01-09 02:15:38 +00001456**
shane21e7feb2008-05-30 15:59:49 +00001457** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001458** and store the result in register P3.
1459** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001460*/
drh3c84ddf2008-01-09 02:15:38 +00001461/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001462** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001463**
drh60a713c2008-01-21 16:22:45 +00001464** Subtract the value in register P1 from the value in register P2
1465** and store the result in register P3.
1466** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001467*/
drh9cbf3422008-01-17 16:22:13 +00001468/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001469** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001470**
drh60a713c2008-01-21 16:22:45 +00001471** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001472** and store the result in register P3 (P3=P2/P1). If the value in
1473** register P1 is zero, then the result is NULL. If either input is
1474** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001475*/
drh9cbf3422008-01-17 16:22:13 +00001476/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001477** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001478**
drh40864a12013-11-15 18:58:37 +00001479** Compute the remainder after integer register P2 is divided by
1480** register P1 and store the result in register P3.
1481** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001482** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001483*/
drh5b6afba2008-01-05 16:29:28 +00001484case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1485case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1486case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1487case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1488case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001489 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001490 u16 flags; /* Combined MEM_* flags from both inputs */
1491 u16 type1; /* Numeric type of left operand */
1492 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001493 i64 iA; /* Integer value of left operand */
1494 i64 iB; /* Integer value of right operand */
1495 double rA; /* Real value of left operand */
1496 double rB; /* Real value of right operand */
1497
drh3c657212009-11-17 23:59:58 +00001498 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001499 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001500 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001501 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001502 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001503 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001504 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001505 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001506 iA = pIn1->u.i;
1507 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001508 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001509 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001510 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1511 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1512 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001513 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001514 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001515 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001516 iB /= iA;
drh75897232000-05-29 14:26:00 +00001517 break;
1518 }
drhbf4133c2001-10-13 02:59:08 +00001519 default: {
drh856c1032009-06-02 15:21:42 +00001520 if( iA==0 ) goto arithmetic_result_is_null;
1521 if( iA==-1 ) iA = 1;
1522 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001523 break;
1524 }
drh75897232000-05-29 14:26:00 +00001525 }
drh856c1032009-06-02 15:21:42 +00001526 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001527 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001528 }else{
drhbe707b32012-12-10 22:19:14 +00001529 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001530fp_math:
drh856c1032009-06-02 15:21:42 +00001531 rA = sqlite3VdbeRealValue(pIn1);
1532 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001533 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001534 case OP_Add: rB += rA; break;
1535 case OP_Subtract: rB -= rA; break;
1536 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001537 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001538 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001539 if( rA==(double)0 ) goto arithmetic_result_is_null;
1540 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001541 break;
1542 }
drhbf4133c2001-10-13 02:59:08 +00001543 default: {
shane75ac1de2009-06-09 18:58:52 +00001544 iA = (i64)rA;
1545 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001546 if( iA==0 ) goto arithmetic_result_is_null;
1547 if( iA==-1 ) iA = 1;
1548 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001549 break;
1550 }
drh5e00f6c2001-09-13 13:46:56 +00001551 }
drhc5a7b512010-01-13 16:25:42 +00001552#ifdef SQLITE_OMIT_FLOATING_POINT
1553 pOut->u.i = rB;
1554 MemSetTypeFlag(pOut, MEM_Int);
1555#else
drh856c1032009-06-02 15:21:42 +00001556 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001557 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001558 }
drh74eaba42014-09-18 17:52:15 +00001559 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001560 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001561 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001562 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001563 }
drhc5a7b512010-01-13 16:25:42 +00001564#endif
drh5e00f6c2001-09-13 13:46:56 +00001565 }
1566 break;
1567
drha05a7222008-01-19 03:35:58 +00001568arithmetic_result_is_null:
1569 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001570 break;
1571}
1572
drh7a957892012-02-02 17:35:43 +00001573/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001574**
drh66a51672008-01-03 00:01:23 +00001575** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001576** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1577** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001578** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001579**
drh7a957892012-02-02 17:35:43 +00001580** If P1 is not zero, then it is a register that a subsequent min() or
1581** max() aggregate will set to 1 if the current row is not the minimum or
1582** maximum. The P1 register is initialized to 0 by this instruction.
1583**
danielk1977dc1bdc42004-06-11 10:51:27 +00001584** The interface used by the implementation of the aforementioned functions
1585** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001586** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001587*/
drh9cbf3422008-01-17 16:22:13 +00001588case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001589 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001590 if( pOp->p1 ){
1591 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1592 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001593 break;
1594}
1595
drh9c7c9132015-06-26 18:16:52 +00001596/* Opcode: Function0 P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001597** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001598**
drhe2d9e7c2015-06-26 18:47:53 +00001599** Invoke a user function (P4 is a pointer to a FuncDef object that
drh98757152008-01-09 23:04:12 +00001600** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001601** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001602** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001603**
drh13449892005-09-07 21:22:45 +00001604** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001605** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001606** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001607** whether meta data associated with a user function argument using the
1608** sqlite3_set_auxdata() API may be safely retained until the next
1609** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001610**
drh9c7c9132015-06-26 18:16:52 +00001611** See also: Function, AggStep, AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001612*/
drh9c7c9132015-06-26 18:16:52 +00001613/* Opcode: Function P1 P2 P3 P4 P5
1614** Synopsis: r[P3]=func(r[P2@P5])
1615**
1616** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1617** contains a pointer to the function to be run) with P5 arguments taken
1618** from register P2 and successors. The result of the function is stored
1619** in register P3. Register P3 must not be one of the function inputs.
1620**
1621** P1 is a 32-bit bitmask indicating whether or not each argument to the
1622** function was determined to be constant at compile time. If the first
1623** argument was constant then bit 0 of P1 is set. This is used to determine
1624** whether meta data associated with a user function argument using the
1625** sqlite3_set_auxdata() API may be safely retained until the next
1626** invocation of this opcode.
1627**
1628** SQL functions are initially coded as OP_Function0 with P4 pointing
drhe2d9e7c2015-06-26 18:47:53 +00001629** to a FuncDef object. But on first evaluation, the P4 operand is
drh9c7c9132015-06-26 18:16:52 +00001630** automatically converted into an sqlite3_context object and the operation
1631** changed to this OP_Function opcode. In this way, the initialization of
1632** the sqlite3_context object occurs only once, rather than once for each
1633** evaluation of the function.
1634**
1635** See also: Function0, AggStep, AggFinal
1636*/
1637case OP_Function0: {
drh856c1032009-06-02 15:21:42 +00001638 int n;
drh9c7c9132015-06-26 18:16:52 +00001639 sqlite3_context *pCtx;
danielk197751ad0ec2004-05-24 12:39:02 +00001640
dan0c547792013-07-18 17:12:08 +00001641 assert( pOp->p4type==P4_FUNCDEF );
drh9c7c9132015-06-26 18:16:52 +00001642 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00001643 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
1644 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00001645 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00001646 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00001647 if( pCtx==0 ) goto no_mem;
1648 pCtx->pOut = 0;
1649 pCtx->pFunc = pOp->p4.pFunc;
1650 pCtx->iOp = (int)(pOp - aOp);
1651 pCtx->pVdbe = p;
1652 pCtx->argc = n;
1653 pOp->p4type = P4_FUNCCTX;
1654 pOp->p4.pCtx = pCtx;
1655 pOp->opcode = OP_Function;
1656 /* Fall through into OP_Function */
1657}
1658case OP_Function: {
1659 int i;
1660 sqlite3_context *pCtx;
1661
1662 assert( pOp->p4type==P4_FUNCCTX );
1663 pCtx = pOp->p4.pCtx;
1664
1665 /* If this function is inside of a trigger, the register array in aMem[]
1666 ** might change from one evaluation to the next. The next block of code
1667 ** checks to see if the register array has changed, and if so it
1668 ** reinitializes the relavant parts of the sqlite3_context object */
drhe2d9e7c2015-06-26 18:47:53 +00001669 pOut = &aMem[pOp->p3];
1670 if( pCtx->pOut != pOut ){
1671 pCtx->pOut = pOut;
drh9c7c9132015-06-26 18:16:52 +00001672 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1673 }
1674
1675 memAboutToChange(p, pCtx->pOut);
1676#ifdef SQLITE_DEBUG
1677 for(i=0; i<pCtx->argc; i++){
1678 assert( memIsValid(pCtx->argv[i]) );
1679 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1680 }
1681#endif
1682 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1683 pCtx->fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001684 db->lastRowid = lastRowid;
drh2d801512016-01-14 22:19:58 +00001685 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1686 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */
danielk19777e18c252004-05-25 11:47:24 +00001687
drh90669c12006-01-20 15:45:36 +00001688 /* If the function returned an error, throw an exception */
drh9c7c9132015-06-26 18:16:52 +00001689 if( pCtx->fErrorOrAux ){
1690 if( pCtx->isError ){
1691 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1692 rc = pCtx->isError;
drh9b47ee32013-08-20 03:13:51 +00001693 }
drhb9626cf2016-02-22 16:04:31 +00001694 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00001695 if( rc ) goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00001696 }
1697
drh9cbf3422008-01-17 16:22:13 +00001698 /* Copy the result of the function into register P3 */
drhe2d9e7c2015-06-26 18:47:53 +00001699 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1700 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1701 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
drh023ae032007-05-08 12:12:16 +00001702 }
drh7b94e7f2011-04-04 12:29:20 +00001703
drh9c7c9132015-06-26 18:16:52 +00001704 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1705 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
drh8e0a2f92002-02-23 23:45:45 +00001706 break;
1707}
1708
drh98757152008-01-09 23:04:12 +00001709/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001710** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001711**
drh98757152008-01-09 23:04:12 +00001712** Take the bit-wise AND of the values in register P1 and P2 and
1713** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001714** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001715*/
drh98757152008-01-09 23:04:12 +00001716/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001717** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001718**
drh98757152008-01-09 23:04:12 +00001719** Take the bit-wise OR of the values in register P1 and P2 and
1720** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001721** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001722*/
drh98757152008-01-09 23:04:12 +00001723/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001724** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001725**
drh98757152008-01-09 23:04:12 +00001726** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001727** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001728** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001729** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001730*/
drh98757152008-01-09 23:04:12 +00001731/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001732** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001733**
drh98757152008-01-09 23:04:12 +00001734** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001735** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001736** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001737** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001738*/
drh5b6afba2008-01-05 16:29:28 +00001739case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1740case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1741case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1742case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001743 i64 iA;
1744 u64 uA;
1745 i64 iB;
1746 u8 op;
drh6810ce62004-01-31 19:22:56 +00001747
drh3c657212009-11-17 23:59:58 +00001748 pIn1 = &aMem[pOp->p1];
1749 pIn2 = &aMem[pOp->p2];
1750 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001751 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001752 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001753 break;
1754 }
drh158b9cb2011-03-05 20:59:46 +00001755 iA = sqlite3VdbeIntValue(pIn2);
1756 iB = sqlite3VdbeIntValue(pIn1);
1757 op = pOp->opcode;
1758 if( op==OP_BitAnd ){
1759 iA &= iB;
1760 }else if( op==OP_BitOr ){
1761 iA |= iB;
1762 }else if( iB!=0 ){
1763 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1764
1765 /* If shifting by a negative amount, shift in the other direction */
1766 if( iB<0 ){
1767 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1768 op = 2*OP_ShiftLeft + 1 - op;
1769 iB = iB>(-64) ? -iB : 64;
1770 }
1771
1772 if( iB>=64 ){
1773 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1774 }else{
1775 memcpy(&uA, &iA, sizeof(uA));
1776 if( op==OP_ShiftLeft ){
1777 uA <<= iB;
1778 }else{
1779 uA >>= iB;
1780 /* Sign-extend on a right shift of a negative number */
1781 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1782 }
1783 memcpy(&iA, &uA, sizeof(iA));
1784 }
drhbf4133c2001-10-13 02:59:08 +00001785 }
drh158b9cb2011-03-05 20:59:46 +00001786 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001787 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001788 break;
1789}
1790
drh8558cde2008-01-05 05:20:10 +00001791/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001792** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001793**
danielk19770cdc0222008-06-26 18:04:03 +00001794** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001795** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001796**
drh8558cde2008-01-05 05:20:10 +00001797** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001798*/
drh9cbf3422008-01-17 16:22:13 +00001799case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001800 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001801 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001802 sqlite3VdbeMemIntegerify(pIn1);
1803 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001804 break;
1805}
1806
drh9cbf3422008-01-17 16:22:13 +00001807/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001808**
drh9cbf3422008-01-17 16:22:13 +00001809** Force the value in register P1 to be an integer. If the value
1810** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001811** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001812** raise an SQLITE_MISMATCH exception.
1813*/
drh9cbf3422008-01-17 16:22:13 +00001814case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001815 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001816 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001817 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001818 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001819 if( (pIn1->flags & MEM_Int)==0 ){
1820 if( pOp->p2==0 ){
1821 rc = SQLITE_MISMATCH;
1822 goto abort_due_to_error;
1823 }else{
drhf56fa462015-04-13 21:39:54 +00001824 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001825 }
drh8aff1012001-12-22 14:49:24 +00001826 }
drh8aff1012001-12-22 14:49:24 +00001827 }
drh83b301b2013-11-20 00:59:02 +00001828 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001829 break;
1830}
1831
drh13573c72010-01-12 17:04:07 +00001832#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001833/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001834**
drh2133d822008-01-03 18:44:59 +00001835** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001836**
drh8a512562005-11-14 22:29:05 +00001837** This opcode is used when extracting information from a column that
1838** has REAL affinity. Such column values may still be stored as
1839** integers, for space efficiency, but after extraction we want them
1840** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001841*/
drh9cbf3422008-01-17 16:22:13 +00001842case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001843 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001844 if( pIn1->flags & MEM_Int ){
1845 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001846 }
drh487e2622005-06-25 18:42:14 +00001847 break;
1848}
drh13573c72010-01-12 17:04:07 +00001849#endif
drh487e2622005-06-25 18:42:14 +00001850
drh8df447f2005-11-01 15:48:24 +00001851#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001852/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001853** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001854**
drh4169e432014-08-25 20:11:52 +00001855** Force the value in register P1 to be the type defined by P2.
1856**
1857** <ul>
1858** <li value="97"> TEXT
1859** <li value="98"> BLOB
1860** <li value="99"> NUMERIC
1861** <li value="100"> INTEGER
1862** <li value="101"> REAL
1863** </ul>
drh487e2622005-06-25 18:42:14 +00001864**
1865** A NULL value is not changed by this routine. It remains NULL.
1866*/
drh4169e432014-08-25 20:11:52 +00001867case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001868 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001869 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001870 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001871 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1872 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1873 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001874 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001875 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001876 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001877 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001878 UPDATE_MAX_BLOBSIZE(pIn1);
drh9467abf2016-02-17 18:44:11 +00001879 if( rc ) goto abort_due_to_error;
drh487e2622005-06-25 18:42:14 +00001880 break;
1881}
drh8a512562005-11-14 22:29:05 +00001882#endif /* SQLITE_OMIT_CAST */
1883
drh35573352008-01-08 23:54:25 +00001884/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001885** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001886**
drh35573352008-01-08 23:54:25 +00001887** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1888** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001889**
drh35573352008-01-08 23:54:25 +00001890** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1891** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001892** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001893**
drh35573352008-01-08 23:54:25 +00001894** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001895** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001896** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001897** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001898** affinity is used. Note that the affinity conversions are stored
1899** back into the input registers P1 and P3. So this opcode can cause
1900** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001901**
1902** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001903** the values are compared. If both values are blobs then memcmp() is
1904** used to determine the results of the comparison. If both values
1905** are text, then the appropriate collating function specified in
1906** P4 is used to do the comparison. If P4 is not specified then
1907** memcmp() is used to compare text string. If both values are
1908** numeric, then a numeric comparison is used. If the two values
1909** are of different types, then numbers are considered less than
1910** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001911**
drh35573352008-01-08 23:54:25 +00001912** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1913** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001914**
1915** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1916** equal to one another, provided that they do not have their MEM_Cleared
1917** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001918*/
drh9cbf3422008-01-17 16:22:13 +00001919/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001920** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001921**
drh35573352008-01-08 23:54:25 +00001922** This works just like the Lt opcode except that the jump is taken if
1923** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001924** additional information.
drh6a2fe092009-09-23 02:29:36 +00001925**
1926** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1927** true or false and is never NULL. If both operands are NULL then the result
1928** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001929** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001930** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001931*/
drh9cbf3422008-01-17 16:22:13 +00001932/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001933** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001934**
drh35573352008-01-08 23:54:25 +00001935** This works just like the Lt opcode except that the jump is taken if
1936** the operands in registers P1 and P3 are equal.
1937** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001938**
1939** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1940** true or false and is never NULL. If both operands are NULL then the result
1941** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001942** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001943** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001944*/
drh9cbf3422008-01-17 16:22:13 +00001945/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001946** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001947**
drh35573352008-01-08 23:54:25 +00001948** This works just like the Lt opcode except that the jump is taken if
1949** the content of register P3 is less than or equal to the content of
1950** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001951*/
drh9cbf3422008-01-17 16:22:13 +00001952/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001953** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001954**
drh35573352008-01-08 23:54:25 +00001955** This works just like the Lt opcode except that the jump is taken if
1956** the content of register P3 is greater than the content of
1957** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001958*/
drh9cbf3422008-01-17 16:22:13 +00001959/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001960** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001961**
drh35573352008-01-08 23:54:25 +00001962** This works just like the Lt opcode except that the jump is taken if
1963** the content of register P3 is greater than or equal to the content of
1964** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001965*/
drh9cbf3422008-01-17 16:22:13 +00001966case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1967case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1968case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1969case OP_Le: /* same as TK_LE, jump, in1, in3 */
1970case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1971case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001972 int res; /* Result of the comparison of pIn1 against pIn3 */
1973 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001974 u16 flags1; /* Copy of initial value of pIn1->flags */
1975 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001976
drh3c657212009-11-17 23:59:58 +00001977 pIn1 = &aMem[pOp->p1];
1978 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001979 flags1 = pIn1->flags;
1980 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001981 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001982 /* One or both operands are NULL */
1983 if( pOp->p5 & SQLITE_NULLEQ ){
1984 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1985 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1986 ** or not both operands are null.
1987 */
1988 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001989 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001990 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001991 if( (flags1&MEM_Null)!=0
1992 && (flags3&MEM_Null)!=0
1993 && (flags3&MEM_Cleared)==0
1994 ){
1995 res = 0; /* Results are equal */
1996 }else{
1997 res = 1; /* Results are not equal */
1998 }
drh6a2fe092009-09-23 02:29:36 +00001999 }else{
2000 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2001 ** then the result is always NULL.
2002 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2003 */
drh688852a2014-02-17 22:40:43 +00002004 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002005 pOut = &aMem[pOp->p2];
danb1d6b532015-12-14 19:42:19 +00002006 memAboutToChange(p, pOut);
drh6a2fe092009-09-23 02:29:36 +00002007 MemSetTypeFlag(pOut, MEM_Null);
2008 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002009 }else{
drhf4345e42014-02-18 11:31:59 +00002010 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00002011 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00002012 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002013 }
drh6a2fe092009-09-23 02:29:36 +00002014 }
2015 break;
danielk1977a37cdde2004-05-16 11:15:36 +00002016 }
drh6a2fe092009-09-23 02:29:36 +00002017 }else{
2018 /* Neither operand is NULL. Do a comparison. */
2019 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00002020 if( affinity>=SQLITE_AFF_NUMERIC ){
drh5fd0c122016-04-04 13:46:24 +00002021 if( (flags1 | flags3)&MEM_Str ){
2022 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2023 applyNumericAffinity(pIn1,0);
2024 }
2025 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2026 applyNumericAffinity(pIn3,0);
2027 }
drh24a09622014-09-18 16:28:59 +00002028 }
2029 }else if( affinity==SQLITE_AFF_TEXT ){
drhe5520e22015-12-31 04:34:26 +00002030 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002031 testcase( pIn1->flags & MEM_Int );
2032 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002033 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002034 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2035 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00002036 }
drhe5520e22015-12-31 04:34:26 +00002037 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002038 testcase( pIn3->flags & MEM_Int );
2039 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002040 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002041 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2042 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00002043 }
drh6a2fe092009-09-23 02:29:36 +00002044 }
drh6a2fe092009-09-23 02:29:36 +00002045 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhe5520e22015-12-31 04:34:26 +00002046 if( flags1 & MEM_Zero ){
drhca5506b2014-09-17 23:37:38 +00002047 sqlite3VdbeMemExpandBlob(pIn1);
2048 flags1 &= ~MEM_Zero;
2049 }
drhe5520e22015-12-31 04:34:26 +00002050 if( flags3 & MEM_Zero ){
drhca5506b2014-09-17 23:37:38 +00002051 sqlite3VdbeMemExpandBlob(pIn3);
2052 flags3 &= ~MEM_Zero;
2053 }
drh6a2fe092009-09-23 02:29:36 +00002054 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00002055 }
danielk1977a37cdde2004-05-16 11:15:36 +00002056 switch( pOp->opcode ){
2057 case OP_Eq: res = res==0; break;
2058 case OP_Ne: res = res!=0; break;
2059 case OP_Lt: res = res<0; break;
2060 case OP_Le: res = res<=0; break;
2061 case OP_Gt: res = res>0; break;
2062 default: res = res>=0; break;
2063 }
2064
drhf56fa462015-04-13 21:39:54 +00002065 /* Undo any changes made by applyAffinity() to the input registers. */
2066 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2067 pIn1->flags = flags1;
2068 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2069 pIn3->flags = flags3;
2070
drh35573352008-01-08 23:54:25 +00002071 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002072 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00002073 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002074 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00002075 pOut->u.i = res;
2076 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002077 }else{
drhf4345e42014-02-18 11:31:59 +00002078 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00002079 if( res ){
drhf56fa462015-04-13 21:39:54 +00002080 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002081 }
danielk1977a37cdde2004-05-16 11:15:36 +00002082 }
2083 break;
2084}
drhc9b84a12002-06-20 11:36:48 +00002085
drh0acb7e42008-06-25 00:12:41 +00002086/* Opcode: Permutation * * * P4 *
2087**
shanebe217792009-03-05 04:20:31 +00002088** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00002089** of integers in P4.
2090**
drh953f7612012-12-07 22:18:54 +00002091** The permutation is only valid until the next OP_Compare that has
2092** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2093** occur immediately prior to the OP_Compare.
drhb1702022016-01-30 00:45:18 +00002094**
2095** The first integer in the P4 integer array is the length of the array
2096** and does not become part of the permutation.
drh0acb7e42008-06-25 00:12:41 +00002097*/
2098case OP_Permutation: {
2099 assert( pOp->p4type==P4_INTARRAY );
2100 assert( pOp->p4.ai );
drhb1702022016-01-30 00:45:18 +00002101 aPermute = pOp->p4.ai + 1;
drh0acb7e42008-06-25 00:12:41 +00002102 break;
2103}
2104
drh953f7612012-12-07 22:18:54 +00002105/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002106** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002107**
drh710c4842010-08-30 01:17:20 +00002108** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2109** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002110** the comparison for use by the next OP_Jump instruct.
2111**
drh0ca10df2012-12-08 13:26:23 +00002112** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2113** determined by the most recent OP_Permutation operator. If the
2114** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2115** order.
2116**
drh0acb7e42008-06-25 00:12:41 +00002117** P4 is a KeyInfo structure that defines collating sequences and sort
2118** orders for the comparison. The permutation applies to registers
2119** only. The KeyInfo elements are used sequentially.
2120**
2121** The comparison is a sort comparison, so NULLs compare equal,
2122** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002123** and strings are less than blobs.
2124*/
2125case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002126 int n;
2127 int i;
2128 int p1;
2129 int p2;
2130 const KeyInfo *pKeyInfo;
2131 int idx;
2132 CollSeq *pColl; /* Collating sequence to use on this term */
2133 int bRev; /* True for DESCENDING sort order */
2134
drh953f7612012-12-07 22:18:54 +00002135 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002136 n = pOp->p3;
2137 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002138 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002139 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002140 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002141 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002142#if SQLITE_DEBUG
2143 if( aPermute ){
2144 int k, mx = 0;
2145 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
drh9f6168b2016-03-19 23:32:58 +00002146 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2147 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002148 }else{
drh9f6168b2016-03-19 23:32:58 +00002149 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2150 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002151 }
2152#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002153 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002154 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002155 assert( memIsValid(&aMem[p1+idx]) );
2156 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002157 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2158 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002159 assert( i<pKeyInfo->nField );
2160 pColl = pKeyInfo->aColl[i];
2161 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002162 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002163 if( iCompare ){
2164 if( bRev ) iCompare = -iCompare;
2165 break;
2166 }
drh16ee60f2008-06-20 18:13:25 +00002167 }
drh0acb7e42008-06-25 00:12:41 +00002168 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002169 break;
2170}
2171
2172/* Opcode: Jump P1 P2 P3 * *
2173**
2174** Jump to the instruction at address P1, P2, or P3 depending on whether
2175** in the most recent OP_Compare instruction the P1 vector was less than
2176** equal to, or greater than the P2 vector, respectively.
2177*/
drh0acb7e42008-06-25 00:12:41 +00002178case OP_Jump: { /* jump */
2179 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002180 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002181 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002182 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002183 }else{
drhf56fa462015-04-13 21:39:54 +00002184 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002185 }
2186 break;
2187}
2188
drh5b6afba2008-01-05 16:29:28 +00002189/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002190** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002191**
drh5b6afba2008-01-05 16:29:28 +00002192** Take the logical AND of the values in registers P1 and P2 and
2193** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002194**
drh5b6afba2008-01-05 16:29:28 +00002195** If either P1 or P2 is 0 (false) then the result is 0 even if
2196** the other input is NULL. A NULL and true or two NULLs give
2197** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002198*/
drh5b6afba2008-01-05 16:29:28 +00002199/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002200** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002201**
2202** Take the logical OR of the values in register P1 and P2 and
2203** store the answer in register P3.
2204**
2205** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2206** even if the other input is NULL. A NULL and false or two NULLs
2207** give a NULL output.
2208*/
2209case OP_And: /* same as TK_AND, in1, in2, out3 */
2210case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002211 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2212 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002213
drh3c657212009-11-17 23:59:58 +00002214 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002215 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002216 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002217 }else{
drh5b6afba2008-01-05 16:29:28 +00002218 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002219 }
drh3c657212009-11-17 23:59:58 +00002220 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002221 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002222 v2 = 2;
2223 }else{
drh5b6afba2008-01-05 16:29:28 +00002224 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002225 }
2226 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002227 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002228 v1 = and_logic[v1*3+v2];
2229 }else{
drh5b6afba2008-01-05 16:29:28 +00002230 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002231 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002232 }
drh3c657212009-11-17 23:59:58 +00002233 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002234 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002235 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002236 }else{
drh5b6afba2008-01-05 16:29:28 +00002237 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002238 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002239 }
drh5e00f6c2001-09-13 13:46:56 +00002240 break;
2241}
2242
drhe99fa2a2008-12-15 15:27:51 +00002243/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002244** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002245**
drhe99fa2a2008-12-15 15:27:51 +00002246** Interpret the value in register P1 as a boolean value. Store the
2247** boolean complement in register P2. If the value in register P1 is
2248** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002249*/
drh93952eb2009-11-13 19:43:43 +00002250case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002251 pIn1 = &aMem[pOp->p1];
2252 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002253 sqlite3VdbeMemSetNull(pOut);
2254 if( (pIn1->flags & MEM_Null)==0 ){
2255 pOut->flags = MEM_Int;
2256 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002257 }
drh5e00f6c2001-09-13 13:46:56 +00002258 break;
2259}
2260
drhe99fa2a2008-12-15 15:27:51 +00002261/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002262** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002263**
drhe99fa2a2008-12-15 15:27:51 +00002264** Interpret the content of register P1 as an integer. Store the
2265** ones-complement of the P1 value into register P2. If P1 holds
2266** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002267*/
drh93952eb2009-11-13 19:43:43 +00002268case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002269 pIn1 = &aMem[pOp->p1];
2270 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002271 sqlite3VdbeMemSetNull(pOut);
2272 if( (pIn1->flags & MEM_Null)==0 ){
2273 pOut->flags = MEM_Int;
2274 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002275 }
drhbf4133c2001-10-13 02:59:08 +00002276 break;
2277}
2278
drh48f2d3b2011-09-16 01:34:43 +00002279/* Opcode: Once P1 P2 * * *
2280**
drh5dad9a32014-07-25 18:37:42 +00002281** Check the "once" flag number P1. If it is set, jump to instruction P2.
2282** Otherwise, set the flag and fall through to the next instruction.
2283** In other words, this opcode causes all following opcodes up through P2
2284** (but not including P2) to run just once and to be skipped on subsequent
2285** times through the loop.
2286**
2287** All "once" flags are initially cleared whenever a prepared statement
2288** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002289*/
dan1d8cb212011-12-09 13:24:16 +00002290case OP_Once: { /* jump */
2291 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002292 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002293 if( p->aOnceFlag[pOp->p1] ){
drhf56fa462015-04-13 21:39:54 +00002294 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002295 }else{
2296 p->aOnceFlag[pOp->p1] = 1;
2297 }
2298 break;
2299}
2300
drh3c84ddf2008-01-09 02:15:38 +00002301/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002302**
drhef8662b2011-06-20 21:47:58 +00002303** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002304** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002305** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002306*/
drh3c84ddf2008-01-09 02:15:38 +00002307/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002308**
drhef8662b2011-06-20 21:47:58 +00002309** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002310** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002311** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002312*/
drh9cbf3422008-01-17 16:22:13 +00002313case OP_If: /* jump, in1 */
2314case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002315 int c;
drh3c657212009-11-17 23:59:58 +00002316 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002317 if( pIn1->flags & MEM_Null ){
2318 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002319 }else{
drhba0232a2005-06-06 17:27:19 +00002320#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002321 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002322#else
drh3c84ddf2008-01-09 02:15:38 +00002323 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002324#endif
drhf5905aa2002-05-26 20:54:33 +00002325 if( pOp->opcode==OP_IfNot ) c = !c;
2326 }
drh688852a2014-02-17 22:40:43 +00002327 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002328 if( c ){
drhf56fa462015-04-13 21:39:54 +00002329 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002330 }
drh5e00f6c2001-09-13 13:46:56 +00002331 break;
2332}
2333
drh830ecf92009-06-18 00:41:55 +00002334/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002335** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002336**
drh830ecf92009-06-18 00:41:55 +00002337** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002338*/
drh9cbf3422008-01-17 16:22:13 +00002339case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002340 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002341 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002342 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002343 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002344 }
drh477df4b2008-01-05 18:48:24 +00002345 break;
2346}
2347
drh98757152008-01-09 23:04:12 +00002348/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002349** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002350**
drh6a288a32008-01-07 19:20:24 +00002351** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002352*/
drh9cbf3422008-01-17 16:22:13 +00002353case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002354 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002355 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002356 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002357 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002358 }
drh5e00f6c2001-09-13 13:46:56 +00002359 break;
2360}
2361
drh3e9ca092009-09-08 01:14:48 +00002362/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002363** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002364**
danielk1977cfcdaef2004-05-12 07:33:33 +00002365** Interpret the data that cursor P1 points to as a structure built using
2366** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002367** information about the format of the data.) Extract the P2-th column
2368** from this record. If there are less that (P2+1)
2369** values in the record, extract a NULL.
2370**
drh9cbf3422008-01-17 16:22:13 +00002371** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002372**
danielk19771f4aa332008-01-03 09:51:55 +00002373** If the column contains fewer than P2 fields, then extract a NULL. Or,
2374** if the P4 argument is a P4_MEM use the value of the P4 argument as
2375** the result.
drh3e9ca092009-09-08 01:14:48 +00002376**
2377** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2378** then the cache of the cursor is reset prior to extracting the column.
2379** The first OP_Column against a pseudo-table after the value of the content
2380** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002381**
drhdda5c082012-03-28 13:41:10 +00002382** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2383** the result is guaranteed to only be used as the argument of a length()
2384** or typeof() function, respectively. The loading of large blobs can be
2385** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002386*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002387case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002388 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002389 int p2; /* column number to retrieve */
2390 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002391 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002392 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002393 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002394 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002395 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002396 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002397 const u8 *zData; /* Part of the record being decoded */
2398 const u8 *zHdr; /* Next unparsed byte of the header */
2399 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002400 u32 offset; /* Offset into the data */
drhc6ce38832015-10-15 21:30:24 +00002401 u64 offset64; /* 64-bit offset */
drh501932c2013-11-21 21:59:53 +00002402 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002403 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002404 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002405
dande892d92016-01-29 19:29:45 +00002406 pC = p->apCsr[pOp->p1];
drh856c1032009-06-02 15:21:42 +00002407 p2 = pOp->p2;
dande892d92016-01-29 19:29:45 +00002408
2409 /* If the cursor cache is stale, bring it up-to-date */
2410 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
2411
drh9f6168b2016-03-19 23:32:58 +00002412 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002413 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002414 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002415 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
danielk19776c924092007-11-12 08:09:34 +00002416 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002417 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002418 aOffset = pC->aOffset;
drh62aaa6c2015-11-21 17:27:42 +00002419 assert( pC->eCurType!=CURTYPE_VTAB );
drhc960dcb2015-11-20 19:22:01 +00002420 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2421 assert( pC->eCurType!=CURTYPE_SORTER );
2422 pCrsr = pC->uc.pCursor;
drh399af1d2013-11-20 17:25:55 +00002423
drh399af1d2013-11-20 17:25:55 +00002424 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002425 if( pC->cacheStatus!=p->cacheCtr ){
danielk1977192ac1d2004-05-10 07:17:30 +00002426 if( pC->nullRow ){
drhc960dcb2015-11-20 19:22:01 +00002427 if( pC->eCurType==CURTYPE_PSEUDO ){
2428 assert( pC->uc.pseudoTableReg>0 );
2429 pReg = &aMem[pC->uc.pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002430 assert( pReg->flags & MEM_Blob );
2431 assert( memIsValid(pReg) );
2432 pC->payloadSize = pC->szRow = avail = pReg->n;
2433 pC->aRow = (u8*)pReg->z;
2434 }else{
drh6b5631e2014-11-05 15:57:39 +00002435 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002436 goto op_column_out;
2437 }
danielk1977192ac1d2004-05-10 07:17:30 +00002438 }else{
drhc960dcb2015-11-20 19:22:01 +00002439 assert( pC->eCurType==CURTYPE_BTREE );
drhc8606e42013-11-20 19:28:03 +00002440 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002441 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002442 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2443 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2444 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2445 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2446 ** payload size, so it is impossible for payloadSize64 to be
2447 ** larger than 32 bits. */
2448 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2449 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2450 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002451 }else{
drh399af1d2013-11-20 17:25:55 +00002452 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2453 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2454 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2455 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002456 }
drh399af1d2013-11-20 17:25:55 +00002457 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2458 if( pC->payloadSize <= (u32)avail ){
2459 pC->szRow = pC->payloadSize;
drh5f7dacb2015-11-20 13:33:56 +00002460 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2461 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002462 }else{
drh399af1d2013-11-20 17:25:55 +00002463 pC->szRow = avail;
2464 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002465 }
drh9188b382004-05-14 21:12:22 +00002466 pC->cacheStatus = p->cacheCtr;
drh399af1d2013-11-20 17:25:55 +00002467 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2468 pC->nHdrParsed = 0;
2469 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002470
drhc81aa2e2014-10-11 23:31:52 +00002471
2472 if( avail<offset ){
2473 /* pC->aRow does not have to hold the entire row, but it does at least
2474 ** need to cover the header of the record. If pC->aRow does not contain
2475 ** the complete header, then set it to zero, forcing the header to be
2476 ** dynamically allocated. */
2477 pC->aRow = 0;
2478 pC->szRow = 0;
drh848a3322015-10-16 12:53:47 +00002479
2480 /* Make sure a corrupt database has not given us an oversize header.
2481 ** Do this now to avoid an oversize memory allocation.
2482 **
2483 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2484 ** types use so much data space that there can only be 4096 and 32 of
2485 ** them, respectively. So the maximum header length results from a
2486 ** 3-byte type for each of the maximum of 32768 columns plus three
2487 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2488 */
2489 if( offset > 98307 || offset > pC->payloadSize ){
2490 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002491 goto abort_due_to_error;
drh848a3322015-10-16 12:53:47 +00002492 }
drhc81aa2e2014-10-11 23:31:52 +00002493 }
2494
2495 /* The following goto is an optimization. It can be omitted and
2496 ** everything will still work. But OP_Column is measurably faster
2497 ** by skipping the subsequent conditional, which is always true.
2498 */
2499 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2500 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002501 }
drh35cd6432009-06-05 14:17:21 +00002502
drh399af1d2013-11-20 17:25:55 +00002503 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002504 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002505 */
drhc8606e42013-11-20 19:28:03 +00002506 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002507 /* If there is more header available for parsing in the record, try
2508 ** to extract additional fields up through the p2+1-th field
drh35cd6432009-06-05 14:17:21 +00002509 */
drhc81aa2e2014-10-11 23:31:52 +00002510 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002511 if( pC->iHdrOffset<aOffset[0] ){
2512 /* Make sure zData points to enough of the record to cover the header. */
2513 if( pC->aRow==0 ){
2514 memset(&sMem, 0, sizeof(sMem));
drh95fa6062015-10-16 13:50:08 +00002515 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
drh9467abf2016-02-17 18:44:11 +00002516 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhc8606e42013-11-20 19:28:03 +00002517 zData = (u8*)sMem.z;
2518 }else{
2519 zData = pC->aRow;
drh9188b382004-05-14 21:12:22 +00002520 }
drhc8606e42013-11-20 19:28:03 +00002521
drh0c8f7602014-09-19 16:56:45 +00002522 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002523 i = pC->nHdrParsed;
drhc6ce38832015-10-15 21:30:24 +00002524 offset64 = aOffset[i];
drhc8606e42013-11-20 19:28:03 +00002525 zHdr = zData + pC->iHdrOffset;
2526 zEndHdr = zData + aOffset[0];
2527 assert( i<=p2 && zHdr<zEndHdr );
2528 do{
drh95fa6062015-10-16 13:50:08 +00002529 if( (t = zHdr[0])<0x80 ){
drhc8606e42013-11-20 19:28:03 +00002530 zHdr++;
drhfaf37272015-10-16 14:23:42 +00002531 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002532 }else{
drhc8606e42013-11-20 19:28:03 +00002533 zHdr += sqlite3GetVarint32(zHdr, &t);
drhfaf37272015-10-16 14:23:42 +00002534 offset64 += sqlite3VdbeSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002535 }
drhfaf37272015-10-16 14:23:42 +00002536 pC->aType[i++] = t;
drhc6ce38832015-10-15 21:30:24 +00002537 aOffset[i] = (u32)(offset64 & 0xffffffff);
drhc8606e42013-11-20 19:28:03 +00002538 }while( i<=p2 && zHdr<zEndHdr );
2539 pC->nHdrParsed = i;
2540 pC->iHdrOffset = (u32)(zHdr - zData);
drhc8606e42013-11-20 19:28:03 +00002541
drh8dd83622014-10-13 23:39:02 +00002542 /* The record is corrupt if any of the following are true:
2543 ** (1) the bytes of the header extend past the declared header size
drh8dd83622014-10-13 23:39:02 +00002544 ** (2) the entire header was used but not all data was used
drh8dd83622014-10-13 23:39:02 +00002545 ** (3) the end of the data extends beyond the end of the record.
drhc8606e42013-11-20 19:28:03 +00002546 */
drhc6ce38832015-10-15 21:30:24 +00002547 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2548 || (offset64 > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002549 ){
drhddb2b4a2016-03-25 12:10:32 +00002550 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
drhc8606e42013-11-20 19:28:03 +00002551 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002552 goto abort_due_to_error;
danielk1977dedf45b2006-01-13 17:12:01 +00002553 }
drhddb2b4a2016-03-25 12:10:32 +00002554 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2555
mistachkin8c7cd6a2015-12-16 21:09:53 +00002556 }else{
drh9fbc8852016-01-04 03:48:46 +00002557 t = 0;
drh9188b382004-05-14 21:12:22 +00002558 }
drhd3194f52004-05-27 19:59:32 +00002559
drhf2db3382015-04-30 20:33:25 +00002560 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002561 ** still not up to p2, that means that the record has fewer than p2
2562 ** columns. So the result will be either the default value or a NULL.
drhd3194f52004-05-27 19:59:32 +00002563 */
drhc8606e42013-11-20 19:28:03 +00002564 if( pC->nHdrParsed<=p2 ){
2565 if( pOp->p4type==P4_MEM ){
2566 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2567 }else{
drh22e8d832014-10-29 00:58:38 +00002568 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002569 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002570 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002571 }
drh95fa6062015-10-16 13:50:08 +00002572 }else{
2573 t = pC->aType[p2];
danielk1977cfcdaef2004-05-12 07:33:33 +00002574 }
danielk1977192ac1d2004-05-10 07:17:30 +00002575
drh380d6852013-11-20 20:58:00 +00002576 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002577 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002578 ** all valid.
drh9188b382004-05-14 21:12:22 +00002579 */
drhc8606e42013-11-20 19:28:03 +00002580 assert( p2<pC->nHdrParsed );
2581 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002582 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002583 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh95fa6062015-10-16 13:50:08 +00002584 assert( t==pC->aType[p2] );
drh69f6e252016-01-11 18:05:00 +00002585 pDest->enc = encoding;
drhc8606e42013-11-20 19:28:03 +00002586 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002587 /* This is the common case where the desired content fits on the original
2588 ** page - where the content is not on an overflow page */
drh69f6e252016-01-11 18:05:00 +00002589 zData = pC->aRow + aOffset[p2];
2590 if( t<12 ){
2591 sqlite3VdbeSerialGet(zData, t, pDest);
2592 }else{
2593 /* If the column value is a string, we need a persistent value, not
2594 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2595 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2596 */
2597 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2598 pDest->n = len = (t-12)/2;
2599 if( pDest->szMalloc < len+2 ){
2600 pDest->flags = MEM_Null;
2601 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2602 }else{
2603 pDest->z = pDest->zMalloc;
2604 }
2605 memcpy(pDest->z, zData, len);
2606 pDest->z[len] = 0;
2607 pDest->z[len+1] = 0;
2608 pDest->flags = aFlag[t&1];
2609 }
danielk197736963fd2005-02-19 08:18:05 +00002610 }else{
drh58c96082013-12-23 11:33:32 +00002611 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002612 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2613 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2614 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002615 ){
drh2a2a6962014-09-16 18:22:44 +00002616 /* Content is irrelevant for
2617 ** 1. the typeof() function,
2618 ** 2. the length(X) function if X is a blob, and
2619 ** 3. if the content length is zero.
2620 ** So we might as well use bogus content rather than reading
drh69f6e252016-01-11 18:05:00 +00002621 ** content from disk. */
2622 static u8 aZero[8]; /* This is the bogus content */
2623 sqlite3VdbeSerialGet(aZero, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002624 }else{
drh14da87f2013-11-20 21:51:33 +00002625 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002626 pDest);
drh9467abf2016-02-17 18:44:11 +00002627 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2628 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2629 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002630 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002631 }
drhd3194f52004-05-27 19:59:32 +00002632
danielk19773c9cc8d2005-01-17 03:40:08 +00002633op_column_out:
drhb7654112008-01-12 12:48:07 +00002634 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002635 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002636 break;
2637}
2638
danielk1977751de562008-04-18 09:01:15 +00002639/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002640** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002641**
2642** Apply affinities to a range of P2 registers starting with P1.
2643**
2644** P4 is a string that is P2 characters long. The nth character of the
2645** string indicates the column affinity that should be used for the nth
2646** memory cell in the range.
2647*/
2648case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002649 const char *zAffinity; /* The affinity to be applied */
2650 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002651
drh856c1032009-06-02 15:21:42 +00002652 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002653 assert( zAffinity!=0 );
2654 assert( zAffinity[pOp->p2]==0 );
2655 pIn1 = &aMem[pOp->p1];
2656 while( (cAff = *(zAffinity++))!=0 ){
drh9f6168b2016-03-19 23:32:58 +00002657 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002658 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002659 applyAffinity(pIn1, cAff, encoding);
2660 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002661 }
2662 break;
2663}
2664
drh1db639c2008-01-17 02:36:28 +00002665/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002666** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002667**
drh710c4842010-08-30 01:17:20 +00002668** Convert P2 registers beginning with P1 into the [record format]
2669** use as a data record in a database table or as a key
2670** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002671**
danielk1977751de562008-04-18 09:01:15 +00002672** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002673** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002674** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002675**
drh8a512562005-11-14 22:29:05 +00002676** The mapping from character to affinity is given by the SQLITE_AFF_
2677** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002678**
drh05883a32015-06-02 15:32:08 +00002679** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002680*/
drh1db639c2008-01-17 02:36:28 +00002681case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002682 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2683 Mem *pRec; /* The new record */
2684 u64 nData; /* Number of bytes of data space */
2685 int nHdr; /* Number of bytes of header space */
2686 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002687 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002688 int nVarint; /* Number of bytes in a varint */
2689 u32 serial_type; /* Type field */
2690 Mem *pData0; /* First field to be combined into the record */
2691 Mem *pLast; /* Last field of the record */
2692 int nField; /* Number of fields in the record */
2693 char *zAffinity; /* The affinity string for the record */
2694 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002695 int i; /* Space used in zNewRecord[] header */
2696 int j; /* Space used in zNewRecord[] content */
drhbe37c122015-10-16 14:54:17 +00002697 u32 len; /* Length of a field */
drh856c1032009-06-02 15:21:42 +00002698
drhf3218fe2004-05-28 08:21:02 +00002699 /* Assuming the record contains N fields, the record format looks
2700 ** like this:
2701 **
drh7a224de2004-06-02 01:22:02 +00002702 ** ------------------------------------------------------------------------
2703 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2704 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002705 **
drh9cbf3422008-01-17 16:22:13 +00002706 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002707 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002708 **
2709 ** Each type field is a varint representing the serial type of the
2710 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002711 ** hdr-size field is also a varint which is the offset from the beginning
2712 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002713 */
drh856c1032009-06-02 15:21:42 +00002714 nData = 0; /* Number of bytes of data space */
2715 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002716 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002717 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002718 zAffinity = pOp->p4.z;
drh9f6168b2016-03-19 23:32:58 +00002719 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002720 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002721 nField = pOp->p2;
2722 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002723 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002724
drh2b4ded92010-09-27 21:09:31 +00002725 /* Identify the output register */
2726 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2727 pOut = &aMem[pOp->p3];
2728 memAboutToChange(p, pOut);
2729
drh3e6c0602013-12-10 20:53:01 +00002730 /* Apply the requested affinity to all inputs
2731 */
2732 assert( pData0<=pLast );
2733 if( zAffinity ){
2734 pRec = pData0;
2735 do{
drh57bf4a82014-02-17 14:59:22 +00002736 applyAffinity(pRec++, *(zAffinity++), encoding);
2737 assert( zAffinity[0]==0 || pRec<=pLast );
2738 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002739 }
2740
drhf3218fe2004-05-28 08:21:02 +00002741 /* Loop through the elements that will make up the record to figure
2742 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002743 */
drh038b7bc2013-12-09 23:17:22 +00002744 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002745 do{
drh2b4ded92010-09-27 21:09:31 +00002746 assert( memIsValid(pRec) );
drhbe37c122015-10-16 14:54:17 +00002747 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
drhfdf972a2007-05-02 13:30:27 +00002748 if( pRec->flags & MEM_Zero ){
drh038b7bc2013-12-09 23:17:22 +00002749 if( nData ){
drh53e66c32015-07-24 15:49:23 +00002750 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
drh038b7bc2013-12-09 23:17:22 +00002751 }else{
2752 nZero += pRec->u.nZero;
2753 len -= pRec->u.nZero;
2754 }
drhfdf972a2007-05-02 13:30:27 +00002755 }
drh8079a0d2006-01-12 17:20:50 +00002756 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002757 testcase( serial_type==127 );
2758 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002759 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh45c3c662016-04-07 14:16:16 +00002760 if( pRec==pData0 ) break;
2761 pRec--;
2762 }while(1);
danielk19773d1bfea2004-05-14 11:00:53 +00002763
drh654858d2014-11-20 02:18:14 +00002764 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2765 ** which determines the total number of bytes in the header. The varint
2766 ** value is the size of the header in bytes including the size varint
2767 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002768 testcase( nHdr==126 );
2769 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002770 if( nHdr<=126 ){
2771 /* The common case */
2772 nHdr += 1;
2773 }else{
2774 /* Rare case of a really large header */
2775 nVarint = sqlite3VarintLen(nHdr);
2776 nHdr += nVarint;
2777 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002778 }
drh038b7bc2013-12-09 23:17:22 +00002779 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002780 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002781 goto too_big;
2782 }
drhf3218fe2004-05-28 08:21:02 +00002783
danielk1977a7a8e142008-02-13 18:25:27 +00002784 /* Make sure the output register has a buffer large enough to store
2785 ** the new record. The output register (pOp->p3) is not allowed to
2786 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002787 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002788 */
drh322f2852014-09-19 00:43:39 +00002789 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002790 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002791 }
danielk1977a7a8e142008-02-13 18:25:27 +00002792 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002793
2794 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002795 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002796 j = nHdr;
2797 assert( pData0<=pLast );
2798 pRec = pData0;
2799 do{
drhfacf47a2014-10-13 20:12:47 +00002800 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002801 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2802 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002803 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002804 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2805 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002806 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002807 }while( (++pRec)<=pLast );
2808 assert( i==nHdr );
2809 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002810
drh9f6168b2016-03-19 23:32:58 +00002811 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002812 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002813 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002814 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002815 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002816 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002817 }
drh477df4b2008-01-05 18:48:24 +00002818 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002819 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002820 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002821 break;
2822}
2823
danielk1977a5533162009-02-24 10:01:51 +00002824/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002825** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002826**
2827** Store the number of entries (an integer value) in the table or index
2828** opened by cursor P1 in register P2
2829*/
2830#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002831case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002832 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002833 BtCursor *pCrsr;
2834
drhc960dcb2015-11-20 19:22:01 +00002835 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2836 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00002837 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002838 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002839 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh9467abf2016-02-17 18:44:11 +00002840 if( rc ) goto abort_due_to_error;
drh27a348c2015-04-13 19:14:06 +00002841 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002842 pOut->u.i = nEntry;
2843 break;
2844}
2845#endif
2846
danielk1977fd7f0452008-12-17 17:30:26 +00002847/* Opcode: Savepoint P1 * * P4 *
2848**
2849** Open, release or rollback the savepoint named by parameter P4, depending
2850** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2851** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2852*/
2853case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002854 int p1; /* Value of P1 operand */
2855 char *zName; /* Name of savepoint */
2856 int nName;
2857 Savepoint *pNew;
2858 Savepoint *pSavepoint;
2859 Savepoint *pTmp;
2860 int iSavepoint;
2861 int ii;
2862
2863 p1 = pOp->p1;
2864 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002865
2866 /* Assert that the p1 parameter is valid. Also that if there is no open
2867 ** transaction, then there cannot be any savepoints.
2868 */
2869 assert( db->pSavepoint==0 || db->autoCommit==0 );
2870 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2871 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2872 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002873 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002874
2875 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002876 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002877 /* A new savepoint cannot be created if there are active write
2878 ** statements (i.e. open read/write incremental blob handles).
2879 */
drh22c17b82015-05-15 04:13:15 +00002880 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002881 rc = SQLITE_BUSY;
2882 }else{
drh856c1032009-06-02 15:21:42 +00002883 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002884
drhbe07ec52011-06-03 12:15:26 +00002885#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002886 /* This call is Ok even if this savepoint is actually a transaction
2887 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2888 ** If this is a transaction savepoint being opened, it is guaranteed
2889 ** that the db->aVTrans[] array is empty. */
2890 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002891 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2892 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002893 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002894#endif
dand9495cd2011-04-27 12:08:04 +00002895
danielk1977fd7f0452008-12-17 17:30:26 +00002896 /* Create a new savepoint structure. */
drh575fad62016-02-05 13:38:36 +00002897 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
danielk1977fd7f0452008-12-17 17:30:26 +00002898 if( pNew ){
2899 pNew->zName = (char *)&pNew[1];
2900 memcpy(pNew->zName, zName, nName+1);
2901
2902 /* If there is no open transaction, then mark this as a special
2903 ** "transaction savepoint". */
2904 if( db->autoCommit ){
2905 db->autoCommit = 0;
2906 db->isTransactionSavepoint = 1;
2907 }else{
2908 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002909 }
dan21e8d012011-03-03 20:05:59 +00002910
danielk1977fd7f0452008-12-17 17:30:26 +00002911 /* Link the new savepoint into the database handle's list. */
2912 pNew->pNext = db->pSavepoint;
2913 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002914 pNew->nDeferredCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00002915 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002916 }
2917 }
2918 }else{
drh856c1032009-06-02 15:21:42 +00002919 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002920
2921 /* Find the named savepoint. If there is no such savepoint, then an
2922 ** an error is returned to the user. */
2923 for(
drh856c1032009-06-02 15:21:42 +00002924 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002925 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002926 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002927 ){
2928 iSavepoint++;
2929 }
2930 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00002931 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002932 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002933 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002934 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002935 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002936 */
drh22c17b82015-05-15 04:13:15 +00002937 sqlite3VdbeError(p, "cannot release savepoint - "
2938 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002939 rc = SQLITE_BUSY;
2940 }else{
2941
2942 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002943 ** and this is a RELEASE command, then the current transaction
2944 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002945 */
2946 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2947 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002948 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002949 goto vdbe_return;
2950 }
danielk1977fd7f0452008-12-17 17:30:26 +00002951 db->autoCommit = 1;
2952 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002953 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002954 db->autoCommit = 0;
2955 p->rc = rc = SQLITE_BUSY;
2956 goto vdbe_return;
2957 }
danielk197734cf35d2008-12-18 18:31:38 +00002958 db->isTransactionSavepoint = 0;
2959 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002960 }else{
drh47b7fc72014-11-11 01:33:57 +00002961 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00002962 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002963 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00002964 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00002965 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00002966 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2967 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00002968 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00002969 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00002970 }
drh47b7fc72014-11-11 01:33:57 +00002971 }else{
2972 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00002973 }
2974 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002975 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2976 if( rc!=SQLITE_OK ){
2977 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002978 }
danielk1977fd7f0452008-12-17 17:30:26 +00002979 }
drh47b7fc72014-11-11 01:33:57 +00002980 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00002981 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002982 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002983 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002984 }
2985 }
2986
2987 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2988 ** savepoints nested inside of the savepoint being operated on. */
2989 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002990 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002991 db->pSavepoint = pTmp->pNext;
2992 sqlite3DbFree(db, pTmp);
2993 db->nSavepoint--;
2994 }
2995
dan1da40a32009-09-19 17:00:31 +00002996 /* If it is a RELEASE, then destroy the savepoint being operated on
2997 ** too. If it is a ROLLBACK TO, then set the number of deferred
2998 ** constraint violations present in the database to the value stored
2999 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00003000 if( p1==SAVEPOINT_RELEASE ){
3001 assert( pSavepoint==db->pSavepoint );
3002 db->pSavepoint = pSavepoint->pNext;
3003 sqlite3DbFree(db, pSavepoint);
3004 if( !isTransaction ){
3005 db->nSavepoint--;
3006 }
dan1da40a32009-09-19 17:00:31 +00003007 }else{
3008 db->nDeferredCons = pSavepoint->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003009 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003010 }
dand9495cd2011-04-27 12:08:04 +00003011
danea8562e2015-04-18 16:25:54 +00003012 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00003013 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3014 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3015 }
danielk1977fd7f0452008-12-17 17:30:26 +00003016 }
3017 }
drh9467abf2016-02-17 18:44:11 +00003018 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003019
3020 break;
3021}
3022
drh98757152008-01-09 23:04:12 +00003023/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00003024**
3025** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00003026** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00003027** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3028** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00003029**
3030** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00003031*/
drh9cbf3422008-01-17 16:22:13 +00003032case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00003033 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00003034 int iRollback;
danielk19771d850a72004-05-31 08:26:49 +00003035
drh856c1032009-06-02 15:21:42 +00003036 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00003037 iRollback = pOp->p2;
drhad4a4b82008-11-05 16:37:34 +00003038 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00003039 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00003040 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00003041 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00003042
drhb0c88652016-02-01 13:21:13 +00003043 if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003044 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003045 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003046 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003047 db->autoCommit = 1;
drhb0c88652016-02-01 13:21:13 +00003048 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3049 /* If this instruction implements a COMMIT and other VMs are writing
3050 ** return an error indicating that the other VMs must complete first.
3051 */
3052 sqlite3VdbeError(p, "cannot commit transaction - "
3053 "SQL statements in progress");
3054 rc = SQLITE_BUSY;
drh9467abf2016-02-17 18:44:11 +00003055 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00003056 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003057 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003058 }else{
shane7d3846a2008-12-11 02:58:26 +00003059 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003060 }
3061 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3062 p->pc = (int)(pOp - aOp);
3063 db->autoCommit = (u8)(1-desiredAutoCommit);
3064 p->rc = rc = SQLITE_BUSY;
3065 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003066 }
danielk1977bd434552009-03-18 10:33:00 +00003067 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00003068 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003069 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003070 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003071 }else{
drh900b31e2007-08-28 02:27:51 +00003072 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003073 }
drh900b31e2007-08-28 02:27:51 +00003074 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003075 }else{
drh22c17b82015-05-15 04:13:15 +00003076 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003077 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003078 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003079 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003080
3081 rc = SQLITE_ERROR;
drh9467abf2016-02-17 18:44:11 +00003082 goto abort_due_to_error;
drh663fc632002-02-02 18:49:19 +00003083 }
3084 break;
3085}
3086
drhb22f7c82014-02-06 23:56:27 +00003087/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003088**
drh05a86c52014-02-16 01:55:49 +00003089** Begin a transaction on database P1 if a transaction is not already
3090** active.
3091** If P2 is non-zero, then a write-transaction is started, or if a
3092** read-transaction is already active, it is upgraded to a write-transaction.
3093** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003094**
drh001bbcb2003-03-19 03:14:00 +00003095** P1 is the index of the database file on which the transaction is
3096** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003097** file used for temporary tables. Indices of 2 or more are used for
3098** attached databases.
drhcabb0812002-09-14 13:47:32 +00003099**
dane0af83a2009-09-08 19:15:01 +00003100** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3101** true (this flag is set if the Vdbe may modify more than one row and may
3102** throw an ABORT exception), a statement transaction may also be opened.
3103** More specifically, a statement transaction is opened iff the database
3104** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003105** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003106** VDBE to be rolled back after an error without having to roll back the
3107** entire transaction. If no error is encountered, the statement transaction
3108** will automatically commit when the VDBE halts.
3109**
drhb22f7c82014-02-06 23:56:27 +00003110** If P5!=0 then this opcode also checks the schema cookie against P3
3111** and the schema generation counter against P4.
3112** The cookie changes its value whenever the database schema changes.
3113** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003114** and that the current process needs to reread the schema. If the schema
3115** cookie in P3 differs from the schema cookie in the database header or
3116** if the schema generation counter in P4 differs from the current
3117** generation counter, then an SQLITE_SCHEMA error is raised and execution
3118** halts. The sqlite3_step() wrapper function might then reprepare the
3119** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003120*/
drh9cbf3422008-01-17 16:22:13 +00003121case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003122 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003123 int iMeta;
3124 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003125
drh1713afb2013-06-28 01:24:57 +00003126 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003127 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003128 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003129 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003130 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3131 rc = SQLITE_READONLY;
3132 goto abort_due_to_error;
3133 }
drh653b82a2009-06-22 11:10:47 +00003134 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003135
danielk197724162fe2004-06-04 06:22:00 +00003136 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003137 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
drhcbd8db32015-08-20 17:18:32 +00003138 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3139 testcase( rc==SQLITE_BUSY_RECOVERY );
3140 if( (rc&0xff)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003141 p->pc = (int)(pOp - aOp);
drhcbd8db32015-08-20 17:18:32 +00003142 p->rc = rc;
drh900b31e2007-08-28 02:27:51 +00003143 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003144 }
drh9e9f1bd2009-10-13 15:36:51 +00003145 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003146 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003147 }
dane0af83a2009-09-08 19:15:01 +00003148
3149 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003150 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003151 ){
3152 assert( sqlite3BtreeIsInTrans(pBt) );
3153 if( p->iStatement==0 ){
3154 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3155 db->nStatement++;
3156 p->iStatement = db->nSavepoint + db->nStatement;
3157 }
dana311b802011-04-26 19:21:34 +00003158
drh346506f2011-05-25 01:16:42 +00003159 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003160 if( rc==SQLITE_OK ){
3161 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3162 }
dan1da40a32009-09-19 17:00:31 +00003163
3164 /* Store the current value of the database handles deferred constraint
3165 ** counter. If the statement transaction needs to be rolled back,
3166 ** the value of this counter needs to be restored too. */
3167 p->nStmtDefCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003168 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003169 }
drhb22f7c82014-02-06 23:56:27 +00003170
drh51a74d42015-02-28 01:04:27 +00003171 /* Gather the schema version number for checking:
3172 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3173 ** each time a query is executed to ensure that the internal cache of the
3174 ** schema used when compiling the SQL query matches the schema of the
3175 ** database against which the compiled query is actually executed.
3176 */
drhb22f7c82014-02-06 23:56:27 +00003177 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3178 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3179 }else{
3180 iGen = iMeta = 0;
3181 }
3182 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3183 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3184 sqlite3DbFree(db, p->zErrMsg);
3185 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3186 /* If the schema-cookie from the database file matches the cookie
3187 ** stored with the in-memory representation of the schema, do
3188 ** not reload the schema from the database file.
3189 **
3190 ** If virtual-tables are in use, this is not just an optimization.
3191 ** Often, v-tables store their data in other SQLite tables, which
3192 ** are queried from within xNext() and other v-table methods using
3193 ** prepared queries. If such a query is out-of-date, we do not want to
3194 ** discard the database schema, as the user code implementing the
3195 ** v-table would have to be ready for the sqlite3_vtab structure itself
3196 ** to be invalidated whenever sqlite3_step() is called from within
3197 ** a v-table method.
3198 */
3199 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3200 sqlite3ResetOneSchema(db, pOp->p1);
3201 }
3202 p->expired = 1;
3203 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003204 }
drh9467abf2016-02-17 18:44:11 +00003205 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003206 break;
3207}
3208
drhb1fdb2a2008-01-05 04:06:03 +00003209/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003210**
drh9cbf3422008-01-17 16:22:13 +00003211** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003212** P3==1 is the schema version. P3==2 is the database format.
3213** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003214** the main database file and P1==1 is the database file used to store
3215** temporary tables.
drh4a324312001-12-21 14:30:42 +00003216**
drh50e5dad2001-09-15 00:57:28 +00003217** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003218** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003219** executing this instruction.
3220*/
drh27a348c2015-04-13 19:14:06 +00003221case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003222 int iMeta;
drh856c1032009-06-02 15:21:42 +00003223 int iDb;
3224 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003225
drh1713afb2013-06-28 01:24:57 +00003226 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003227 iDb = pOp->p1;
3228 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003229 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003230 assert( iDb>=0 && iDb<db->nDb );
3231 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003232 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003233
danielk1977602b4662009-07-02 07:47:33 +00003234 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003235 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003236 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003237 break;
3238}
3239
drh98757152008-01-09 23:04:12 +00003240/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003241**
drh1861afc2016-02-01 21:48:34 +00003242** Write the integer value P3 into cookie number P2 of database P1.
3243** P2==1 is the schema version. P2==2 is the database format.
3244** P2==3 is the recommended pager cache
danielk19770d19f7a2009-06-03 11:25:07 +00003245** size, and so forth. P1==0 is the main database file and P1==1 is the
3246** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003247**
3248** A transaction must be started before executing this opcode.
3249*/
drh1861afc2016-02-01 21:48:34 +00003250case OP_SetCookie: {
drh3f7d4e42004-07-24 14:35:58 +00003251 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003252 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003253 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003254 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003255 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003256 pDb = &db->aDb[pOp->p1];
3257 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003258 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drha3b321d2004-05-11 09:31:31 +00003259 /* See note about index shifting on OP_ReadCookie */
drh1861afc2016-02-01 21:48:34 +00003260 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
danielk19770d19f7a2009-06-03 11:25:07 +00003261 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003262 /* When the schema cookie changes, record the new cookie internally */
drh1861afc2016-02-01 21:48:34 +00003263 pDb->pSchema->schema_cookie = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003264 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003265 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003266 /* Record changes in the file format */
drh1861afc2016-02-01 21:48:34 +00003267 pDb->pSchema->file_format = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003268 }
drhfd426c62006-01-30 15:34:22 +00003269 if( pOp->p1==1 ){
3270 /* Invalidate all prepared statements whenever the TEMP database
3271 ** schema is changed. Ticket #1644 */
3272 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003273 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003274 }
drh9467abf2016-02-17 18:44:11 +00003275 if( rc ) goto abort_due_to_error;
drh50e5dad2001-09-15 00:57:28 +00003276 break;
3277}
3278
drh98757152008-01-09 23:04:12 +00003279/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003280** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003281**
drhecdc7532001-09-23 02:35:53 +00003282** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003283** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003284** P3==0 means the main database, P3==1 means the database used for
3285** temporary tables, and P3>1 means used the corresponding attached
3286** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003287** values need not be contiguous but all P1 values should be small integers.
3288** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003289**
drh98757152008-01-09 23:04:12 +00003290** If P5!=0 then use the content of register P2 as the root page, not
3291** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003292**
drhb19a2bc2001-09-16 00:13:26 +00003293** There will be a read lock on the database whenever there is an
3294** open cursor. If the database was unlocked prior to this instruction
3295** then a read lock is acquired as part of this instruction. A read
3296** lock allows other processes to read the database but prohibits
3297** any other process from modifying the database. The read lock is
3298** released when all cursors are closed. If this instruction attempts
3299** to get a read lock but fails, the script terminates with an
3300** SQLITE_BUSY error code.
3301**
danielk1977d336e222009-02-20 10:58:41 +00003302** The P4 value may be either an integer (P4_INT32) or a pointer to
3303** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3304** structure, then said structure defines the content and collating
3305** sequence of the index being opened. Otherwise, if P4 is an integer
3306** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003307**
drh35263192014-07-22 20:02:19 +00003308** See also: OpenWrite, ReopenIdx
3309*/
3310/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3311** Synopsis: root=P2 iDb=P3
3312**
3313** The ReopenIdx opcode works exactly like ReadOpen except that it first
3314** checks to see if the cursor on P1 is already open with a root page
3315** number of P2 and if it is this opcode becomes a no-op. In other words,
3316** if the cursor is already open, do not reopen it.
3317**
3318** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3319** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3320** every other ReopenIdx or OpenRead for the same cursor number.
3321**
3322** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003323*/
drh98757152008-01-09 23:04:12 +00003324/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003325** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003326**
3327** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003328** page is P2. Or if P5!=0 use the content of register P2 to find the
3329** root page.
drhecdc7532001-09-23 02:35:53 +00003330**
danielk1977d336e222009-02-20 10:58:41 +00003331** The P4 value may be either an integer (P4_INT32) or a pointer to
3332** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3333** structure, then said structure defines the content and collating
3334** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003335** value, it is set to the number of columns in the table, or to the
3336** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003337**
drh001bbcb2003-03-19 03:14:00 +00003338** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003339** in read/write mode. For a given table, there can be one or more read-only
3340** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003341**
drh001bbcb2003-03-19 03:14:00 +00003342** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003343*/
drh35263192014-07-22 20:02:19 +00003344case OP_ReopenIdx: {
drh856c1032009-06-02 15:21:42 +00003345 int nField;
3346 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003347 int p2;
3348 int iDb;
drhf57b3392001-10-08 13:22:32 +00003349 int wrFlag;
3350 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003351 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003352 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003353
drhe0997b32015-03-20 14:57:50 +00003354 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003355 assert( pOp->p4type==P4_KEYINFO );
3356 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003357 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003358 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003359 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003360 }
3361 /* If the cursor is not currently open or is open on a different
3362 ** index, then fall through into OP_OpenRead to force a reopen */
drh5e00f6c2001-09-13 13:46:56 +00003363case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003364case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003365
drhe0997b32015-03-20 14:57:50 +00003366 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003367 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003368 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3369 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003370
danfa401de2009-10-16 14:55:03 +00003371 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003372 rc = SQLITE_ABORT_ROLLBACK;
drh9467abf2016-02-17 18:44:11 +00003373 goto abort_due_to_error;
danfa401de2009-10-16 14:55:03 +00003374 }
3375
drh856c1032009-06-02 15:21:42 +00003376 nField = 0;
3377 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003378 p2 = pOp->p2;
3379 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003380 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003381 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003382 pDb = &db->aDb[iDb];
3383 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003384 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003385 if( pOp->opcode==OP_OpenWrite ){
danfd261ec2015-10-22 20:54:33 +00003386 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3387 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
drh21206082011-04-04 18:22:02 +00003388 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003389 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3390 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003391 }
3392 }else{
3393 wrFlag = 0;
3394 }
dan428c2182012-08-06 18:50:11 +00003395 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003396 assert( p2>0 );
drh9f6168b2016-03-19 23:32:58 +00003397 assert( p2<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003398 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003399 assert( memIsValid(pIn2) );
3400 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003401 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003402 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003403 /* The p2 value always comes from a prior OP_CreateTable opcode and
3404 ** that opcode will always set the p2 value to 2 or more or else fail.
3405 ** If there were a failure, the prepared statement would have halted
3406 ** before reaching this instruction. */
drh9467abf2016-02-17 18:44:11 +00003407 assert( p2>=2 );
drh5edc3122001-09-13 21:53:09 +00003408 }
danielk1977d336e222009-02-20 10:58:41 +00003409 if( pOp->p4type==P4_KEYINFO ){
3410 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003411 assert( pKeyInfo->enc==ENC(db) );
3412 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003413 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003414 }else if( pOp->p4type==P4_INT32 ){
3415 nField = pOp->p4.i;
3416 }
drh653b82a2009-06-22 11:10:47 +00003417 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003418 assert( nField>=0 );
3419 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drhc960dcb2015-11-20 19:22:01 +00003420 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003421 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003422 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003423 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003424 pCur->pgnoRoot = p2;
drhb89aeb62016-01-27 15:49:32 +00003425#ifdef SQLITE_DEBUG
3426 pCur->wrFlag = wrFlag;
3427#endif
drhc960dcb2015-11-20 19:22:01 +00003428 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
danielk1977d336e222009-02-20 10:58:41 +00003429 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003430 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003431 ** SQLite used to check if the root-page flags were sane at this point
3432 ** and report database corruption if they were not, but this check has
3433 ** since moved into the btree layer. */
3434 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003435
3436open_cursor_set_hints:
3437 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3438 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
drh0403cb32015-08-14 23:57:04 +00003439 testcase( pOp->p5 & OPFLAG_BULKCSR );
drh9abe8412016-01-02 05:00:31 +00003440#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0403cb32015-08-14 23:57:04 +00003441 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3442#endif
drhc960dcb2015-11-20 19:22:01 +00003443 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
drhf7854c72015-10-27 13:24:37 +00003444 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh9467abf2016-02-17 18:44:11 +00003445 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003446 break;
3447}
3448
drh2a5d9902011-08-26 00:34:45 +00003449/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003450** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003451**
drhb9bb7c12006-06-11 23:41:55 +00003452** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003453** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003454** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003455** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003456**
drh25d3adb2010-04-05 15:11:08 +00003457** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003458** The cursor points to a BTree table if P4==0 and to a BTree index
3459** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003460** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003461**
drh2a5d9902011-08-26 00:34:45 +00003462** The P5 parameter can be a mask of the BTREE_* flags defined
3463** in btree.h. These flags control aspects of the operation of
3464** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3465** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003466*/
drha21a64d2010-04-06 22:33:55 +00003467/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003468** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003469**
3470** This opcode works the same as OP_OpenEphemeral. It has a
3471** different name to distinguish its use. Tables created using
3472** by this opcode will be used for automatically created transient
3473** indices in joins.
3474*/
3475case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003476case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003477 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003478 KeyInfo *pKeyInfo;
3479
drhd4187c72010-08-30 22:15:45 +00003480 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003481 SQLITE_OPEN_READWRITE |
3482 SQLITE_OPEN_CREATE |
3483 SQLITE_OPEN_EXCLUSIVE |
3484 SQLITE_OPEN_DELETEONCLOSE |
3485 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003486 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003487 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003488 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003489 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003490 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003491 pCx->isEphemeral = 1;
dan3a6d8ae2011-04-23 15:54:54 +00003492 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
drhd4187c72010-08-30 22:15:45 +00003493 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003494 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003495 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003496 }
3497 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003498 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003499 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003500 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003501 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003502 */
drh41e13e12013-11-07 14:09:39 +00003503 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003504 int pgno;
drh66a51672008-01-03 00:01:23 +00003505 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003506 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003507 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003508 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003509 assert( pKeyInfo->db==db );
3510 assert( pKeyInfo->enc==ENC(db) );
3511 pCx->pKeyInfo = pKeyInfo;
drh62aaa6c2015-11-21 17:27:42 +00003512 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3513 pKeyInfo, pCx->uc.pCursor);
drhc6b52df2002-01-04 03:09:29 +00003514 }
drhf0863fe2005-06-12 21:35:51 +00003515 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003516 }else{
drh62aaa6c2015-11-21 17:27:42 +00003517 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3518 0, pCx->uc.pCursor);
drhf0863fe2005-06-12 21:35:51 +00003519 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003520 }
drh5e00f6c2001-09-13 13:46:56 +00003521 }
drh9467abf2016-02-17 18:44:11 +00003522 if( rc ) goto abort_due_to_error;
drhd4187c72010-08-30 22:15:45 +00003523 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003524 break;
3525}
3526
danfad9f9a2014-04-01 18:41:51 +00003527/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003528**
3529** This opcode works like OP_OpenEphemeral except that it opens
3530** a transient index that is specifically designed to sort large
3531** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003532**
3533** If argument P3 is non-zero, then it indicates that the sorter may
3534** assume that a stable sort considering the first P3 fields of each
3535** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003536*/
drhca892a72011-09-03 00:17:51 +00003537case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003538 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003539
drh399af1d2013-11-20 17:25:55 +00003540 assert( pOp->p1>=0 );
3541 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003542 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
dan5134d132011-09-02 10:31:11 +00003543 if( pCx==0 ) goto no_mem;
3544 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003545 assert( pCx->pKeyInfo->db==db );
3546 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003547 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh9467abf2016-02-17 18:44:11 +00003548 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003549 break;
3550}
3551
dan78d58432014-03-25 15:04:07 +00003552/* Opcode: SequenceTest P1 P2 * * *
3553** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3554**
3555** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3556** to P2. Regardless of whether or not the jump is taken, increment the
3557** the sequence value.
3558*/
3559case OP_SequenceTest: {
3560 VdbeCursor *pC;
3561 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3562 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003563 assert( isSorter(pC) );
dan78d58432014-03-25 15:04:07 +00003564 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003565 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003566 }
drh5e00f6c2001-09-13 13:46:56 +00003567 break;
3568}
3569
drh5f612292014-02-08 23:20:32 +00003570/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003571** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003572**
3573** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003574** row of data. The content of that one row is the content of memory
3575** register P2. In other words, cursor P1 becomes an alias for the
3576** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003577**
drh2d8d7ce2010-02-15 15:17:05 +00003578** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003579** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003580** individual columns using the OP_Column opcode. The OP_Column opcode
3581** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003582**
3583** P3 is the number of fields in the records that will be stored by
3584** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003585*/
drh9cbf3422008-01-17 16:22:13 +00003586case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003587 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003588
drh653b82a2009-06-22 11:10:47 +00003589 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003590 assert( pOp->p3>=0 );
drhc960dcb2015-11-20 19:22:01 +00003591 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
drh4774b132004-06-12 20:12:51 +00003592 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003593 pCx->nullRow = 1;
drhc960dcb2015-11-20 19:22:01 +00003594 pCx->uc.pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003595 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003596 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003597 break;
3598}
3599
drh98757152008-01-09 23:04:12 +00003600/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003601**
3602** Close a cursor previously opened as P1. If P1 is not
3603** currently open, this instruction is a no-op.
3604*/
drh9cbf3422008-01-17 16:22:13 +00003605case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003606 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3607 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3608 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003609 break;
3610}
3611
drh97bae792015-06-05 15:59:57 +00003612#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3613/* Opcode: ColumnsUsed P1 * * P4 *
3614**
3615** This opcode (which only exists if SQLite was compiled with
3616** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3617** table or index for cursor P1 are used. P4 is a 64-bit integer
3618** (P4_INT64) in which the first 63 bits are one for each of the
3619** first 63 columns of the table or index that are actually used
3620** by the cursor. The high-order bit is set if any column after
3621** the 64th is used.
3622*/
3623case OP_ColumnsUsed: {
3624 VdbeCursor *pC;
3625 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003626 assert( pC->eCurType==CURTYPE_BTREE );
drh97bae792015-06-05 15:59:57 +00003627 pC->maskUsed = *(u64*)pOp->p4.pI64;
3628 break;
3629}
3630#endif
3631
drh8af3f772014-07-25 18:01:06 +00003632/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003633** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003634**
danielk1977b790c6c2008-04-18 10:25:24 +00003635** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003636** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003637** to an SQL index, then P3 is the first in an array of P4 registers
3638** that are used as an unpacked index key.
3639**
3640** Reposition cursor P1 so that it points to the smallest entry that
3641** is greater than or equal to the key value. If there are no records
3642** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003643**
drhb1d607d2015-11-05 22:30:54 +00003644** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3645** opcode will always land on a record that equally equals the key, or
3646** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3647** opcode must be followed by an IdxLE opcode with the same arguments.
3648** The IdxLE opcode will be skipped if this opcode succeeds, but the
3649** IdxLE opcode will be used on subsequent loop iterations.
3650**
drh8af3f772014-07-25 18:01:06 +00003651** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003652** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003653** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003654**
drh935850e2014-05-24 17:15:15 +00003655** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003656*/
drh8af3f772014-07-25 18:01:06 +00003657/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003658** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003659**
danielk1977b790c6c2008-04-18 10:25:24 +00003660** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003661** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003662** to an SQL index, then P3 is the first in an array of P4 registers
3663** that are used as an unpacked index key.
3664**
3665** Reposition cursor P1 so that it points to the smallest entry that
3666** is greater than the key value. If there are no records greater than
3667** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003668**
drh8af3f772014-07-25 18:01:06 +00003669** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003670** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003671** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003672**
drh935850e2014-05-24 17:15:15 +00003673** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003674*/
drh8af3f772014-07-25 18:01:06 +00003675/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003676** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003677**
danielk1977b790c6c2008-04-18 10:25:24 +00003678** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003679** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003680** to an SQL index, then P3 is the first in an array of P4 registers
3681** that are used as an unpacked index key.
3682**
3683** Reposition cursor P1 so that it points to the largest entry that
3684** is less than the key value. If there are no records less than
3685** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003686**
drh8af3f772014-07-25 18:01:06 +00003687** This opcode leaves the cursor configured to move in reverse order,
3688** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003689** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003690**
drh935850e2014-05-24 17:15:15 +00003691** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003692*/
drh8af3f772014-07-25 18:01:06 +00003693/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003694** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003695**
danielk1977b790c6c2008-04-18 10:25:24 +00003696** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003697** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003698** to an SQL index, then P3 is the first in an array of P4 registers
3699** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003700**
danielk1977b790c6c2008-04-18 10:25:24 +00003701** Reposition cursor P1 so that it points to the largest entry that
3702** is less than or equal to the key value. If there are no records
3703** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003704**
drh8af3f772014-07-25 18:01:06 +00003705** This opcode leaves the cursor configured to move in reverse order,
3706** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003707** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003708**
drhb1d607d2015-11-05 22:30:54 +00003709** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3710** opcode will always land on a record that equally equals the key, or
3711** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3712** opcode must be followed by an IdxGE opcode with the same arguments.
3713** The IdxGE opcode will be skipped if this opcode succeeds, but the
3714** IdxGE opcode will be used on subsequent loop iterations.
3715**
drh935850e2014-05-24 17:15:15 +00003716** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003717*/
drh4a1d3652014-02-14 15:13:36 +00003718case OP_SeekLT: /* jump, in3 */
3719case OP_SeekLE: /* jump, in3 */
3720case OP_SeekGE: /* jump, in3 */
3721case OP_SeekGT: { /* jump, in3 */
drhb1d607d2015-11-05 22:30:54 +00003722 int res; /* Comparison result */
3723 int oc; /* Opcode */
3724 VdbeCursor *pC; /* The cursor to seek */
3725 UnpackedRecord r; /* The key to seek for */
3726 int nField; /* Number of columns or fields in the key */
3727 i64 iKey; /* The rowid we are to seek to */
drhd6b79462015-11-07 01:19:00 +00003728 int eqOnly; /* Only interested in == results */
drh80ff32f2001-11-04 18:32:46 +00003729
drh653b82a2009-06-22 11:10:47 +00003730 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003731 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003732 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003733 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00003734 assert( pC->eCurType==CURTYPE_BTREE );
drh4a1d3652014-02-14 15:13:36 +00003735 assert( OP_SeekLE == OP_SeekLT+1 );
3736 assert( OP_SeekGE == OP_SeekLT+2 );
3737 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003738 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00003739 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003740 oc = pOp->opcode;
drhd6b79462015-11-07 01:19:00 +00003741 eqOnly = 0;
drh3da046d2013-11-11 03:24:11 +00003742 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003743#ifdef SQLITE_DEBUG
3744 pC->seekOp = pOp->opcode;
3745#endif
drhe0997b32015-03-20 14:57:50 +00003746
drh3da046d2013-11-11 03:24:11 +00003747 if( pC->isTable ){
drhd6b79462015-11-07 01:19:00 +00003748 /* The BTREE_SEEK_EQ flag is only set on index cursors */
drhc960dcb2015-11-20 19:22:01 +00003749 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
drhd6b79462015-11-07 01:19:00 +00003750
drh3da046d2013-11-11 03:24:11 +00003751 /* The input value in P3 might be of any type: integer, real, string,
3752 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003753 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003754 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003755 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003756 applyNumericAffinity(pIn3, 0);
3757 }
drh3da046d2013-11-11 03:24:11 +00003758 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003759
drh3da046d2013-11-11 03:24:11 +00003760 /* If the P3 value could not be converted into an integer without
3761 ** loss of information, then special processing is required... */
3762 if( (pIn3->flags & MEM_Int)==0 ){
3763 if( (pIn3->flags & MEM_Real)==0 ){
3764 /* If the P3 value cannot be converted into any kind of a number,
3765 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003766 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003767 break;
3768 }
drh959403f2008-12-12 17:56:16 +00003769
danaa1776f2013-11-26 18:22:59 +00003770 /* If the approximation iKey is larger than the actual real search
3771 ** term, substitute >= for > and < for <=. e.g. if the search term
3772 ** is 4.9 and the integer approximation 5:
3773 **
3774 ** (x > 4.9) -> (x >= 5)
3775 ** (x <= 4.9) -> (x < 5)
3776 */
drh74eaba42014-09-18 17:52:15 +00003777 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003778 assert( OP_SeekGE==(OP_SeekGT-1) );
3779 assert( OP_SeekLT==(OP_SeekLE-1) );
3780 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3781 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003782 }
3783
3784 /* If the approximation iKey is smaller than the actual real search
3785 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003786 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003787 assert( OP_SeekLE==(OP_SeekLT+1) );
3788 assert( OP_SeekGT==(OP_SeekGE+1) );
3789 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3790 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003791 }
drh3da046d2013-11-11 03:24:11 +00003792 }
drhc960dcb2015-11-20 19:22:01 +00003793 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003794 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003795 if( rc!=SQLITE_OK ){
3796 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003797 }
drhaa736092009-06-22 00:55:30 +00003798 }else{
drhd6b79462015-11-07 01:19:00 +00003799 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3800 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3801 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3802 */
drhc960dcb2015-11-20 19:22:01 +00003803 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
drhd6b79462015-11-07 01:19:00 +00003804 eqOnly = 1;
3805 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3806 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3807 assert( pOp[1].p1==pOp[0].p1 );
3808 assert( pOp[1].p2==pOp[0].p2 );
3809 assert( pOp[1].p3==pOp[0].p3 );
3810 assert( pOp[1].p4.i==pOp[0].p4.i );
3811 }
3812
drh3da046d2013-11-11 03:24:11 +00003813 nField = pOp->p4.i;
3814 assert( pOp->p4type==P4_INT32 );
3815 assert( nField>0 );
3816 r.pKeyInfo = pC->pKeyInfo;
3817 r.nField = (u16)nField;
3818
3819 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003820 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003821 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003822 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003823 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003824 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003825 */
dan1fed5da2014-02-25 21:01:25 +00003826 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3827 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3828 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3829 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3830 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003831
3832 r.aMem = &aMem[pOp->p3];
3833#ifdef SQLITE_DEBUG
3834 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3835#endif
3836 ExpandBlob(r.aMem);
drh70528d72015-11-05 20:25:09 +00003837 r.eqSeen = 0;
drhc960dcb2015-11-20 19:22:01 +00003838 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
drh3da046d2013-11-11 03:24:11 +00003839 if( rc!=SQLITE_OK ){
3840 goto abort_due_to_error;
3841 }
drhb1d607d2015-11-05 22:30:54 +00003842 if( eqOnly && r.eqSeen==0 ){
3843 assert( res!=0 );
3844 goto seek_not_found;
drh70528d72015-11-05 20:25:09 +00003845 }
drh3da046d2013-11-11 03:24:11 +00003846 }
3847 pC->deferredMoveto = 0;
3848 pC->cacheStatus = CACHE_STALE;
3849#ifdef SQLITE_TEST
3850 sqlite3_search_count++;
3851#endif
drh4a1d3652014-02-14 15:13:36 +00003852 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3853 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003854 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003855 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003856 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003857 }else{
3858 res = 0;
3859 }
3860 }else{
drh4a1d3652014-02-14 15:13:36 +00003861 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3862 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003863 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003864 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003865 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003866 }else{
3867 /* res might be negative because the table is empty. Check to
3868 ** see if this is the case.
3869 */
drhc960dcb2015-11-20 19:22:01 +00003870 res = sqlite3BtreeEof(pC->uc.pCursor);
drh3da046d2013-11-11 03:24:11 +00003871 }
3872 }
drhb1d607d2015-11-05 22:30:54 +00003873seek_not_found:
drh3da046d2013-11-11 03:24:11 +00003874 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003875 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003876 if( res ){
drhf56fa462015-04-13 21:39:54 +00003877 goto jump_to_p2;
drhb1d607d2015-11-05 22:30:54 +00003878 }else if( eqOnly ){
3879 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3880 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
drh5e00f6c2001-09-13 13:46:56 +00003881 }
drh5e00f6c2001-09-13 13:46:56 +00003882 break;
3883}
drh959403f2008-12-12 17:56:16 +00003884
3885
drh8cff69d2009-11-12 19:59:44 +00003886/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003887** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003888**
drh8cff69d2009-11-12 19:59:44 +00003889** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3890** P4>0 then register P3 is the first of P4 registers that form an unpacked
3891** record.
3892**
3893** Cursor P1 is on an index btree. If the record identified by P3 and P4
3894** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003895** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003896**
drhcefc87f2014-08-01 01:40:33 +00003897** This operation leaves the cursor in a state where it can be
3898** advanced in the forward direction. The Next instruction will work,
3899** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003900**
drh6f225d02013-10-26 13:36:51 +00003901** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003902*/
drh8cff69d2009-11-12 19:59:44 +00003903/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003904** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003905**
drh8cff69d2009-11-12 19:59:44 +00003906** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3907** P4>0 then register P3 is the first of P4 registers that form an unpacked
3908** record.
3909**
3910** Cursor P1 is on an index btree. If the record identified by P3 and P4
3911** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3912** does contain an entry whose prefix matches the P3/P4 record then control
3913** falls through to the next instruction and P1 is left pointing at the
3914** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003915**
drh8af3f772014-07-25 18:01:06 +00003916** This operation leaves the cursor in a state where it cannot be
3917** advanced in either direction. In other words, the Next and Prev
3918** opcodes do not work after this operation.
3919**
drh6f225d02013-10-26 13:36:51 +00003920** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003921*/
drh6f225d02013-10-26 13:36:51 +00003922/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003923** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003924**
3925** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3926** P4>0 then register P3 is the first of P4 registers that form an unpacked
3927** record.
3928**
3929** Cursor P1 is on an index btree. If the record identified by P3 and P4
3930** contains any NULL value, jump immediately to P2. If all terms of the
3931** record are not-NULL then a check is done to determine if any row in the
3932** P1 index btree has a matching key prefix. If there are no matches, jump
3933** immediately to P2. If there is a match, fall through and leave the P1
3934** cursor pointing to the matching row.
3935**
3936** This opcode is similar to OP_NotFound with the exceptions that the
3937** branch is always taken if any part of the search key input is NULL.
3938**
drh8af3f772014-07-25 18:01:06 +00003939** This operation leaves the cursor in a state where it cannot be
3940** advanced in either direction. In other words, the Next and Prev
3941** opcodes do not work after this operation.
3942**
drh6f225d02013-10-26 13:36:51 +00003943** See also: NotFound, Found, NotExists
3944*/
3945case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003946case OP_NotFound: /* jump, in3 */
3947case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003948 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003949 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003950 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003951 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003952 int res;
dan03e9cfc2011-09-05 14:20:27 +00003953 char *pFree;
drh856c1032009-06-02 15:21:42 +00003954 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003955 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003956 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003957
dan0ff297e2009-09-25 17:03:14 +00003958#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003959 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003960#endif
3961
drhaa736092009-06-22 00:55:30 +00003962 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003963 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003964 pC = p->apCsr[pOp->p1];
3965 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003966#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003967 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003968#endif
drh3c657212009-11-17 23:59:58 +00003969 pIn3 = &aMem[pOp->p3];
drhc960dcb2015-11-20 19:22:01 +00003970 assert( pC->eCurType==CURTYPE_BTREE );
3971 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003972 assert( pC->isTable==0 );
drhf56fa462015-04-13 21:39:54 +00003973 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00003974 if( pOp->p4.i>0 ){
3975 r.pKeyInfo = pC->pKeyInfo;
3976 r.nField = (u16)pOp->p4.i;
3977 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003978 for(ii=0; ii<r.nField; ii++){
3979 assert( memIsValid(&r.aMem[ii]) );
3980 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003981#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003982 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003983#endif
drh826af372014-02-08 19:12:21 +00003984 }
drh3da046d2013-11-11 03:24:11 +00003985 pIdxKey = &r;
3986 }else{
3987 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3988 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00003989 );
drh3da046d2013-11-11 03:24:11 +00003990 if( pIdxKey==0 ) goto no_mem;
3991 assert( pIn3->flags & MEM_Blob );
danb391b942014-11-07 14:41:11 +00003992 ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00003993 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh5e00f6c2001-09-13 13:46:56 +00003994 }
dan1fed5da2014-02-25 21:01:25 +00003995 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00003996 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00003997 if( pOp->opcode==OP_NoConflict ){
3998 /* For the OP_NoConflict opcode, take the jump if any of the
3999 ** input fields are NULL, since any key with a NULL will not
4000 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00004001 for(ii=0; ii<pIdxKey->nField; ii++){
4002 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00004003 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00004004 break;
drh6f225d02013-10-26 13:36:51 +00004005 }
4006 }
drh5e00f6c2001-09-13 13:46:56 +00004007 }
drhc960dcb2015-11-20 19:22:01 +00004008 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
drhf56fa462015-04-13 21:39:54 +00004009 sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00004010 if( rc!=SQLITE_OK ){
drh9467abf2016-02-17 18:44:11 +00004011 goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00004012 }
4013 pC->seekResult = res;
4014 alreadyExists = (res==0);
4015 pC->nullRow = 1-alreadyExists;
4016 pC->deferredMoveto = 0;
4017 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004018 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00004019 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00004020 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004021 }else{
drhf56fa462015-04-13 21:39:54 +00004022 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4023 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004024 }
drh5e00f6c2001-09-13 13:46:56 +00004025 break;
4026}
4027
drh9cbf3422008-01-17 16:22:13 +00004028/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004029** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00004030**
drh261c02d2013-10-25 14:46:15 +00004031** P1 is the index of a cursor open on an SQL table btree (with integer
4032** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00004033** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4034** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4035** leave the cursor pointing at that record and fall through to the next
4036** instruction.
drh6b125452002-01-28 15:53:03 +00004037**
drh261c02d2013-10-25 14:46:15 +00004038** The OP_NotFound opcode performs the same operation on index btrees
4039** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00004040**
drh8af3f772014-07-25 18:01:06 +00004041** This opcode leaves the cursor in a state where it cannot be advanced
4042** in either direction. In other words, the Next and Prev opcodes will
4043** not work following this opcode.
4044**
drh11e85272013-10-26 15:40:48 +00004045** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00004046*/
drh9cbf3422008-01-17 16:22:13 +00004047case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00004048 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00004049 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004050 int res;
4051 u64 iKey;
4052
drh3c657212009-11-17 23:59:58 +00004053 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00004054 assert( pIn3->flags & MEM_Int );
4055 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4056 pC = p->apCsr[pOp->p1];
4057 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004058#ifdef SQLITE_DEBUG
4059 pC->seekOp = 0;
4060#endif
drhaa736092009-06-22 00:55:30 +00004061 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004062 assert( pC->eCurType==CURTYPE_BTREE );
4063 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00004064 assert( pCrsr!=0 );
4065 res = 0;
4066 iKey = pIn3->u.i;
4067 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004068 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004069 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004070 pC->nullRow = 0;
4071 pC->cacheStatus = CACHE_STALE;
4072 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004073 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004074 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004075 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004076 assert( rc==SQLITE_OK );
4077 if( pOp->p2==0 ){
4078 rc = SQLITE_CORRUPT_BKPT;
4079 }else{
4080 goto jump_to_p2;
4081 }
danc6157e12015-09-14 09:23:47 +00004082 }
drh9467abf2016-02-17 18:44:11 +00004083 if( rc ) goto abort_due_to_error;
drh6b125452002-01-28 15:53:03 +00004084 break;
4085}
4086
drh4c583122008-01-04 22:01:03 +00004087/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004088** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004089**
drh4c583122008-01-04 22:01:03 +00004090** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004091** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004092** The sequence number on the cursor is incremented after this
4093** instruction.
drh4db38a72005-09-01 12:16:28 +00004094*/
drh27a348c2015-04-13 19:14:06 +00004095case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004096 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4097 assert( p->apCsr[pOp->p1]!=0 );
drhc960dcb2015-11-20 19:22:01 +00004098 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
drh27a348c2015-04-13 19:14:06 +00004099 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004100 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004101 break;
4102}
4103
4104
drh98757152008-01-09 23:04:12 +00004105/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004106** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004107**
drhf0863fe2005-06-12 21:35:51 +00004108** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004109** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004110** table that cursor P1 points to. The new record number is written
4111** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004112**
dan76d462e2009-08-30 11:42:51 +00004113** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4114** the largest previously generated record number. No new record numbers are
4115** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004116** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004117** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004118** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004119*/
drh27a348c2015-04-13 19:14:06 +00004120case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004121 i64 v; /* The new rowid */
4122 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4123 int res; /* Result of an sqlite3BtreeLast() */
4124 int cnt; /* Counter to limit the number of searches */
4125 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004126 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004127
drh856c1032009-06-02 15:21:42 +00004128 v = 0;
4129 res = 0;
drh27a348c2015-04-13 19:14:06 +00004130 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004131 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4132 pC = p->apCsr[pOp->p1];
4133 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004134 assert( pC->eCurType==CURTYPE_BTREE );
4135 assert( pC->uc.pCursor!=0 );
drh98ef0f62015-06-30 01:25:52 +00004136 {
drh5cf8e8c2002-02-19 22:42:05 +00004137 /* The next rowid or record number (different terms for the same
4138 ** thing) is obtained in a two-step algorithm.
4139 **
4140 ** First we attempt to find the largest existing rowid and add one
4141 ** to that. But if the largest existing rowid is already the maximum
4142 ** positive integer, we have to fall through to the second
4143 ** probabilistic algorithm
4144 **
4145 ** The second algorithm is to select a rowid at random and see if
4146 ** it already exists in the table. If it does not exist, we have
4147 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004148 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004149 */
drhaa736092009-06-22 00:55:30 +00004150 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004151
drh75f86a42005-02-17 00:03:06 +00004152#ifdef SQLITE_32BIT_ROWID
4153# define MAX_ROWID 0x7fffffff
4154#else
drhfe2093d2005-01-20 22:48:47 +00004155 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4156 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4157 ** to provide the constant while making all compilers happy.
4158 */
danielk197764202cf2008-11-17 15:31:47 +00004159# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004160#endif
drhfe2093d2005-01-20 22:48:47 +00004161
drh5cf8e8c2002-02-19 22:42:05 +00004162 if( !pC->useRandomRowid ){
drhc960dcb2015-11-20 19:22:01 +00004163 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
drhe0670b62014-02-12 21:31:12 +00004164 if( rc!=SQLITE_OK ){
4165 goto abort_due_to_error;
4166 }
4167 if( res ){
4168 v = 1; /* IMP: R-61914-48074 */
4169 }else{
drhc960dcb2015-11-20 19:22:01 +00004170 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4171 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
drhe0670b62014-02-12 21:31:12 +00004172 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4173 if( v>=MAX_ROWID ){
4174 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004175 }else{
drhe0670b62014-02-12 21:31:12 +00004176 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004177 }
drh3fc190c2001-09-14 03:24:23 +00004178 }
drhe0670b62014-02-12 21:31:12 +00004179 }
drh205f48e2004-11-05 00:43:11 +00004180
4181#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004182 if( pOp->p3 ){
4183 /* Assert that P3 is a valid memory cell. */
4184 assert( pOp->p3>0 );
4185 if( p->pFrame ){
4186 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004187 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004188 assert( pOp->p3<=pFrame->nMem );
4189 pMem = &pFrame->aMem[pOp->p3];
4190 }else{
4191 /* Assert that P3 is a valid memory cell. */
drh9f6168b2016-03-19 23:32:58 +00004192 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhe0670b62014-02-12 21:31:12 +00004193 pMem = &aMem[pOp->p3];
4194 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004195 }
drhe0670b62014-02-12 21:31:12 +00004196 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004197
drhe0670b62014-02-12 21:31:12 +00004198 REGISTER_TRACE(pOp->p3, pMem);
4199 sqlite3VdbeMemIntegerify(pMem);
4200 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4201 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4202 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4203 goto abort_due_to_error;
4204 }
4205 if( v<pMem->u.i+1 ){
4206 v = pMem->u.i + 1;
4207 }
4208 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004209 }
drhe0670b62014-02-12 21:31:12 +00004210#endif
drh5cf8e8c2002-02-19 22:42:05 +00004211 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004212 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004213 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004214 ** engine starts picking positive candidate ROWIDs at random until
4215 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004216 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4217 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004218 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004219 do{
4220 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004221 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drhc960dcb2015-11-20 19:22:01 +00004222 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004223 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004224 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004225 && (++cnt<100));
drh9467abf2016-02-17 18:44:11 +00004226 if( rc ) goto abort_due_to_error;
4227 if( res==0 ){
drhc79c7612010-01-01 18:57:48 +00004228 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004229 goto abort_due_to_error;
4230 }
drh748a52c2010-09-01 11:50:08 +00004231 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004232 }
drha11846b2004-01-07 18:52:56 +00004233 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004234 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004235 }
drh4c583122008-01-04 22:01:03 +00004236 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004237 break;
4238}
4239
danielk19771f4aa332008-01-03 09:51:55 +00004240/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004241** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004242**
jplyon5a564222003-06-02 06:15:58 +00004243** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004244** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004245** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004246** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004247** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004248**
danielk19771f4aa332008-01-03 09:51:55 +00004249** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4250** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004251** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004252** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004253**
drh3e9ca092009-09-08 01:14:48 +00004254** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4255** the last seek operation (OP_NotExists) was a success, then this
4256** operation will not attempt to find the appropriate row before doing
4257** the insert but will instead overwrite the row that the cursor is
4258** currently pointing to. Presumably, the prior OP_NotExists opcode
4259** has already positioned the cursor correctly. This is an optimization
4260** that boosts performance by avoiding redundant seeks.
4261**
4262** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4263** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4264** is part of an INSERT operation. The difference is only important to
4265** the update hook.
4266**
dan319eeb72011-03-19 08:38:50 +00004267** Parameter P4 may point to a Table structure, or may be NULL. If it is
4268** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4269** following a successful insert.
danielk19771f6eec52006-06-16 06:17:47 +00004270**
drh93aed5a2008-01-16 17:46:38 +00004271** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4272** allocated, then ownership of P2 is transferred to the pseudo-cursor
4273** and register P2 becomes ephemeral. If the cursor is changed, the
4274** value of register P2 will then change. Make sure this does not
4275** cause any problems.)
4276**
drhf0863fe2005-06-12 21:35:51 +00004277** This instruction only works on tables. The equivalent instruction
4278** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004279*/
drhe05c9292009-10-29 13:48:10 +00004280/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004281** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004282**
4283** This works exactly like OP_Insert except that the key is the
4284** integer value P3, not the value of the integer stored in register P3.
4285*/
4286case OP_Insert:
4287case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004288 Mem *pData; /* MEM cell holding data for the record to be inserted */
4289 Mem *pKey; /* MEM cell holding key for the record */
4290 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4291 VdbeCursor *pC; /* Cursor to table into which insert is written */
4292 int nZero; /* Number of zero-bytes to append */
4293 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4294 const char *zDb; /* database name - used by the update hook */
dan319eeb72011-03-19 08:38:50 +00004295 Table *pTab; /* Table structure - used by update and pre-update hooks */
drh74c33022016-03-30 12:56:55 +00004296 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004297
drh74c33022016-03-30 12:56:55 +00004298 op = 0;
drha6c2ed92009-11-14 23:22:23 +00004299 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004300 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004301 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004302 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004303 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004304 assert( pC->eCurType==CURTYPE_BTREE );
4305 assert( pC->uc.pCursor!=0 );
drha05a7222008-01-19 03:35:58 +00004306 assert( pC->isTable );
drhcbf1b8e2013-11-11 22:55:26 +00004307 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
drh5b6afba2008-01-05 16:29:28 +00004308 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004309
drhe05c9292009-10-29 13:48:10 +00004310 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004311 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004312 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004313 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004314 REGISTER_TRACE(pOp->p3, pKey);
4315 iKey = pKey->u.i;
4316 }else{
4317 assert( pOp->opcode==OP_InsertInt );
4318 iKey = pOp->p3;
4319 }
4320
drh9b1c62d2011-03-30 21:04:43 +00004321 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004322 assert( pC->isTable );
4323 assert( pC->iDb>=0 );
4324 zDb = db->aDb[pC->iDb].zName;
dan319eeb72011-03-19 08:38:50 +00004325 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004326 assert( HasRowid(pTab) );
dan46c47d42011-03-01 18:42:07 +00004327 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drh74c33022016-03-30 12:56:55 +00004328 }else{
4329 pTab = 0; /* Not needed. Silence a comiler warning. */
4330 zDb = 0; /* Not needed. Silence a compiler warning. */
dan46c47d42011-03-01 18:42:07 +00004331 }
4332
drh9b1c62d2011-03-30 21:04:43 +00004333#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004334 /* Invoke the pre-update hook, if any */
4335 if( db->xPreUpdateCallback
dan319eeb72011-03-19 08:38:50 +00004336 && pOp->p4type==P4_TABLE
drh92fe38e2014-10-14 13:41:32 +00004337 && !(pOp->p5 & OPFLAG_ISUPDATE)
dan46c47d42011-03-01 18:42:07 +00004338 ){
dan319eeb72011-03-19 08:38:50 +00004339 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, iKey, pOp->p2);
dan46c47d42011-03-01 18:42:07 +00004340 }
drh9b1c62d2011-03-30 21:04:43 +00004341#endif
dan46c47d42011-03-01 18:42:07 +00004342
drha05a7222008-01-19 03:35:58 +00004343 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004344 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004345 if( pData->flags & MEM_Null ){
4346 pData->z = 0;
4347 pData->n = 0;
4348 }else{
4349 assert( pData->flags & (MEM_Blob|MEM_Str) );
4350 }
drh3e9ca092009-09-08 01:14:48 +00004351 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4352 if( pData->flags & MEM_Zero ){
4353 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004354 }else{
drh3e9ca092009-09-08 01:14:48 +00004355 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004356 }
drhc960dcb2015-11-20 19:22:01 +00004357 rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey,
drh3e9ca092009-09-08 01:14:48 +00004358 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004359 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004360 );
drha05a7222008-01-19 03:35:58 +00004361 pC->deferredMoveto = 0;
4362 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004363
drha05a7222008-01-19 03:35:58 +00004364 /* Invoke the update-hook if required. */
drh9467abf2016-02-17 18:44:11 +00004365 if( rc ) goto abort_due_to_error;
drhc556f3c2016-03-30 15:30:07 +00004366 if( db->xUpdateCallback && op ){
dan319eeb72011-03-19 08:38:50 +00004367 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, iKey);
drha05a7222008-01-19 03:35:58 +00004368 }
drh5e00f6c2001-09-13 13:46:56 +00004369 break;
4370}
4371
dan438b8812015-09-15 15:55:15 +00004372/* Opcode: Delete P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004373**
drh5edc3122001-09-13 21:53:09 +00004374** Delete the record at which the P1 cursor is currently pointing.
4375**
drhe807bdb2016-01-21 17:06:33 +00004376** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4377** the cursor will be left pointing at either the next or the previous
4378** record in the table. If it is left pointing at the next record, then
4379** the next Next instruction will be a no-op. As a result, in this case
4380** it is ok to delete a record from within a Next loop. If
4381** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4382** left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004383**
drhdef19e32016-01-27 16:26:25 +00004384** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4385** delete one of several associated with deleting a table row and all its
4386** associated index entries. Exactly one of those deletes is the "primary"
4387** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4388** marked with the AUXDELETE flag.
drhe807bdb2016-01-21 17:06:33 +00004389**
4390** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4391** change count is incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004392**
drh91fd4d42008-01-19 20:11:25 +00004393** P1 must not be pseudo-table. It has to be a real table with
4394** multiple rows.
4395**
dan319eeb72011-03-19 08:38:50 +00004396** If P4 is not NULL then it points to a Table struture. In this case either
4397** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4398** have been positioned using OP_NotFound prior to invoking this opcode in
4399** this case. Specifically, if one is configured, the pre-update hook is
4400** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4401** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
dan46c47d42011-03-01 18:42:07 +00004402**
4403** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4404** of the memory cell that contains the value that the rowid of the row will
4405** be set to by the update.
drh5e00f6c2001-09-13 13:46:56 +00004406*/
drh9cbf3422008-01-17 16:22:13 +00004407case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004408 VdbeCursor *pC;
dan46c47d42011-03-01 18:42:07 +00004409 const char *zDb;
dan319eeb72011-03-19 08:38:50 +00004410 Table *pTab;
dan46c47d42011-03-01 18:42:07 +00004411 int opflags;
drh91fd4d42008-01-19 20:11:25 +00004412
dan46c47d42011-03-01 18:42:07 +00004413 opflags = pOp->p2;
drh653b82a2009-06-22 11:10:47 +00004414 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4415 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004416 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004417 assert( pC->eCurType==CURTYPE_BTREE );
4418 assert( pC->uc.pCursor!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004419 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004420
drhb53a5a92014-10-12 22:37:22 +00004421#ifdef SQLITE_DEBUG
dan438b8812015-09-15 15:55:15 +00004422 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4423 /* If p5 is zero, the seek operation that positioned the cursor prior to
4424 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4425 ** the row that is being deleted */
drhb53a5a92014-10-12 22:37:22 +00004426 i64 iKey = 0;
drhc960dcb2015-11-20 19:22:01 +00004427 sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
drh92fe38e2014-10-14 13:41:32 +00004428 assert( pC->movetoTarget==iKey );
drhb53a5a92014-10-12 22:37:22 +00004429 }
4430#endif
drh91fd4d42008-01-19 20:11:25 +00004431
dan438b8812015-09-15 15:55:15 +00004432 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4433 ** the name of the db to pass as to it. Also set local pTab to a copy
4434 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4435 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4436 ** VdbeCursor.movetoTarget to the current rowid. */
drhc556f3c2016-03-30 15:30:07 +00004437 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004438 assert( pC->iDb>=0 );
drhc556f3c2016-03-30 15:30:07 +00004439 assert( pOp->p4.pTab!=0 );
dan46c47d42011-03-01 18:42:07 +00004440 zDb = db->aDb[pC->iDb].zName;
dan319eeb72011-03-19 08:38:50 +00004441 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004442 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
drh1bb15fc2015-12-02 20:40:26 +00004443 sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget);
dan438b8812015-09-15 15:55:15 +00004444 }
drh74c33022016-03-30 12:56:55 +00004445 }else{
4446 zDb = 0; /* Not needed. Silence a compiler warning. */
4447 pTab = 0; /* Not needed. Silence a compiler warning. */
drh92fe38e2014-10-14 13:41:32 +00004448 }
dan46c47d42011-03-01 18:42:07 +00004449
drh9b1c62d2011-03-30 21:04:43 +00004450#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004451 /* Invoke the pre-update-hook if required. */
dan438b8812015-09-15 15:55:15 +00004452 if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
dan46c47d42011-03-01 18:42:07 +00004453 assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );
4454 sqlite3VdbePreUpdateHook(p, pC,
4455 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
drh92fe38e2014-10-14 13:41:32 +00004456 zDb, pTab, pC->movetoTarget,
dan37db03b2011-03-16 19:59:18 +00004457 pOp->p3
dan46c47d42011-03-01 18:42:07 +00004458 );
4459 }
dan46c47d42011-03-01 18:42:07 +00004460 if( opflags & OPFLAG_ISNOOP ) break;
drhc556f3c2016-03-30 15:30:07 +00004461#endif
drhb53a5a92014-10-12 22:37:22 +00004462
drhdef19e32016-01-27 16:26:25 +00004463 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4464 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
drhe807bdb2016-01-21 17:06:33 +00004465 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
drhdef19e32016-01-27 16:26:25 +00004466 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
drhb89aeb62016-01-27 15:49:32 +00004467
4468#ifdef SQLITE_DEBUG
dane61bbf42016-01-28 17:06:17 +00004469 if( p->pFrame==0 ){
4470 if( pC->isEphemeral==0
4471 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4472 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4473 ){
4474 nExtraDelete++;
4475 }
4476 if( pOp->p2 & OPFLAG_NCHANGE ){
4477 nExtraDelete--;
4478 }
drhb89aeb62016-01-27 15:49:32 +00004479 }
4480#endif
4481
drhc960dcb2015-11-20 19:22:01 +00004482 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00004483 pC->cacheStatus = CACHE_STALE;
drhd3e1af42016-02-25 18:54:30 +00004484 if( rc ) goto abort_due_to_error;
danielk197794eb6a12005-12-15 15:22:08 +00004485
drh91fd4d42008-01-19 20:11:25 +00004486 /* Invoke the update-hook if required. */
dan46c47d42011-03-01 18:42:07 +00004487 if( opflags & OPFLAG_NCHANGE ){
4488 p->nChange++;
drhc556f3c2016-03-30 15:30:07 +00004489 if( db->xUpdateCallback && HasRowid(pTab) ){
drh92fe38e2014-10-14 13:41:32 +00004490 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
dan438b8812015-09-15 15:55:15 +00004491 pC->movetoTarget);
4492 assert( pC->iDb>=0 );
dan46c47d42011-03-01 18:42:07 +00004493 }
drh5e00f6c2001-09-13 13:46:56 +00004494 }
dan438b8812015-09-15 15:55:15 +00004495
rdcb0c374f2004-02-20 22:53:38 +00004496 break;
4497}
drhb7f1d9a2009-09-08 02:27:58 +00004498/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004499**
drhb7f1d9a2009-09-08 02:27:58 +00004500** The value of the change counter is copied to the database handle
4501** change counter (returned by subsequent calls to sqlite3_changes()).
4502** Then the VMs internal change counter resets to 0.
4503** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004504*/
drh9cbf3422008-01-17 16:22:13 +00004505case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004506 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004507 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004508 break;
4509}
4510
drh1153c7b2013-11-01 22:02:56 +00004511/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004512** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004513**
drh1153c7b2013-11-01 22:02:56 +00004514** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004515** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004516** the sorter cursor currently points to. Only the first P4 fields
4517** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004518**
4519** If either P3 or the sorter contains a NULL in one of their significant
4520** fields (not counting the P4 fields at the end which are ignored) then
4521** the comparison is assumed to be equal.
4522**
4523** Fall through to next instruction if the two records compare equal to
4524** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004525*/
4526case OP_SorterCompare: {
4527 VdbeCursor *pC;
4528 int res;
drhac502322014-07-30 13:56:48 +00004529 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004530
4531 pC = p->apCsr[pOp->p1];
4532 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004533 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004534 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004535 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004536 res = 0;
drhac502322014-07-30 13:56:48 +00004537 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004538 VdbeBranchTaken(res!=0,2);
drh9467abf2016-02-17 18:44:11 +00004539 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00004540 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004541 break;
4542};
4543
drh6cf4a7d2014-10-13 13:00:58 +00004544/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004545** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004546**
4547** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004548** Then clear the column header cache on cursor P3.
4549**
4550** This opcode is normally use to move a record out of the sorter and into
4551** a register that is the source for a pseudo-table cursor created using
4552** OpenPseudo. That pseudo-table cursor is the one that is identified by
4553** parameter P3. Clearing the P3 column cache as part of this opcode saves
4554** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004555*/
4556case OP_SorterData: {
4557 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004558
dan5134d132011-09-02 10:31:11 +00004559 pOut = &aMem[pOp->p2];
4560 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004561 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004562 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004563 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004564 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9467abf2016-02-17 18:44:11 +00004565 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00004566 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004567 break;
4568}
4569
drh98757152008-01-09 23:04:12 +00004570/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004571** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004572**
drh98757152008-01-09 23:04:12 +00004573** Write into register P2 the complete row data for cursor P1.
4574** There is no interpretation of the data.
4575** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004576** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004577**
drhde4fcfd2008-01-19 23:50:26 +00004578** If the P1 cursor must be pointing to a valid row (not a NULL row)
4579** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004580*/
drh98757152008-01-09 23:04:12 +00004581/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004582** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004583**
drh98757152008-01-09 23:04:12 +00004584** Write into register P2 the complete row key for cursor P1.
4585** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004586** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004587** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004588**
drhde4fcfd2008-01-19 23:50:26 +00004589** If the P1 cursor must be pointing to a valid row (not a NULL row)
4590** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004591*/
danielk1977a7a8e142008-02-13 18:25:27 +00004592case OP_RowKey:
4593case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004594 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004595 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004596 u32 n;
drh856c1032009-06-02 15:21:42 +00004597 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004598
drha6c2ed92009-11-14 23:22:23 +00004599 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004600 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004601
drhf0863fe2005-06-12 21:35:51 +00004602 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004603 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4604 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004605 assert( pC!=0 );
4606 assert( pC->eCurType==CURTYPE_BTREE );
drh14da87f2013-11-20 21:51:33 +00004607 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004608 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004609 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drhde4fcfd2008-01-19 23:50:26 +00004610 assert( pC->nullRow==0 );
drhc960dcb2015-11-20 19:22:01 +00004611 assert( pC->uc.pCursor!=0 );
4612 pCrsr = pC->uc.pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004613
4614 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4615 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004616 ** the cursor. If this where not the case, on of the following assert()s
4617 ** would fail. Should this ever change (because of changes in the code
4618 ** generator) then the fix would be to insert a call to
4619 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004620 */
4621 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004622 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4623#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004624 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004625 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4626#endif
drh9a65f2c2009-06-22 19:05:40 +00004627
drh14da87f2013-11-20 21:51:33 +00004628 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004629 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004630 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004631 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004632 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004633 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004634 }
drhbfb19dc2009-06-05 16:46:53 +00004635 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004636 }else{
drhb07028f2011-10-14 21:49:18 +00004637 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004638 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004639 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004640 goto too_big;
4641 }
drhde4fcfd2008-01-19 23:50:26 +00004642 }
drh722246e2014-10-07 23:02:24 +00004643 testcase( n==0 );
4644 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004645 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004646 }
danielk1977a7a8e142008-02-13 18:25:27 +00004647 pOut->n = n;
4648 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004649 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004650 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4651 }else{
4652 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004653 }
drh9467abf2016-02-17 18:44:11 +00004654 if( rc ) goto abort_due_to_error;
danielk197796cb76f2008-01-04 13:24:28 +00004655 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004656 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004657 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004658 break;
4659}
4660
drh2133d822008-01-03 18:44:59 +00004661/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004662** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004663**
drh2133d822008-01-03 18:44:59 +00004664** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004665** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004666**
4667** P1 can be either an ordinary table or a virtual table. There used to
4668** be a separate OP_VRowid opcode for use with virtual tables, but this
4669** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004670*/
drh27a348c2015-04-13 19:14:06 +00004671case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004672 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004673 i64 v;
drh856c1032009-06-02 15:21:42 +00004674 sqlite3_vtab *pVtab;
4675 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004676
drh27a348c2015-04-13 19:14:06 +00004677 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004678 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4679 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004680 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004681 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004682 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004683 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004684 break;
4685 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004686 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004687#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00004688 }else if( pC->eCurType==CURTYPE_VTAB ){
4689 assert( pC->uc.pVCur!=0 );
4690 pVtab = pC->uc.pVCur->pVtab;
drh044925b2009-04-22 17:15:02 +00004691 pModule = pVtab->pModule;
4692 assert( pModule->xRowid );
drhc960dcb2015-11-20 19:22:01 +00004693 rc = pModule->xRowid(pC->uc.pVCur, &v);
dan016f7812013-08-21 17:35:48 +00004694 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00004695 if( rc ) goto abort_due_to_error;
drh044925b2009-04-22 17:15:02 +00004696#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004697 }else{
drhc960dcb2015-11-20 19:22:01 +00004698 assert( pC->eCurType==CURTYPE_BTREE );
4699 assert( pC->uc.pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004700 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004701 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004702 if( pC->nullRow ){
4703 pOut->flags = MEM_Null;
4704 break;
4705 }
drhc960dcb2015-11-20 19:22:01 +00004706 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004707 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004708 }
drh4c583122008-01-04 22:01:03 +00004709 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004710 break;
4711}
4712
drh9cbf3422008-01-17 16:22:13 +00004713/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004714**
4715** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004716** that occur while the cursor is on the null row will always
4717** write a NULL.
drh17f71932002-02-21 12:01:27 +00004718*/
drh9cbf3422008-01-17 16:22:13 +00004719case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004720 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004721
drh653b82a2009-06-22 11:10:47 +00004722 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4723 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004724 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004725 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004726 pC->cacheStatus = CACHE_STALE;
drhc960dcb2015-11-20 19:22:01 +00004727 if( pC->eCurType==CURTYPE_BTREE ){
4728 assert( pC->uc.pCursor!=0 );
4729 sqlite3BtreeClearCursor(pC->uc.pCursor);
danielk1977be51a652008-10-08 17:58:48 +00004730 }
drh17f71932002-02-21 12:01:27 +00004731 break;
4732}
4733
danb18e60b2015-04-01 16:18:00 +00004734/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004735**
drh8af3f772014-07-25 18:01:06 +00004736** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004737** will refer to the last entry in the database table or index.
4738** If the table or index is empty and P2>0, then jump immediately to P2.
4739** If P2 is 0 or if the table or index is not empty, fall through
4740** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004741**
4742** This opcode leaves the cursor configured to move in reverse order,
4743** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004744** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004745*/
drh9cbf3422008-01-17 16:22:13 +00004746case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004747 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004748 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004749 int res;
drh9562b552002-02-19 15:00:07 +00004750
drh653b82a2009-06-22 11:10:47 +00004751 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4752 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004753 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004754 assert( pC->eCurType==CURTYPE_BTREE );
4755 pCrsr = pC->uc.pCursor;
drh7abc5402011-10-22 21:00:46 +00004756 res = 0;
drh3da046d2013-11-11 03:24:11 +00004757 assert( pCrsr!=0 );
4758 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004759 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004760 pC->deferredMoveto = 0;
4761 pC->cacheStatus = CACHE_STALE;
danb18e60b2015-04-01 16:18:00 +00004762 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004763#ifdef SQLITE_DEBUG
4764 pC->seekOp = OP_Last;
4765#endif
drh9467abf2016-02-17 18:44:11 +00004766 if( rc ) goto abort_due_to_error;
drh688852a2014-02-17 22:40:43 +00004767 if( pOp->p2>0 ){
4768 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004769 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004770 }
4771 break;
4772}
4773
drh0342b1f2005-09-01 03:07:44 +00004774
drh9cbf3422008-01-17 16:22:13 +00004775/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004776**
4777** This opcode does exactly the same thing as OP_Rewind except that
4778** it increments an undocumented global variable used for testing.
4779**
4780** Sorting is accomplished by writing records into a sorting index,
4781** then rewinding that index and playing it back from beginning to
4782** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4783** rewinding so that the global variable will be incremented and
4784** regression tests can determine whether or not the optimizer is
4785** correctly optimizing out sorts.
4786*/
drhc6aff302011-09-01 15:32:47 +00004787case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004788case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004789#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004790 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004791 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004792#endif
drh9b47ee32013-08-20 03:13:51 +00004793 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004794 /* Fall through into OP_Rewind */
4795}
drh9cbf3422008-01-17 16:22:13 +00004796/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004797**
drhf0863fe2005-06-12 21:35:51 +00004798** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004799** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004800** If the table or index is empty, jump immediately to P2.
4801** If the table or index is not empty, fall through to the following
4802** instruction.
drh8af3f772014-07-25 18:01:06 +00004803**
4804** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004805** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004806** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004807*/
drh9cbf3422008-01-17 16:22:13 +00004808case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004809 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004810 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004811 int res;
drh5e00f6c2001-09-13 13:46:56 +00004812
drh653b82a2009-06-22 11:10:47 +00004813 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4814 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004815 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004816 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004817 res = 1;
drh8af3f772014-07-25 18:01:06 +00004818#ifdef SQLITE_DEBUG
4819 pC->seekOp = OP_Rewind;
4820#endif
dan689ab892011-08-12 15:02:00 +00004821 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004822 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004823 }else{
drhc960dcb2015-11-20 19:22:01 +00004824 assert( pC->eCurType==CURTYPE_BTREE );
4825 pCrsr = pC->uc.pCursor;
dana205a482011-08-27 18:48:57 +00004826 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004827 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004828 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004829 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004830 }
drh9467abf2016-02-17 18:44:11 +00004831 if( rc ) goto abort_due_to_error;
drh9c1905f2008-12-10 22:32:56 +00004832 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004833 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004834 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004835 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004836 break;
4837}
4838
drh0fd61352014-02-07 02:29:45 +00004839/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004840**
4841** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004842** table or index. If there are no more key/value pairs then fall through
4843** to the following instruction. But if the cursor advance was successful,
4844** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004845**
drh5dad9a32014-07-25 18:37:42 +00004846** The Next opcode is only valid following an SeekGT, SeekGE, or
4847** OP_Rewind opcode used to position the cursor. Next is not allowed
4848** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004849**
drhf93cd942013-11-21 03:12:25 +00004850** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4851** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004852**
drhe39a7322014-02-03 14:04:11 +00004853** The P3 value is a hint to the btree implementation. If P3==1, that
4854** means P1 is an SQL index and that this instruction could have been
4855** omitted if that index had been unique. P3 is usually 0. P3 is
4856** always either 0 or 1.
4857**
dana205a482011-08-27 18:48:57 +00004858** P4 is always of type P4_ADVANCE. The function pointer points to
4859** sqlite3BtreeNext().
4860**
drhafc266a2010-03-31 17:47:44 +00004861** If P5 is positive and the jump is taken, then event counter
4862** number P5-1 in the prepared statement is incremented.
4863**
drhf93cd942013-11-21 03:12:25 +00004864** See also: Prev, NextIfOpen
4865*/
drh0fd61352014-02-07 02:29:45 +00004866/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004867**
drh5dad9a32014-07-25 18:37:42 +00004868** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004869** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004870*/
drh0fd61352014-02-07 02:29:45 +00004871/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004872**
4873** Back up cursor P1 so that it points to the previous key/data pair in its
4874** table or index. If there is no previous key/value pairs then fall through
4875** to the following instruction. But if the cursor backup was successful,
4876** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004877**
drh8af3f772014-07-25 18:01:06 +00004878**
drh5dad9a32014-07-25 18:37:42 +00004879** The Prev opcode is only valid following an SeekLT, SeekLE, or
4880** OP_Last opcode used to position the cursor. Prev is not allowed
4881** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004882**
drhf93cd942013-11-21 03:12:25 +00004883** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4884** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004885**
drhe39a7322014-02-03 14:04:11 +00004886** The P3 value is a hint to the btree implementation. If P3==1, that
4887** means P1 is an SQL index and that this instruction could have been
4888** omitted if that index had been unique. P3 is usually 0. P3 is
4889** always either 0 or 1.
4890**
dana205a482011-08-27 18:48:57 +00004891** P4 is always of type P4_ADVANCE. The function pointer points to
4892** sqlite3BtreePrevious().
4893**
drhafc266a2010-03-31 17:47:44 +00004894** If P5 is positive and the jump is taken, then event counter
4895** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004896*/
drh0fd61352014-02-07 02:29:45 +00004897/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004898**
drh5dad9a32014-07-25 18:37:42 +00004899** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004900** open it behaves a no-op.
4901*/
4902case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004903 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004904 int res;
drh8721ce42001-11-07 14:22:00 +00004905
drhf93cd942013-11-21 03:12:25 +00004906 pC = p->apCsr[pOp->p1];
4907 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004908 res = 0;
drhf93cd942013-11-21 03:12:25 +00004909 rc = sqlite3VdbeSorterNext(db, pC, &res);
4910 goto next_tail;
4911case OP_PrevIfOpen: /* jump */
4912case OP_NextIfOpen: /* jump */
4913 if( p->apCsr[pOp->p1]==0 ) break;
4914 /* Fall through */
4915case OP_Prev: /* jump */
4916case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004917 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004918 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004919 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004920 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004921 assert( pC!=0 );
4922 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00004923 assert( pC->eCurType==CURTYPE_BTREE );
drhe39a7322014-02-03 14:04:11 +00004924 assert( res==0 || (res==1 && pC->isTable==0) );
4925 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004926 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4927 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4928 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4929 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004930
4931 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4932 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4933 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4934 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004935 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004936 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4937 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4938 || pC->seekOp==OP_Last );
4939
drhc960dcb2015-11-20 19:22:01 +00004940 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
drhf93cd942013-11-21 03:12:25 +00004941next_tail:
drha3460582008-07-11 21:02:53 +00004942 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004943 VdbeBranchTaken(res==0,2);
drh9467abf2016-02-17 18:44:11 +00004944 if( rc ) goto abort_due_to_error;
drha3460582008-07-11 21:02:53 +00004945 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004946 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00004947 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004948#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004949 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004950#endif
drhf56fa462015-04-13 21:39:54 +00004951 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00004952 }else{
4953 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004954 }
drh49afe3a2013-07-10 03:05:14 +00004955 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004956}
4957
danielk1977de630352009-05-04 11:42:29 +00004958/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004959** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004960**
drhef8662b2011-06-20 21:47:58 +00004961** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004962** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004963** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004964**
drhaa9b8962008-01-08 02:57:55 +00004965** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004966** insert is likely to be an append.
4967**
mistachkin21a919f2014-02-07 03:28:02 +00004968** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4969** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4970** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004971**
mistachkin21a919f2014-02-07 03:28:02 +00004972** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4973** just done a seek to the spot where the new entry is to be inserted.
4974** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004975**
drhf0863fe2005-06-12 21:35:51 +00004976** This instruction only works for indices. The equivalent instruction
4977** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004978*/
drhca892a72011-09-03 00:17:51 +00004979case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004980case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004981 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004982 int nKey;
4983 const char *zKey;
4984
drh653b82a2009-06-22 11:10:47 +00004985 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4986 pC = p->apCsr[pOp->p1];
4987 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004988 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004989 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004990 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00004991 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhc960dcb2015-11-20 19:22:01 +00004992 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
drh3da046d2013-11-11 03:24:11 +00004993 assert( pC->isTable==0 );
4994 rc = ExpandBlob(pIn2);
drh9467abf2016-02-17 18:44:11 +00004995 if( rc ) goto abort_due_to_error;
4996 if( pOp->opcode==OP_SorterInsert ){
4997 rc = sqlite3VdbeSorterWrite(pC, pIn2);
4998 }else{
4999 nKey = pIn2->n;
5000 zKey = pIn2->z;
5001 rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3,
5002 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5003 );
5004 assert( pC->deferredMoveto==0 );
5005 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005006 }
drh9467abf2016-02-17 18:44:11 +00005007 if( rc) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005008 break;
5009}
5010
drhd1d38482008-10-07 23:46:38 +00005011/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00005012** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00005013**
drhe14006d2008-03-25 17:23:32 +00005014** The content of P3 registers starting at register P2 form
5015** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00005016** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00005017*/
drhe14006d2008-03-25 17:23:32 +00005018case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00005019 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005020 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00005021 int res;
5022 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00005023
drhe14006d2008-03-25 17:23:32 +00005024 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00005025 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00005026 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5027 pC = p->apCsr[pOp->p1];
5028 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005029 assert( pC->eCurType==CURTYPE_BTREE );
5030 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00005031 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00005032 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00005033 r.pKeyInfo = pC->pKeyInfo;
5034 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00005035 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005036 r.aMem = &aMem[pOp->p2];
drh3da046d2013-11-11 03:24:11 +00005037 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
drh9467abf2016-02-17 18:44:11 +00005038 if( rc ) goto abort_due_to_error;
5039 if( res==0 ){
dane61bbf42016-01-28 17:06:17 +00005040 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
drh9467abf2016-02-17 18:44:11 +00005041 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005042 }
drh3da046d2013-11-11 03:24:11 +00005043 assert( pC->deferredMoveto==0 );
5044 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005045 break;
5046}
5047
drh784c1b92016-01-30 16:59:56 +00005048/* Opcode: Seek P1 * P3 P4 *
5049** Synopsis: Move P3 to P1.rowid
5050**
5051** P1 is an open index cursor and P3 is a cursor on the corresponding
5052** table. This opcode does a deferred seek of the P3 table cursor
5053** to the row that corresponds to the current row of P1.
5054**
5055** This is a deferred seek. Nothing actually happens until
5056** the cursor is used to read a record. That way, if no reads
5057** occur, no unnecessary I/O happens.
5058**
5059** P4 may be an array of integers (type P4_INTARRAY) containing
drh19d720d2016-02-03 19:52:06 +00005060** one entry for each column in the P3 table. If array entry a(i)
5061** is non-zero, then reading column a(i)-1 from cursor P3 is
drh784c1b92016-01-30 16:59:56 +00005062** equivalent to performing the deferred seek and then reading column i
5063** from P1. This information is stored in P3 and used to redirect
5064** reads against P3 over to P1, thus possibly avoiding the need to
5065** seek and read cursor P3.
5066*/
drh2133d822008-01-03 18:44:59 +00005067/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005068** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00005069**
drh2133d822008-01-03 18:44:59 +00005070** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00005071** the end of the index key pointed to by cursor P1. This integer should be
5072** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00005073**
drh9437bd22009-02-01 00:29:56 +00005074** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00005075*/
drh784c1b92016-01-30 16:59:56 +00005076case OP_Seek:
drh27a348c2015-04-13 19:14:06 +00005077case OP_IdxRowid: { /* out2 */
drh784c1b92016-01-30 16:59:56 +00005078 VdbeCursor *pC; /* The P1 index cursor */
5079 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */
5080 i64 rowid; /* Rowid that P1 current points to */
drh8721ce42001-11-07 14:22:00 +00005081
drh653b82a2009-06-22 11:10:47 +00005082 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5083 pC = p->apCsr[pOp->p1];
5084 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005085 assert( pC->eCurType==CURTYPE_BTREE );
drh784c1b92016-01-30 16:59:56 +00005086 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00005087 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00005088 assert( pC->deferredMoveto==0 );
drh784c1b92016-01-30 16:59:56 +00005089 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5090
5091 /* The IdxRowid and Seek opcodes are combined because of the commonality
5092 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5093 rc = sqlite3VdbeCursorRestore(pC);
drhc22284f2014-10-13 16:02:20 +00005094
5095 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
drh784c1b92016-01-30 16:59:56 +00005096 ** out from under the cursor. That will never happens for an IdxRowid
5097 ** or Seek opcode */
drhc22284f2014-10-13 16:02:20 +00005098 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5099
drh3da046d2013-11-11 03:24:11 +00005100 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00005101 rowid = 0; /* Not needed. Only used to silence a warning. */
drh784c1b92016-01-30 16:59:56 +00005102 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
drh3da046d2013-11-11 03:24:11 +00005103 if( rc!=SQLITE_OK ){
5104 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00005105 }
drh784c1b92016-01-30 16:59:56 +00005106 if( pOp->opcode==OP_Seek ){
5107 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5108 pTabCur = p->apCsr[pOp->p3];
5109 assert( pTabCur!=0 );
5110 assert( pTabCur->eCurType==CURTYPE_BTREE );
5111 assert( pTabCur->uc.pCursor!=0 );
5112 assert( pTabCur->isTable );
5113 pTabCur->nullRow = 0;
5114 pTabCur->movetoTarget = rowid;
5115 pTabCur->deferredMoveto = 1;
5116 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5117 pTabCur->aAltMap = pOp->p4.ai;
5118 pTabCur->pAltCursor = pC;
5119 }else{
5120 pOut = out2Prerelease(p, pOp);
5121 pOut->u.i = rowid;
5122 pOut->flags = MEM_Int;
5123 }
5124 }else{
5125 assert( pOp->opcode==OP_IdxRowid );
5126 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
drh8721ce42001-11-07 14:22:00 +00005127 }
5128 break;
5129}
5130
danielk197761dd5832008-04-18 11:31:12 +00005131/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005132** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00005133**
danielk197761dd5832008-04-18 11:31:12 +00005134** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005135** key that omits the PRIMARY KEY. Compare this key value against the index
5136** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5137** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00005138**
danielk197761dd5832008-04-18 11:31:12 +00005139** If the P1 index entry is greater than or equal to the key value
5140** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00005141*/
5142/* Opcode: IdxGT P1 P2 P3 P4 P5
5143** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00005144**
drh4a1d3652014-02-14 15:13:36 +00005145** The P4 register values beginning with P3 form an unpacked index
5146** key that omits the PRIMARY KEY. Compare this key value against the index
5147** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5148** fields at the end.
5149**
5150** If the P1 index entry is greater than the key value
5151** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00005152*/
drh3bb9b932010-08-06 02:10:00 +00005153/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005154** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00005155**
danielk197761dd5832008-04-18 11:31:12 +00005156** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005157** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5158** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5159** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00005160**
danielk197761dd5832008-04-18 11:31:12 +00005161** If the P1 index entry is less than the key value then jump to P2.
5162** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00005163*/
drh4a1d3652014-02-14 15:13:36 +00005164/* Opcode: IdxLE P1 P2 P3 P4 P5
5165** Synopsis: key=r[P3@P4]
5166**
5167** The P4 register values beginning with P3 form an unpacked index
5168** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5169** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5170** ROWID on the P1 index.
5171**
5172** If the P1 index entry is less than or equal to the key value then jump
5173** to P2. Otherwise fall through to the next instruction.
5174*/
5175case OP_IdxLE: /* jump */
5176case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00005177case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00005178case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005179 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00005180 int res;
5181 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00005182
drh653b82a2009-06-22 11:10:47 +00005183 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5184 pC = p->apCsr[pOp->p1];
5185 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00005186 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00005187 assert( pC->eCurType==CURTYPE_BTREE );
5188 assert( pC->uc.pCursor!=0);
drh3da046d2013-11-11 03:24:11 +00005189 assert( pC->deferredMoveto==0 );
5190 assert( pOp->p5==0 || pOp->p5==1 );
5191 assert( pOp->p4type==P4_INT32 );
5192 r.pKeyInfo = pC->pKeyInfo;
5193 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00005194 if( pOp->opcode<OP_IdxLT ){
5195 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00005196 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00005197 }else{
drh4a1d3652014-02-14 15:13:36 +00005198 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00005199 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005200 }
5201 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005202#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00005203 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00005204#endif
drh2dc06482013-12-11 00:59:10 +00005205 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005206 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005207 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5208 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5209 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005210 res = -res;
5211 }else{
drh4a1d3652014-02-14 15:13:36 +00005212 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005213 res++;
5214 }
drh688852a2014-02-17 22:40:43 +00005215 VdbeBranchTaken(res>0,2);
drh9467abf2016-02-17 18:44:11 +00005216 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005217 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005218 break;
5219}
5220
drh98757152008-01-09 23:04:12 +00005221/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005222**
5223** Delete an entire database table or index whose root page in the database
5224** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005225**
drh98757152008-01-09 23:04:12 +00005226** The table being destroyed is in the main database file if P3==0. If
5227** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005228** that is used to store tables create using CREATE TEMPORARY TABLE.
5229**
drh205f48e2004-11-05 00:43:11 +00005230** If AUTOVACUUM is enabled then it is possible that another root page
5231** might be moved into the newly deleted root page in order to keep all
5232** root pages contiguous at the beginning of the database. The former
5233** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00005234** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00005235** movement was required (because the table being dropped was already
5236** the last one in the database) then a zero is stored in register P2.
5237** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00005238**
drhb19a2bc2001-09-16 00:13:26 +00005239** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005240*/
drh27a348c2015-04-13 19:14:06 +00005241case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005242 int iMoved;
drh856c1032009-06-02 15:21:42 +00005243 int iDb;
drh3a949872012-09-18 13:20:13 +00005244
drh9e92a472013-06-27 17:40:30 +00005245 assert( p->readOnly==0 );
drh055f2982016-01-15 15:06:41 +00005246 assert( pOp->p1>1 );
drh27a348c2015-04-13 19:14:06 +00005247 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005248 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005249 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005250 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005251 p->errorAction = OE_Abort;
drh9467abf2016-02-17 18:44:11 +00005252 goto abort_due_to_error;
danielk1977e6efa742004-11-10 11:55:10 +00005253 }else{
drh856c1032009-06-02 15:21:42 +00005254 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005255 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005256 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005257 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005258 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005259 pOut->u.i = iMoved;
drh9467abf2016-02-17 18:44:11 +00005260 if( rc ) goto abort_due_to_error;
drh3765df42006-06-28 18:18:09 +00005261#ifndef SQLITE_OMIT_AUTOVACUUM
drh9467abf2016-02-17 18:44:11 +00005262 if( iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005263 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5264 /* All OP_Destroy operations occur on the same btree */
5265 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5266 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005267 }
drh3765df42006-06-28 18:18:09 +00005268#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005269 }
drh5e00f6c2001-09-13 13:46:56 +00005270 break;
5271}
5272
danielk1977c7af4842008-10-27 13:59:33 +00005273/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005274**
5275** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005276** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005277** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005278**
drhf57b3392001-10-08 13:22:32 +00005279** The table being clear is in the main database file if P2==0. If
5280** P2==1 then the table to be clear is in the auxiliary database file
5281** that is used to store tables create using CREATE TEMPORARY TABLE.
5282**
shanebe217792009-03-05 04:20:31 +00005283** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005284** intkey table (an SQL table, not an index). In this case the row change
5285** count is incremented by the number of rows in the table being cleared.
5286** If P3 is greater than zero, then the value stored in register P3 is
5287** also incremented by the number of rows in the table being cleared.
5288**
drhb19a2bc2001-09-16 00:13:26 +00005289** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005290*/
drh9cbf3422008-01-17 16:22:13 +00005291case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005292 int nChange;
5293
5294 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005295 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005296 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005297 rc = sqlite3BtreeClearTable(
5298 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5299 );
5300 if( pOp->p3 ){
5301 p->nChange += nChange;
5302 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005303 assert( memIsValid(&aMem[pOp->p3]) );
5304 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005305 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005306 }
5307 }
drh9467abf2016-02-17 18:44:11 +00005308 if( rc ) goto abort_due_to_error;
drh5edc3122001-09-13 21:53:09 +00005309 break;
5310}
5311
drh65ea12c2014-03-19 17:41:36 +00005312/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005313**
drh65ea12c2014-03-19 17:41:36 +00005314** Delete all contents from the ephemeral table or sorter
5315** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005316**
drh65ea12c2014-03-19 17:41:36 +00005317** This opcode only works for cursors used for sorting and
5318** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005319*/
drh65ea12c2014-03-19 17:41:36 +00005320case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005321 VdbeCursor *pC;
5322
5323 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5324 pC = p->apCsr[pOp->p1];
5325 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005326 if( isSorter(pC) ){
5327 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
drh65ea12c2014-03-19 17:41:36 +00005328 }else{
drhc960dcb2015-11-20 19:22:01 +00005329 assert( pC->eCurType==CURTYPE_BTREE );
drh65ea12c2014-03-19 17:41:36 +00005330 assert( pC->isEphemeral );
drhc960dcb2015-11-20 19:22:01 +00005331 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
drh9467abf2016-02-17 18:44:11 +00005332 if( rc ) goto abort_due_to_error;
drh65ea12c2014-03-19 17:41:36 +00005333 }
drh079a3072014-03-19 14:10:55 +00005334 break;
5335}
5336
drh4c583122008-01-04 22:01:03 +00005337/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005338** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005339**
drh4c583122008-01-04 22:01:03 +00005340** Allocate a new table in the main database file if P1==0 or in the
5341** auxiliary database file if P1==1 or in an attached database if
5342** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005343** register P2
drh5b2fd562001-09-13 15:21:31 +00005344**
drhc6b52df2002-01-04 03:09:29 +00005345** The difference between a table and an index is this: A table must
5346** have a 4-byte integer key and can have arbitrary data. An index
5347** has an arbitrary key but no data.
5348**
drhb19a2bc2001-09-16 00:13:26 +00005349** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005350*/
drh4c583122008-01-04 22:01:03 +00005351/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005352** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005353**
drh4c583122008-01-04 22:01:03 +00005354** Allocate a new index in the main database file if P1==0 or in the
5355** auxiliary database file if P1==1 or in an attached database if
5356** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005357** register P2.
drhf57b3392001-10-08 13:22:32 +00005358**
drhc6b52df2002-01-04 03:09:29 +00005359** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005360*/
drh27a348c2015-04-13 19:14:06 +00005361case OP_CreateIndex: /* out2 */
5362case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005363 int pgno;
drhf328bc82004-05-10 23:29:49 +00005364 int flags;
drh234c39d2004-07-24 03:30:47 +00005365 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005366
drh27a348c2015-04-13 19:14:06 +00005367 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005368 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005369 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005370 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005371 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005372 pDb = &db->aDb[pOp->p1];
5373 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005374 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005375 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005376 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005377 }else{
drhd4187c72010-08-30 22:15:45 +00005378 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005379 }
drh234c39d2004-07-24 03:30:47 +00005380 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh9467abf2016-02-17 18:44:11 +00005381 if( rc ) goto abort_due_to_error;
drh88a003e2008-12-11 16:17:03 +00005382 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005383 break;
5384}
5385
drh22645842011-03-24 01:34:03 +00005386/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005387**
5388** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005389** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005390**
5391** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005392** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005393*/
drh9cbf3422008-01-17 16:22:13 +00005394case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005395 int iDb;
5396 const char *zMaster;
5397 char *zSql;
5398 InitData initData;
5399
drhbdaec522011-04-04 00:14:43 +00005400 /* Any prepared statement that invokes this opcode will hold mutexes
5401 ** on every btree. This is a prerequisite for invoking
5402 ** sqlite3InitCallback().
5403 */
5404#ifdef SQLITE_DEBUG
5405 for(iDb=0; iDb<db->nDb; iDb++){
5406 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5407 }
5408#endif
drhbdaec522011-04-04 00:14:43 +00005409
drh856c1032009-06-02 15:21:42 +00005410 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005411 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005412 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005413 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005414 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005415 initData.db = db;
5416 initData.iDb = pOp->p1;
5417 initData.pzErrMsg = &p->zErrMsg;
5418 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005419 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005420 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5421 if( zSql==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005422 rc = SQLITE_NOMEM_BKPT;
danielk1977a8bbef82009-03-23 17:11:26 +00005423 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005424 assert( db->init.busy==0 );
5425 db->init.busy = 1;
5426 initData.rc = SQLITE_OK;
5427 assert( !db->mallocFailed );
5428 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5429 if( rc==SQLITE_OK ) rc = initData.rc;
5430 sqlite3DbFree(db, zSql);
5431 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005432 }
drh3c23a882007-01-09 14:01:13 +00005433 }
drh9467abf2016-02-17 18:44:11 +00005434 if( rc ){
5435 sqlite3ResetAllSchemasOfConnection(db);
5436 if( rc==SQLITE_NOMEM ){
5437 goto no_mem;
5438 }
5439 goto abort_due_to_error;
danielk1977261919c2005-12-06 12:52:59 +00005440 }
drh234c39d2004-07-24 03:30:47 +00005441 break;
5442}
5443
drh8bfdf722009-06-19 14:06:03 +00005444#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005445/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005446**
5447** Read the sqlite_stat1 table for database P1 and load the content
5448** of that table into the internal index hash table. This will cause
5449** the analysis to be used when preparing all subsequent queries.
5450*/
drh9cbf3422008-01-17 16:22:13 +00005451case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005452 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5453 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00005454 if( rc ) goto abort_due_to_error;
drh497e4462005-07-23 03:18:40 +00005455 break;
5456}
drh8bfdf722009-06-19 14:06:03 +00005457#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005458
drh98757152008-01-09 23:04:12 +00005459/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005460**
5461** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005462** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005463** is dropped from disk (using the Destroy opcode) in order to keep
5464** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005465** schema consistent with what is on disk.
5466*/
drh9cbf3422008-01-17 16:22:13 +00005467case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005468 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005469 break;
5470}
5471
drh98757152008-01-09 23:04:12 +00005472/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005473**
5474** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005475** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005476** is dropped from disk (using the Destroy opcode)
5477** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005478** schema consistent with what is on disk.
5479*/
drh9cbf3422008-01-17 16:22:13 +00005480case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005481 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005482 break;
5483}
5484
drh98757152008-01-09 23:04:12 +00005485/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005486**
5487** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005488** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005489** is dropped from disk (using the Destroy opcode) in order to keep
5490** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005491** schema consistent with what is on disk.
5492*/
drh9cbf3422008-01-17 16:22:13 +00005493case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005494 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005495 break;
5496}
5497
drh234c39d2004-07-24 03:30:47 +00005498
drhb7f91642004-10-31 02:22:47 +00005499#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98968b22016-03-15 22:00:39 +00005500/* Opcode: IntegrityCk P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005501**
drh98757152008-01-09 23:04:12 +00005502** Do an analysis of the currently open database. Store in
5503** register P1 the text of an error message describing any problems.
5504** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005505**
drh98757152008-01-09 23:04:12 +00005506** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005507** At most reg(P3) errors will be reported.
5508** In other words, the analysis stops as soon as reg(P1) errors are
5509** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005510**
drh98968b22016-03-15 22:00:39 +00005511** The root page numbers of all tables in the database are integers
5512** stored in P4_INTARRAY argument.
drh21504322002-06-25 13:16:02 +00005513**
drh98757152008-01-09 23:04:12 +00005514** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005515** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005516**
drh1dcdbc02007-01-27 02:24:54 +00005517** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005518*/
drhaaab5722002-02-19 13:39:21 +00005519case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005520 int nRoot; /* Number of tables to check. (Number of root pages.) */
5521 int *aRoot; /* Array of rootpage numbers for tables to be checked */
drh98757152008-01-09 23:04:12 +00005522 int nErr; /* Number of errors reported */
5523 char *z; /* Text of the error report */
5524 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005525
drh1713afb2013-06-28 01:24:57 +00005526 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005527 nRoot = pOp->p2;
drh98968b22016-03-15 22:00:39 +00005528 aRoot = pOp->p4.ai;
drh79069752004-05-22 21:30:40 +00005529 assert( nRoot>0 );
drh98968b22016-03-15 22:00:39 +00005530 assert( aRoot[nRoot]==0 );
drh9f6168b2016-03-19 23:32:58 +00005531 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005532 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005533 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005534 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005535 pIn1 = &aMem[pOp->p1];
drh98757152008-01-09 23:04:12 +00005536 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005537 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005538 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005539 (int)pnErr->u.i, &nErr);
drh3c024d62007-03-30 11:23:45 +00005540 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005541 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005542 if( nErr==0 ){
5543 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005544 }else if( z==0 ){
5545 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005546 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005547 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005548 }
drhb7654112008-01-12 12:48:07 +00005549 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005550 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005551 break;
5552}
drhb7f91642004-10-31 02:22:47 +00005553#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005554
drh3d4501e2008-12-04 20:40:10 +00005555/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005556** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005557**
drh3d4501e2008-12-04 20:40:10 +00005558** Insert the integer value held by register P2 into a boolean index
5559** held in register P1.
5560**
5561** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005562*/
drh93952eb2009-11-13 19:43:43 +00005563case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005564 pIn1 = &aMem[pOp->p1];
5565 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005566 assert( (pIn2->flags & MEM_Int)!=0 );
5567 if( (pIn1->flags & MEM_RowSet)==0 ){
5568 sqlite3VdbeMemSetRowSet(pIn1);
5569 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005570 }
drh93952eb2009-11-13 19:43:43 +00005571 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005572 break;
5573}
5574
5575/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005576** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005577**
5578** Extract the smallest value from boolean index P1 and put that value into
5579** register P3. Or, if boolean index P1 is initially empty, leave P3
5580** unchanged and jump to instruction P2.
5581*/
drh93952eb2009-11-13 19:43:43 +00005582case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005583 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005584
drh3c657212009-11-17 23:59:58 +00005585 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005586 if( (pIn1->flags & MEM_RowSet)==0
5587 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005588 ){
5589 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005590 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005591 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005592 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005593 }else{
5594 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005595 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005596 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005597 }
drh49afe3a2013-07-10 03:05:14 +00005598 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005599}
5600
drh1b26c7c2009-04-22 02:15:47 +00005601/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005602** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005603**
drhade97602009-04-21 15:05:18 +00005604** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005605** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005606** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005607** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005608** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005609**
drh1b26c7c2009-04-22 02:15:47 +00005610** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005611** of integers, where each set contains no duplicates. Each set
5612** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005613** must have P4==0, the final set P4=-1. P4 must be either -1 or
5614** non-negative. For non-negative values of P4 only the lower 4
5615** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005616**
5617** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005618** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005619** (b) when P4==-1 there is no need to insert the value, as it will
5620** never be tested for, and (c) when a value that is part of set X is
5621** inserted, there is no need to search to see if the same value was
5622** previously inserted as part of set X (only if it was previously
5623** inserted as part of some other set).
5624*/
drh1b26c7c2009-04-22 02:15:47 +00005625case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005626 int iSet;
5627 int exists;
5628
drh3c657212009-11-17 23:59:58 +00005629 pIn1 = &aMem[pOp->p1];
5630 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005631 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005632 assert( pIn3->flags&MEM_Int );
5633
drh1b26c7c2009-04-22 02:15:47 +00005634 /* If there is anything other than a rowset object in memory cell P1,
5635 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005636 */
drh733bf1b2009-04-22 00:47:00 +00005637 if( (pIn1->flags & MEM_RowSet)==0 ){
5638 sqlite3VdbeMemSetRowSet(pIn1);
5639 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005640 }
5641
5642 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005643 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005644 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005645 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005646 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005647 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005648 }
5649 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005650 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005651 }
5652 break;
5653}
5654
drh5e00f6c2001-09-13 13:46:56 +00005655
danielk197793758c82005-01-21 08:13:14 +00005656#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005657
drh0fd61352014-02-07 02:29:45 +00005658/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005659**
dan76d462e2009-08-30 11:42:51 +00005660** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005661**
dan76d462e2009-08-30 11:42:51 +00005662** P1 contains the address of the memory cell that contains the first memory
5663** cell in an array of values used as arguments to the sub-program. P2
5664** contains the address to jump to if the sub-program throws an IGNORE
5665** exception using the RAISE() function. Register P3 contains the address
5666** of a memory cell in this (the parent) VM that is used to allocate the
5667** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005668**
5669** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005670**
5671** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005672*/
dan76d462e2009-08-30 11:42:51 +00005673case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005674 int nMem; /* Number of memory registers for sub-program */
5675 int nByte; /* Bytes of runtime space required for sub-program */
5676 Mem *pRt; /* Register to allocate runtime space */
5677 Mem *pMem; /* Used to iterate through memory cells */
5678 Mem *pEnd; /* Last memory cell in new array */
5679 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5680 SubProgram *pProgram; /* Sub-program to execute */
5681 void *t; /* Token identifying trigger */
5682
5683 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005684 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005685 assert( pProgram->nOp>0 );
5686
dan1da40a32009-09-19 17:00:31 +00005687 /* If the p5 flag is clear, then recursive invocation of triggers is
5688 ** disabled for backwards compatibility (p5 is set if this sub-program
5689 ** is really a trigger, not a foreign key action, and the flag set
5690 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005691 **
5692 ** It is recursive invocation of triggers, at the SQL level, that is
5693 ** disabled. In some cases a single trigger may generate more than one
5694 ** SubProgram (if the trigger may be executed with more than one different
5695 ** ON CONFLICT algorithm). SubProgram structures associated with a
5696 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005697 ** variable. */
5698 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005699 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005700 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5701 if( pFrame ) break;
5702 }
5703
danf5894502009-10-07 18:41:19 +00005704 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005705 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005706 sqlite3VdbeError(p, "too many levels of trigger recursion");
drh9467abf2016-02-17 18:44:11 +00005707 goto abort_due_to_error;
dan165921a2009-08-28 18:53:45 +00005708 }
5709
5710 /* Register pRt is used to store the memory required to save the state
5711 ** of the current program, and the memory required at runtime to execute
5712 ** the trigger program. If this trigger has been fired before, then pRt
5713 ** is already allocated. Otherwise, it must be initialized. */
5714 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005715 /* SubProgram.nMem is set to the number of memory cells used by the
5716 ** program stored in SubProgram.aOp. As well as these, one memory
5717 ** cell is required for each cursor used by the program. Set local
5718 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5719 */
dan65a7cd12009-09-01 12:16:01 +00005720 nMem = pProgram->nMem + pProgram->nCsr;
drh3cdce922016-03-21 00:30:40 +00005721 assert( nMem>0 );
5722 if( pProgram->nCsr==0 ) nMem++;
dan65a7cd12009-09-01 12:16:01 +00005723 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005724 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005725 + pProgram->nCsr * sizeof(VdbeCursor *)
5726 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005727 pFrame = sqlite3DbMallocZero(db, nByte);
5728 if( !pFrame ){
5729 goto no_mem;
5730 }
5731 sqlite3VdbeMemRelease(pRt);
5732 pRt->flags = MEM_Frame;
5733 pRt->u.pFrame = pFrame;
5734
5735 pFrame->v = p;
5736 pFrame->nChildMem = nMem;
5737 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005738 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005739 pFrame->aMem = p->aMem;
5740 pFrame->nMem = p->nMem;
5741 pFrame->apCsr = p->apCsr;
5742 pFrame->nCursor = p->nCursor;
5743 pFrame->aOp = p->aOp;
5744 pFrame->nOp = p->nOp;
5745 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005746 pFrame->aOnceFlag = p->aOnceFlag;
5747 pFrame->nOnceFlag = p->nOnceFlag;
dane2f771b2014-11-03 15:33:17 +00005748#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005749 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005750#endif
dan165921a2009-08-28 18:53:45 +00005751
5752 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5753 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005754 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005755 pMem->db = db;
5756 }
5757 }else{
5758 pFrame = pRt->u.pFrame;
drh9f6168b2016-03-19 23:32:58 +00005759 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5760 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
dan165921a2009-08-28 18:53:45 +00005761 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005762 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005763 }
5764
5765 p->nFrame++;
5766 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005767 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005768 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005769 pFrame->nDbChange = p->db->nChange;
dan32001322016-02-19 18:54:29 +00005770 assert( pFrame->pAuxData==0 );
5771 pFrame->pAuxData = p->pAuxData;
5772 p->pAuxData = 0;
dan2832ad42009-08-31 15:27:27 +00005773 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005774 p->pFrame = pFrame;
drh9f6168b2016-03-19 23:32:58 +00005775 p->aMem = aMem = VdbeFrameMem(pFrame);
dan165921a2009-08-28 18:53:45 +00005776 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005777 p->nCursor = (u16)pFrame->nChildCsr;
drh9f6168b2016-03-19 23:32:58 +00005778 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
drhbbe879d2009-11-14 18:04:35 +00005779 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005780 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005781 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5782 p->nOnceFlag = pProgram->nOnce;
dane2f771b2014-11-03 15:33:17 +00005783#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005784 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005785#endif
drhf56fa462015-04-13 21:39:54 +00005786 pOp = &aOp[-1];
dan1d8cb212011-12-09 13:24:16 +00005787 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005788
5789 break;
5790}
5791
dan76d462e2009-08-30 11:42:51 +00005792/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005793**
dan76d462e2009-08-30 11:42:51 +00005794** This opcode is only ever present in sub-programs called via the
5795** OP_Program instruction. Copy a value currently stored in a memory
5796** cell of the calling (parent) frame to cell P2 in the current frames
5797** address space. This is used by trigger programs to access the new.*
5798** and old.* values.
dan165921a2009-08-28 18:53:45 +00005799**
dan76d462e2009-08-30 11:42:51 +00005800** The address of the cell in the parent frame is determined by adding
5801** the value of the P1 argument to the value of the P1 argument to the
5802** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005803*/
drh27a348c2015-04-13 19:14:06 +00005804case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005805 VdbeFrame *pFrame;
5806 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005807 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005808 pFrame = p->pFrame;
5809 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005810 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5811 break;
5812}
5813
danielk197793758c82005-01-21 08:13:14 +00005814#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005815
dan1da40a32009-09-19 17:00:31 +00005816#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005817/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005818** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005819**
dan0ff297e2009-09-25 17:03:14 +00005820** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5821** If P1 is non-zero, the database constraint counter is incremented
5822** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005823** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005824*/
dan32b09f22009-09-23 17:29:59 +00005825case OP_FkCounter: {
drh963c74d2013-07-11 12:19:12 +00005826 if( db->flags & SQLITE_DeferFKs ){
dancb3e4b72013-07-03 19:53:05 +00005827 db->nDeferredImmCons += pOp->p2;
5828 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005829 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005830 }else{
dan0ff297e2009-09-25 17:03:14 +00005831 p->nFkConstraint += pOp->p2;
5832 }
5833 break;
5834}
5835
5836/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005837** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005838**
5839** This opcode tests if a foreign key constraint-counter is currently zero.
5840** If so, jump to instruction P2. Otherwise, fall through to the next
5841** instruction.
5842**
5843** If P1 is non-zero, then the jump is taken if the database constraint-counter
5844** is zero (the one that counts deferred constraint violations). If P1 is
5845** zero, the jump is taken if the statement constraint-counter is zero
5846** (immediate foreign key constraint violations).
5847*/
5848case OP_FkIfZero: { /* jump */
5849 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005850 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005851 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005852 }else{
drh688852a2014-02-17 22:40:43 +00005853 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005854 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005855 }
dan1da40a32009-09-19 17:00:31 +00005856 break;
5857}
5858#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5859
drh205f48e2004-11-05 00:43:11 +00005860#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005861/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005862** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005863**
dan76d462e2009-08-30 11:42:51 +00005864** P1 is a register in the root frame of this VM (the root frame is
5865** different from the current frame if this instruction is being executed
5866** within a sub-program). Set the value of register P1 to the maximum of
5867** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005868**
5869** This instruction throws an error if the memory cell is not initially
5870** an integer.
5871*/
dan76d462e2009-08-30 11:42:51 +00005872case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005873 VdbeFrame *pFrame;
5874 if( p->pFrame ){
5875 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5876 pIn1 = &pFrame->aMem[pOp->p1];
5877 }else{
drha6c2ed92009-11-14 23:22:23 +00005878 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005879 }
drh2b4ded92010-09-27 21:09:31 +00005880 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005881 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005882 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005883 sqlite3VdbeMemIntegerify(pIn2);
5884 if( pIn1->u.i<pIn2->u.i){
5885 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005886 }
5887 break;
5888}
5889#endif /* SQLITE_OMIT_AUTOINCREMENT */
5890
drh8b0cf382015-10-06 21:07:06 +00005891/* Opcode: IfPos P1 P2 P3 * *
5892** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005893**
drh16897072015-03-07 00:57:37 +00005894** Register P1 must contain an integer.
mistachkin91a3ecb2015-10-06 21:49:55 +00005895** If the value of register P1 is 1 or greater, subtract P3 from the
drh8b0cf382015-10-06 21:07:06 +00005896** value in P1 and jump to P2.
drh6f58f702006-01-08 05:26:41 +00005897**
drh16897072015-03-07 00:57:37 +00005898** If the initial value of register P1 is less than 1, then the
5899** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005900*/
drh9cbf3422008-01-17 16:22:13 +00005901case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005902 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005903 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005904 VdbeBranchTaken( pIn1->u.i>0, 2);
drh8b0cf382015-10-06 21:07:06 +00005905 if( pIn1->u.i>0 ){
5906 pIn1->u.i -= pOp->p3;
5907 goto jump_to_p2;
5908 }
drhec7429a2005-10-06 16:53:14 +00005909 break;
5910}
5911
drhcc2fa4c2016-01-25 15:57:29 +00005912/* Opcode: OffsetLimit P1 P2 P3 * *
5913** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
drh15007a92006-01-08 18:10:17 +00005914**
drhcc2fa4c2016-01-25 15:57:29 +00005915** This opcode performs a commonly used computation associated with
5916** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
5917** holds the offset counter. The opcode computes the combined value
5918** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
5919** value computed is the total number of rows that will need to be
5920** visited in order to complete the query.
5921**
5922** If r[P3] is zero or negative, that means there is no OFFSET
5923** and r[P2] is set to be the value of the LIMIT, r[P1].
5924**
5925** if r[P1] is zero or negative, that means there is no LIMIT
5926** and r[P2] is set to -1.
5927**
5928** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
drh15007a92006-01-08 18:10:17 +00005929*/
drhcc2fa4c2016-01-25 15:57:29 +00005930case OP_OffsetLimit: { /* in1, out2, in3 */
drh3c657212009-11-17 23:59:58 +00005931 pIn1 = &aMem[pOp->p1];
drhcc2fa4c2016-01-25 15:57:29 +00005932 pIn3 = &aMem[pOp->p3];
5933 pOut = out2Prerelease(p, pOp);
5934 assert( pIn1->flags & MEM_Int );
5935 assert( pIn3->flags & MEM_Int );
5936 pOut->u.i = pIn1->u.i<=0 ? -1 : pIn1->u.i+(pIn3->u.i>0?pIn3->u.i:0);
drh15007a92006-01-08 18:10:17 +00005937 break;
5938}
5939
drh16897072015-03-07 00:57:37 +00005940/* Opcode: IfNotZero P1 P2 P3 * *
drh8b0cf382015-10-06 21:07:06 +00005941** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00005942**
drh16897072015-03-07 00:57:37 +00005943** Register P1 must contain an integer. If the content of register P1 is
mistachkin91a3ecb2015-10-06 21:49:55 +00005944** initially nonzero, then subtract P3 from the value in register P1 and
drh8b0cf382015-10-06 21:07:06 +00005945** jump to P2. If register P1 is initially zero, leave it unchanged
5946** and fall through.
drhec7429a2005-10-06 16:53:14 +00005947*/
drh16897072015-03-07 00:57:37 +00005948case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005949 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005950 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00005951 VdbeBranchTaken(pIn1->u.i<0, 2);
5952 if( pIn1->u.i ){
drh8b0cf382015-10-06 21:07:06 +00005953 pIn1->u.i -= pOp->p3;
drhf56fa462015-04-13 21:39:54 +00005954 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005955 }
5956 break;
5957}
5958
5959/* Opcode: DecrJumpZero P1 P2 * * *
5960** Synopsis: if (--r[P1])==0 goto P2
5961**
5962** Register P1 must hold an integer. Decrement the value in register P1
5963** then jump to P2 if the new value is exactly zero.
5964*/
5965case OP_DecrJumpZero: { /* jump, in1 */
5966 pIn1 = &aMem[pOp->p1];
5967 assert( pIn1->flags&MEM_Int );
5968 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00005969 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005970 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00005971 break;
5972}
5973
drh16897072015-03-07 00:57:37 +00005974
5975/* Opcode: JumpZeroIncr P1 P2 * * *
5976** Synopsis: if (r[P1]++)==0 ) goto P2
5977**
5978** The register P1 must contain an integer. If register P1 is initially
5979** zero, then jump to P2. Increment register P1 regardless of whether or
5980** not the jump is taken.
5981*/
5982case OP_JumpZeroIncr: { /* jump, in1 */
5983 pIn1 = &aMem[pOp->p1];
5984 assert( pIn1->flags&MEM_Int );
5985 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005986 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005987 break;
5988}
5989
drhe2d9e7c2015-06-26 18:47:53 +00005990/* Opcode: AggStep0 * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005991** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005992**
drh0bce8352002-02-28 00:41:10 +00005993** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005994** function has P5 arguments. P4 is a pointer to the FuncDef
drhe2d9e7c2015-06-26 18:47:53 +00005995** structure that specifies the function. Register P3 is the
5996** accumulator.
drhe5095352002-02-24 03:25:14 +00005997**
drh98757152008-01-09 23:04:12 +00005998** The P5 arguments are taken from register P2 and its
5999** successors.
drhe5095352002-02-24 03:25:14 +00006000*/
drhe2d9e7c2015-06-26 18:47:53 +00006001/* Opcode: AggStep * P2 P3 P4 P5
6002** Synopsis: accum=r[P3] step(r[P2@P5])
6003**
6004** Execute the step function for an aggregate. The
6005** function has P5 arguments. P4 is a pointer to an sqlite3_context
6006** object that is used to run the function. Register P3 is
6007** as the accumulator.
6008**
6009** The P5 arguments are taken from register P2 and its
6010** successors.
6011**
6012** This opcode is initially coded as OP_AggStep0. On first evaluation,
6013** the FuncDef stored in P4 is converted into an sqlite3_context and
6014** the opcode is changed. In this way, the initialization of the
6015** sqlite3_context only happens once, instead of on each call to the
6016** step function.
6017*/
drh9c7c9132015-06-26 18:16:52 +00006018case OP_AggStep0: {
drh856c1032009-06-02 15:21:42 +00006019 int n;
drh9c7c9132015-06-26 18:16:52 +00006020 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00006021
drh9c7c9132015-06-26 18:16:52 +00006022 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00006023 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00006024 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6025 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00006026 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00006027 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00006028 if( pCtx==0 ) goto no_mem;
6029 pCtx->pMem = 0;
6030 pCtx->pFunc = pOp->p4.pFunc;
6031 pCtx->iOp = (int)(pOp - aOp);
6032 pCtx->pVdbe = p;
6033 pCtx->argc = n;
6034 pOp->p4type = P4_FUNCCTX;
6035 pOp->p4.pCtx = pCtx;
6036 pOp->opcode = OP_AggStep;
6037 /* Fall through into OP_AggStep */
6038}
6039case OP_AggStep: {
6040 int i;
6041 sqlite3_context *pCtx;
6042 Mem *pMem;
6043 Mem t;
6044
6045 assert( pOp->p4type==P4_FUNCCTX );
6046 pCtx = pOp->p4.pCtx;
6047 pMem = &aMem[pOp->p3];
6048
6049 /* If this function is inside of a trigger, the register array in aMem[]
6050 ** might change from one evaluation to the next. The next block of code
6051 ** checks to see if the register array has changed, and if so it
6052 ** reinitializes the relavant parts of the sqlite3_context object */
6053 if( pCtx->pMem != pMem ){
6054 pCtx->pMem = pMem;
6055 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6056 }
6057
6058#ifdef SQLITE_DEBUG
6059 for(i=0; i<pCtx->argc; i++){
6060 assert( memIsValid(pCtx->argv[i]) );
6061 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6062 }
6063#endif
6064
drhabfcea22005-09-06 20:36:48 +00006065 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00006066 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00006067 pCtx->pOut = &t;
6068 pCtx->fErrorOrAux = 0;
6069 pCtx->skipFlag = 0;
drh2d801512016-01-14 22:19:58 +00006070 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
drh9c7c9132015-06-26 18:16:52 +00006071 if( pCtx->fErrorOrAux ){
6072 if( pCtx->isError ){
6073 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6074 rc = pCtx->isError;
6075 }
6076 sqlite3VdbeMemRelease(&t);
drh9467abf2016-02-17 18:44:11 +00006077 if( rc ) goto abort_due_to_error;
drh9c7c9132015-06-26 18:16:52 +00006078 }else{
6079 assert( t.flags==MEM_Null );
drh1350b032002-02-27 19:00:20 +00006080 }
drh9c7c9132015-06-26 18:16:52 +00006081 if( pCtx->skipFlag ){
drh7a957892012-02-02 17:35:43 +00006082 assert( pOp[-1].opcode==OP_CollSeq );
6083 i = pOp[-1].p1;
6084 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6085 }
drh5e00f6c2001-09-13 13:46:56 +00006086 break;
6087}
6088
drh98757152008-01-09 23:04:12 +00006089/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00006090** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00006091**
drh13449892005-09-07 21:22:45 +00006092** Execute the finalizer function for an aggregate. P1 is
6093** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00006094**
6095** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00006096** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00006097** argument is not used by this opcode. It is only there to disambiguate
6098** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00006099** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00006100** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00006101*/
drh9cbf3422008-01-17 16:22:13 +00006102case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00006103 Mem *pMem;
drh9f6168b2016-03-19 23:32:58 +00006104 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006105 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00006106 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00006107 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00006108 if( rc ){
drh22c17b82015-05-15 04:13:15 +00006109 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh9467abf2016-02-17 18:44:11 +00006110 goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00006111 }
drh2dca8682008-03-21 17:13:13 +00006112 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00006113 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00006114 if( sqlite3VdbeMemTooBig(pMem) ){
6115 goto too_big;
6116 }
drh5e00f6c2001-09-13 13:46:56 +00006117 break;
6118}
6119
dan5cf53532010-05-01 16:40:20 +00006120#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00006121/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006122**
6123** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00006124** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6125** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00006126** SQLITE_BUSY or not, respectively. Write the number of pages in the
6127** WAL after the checkpoint into mem[P3+1] and the number of pages
6128** in the WAL that have been checkpointed after the checkpoint
6129** completes into mem[P3+2]. However on an error, mem[P3+1] and
6130** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00006131*/
6132case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00006133 int i; /* Loop counter */
6134 int aRes[3]; /* Results */
6135 Mem *pMem; /* Write results here */
6136
drh9e92a472013-06-27 17:40:30 +00006137 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00006138 aRes[0] = 0;
6139 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00006140 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6141 || pOp->p2==SQLITE_CHECKPOINT_FULL
6142 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00006143 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00006144 );
drh30aa3b92011-02-07 23:56:01 +00006145 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
drh9467abf2016-02-17 18:44:11 +00006146 if( rc ){
6147 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
dancdc1f042010-11-18 12:11:05 +00006148 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00006149 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00006150 }
drh30aa3b92011-02-07 23:56:01 +00006151 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6152 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6153 }
dan7c246102010-04-12 19:00:29 +00006154 break;
6155};
dan5cf53532010-05-01 16:40:20 +00006156#endif
drh5e00f6c2001-09-13 13:46:56 +00006157
drhcac29a62010-07-02 19:36:52 +00006158#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00006159/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006160**
6161** Change the journal mode of database P1 to P3. P3 must be one of the
6162** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6163** modes (delete, truncate, persist, off and memory), this is a simple
6164** operation. No IO is required.
6165**
6166** If changing into or out of WAL mode the procedure is more complicated.
6167**
6168** Write a string containing the final journal-mode to register P2.
6169*/
drh27a348c2015-04-13 19:14:06 +00006170case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00006171 Btree *pBt; /* Btree to change journal mode of */
6172 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00006173 int eNew; /* New journal mode */
6174 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00006175#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00006176 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00006177#endif
dane04dc882010-04-20 18:53:15 +00006178
drh27a348c2015-04-13 19:14:06 +00006179 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00006180 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00006181 assert( eNew==PAGER_JOURNALMODE_DELETE
6182 || eNew==PAGER_JOURNALMODE_TRUNCATE
6183 || eNew==PAGER_JOURNALMODE_PERSIST
6184 || eNew==PAGER_JOURNALMODE_OFF
6185 || eNew==PAGER_JOURNALMODE_MEMORY
6186 || eNew==PAGER_JOURNALMODE_WAL
6187 || eNew==PAGER_JOURNALMODE_QUERY
6188 );
6189 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00006190 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00006191
dane04dc882010-04-20 18:53:15 +00006192 pBt = db->aDb[pOp->p1].pBt;
6193 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00006194 eOld = sqlite3PagerGetJournalMode(pPager);
6195 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6196 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00006197
6198#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00006199 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00006200
drhd80b2332010-05-01 00:59:37 +00006201 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00006202 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00006203 */
6204 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00006205 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00006206 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00006207 ){
drh0b9b4302010-06-11 17:01:24 +00006208 eNew = eOld;
dane180c292010-04-26 17:42:56 +00006209 }
6210
drh0b9b4302010-06-11 17:01:24 +00006211 if( (eNew!=eOld)
6212 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6213 ){
danc0537fe2013-06-28 19:41:43 +00006214 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00006215 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006216 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00006217 "cannot change %s wal mode from within a transaction",
6218 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6219 );
drh9467abf2016-02-17 18:44:11 +00006220 goto abort_due_to_error;
drh0b9b4302010-06-11 17:01:24 +00006221 }else{
6222
6223 if( eOld==PAGER_JOURNALMODE_WAL ){
6224 /* If leaving WAL mode, close the log file. If successful, the call
6225 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6226 ** file. An EXCLUSIVE lock may still be held on the database file
6227 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00006228 */
drh0b9b4302010-06-11 17:01:24 +00006229 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00006230 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00006231 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00006232 }
drh242c4f72010-06-22 14:49:39 +00006233 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6234 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6235 ** as an intermediate */
6236 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00006237 }
6238
6239 /* Open a transaction on the database file. Regardless of the journal
6240 ** mode, this transaction always uses a rollback journal.
6241 */
6242 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6243 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00006244 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00006245 }
6246 }
6247 }
dan5cf53532010-05-01 16:40:20 +00006248#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00006249
drh9467abf2016-02-17 18:44:11 +00006250 if( rc ) eNew = eOld;
drh0b9b4302010-06-11 17:01:24 +00006251 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00006252
dane04dc882010-04-20 18:53:15 +00006253 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00006254 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00006255 pOut->n = sqlite3Strlen30(pOut->z);
6256 pOut->enc = SQLITE_UTF8;
6257 sqlite3VdbeChangeEncoding(pOut, encoding);
drh9467abf2016-02-17 18:44:11 +00006258 if( rc ) goto abort_due_to_error;
dane04dc882010-04-20 18:53:15 +00006259 break;
drhcac29a62010-07-02 19:36:52 +00006260};
6261#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00006262
drhfdbcdee2007-03-27 14:44:50 +00006263#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00006264/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00006265**
6266** Vacuum the entire database. This opcode will cause other virtual
6267** machines to be created and run. It may not be called from within
6268** a transaction.
6269*/
drh9cbf3422008-01-17 16:22:13 +00006270case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00006271 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00006272 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh9467abf2016-02-17 18:44:11 +00006273 if( rc ) goto abort_due_to_error;
drh6f8c91c2003-12-07 00:24:35 +00006274 break;
6275}
drh154d4b22006-09-21 11:02:16 +00006276#endif
drh6f8c91c2003-12-07 00:24:35 +00006277
danielk1977dddbcdc2007-04-26 14:42:34 +00006278#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00006279/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00006280**
6281** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00006282** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00006283** P2. Otherwise, fall through to the next instruction.
6284*/
drh9cbf3422008-01-17 16:22:13 +00006285case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00006286 Btree *pBt;
6287
6288 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006289 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006290 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00006291 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00006292 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00006293 VdbeBranchTaken(rc==SQLITE_DONE,2);
drh9467abf2016-02-17 18:44:11 +00006294 if( rc ){
6295 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
danielk1977dddbcdc2007-04-26 14:42:34 +00006296 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00006297 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00006298 }
6299 break;
6300}
6301#endif
6302
drh98757152008-01-09 23:04:12 +00006303/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00006304**
drh25df48d2014-07-22 14:58:12 +00006305** Cause precompiled statements to expire. When an expired statement
6306** is executed using sqlite3_step() it will either automatically
6307** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6308** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00006309**
6310** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00006311** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00006312*/
drh9cbf3422008-01-17 16:22:13 +00006313case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00006314 if( !pOp->p1 ){
6315 sqlite3ExpirePreparedStatements(db);
6316 }else{
6317 p->expired = 1;
6318 }
6319 break;
6320}
6321
danielk1977c00da102006-01-07 13:21:04 +00006322#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00006323/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00006324** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00006325**
6326** Obtain a lock on a particular table. This instruction is only used when
6327** the shared-cache feature is enabled.
6328**
danielk197796d48e92009-06-29 06:00:37 +00006329** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00006330** on which the lock is acquired. A readlock is obtained if P3==0 or
6331** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00006332**
6333** P2 contains the root-page of the table to lock.
6334**
drh66a51672008-01-03 00:01:23 +00006335** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00006336** used to generate an error message if the lock cannot be obtained.
6337*/
drh9cbf3422008-01-17 16:22:13 +00006338case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006339 u8 isWriteLock = (u8)pOp->p3;
6340 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6341 int p1 = pOp->p1;
6342 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006343 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006344 assert( isWriteLock==0 || isWriteLock==1 );
6345 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
drh9467abf2016-02-17 18:44:11 +00006346 if( rc ){
6347 if( (rc&0xFF)==SQLITE_LOCKED ){
6348 const char *z = pOp->p4.z;
6349 sqlite3VdbeError(p, "database table is locked: %s", z);
6350 }
6351 goto abort_due_to_error;
danielk1977e0d9e6f2009-07-03 16:25:06 +00006352 }
danielk1977c00da102006-01-07 13:21:04 +00006353 }
6354 break;
6355}
drhb9bb7c12006-06-11 23:41:55 +00006356#endif /* SQLITE_OMIT_SHARED_CACHE */
6357
6358#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006359/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006360**
danielk19773e3a84d2008-08-01 17:37:40 +00006361** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6362** xBegin method for that table.
6363**
6364** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006365** within a callback to a virtual table xSync() method. If it is, the error
6366** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006367*/
drh9cbf3422008-01-17 16:22:13 +00006368case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006369 VTable *pVTab;
6370 pVTab = pOp->p4.pVtab;
6371 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006372 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
drh9467abf2016-02-17 18:44:11 +00006373 if( rc ) goto abort_due_to_error;
danielk1977f9e7dda2006-06-16 16:08:53 +00006374 break;
6375}
6376#endif /* SQLITE_OMIT_VIRTUALTABLE */
6377
6378#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006379/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006380**
dan73779452015-03-19 18:56:17 +00006381** P2 is a register that holds the name of a virtual table in database
6382** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006383*/
drh9cbf3422008-01-17 16:22:13 +00006384case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006385 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006386 const char *zTab; /* Name of the virtual table */
6387
dan73779452015-03-19 18:56:17 +00006388 memset(&sMem, 0, sizeof(sMem));
6389 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006390 /* Because P2 is always a static string, it is impossible for the
6391 ** sqlite3VdbeMemCopy() to fail */
6392 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6393 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006394 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006395 assert( rc==SQLITE_OK );
6396 zTab = (const char*)sqlite3_value_text(&sMem);
6397 assert( zTab || db->mallocFailed );
6398 if( zTab ){
6399 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006400 }
6401 sqlite3VdbeMemRelease(&sMem);
drh9467abf2016-02-17 18:44:11 +00006402 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006403 break;
6404}
6405#endif /* SQLITE_OMIT_VIRTUALTABLE */
6406
6407#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006408/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006409**
drh66a51672008-01-03 00:01:23 +00006410** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006411** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006412*/
drh9cbf3422008-01-17 16:22:13 +00006413case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006414 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006415 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006416 db->nVDestroy--;
drh9467abf2016-02-17 18:44:11 +00006417 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006418 break;
6419}
6420#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006421
drh9eff6162006-06-12 21:59:13 +00006422#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006423/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006424**
drh66a51672008-01-03 00:01:23 +00006425** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006426** P1 is a cursor number. This opcode opens a cursor to the virtual
6427** table and stores that cursor in P1.
6428*/
drh9cbf3422008-01-17 16:22:13 +00006429case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006430 VdbeCursor *pCur;
drhc960dcb2015-11-20 19:22:01 +00006431 sqlite3_vtab_cursor *pVCur;
drh856c1032009-06-02 15:21:42 +00006432 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006433 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006434
drh1713afb2013-06-28 01:24:57 +00006435 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006436 pCur = 0;
drhc960dcb2015-11-20 19:22:01 +00006437 pVCur = 0;
danielk1977595a5232009-07-24 17:58:53 +00006438 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006439 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6440 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006441 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006442 }
6443 pModule = pVtab->pModule;
drhc960dcb2015-11-20 19:22:01 +00006444 rc = pModule->xOpen(pVtab, &pVCur);
dan016f7812013-08-21 17:35:48 +00006445 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006446 if( rc ) goto abort_due_to_error;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006447
drh9467abf2016-02-17 18:44:11 +00006448 /* Initialize sqlite3_vtab_cursor base class */
6449 pVCur->pVtab = pVtab;
6450
6451 /* Initialize vdbe cursor object */
6452 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6453 if( pCur ){
6454 pCur->uc.pVCur = pVCur;
6455 pVtab->nRef++;
6456 }else{
6457 assert( db->mallocFailed );
6458 pModule->xClose(pVCur);
6459 goto no_mem;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006460 }
drh9eff6162006-06-12 21:59:13 +00006461 break;
6462}
6463#endif /* SQLITE_OMIT_VIRTUALTABLE */
6464
6465#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006466/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006467** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006468**
6469** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6470** the filtered result set is empty.
6471**
drh66a51672008-01-03 00:01:23 +00006472** P4 is either NULL or a string that was generated by the xBestIndex
6473** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006474** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006475**
drh9eff6162006-06-12 21:59:13 +00006476** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006477** by P1. The integer query plan parameter to xFilter is stored in register
6478** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006479** xFilter method. Registers P3+2..P3+1+argc are the argc
6480** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006481** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006482**
danielk19776dbee812008-01-03 18:39:41 +00006483** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006484*/
drh9cbf3422008-01-17 16:22:13 +00006485case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006486 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006487 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006488 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006489 Mem *pQuery;
6490 Mem *pArgc;
drhc960dcb2015-11-20 19:22:01 +00006491 sqlite3_vtab_cursor *pVCur;
drh4dc754d2008-07-23 18:17:32 +00006492 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006493 VdbeCursor *pCur;
6494 int res;
6495 int i;
6496 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006497
drha6c2ed92009-11-14 23:22:23 +00006498 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006499 pArgc = &pQuery[1];
6500 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006501 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006502 REGISTER_TRACE(pOp->p3, pQuery);
drhc960dcb2015-11-20 19:22:01 +00006503 assert( pCur->eCurType==CURTYPE_VTAB );
6504 pVCur = pCur->uc.pVCur;
6505 pVtab = pVCur->pVtab;
drh4dc754d2008-07-23 18:17:32 +00006506 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006507
drh9cbf3422008-01-17 16:22:13 +00006508 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006509 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006510 nArg = (int)pArgc->u.i;
6511 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006512
drh644a5292006-12-20 14:53:38 +00006513 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006514 res = 0;
6515 apArg = p->apArg;
6516 for(i = 0; i<nArg; i++){
6517 apArg[i] = &pArgc[i+1];
6518 }
drhc960dcb2015-11-20 19:22:01 +00006519 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
drhf56fa462015-04-13 21:39:54 +00006520 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006521 if( rc ) goto abort_due_to_error;
6522 res = pModule->xEof(pVCur);
drh1d454a32008-01-31 19:34:51 +00006523 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006524 VdbeBranchTaken(res!=0,2);
6525 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006526 break;
6527}
6528#endif /* SQLITE_OMIT_VIRTUALTABLE */
6529
6530#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006531/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006532** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006533**
drh2133d822008-01-03 18:44:59 +00006534** Store the value of the P2-th column of
6535** the row of the virtual-table that the
6536** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006537*/
6538case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006539 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006540 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006541 Mem *pDest;
6542 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006543
drhdfe88ec2008-11-03 20:55:06 +00006544 VdbeCursor *pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006545 assert( pCur->eCurType==CURTYPE_VTAB );
drh9f6168b2016-03-19 23:32:58 +00006546 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006547 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006548 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006549 if( pCur->nullRow ){
6550 sqlite3VdbeMemSetNull(pDest);
6551 break;
6552 }
drhc960dcb2015-11-20 19:22:01 +00006553 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006554 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006555 assert( pModule->xColumn );
6556 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006557 sContext.pOut = pDest;
6558 MemSetTypeFlag(pDest, MEM_Null);
drhc960dcb2015-11-20 19:22:01 +00006559 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006560 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006561 if( sContext.isError ){
6562 rc = sContext.isError;
6563 }
drh9bd038f2014-08-27 14:14:06 +00006564 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006565 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006566 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006567
drhde4fcfd2008-01-19 23:50:26 +00006568 if( sqlite3VdbeMemTooBig(pDest) ){
6569 goto too_big;
6570 }
drh9467abf2016-02-17 18:44:11 +00006571 if( rc ) goto abort_due_to_error;
drh9eff6162006-06-12 21:59:13 +00006572 break;
6573}
6574#endif /* SQLITE_OMIT_VIRTUALTABLE */
6575
6576#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006577/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006578**
6579** Advance virtual table P1 to the next row in its result set and
6580** jump to instruction P2. Or, if the virtual table has reached
6581** the end of its result set, then fall through to the next instruction.
6582*/
drh9cbf3422008-01-17 16:22:13 +00006583case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006584 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006585 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006586 int res;
drh856c1032009-06-02 15:21:42 +00006587 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006588
drhc54a6172009-06-02 16:06:03 +00006589 res = 0;
drh856c1032009-06-02 15:21:42 +00006590 pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006591 assert( pCur->eCurType==CURTYPE_VTAB );
drh2945b4a2008-01-31 15:53:45 +00006592 if( pCur->nullRow ){
6593 break;
6594 }
drhc960dcb2015-11-20 19:22:01 +00006595 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006596 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006597 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006598
drhde4fcfd2008-01-19 23:50:26 +00006599 /* Invoke the xNext() method of the module. There is no way for the
6600 ** underlying implementation to return an error if one occurs during
6601 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6602 ** data is available) and the error code returned when xColumn or
6603 ** some other method is next invoked on the save virtual table cursor.
6604 */
drhc960dcb2015-11-20 19:22:01 +00006605 rc = pModule->xNext(pCur->uc.pVCur);
dan016f7812013-08-21 17:35:48 +00006606 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006607 if( rc ) goto abort_due_to_error;
6608 res = pModule->xEof(pCur->uc.pVCur);
drh688852a2014-02-17 22:40:43 +00006609 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006610 if( !res ){
6611 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006612 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006613 }
drh49afe3a2013-07-10 03:05:14 +00006614 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006615}
6616#endif /* SQLITE_OMIT_VIRTUALTABLE */
6617
danielk1977182c4ba2007-06-27 15:53:34 +00006618#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006619/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006620**
drh66a51672008-01-03 00:01:23 +00006621** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006622** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006623** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006624*/
drh9cbf3422008-01-17 16:22:13 +00006625case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006626 sqlite3_vtab *pVtab;
6627 Mem *pName;
6628
danielk1977595a5232009-07-24 17:58:53 +00006629 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006630 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006631 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006632 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006633 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006634 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006635 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006636 testcase( pName->enc==SQLITE_UTF8 );
6637 testcase( pName->enc==SQLITE_UTF16BE );
6638 testcase( pName->enc==SQLITE_UTF16LE );
6639 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
drh9467abf2016-02-17 18:44:11 +00006640 if( rc ) goto abort_due_to_error;
6641 rc = pVtab->pModule->xRename(pVtab, pName->z);
6642 sqlite3VtabImportErrmsg(p, pVtab);
6643 p->expired = 0;
6644 if( rc ) goto abort_due_to_error;
danielk1977182c4ba2007-06-27 15:53:34 +00006645 break;
6646}
6647#endif
drh4cbdda92006-06-14 19:00:20 +00006648
6649#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006650/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006651** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006652**
drh66a51672008-01-03 00:01:23 +00006653** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006654** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006655** are contiguous memory cells starting at P3 to pass to the xUpdate
6656** invocation. The value in register (P3+P2-1) corresponds to the
6657** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006658**
6659** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006660** The argv[0] element (which corresponds to memory cell P3)
6661** is the rowid of a row to delete. If argv[0] is NULL then no
6662** deletion occurs. The argv[1] element is the rowid of the new
6663** row. This can be NULL to have the virtual table select the new
6664** rowid for itself. The subsequent elements in the array are
6665** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006666**
6667** If P2==1 then no insert is performed. argv[0] is the rowid of
6668** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006669**
6670** P1 is a boolean flag. If it is set to true and the xUpdate call
6671** is successful, then the value returned by sqlite3_last_insert_rowid()
6672** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006673**
6674** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6675** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006676*/
drh9cbf3422008-01-17 16:22:13 +00006677case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006678 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006679 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006680 int nArg;
6681 int i;
6682 sqlite_int64 rowid;
6683 Mem **apArg;
6684 Mem *pX;
6685
danb061d052011-04-25 18:49:57 +00006686 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6687 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6688 );
drh9e92a472013-06-27 17:40:30 +00006689 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006690 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006691 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6692 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006693 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006694 }
6695 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006696 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006697 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006698 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006699 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006700 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006701 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006702 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006703 assert( memIsValid(pX) );
6704 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006705 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006706 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006707 }
danb061d052011-04-25 18:49:57 +00006708 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006709 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006710 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006711 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006712 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006713 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006714 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006715 }
drhd91c1a12013-02-09 13:58:25 +00006716 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006717 if( pOp->p5==OE_Ignore ){
6718 rc = SQLITE_OK;
6719 }else{
6720 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6721 }
6722 }else{
6723 p->nChange++;
6724 }
drh9467abf2016-02-17 18:44:11 +00006725 if( rc ) goto abort_due_to_error;
danielk1977399918f2006-06-14 13:03:23 +00006726 }
drh4cbdda92006-06-14 19:00:20 +00006727 break;
danielk1977399918f2006-06-14 13:03:23 +00006728}
6729#endif /* SQLITE_OMIT_VIRTUALTABLE */
6730
danielk197759a93792008-05-15 17:48:20 +00006731#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6732/* Opcode: Pagecount P1 P2 * * *
6733**
6734** Write the current number of pages in database P1 to memory cell P2.
6735*/
drh27a348c2015-04-13 19:14:06 +00006736case OP_Pagecount: { /* out2 */
6737 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006738 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006739 break;
6740}
6741#endif
6742
drh60ac3f42010-11-23 18:59:27 +00006743
6744#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6745/* Opcode: MaxPgcnt P1 P2 P3 * *
6746**
6747** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006748** Do not let the maximum page count fall below the current page count and
6749** do not change the maximum page count value if P3==0.
6750**
drh60ac3f42010-11-23 18:59:27 +00006751** Store the maximum page count after the change in register P2.
6752*/
drh27a348c2015-04-13 19:14:06 +00006753case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006754 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006755 Btree *pBt;
6756
drh27a348c2015-04-13 19:14:06 +00006757 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006758 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006759 newMax = 0;
6760 if( pOp->p3 ){
6761 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006762 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006763 }
6764 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006765 break;
6766}
6767#endif
6768
6769
drhaceb31b2014-02-08 01:40:27 +00006770/* Opcode: Init * P2 * P4 *
6771** Synopsis: Start at P2
6772**
6773** Programs contain a single instance of this opcode as the very first
6774** opcode.
drh949f9cd2008-01-12 21:35:57 +00006775**
6776** If tracing is enabled (by the sqlite3_trace()) interface, then
6777** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006778** Or if P4 is blank, use the string returned by sqlite3_sql().
6779**
6780** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006781*/
drhaceb31b2014-02-08 01:40:27 +00006782case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006783 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006784 char *z;
drh856c1032009-06-02 15:21:42 +00006785
drhaceb31b2014-02-08 01:40:27 +00006786#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006787 if( db->xTrace
6788 && !p->doingRerun
6789 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6790 ){
drhc3f1d5f2011-05-30 23:42:16 +00006791 z = sqlite3VdbeExpandSql(p, zTrace);
6792 db->xTrace(db->pTraceArg, z);
6793 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006794 }
drh8f8b2312013-10-18 20:03:43 +00006795#ifdef SQLITE_USE_FCNTL_TRACE
6796 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6797 if( zTrace ){
6798 int i;
6799 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006800 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006801 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6802 }
6803 }
6804#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006805#ifdef SQLITE_DEBUG
6806 if( (db->flags & SQLITE_SqlTrace)!=0
6807 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6808 ){
6809 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6810 }
6811#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006812#endif /* SQLITE_OMIT_TRACE */
drhf56fa462015-04-13 21:39:54 +00006813 if( pOp->p2 ) goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006814 break;
6815}
drh949f9cd2008-01-12 21:35:57 +00006816
drh28935362013-12-07 20:39:19 +00006817#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0df57012015-08-14 15:05:55 +00006818/* Opcode: CursorHint P1 * * P4 *
drh28935362013-12-07 20:39:19 +00006819**
6820** Provide a hint to cursor P1 that it only needs to return rows that
drh0df57012015-08-14 15:05:55 +00006821** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6822** to values currently held in registers. TK_COLUMN terms in the P4
6823** expression refer to columns in the b-tree to which cursor P1 is pointing.
drh28935362013-12-07 20:39:19 +00006824*/
6825case OP_CursorHint: {
6826 VdbeCursor *pC;
6827
6828 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6829 assert( pOp->p4type==P4_EXPR );
6830 pC = p->apCsr[pOp->p1];
dan91d3a612014-07-15 11:59:44 +00006831 if( pC ){
drhc960dcb2015-11-20 19:22:01 +00006832 assert( pC->eCurType==CURTYPE_BTREE );
drh62aaa6c2015-11-21 17:27:42 +00006833 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6834 pOp->p4.pExpr, aMem);
dan91d3a612014-07-15 11:59:44 +00006835 }
drh28935362013-12-07 20:39:19 +00006836 break;
6837}
6838#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh91fd4d42008-01-19 20:11:25 +00006839
6840/* Opcode: Noop * * * * *
6841**
6842** Do nothing. This instruction is often useful as a jump
6843** destination.
drh5e00f6c2001-09-13 13:46:56 +00006844*/
drh91fd4d42008-01-19 20:11:25 +00006845/*
6846** The magic Explain opcode are only inserted when explain==2 (which
6847** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6848** This opcode records information from the optimizer. It is the
6849** the same as a no-op. This opcodesnever appears in a real VM program.
6850*/
6851default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006852 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006853 break;
6854}
6855
6856/*****************************************************************************
6857** The cases of the switch statement above this line should all be indented
6858** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6859** readability. From this point on down, the normal indentation rules are
6860** restored.
6861*****************************************************************************/
6862 }
drh6e142f52000-06-08 13:36:40 +00006863
drh7b396862003-01-01 23:06:20 +00006864#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006865 {
drha01c7c72014-04-25 12:35:31 +00006866 u64 endTime = sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00006867 if( endTime>start ) pOrigOp->cycles += endTime - start;
6868 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006869 }
drh7b396862003-01-01 23:06:20 +00006870#endif
6871
drh6e142f52000-06-08 13:36:40 +00006872 /* The following code adds nothing to the actual functionality
6873 ** of the program. It is only here for testing and debugging.
6874 ** On the other hand, it does burn CPU cycles every time through
6875 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6876 */
6877#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00006878 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00006879
drhcf1023c2007-05-08 20:59:49 +00006880#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006881 if( db->flags & SQLITE_VdbeTrace ){
drh7cc84c22016-04-11 13:36:42 +00006882 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
drh84e55a82013-11-13 17:58:23 +00006883 if( rc!=0 ) printf("rc=%d\n",rc);
drh7cc84c22016-04-11 13:36:42 +00006884 if( opProperty & (OPFLG_OUT2) ){
drh6dc41482015-04-16 17:31:02 +00006885 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00006886 }
drh7cc84c22016-04-11 13:36:42 +00006887 if( opProperty & OPFLG_OUT3 ){
drh6dc41482015-04-16 17:31:02 +00006888 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006889 }
drh75897232000-05-29 14:26:00 +00006890 }
danielk1977b5402fb2005-01-12 07:15:04 +00006891#endif /* SQLITE_DEBUG */
6892#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006893 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006894
drha05a7222008-01-19 03:35:58 +00006895 /* If we reach this point, it means that execution is finished with
6896 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006897 */
drh9467abf2016-02-17 18:44:11 +00006898abort_due_to_error:
6899 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
drha05a7222008-01-19 03:35:58 +00006900 assert( rc );
drh9467abf2016-02-17 18:44:11 +00006901 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
6902 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6903 }
drha05a7222008-01-19 03:35:58 +00006904 p->rc = rc;
drhf68521c2016-03-21 12:28:02 +00006905 sqlite3SystemError(db, rc);
drha64fa912010-03-04 00:53:32 +00006906 testcase( sqlite3GlobalConfig.xLog!=0 );
6907 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00006908 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006909 sqlite3VdbeHalt(p);
drh4a642b62016-02-05 01:55:27 +00006910 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
danielk19777eaabcd2008-07-07 14:56:56 +00006911 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006912 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006913 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006914 }
drh900b31e2007-08-28 02:27:51 +00006915
6916 /* This is the only way out of this procedure. We have to
6917 ** release the mutexes on btrees that were acquired at the
6918 ** top. */
6919vdbe_return:
drh99a66922011-05-13 18:51:42 +00006920 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006921 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006922 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006923 sqlite3VdbeLeave(p);
dan83f0ab82016-01-29 18:04:31 +00006924 assert( rc!=SQLITE_OK || nExtraDelete==0
6925 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
6926 );
drhb86ccfb2003-01-28 23:13:10 +00006927 return rc;
6928
drh023ae032007-05-08 12:12:16 +00006929 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6930 ** is encountered.
6931 */
6932too_big:
drh22c17b82015-05-15 04:13:15 +00006933 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006934 rc = SQLITE_TOOBIG;
drh9467abf2016-02-17 18:44:11 +00006935 goto abort_due_to_error;
drh023ae032007-05-08 12:12:16 +00006936
drh98640a32007-06-07 19:08:32 +00006937 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006938 */
6939no_mem:
drh4a642b62016-02-05 01:55:27 +00006940 sqlite3OomFault(db);
drh22c17b82015-05-15 04:13:15 +00006941 sqlite3VdbeError(p, "out of memory");
mistachkinfad30392016-02-13 23:43:46 +00006942 rc = SQLITE_NOMEM_BKPT;
drh9467abf2016-02-17 18:44:11 +00006943 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00006944
danielk19776f8a5032004-05-10 10:34:51 +00006945 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006946 ** flag.
6947 */
6948abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006949 assert( db->u1.isInterrupted );
mistachkinfad30392016-02-13 23:43:46 +00006950 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006951 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00006952 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drh9467abf2016-02-17 18:44:11 +00006953 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00006954}