drh | 6c1f4ef | 2015-06-08 14:23:15 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2015-06-08 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This module contains C code that generates VDBE code used to process |
| 13 | ** the WHERE clause of SQL statements. |
| 14 | ** |
| 15 | ** This file was originally part of where.c but was split out to improve |
| 16 | ** readability and editabiliity. This file contains utility routines for |
| 17 | ** analyzing Expr objects in the WHERE clause. |
| 18 | */ |
| 19 | #include "sqliteInt.h" |
| 20 | #include "whereInt.h" |
| 21 | |
| 22 | /* Forward declarations */ |
| 23 | static void exprAnalyze(SrcList*, WhereClause*, int); |
| 24 | |
| 25 | /* |
| 26 | ** Deallocate all memory associated with a WhereOrInfo object. |
| 27 | */ |
| 28 | static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ |
| 29 | sqlite3WhereClauseClear(&p->wc); |
| 30 | sqlite3DbFree(db, p); |
| 31 | } |
| 32 | |
| 33 | /* |
| 34 | ** Deallocate all memory associated with a WhereAndInfo object. |
| 35 | */ |
| 36 | static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ |
| 37 | sqlite3WhereClauseClear(&p->wc); |
| 38 | sqlite3DbFree(db, p); |
| 39 | } |
| 40 | |
| 41 | /* |
| 42 | ** Add a single new WhereTerm entry to the WhereClause object pWC. |
| 43 | ** The new WhereTerm object is constructed from Expr p and with wtFlags. |
| 44 | ** The index in pWC->a[] of the new WhereTerm is returned on success. |
| 45 | ** 0 is returned if the new WhereTerm could not be added due to a memory |
| 46 | ** allocation error. The memory allocation failure will be recorded in |
| 47 | ** the db->mallocFailed flag so that higher-level functions can detect it. |
| 48 | ** |
| 49 | ** This routine will increase the size of the pWC->a[] array as necessary. |
| 50 | ** |
| 51 | ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility |
| 52 | ** for freeing the expression p is assumed by the WhereClause object pWC. |
| 53 | ** This is true even if this routine fails to allocate a new WhereTerm. |
| 54 | ** |
| 55 | ** WARNING: This routine might reallocate the space used to store |
| 56 | ** WhereTerms. All pointers to WhereTerms should be invalidated after |
| 57 | ** calling this routine. Such pointers may be reinitialized by referencing |
| 58 | ** the pWC->a[] array. |
| 59 | */ |
| 60 | static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ |
| 61 | WhereTerm *pTerm; |
| 62 | int idx; |
| 63 | testcase( wtFlags & TERM_VIRTUAL ); |
| 64 | if( pWC->nTerm>=pWC->nSlot ){ |
| 65 | WhereTerm *pOld = pWC->a; |
| 66 | sqlite3 *db = pWC->pWInfo->pParse->db; |
| 67 | pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); |
| 68 | if( pWC->a==0 ){ |
| 69 | if( wtFlags & TERM_DYNAMIC ){ |
| 70 | sqlite3ExprDelete(db, p); |
| 71 | } |
| 72 | pWC->a = pOld; |
| 73 | return 0; |
| 74 | } |
| 75 | memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); |
| 76 | if( pOld!=pWC->aStatic ){ |
| 77 | sqlite3DbFree(db, pOld); |
| 78 | } |
| 79 | pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); |
| 80 | memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm)); |
| 81 | } |
| 82 | pTerm = &pWC->a[idx = pWC->nTerm++]; |
| 83 | if( p && ExprHasProperty(p, EP_Unlikely) ){ |
| 84 | pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; |
| 85 | }else{ |
| 86 | pTerm->truthProb = 1; |
| 87 | } |
| 88 | pTerm->pExpr = sqlite3ExprSkipCollate(p); |
| 89 | pTerm->wtFlags = wtFlags; |
| 90 | pTerm->pWC = pWC; |
| 91 | pTerm->iParent = -1; |
| 92 | return idx; |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | ** Return TRUE if the given operator is one of the operators that is |
| 97 | ** allowed for an indexable WHERE clause term. The allowed operators are |
| 98 | ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" |
| 99 | */ |
| 100 | static int allowedOp(int op){ |
| 101 | assert( TK_GT>TK_EQ && TK_GT<TK_GE ); |
| 102 | assert( TK_LT>TK_EQ && TK_LT<TK_GE ); |
| 103 | assert( TK_LE>TK_EQ && TK_LE<TK_GE ); |
| 104 | assert( TK_GE==TK_EQ+4 ); |
| 105 | return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL || op==TK_IS; |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | ** Commute a comparison operator. Expressions of the form "X op Y" |
| 110 | ** are converted into "Y op X". |
| 111 | ** |
| 112 | ** If left/right precedence rules come into play when determining the |
| 113 | ** collating sequence, then COLLATE operators are adjusted to ensure |
| 114 | ** that the collating sequence does not change. For example: |
| 115 | ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on |
| 116 | ** the left hand side of a comparison overrides any collation sequence |
| 117 | ** attached to the right. For the same reason the EP_Collate flag |
| 118 | ** is not commuted. |
| 119 | */ |
| 120 | static void exprCommute(Parse *pParse, Expr *pExpr){ |
| 121 | u16 expRight = (pExpr->pRight->flags & EP_Collate); |
| 122 | u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
| 123 | assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); |
| 124 | if( expRight==expLeft ){ |
| 125 | /* Either X and Y both have COLLATE operator or neither do */ |
| 126 | if( expRight ){ |
| 127 | /* Both X and Y have COLLATE operators. Make sure X is always |
| 128 | ** used by clearing the EP_Collate flag from Y. */ |
| 129 | pExpr->pRight->flags &= ~EP_Collate; |
| 130 | }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ |
| 131 | /* Neither X nor Y have COLLATE operators, but X has a non-default |
| 132 | ** collating sequence. So add the EP_Collate marker on X to cause |
| 133 | ** it to be searched first. */ |
| 134 | pExpr->pLeft->flags |= EP_Collate; |
| 135 | } |
| 136 | } |
| 137 | SWAP(Expr*,pExpr->pRight,pExpr->pLeft); |
| 138 | if( pExpr->op>=TK_GT ){ |
| 139 | assert( TK_LT==TK_GT+2 ); |
| 140 | assert( TK_GE==TK_LE+2 ); |
| 141 | assert( TK_GT>TK_EQ ); |
| 142 | assert( TK_GT<TK_LE ); |
| 143 | assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); |
| 144 | pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | /* |
| 149 | ** Translate from TK_xx operator to WO_xx bitmask. |
| 150 | */ |
| 151 | static u16 operatorMask(int op){ |
| 152 | u16 c; |
| 153 | assert( allowedOp(op) ); |
| 154 | if( op==TK_IN ){ |
| 155 | c = WO_IN; |
| 156 | }else if( op==TK_ISNULL ){ |
| 157 | c = WO_ISNULL; |
| 158 | }else if( op==TK_IS ){ |
| 159 | c = WO_IS; |
| 160 | }else{ |
| 161 | assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); |
| 162 | c = (u16)(WO_EQ<<(op-TK_EQ)); |
| 163 | } |
| 164 | assert( op!=TK_ISNULL || c==WO_ISNULL ); |
| 165 | assert( op!=TK_IN || c==WO_IN ); |
| 166 | assert( op!=TK_EQ || c==WO_EQ ); |
| 167 | assert( op!=TK_LT || c==WO_LT ); |
| 168 | assert( op!=TK_LE || c==WO_LE ); |
| 169 | assert( op!=TK_GT || c==WO_GT ); |
| 170 | assert( op!=TK_GE || c==WO_GE ); |
| 171 | assert( op!=TK_IS || c==WO_IS ); |
| 172 | return c; |
| 173 | } |
| 174 | |
| 175 | |
| 176 | #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| 177 | /* |
| 178 | ** Check to see if the given expression is a LIKE or GLOB operator that |
| 179 | ** can be optimized using inequality constraints. Return TRUE if it is |
| 180 | ** so and false if not. |
| 181 | ** |
| 182 | ** In order for the operator to be optimizible, the RHS must be a string |
| 183 | ** literal that does not begin with a wildcard. The LHS must be a column |
| 184 | ** that may only be NULL, a string, or a BLOB, never a number. (This means |
| 185 | ** that virtual tables cannot participate in the LIKE optimization.) The |
| 186 | ** collating sequence for the column on the LHS must be appropriate for |
| 187 | ** the operator. |
| 188 | */ |
| 189 | static int isLikeOrGlob( |
| 190 | Parse *pParse, /* Parsing and code generating context */ |
| 191 | Expr *pExpr, /* Test this expression */ |
| 192 | Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ |
| 193 | int *pisComplete, /* True if the only wildcard is % in the last character */ |
| 194 | int *pnoCase /* True if uppercase is equivalent to lowercase */ |
| 195 | ){ |
| 196 | const char *z = 0; /* String on RHS of LIKE operator */ |
| 197 | Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ |
| 198 | ExprList *pList; /* List of operands to the LIKE operator */ |
| 199 | int c; /* One character in z[] */ |
| 200 | int cnt; /* Number of non-wildcard prefix characters */ |
| 201 | char wc[3]; /* Wildcard characters */ |
| 202 | sqlite3 *db = pParse->db; /* Database connection */ |
| 203 | sqlite3_value *pVal = 0; |
| 204 | int op; /* Opcode of pRight */ |
| 205 | |
| 206 | if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ |
| 207 | return 0; |
| 208 | } |
| 209 | #ifdef SQLITE_EBCDIC |
| 210 | if( *pnoCase ) return 0; |
| 211 | #endif |
| 212 | pList = pExpr->x.pList; |
| 213 | pLeft = pList->a[1].pExpr; |
| 214 | if( pLeft->op!=TK_COLUMN |
| 215 | || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT |
| 216 | || IsVirtual(pLeft->pTab) /* Value might be numeric */ |
| 217 | ){ |
| 218 | /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must |
| 219 | ** be the name of an indexed column with TEXT affinity. */ |
| 220 | return 0; |
| 221 | } |
| 222 | assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ |
| 223 | |
| 224 | pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); |
| 225 | op = pRight->op; |
| 226 | if( op==TK_VARIABLE ){ |
| 227 | Vdbe *pReprepare = pParse->pReprepare; |
| 228 | int iCol = pRight->iColumn; |
| 229 | pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_BLOB); |
| 230 | if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ |
| 231 | z = (char *)sqlite3_value_text(pVal); |
| 232 | } |
| 233 | sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); |
| 234 | assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); |
| 235 | }else if( op==TK_STRING ){ |
| 236 | z = pRight->u.zToken; |
| 237 | } |
| 238 | if( z ){ |
| 239 | cnt = 0; |
| 240 | while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ |
| 241 | cnt++; |
| 242 | } |
| 243 | if( cnt!=0 && 255!=(u8)z[cnt-1] ){ |
| 244 | Expr *pPrefix; |
| 245 | *pisComplete = c==wc[0] && z[cnt+1]==0; |
| 246 | pPrefix = sqlite3Expr(db, TK_STRING, z); |
| 247 | if( pPrefix ) pPrefix->u.zToken[cnt] = 0; |
| 248 | *ppPrefix = pPrefix; |
| 249 | if( op==TK_VARIABLE ){ |
| 250 | Vdbe *v = pParse->pVdbe; |
| 251 | sqlite3VdbeSetVarmask(v, pRight->iColumn); |
| 252 | if( *pisComplete && pRight->u.zToken[1] ){ |
| 253 | /* If the rhs of the LIKE expression is a variable, and the current |
| 254 | ** value of the variable means there is no need to invoke the LIKE |
| 255 | ** function, then no OP_Variable will be added to the program. |
| 256 | ** This causes problems for the sqlite3_bind_parameter_name() |
| 257 | ** API. To work around them, add a dummy OP_Variable here. |
| 258 | */ |
| 259 | int r1 = sqlite3GetTempReg(pParse); |
| 260 | sqlite3ExprCodeTarget(pParse, pRight, r1); |
| 261 | sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); |
| 262 | sqlite3ReleaseTempReg(pParse, r1); |
| 263 | } |
| 264 | } |
| 265 | }else{ |
| 266 | z = 0; |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | sqlite3ValueFree(pVal); |
| 271 | return (z!=0); |
| 272 | } |
| 273 | #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| 274 | |
| 275 | |
| 276 | #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 277 | /* |
| 278 | ** Check to see if the given expression is of the form |
| 279 | ** |
| 280 | ** column MATCH expr |
| 281 | ** |
| 282 | ** If it is then return TRUE. If not, return FALSE. |
| 283 | */ |
| 284 | static int isMatchOfColumn( |
| 285 | Expr *pExpr /* Test this expression */ |
| 286 | ){ |
| 287 | ExprList *pList; |
| 288 | |
| 289 | if( pExpr->op!=TK_FUNCTION ){ |
| 290 | return 0; |
| 291 | } |
| 292 | if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ |
| 293 | return 0; |
| 294 | } |
| 295 | pList = pExpr->x.pList; |
| 296 | if( pList->nExpr!=2 ){ |
| 297 | return 0; |
| 298 | } |
| 299 | if( pList->a[1].pExpr->op != TK_COLUMN ){ |
| 300 | return 0; |
| 301 | } |
| 302 | return 1; |
| 303 | } |
| 304 | #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 305 | |
| 306 | /* |
| 307 | ** If the pBase expression originated in the ON or USING clause of |
| 308 | ** a join, then transfer the appropriate markings over to derived. |
| 309 | */ |
| 310 | static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ |
| 311 | if( pDerived ){ |
| 312 | pDerived->flags |= pBase->flags & EP_FromJoin; |
| 313 | pDerived->iRightJoinTable = pBase->iRightJoinTable; |
| 314 | } |
| 315 | } |
| 316 | |
| 317 | /* |
| 318 | ** Mark term iChild as being a child of term iParent |
| 319 | */ |
| 320 | static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ |
| 321 | pWC->a[iChild].iParent = iParent; |
| 322 | pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; |
| 323 | pWC->a[iParent].nChild++; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not |
| 328 | ** a conjunction, then return just pTerm when N==0. If N is exceeds |
| 329 | ** the number of available subterms, return NULL. |
| 330 | */ |
| 331 | static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){ |
| 332 | if( pTerm->eOperator!=WO_AND ){ |
| 333 | return N==0 ? pTerm : 0; |
| 334 | } |
| 335 | if( N<pTerm->u.pAndInfo->wc.nTerm ){ |
| 336 | return &pTerm->u.pAndInfo->wc.a[N]; |
| 337 | } |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | /* |
| 342 | ** Subterms pOne and pTwo are contained within WHERE clause pWC. The |
| 343 | ** two subterms are in disjunction - they are OR-ed together. |
| 344 | ** |
| 345 | ** If these two terms are both of the form: "A op B" with the same |
| 346 | ** A and B values but different operators and if the operators are |
| 347 | ** compatible (if one is = and the other is <, for example) then |
| 348 | ** add a new virtual AND term to pWC that is the combination of the |
| 349 | ** two. |
| 350 | ** |
| 351 | ** Some examples: |
| 352 | ** |
| 353 | ** x<y OR x=y --> x<=y |
| 354 | ** x=y OR x=y --> x=y |
| 355 | ** x<=y OR x<y --> x<=y |
| 356 | ** |
| 357 | ** The following is NOT generated: |
| 358 | ** |
| 359 | ** x<y OR x>y --> x!=y |
| 360 | */ |
| 361 | static void whereCombineDisjuncts( |
| 362 | SrcList *pSrc, /* the FROM clause */ |
| 363 | WhereClause *pWC, /* The complete WHERE clause */ |
| 364 | WhereTerm *pOne, /* First disjunct */ |
| 365 | WhereTerm *pTwo /* Second disjunct */ |
| 366 | ){ |
| 367 | u16 eOp = pOne->eOperator | pTwo->eOperator; |
| 368 | sqlite3 *db; /* Database connection (for malloc) */ |
| 369 | Expr *pNew; /* New virtual expression */ |
| 370 | int op; /* Operator for the combined expression */ |
| 371 | int idxNew; /* Index in pWC of the next virtual term */ |
| 372 | |
| 373 | if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; |
| 374 | if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return; |
| 375 | if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp |
| 376 | && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return; |
| 377 | assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 ); |
| 378 | assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 ); |
| 379 | if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return; |
| 380 | if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return; |
| 381 | /* If we reach this point, it means the two subterms can be combined */ |
| 382 | if( (eOp & (eOp-1))!=0 ){ |
| 383 | if( eOp & (WO_LT|WO_LE) ){ |
| 384 | eOp = WO_LE; |
| 385 | }else{ |
| 386 | assert( eOp & (WO_GT|WO_GE) ); |
| 387 | eOp = WO_GE; |
| 388 | } |
| 389 | } |
| 390 | db = pWC->pWInfo->pParse->db; |
| 391 | pNew = sqlite3ExprDup(db, pOne->pExpr, 0); |
| 392 | if( pNew==0 ) return; |
| 393 | for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); } |
| 394 | pNew->op = op; |
| 395 | idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
| 396 | exprAnalyze(pSrc, pWC, idxNew); |
| 397 | } |
| 398 | |
| 399 | #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| 400 | /* |
| 401 | ** Analyze a term that consists of two or more OR-connected |
| 402 | ** subterms. So in: |
| 403 | ** |
| 404 | ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) |
| 405 | ** ^^^^^^^^^^^^^^^^^^^^ |
| 406 | ** |
| 407 | ** This routine analyzes terms such as the middle term in the above example. |
| 408 | ** A WhereOrTerm object is computed and attached to the term under |
| 409 | ** analysis, regardless of the outcome of the analysis. Hence: |
| 410 | ** |
| 411 | ** WhereTerm.wtFlags |= TERM_ORINFO |
| 412 | ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object |
| 413 | ** |
| 414 | ** The term being analyzed must have two or more of OR-connected subterms. |
| 415 | ** A single subterm might be a set of AND-connected sub-subterms. |
| 416 | ** Examples of terms under analysis: |
| 417 | ** |
| 418 | ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 |
| 419 | ** (B) x=expr1 OR expr2=x OR x=expr3 |
| 420 | ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) |
| 421 | ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') |
| 422 | ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) |
| 423 | ** (F) x>A OR (x=A AND y>=B) |
| 424 | ** |
| 425 | ** CASE 1: |
| 426 | ** |
| 427 | ** If all subterms are of the form T.C=expr for some single column of C and |
| 428 | ** a single table T (as shown in example B above) then create a new virtual |
| 429 | ** term that is an equivalent IN expression. In other words, if the term |
| 430 | ** being analyzed is: |
| 431 | ** |
| 432 | ** x = expr1 OR expr2 = x OR x = expr3 |
| 433 | ** |
| 434 | ** then create a new virtual term like this: |
| 435 | ** |
| 436 | ** x IN (expr1,expr2,expr3) |
| 437 | ** |
| 438 | ** CASE 2: |
| 439 | ** |
| 440 | ** If there are exactly two disjuncts and one side has x>A and the other side |
| 441 | ** has x=A (for the same x and A) then add a new virtual conjunct term to the |
| 442 | ** WHERE clause of the form "x>=A". Example: |
| 443 | ** |
| 444 | ** x>A OR (x=A AND y>B) adds: x>=A |
| 445 | ** |
| 446 | ** The added conjunct can sometimes be helpful in query planning. |
| 447 | ** |
| 448 | ** CASE 3: |
| 449 | ** |
| 450 | ** If all subterms are indexable by a single table T, then set |
| 451 | ** |
| 452 | ** WhereTerm.eOperator = WO_OR |
| 453 | ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T |
| 454 | ** |
| 455 | ** A subterm is "indexable" if it is of the form |
| 456 | ** "T.C <op> <expr>" where C is any column of table T and |
| 457 | ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". |
| 458 | ** A subterm is also indexable if it is an AND of two or more |
| 459 | ** subsubterms at least one of which is indexable. Indexable AND |
| 460 | ** subterms have their eOperator set to WO_AND and they have |
| 461 | ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. |
| 462 | ** |
| 463 | ** From another point of view, "indexable" means that the subterm could |
| 464 | ** potentially be used with an index if an appropriate index exists. |
| 465 | ** This analysis does not consider whether or not the index exists; that |
| 466 | ** is decided elsewhere. This analysis only looks at whether subterms |
| 467 | ** appropriate for indexing exist. |
| 468 | ** |
| 469 | ** All examples A through E above satisfy case 3. But if a term |
| 470 | ** also satisfies case 1 (such as B) we know that the optimizer will |
| 471 | ** always prefer case 1, so in that case we pretend that case 3 is not |
| 472 | ** satisfied. |
| 473 | ** |
| 474 | ** It might be the case that multiple tables are indexable. For example, |
| 475 | ** (E) above is indexable on tables P, Q, and R. |
| 476 | ** |
| 477 | ** Terms that satisfy case 3 are candidates for lookup by using |
| 478 | ** separate indices to find rowids for each subterm and composing |
| 479 | ** the union of all rowids using a RowSet object. This is similar |
| 480 | ** to "bitmap indices" in other database engines. |
| 481 | ** |
| 482 | ** OTHERWISE: |
| 483 | ** |
| 484 | ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to |
| 485 | ** zero. This term is not useful for search. |
| 486 | */ |
| 487 | static void exprAnalyzeOrTerm( |
| 488 | SrcList *pSrc, /* the FROM clause */ |
| 489 | WhereClause *pWC, /* the complete WHERE clause */ |
| 490 | int idxTerm /* Index of the OR-term to be analyzed */ |
| 491 | ){ |
| 492 | WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
| 493 | Parse *pParse = pWInfo->pParse; /* Parser context */ |
| 494 | sqlite3 *db = pParse->db; /* Database connection */ |
| 495 | WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ |
| 496 | Expr *pExpr = pTerm->pExpr; /* The expression of the term */ |
| 497 | int i; /* Loop counters */ |
| 498 | WhereClause *pOrWc; /* Breakup of pTerm into subterms */ |
| 499 | WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ |
| 500 | WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ |
| 501 | Bitmask chngToIN; /* Tables that might satisfy case 1 */ |
| 502 | Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ |
| 503 | |
| 504 | /* |
| 505 | ** Break the OR clause into its separate subterms. The subterms are |
| 506 | ** stored in a WhereClause structure containing within the WhereOrInfo |
| 507 | ** object that is attached to the original OR clause term. |
| 508 | */ |
| 509 | assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); |
| 510 | assert( pExpr->op==TK_OR ); |
| 511 | pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); |
| 512 | if( pOrInfo==0 ) return; |
| 513 | pTerm->wtFlags |= TERM_ORINFO; |
| 514 | pOrWc = &pOrInfo->wc; |
| 515 | sqlite3WhereClauseInit(pOrWc, pWInfo); |
| 516 | sqlite3WhereSplit(pOrWc, pExpr, TK_OR); |
| 517 | sqlite3WhereExprAnalyze(pSrc, pOrWc); |
| 518 | if( db->mallocFailed ) return; |
| 519 | assert( pOrWc->nTerm>=2 ); |
| 520 | |
| 521 | /* |
| 522 | ** Compute the set of tables that might satisfy cases 1 or 3. |
| 523 | */ |
| 524 | indexable = ~(Bitmask)0; |
| 525 | chngToIN = ~(Bitmask)0; |
| 526 | for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ |
| 527 | if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ |
| 528 | WhereAndInfo *pAndInfo; |
| 529 | assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); |
| 530 | chngToIN = 0; |
| 531 | pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); |
| 532 | if( pAndInfo ){ |
| 533 | WhereClause *pAndWC; |
| 534 | WhereTerm *pAndTerm; |
| 535 | int j; |
| 536 | Bitmask b = 0; |
| 537 | pOrTerm->u.pAndInfo = pAndInfo; |
| 538 | pOrTerm->wtFlags |= TERM_ANDINFO; |
| 539 | pOrTerm->eOperator = WO_AND; |
| 540 | pAndWC = &pAndInfo->wc; |
| 541 | sqlite3WhereClauseInit(pAndWC, pWC->pWInfo); |
| 542 | sqlite3WhereSplit(pAndWC, pOrTerm->pExpr, TK_AND); |
| 543 | sqlite3WhereExprAnalyze(pSrc, pAndWC); |
| 544 | pAndWC->pOuter = pWC; |
| 545 | testcase( db->mallocFailed ); |
| 546 | if( !db->mallocFailed ){ |
| 547 | for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ |
| 548 | assert( pAndTerm->pExpr ); |
| 549 | if( allowedOp(pAndTerm->pExpr->op) ){ |
| 550 | b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | indexable &= b; |
| 555 | } |
| 556 | }else if( pOrTerm->wtFlags & TERM_COPIED ){ |
| 557 | /* Skip this term for now. We revisit it when we process the |
| 558 | ** corresponding TERM_VIRTUAL term */ |
| 559 | }else{ |
| 560 | Bitmask b; |
| 561 | b = sqlite3WhereGetMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); |
| 562 | if( pOrTerm->wtFlags & TERM_VIRTUAL ){ |
| 563 | WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; |
| 564 | b |= sqlite3WhereGetMask(&pWInfo->sMaskSet, pOther->leftCursor); |
| 565 | } |
| 566 | indexable &= b; |
| 567 | if( (pOrTerm->eOperator & WO_EQ)==0 ){ |
| 568 | chngToIN = 0; |
| 569 | }else{ |
| 570 | chngToIN &= b; |
| 571 | } |
| 572 | } |
| 573 | } |
| 574 | |
| 575 | /* |
| 576 | ** Record the set of tables that satisfy case 3. The set might be |
| 577 | ** empty. |
| 578 | */ |
| 579 | pOrInfo->indexable = indexable; |
| 580 | pTerm->eOperator = indexable==0 ? 0 : WO_OR; |
| 581 | |
| 582 | /* For a two-way OR, attempt to implementation case 2. |
| 583 | */ |
| 584 | if( indexable && pOrWc->nTerm==2 ){ |
| 585 | int iOne = 0; |
| 586 | WhereTerm *pOne; |
| 587 | while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){ |
| 588 | int iTwo = 0; |
| 589 | WhereTerm *pTwo; |
| 590 | while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){ |
| 591 | whereCombineDisjuncts(pSrc, pWC, pOne, pTwo); |
| 592 | } |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | /* |
| 597 | ** chngToIN holds a set of tables that *might* satisfy case 1. But |
| 598 | ** we have to do some additional checking to see if case 1 really |
| 599 | ** is satisfied. |
| 600 | ** |
| 601 | ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means |
| 602 | ** that there is no possibility of transforming the OR clause into an |
| 603 | ** IN operator because one or more terms in the OR clause contain |
| 604 | ** something other than == on a column in the single table. The 1-bit |
| 605 | ** case means that every term of the OR clause is of the form |
| 606 | ** "table.column=expr" for some single table. The one bit that is set |
| 607 | ** will correspond to the common table. We still need to check to make |
| 608 | ** sure the same column is used on all terms. The 2-bit case is when |
| 609 | ** the all terms are of the form "table1.column=table2.column". It |
| 610 | ** might be possible to form an IN operator with either table1.column |
| 611 | ** or table2.column as the LHS if either is common to every term of |
| 612 | ** the OR clause. |
| 613 | ** |
| 614 | ** Note that terms of the form "table.column1=table.column2" (the |
| 615 | ** same table on both sizes of the ==) cannot be optimized. |
| 616 | */ |
| 617 | if( chngToIN ){ |
| 618 | int okToChngToIN = 0; /* True if the conversion to IN is valid */ |
| 619 | int iColumn = -1; /* Column index on lhs of IN operator */ |
| 620 | int iCursor = -1; /* Table cursor common to all terms */ |
| 621 | int j = 0; /* Loop counter */ |
| 622 | |
| 623 | /* Search for a table and column that appears on one side or the |
| 624 | ** other of the == operator in every subterm. That table and column |
| 625 | ** will be recorded in iCursor and iColumn. There might not be any |
| 626 | ** such table and column. Set okToChngToIN if an appropriate table |
| 627 | ** and column is found but leave okToChngToIN false if not found. |
| 628 | */ |
| 629 | for(j=0; j<2 && !okToChngToIN; j++){ |
| 630 | pOrTerm = pOrWc->a; |
| 631 | for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ |
| 632 | assert( pOrTerm->eOperator & WO_EQ ); |
| 633 | pOrTerm->wtFlags &= ~TERM_OR_OK; |
| 634 | if( pOrTerm->leftCursor==iCursor ){ |
| 635 | /* This is the 2-bit case and we are on the second iteration and |
| 636 | ** current term is from the first iteration. So skip this term. */ |
| 637 | assert( j==1 ); |
| 638 | continue; |
| 639 | } |
| 640 | if( (chngToIN & sqlite3WhereGetMask(&pWInfo->sMaskSet, |
| 641 | pOrTerm->leftCursor))==0 ){ |
| 642 | /* This term must be of the form t1.a==t2.b where t2 is in the |
| 643 | ** chngToIN set but t1 is not. This term will be either preceded |
| 644 | ** or follwed by an inverted copy (t2.b==t1.a). Skip this term |
| 645 | ** and use its inversion. */ |
| 646 | testcase( pOrTerm->wtFlags & TERM_COPIED ); |
| 647 | testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); |
| 648 | assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); |
| 649 | continue; |
| 650 | } |
| 651 | iColumn = pOrTerm->u.leftColumn; |
| 652 | iCursor = pOrTerm->leftCursor; |
| 653 | break; |
| 654 | } |
| 655 | if( i<0 ){ |
| 656 | /* No candidate table+column was found. This can only occur |
| 657 | ** on the second iteration */ |
| 658 | assert( j==1 ); |
| 659 | assert( IsPowerOfTwo(chngToIN) ); |
| 660 | assert( chngToIN==sqlite3WhereGetMask(&pWInfo->sMaskSet, iCursor) ); |
| 661 | break; |
| 662 | } |
| 663 | testcase( j==1 ); |
| 664 | |
| 665 | /* We have found a candidate table and column. Check to see if that |
| 666 | ** table and column is common to every term in the OR clause */ |
| 667 | okToChngToIN = 1; |
| 668 | for(; i>=0 && okToChngToIN; i--, pOrTerm++){ |
| 669 | assert( pOrTerm->eOperator & WO_EQ ); |
| 670 | if( pOrTerm->leftCursor!=iCursor ){ |
| 671 | pOrTerm->wtFlags &= ~TERM_OR_OK; |
| 672 | }else if( pOrTerm->u.leftColumn!=iColumn ){ |
| 673 | okToChngToIN = 0; |
| 674 | }else{ |
| 675 | int affLeft, affRight; |
| 676 | /* If the right-hand side is also a column, then the affinities |
| 677 | ** of both right and left sides must be such that no type |
| 678 | ** conversions are required on the right. (Ticket #2249) |
| 679 | */ |
| 680 | affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); |
| 681 | affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); |
| 682 | if( affRight!=0 && affRight!=affLeft ){ |
| 683 | okToChngToIN = 0; |
| 684 | }else{ |
| 685 | pOrTerm->wtFlags |= TERM_OR_OK; |
| 686 | } |
| 687 | } |
| 688 | } |
| 689 | } |
| 690 | |
| 691 | /* At this point, okToChngToIN is true if original pTerm satisfies |
| 692 | ** case 1. In that case, construct a new virtual term that is |
| 693 | ** pTerm converted into an IN operator. |
| 694 | */ |
| 695 | if( okToChngToIN ){ |
| 696 | Expr *pDup; /* A transient duplicate expression */ |
| 697 | ExprList *pList = 0; /* The RHS of the IN operator */ |
| 698 | Expr *pLeft = 0; /* The LHS of the IN operator */ |
| 699 | Expr *pNew; /* The complete IN operator */ |
| 700 | |
| 701 | for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ |
| 702 | if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; |
| 703 | assert( pOrTerm->eOperator & WO_EQ ); |
| 704 | assert( pOrTerm->leftCursor==iCursor ); |
| 705 | assert( pOrTerm->u.leftColumn==iColumn ); |
| 706 | pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); |
| 707 | pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); |
| 708 | pLeft = pOrTerm->pExpr->pLeft; |
| 709 | } |
| 710 | assert( pLeft!=0 ); |
| 711 | pDup = sqlite3ExprDup(db, pLeft, 0); |
| 712 | pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); |
| 713 | if( pNew ){ |
| 714 | int idxNew; |
| 715 | transferJoinMarkings(pNew, pExpr); |
| 716 | assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
| 717 | pNew->x.pList = pList; |
| 718 | idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); |
| 719 | testcase( idxNew==0 ); |
| 720 | exprAnalyze(pSrc, pWC, idxNew); |
| 721 | pTerm = &pWC->a[idxTerm]; |
| 722 | markTermAsChild(pWC, idxNew, idxTerm); |
| 723 | }else{ |
| 724 | sqlite3ExprListDelete(db, pList); |
| 725 | } |
| 726 | pTerm->eOperator = WO_NOOP; /* case 1 trumps case 3 */ |
| 727 | } |
| 728 | } |
| 729 | } |
| 730 | #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ |
| 731 | |
| 732 | /* |
| 733 | ** We already know that pExpr is a binary operator where both operands are |
| 734 | ** column references. This routine checks to see if pExpr is an equivalence |
| 735 | ** relation: |
| 736 | ** 1. The SQLITE_Transitive optimization must be enabled |
| 737 | ** 2. Must be either an == or an IS operator |
| 738 | ** 3. Not originating in the ON clause of an OUTER JOIN |
| 739 | ** 4. The affinities of A and B must be compatible |
| 740 | ** 5a. Both operands use the same collating sequence OR |
| 741 | ** 5b. The overall collating sequence is BINARY |
| 742 | ** If this routine returns TRUE, that means that the RHS can be substituted |
| 743 | ** for the LHS anyplace else in the WHERE clause where the LHS column occurs. |
| 744 | ** This is an optimization. No harm comes from returning 0. But if 1 is |
| 745 | ** returned when it should not be, then incorrect answers might result. |
| 746 | */ |
| 747 | static int termIsEquivalence(Parse *pParse, Expr *pExpr){ |
| 748 | char aff1, aff2; |
| 749 | CollSeq *pColl; |
| 750 | const char *zColl1, *zColl2; |
| 751 | if( !OptimizationEnabled(pParse->db, SQLITE_Transitive) ) return 0; |
| 752 | if( pExpr->op!=TK_EQ && pExpr->op!=TK_IS ) return 0; |
| 753 | if( ExprHasProperty(pExpr, EP_FromJoin) ) return 0; |
| 754 | aff1 = sqlite3ExprAffinity(pExpr->pLeft); |
| 755 | aff2 = sqlite3ExprAffinity(pExpr->pRight); |
| 756 | if( aff1!=aff2 |
| 757 | && (!sqlite3IsNumericAffinity(aff1) || !sqlite3IsNumericAffinity(aff2)) |
| 758 | ){ |
| 759 | return 0; |
| 760 | } |
| 761 | pColl = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pExpr->pRight); |
| 762 | if( pColl==0 || sqlite3StrICmp(pColl->zName, "BINARY")==0 ) return 1; |
| 763 | pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| 764 | /* Since pLeft and pRight are both a column references, their collating |
| 765 | ** sequence should always be defined. */ |
| 766 | zColl1 = ALWAYS(pColl) ? pColl->zName : 0; |
| 767 | pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); |
| 768 | zColl2 = ALWAYS(pColl) ? pColl->zName : 0; |
| 769 | return sqlite3StrICmp(zColl1, zColl2)==0; |
| 770 | } |
| 771 | |
| 772 | /* |
| 773 | ** Recursively walk the expressions of a SELECT statement and generate |
| 774 | ** a bitmask indicating which tables are used in that expression |
| 775 | ** tree. |
| 776 | */ |
| 777 | static Bitmask exprSelectUsage(WhereMaskSet *pMaskSet, Select *pS){ |
| 778 | Bitmask mask = 0; |
| 779 | while( pS ){ |
| 780 | SrcList *pSrc = pS->pSrc; |
| 781 | mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pEList); |
| 782 | mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pGroupBy); |
| 783 | mask |= sqlite3WhereExprListUsage(pMaskSet, pS->pOrderBy); |
| 784 | mask |= sqlite3WhereExprUsage(pMaskSet, pS->pWhere); |
| 785 | mask |= sqlite3WhereExprUsage(pMaskSet, pS->pHaving); |
| 786 | if( ALWAYS(pSrc!=0) ){ |
| 787 | int i; |
| 788 | for(i=0; i<pSrc->nSrc; i++){ |
| 789 | mask |= exprSelectUsage(pMaskSet, pSrc->a[i].pSelect); |
| 790 | mask |= sqlite3WhereExprUsage(pMaskSet, pSrc->a[i].pOn); |
| 791 | } |
| 792 | } |
| 793 | pS = pS->pPrior; |
| 794 | } |
| 795 | return mask; |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | ** The input to this routine is an WhereTerm structure with only the |
| 800 | ** "pExpr" field filled in. The job of this routine is to analyze the |
| 801 | ** subexpression and populate all the other fields of the WhereTerm |
| 802 | ** structure. |
| 803 | ** |
| 804 | ** If the expression is of the form "<expr> <op> X" it gets commuted |
| 805 | ** to the standard form of "X <op> <expr>". |
| 806 | ** |
| 807 | ** If the expression is of the form "X <op> Y" where both X and Y are |
| 808 | ** columns, then the original expression is unchanged and a new virtual |
| 809 | ** term of the form "Y <op> X" is added to the WHERE clause and |
| 810 | ** analyzed separately. The original term is marked with TERM_COPIED |
| 811 | ** and the new term is marked with TERM_DYNAMIC (because it's pExpr |
| 812 | ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it |
| 813 | ** is a commuted copy of a prior term.) The original term has nChild=1 |
| 814 | ** and the copy has idxParent set to the index of the original term. |
| 815 | */ |
| 816 | static void exprAnalyze( |
| 817 | SrcList *pSrc, /* the FROM clause */ |
| 818 | WhereClause *pWC, /* the WHERE clause */ |
| 819 | int idxTerm /* Index of the term to be analyzed */ |
| 820 | ){ |
| 821 | WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ |
| 822 | WhereTerm *pTerm; /* The term to be analyzed */ |
| 823 | WhereMaskSet *pMaskSet; /* Set of table index masks */ |
| 824 | Expr *pExpr; /* The expression to be analyzed */ |
| 825 | Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ |
| 826 | Bitmask prereqAll; /* Prerequesites of pExpr */ |
| 827 | Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ |
| 828 | Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ |
| 829 | int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ |
| 830 | int noCase = 0; /* uppercase equivalent to lowercase */ |
| 831 | int op; /* Top-level operator. pExpr->op */ |
| 832 | Parse *pParse = pWInfo->pParse; /* Parsing context */ |
| 833 | sqlite3 *db = pParse->db; /* Database connection */ |
| 834 | |
| 835 | if( db->mallocFailed ){ |
| 836 | return; |
| 837 | } |
| 838 | pTerm = &pWC->a[idxTerm]; |
| 839 | pMaskSet = &pWInfo->sMaskSet; |
| 840 | pExpr = pTerm->pExpr; |
| 841 | assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); |
| 842 | prereqLeft = sqlite3WhereExprUsage(pMaskSet, pExpr->pLeft); |
| 843 | op = pExpr->op; |
| 844 | if( op==TK_IN ){ |
| 845 | assert( pExpr->pRight==0 ); |
| 846 | if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| 847 | pTerm->prereqRight = exprSelectUsage(pMaskSet, pExpr->x.pSelect); |
| 848 | }else{ |
| 849 | pTerm->prereqRight = sqlite3WhereExprListUsage(pMaskSet, pExpr->x.pList); |
| 850 | } |
| 851 | }else if( op==TK_ISNULL ){ |
| 852 | pTerm->prereqRight = 0; |
| 853 | }else{ |
| 854 | pTerm->prereqRight = sqlite3WhereExprUsage(pMaskSet, pExpr->pRight); |
| 855 | } |
| 856 | prereqAll = sqlite3WhereExprUsage(pMaskSet, pExpr); |
| 857 | if( ExprHasProperty(pExpr, EP_FromJoin) ){ |
| 858 | Bitmask x = sqlite3WhereGetMask(pMaskSet, pExpr->iRightJoinTable); |
| 859 | prereqAll |= x; |
| 860 | extraRight = x-1; /* ON clause terms may not be used with an index |
| 861 | ** on left table of a LEFT JOIN. Ticket #3015 */ |
| 862 | } |
| 863 | pTerm->prereqAll = prereqAll; |
| 864 | pTerm->leftCursor = -1; |
| 865 | pTerm->iParent = -1; |
| 866 | pTerm->eOperator = 0; |
| 867 | if( allowedOp(op) ){ |
| 868 | Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); |
| 869 | Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); |
| 870 | u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; |
| 871 | if( pLeft->op==TK_COLUMN ){ |
| 872 | pTerm->leftCursor = pLeft->iTable; |
| 873 | pTerm->u.leftColumn = pLeft->iColumn; |
| 874 | pTerm->eOperator = operatorMask(op) & opMask; |
| 875 | } |
| 876 | if( op==TK_IS ) pTerm->wtFlags |= TERM_IS; |
| 877 | if( pRight && pRight->op==TK_COLUMN ){ |
| 878 | WhereTerm *pNew; |
| 879 | Expr *pDup; |
| 880 | u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ |
| 881 | if( pTerm->leftCursor>=0 ){ |
| 882 | int idxNew; |
| 883 | pDup = sqlite3ExprDup(db, pExpr, 0); |
| 884 | if( db->mallocFailed ){ |
| 885 | sqlite3ExprDelete(db, pDup); |
| 886 | return; |
| 887 | } |
| 888 | idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); |
| 889 | if( idxNew==0 ) return; |
| 890 | pNew = &pWC->a[idxNew]; |
| 891 | markTermAsChild(pWC, idxNew, idxTerm); |
| 892 | if( op==TK_IS ) pNew->wtFlags |= TERM_IS; |
| 893 | pTerm = &pWC->a[idxTerm]; |
| 894 | pTerm->wtFlags |= TERM_COPIED; |
| 895 | |
| 896 | if( termIsEquivalence(pParse, pDup) ){ |
| 897 | pTerm->eOperator |= WO_EQUIV; |
| 898 | eExtraOp = WO_EQUIV; |
| 899 | } |
| 900 | }else{ |
| 901 | pDup = pExpr; |
| 902 | pNew = pTerm; |
| 903 | } |
| 904 | exprCommute(pParse, pDup); |
| 905 | pLeft = sqlite3ExprSkipCollate(pDup->pLeft); |
| 906 | pNew->leftCursor = pLeft->iTable; |
| 907 | pNew->u.leftColumn = pLeft->iColumn; |
| 908 | testcase( (prereqLeft | extraRight) != prereqLeft ); |
| 909 | pNew->prereqRight = prereqLeft | extraRight; |
| 910 | pNew->prereqAll = prereqAll; |
| 911 | pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION |
| 916 | /* If a term is the BETWEEN operator, create two new virtual terms |
| 917 | ** that define the range that the BETWEEN implements. For example: |
| 918 | ** |
| 919 | ** a BETWEEN b AND c |
| 920 | ** |
| 921 | ** is converted into: |
| 922 | ** |
| 923 | ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) |
| 924 | ** |
| 925 | ** The two new terms are added onto the end of the WhereClause object. |
| 926 | ** The new terms are "dynamic" and are children of the original BETWEEN |
| 927 | ** term. That means that if the BETWEEN term is coded, the children are |
| 928 | ** skipped. Or, if the children are satisfied by an index, the original |
| 929 | ** BETWEEN term is skipped. |
| 930 | */ |
| 931 | else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ |
| 932 | ExprList *pList = pExpr->x.pList; |
| 933 | int i; |
| 934 | static const u8 ops[] = {TK_GE, TK_LE}; |
| 935 | assert( pList!=0 ); |
| 936 | assert( pList->nExpr==2 ); |
| 937 | for(i=0; i<2; i++){ |
| 938 | Expr *pNewExpr; |
| 939 | int idxNew; |
| 940 | pNewExpr = sqlite3PExpr(pParse, ops[i], |
| 941 | sqlite3ExprDup(db, pExpr->pLeft, 0), |
| 942 | sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); |
| 943 | transferJoinMarkings(pNewExpr, pExpr); |
| 944 | idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| 945 | testcase( idxNew==0 ); |
| 946 | exprAnalyze(pSrc, pWC, idxNew); |
| 947 | pTerm = &pWC->a[idxTerm]; |
| 948 | markTermAsChild(pWC, idxNew, idxTerm); |
| 949 | } |
| 950 | } |
| 951 | #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ |
| 952 | |
| 953 | #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) |
| 954 | /* Analyze a term that is composed of two or more subterms connected by |
| 955 | ** an OR operator. |
| 956 | */ |
| 957 | else if( pExpr->op==TK_OR ){ |
| 958 | assert( pWC->op==TK_AND ); |
| 959 | exprAnalyzeOrTerm(pSrc, pWC, idxTerm); |
| 960 | pTerm = &pWC->a[idxTerm]; |
| 961 | } |
| 962 | #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
| 963 | |
| 964 | #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION |
| 965 | /* Add constraints to reduce the search space on a LIKE or GLOB |
| 966 | ** operator. |
| 967 | ** |
| 968 | ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints |
| 969 | ** |
| 970 | ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' |
| 971 | ** |
| 972 | ** The last character of the prefix "abc" is incremented to form the |
| 973 | ** termination condition "abd". If case is not significant (the default |
| 974 | ** for LIKE) then the lower-bound is made all uppercase and the upper- |
| 975 | ** bound is made all lowercase so that the bounds also work when comparing |
| 976 | ** BLOBs. |
| 977 | */ |
| 978 | if( pWC->op==TK_AND |
| 979 | && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) |
| 980 | ){ |
| 981 | Expr *pLeft; /* LHS of LIKE/GLOB operator */ |
| 982 | Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ |
| 983 | Expr *pNewExpr1; |
| 984 | Expr *pNewExpr2; |
| 985 | int idxNew1; |
| 986 | int idxNew2; |
| 987 | const char *zCollSeqName; /* Name of collating sequence */ |
| 988 | const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; |
| 989 | |
| 990 | pLeft = pExpr->x.pList->a[1].pExpr; |
| 991 | pStr2 = sqlite3ExprDup(db, pStr1, 0); |
| 992 | |
| 993 | /* Convert the lower bound to upper-case and the upper bound to |
| 994 | ** lower-case (upper-case is less than lower-case in ASCII) so that |
| 995 | ** the range constraints also work for BLOBs |
| 996 | */ |
| 997 | if( noCase && !pParse->db->mallocFailed ){ |
| 998 | int i; |
| 999 | char c; |
| 1000 | pTerm->wtFlags |= TERM_LIKE; |
| 1001 | for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ |
| 1002 | pStr1->u.zToken[i] = sqlite3Toupper(c); |
| 1003 | pStr2->u.zToken[i] = sqlite3Tolower(c); |
| 1004 | } |
| 1005 | } |
| 1006 | |
| 1007 | if( !db->mallocFailed ){ |
| 1008 | u8 c, *pC; /* Last character before the first wildcard */ |
| 1009 | pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; |
| 1010 | c = *pC; |
| 1011 | if( noCase ){ |
| 1012 | /* The point is to increment the last character before the first |
| 1013 | ** wildcard. But if we increment '@', that will push it into the |
| 1014 | ** alphabetic range where case conversions will mess up the |
| 1015 | ** inequality. To avoid this, make sure to also run the full |
| 1016 | ** LIKE on all candidate expressions by clearing the isComplete flag |
| 1017 | */ |
| 1018 | if( c=='A'-1 ) isComplete = 0; |
| 1019 | c = sqlite3UpperToLower[c]; |
| 1020 | } |
| 1021 | *pC = c + 1; |
| 1022 | } |
| 1023 | zCollSeqName = noCase ? "NOCASE" : "BINARY"; |
| 1024 | pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
| 1025 | pNewExpr1 = sqlite3PExpr(pParse, TK_GE, |
| 1026 | sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName), |
| 1027 | pStr1, 0); |
| 1028 | transferJoinMarkings(pNewExpr1, pExpr); |
| 1029 | idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); |
| 1030 | testcase( idxNew1==0 ); |
| 1031 | exprAnalyze(pSrc, pWC, idxNew1); |
| 1032 | pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); |
| 1033 | pNewExpr2 = sqlite3PExpr(pParse, TK_LT, |
| 1034 | sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName), |
| 1035 | pStr2, 0); |
| 1036 | transferJoinMarkings(pNewExpr2, pExpr); |
| 1037 | idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); |
| 1038 | testcase( idxNew2==0 ); |
| 1039 | exprAnalyze(pSrc, pWC, idxNew2); |
| 1040 | pTerm = &pWC->a[idxTerm]; |
| 1041 | if( isComplete ){ |
| 1042 | markTermAsChild(pWC, idxNew1, idxTerm); |
| 1043 | markTermAsChild(pWC, idxNew2, idxTerm); |
| 1044 | } |
| 1045 | } |
| 1046 | #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ |
| 1047 | |
| 1048 | #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1049 | /* Add a WO_MATCH auxiliary term to the constraint set if the |
| 1050 | ** current expression is of the form: column MATCH expr. |
| 1051 | ** This information is used by the xBestIndex methods of |
| 1052 | ** virtual tables. The native query optimizer does not attempt |
| 1053 | ** to do anything with MATCH functions. |
| 1054 | */ |
| 1055 | if( isMatchOfColumn(pExpr) ){ |
| 1056 | int idxNew; |
| 1057 | Expr *pRight, *pLeft; |
| 1058 | WhereTerm *pNewTerm; |
| 1059 | Bitmask prereqColumn, prereqExpr; |
| 1060 | |
| 1061 | pRight = pExpr->x.pList->a[0].pExpr; |
| 1062 | pLeft = pExpr->x.pList->a[1].pExpr; |
| 1063 | prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight); |
| 1064 | prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft); |
| 1065 | if( (prereqExpr & prereqColumn)==0 ){ |
| 1066 | Expr *pNewExpr; |
| 1067 | pNewExpr = sqlite3PExpr(pParse, TK_MATCH, |
| 1068 | 0, sqlite3ExprDup(db, pRight, 0), 0); |
| 1069 | idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); |
| 1070 | testcase( idxNew==0 ); |
| 1071 | pNewTerm = &pWC->a[idxNew]; |
| 1072 | pNewTerm->prereqRight = prereqExpr; |
| 1073 | pNewTerm->leftCursor = pLeft->iTable; |
| 1074 | pNewTerm->u.leftColumn = pLeft->iColumn; |
| 1075 | pNewTerm->eOperator = WO_MATCH; |
| 1076 | markTermAsChild(pWC, idxNew, idxTerm); |
| 1077 | pTerm = &pWC->a[idxTerm]; |
| 1078 | pTerm->wtFlags |= TERM_COPIED; |
| 1079 | pNewTerm->prereqAll = pTerm->prereqAll; |
| 1080 | } |
| 1081 | } |
| 1082 | #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 1083 | |
| 1084 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1085 | /* When sqlite_stat3 histogram data is available an operator of the |
| 1086 | ** form "x IS NOT NULL" can sometimes be evaluated more efficiently |
| 1087 | ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a |
| 1088 | ** virtual term of that form. |
| 1089 | ** |
| 1090 | ** Note that the virtual term must be tagged with TERM_VNULL. |
| 1091 | */ |
| 1092 | if( pExpr->op==TK_NOTNULL |
| 1093 | && pExpr->pLeft->op==TK_COLUMN |
| 1094 | && pExpr->pLeft->iColumn>=0 |
| 1095 | && OptimizationEnabled(db, SQLITE_Stat34) |
| 1096 | ){ |
| 1097 | Expr *pNewExpr; |
| 1098 | Expr *pLeft = pExpr->pLeft; |
| 1099 | int idxNew; |
| 1100 | WhereTerm *pNewTerm; |
| 1101 | |
| 1102 | pNewExpr = sqlite3PExpr(pParse, TK_GT, |
| 1103 | sqlite3ExprDup(db, pLeft, 0), |
| 1104 | sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); |
| 1105 | |
| 1106 | idxNew = whereClauseInsert(pWC, pNewExpr, |
| 1107 | TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); |
| 1108 | if( idxNew ){ |
| 1109 | pNewTerm = &pWC->a[idxNew]; |
| 1110 | pNewTerm->prereqRight = 0; |
| 1111 | pNewTerm->leftCursor = pLeft->iTable; |
| 1112 | pNewTerm->u.leftColumn = pLeft->iColumn; |
| 1113 | pNewTerm->eOperator = WO_GT; |
| 1114 | markTermAsChild(pWC, idxNew, idxTerm); |
| 1115 | pTerm = &pWC->a[idxTerm]; |
| 1116 | pTerm->wtFlags |= TERM_COPIED; |
| 1117 | pNewTerm->prereqAll = pTerm->prereqAll; |
| 1118 | } |
| 1119 | } |
| 1120 | #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
| 1121 | |
| 1122 | /* Prevent ON clause terms of a LEFT JOIN from being used to drive |
| 1123 | ** an index for tables to the left of the join. |
| 1124 | */ |
| 1125 | pTerm->prereqRight |= extraRight; |
| 1126 | } |
| 1127 | |
| 1128 | /*************************************************************************** |
| 1129 | ** Routines with file scope above. Interface to the rest of the where.c |
| 1130 | ** subsystem follows. |
| 1131 | ***************************************************************************/ |
| 1132 | |
| 1133 | /* |
| 1134 | ** This routine identifies subexpressions in the WHERE clause where |
| 1135 | ** each subexpression is separated by the AND operator or some other |
| 1136 | ** operator specified in the op parameter. The WhereClause structure |
| 1137 | ** is filled with pointers to subexpressions. For example: |
| 1138 | ** |
| 1139 | ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) |
| 1140 | ** \________/ \_______________/ \________________/ |
| 1141 | ** slot[0] slot[1] slot[2] |
| 1142 | ** |
| 1143 | ** The original WHERE clause in pExpr is unaltered. All this routine |
| 1144 | ** does is make slot[] entries point to substructure within pExpr. |
| 1145 | ** |
| 1146 | ** In the previous sentence and in the diagram, "slot[]" refers to |
| 1147 | ** the WhereClause.a[] array. The slot[] array grows as needed to contain |
| 1148 | ** all terms of the WHERE clause. |
| 1149 | */ |
| 1150 | void sqlite3WhereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ |
| 1151 | Expr *pE2 = sqlite3ExprSkipCollate(pExpr); |
| 1152 | pWC->op = op; |
| 1153 | if( pE2==0 ) return; |
| 1154 | if( pE2->op!=op ){ |
| 1155 | whereClauseInsert(pWC, pExpr, 0); |
| 1156 | }else{ |
| 1157 | sqlite3WhereSplit(pWC, pE2->pLeft, op); |
| 1158 | sqlite3WhereSplit(pWC, pE2->pRight, op); |
| 1159 | } |
| 1160 | } |
| 1161 | |
| 1162 | /* |
| 1163 | ** Initialize a preallocated WhereClause structure. |
| 1164 | */ |
| 1165 | void sqlite3WhereClauseInit( |
| 1166 | WhereClause *pWC, /* The WhereClause to be initialized */ |
| 1167 | WhereInfo *pWInfo /* The WHERE processing context */ |
| 1168 | ){ |
| 1169 | pWC->pWInfo = pWInfo; |
| 1170 | pWC->pOuter = 0; |
| 1171 | pWC->nTerm = 0; |
| 1172 | pWC->nSlot = ArraySize(pWC->aStatic); |
| 1173 | pWC->a = pWC->aStatic; |
| 1174 | } |
| 1175 | |
| 1176 | /* |
| 1177 | ** Deallocate a WhereClause structure. The WhereClause structure |
| 1178 | ** itself is not freed. This routine is the inverse of sqlite3WhereClauseInit(). |
| 1179 | */ |
| 1180 | void sqlite3WhereClauseClear(WhereClause *pWC){ |
| 1181 | int i; |
| 1182 | WhereTerm *a; |
| 1183 | sqlite3 *db = pWC->pWInfo->pParse->db; |
| 1184 | for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ |
| 1185 | if( a->wtFlags & TERM_DYNAMIC ){ |
| 1186 | sqlite3ExprDelete(db, a->pExpr); |
| 1187 | } |
| 1188 | if( a->wtFlags & TERM_ORINFO ){ |
| 1189 | whereOrInfoDelete(db, a->u.pOrInfo); |
| 1190 | }else if( a->wtFlags & TERM_ANDINFO ){ |
| 1191 | whereAndInfoDelete(db, a->u.pAndInfo); |
| 1192 | } |
| 1193 | } |
| 1194 | if( pWC->a!=pWC->aStatic ){ |
| 1195 | sqlite3DbFree(db, pWC->a); |
| 1196 | } |
| 1197 | } |
| 1198 | |
| 1199 | |
| 1200 | /* |
| 1201 | ** These routines walk (recursively) an expression tree and generate |
| 1202 | ** a bitmask indicating which tables are used in that expression |
| 1203 | ** tree. |
| 1204 | */ |
| 1205 | Bitmask sqlite3WhereExprUsage(WhereMaskSet *pMaskSet, Expr *p){ |
| 1206 | Bitmask mask = 0; |
| 1207 | if( p==0 ) return 0; |
| 1208 | if( p->op==TK_COLUMN ){ |
| 1209 | mask = sqlite3WhereGetMask(pMaskSet, p->iTable); |
| 1210 | return mask; |
| 1211 | } |
| 1212 | mask = sqlite3WhereExprUsage(pMaskSet, p->pRight); |
| 1213 | mask |= sqlite3WhereExprUsage(pMaskSet, p->pLeft); |
| 1214 | if( ExprHasProperty(p, EP_xIsSelect) ){ |
| 1215 | mask |= exprSelectUsage(pMaskSet, p->x.pSelect); |
| 1216 | }else{ |
| 1217 | mask |= sqlite3WhereExprListUsage(pMaskSet, p->x.pList); |
| 1218 | } |
| 1219 | return mask; |
| 1220 | } |
| 1221 | Bitmask sqlite3WhereExprListUsage(WhereMaskSet *pMaskSet, ExprList *pList){ |
| 1222 | int i; |
| 1223 | Bitmask mask = 0; |
| 1224 | if( pList ){ |
| 1225 | for(i=0; i<pList->nExpr; i++){ |
| 1226 | mask |= sqlite3WhereExprUsage(pMaskSet, pList->a[i].pExpr); |
| 1227 | } |
| 1228 | } |
| 1229 | return mask; |
| 1230 | } |
| 1231 | |
| 1232 | |
| 1233 | /* |
| 1234 | ** Call exprAnalyze on all terms in a WHERE clause. |
| 1235 | ** |
| 1236 | ** Note that exprAnalyze() might add new virtual terms onto the |
| 1237 | ** end of the WHERE clause. We do not want to analyze these new |
| 1238 | ** virtual terms, so start analyzing at the end and work forward |
| 1239 | ** so that the added virtual terms are never processed. |
| 1240 | */ |
| 1241 | void sqlite3WhereExprAnalyze( |
| 1242 | SrcList *pTabList, /* the FROM clause */ |
| 1243 | WhereClause *pWC /* the WHERE clause to be analyzed */ |
| 1244 | ){ |
| 1245 | int i; |
| 1246 | for(i=pWC->nTerm-1; i>=0; i--){ |
| 1247 | exprAnalyze(pTabList, pWC, i); |
| 1248 | } |
| 1249 | } |
drh | 01d230c | 2015-08-19 17:11:37 +0000 | [diff] [blame] | 1250 | |
| 1251 | /* |
| 1252 | ** For table-valued-functions, transform the function arguments into |
| 1253 | ** new WHERE clause terms. |
| 1254 | ** |
| 1255 | ** Each function argument translates into an equality constraint against |
| 1256 | ** a HIDDEN column in the table. |
| 1257 | */ |
| 1258 | void sqlite3WhereTabFuncArgs( |
| 1259 | Parse *pParse, /* Parsing context */ |
| 1260 | struct SrcList_item *pItem, /* The FROM clause term to process */ |
| 1261 | WhereClause *pWC /* Xfer function arguments to here */ |
| 1262 | ){ |
| 1263 | Table *pTab; |
| 1264 | int j, k; |
| 1265 | ExprList *pArgs; |
| 1266 | Expr *pColRef; |
| 1267 | Expr *pTerm; |
| 1268 | if( pItem->fg.isTabFunc==0 ) return; |
| 1269 | pTab = pItem->pTab; |
| 1270 | assert( pTab!=0 ); |
| 1271 | pArgs = pItem->u1.pFuncArg; |
| 1272 | assert( pArgs!=0 ); |
| 1273 | for(j=k=0; j<pArgs->nExpr; j++){ |
| 1274 | while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){ k++; } |
| 1275 | if( k>=pTab->nCol ){ |
| 1276 | sqlite3ErrorMsg(pParse, "too many arguments on %s - max %d", |
| 1277 | pTab->zName, j); |
| 1278 | return; |
| 1279 | } |
| 1280 | pColRef = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); |
| 1281 | if( pColRef==0 ) return; |
| 1282 | pColRef->iTable = pItem->iCursor; |
| 1283 | pColRef->iColumn = k++; |
| 1284 | pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, |
| 1285 | sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); |
| 1286 | whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); |
| 1287 | } |
| 1288 | } |