blob: 765f4127862d619bea064cb6d4b03fc08927c1c9 [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drhd8e4b132016-10-01 19:21:56 +000024 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
drhab3182f2016-10-01 00:37:50 +000026 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
drh9a324642003-09-06 20:12:01 +000027 p->db = db;
28 if( db->pVdbe ){
29 db->pVdbe->pPrev = p;
30 }
31 p->pNext = db->pVdbe;
32 p->pPrev = 0;
33 db->pVdbe = p;
34 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000035 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000036 assert( pParse->aLabel==0 );
37 assert( pParse->nLabel==0 );
38 assert( pParse->nOpAlloc==0 );
drhbd573082016-01-01 16:42:09 +000039 assert( pParse->szOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000040 return p;
41}
42
43/*
drh22c17b82015-05-15 04:13:15 +000044** Change the error string stored in Vdbe.zErrMsg
45*/
46void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
47 va_list ap;
48 sqlite3DbFree(p->db, p->zErrMsg);
49 va_start(ap, zFormat);
50 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
51 va_end(ap);
52}
53
54/*
drhb900aaf2006-11-09 00:24:53 +000055** Remember the SQL string for a prepared statement.
56*/
danielk19776ab3a2e2009-02-19 14:39:25 +000057void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000058 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000059 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000060#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000061 if( !isPrepareV2 ) return;
62#endif
drhb900aaf2006-11-09 00:24:53 +000063 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000064 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000065 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000066}
67
68/*
drhc5155252007-01-08 21:07:17 +000069** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000070*/
drhc5155252007-01-08 21:07:17 +000071void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
72 Vdbe tmp, *pTmp;
73 char *zTmp;
drh0639c342011-03-18 12:35:36 +000074 assert( pA->db==pB->db );
drhc5155252007-01-08 21:07:17 +000075 tmp = *pA;
76 *pA = *pB;
77 *pB = tmp;
78 pTmp = pA->pNext;
79 pA->pNext = pB->pNext;
80 pB->pNext = pTmp;
81 pTmp = pA->pPrev;
82 pA->pPrev = pB->pPrev;
83 pB->pPrev = pTmp;
84 zTmp = pA->zSql;
85 pA->zSql = pB->zSql;
86 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000087 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000088}
89
drh9a324642003-09-06 20:12:01 +000090/*
dan76ccd892014-08-12 13:38:52 +000091** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000092** than its current size. nOp is guaranteed to be less than or equal
93** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +000094**
danielk197700e13612008-11-17 19:18:54 +000095** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +000096** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +000097** unchanged (this is so that any opcodes already allocated can be
98** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +000099*/
dan76ccd892014-08-12 13:38:52 +0000100static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +0000101 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +0000102 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +0000103
drh81e069e2014-08-12 14:29:20 +0000104 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
105 ** more frequent reallocs and hence provide more opportunities for
106 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
107 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
108 ** by the minimum* amount required until the size reaches 512. Normal
109 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
110 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000111#ifdef SQLITE_TEST_REALLOC_STRESS
112 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
113#else
danielk197700e13612008-11-17 19:18:54 +0000114 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000115 UNUSED_PARAMETER(nOp);
116#endif
117
drh81e069e2014-08-12 14:29:20 +0000118 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000119 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000120 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000121 if( pNew ){
drhbd573082016-01-01 16:42:09 +0000122 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
123 p->nOpAlloc = p->szOpAlloc/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000124 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000125 }
mistachkinfad30392016-02-13 23:43:46 +0000126 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
drh76ff3a02004-09-24 22:32:30 +0000127}
128
drh313619f2013-10-31 20:34:06 +0000129#ifdef SQLITE_DEBUG
130/* This routine is just a convenient place to set a breakpoint that will
131** fire after each opcode is inserted and displayed using
132** "PRAGMA vdbe_addoptrace=on".
133*/
134static void test_addop_breakpoint(void){
135 static int n = 0;
136 n++;
137}
138#endif
139
drh76ff3a02004-09-24 22:32:30 +0000140/*
drh9a324642003-09-06 20:12:01 +0000141** Add a new instruction to the list of instructions current in the
142** VDBE. Return the address of the new instruction.
143**
144** Parameters:
145**
146** p Pointer to the VDBE
147**
148** op The opcode for this instruction
149**
drh66a51672008-01-03 00:01:23 +0000150** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000151**
danielk19774adee202004-05-08 08:23:19 +0000152** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000153** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000154** operand.
155*/
drhd7970352015-11-09 12:33:39 +0000156static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
157 assert( p->pParse->nOpAlloc<=p->nOp );
158 if( growOpArray(p, 1) ) return 1;
159 assert( p->pParse->nOpAlloc>p->nOp );
160 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
161}
drh66a51672008-01-03 00:01:23 +0000162int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000163 int i;
drh701a0ae2004-02-22 20:05:00 +0000164 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000165
166 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000167 assert( p->magic==VDBE_MAGIC_INIT );
drhed94af52016-02-01 17:20:08 +0000168 assert( op>=0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000169 if( p->pParse->nOpAlloc<=i ){
drhd7970352015-11-09 12:33:39 +0000170 return growOp3(p, op, p1, p2, p3);
drh9a324642003-09-06 20:12:01 +0000171 }
danielk197701256832007-04-18 14:24:32 +0000172 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000173 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000174 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000175 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000176 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000177 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000178 pOp->p3 = p3;
179 pOp->p4.p = 0;
180 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000181#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000182 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000183#endif
184#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000185 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000186 int jj, kk;
187 Parse *pParse = p->pParse;
drh9b40d132016-09-30 20:22:27 +0000188 for(jj=kk=0; jj<pParse->nColCache; jj++){
drh9ac79622013-12-18 15:11:47 +0000189 struct yColCache *x = pParse->aColCache + jj;
drh9ac79622013-12-18 15:11:47 +0000190 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
191 kk++;
192 }
193 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000194 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000195 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000196 }
drh9a324642003-09-06 20:12:01 +0000197#endif
drh26c9b5e2008-04-11 14:56:53 +0000198#ifdef VDBE_PROFILE
199 pOp->cycles = 0;
200 pOp->cnt = 0;
201#endif
drh688852a2014-02-17 22:40:43 +0000202#ifdef SQLITE_VDBE_COVERAGE
203 pOp->iSrcLine = 0;
204#endif
drh9a324642003-09-06 20:12:01 +0000205 return i;
206}
drh66a51672008-01-03 00:01:23 +0000207int sqlite3VdbeAddOp0(Vdbe *p, int op){
208 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
209}
210int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
211 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
212}
213int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
214 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000215}
216
drh076e85f2015-09-03 13:46:12 +0000217/* Generate code for an unconditional jump to instruction iDest
218*/
219int sqlite3VdbeGoto(Vdbe *p, int iDest){
drh2991ba02015-09-02 18:19:00 +0000220 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
221}
drh701a0ae2004-02-22 20:05:00 +0000222
drh076e85f2015-09-03 13:46:12 +0000223/* Generate code to cause the string zStr to be loaded into
224** register iDest
225*/
226int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
227 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
228}
229
230/*
231** Generate code that initializes multiple registers to string or integer
232** constants. The registers begin with iDest and increase consecutively.
233** One register is initialized for each characgter in zTypes[]. For each
234** "s" character in zTypes[], the register is a string if the argument is
235** not NULL, or OP_Null if the value is a null pointer. For each "i" character
236** in zTypes[], the register is initialized to an integer.
237*/
238void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
239 va_list ap;
240 int i;
241 char c;
242 va_start(ap, zTypes);
243 for(i=0; (c = zTypes[i])!=0; i++){
244 if( c=='s' ){
245 const char *z = va_arg(ap, const char*);
drh2ce18652016-01-16 20:50:21 +0000246 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest++, 0, z, 0);
drh076e85f2015-09-03 13:46:12 +0000247 }else{
248 assert( c=='i' );
249 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest++);
250 }
251 }
252 va_end(ap);
253}
drh66a51672008-01-03 00:01:23 +0000254
drh701a0ae2004-02-22 20:05:00 +0000255/*
drh66a51672008-01-03 00:01:23 +0000256** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000257*/
drh66a51672008-01-03 00:01:23 +0000258int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000259 Vdbe *p, /* Add the opcode to this VM */
260 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000261 int p1, /* The P1 operand */
262 int p2, /* The P2 operand */
263 int p3, /* The P3 operand */
264 const char *zP4, /* The P4 operand */
265 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000266){
drh66a51672008-01-03 00:01:23 +0000267 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
268 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000269 return addr;
270}
271
272/*
drh7cc023c2015-09-03 04:28:25 +0000273** Add an opcode that includes the p4 value with a P4_INT64 or
274** P4_REAL type.
drh97bae792015-06-05 15:59:57 +0000275*/
276int sqlite3VdbeAddOp4Dup8(
277 Vdbe *p, /* Add the opcode to this VM */
278 int op, /* The new opcode */
279 int p1, /* The P1 operand */
280 int p2, /* The P2 operand */
281 int p3, /* The P3 operand */
282 const u8 *zP4, /* The P4 operand */
283 int p4type /* P4 operand type */
284){
drh575fad62016-02-05 13:38:36 +0000285 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
drh97bae792015-06-05 15:59:57 +0000286 if( p4copy ) memcpy(p4copy, zP4, 8);
287 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
288}
289
290/*
drh5d9c9da2011-06-03 20:11:17 +0000291** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000292** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
293** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000294**
295** The zWhere string must have been obtained from sqlite3_malloc().
296** This routine will take ownership of the allocated memory.
297*/
298void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
299 int j;
drh00dceca2016-01-11 22:58:50 +0000300 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
drh5d9c9da2011-06-03 20:11:17 +0000301 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
302}
303
304/*
drh8cff69d2009-11-12 19:59:44 +0000305** Add an opcode that includes the p4 value as an integer.
306*/
307int sqlite3VdbeAddOp4Int(
308 Vdbe *p, /* Add the opcode to this VM */
309 int op, /* The new opcode */
310 int p1, /* The P1 operand */
311 int p2, /* The P2 operand */
312 int p3, /* The P3 operand */
313 int p4 /* The P4 operand as an integer */
314){
315 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
drhbdaa1ee2016-12-07 20:09:51 +0000316 if( p->db->mallocFailed==0 ){
317 VdbeOp *pOp = &p->aOp[addr];
318 pOp->p4type = P4_INT32;
319 pOp->p4.i = p4;
320 }
drh8cff69d2009-11-12 19:59:44 +0000321 return addr;
322}
323
drh2fade2f2016-02-09 02:12:20 +0000324/* Insert the end of a co-routine
325*/
326void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
327 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
328
329 /* Clear the temporary register cache, thereby ensuring that each
330 ** co-routine has its own independent set of registers, because co-routines
331 ** might expect their registers to be preserved across an OP_Yield, and
332 ** that could cause problems if two or more co-routines are using the same
333 ** temporary register.
334 */
335 v->pParse->nTempReg = 0;
336 v->pParse->nRangeReg = 0;
337}
338
drh8cff69d2009-11-12 19:59:44 +0000339/*
drh9a324642003-09-06 20:12:01 +0000340** Create a new symbolic label for an instruction that has yet to be
341** coded. The symbolic label is really just a negative number. The
342** label can be used as the P2 value of an operation. Later, when
343** the label is resolved to a specific address, the VDBE will scan
344** through its operation list and change all values of P2 which match
345** the label into the resolved address.
346**
347** The VDBE knows that a P2 value is a label because labels are
348** always negative and P2 values are suppose to be non-negative.
349** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000350**
351** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000352*/
drh73d5b8f2013-12-23 19:09:07 +0000353int sqlite3VdbeMakeLabel(Vdbe *v){
354 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000355 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000356 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000357 if( (i & (i-1))==0 ){
358 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
359 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000360 }
drh76ff3a02004-09-24 22:32:30 +0000361 if( p->aLabel ){
362 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000363 }
drh5ef09bf2015-12-09 17:23:12 +0000364 return ADDR(i);
drh9a324642003-09-06 20:12:01 +0000365}
366
367/*
368** Resolve label "x" to be the address of the next instruction to
369** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000370** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000371*/
drh73d5b8f2013-12-23 19:09:07 +0000372void sqlite3VdbeResolveLabel(Vdbe *v, int x){
373 Parse *p = v->pParse;
drh5ef09bf2015-12-09 17:23:12 +0000374 int j = ADDR(x);
drh73d5b8f2013-12-23 19:09:07 +0000375 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000376 assert( j<p->nLabel );
drhef41dfe2015-09-02 17:55:12 +0000377 assert( j>=0 );
378 if( p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000379 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000380 }
381}
382
drh4611d922010-02-25 14:47:01 +0000383/*
384** Mark the VDBE as one that can only be run one time.
385*/
386void sqlite3VdbeRunOnlyOnce(Vdbe *p){
387 p->runOnlyOnce = 1;
388}
389
drhf71a3662016-03-16 20:44:45 +0000390/*
391** Mark the VDBE as one that can only be run multiple times.
392*/
393void sqlite3VdbeReusable(Vdbe *p){
394 p->runOnlyOnce = 0;
395}
396
drhff738bc2009-09-24 00:09:58 +0000397#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000398
399/*
400** The following type and function are used to iterate through all opcodes
401** in a Vdbe main program and each of the sub-programs (triggers) it may
402** invoke directly or indirectly. It should be used as follows:
403**
404** Op *pOp;
405** VdbeOpIter sIter;
406**
407** memset(&sIter, 0, sizeof(sIter));
408** sIter.v = v; // v is of type Vdbe*
409** while( (pOp = opIterNext(&sIter)) ){
410** // Do something with pOp
411** }
412** sqlite3DbFree(v->db, sIter.apSub);
413**
414*/
415typedef struct VdbeOpIter VdbeOpIter;
416struct VdbeOpIter {
417 Vdbe *v; /* Vdbe to iterate through the opcodes of */
418 SubProgram **apSub; /* Array of subprograms */
419 int nSub; /* Number of entries in apSub */
420 int iAddr; /* Address of next instruction to return */
421 int iSub; /* 0 = main program, 1 = first sub-program etc. */
422};
423static Op *opIterNext(VdbeOpIter *p){
424 Vdbe *v = p->v;
425 Op *pRet = 0;
426 Op *aOp;
427 int nOp;
428
429 if( p->iSub<=p->nSub ){
430
431 if( p->iSub==0 ){
432 aOp = v->aOp;
433 nOp = v->nOp;
434 }else{
435 aOp = p->apSub[p->iSub-1]->aOp;
436 nOp = p->apSub[p->iSub-1]->nOp;
437 }
438 assert( p->iAddr<nOp );
439
440 pRet = &aOp[p->iAddr];
441 p->iAddr++;
442 if( p->iAddr==nOp ){
443 p->iSub++;
444 p->iAddr = 0;
445 }
446
447 if( pRet->p4type==P4_SUBPROGRAM ){
448 int nByte = (p->nSub+1)*sizeof(SubProgram*);
449 int j;
450 for(j=0; j<p->nSub; j++){
451 if( p->apSub[j]==pRet->p4.pProgram ) break;
452 }
453 if( j==p->nSub ){
454 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
455 if( !p->apSub ){
456 pRet = 0;
457 }else{
458 p->apSub[p->nSub++] = pRet->p4.pProgram;
459 }
460 }
461 }
462 }
463
464 return pRet;
465}
466
467/*
danf3677212009-09-10 16:14:50 +0000468** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000469** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000470** to be rolled back). This condition is true if the main program or any
471** sub-programs contains any of the following:
472**
473** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
474** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
475** * OP_Destroy
476** * OP_VUpdate
477** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000478** * OP_FkCounter with P2==0 (immediate foreign key constraint)
drh0dd5cda2015-06-16 16:39:01 +0000479** * OP_CreateTable and OP_InitCoroutine (for CREATE TABLE AS SELECT ...)
dan144926d2009-09-09 11:37:20 +0000480**
danf3677212009-09-10 16:14:50 +0000481** Then check that the value of Parse.mayAbort is true if an
482** ABORT may be thrown, or false otherwise. Return true if it does
483** match, or false otherwise. This function is intended to be used as
484** part of an assert statement in the compiler. Similar to:
485**
486** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000487*/
danf3677212009-09-10 16:14:50 +0000488int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
489 int hasAbort = 0;
dan04668832014-12-16 20:13:30 +0000490 int hasFkCounter = 0;
drh0dd5cda2015-06-16 16:39:01 +0000491 int hasCreateTable = 0;
492 int hasInitCoroutine = 0;
dan144926d2009-09-09 11:37:20 +0000493 Op *pOp;
494 VdbeOpIter sIter;
495 memset(&sIter, 0, sizeof(sIter));
496 sIter.v = v;
497
498 while( (pOp = opIterNext(&sIter))!=0 ){
499 int opcode = pOp->opcode;
500 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
501 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000502 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000503 ){
danf3677212009-09-10 16:14:50 +0000504 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000505 break;
506 }
drh0dd5cda2015-06-16 16:39:01 +0000507 if( opcode==OP_CreateTable ) hasCreateTable = 1;
508 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
dan04668832014-12-16 20:13:30 +0000509#ifndef SQLITE_OMIT_FOREIGN_KEY
510 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
511 hasFkCounter = 1;
512 }
513#endif
dan144926d2009-09-09 11:37:20 +0000514 }
dan144926d2009-09-09 11:37:20 +0000515 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000516
mistachkin48864df2013-03-21 21:20:32 +0000517 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000518 ** If malloc failed, then the while() loop above may not have iterated
519 ** through all opcodes and hasAbort may be set incorrectly. Return
520 ** true for this case to prevent the assert() in the callers frame
521 ** from failing. */
drh0dd5cda2015-06-16 16:39:01 +0000522 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
523 || (hasCreateTable && hasInitCoroutine) );
dan144926d2009-09-09 11:37:20 +0000524}
drhff738bc2009-09-24 00:09:58 +0000525#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000526
drh9a324642003-09-06 20:12:01 +0000527/*
drhef41dfe2015-09-02 17:55:12 +0000528** This routine is called after all opcodes have been inserted. It loops
529** through all the opcodes and fixes up some details.
drh76ff3a02004-09-24 22:32:30 +0000530**
drhef41dfe2015-09-02 17:55:12 +0000531** (1) For each jump instruction with a negative P2 value (a label)
532** resolve the P2 value to an actual address.
danielk1977634f2982005-03-28 08:44:07 +0000533**
drhef41dfe2015-09-02 17:55:12 +0000534** (2) Compute the maximum number of arguments used by any SQL function
535** and store that value in *pMaxFuncArgs.
drha6c2ed92009-11-14 23:22:23 +0000536**
drhef41dfe2015-09-02 17:55:12 +0000537** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
538** indicate what the prepared statement actually does.
539**
540** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
541**
542** (5) Reclaim the memory allocated for storing labels.
drh7cc84c22016-04-11 13:36:42 +0000543**
544** This routine will only function correctly if the mkopcodeh.tcl generator
545** script numbers the opcodes correctly. Changes to this routine must be
546** coordinated with changes to mkopcodeh.tcl.
drh76ff3a02004-09-24 22:32:30 +0000547*/
drh9cbf3422008-01-17 16:22:13 +0000548static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
dan165921a2009-08-28 18:53:45 +0000549 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000550 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000551 Parse *pParse = p->pParse;
552 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000553 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000554 p->bIsReader = 0;
drh7cc84c22016-04-11 13:36:42 +0000555 pOp = &p->aOp[p->nOp-1];
556 while(1){
danielk1977634f2982005-03-28 08:44:07 +0000557
drh7cc84c22016-04-11 13:36:42 +0000558 /* Only JUMP opcodes and the short list of special opcodes in the switch
559 ** below need to be considered. The mkopcodeh.tcl generator script groups
560 ** all these opcodes together near the front of the opcode list. Skip
561 ** any opcode that does not need processing by virtual of the fact that
drhc310db32016-04-11 16:35:05 +0000562 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
drh7cc84c22016-04-11 13:36:42 +0000563 */
drhc310db32016-04-11 16:35:05 +0000564 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
drh7cc84c22016-04-11 13:36:42 +0000565 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
566 ** cases from this switch! */
567 switch( pOp->opcode ){
568 case OP_Transaction: {
569 if( pOp->p2!=0 ) p->readOnly = 0;
570 /* fall thru */
571 }
572 case OP_AutoCommit:
573 case OP_Savepoint: {
574 p->bIsReader = 1;
575 break;
576 }
dand9031542013-07-05 16:54:30 +0000577#ifndef SQLITE_OMIT_WAL
drh7cc84c22016-04-11 13:36:42 +0000578 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000579#endif
drh7cc84c22016-04-11 13:36:42 +0000580 case OP_Vacuum:
581 case OP_JournalMode: {
582 p->readOnly = 0;
583 p->bIsReader = 1;
584 break;
585 }
danielk1977182c4ba2007-06-27 15:53:34 +0000586#ifndef SQLITE_OMIT_VIRTUALTABLE
drh7cc84c22016-04-11 13:36:42 +0000587 case OP_VUpdate: {
588 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
589 break;
590 }
591 case OP_VFilter: {
592 int n;
593 assert( (pOp - p->aOp) >= 3 );
594 assert( pOp[-1].opcode==OP_Integer );
595 n = pOp[-1].p1;
596 if( n>nMaxArgs ) nMaxArgs = n;
597 break;
598 }
danielk1977182c4ba2007-06-27 15:53:34 +0000599#endif
drh7cc84c22016-04-11 13:36:42 +0000600 case OP_Next:
601 case OP_NextIfOpen:
602 case OP_SorterNext: {
603 pOp->p4.xAdvance = sqlite3BtreeNext;
604 pOp->p4type = P4_ADVANCE;
605 break;
606 }
607 case OP_Prev:
608 case OP_PrevIfOpen: {
609 pOp->p4.xAdvance = sqlite3BtreePrevious;
610 pOp->p4type = P4_ADVANCE;
611 break;
612 }
drh8c8a8c42013-08-06 07:45:08 +0000613 }
drh7cc84c22016-04-11 13:36:42 +0000614 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 && pOp->p2<0 ){
615 assert( ADDR(pOp->p2)<pParse->nLabel );
616 pOp->p2 = aLabel[ADDR(pOp->p2)];
drh8c8a8c42013-08-06 07:45:08 +0000617 }
danielk1977bc04f852005-03-29 08:26:13 +0000618 }
drh7cc84c22016-04-11 13:36:42 +0000619 if( pOp==p->aOp ) break;
620 pOp--;
drh76ff3a02004-09-24 22:32:30 +0000621 }
drh73d5b8f2013-12-23 19:09:07 +0000622 sqlite3DbFree(p->db, pParse->aLabel);
623 pParse->aLabel = 0;
624 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000625 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000626 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000627}
628
629/*
drh9a324642003-09-06 20:12:01 +0000630** Return the address of the next instruction to be inserted.
631*/
danielk19774adee202004-05-08 08:23:19 +0000632int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000633 assert( p->magic==VDBE_MAGIC_INIT );
634 return p->nOp;
635}
636
dan65a7cd12009-09-01 12:16:01 +0000637/*
drh2ce18652016-01-16 20:50:21 +0000638** Verify that at least N opcode slots are available in p without
drhdad300d2016-01-18 00:20:26 +0000639** having to malloc for more space (except when compiled using
640** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
641** to verify that certain calls to sqlite3VdbeAddOpList() can never
642** fail due to a OOM fault and hence that the return value from
643** sqlite3VdbeAddOpList() will always be non-NULL.
drh2ce18652016-01-16 20:50:21 +0000644*/
drhdad300d2016-01-18 00:20:26 +0000645#if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
646void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
drh2ce18652016-01-16 20:50:21 +0000647 assert( p->nOp + N <= p->pParse->nOpAlloc );
648}
649#endif
650
651/*
dan65a7cd12009-09-01 12:16:01 +0000652** This function returns a pointer to the array of opcodes associated with
653** the Vdbe passed as the first argument. It is the callers responsibility
654** to arrange for the returned array to be eventually freed using the
655** vdbeFreeOpArray() function.
656**
657** Before returning, *pnOp is set to the number of entries in the returned
658** array. Also, *pnMaxArg is set to the larger of its current value and
659** the number of entries in the Vdbe.apArg[] array required to execute the
660** returned program.
661*/
dan165921a2009-08-28 18:53:45 +0000662VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
663 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000664 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000665
666 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000667 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000668
dan165921a2009-08-28 18:53:45 +0000669 resolveP2Values(p, pnMaxArg);
670 *pnOp = p->nOp;
671 p->aOp = 0;
672 return aOp;
673}
674
drh9a324642003-09-06 20:12:01 +0000675/*
drh2ce18652016-01-16 20:50:21 +0000676** Add a whole list of operations to the operation stack. Return a
677** pointer to the first operation inserted.
drh1b325542016-02-03 01:55:44 +0000678**
679** Non-zero P2 arguments to jump instructions are automatically adjusted
680** so that the jump target is relative to the first operation inserted.
drh9a324642003-09-06 20:12:01 +0000681*/
drh2ce18652016-01-16 20:50:21 +0000682VdbeOp *sqlite3VdbeAddOpList(
683 Vdbe *p, /* Add opcodes to the prepared statement */
684 int nOp, /* Number of opcodes to add */
685 VdbeOpList const *aOp, /* The opcodes to be added */
686 int iLineno /* Source-file line number of first opcode */
687){
688 int i;
689 VdbeOp *pOut, *pFirst;
drhef41dfe2015-09-02 17:55:12 +0000690 assert( nOp>0 );
drh9a324642003-09-06 20:12:01 +0000691 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000692 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000693 return 0;
drh9a324642003-09-06 20:12:01 +0000694 }
drh2ce18652016-01-16 20:50:21 +0000695 pFirst = pOut = &p->aOp[p->nOp];
drhef41dfe2015-09-02 17:55:12 +0000696 for(i=0; i<nOp; i++, aOp++, pOut++){
drhef41dfe2015-09-02 17:55:12 +0000697 pOut->opcode = aOp->opcode;
698 pOut->p1 = aOp->p1;
drh5ef09bf2015-12-09 17:23:12 +0000699 pOut->p2 = aOp->p2;
700 assert( aOp->p2>=0 );
drh1b325542016-02-03 01:55:44 +0000701 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
702 pOut->p2 += p->nOp;
703 }
drhef41dfe2015-09-02 17:55:12 +0000704 pOut->p3 = aOp->p3;
705 pOut->p4type = P4_NOTUSED;
706 pOut->p4.p = 0;
707 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000708#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhef41dfe2015-09-02 17:55:12 +0000709 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000710#endif
drh688852a2014-02-17 22:40:43 +0000711#ifdef SQLITE_VDBE_COVERAGE
drhef41dfe2015-09-02 17:55:12 +0000712 pOut->iSrcLine = iLineno+i;
drh688852a2014-02-17 22:40:43 +0000713#else
drhef41dfe2015-09-02 17:55:12 +0000714 (void)iLineno;
drh688852a2014-02-17 22:40:43 +0000715#endif
drhc7379ce2013-10-30 02:28:23 +0000716#ifdef SQLITE_DEBUG
drhef41dfe2015-09-02 17:55:12 +0000717 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh2ce18652016-01-16 20:50:21 +0000718 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
drh9a324642003-09-06 20:12:01 +0000719 }
drhef41dfe2015-09-02 17:55:12 +0000720#endif
drh9a324642003-09-06 20:12:01 +0000721 }
drhef41dfe2015-09-02 17:55:12 +0000722 p->nOp += nOp;
drh2ce18652016-01-16 20:50:21 +0000723 return pFirst;
drh9a324642003-09-06 20:12:01 +0000724}
725
dan6f9702e2014-11-01 20:38:06 +0000726#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
727/*
728** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
729*/
dan037b5322014-11-03 11:25:32 +0000730void sqlite3VdbeScanStatus(
dan6f9702e2014-11-01 20:38:06 +0000731 Vdbe *p, /* VM to add scanstatus() to */
732 int addrExplain, /* Address of OP_Explain (or 0) */
733 int addrLoop, /* Address of loop counter */
734 int addrVisit, /* Address of rows visited counter */
drh518140e2014-11-06 03:55:10 +0000735 LogEst nEst, /* Estimated number of output rows */
dan6f9702e2014-11-01 20:38:06 +0000736 const char *zName /* Name of table or index being scanned */
737){
dan037b5322014-11-03 11:25:32 +0000738 int nByte = (p->nScan+1) * sizeof(ScanStatus);
739 ScanStatus *aNew;
740 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
dan6f9702e2014-11-01 20:38:06 +0000741 if( aNew ){
dan037b5322014-11-03 11:25:32 +0000742 ScanStatus *pNew = &aNew[p->nScan++];
dan6f9702e2014-11-01 20:38:06 +0000743 pNew->addrExplain = addrExplain;
744 pNew->addrLoop = addrLoop;
745 pNew->addrVisit = addrVisit;
746 pNew->nEst = nEst;
747 pNew->zName = sqlite3DbStrDup(p->db, zName);
748 p->aScan = aNew;
749 }
750}
751#endif
752
753
drh9a324642003-09-06 20:12:01 +0000754/*
drh0ff287f2015-09-02 18:40:33 +0000755** Change the value of the opcode, or P1, P2, P3, or P5 operands
756** for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000757*/
drh0ff287f2015-09-02 18:40:33 +0000758void sqlite3VdbeChangeOpcode(Vdbe *p, u32 addr, u8 iNewOpcode){
759 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
760}
drh88caeac2011-08-24 15:12:08 +0000761void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000762 sqlite3VdbeGetOp(p,addr)->p1 = val;
drh9a324642003-09-06 20:12:01 +0000763}
drh88caeac2011-08-24 15:12:08 +0000764void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000765 sqlite3VdbeGetOp(p,addr)->p2 = val;
drh9a324642003-09-06 20:12:01 +0000766}
drh88caeac2011-08-24 15:12:08 +0000767void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh0ff287f2015-09-02 18:40:33 +0000768 sqlite3VdbeGetOp(p,addr)->p3 = val;
danielk1977207872a2008-01-03 07:54:23 +0000769}
drh0ff287f2015-09-02 18:40:33 +0000770void sqlite3VdbeChangeP5(Vdbe *p, u8 p5){
drhdd3bfe82016-09-29 20:28:34 +0000771 assert( p->nOp>0 || p->db->mallocFailed );
772 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
danielk19771f4aa332008-01-03 09:51:55 +0000773}
774
775/*
drhf8875402006-03-17 13:56:34 +0000776** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000777** the address of the next instruction to be coded.
778*/
779void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh0ff287f2015-09-02 18:40:33 +0000780 sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000781}
drhb38ad992005-09-16 00:27:01 +0000782
drhb7f6f682006-07-08 17:06:43 +0000783
784/*
785** If the input FuncDef structure is ephemeral, then free it. If
786** the FuncDef is not ephermal, then do nothing.
787*/
drh633e6d52008-07-28 19:34:53 +0000788static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhf431a872016-05-20 15:53:47 +0000789 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000790 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000791 }
792}
793
dand46def72010-07-24 11:28:28 +0000794static void vdbeFreeOpArray(sqlite3 *, Op *, int);
795
drhb38ad992005-09-16 00:27:01 +0000796/*
drh66a51672008-01-03 00:01:23 +0000797** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000798*/
drhf431a872016-05-20 15:53:47 +0000799static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
800 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
801 sqlite3DbFree(db, p);
802}
803static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
804 freeEphemeralFunction(db, p->pFunc);
805 sqlite3DbFree(db, p);
806}
drh633e6d52008-07-28 19:34:53 +0000807static void freeP4(sqlite3 *db, int p4type, void *p4){
drhbe5000d2016-04-07 14:05:20 +0000808 assert( db );
809 switch( p4type ){
810 case P4_FUNCCTX: {
drhf431a872016-05-20 15:53:47 +0000811 freeP4FuncCtx(db, (sqlite3_context*)p4);
812 break;
drhbe5000d2016-04-07 14:05:20 +0000813 }
814 case P4_REAL:
815 case P4_INT64:
816 case P4_DYNAMIC:
817 case P4_INTARRAY: {
818 sqlite3DbFree(db, p4);
819 break;
820 }
821 case P4_KEYINFO: {
822 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
823 break;
824 }
drh28935362013-12-07 20:39:19 +0000825#ifdef SQLITE_ENABLE_CURSOR_HINTS
drhbe5000d2016-04-07 14:05:20 +0000826 case P4_EXPR: {
827 sqlite3ExprDelete(db, (Expr*)p4);
828 break;
829 }
drh28935362013-12-07 20:39:19 +0000830#endif
drhbe5000d2016-04-07 14:05:20 +0000831 case P4_FUNCDEF: {
832 freeEphemeralFunction(db, (FuncDef*)p4);
833 break;
834 }
835 case P4_MEM: {
836 if( db->pnBytesFreed==0 ){
837 sqlite3ValueFree((sqlite3_value*)p4);
838 }else{
drhf431a872016-05-20 15:53:47 +0000839 freeP4Mem(db, (Mem*)p4);
drhb9755982010-07-24 16:34:37 +0000840 }
drhbe5000d2016-04-07 14:05:20 +0000841 break;
842 }
843 case P4_VTAB : {
844 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
845 break;
drhb38ad992005-09-16 00:27:01 +0000846 }
847 }
848}
849
dan65a7cd12009-09-01 12:16:01 +0000850/*
851** Free the space allocated for aOp and any p4 values allocated for the
852** opcodes contained within. If aOp is not NULL it is assumed to contain
853** nOp entries.
854*/
dan165921a2009-08-28 18:53:45 +0000855static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
856 if( aOp ){
857 Op *pOp;
858 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
drh00dceca2016-01-11 22:58:50 +0000859 if( pOp->p4type ) freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000860#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000861 sqlite3DbFree(db, pOp->zComment);
862#endif
863 }
864 }
865 sqlite3DbFree(db, aOp);
866}
867
dan65a7cd12009-09-01 12:16:01 +0000868/*
dand19c9332010-07-26 12:05:17 +0000869** Link the SubProgram object passed as the second argument into the linked
870** list at Vdbe.pSubProgram. This list is used to delete all sub-program
871** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000872*/
dand19c9332010-07-26 12:05:17 +0000873void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
874 p->pNext = pVdbe->pProgram;
875 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000876}
877
drh9a324642003-09-06 20:12:01 +0000878/*
drh48f2d3b2011-09-16 01:34:43 +0000879** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000880*/
drh2ce18652016-01-16 20:50:21 +0000881int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
882 VdbeOp *pOp;
883 if( p->db->mallocFailed ) return 0;
884 assert( addr>=0 && addr<p->nOp );
885 pOp = &p->aOp[addr];
886 freeP4(p->db, pOp->p4type, pOp->p4.p);
drh4b31bda2016-01-20 02:01:02 +0000887 pOp->p4type = P4_NOTUSED;
drh939e7782016-01-20 02:36:12 +0000888 pOp->p4.z = 0;
drh2ce18652016-01-16 20:50:21 +0000889 pOp->opcode = OP_Noop;
890 return 1;
drhf8875402006-03-17 13:56:34 +0000891}
892
893/*
drh39c4b822014-09-29 15:42:01 +0000894** If the last opcode is "op" and it is not a jump destination,
895** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000896*/
drh61019c72014-01-04 16:49:02 +0000897int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
drh2831c4d2016-09-29 19:50:02 +0000898 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
drh2ce18652016-01-16 20:50:21 +0000899 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
drh61019c72014-01-04 16:49:02 +0000900 }else{
901 return 0;
902 }
drh762c1c42014-01-02 19:35:30 +0000903}
904
905/*
drh66a51672008-01-03 00:01:23 +0000906** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000907** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000908** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000909** few minor changes to the program.
910**
drh66a51672008-01-03 00:01:23 +0000911** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000912** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000913** A value of n==0 means copy bytes of zP4 up to and including the
914** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000915**
drh66a51672008-01-03 00:01:23 +0000916** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000917** to a string or structure that is guaranteed to exist for the lifetime of
918** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000919**
drh66a51672008-01-03 00:01:23 +0000920** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000921*/
drh00dceca2016-01-11 22:58:50 +0000922static void SQLITE_NOINLINE vdbeChangeP4Full(
923 Vdbe *p,
924 Op *pOp,
925 const char *zP4,
926 int n
927){
928 if( pOp->p4type ){
929 freeP4(p->db, pOp->p4type, pOp->p4.p);
930 pOp->p4type = 0;
931 pOp->p4.p = 0;
932 }
933 if( n<0 ){
934 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
935 }else{
936 if( n==0 ) n = sqlite3Strlen30(zP4);
937 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
938 pOp->p4type = P4_DYNAMIC;
939 }
940}
drh66a51672008-01-03 00:01:23 +0000941void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000942 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000943 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000944 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000945 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000946 assert( p->magic==VDBE_MAGIC_INIT );
drh00dceca2016-01-11 22:58:50 +0000947 assert( p->aOp!=0 || db->mallocFailed );
948 if( db->mallocFailed ){
949 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
danielk1977d5d56522005-03-16 12:15:20 +0000950 return;
951 }
drh7b746032009-06-26 12:15:22 +0000952 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000953 assert( addr<p->nOp );
954 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000955 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000956 }
957 pOp = &p->aOp[addr];
drh00dceca2016-01-11 22:58:50 +0000958 if( n>=0 || pOp->p4type ){
959 vdbeChangeP4Full(p, pOp, zP4, n);
960 return;
961 }
drh98757152008-01-09 23:04:12 +0000962 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000963 /* Note: this cast is safe, because the origin data point was an int
964 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000965 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000966 pOp->p4type = P4_INT32;
drh00dceca2016-01-11 22:58:50 +0000967 }else if( zP4!=0 ){
968 assert( n<0 );
danielk19772dca4ac2008-01-03 11:50:29 +0000969 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000970 pOp->p4type = (signed char)n;
drh00dceca2016-01-11 22:58:50 +0000971 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
drh9a324642003-09-06 20:12:01 +0000972 }
973}
974
drh2ec2fb22013-11-06 19:59:23 +0000975/*
drhf14b7fb2016-12-07 21:35:55 +0000976** Change the P4 operand of the most recently coded instruction
977** to the value defined by the arguments. This is a high-speed
978** version of sqlite3VdbeChangeP4().
979**
980** The P4 operand must not have been previously defined. And the new
981** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
982** those cases.
983*/
984void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
985 VdbeOp *pOp;
986 assert( n!=P4_INT32 && n!=P4_VTAB );
987 assert( n<=0 );
988 if( p->db->mallocFailed ){
989 freeP4(p->db, n, pP4);
990 }else{
991 assert( pP4!=0 );
992 assert( p->nOp>0 );
993 pOp = &p->aOp[p->nOp-1];
994 assert( pOp->p4type==P4_NOTUSED );
995 pOp->p4type = n;
996 pOp->p4.p = pP4;
997 }
998}
999
1000/*
drh2ec2fb22013-11-06 19:59:23 +00001001** Set the P4 on the most recently added opcode to the KeyInfo for the
1002** index given.
1003*/
1004void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1005 Vdbe *v = pParse->pVdbe;
drhf14b7fb2016-12-07 21:35:55 +00001006 KeyInfo *pKeyInfo;
drh2ec2fb22013-11-06 19:59:23 +00001007 assert( v!=0 );
1008 assert( pIdx!=0 );
drhf14b7fb2016-12-07 21:35:55 +00001009 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1010 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
drh2ec2fb22013-11-06 19:59:23 +00001011}
1012
drhc7379ce2013-10-30 02:28:23 +00001013#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +00001014/*
mistachkind5578432012-08-25 10:01:29 +00001015** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +00001016** insert a No-op and add the comment to that new instruction. This
1017** makes the code easier to read during debugging. None of this happens
1018** in a production build.
drhad6d9462004-09-19 02:15:24 +00001019*/
drhb07028f2011-10-14 21:49:18 +00001020static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +00001021 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +00001022 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +00001023 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +00001024 assert( p->aOp );
1025 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1026 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1027 }
1028}
1029void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1030 va_list ap;
1031 if( p ){
danielk1977dba01372008-01-05 18:44:29 +00001032 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +00001033 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +00001034 va_end(ap);
1035 }
drhad6d9462004-09-19 02:15:24 +00001036}
drh16ee60f2008-06-20 18:13:25 +00001037void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1038 va_list ap;
drhb07028f2011-10-14 21:49:18 +00001039 if( p ){
1040 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +00001041 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +00001042 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +00001043 va_end(ap);
1044 }
1045}
1046#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +00001047
drh688852a2014-02-17 22:40:43 +00001048#ifdef SQLITE_VDBE_COVERAGE
1049/*
1050** Set the value if the iSrcLine field for the previously coded instruction.
1051*/
1052void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1053 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1054}
1055#endif /* SQLITE_VDBE_COVERAGE */
1056
drh9a324642003-09-06 20:12:01 +00001057/*
drh20411ea2009-05-29 19:00:12 +00001058** Return the opcode for a given address. If the address is -1, then
1059** return the most recently inserted opcode.
1060**
1061** If a memory allocation error has occurred prior to the calling of this
1062** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +00001063** is readable but not writable, though it is cast to a writable value.
1064** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +00001065** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +00001066** this routine is a valid pointer. But because the dummy.opcode is 0,
1067** dummy will never be written to. This is verified by code inspection and
1068** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +00001069*/
danielk19774adee202004-05-08 08:23:19 +00001070VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +00001071 /* C89 specifies that the constant "dummy" will be initialized to all
1072 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +00001073 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +00001074 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +00001075 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +00001076 addr = p->nOp - 1;
1077 }
drh17435752007-08-16 04:30:38 +00001078 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +00001079 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +00001080 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +00001081 }else{
1082 return &p->aOp[addr];
1083 }
drh9a324642003-09-06 20:12:01 +00001084}
1085
drhc7379ce2013-10-30 02:28:23 +00001086#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +00001087/*
drhf63552b2013-10-30 00:25:03 +00001088** Return an integer value for one of the parameters to the opcode pOp
1089** determined by character c.
1090*/
1091static int translateP(char c, const Op *pOp){
1092 if( c=='1' ) return pOp->p1;
1093 if( c=='2' ) return pOp->p2;
1094 if( c=='3' ) return pOp->p3;
1095 if( c=='4' ) return pOp->p4.i;
1096 return pOp->p5;
1097}
1098
drh81316f82013-10-29 20:40:47 +00001099/*
drh4eded602013-12-20 15:59:20 +00001100** Compute a string for the "comment" field of a VDBE opcode listing.
1101**
1102** The Synopsis: field in comments in the vdbe.c source file gets converted
1103** to an extra string that is appended to the sqlite3OpcodeName(). In the
1104** absence of other comments, this synopsis becomes the comment on the opcode.
1105** Some translation occurs:
1106**
1107** "PX" -> "r[X]"
1108** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1109** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1110** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +00001111*/
drhf63552b2013-10-30 00:25:03 +00001112static int displayComment(
1113 const Op *pOp, /* The opcode to be commented */
1114 const char *zP4, /* Previously obtained value for P4 */
1115 char *zTemp, /* Write result here */
1116 int nTemp /* Space available in zTemp[] */
1117){
drh81316f82013-10-29 20:40:47 +00001118 const char *zOpName;
1119 const char *zSynopsis;
1120 int nOpName;
1121 int ii, jj;
drh1ad78c52016-08-27 14:05:12 +00001122 char zAlt[50];
drh81316f82013-10-29 20:40:47 +00001123 zOpName = sqlite3OpcodeName(pOp->opcode);
1124 nOpName = sqlite3Strlen30(zOpName);
1125 if( zOpName[nOpName+1] ){
1126 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +00001127 char c;
drh81316f82013-10-29 20:40:47 +00001128 zSynopsis = zOpName += nOpName + 1;
drh1ad78c52016-08-27 14:05:12 +00001129 if( strncmp(zSynopsis,"IF ",3)==0 ){
1130 if( pOp->p5 & SQLITE_STOREP2 ){
1131 sqlite3_snprintf(sizeof(zAlt), zAlt, "r[P2] = (%s)", zSynopsis+3);
1132 }else{
1133 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1134 }
1135 zSynopsis = zAlt;
1136 }
drhf63552b2013-10-30 00:25:03 +00001137 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
1138 if( c=='P' ){
1139 c = zSynopsis[++ii];
1140 if( c=='4' ){
1141 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
1142 }else if( c=='X' ){
1143 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
1144 seenCom = 1;
drh81316f82013-10-29 20:40:47 +00001145 }else{
drhf63552b2013-10-30 00:25:03 +00001146 int v1 = translateP(c, pOp);
1147 int v2;
1148 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
1149 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1150 ii += 3;
1151 jj += sqlite3Strlen30(zTemp+jj);
1152 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +00001153 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1154 ii += 2;
1155 v2++;
1156 }
1157 if( v2>1 ){
1158 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1159 }
drhf63552b2013-10-30 00:25:03 +00001160 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1161 ii += 4;
1162 }
drh81316f82013-10-29 20:40:47 +00001163 }
1164 jj += sqlite3Strlen30(zTemp+jj);
1165 }else{
drhf63552b2013-10-30 00:25:03 +00001166 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001167 }
1168 }
1169 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1170 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1171 jj += sqlite3Strlen30(zTemp+jj);
1172 }
1173 if( jj<nTemp ) zTemp[jj] = 0;
1174 }else if( pOp->zComment ){
1175 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1176 jj = sqlite3Strlen30(zTemp);
1177 }else{
1178 zTemp[0] = 0;
1179 jj = 0;
1180 }
1181 return jj;
1182}
1183#endif /* SQLITE_DEBUG */
1184
drhf7e36902015-08-13 21:32:41 +00001185#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1186/*
1187** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1188** that can be displayed in the P4 column of EXPLAIN output.
1189*/
drh5f4a6862016-01-30 12:50:25 +00001190static void displayP4Expr(StrAccum *p, Expr *pExpr){
drha67a3162015-08-15 00:51:23 +00001191 const char *zOp = 0;
drhf7e36902015-08-13 21:32:41 +00001192 switch( pExpr->op ){
1193 case TK_STRING:
drh5f4a6862016-01-30 12:50:25 +00001194 sqlite3XPrintf(p, "%Q", pExpr->u.zToken);
drhf7e36902015-08-13 21:32:41 +00001195 break;
drhf7e36902015-08-13 21:32:41 +00001196 case TK_INTEGER:
drh5f4a6862016-01-30 12:50:25 +00001197 sqlite3XPrintf(p, "%d", pExpr->u.iValue);
drhf7e36902015-08-13 21:32:41 +00001198 break;
drhf7e36902015-08-13 21:32:41 +00001199 case TK_NULL:
drh5f4a6862016-01-30 12:50:25 +00001200 sqlite3XPrintf(p, "NULL");
drhf7e36902015-08-13 21:32:41 +00001201 break;
drhf7e36902015-08-13 21:32:41 +00001202 case TK_REGISTER: {
drh5f4a6862016-01-30 12:50:25 +00001203 sqlite3XPrintf(p, "r[%d]", pExpr->iTable);
drhf7e36902015-08-13 21:32:41 +00001204 break;
1205 }
drhf7e36902015-08-13 21:32:41 +00001206 case TK_COLUMN: {
drhfe663522015-08-14 01:03:21 +00001207 if( pExpr->iColumn<0 ){
drh5f4a6862016-01-30 12:50:25 +00001208 sqlite3XPrintf(p, "rowid");
drhfe663522015-08-14 01:03:21 +00001209 }else{
drh5f4a6862016-01-30 12:50:25 +00001210 sqlite3XPrintf(p, "c%d", (int)pExpr->iColumn);
drhfe663522015-08-14 01:03:21 +00001211 }
drhf7e36902015-08-13 21:32:41 +00001212 break;
1213 }
drha67a3162015-08-15 00:51:23 +00001214 case TK_LT: zOp = "LT"; break;
1215 case TK_LE: zOp = "LE"; break;
1216 case TK_GT: zOp = "GT"; break;
1217 case TK_GE: zOp = "GE"; break;
1218 case TK_NE: zOp = "NE"; break;
1219 case TK_EQ: zOp = "EQ"; break;
1220 case TK_IS: zOp = "IS"; break;
1221 case TK_ISNOT: zOp = "ISNOT"; break;
1222 case TK_AND: zOp = "AND"; break;
1223 case TK_OR: zOp = "OR"; break;
1224 case TK_PLUS: zOp = "ADD"; break;
1225 case TK_STAR: zOp = "MUL"; break;
1226 case TK_MINUS: zOp = "SUB"; break;
1227 case TK_REM: zOp = "REM"; break;
1228 case TK_BITAND: zOp = "BITAND"; break;
1229 case TK_BITOR: zOp = "BITOR"; break;
1230 case TK_SLASH: zOp = "DIV"; break;
1231 case TK_LSHIFT: zOp = "LSHIFT"; break;
1232 case TK_RSHIFT: zOp = "RSHIFT"; break;
1233 case TK_CONCAT: zOp = "CONCAT"; break;
1234 case TK_UMINUS: zOp = "MINUS"; break;
1235 case TK_UPLUS: zOp = "PLUS"; break;
1236 case TK_BITNOT: zOp = "BITNOT"; break;
1237 case TK_NOT: zOp = "NOT"; break;
1238 case TK_ISNULL: zOp = "ISNULL"; break;
1239 case TK_NOTNULL: zOp = "NOTNULL"; break;
drh81316f82013-10-29 20:40:47 +00001240
drhf7e36902015-08-13 21:32:41 +00001241 default:
drh5f4a6862016-01-30 12:50:25 +00001242 sqlite3XPrintf(p, "%s", "expr");
drhf7e36902015-08-13 21:32:41 +00001243 break;
1244 }
1245
drha67a3162015-08-15 00:51:23 +00001246 if( zOp ){
drh5f4a6862016-01-30 12:50:25 +00001247 sqlite3XPrintf(p, "%s(", zOp);
1248 displayP4Expr(p, pExpr->pLeft);
1249 if( pExpr->pRight ){
1250 sqlite3StrAccumAppend(p, ",", 1);
1251 displayP4Expr(p, pExpr->pRight);
drha67a3162015-08-15 00:51:23 +00001252 }
drh5f4a6862016-01-30 12:50:25 +00001253 sqlite3StrAccumAppend(p, ")", 1);
drhf7e36902015-08-13 21:32:41 +00001254 }
drhf7e36902015-08-13 21:32:41 +00001255}
1256#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1257
1258
1259#if VDBE_DISPLAY_P4
drh9a324642003-09-06 20:12:01 +00001260/*
drh66a51672008-01-03 00:01:23 +00001261** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001262** Use zTemp for any required temporary buffer space.
1263*/
drh66a51672008-01-03 00:01:23 +00001264static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1265 char *zP4 = zTemp;
drh5f4a6862016-01-30 12:50:25 +00001266 StrAccum x;
drhd3d39e92004-05-20 22:16:29 +00001267 assert( nTemp>=20 );
drh5f4a6862016-01-30 12:50:25 +00001268 sqlite3StrAccumInit(&x, 0, zTemp, nTemp, 0);
drh66a51672008-01-03 00:01:23 +00001269 switch( pOp->p4type ){
1270 case P4_KEYINFO: {
drh5f4a6862016-01-30 12:50:25 +00001271 int j;
danielk19772dca4ac2008-01-03 11:50:29 +00001272 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001273 assert( pKeyInfo->aSortOrder!=0 );
drh5f4a6862016-01-30 12:50:25 +00001274 sqlite3XPrintf(&x, "k(%d", pKeyInfo->nField);
drhd3d39e92004-05-20 22:16:29 +00001275 for(j=0; j<pKeyInfo->nField; j++){
1276 CollSeq *pColl = pKeyInfo->aColl[j];
drh5f4a6862016-01-30 12:50:25 +00001277 const char *zColl = pColl ? pColl->zName : "";
1278 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1279 sqlite3XPrintf(&x, ",%s%s", pKeyInfo->aSortOrder[j] ? "-" : "", zColl);
drhd3d39e92004-05-20 22:16:29 +00001280 }
drh5f4a6862016-01-30 12:50:25 +00001281 sqlite3StrAccumAppend(&x, ")", 1);
drhd3d39e92004-05-20 22:16:29 +00001282 break;
1283 }
drh28935362013-12-07 20:39:19 +00001284#ifdef SQLITE_ENABLE_CURSOR_HINTS
1285 case P4_EXPR: {
drh5f4a6862016-01-30 12:50:25 +00001286 displayP4Expr(&x, pOp->p4.pExpr);
drh28935362013-12-07 20:39:19 +00001287 break;
1288 }
1289#endif
drh66a51672008-01-03 00:01:23 +00001290 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001291 CollSeq *pColl = pOp->p4.pColl;
drh5f4a6862016-01-30 12:50:25 +00001292 sqlite3XPrintf(&x, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001293 break;
1294 }
drh66a51672008-01-03 00:01:23 +00001295 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001296 FuncDef *pDef = pOp->p4.pFunc;
drh5f4a6862016-01-30 12:50:25 +00001297 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001298 break;
1299 }
drh30642cf2016-11-23 14:19:11 +00001300#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
drh9c7c9132015-06-26 18:16:52 +00001301 case P4_FUNCCTX: {
1302 FuncDef *pDef = pOp->p4.pCtx->pFunc;
drh5f4a6862016-01-30 12:50:25 +00001303 sqlite3XPrintf(&x, "%s(%d)", pDef->zName, pDef->nArg);
drh9c7c9132015-06-26 18:16:52 +00001304 break;
1305 }
drhe2d9e7c2015-06-26 18:47:53 +00001306#endif
drh66a51672008-01-03 00:01:23 +00001307 case P4_INT64: {
drh5f4a6862016-01-30 12:50:25 +00001308 sqlite3XPrintf(&x, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001309 break;
1310 }
drh66a51672008-01-03 00:01:23 +00001311 case P4_INT32: {
drh5f4a6862016-01-30 12:50:25 +00001312 sqlite3XPrintf(&x, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001313 break;
1314 }
drh66a51672008-01-03 00:01:23 +00001315 case P4_REAL: {
drh5f4a6862016-01-30 12:50:25 +00001316 sqlite3XPrintf(&x, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001317 break;
1318 }
drh66a51672008-01-03 00:01:23 +00001319 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001320 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001321 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001322 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001323 }else if( pMem->flags & MEM_Int ){
drh5f4a6862016-01-30 12:50:25 +00001324 sqlite3XPrintf(&x, "%lld", pMem->u.i);
drhd4e70eb2008-01-02 00:34:36 +00001325 }else if( pMem->flags & MEM_Real ){
drh5f4a6862016-01-30 12:50:25 +00001326 sqlite3XPrintf(&x, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001327 }else if( pMem->flags & MEM_Null ){
drh5f4a6862016-01-30 12:50:25 +00001328 zP4 = "NULL";
drh56016892009-08-25 14:24:04 +00001329 }else{
1330 assert( pMem->flags & MEM_Blob );
1331 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001332 }
drh598f1342007-10-23 15:39:45 +00001333 break;
1334 }
drha967e882006-06-13 01:04:52 +00001335#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001336 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001337 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh5f4a6862016-01-30 12:50:25 +00001338 sqlite3XPrintf(&x, "vtab:%p", pVtab);
drha967e882006-06-13 01:04:52 +00001339 break;
1340 }
1341#endif
drh0acb7e42008-06-25 00:12:41 +00001342 case P4_INTARRAY: {
drh5f4a6862016-01-30 12:50:25 +00001343 int i;
drhb1702022016-01-30 00:45:18 +00001344 int *ai = pOp->p4.ai;
1345 int n = ai[0]; /* The first element of an INTARRAY is always the
1346 ** count of the number of elements to follow */
drh5f4a6862016-01-30 12:50:25 +00001347 for(i=1; i<n; i++){
1348 sqlite3XPrintf(&x, ",%d", ai[i]);
1349 }
drhb1702022016-01-30 00:45:18 +00001350 zTemp[0] = '[';
drh5f4a6862016-01-30 12:50:25 +00001351 sqlite3StrAccumAppend(&x, "]", 1);
drh0acb7e42008-06-25 00:12:41 +00001352 break;
1353 }
dan165921a2009-08-28 18:53:45 +00001354 case P4_SUBPROGRAM: {
drh5f4a6862016-01-30 12:50:25 +00001355 sqlite3XPrintf(&x, "program");
dan165921a2009-08-28 18:53:45 +00001356 break;
1357 }
drh4a6f3aa2011-08-28 00:19:26 +00001358 case P4_ADVANCE: {
1359 zTemp[0] = 0;
1360 break;
1361 }
drh74c33022016-03-30 12:56:55 +00001362 case P4_TABLE: {
1363 sqlite3XPrintf(&x, "%s", pOp->p4.pTab->zName);
1364 break;
1365 }
drhd3d39e92004-05-20 22:16:29 +00001366 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001367 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001368 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001369 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001370 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001371 }
1372 }
1373 }
drh5f4a6862016-01-30 12:50:25 +00001374 sqlite3StrAccumFinish(&x);
drh66a51672008-01-03 00:01:23 +00001375 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001376 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001377}
drhf7e36902015-08-13 21:32:41 +00001378#endif /* VDBE_DISPLAY_P4 */
drhd3d39e92004-05-20 22:16:29 +00001379
drh900b31e2007-08-28 02:27:51 +00001380/*
drhd0679ed2007-08-28 22:24:34 +00001381** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001382**
drhbdaec522011-04-04 00:14:43 +00001383** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001384** attached databases that will be use. A mask of these databases
1385** is maintained in p->btreeMask. The p->lockMask value is the subset of
1386** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001387*/
drhfb982642007-08-30 01:19:59 +00001388void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001389 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001390 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001391 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001392 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001393 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001394 }
drh900b31e2007-08-28 02:27:51 +00001395}
1396
dan20d876f2016-01-07 16:06:22 +00001397#if !defined(SQLITE_OMIT_SHARED_CACHE)
drhbdaec522011-04-04 00:14:43 +00001398/*
1399** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1400** this routine obtains the mutex associated with each BtShared structure
1401** that may be accessed by the VM passed as an argument. In doing so it also
1402** sets the BtShared.db member of each of the BtShared structures, ensuring
1403** that the correct busy-handler callback is invoked if required.
1404**
1405** If SQLite is not threadsafe but does support shared-cache mode, then
1406** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1407** of all of BtShared structures accessible via the database handle
1408** associated with the VM.
1409**
1410** If SQLite is not threadsafe and does not support shared-cache mode, this
1411** function is a no-op.
1412**
1413** The p->btreeMask field is a bitmask of all btrees that the prepared
1414** statement p will ever use. Let N be the number of bits in p->btreeMask
1415** corresponding to btrees that use shared cache. Then the runtime of
1416** this routine is N*N. But as N is rarely more than 1, this should not
1417** be a problem.
1418*/
1419void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001420 int i;
drhdc5b0472011-04-06 22:05:53 +00001421 sqlite3 *db;
1422 Db *aDb;
1423 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001424 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001425 db = p->db;
1426 aDb = db->aDb;
1427 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001428 for(i=0; i<nDb; i++){
1429 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001430 sqlite3BtreeEnter(aDb[i].pBt);
1431 }
1432 }
drhbdaec522011-04-04 00:14:43 +00001433}
drhe54e0512011-04-05 17:31:56 +00001434#endif
drhbdaec522011-04-04 00:14:43 +00001435
drhe54e0512011-04-05 17:31:56 +00001436#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001437/*
1438** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1439*/
drhf1aabd62015-06-17 01:31:28 +00001440static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001441 int i;
drhdc5b0472011-04-06 22:05:53 +00001442 sqlite3 *db;
1443 Db *aDb;
1444 int nDb;
drhdc5b0472011-04-06 22:05:53 +00001445 db = p->db;
1446 aDb = db->aDb;
1447 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001448 for(i=0; i<nDb; i++){
1449 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001450 sqlite3BtreeLeave(aDb[i].pBt);
1451 }
1452 }
drhbdaec522011-04-04 00:14:43 +00001453}
drhf1aabd62015-06-17 01:31:28 +00001454void sqlite3VdbeLeave(Vdbe *p){
1455 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1456 vdbeLeave(p);
1457}
drhbdaec522011-04-04 00:14:43 +00001458#endif
drhd3d39e92004-05-20 22:16:29 +00001459
danielk19778b60e0f2005-01-12 09:10:39 +00001460#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001461/*
1462** Print a single opcode. This routine is used for debugging only.
1463*/
danielk19774adee202004-05-08 08:23:19 +00001464void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001465 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001466 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001467 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001468 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001469 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001470 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001471#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001472 displayComment(pOp, zP4, zCom, sizeof(zCom));
1473#else
drh2926f962014-02-17 01:13:28 +00001474 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001475#endif
drh4eded602013-12-20 15:59:20 +00001476 /* NB: The sqlite3OpcodeName() function is implemented by code created
1477 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1478 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001479 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001480 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001481 zCom
drh1db639c2008-01-17 02:36:28 +00001482 );
drh9a324642003-09-06 20:12:01 +00001483 fflush(pOut);
1484}
1485#endif
1486
1487/*
drh2a1df932016-09-30 17:46:44 +00001488** Initialize an array of N Mem element.
1489*/
1490static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1491 while( (N--)>0 ){
1492 p->db = db;
1493 p->flags = flags;
1494 p->szMalloc = 0;
1495#ifdef SQLITE_DEBUG
1496 p->pScopyFrom = 0;
1497#endif
1498 p++;
1499 }
1500}
1501
1502/*
drh76ff3a02004-09-24 22:32:30 +00001503** Release an array of N Mem elements
1504*/
drhc890fec2008-08-01 20:10:08 +00001505static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001506 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001507 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001508 sqlite3 *db = p->db;
dand46def72010-07-24 11:28:28 +00001509 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001510 do{
drh17bcb102014-09-18 21:25:33 +00001511 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001512 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001513 return;
1514 }
drh069c23c2014-09-19 16:13:12 +00001515 do{
danielk1977e972e032008-09-19 18:32:26 +00001516 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001517 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001518
1519 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1520 ** that takes advantage of the fact that the memory cell value is
1521 ** being set to NULL after releasing any dynamic resources.
1522 **
1523 ** The justification for duplicating code is that according to
1524 ** callgrind, this causes a certain test case to hit the CPU 4.7
1525 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1526 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1527 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1528 ** with no indexes using a single prepared INSERT statement, bind()
1529 ** and reset(). Inserts are grouped into a transaction.
1530 */
drhb6e8fd12014-03-06 01:56:33 +00001531 testcase( p->flags & MEM_Agg );
1532 testcase( p->flags & MEM_Dyn );
1533 testcase( p->flags & MEM_Frame );
1534 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001535 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001536 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001537 }else if( p->szMalloc ){
danielk1977e972e032008-09-19 18:32:26 +00001538 sqlite3DbFree(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001539 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001540 }
1541
drha5750cf2014-02-07 13:20:31 +00001542 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001543 }while( (++p)<pEnd );
drh76ff3a02004-09-24 22:32:30 +00001544 }
1545}
1546
dan65a7cd12009-09-01 12:16:01 +00001547/*
1548** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1549** allocated by the OP_Program opcode in sqlite3VdbeExec().
1550*/
dan165921a2009-08-28 18:53:45 +00001551void sqlite3VdbeFrameDelete(VdbeFrame *p){
1552 int i;
1553 Mem *aMem = VdbeFrameMem(p);
1554 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1555 for(i=0; i<p->nChildCsr; i++){
1556 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1557 }
1558 releaseMemArray(aMem, p->nChildMem);
drhb9626cf2016-02-22 16:04:31 +00001559 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
dan165921a2009-08-28 18:53:45 +00001560 sqlite3DbFree(p->v->db, p);
1561}
1562
drhb7f91642004-10-31 02:22:47 +00001563#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001564/*
drh9a324642003-09-06 20:12:01 +00001565** Give a listing of the program in the virtual machine.
1566**
danielk19774adee202004-05-08 08:23:19 +00001567** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001568** running the code, it invokes the callback once for each instruction.
1569** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001570**
1571** When p->explain==1, each instruction is listed. When
1572** p->explain==2, only OP_Explain instructions are listed and these
1573** are shown in a different format. p->explain==2 is used to implement
1574** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001575**
1576** When p->explain==1, first the main program is listed, then each of
1577** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001578*/
danielk19774adee202004-05-08 08:23:19 +00001579int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001580 Vdbe *p /* The VDBE */
1581){
drh5cfa5842009-12-31 20:35:08 +00001582 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001583 int nSub = 0; /* Number of sub-vdbes seen so far */
1584 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001585 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1586 sqlite3 *db = p->db; /* The database connection */
1587 int i; /* Loop counter */
1588 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001589 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001590
drh9a324642003-09-06 20:12:01 +00001591 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001592 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001593 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001594
drh9cbf3422008-01-17 16:22:13 +00001595 /* Even though this opcode does not use dynamic strings for
1596 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001597 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001598 */
dan165921a2009-08-28 18:53:45 +00001599 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001600 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001601
mistachkinfad30392016-02-13 23:43:46 +00001602 if( p->rc==SQLITE_NOMEM_BKPT ){
danielk19776c359f02008-11-21 16:58:03 +00001603 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1604 ** sqlite3_column_text16() failed. */
drh4a642b62016-02-05 01:55:27 +00001605 sqlite3OomFault(db);
danielk19776c359f02008-11-21 16:58:03 +00001606 return SQLITE_ERROR;
1607 }
1608
drh5cfa5842009-12-31 20:35:08 +00001609 /* When the number of output rows reaches nRow, that means the
1610 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1611 ** nRow is the sum of the number of rows in the main program, plus
1612 ** the sum of the number of rows in all trigger subprograms encountered
1613 ** so far. The nRow value will increase as new trigger subprograms are
1614 ** encountered, but p->pc will eventually catch up to nRow.
1615 */
dan165921a2009-08-28 18:53:45 +00001616 nRow = p->nOp;
1617 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001618 /* The first 8 memory cells are used for the result set. So we will
1619 ** commandeer the 9th cell to use as storage for an array of pointers
1620 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1621 ** cells. */
1622 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001623 pSub = &p->aMem[9];
1624 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001625 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1626 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001627 nSub = pSub->n/sizeof(Vdbe*);
1628 apSub = (SubProgram **)pSub->z;
1629 }
1630 for(i=0; i<nSub; i++){
1631 nRow += apSub[i]->nOp;
1632 }
1633 }
1634
drhecc92422005-09-10 16:46:12 +00001635 do{
1636 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001637 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1638 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001639 p->rc = SQLITE_OK;
1640 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001641 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001642 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001643 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00001644 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001645 }else{
drh81316f82013-10-29 20:40:47 +00001646 char *zP4;
dan165921a2009-08-28 18:53:45 +00001647 Op *pOp;
1648 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001649 /* The output line number is small enough that we are still in the
1650 ** main program. */
dan165921a2009-08-28 18:53:45 +00001651 pOp = &p->aOp[i];
1652 }else{
drh5cfa5842009-12-31 20:35:08 +00001653 /* We are currently listing subprograms. Figure out which one and
1654 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001655 int j;
1656 i -= p->nOp;
1657 for(j=0; i>=apSub[j]->nOp; j++){
1658 i -= apSub[j]->nOp;
1659 }
1660 pOp = &apSub[j]->aOp[i];
1661 }
danielk19770d78bae2008-01-03 07:09:48 +00001662 if( p->explain==1 ){
1663 pMem->flags = MEM_Int;
danielk19770d78bae2008-01-03 07:09:48 +00001664 pMem->u.i = i; /* Program counter */
1665 pMem++;
1666
1667 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001668 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
danielk19770d78bae2008-01-03 07:09:48 +00001669 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001670 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001671 pMem->enc = SQLITE_UTF8;
1672 pMem++;
dan165921a2009-08-28 18:53:45 +00001673
drh5cfa5842009-12-31 20:35:08 +00001674 /* When an OP_Program opcode is encounter (the only opcode that has
1675 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1676 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1677 ** has not already been seen.
1678 */
dan165921a2009-08-28 18:53:45 +00001679 if( pOp->p4type==P4_SUBPROGRAM ){
1680 int nByte = (nSub+1)*sizeof(SubProgram*);
1681 int j;
1682 for(j=0; j<nSub; j++){
1683 if( apSub[j]==pOp->p4.pProgram ) break;
1684 }
dan2b9ee772012-03-31 09:59:44 +00001685 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001686 apSub = (SubProgram **)pSub->z;
1687 apSub[nSub++] = pOp->p4.pProgram;
1688 pSub->flags |= MEM_Blob;
1689 pSub->n = nSub*sizeof(SubProgram*);
1690 }
1691 }
danielk19770d78bae2008-01-03 07:09:48 +00001692 }
drheb2e1762004-05-27 01:53:56 +00001693
1694 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001695 pMem->u.i = pOp->p1; /* P1 */
drheb2e1762004-05-27 01:53:56 +00001696 pMem++;
1697
1698 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001699 pMem->u.i = pOp->p2; /* P2 */
drheb2e1762004-05-27 01:53:56 +00001700 pMem++;
1701
dan2ce22452010-11-08 19:01:16 +00001702 pMem->flags = MEM_Int;
1703 pMem->u.i = pOp->p3; /* P3 */
dan2ce22452010-11-08 19:01:16 +00001704 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001705
drh2f2b0272015-08-14 18:50:04 +00001706 if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001707 assert( p->db->mallocFailed );
1708 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001709 }
drhc91b2fd2014-03-01 18:13:23 +00001710 pMem->flags = MEM_Str|MEM_Term;
drh2f2b0272015-08-14 18:50:04 +00001711 zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
drh81316f82013-10-29 20:40:47 +00001712 if( zP4!=pMem->z ){
drh2a1df932016-09-30 17:46:44 +00001713 pMem->n = 0;
drh81316f82013-10-29 20:40:47 +00001714 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
danielk1977a7a8e142008-02-13 18:25:27 +00001715 }else{
1716 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001717 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001718 pMem->enc = SQLITE_UTF8;
1719 }
danielk19770d78bae2008-01-03 07:09:48 +00001720 pMem++;
drheb2e1762004-05-27 01:53:56 +00001721
danielk19770d78bae2008-01-03 07:09:48 +00001722 if( p->explain==1 ){
drh322f2852014-09-19 00:43:39 +00001723 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
danielk1977357864e2009-03-25 15:43:08 +00001724 assert( p->db->mallocFailed );
1725 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001726 }
drhc91b2fd2014-03-01 18:13:23 +00001727 pMem->flags = MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001728 pMem->n = 2;
1729 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001730 pMem->enc = SQLITE_UTF8;
1731 pMem++;
1732
drhc7379ce2013-10-30 02:28:23 +00001733#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh322f2852014-09-19 00:43:39 +00001734 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
drh81316f82013-10-29 20:40:47 +00001735 assert( p->db->mallocFailed );
1736 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001737 }
drhc91b2fd2014-03-01 18:13:23 +00001738 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001739 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
drh81316f82013-10-29 20:40:47 +00001740 pMem->enc = SQLITE_UTF8;
1741#else
1742 pMem->flags = MEM_Null; /* Comment */
drh81316f82013-10-29 20:40:47 +00001743#endif
danielk19770d78bae2008-01-03 07:09:48 +00001744 }
1745
dan2ce22452010-11-08 19:01:16 +00001746 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001747 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001748 p->rc = SQLITE_OK;
1749 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001750 }
drh826fb5a2004-02-14 23:59:57 +00001751 return rc;
drh9a324642003-09-06 20:12:01 +00001752}
drhb7f91642004-10-31 02:22:47 +00001753#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001754
drh7c4ac0c2007-04-05 11:25:58 +00001755#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001756/*
drh3f7d4e42004-07-24 14:35:58 +00001757** Print the SQL that was used to generate a VDBE program.
1758*/
1759void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001760 const char *z = 0;
1761 if( p->zSql ){
1762 z = p->zSql;
1763 }else if( p->nOp>=1 ){
1764 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001765 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001766 z = pOp->p4.z;
1767 while( sqlite3Isspace(*z) ) z++;
1768 }
drh3f7d4e42004-07-24 14:35:58 +00001769 }
drh84e55a82013-11-13 17:58:23 +00001770 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001771}
drh7c4ac0c2007-04-05 11:25:58 +00001772#endif
drh3f7d4e42004-07-24 14:35:58 +00001773
drh602c2372007-03-01 00:29:13 +00001774#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1775/*
1776** Print an IOTRACE message showing SQL content.
1777*/
1778void sqlite3VdbeIOTraceSql(Vdbe *p){
1779 int nOp = p->nOp;
1780 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001781 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001782 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001783 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001784 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001785 int i, j;
drh00a18e42007-08-13 11:10:34 +00001786 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001787 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001788 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001789 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001790 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001791 if( z[i-1]!=' ' ){
1792 z[j++] = ' ';
1793 }
1794 }else{
1795 z[j++] = z[i];
1796 }
1797 }
1798 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001799 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001800 }
1801}
1802#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1803
drha7dc4a32016-01-25 02:15:02 +00001804/* An instance of this object describes bulk memory available for use
1805** by subcomponents of a prepared statement. Space is allocated out
1806** of a ReusableSpace object by the allocSpace() routine below.
1807*/
1808struct ReusableSpace {
1809 u8 *pSpace; /* Available memory */
1810 int nFree; /* Bytes of available memory */
1811 int nNeeded; /* Total bytes that could not be allocated */
1812};
1813
1814/* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
1815** from the ReusableSpace object. Return a pointer to the allocated
1816** memory on success. If insufficient memory is available in the
1817** ReusableSpace object, increase the ReusableSpace.nNeeded
1818** value by the amount needed and return NULL.
drh4800b2e2009-12-08 15:35:22 +00001819**
drha7dc4a32016-01-25 02:15:02 +00001820** If pBuf is not initially NULL, that means that the memory has already
1821** been allocated by a prior call to this routine, so just return a copy
1822** of pBuf and leave ReusableSpace unchanged.
drhb2771ce2009-02-20 01:28:59 +00001823**
drha7dc4a32016-01-25 02:15:02 +00001824** This allocator is employed to repurpose unused slots at the end of the
1825** opcode array of prepared state for other memory needs of the prepared
1826** statement.
drhb2771ce2009-02-20 01:28:59 +00001827*/
drh4800b2e2009-12-08 15:35:22 +00001828static void *allocSpace(
drha7dc4a32016-01-25 02:15:02 +00001829 struct ReusableSpace *p, /* Bulk memory available for allocation */
1830 void *pBuf, /* Pointer to a prior allocation */
1831 int nByte /* Bytes of memory needed */
drhb2771ce2009-02-20 01:28:59 +00001832){
drha7dc4a32016-01-25 02:15:02 +00001833 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
drhd797a9b2015-12-07 16:43:44 +00001834 if( pBuf==0 ){
1835 nByte = ROUND8(nByte);
drha7dc4a32016-01-25 02:15:02 +00001836 if( nByte <= p->nFree ){
1837 p->nFree -= nByte;
1838 pBuf = &p->pSpace[p->nFree];
drhd797a9b2015-12-07 16:43:44 +00001839 }else{
drha7dc4a32016-01-25 02:15:02 +00001840 p->nNeeded += nByte;
drhd797a9b2015-12-07 16:43:44 +00001841 }
drhb2771ce2009-02-20 01:28:59 +00001842 }
drhd797a9b2015-12-07 16:43:44 +00001843 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
drh4800b2e2009-12-08 15:35:22 +00001844 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001845}
drh602c2372007-03-01 00:29:13 +00001846
drh3f7d4e42004-07-24 14:35:58 +00001847/*
drh124c0b42011-06-01 18:15:55 +00001848** Rewind the VDBE back to the beginning in preparation for
1849** running it.
drh9a324642003-09-06 20:12:01 +00001850*/
drh124c0b42011-06-01 18:15:55 +00001851void sqlite3VdbeRewind(Vdbe *p){
1852#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1853 int i;
1854#endif
drh9a324642003-09-06 20:12:01 +00001855 assert( p!=0 );
drhab3182f2016-10-01 00:37:50 +00001856 assert( p->magic==VDBE_MAGIC_INIT || p->magic==VDBE_MAGIC_RESET );
drh9a324642003-09-06 20:12:01 +00001857
drhc16a03b2004-09-15 13:38:10 +00001858 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001859 */
drhc16a03b2004-09-15 13:38:10 +00001860 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001861
danielk197700e13612008-11-17 19:18:54 +00001862 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001863 p->magic = VDBE_MAGIC_RUN;
1864
drh124c0b42011-06-01 18:15:55 +00001865#ifdef SQLITE_DEBUG
drh9f6168b2016-03-19 23:32:58 +00001866 for(i=0; i<p->nMem; i++){
drh124c0b42011-06-01 18:15:55 +00001867 assert( p->aMem[i].db==p->db );
1868 }
1869#endif
1870 p->pc = -1;
1871 p->rc = SQLITE_OK;
1872 p->errorAction = OE_Abort;
drh124c0b42011-06-01 18:15:55 +00001873 p->nChange = 0;
1874 p->cacheCtr = 1;
1875 p->minWriteFileFormat = 255;
1876 p->iStatement = 0;
1877 p->nFkConstraint = 0;
1878#ifdef VDBE_PROFILE
1879 for(i=0; i<p->nOp; i++){
1880 p->aOp[i].cnt = 0;
1881 p->aOp[i].cycles = 0;
1882 }
1883#endif
1884}
1885
1886/*
1887** Prepare a virtual machine for execution for the first time after
1888** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001889** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001890** After the VDBE has be prepped, it can be executed by one or more
1891** calls to sqlite3VdbeExec().
1892**
peter.d.reid60ec9142014-09-06 16:39:46 +00001893** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001894** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001895** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001896** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1897** the Vdbe from the Parse object that helped generate it so that the
1898** the Vdbe becomes an independent entity and the Parse object can be
1899** destroyed.
1900**
1901** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1902** to its initial state after it has been run.
1903*/
1904void sqlite3VdbeMakeReady(
1905 Vdbe *p, /* The VDBE */
1906 Parse *pParse /* Parsing context */
1907){
1908 sqlite3 *db; /* The database connection */
1909 int nVar; /* Number of parameters */
1910 int nMem; /* Number of VM memory registers */
1911 int nCursor; /* Number of cursors required */
1912 int nArg; /* Number of arguments in subprograms */
1913 int n; /* Loop counter */
drha7dc4a32016-01-25 02:15:02 +00001914 struct ReusableSpace x; /* Reusable bulk memory */
drh124c0b42011-06-01 18:15:55 +00001915
1916 assert( p!=0 );
1917 assert( p->nOp>0 );
1918 assert( pParse!=0 );
1919 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001920 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001921 db = p->db;
1922 assert( db->mallocFailed==0 );
1923 nVar = pParse->nVar;
1924 nMem = pParse->nMem;
1925 nCursor = pParse->nTab;
1926 nArg = pParse->nMaxArg;
1927
drh3cdce922016-03-21 00:30:40 +00001928 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
1929 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
1930 ** space at the end of aMem[] for cursors 1 and greater.
danielk1977cd3e8f72008-03-25 09:47:35 +00001931 ** See also: allocateCursor().
1932 */
1933 nMem += nCursor;
drh9f6168b2016-03-19 23:32:58 +00001934 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
danielk1977cd3e8f72008-03-25 09:47:35 +00001935
drha7dc4a32016-01-25 02:15:02 +00001936 /* Figure out how much reusable memory is available at the end of the
1937 ** opcode array. This extra memory will be reallocated for other elements
1938 ** of the prepared statement.
drh9a324642003-09-06 20:12:01 +00001939 */
drha7dc4a32016-01-25 02:15:02 +00001940 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
1941 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
1942 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
1943 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
1944 assert( x.nFree>=0 );
drh2a1df932016-09-30 17:46:44 +00001945 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
drh19875c82009-12-08 19:58:19 +00001946
drh124c0b42011-06-01 18:15:55 +00001947 resolveP2Values(p, &nArg);
1948 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1949 if( pParse->explain && nMem<10 ){
1950 nMem = 10;
1951 }
drhaab910c2011-06-27 00:01:22 +00001952 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001953
drha7dc4a32016-01-25 02:15:02 +00001954 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
1955 ** passes. On the first pass, we try to reuse unused memory at the
drh124c0b42011-06-01 18:15:55 +00001956 ** end of the opcode array. If we are unable to satisfy all memory
1957 ** requirements by reusing the opcode array tail, then the second
drha7dc4a32016-01-25 02:15:02 +00001958 ** pass will fill in the remainder using a fresh memory allocation.
drh124c0b42011-06-01 18:15:55 +00001959 **
1960 ** This two-pass approach that reuses as much memory as possible from
drha7dc4a32016-01-25 02:15:02 +00001961 ** the leftover memory at the end of the opcode array. This can significantly
drh124c0b42011-06-01 18:15:55 +00001962 ** reduce the amount of memory held by a prepared statement.
1963 */
1964 do {
drha7dc4a32016-01-25 02:15:02 +00001965 x.nNeeded = 0;
1966 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
1967 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
1968 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
1969 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
dane2f771b2014-11-03 15:33:17 +00001970#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drha7dc4a32016-01-25 02:15:02 +00001971 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
dane2f771b2014-11-03 15:33:17 +00001972#endif
drha7dc4a32016-01-25 02:15:02 +00001973 if( x.nNeeded==0 ) break;
drh2a1df932016-09-30 17:46:44 +00001974 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
drha7dc4a32016-01-25 02:15:02 +00001975 x.nFree = x.nNeeded;
1976 }while( !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001977
drh6d664b42016-01-20 01:48:25 +00001978 p->nzVar = pParse->nzVar;
1979 p->azVar = pParse->azVar;
1980 pParse->nzVar = 0;
1981 pParse->azVar = 0;
drh124c0b42011-06-01 18:15:55 +00001982 p->explain = pParse->explain;
drhab3182f2016-10-01 00:37:50 +00001983 if( db->mallocFailed ){
1984 p->nVar = 0;
1985 p->nCursor = 0;
1986 p->nMem = 0;
1987 }else{
drh2a1df932016-09-30 17:46:44 +00001988 p->nCursor = nCursor;
1989 p->nVar = (ynVar)nVar;
1990 initMemArray(p->aVar, nVar, db, MEM_Null);
1991 p->nMem = nMem;
1992 initMemArray(p->aMem, nMem, db, MEM_Undefined);
drh2a1df932016-09-30 17:46:44 +00001993 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
1994#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1995 memset(p->anExec, 0, p->nOp*sizeof(i64));
1996#endif
1997 }
drh124c0b42011-06-01 18:15:55 +00001998 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001999}
2000
drh9a324642003-09-06 20:12:01 +00002001/*
danielk1977cd3e8f72008-03-25 09:47:35 +00002002** Close a VDBE cursor and release all the resources that cursor
2003** happens to hold.
drh9a324642003-09-06 20:12:01 +00002004*/
drhdfe88ec2008-11-03 20:55:06 +00002005void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00002006 if( pCx==0 ){
2007 return;
2008 }
drhfbd8cbd2016-12-10 12:58:15 +00002009 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
drhc960dcb2015-11-20 19:22:01 +00002010 switch( pCx->eCurType ){
2011 case CURTYPE_SORTER: {
2012 sqlite3VdbeSorterClose(p->db, pCx);
2013 break;
2014 }
2015 case CURTYPE_BTREE: {
drhfbd8cbd2016-12-10 12:58:15 +00002016 if( pCx->pBtx ){
2017 sqlite3BtreeClose(pCx->pBtx);
drhc960dcb2015-11-20 19:22:01 +00002018 /* The pCx->pCursor will be close automatically, if it exists, by
2019 ** the call above. */
2020 }else{
2021 assert( pCx->uc.pCursor!=0 );
2022 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2023 }
2024 break;
2025 }
drh9eff6162006-06-12 21:59:13 +00002026#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00002027 case CURTYPE_VTAB: {
2028 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2029 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2030 assert( pVCur->pVtab->nRef>0 );
2031 pVCur->pVtab->nRef--;
2032 pModule->xClose(pVCur);
2033 break;
2034 }
drh9eff6162006-06-12 21:59:13 +00002035#endif
drhc960dcb2015-11-20 19:22:01 +00002036 }
drh9a324642003-09-06 20:12:01 +00002037}
2038
dan65a7cd12009-09-01 12:16:01 +00002039/*
drhab4e7f32015-04-16 18:11:50 +00002040** Close all cursors in the current frame.
2041*/
2042static void closeCursorsInFrame(Vdbe *p){
2043 if( p->apCsr ){
2044 int i;
2045 for(i=0; i<p->nCursor; i++){
2046 VdbeCursor *pC = p->apCsr[i];
2047 if( pC ){
2048 sqlite3VdbeFreeCursor(p, pC);
2049 p->apCsr[i] = 0;
2050 }
2051 }
2052 }
2053}
2054
2055/*
dan65a7cd12009-09-01 12:16:01 +00002056** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2057** is used, for example, when a trigger sub-program is halted to restore
2058** control to the main program.
2059*/
dan165921a2009-08-28 18:53:45 +00002060int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2061 Vdbe *v = pFrame->v;
drhab4e7f32015-04-16 18:11:50 +00002062 closeCursorsInFrame(v);
dane2f771b2014-11-03 15:33:17 +00002063#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00002064 v->anExec = pFrame->anExec;
dane2f771b2014-11-03 15:33:17 +00002065#endif
dan165921a2009-08-28 18:53:45 +00002066 v->aOp = pFrame->aOp;
2067 v->nOp = pFrame->nOp;
2068 v->aMem = pFrame->aMem;
2069 v->nMem = pFrame->nMem;
2070 v->apCsr = pFrame->apCsr;
2071 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00002072 v->db->lastRowid = pFrame->lastRowid;
2073 v->nChange = pFrame->nChange;
danc3da6672014-10-28 18:24:16 +00002074 v->db->nChange = pFrame->nDbChange;
drhb9626cf2016-02-22 16:04:31 +00002075 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
dan32001322016-02-19 18:54:29 +00002076 v->pAuxData = pFrame->pAuxData;
2077 pFrame->pAuxData = 0;
dan165921a2009-08-28 18:53:45 +00002078 return pFrame->pc;
2079}
2080
drh9a324642003-09-06 20:12:01 +00002081/*
drh5f82e3c2009-07-06 00:44:08 +00002082** Close all cursors.
dan165921a2009-08-28 18:53:45 +00002083**
2084** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2085** cell array. This is necessary as the memory cell array may contain
2086** pointers to VdbeFrame objects, which may in turn contain pointers to
2087** open cursors.
drh9a324642003-09-06 20:12:01 +00002088*/
drh5f82e3c2009-07-06 00:44:08 +00002089static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00002090 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00002091 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00002092 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2093 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00002094 p->pFrame = 0;
2095 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00002096 }
drhf526dca2014-10-13 17:42:05 +00002097 assert( p->nFrame==0 );
drhab4e7f32015-04-16 18:11:50 +00002098 closeCursorsInFrame(p);
dan523a0872009-08-31 05:23:32 +00002099 if( p->aMem ){
drh9f6168b2016-03-19 23:32:58 +00002100 releaseMemArray(p->aMem, p->nMem);
dan523a0872009-08-31 05:23:32 +00002101 }
dan27106572010-12-01 08:04:47 +00002102 while( p->pDelFrame ){
2103 VdbeFrame *pDel = p->pDelFrame;
2104 p->pDelFrame = pDel->pParent;
2105 sqlite3VdbeFrameDelete(pDel);
2106 }
dan0c547792013-07-18 17:12:08 +00002107
2108 /* Delete any auxdata allocations made by the VM */
drhb9626cf2016-02-22 16:04:31 +00002109 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
dan0c547792013-07-18 17:12:08 +00002110 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00002111}
2112
2113/*
drh7abda852014-09-19 16:02:06 +00002114** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00002115*/
drhc890fec2008-08-01 20:10:08 +00002116static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002117 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00002118
2119#ifdef SQLITE_DEBUG
2120 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
2121 ** Vdbe.aMem[] arrays have already been cleaned up. */
2122 int i;
drhb8475df2011-12-09 16:21:19 +00002123 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
2124 if( p->aMem ){
drh9f6168b2016-03-19 23:32:58 +00002125 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00002126 }
dan165921a2009-08-28 18:53:45 +00002127#endif
2128
drh633e6d52008-07-28 19:34:53 +00002129 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00002130 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00002131 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00002132}
2133
2134/*
danielk197722322fd2004-05-25 23:35:17 +00002135** Set the number of result columns that will be returned by this SQL
2136** statement. This is now set at compile time, rather than during
2137** execution of the vdbe program so that sqlite3_column_count() can
2138** be called on an SQL statement before sqlite3_step().
2139*/
2140void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00002141 Mem *pColName;
2142 int n;
drh633e6d52008-07-28 19:34:53 +00002143 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00002144
drhc890fec2008-08-01 20:10:08 +00002145 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00002146 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00002147 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00002148 p->nResColumn = (u16)nResColumn;
drh2a1df932016-09-30 17:46:44 +00002149 p->aColName = pColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00002150 if( p->aColName==0 ) return;
drh2a1df932016-09-30 17:46:44 +00002151 initMemArray(p->aColName, n, p->db, MEM_Null);
danielk197722322fd2004-05-25 23:35:17 +00002152}
2153
2154/*
danielk19773cf86062004-05-26 10:11:05 +00002155** Set the name of the idx'th column to be returned by the SQL statement.
2156** zName must be a pointer to a nul terminated string.
2157**
2158** This call must be made after a call to sqlite3VdbeSetNumCols().
2159**
danielk197710fb7492008-10-31 10:53:22 +00002160** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2161** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2162** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00002163*/
danielk197710fb7492008-10-31 10:53:22 +00002164int sqlite3VdbeSetColName(
2165 Vdbe *p, /* Vdbe being configured */
2166 int idx, /* Index of column zName applies to */
2167 int var, /* One of the COLNAME_* constants */
2168 const char *zName, /* Pointer to buffer containing name */
2169 void (*xDel)(void*) /* Memory management strategy for zName */
2170){
danielk19773cf86062004-05-26 10:11:05 +00002171 int rc;
2172 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00002173 assert( idx<p->nResColumn );
2174 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00002175 if( p->db->mallocFailed ){
2176 assert( !zName || xDel!=SQLITE_DYNAMIC );
mistachkinfad30392016-02-13 23:43:46 +00002177 return SQLITE_NOMEM_BKPT;
danielk197710fb7492008-10-31 10:53:22 +00002178 }
drh76ff3a02004-09-24 22:32:30 +00002179 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00002180 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00002181 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00002182 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00002183 return rc;
2184}
2185
danielk197713adf8a2004-06-03 16:08:41 +00002186/*
2187** A read or write transaction may or may not be active on database handle
2188** db. If a transaction is active, commit it. If there is a
2189** write-transaction spanning more than one database file, this routine
2190** takes care of the master journal trickery.
2191*/
danielk19773e3a84d2008-08-01 17:37:40 +00002192static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00002193 int i;
drh8e6cf0a2016-02-22 14:57:38 +00002194 int nTrans = 0; /* Number of databases with an active write-transaction
2195 ** that are candidates for a two-phase commit using a
2196 ** master-journal */
danielk197713adf8a2004-06-03 16:08:41 +00002197 int rc = SQLITE_OK;
2198 int needXcommit = 0;
2199
shane36840fd2009-06-26 16:32:13 +00002200#ifdef SQLITE_OMIT_VIRTUALTABLE
2201 /* With this option, sqlite3VtabSync() is defined to be simply
2202 ** SQLITE_OK so p is not used.
2203 */
2204 UNUSED_PARAMETER(p);
2205#endif
2206
danielk19775bd270b2006-07-25 15:14:52 +00002207 /* Before doing anything else, call the xSync() callback for any
2208 ** virtual module tables written in this transaction. This has to
2209 ** be done before determining whether a master journal file is
2210 ** required, as an xSync() callback may add an attached database
2211 ** to the transaction.
2212 */
dan016f7812013-08-21 17:35:48 +00002213 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00002214
2215 /* This loop determines (a) if the commit hook should be invoked and
2216 ** (b) how many database files have open write transactions, not
2217 ** including the temp database. (b) is important because if more than
2218 ** one database file has an open write transaction, a master journal
2219 ** file is required for an atomic commit.
2220 */
drhabfb62f2010-07-30 11:20:35 +00002221 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002222 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002223 if( sqlite3BtreeIsInTrans(pBt) ){
drh8e6cf0a2016-02-22 14:57:38 +00002224 /* Whether or not a database might need a master journal depends upon
2225 ** its journal mode (among other things). This matrix determines which
2226 ** journal modes use a master journal and which do not */
2227 static const u8 aMJNeeded[] = {
2228 /* DELETE */ 1,
2229 /* PERSIST */ 1,
2230 /* OFF */ 0,
2231 /* TRUNCATE */ 1,
2232 /* MEMORY */ 0,
2233 /* WAL */ 0
2234 };
2235 Pager *pPager; /* Pager associated with pBt */
danielk197713adf8a2004-06-03 16:08:41 +00002236 needXcommit = 1;
dan6b9bb592012-10-05 19:43:02 +00002237 sqlite3BtreeEnter(pBt);
drh8e6cf0a2016-02-22 14:57:38 +00002238 pPager = sqlite3BtreePager(pBt);
2239 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2240 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2241 ){
2242 assert( i!=1 );
2243 nTrans++;
2244 }
2245 rc = sqlite3PagerExclusiveLock(pPager);
dan6b9bb592012-10-05 19:43:02 +00002246 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00002247 }
2248 }
drhabfb62f2010-07-30 11:20:35 +00002249 if( rc!=SQLITE_OK ){
2250 return rc;
2251 }
danielk197713adf8a2004-06-03 16:08:41 +00002252
2253 /* If there are any write-transactions at all, invoke the commit hook */
2254 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00002255 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00002256 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002257 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00002258 }
2259 }
2260
danielk197740b38dc2004-06-26 08:38:24 +00002261 /* The simple case - no more than one database file (not counting the
2262 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00002263 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00002264 **
danielk197740b38dc2004-06-26 08:38:24 +00002265 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00002266 ** string, it means the main database is :memory: or a temp file. In
2267 ** that case we do not support atomic multi-file commits, so use the
2268 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00002269 */
drhea678832008-12-10 19:26:22 +00002270 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2271 || nTrans<=1
2272 ){
danielk197704103022009-02-03 16:51:24 +00002273 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002274 Btree *pBt = db->aDb[i].pBt;
2275 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002276 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00002277 }
2278 }
2279
drh80e35f42007-03-30 14:06:34 +00002280 /* Do the commit only if all databases successfully complete phase 1.
2281 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2282 ** IO error while deleting or truncating a journal file. It is unlikely,
2283 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002284 */
2285 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2286 Btree *pBt = db->aDb[i].pBt;
2287 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002288 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002289 }
danielk1977979f38e2007-03-27 16:19:51 +00002290 }
2291 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002292 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002293 }
2294 }
2295
2296 /* The complex case - There is a multi-file write-transaction active.
2297 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002298 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002299 */
danielk197744ee5bf2005-05-27 09:41:12 +00002300#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002301 else{
danielk1977b4b47412007-08-17 15:53:36 +00002302 sqlite3_vfs *pVfs = db->pVfs;
danielk197713adf8a2004-06-03 16:08:41 +00002303 char *zMaster = 0; /* File-name for the master journal */
2304 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002305 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002306 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002307 int res;
drhf5808602011-12-16 00:33:04 +00002308 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002309 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002310
2311 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002312 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002313 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
mistachkinfad30392016-02-13 23:43:46 +00002314 if( zMaster==0 ) return SQLITE_NOMEM_BKPT;
danielk197713adf8a2004-06-03 16:08:41 +00002315 do {
drhdc5ea5c2008-12-10 17:19:59 +00002316 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002317 if( retryCount ){
2318 if( retryCount>100 ){
2319 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2320 sqlite3OsDelete(pVfs, zMaster, 0);
2321 break;
2322 }else if( retryCount==1 ){
2323 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2324 }
danielk197713adf8a2004-06-03 16:08:41 +00002325 }
drh84968c02011-12-16 15:11:39 +00002326 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002327 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002328 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002329 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002330 /* The antipenultimate character of the master journal name must
2331 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002332 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002333 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002334 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2335 }while( rc==SQLITE_OK && res );
2336 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002337 /* Open the master journal. */
2338 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2339 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2340 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2341 );
2342 }
danielk197713adf8a2004-06-03 16:08:41 +00002343 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002344 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002345 return rc;
2346 }
2347
2348 /* Write the name of each database file in the transaction into the new
2349 ** master journal file. If an error occurs at this point close
2350 ** and delete the master journal file. All the individual journal files
2351 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002352 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002353 */
danielk19771e536952007-08-16 10:09:01 +00002354 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002355 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002356 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002357 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002358 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002359 continue; /* Ignore TEMP and :memory: databases */
2360 }
drh8c96a6e2010-08-31 01:09:15 +00002361 assert( zFile[0]!=0 );
drhea678832008-12-10 19:26:22 +00002362 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2363 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002364 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002365 sqlite3OsCloseFree(pMaster);
2366 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002367 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002368 return rc;
2369 }
2370 }
2371 }
2372
danielk19779663b8f2007-08-24 11:52:28 +00002373 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2374 ** flag is set this is not required.
2375 */
drhb0529582016-02-22 23:44:42 +00002376 if( 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
danielk1977bea2a942009-01-20 17:06:27 +00002377 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2378 ){
danielk1977fee2d252007-08-18 10:59:19 +00002379 sqlite3OsCloseFree(pMaster);
2380 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002381 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002382 return rc;
2383 }
drhc9e06862004-06-09 20:03:08 +00002384
danielk197713adf8a2004-06-03 16:08:41 +00002385 /* Sync all the db files involved in the transaction. The same call
2386 ** sets the master journal pointer in each individual journal. If
2387 ** an error occurs here, do not delete the master journal file.
2388 **
drh80e35f42007-03-30 14:06:34 +00002389 ** If the error occurs during the first call to
2390 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2391 ** master journal file will be orphaned. But we cannot delete it,
2392 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002393 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002394 */
danielk19775bd270b2006-07-25 15:14:52 +00002395 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002396 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002397 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002398 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002399 }
2400 }
danielk1977fee2d252007-08-18 10:59:19 +00002401 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002402 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002403 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002404 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002405 return rc;
2406 }
danielk197713adf8a2004-06-03 16:08:41 +00002407
danielk1977962398d2004-06-14 09:35:16 +00002408 /* Delete the master journal file. This commits the transaction. After
2409 ** doing this the directory is synced again before any individual
2410 ** transaction files are deleted.
2411 */
drhb0529582016-02-22 23:44:42 +00002412 rc = sqlite3OsDelete(pVfs, zMaster, 1);
drh633e6d52008-07-28 19:34:53 +00002413 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002414 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002415 if( rc ){
2416 return rc;
2417 }
danielk197713adf8a2004-06-03 16:08:41 +00002418
2419 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002420 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2421 ** deleting or truncating journals. If something goes wrong while
2422 ** this is happening we don't really care. The integrity of the
2423 ** transaction is already guaranteed, but some stray 'cold' journals
2424 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002425 */
danielk1977979f38e2007-03-27 16:19:51 +00002426 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002427 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002428 for(i=0; i<db->nDb; i++){
2429 Btree *pBt = db->aDb[i].pBt;
2430 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002431 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002432 }
2433 }
danielk19772d1d86f2008-06-20 14:59:51 +00002434 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002435 enable_simulated_io_errors();
2436
danielk1977f9e7dda2006-06-16 16:08:53 +00002437 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002438 }
danielk197744ee5bf2005-05-27 09:41:12 +00002439#endif
danielk1977026d2702004-06-14 13:14:59 +00002440
drh2ac3ee92004-06-07 16:27:46 +00002441 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002442}
2443
danielk19771d850a72004-05-31 08:26:49 +00002444/*
drh4f7d3a52013-06-27 23:54:02 +00002445** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002446** matches the number of vdbe's in the list sqlite3.pVdbe that are
2447** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002448** This is an internal self-check only - it is not an essential processing
2449** step.
danielk19771d850a72004-05-31 08:26:49 +00002450**
2451** This is a no-op if NDEBUG is defined.
2452*/
2453#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002454static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002455 Vdbe *p;
2456 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002457 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002458 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002459 p = db->pVdbe;
2460 while( p ){
dan857745c2014-07-19 17:57:10 +00002461 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002462 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002463 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002464 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002465 }
2466 p = p->pNext;
2467 }
drh4f7d3a52013-06-27 23:54:02 +00002468 assert( cnt==db->nVdbeActive );
2469 assert( nWrite==db->nVdbeWrite );
2470 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002471}
2472#else
2473#define checkActiveVdbeCnt(x)
2474#endif
2475
danielk19773cf86062004-05-26 10:11:05 +00002476/*
danielk1977bd434552009-03-18 10:33:00 +00002477** If the Vdbe passed as the first argument opened a statement-transaction,
2478** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2479** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2480** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002481** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002482**
2483** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2484** Otherwise SQLITE_OK.
2485*/
2486int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002487 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002488 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002489
danielk1977e4948172009-07-17 17:25:43 +00002490 /* If p->iStatement is greater than zero, then this Vdbe opened a
2491 ** statement transaction that should be closed here. The only exception
mistachkin48864df2013-03-21 21:20:32 +00002492 ** is that an IO error may have occurred, causing an emergency rollback.
danielk1977e4948172009-07-17 17:25:43 +00002493 ** In this case (db->nStatement==0), and there is nothing to do.
2494 */
2495 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002496 int i;
2497 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002498
2499 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2500 assert( db->nStatement>0 );
2501 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2502
2503 for(i=0; i<db->nDb; i++){
2504 int rc2 = SQLITE_OK;
2505 Btree *pBt = db->aDb[i].pBt;
2506 if( pBt ){
2507 if( eOp==SAVEPOINT_ROLLBACK ){
2508 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2509 }
2510 if( rc2==SQLITE_OK ){
2511 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2512 }
2513 if( rc==SQLITE_OK ){
2514 rc = rc2;
2515 }
2516 }
2517 }
2518 db->nStatement--;
2519 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002520
dana311b802011-04-26 19:21:34 +00002521 if( rc==SQLITE_OK ){
2522 if( eOp==SAVEPOINT_ROLLBACK ){
2523 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2524 }
2525 if( rc==SQLITE_OK ){
2526 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2527 }
2528 }
2529
dan1da40a32009-09-19 17:00:31 +00002530 /* If the statement transaction is being rolled back, also restore the
2531 ** database handles deferred constraint counter to the value it had when
2532 ** the statement transaction was opened. */
2533 if( eOp==SAVEPOINT_ROLLBACK ){
2534 db->nDeferredCons = p->nStmtDefCons;
dancb3e4b72013-07-03 19:53:05 +00002535 db->nDeferredImmCons = p->nStmtDefImmCons;
dan1da40a32009-09-19 17:00:31 +00002536 }
danielk1977bd434552009-03-18 10:33:00 +00002537 }
2538 return rc;
2539}
2540
2541/*
dan1da40a32009-09-19 17:00:31 +00002542** This function is called when a transaction opened by the database
2543** handle associated with the VM passed as an argument is about to be
2544** committed. If there are outstanding deferred foreign key constraint
2545** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2546**
2547** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002548** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2549** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002550*/
2551#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002552int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002553 sqlite3 *db = p->db;
dancb3e4b72013-07-03 19:53:05 +00002554 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2555 || (!deferred && p->nFkConstraint>0)
2556 ){
drhd91c1a12013-02-09 13:58:25 +00002557 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002558 p->errorAction = OE_Abort;
drh22c17b82015-05-15 04:13:15 +00002559 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002560 return SQLITE_ERROR;
2561 }
2562 return SQLITE_OK;
2563}
2564#endif
2565
2566/*
drh92f02c32004-09-02 14:57:08 +00002567** This routine is called the when a VDBE tries to halt. If the VDBE
2568** has made changes and is in autocommit mode, then commit those
2569** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002570**
drh92f02c32004-09-02 14:57:08 +00002571** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002572** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2573** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002574**
2575** Return an error code. If the commit could not complete because of
2576** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2577** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002578*/
drhff0587c2007-08-29 17:43:19 +00002579int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002580 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002581 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002582
2583 /* This function contains the logic that determines if a statement or
2584 ** transaction will be committed or rolled back as a result of the
2585 ** execution of this virtual machine.
2586 **
drh71b890a2007-10-03 15:30:52 +00002587 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002588 **
drh71b890a2007-10-03 15:30:52 +00002589 ** SQLITE_NOMEM
2590 ** SQLITE_IOERR
2591 ** SQLITE_FULL
2592 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002593 **
drh71b890a2007-10-03 15:30:52 +00002594 ** Then the internal cache might have been left in an inconsistent
2595 ** state. We need to rollback the statement transaction, if there is
2596 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002597 */
drh9a324642003-09-06 20:12:01 +00002598
drhb84e5742016-02-05 02:42:54 +00002599 if( db->mallocFailed ){
mistachkinfad30392016-02-13 23:43:46 +00002600 p->rc = SQLITE_NOMEM_BKPT;
danielk1977261919c2005-12-06 12:52:59 +00002601 }
drh5f82e3c2009-07-06 00:44:08 +00002602 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002603 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002604 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002605 }
danielk19771d850a72004-05-31 08:26:49 +00002606 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002607
danc0537fe2013-06-28 19:41:43 +00002608 /* No commit or rollback needed if the program never started or if the
2609 ** SQL statement does not read or write a database file. */
2610 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002611 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002612 int eStatementOp = 0;
2613 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002614
2615 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002616 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002617
drh71b890a2007-10-03 15:30:52 +00002618 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002619 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002620 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002621 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002622 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002623 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2624 ** no rollback is necessary. Otherwise, at least a savepoint
2625 ** transaction must be rolled back to restore the database to a
2626 ** consistent state.
2627 **
2628 ** Even if the statement is read-only, it is important to perform
2629 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002630 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002631 ** file as part of an effort to free up cache space (see function
2632 ** pagerStress() in pager.c), the rollback is required to restore
2633 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002634 */
drhad4a4b82008-11-05 16:37:34 +00002635 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002636 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002637 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002638 }else{
2639 /* We are forced to roll back the active transaction. Before doing
2640 ** so, abort any other statements this handle currently has active.
2641 */
drh21021a52012-02-13 17:01:51 +00002642 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002643 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002644 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002645 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002646 }
danielk1977261919c2005-12-06 12:52:59 +00002647 }
2648 }
dan32b09f22009-09-23 17:29:59 +00002649
2650 /* Check for immediate foreign key violations. */
2651 if( p->rc==SQLITE_OK ){
2652 sqlite3VdbeCheckFk(p, 0);
2653 }
danielk197707cb5602006-01-20 10:55:05 +00002654
danielk1977bd434552009-03-18 10:33:00 +00002655 /* If the auto-commit flag is set and this is the only active writer
2656 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002657 **
2658 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002659 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002660 */
danielk1977093e0f62008-11-13 18:00:14 +00002661 if( !sqlite3VtabInSync(db)
2662 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002663 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002664 ){
danielk197707cb5602006-01-20 10:55:05 +00002665 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002666 rc = sqlite3VdbeCheckFk(p, 1);
2667 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002668 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002669 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002670 return SQLITE_ERROR;
2671 }
drhd91c1a12013-02-09 13:58:25 +00002672 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002673 }else{
2674 /* The auto-commit flag is true, the vdbe program was successful
2675 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2676 ** key constraints to hold up the transaction. This means a commit
2677 ** is required. */
2678 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002679 }
dan19611b12011-01-24 16:00:58 +00002680 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002681 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002682 return SQLITE_BUSY;
2683 }else if( rc!=SQLITE_OK ){
2684 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002685 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002686 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002687 }else{
dan1da40a32009-09-19 17:00:31 +00002688 db->nDeferredCons = 0;
dancb3e4b72013-07-03 19:53:05 +00002689 db->nDeferredImmCons = 0;
drh963c74d2013-07-11 12:19:12 +00002690 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002691 sqlite3CommitInternalChanges(db);
2692 }
2693 }else{
drh0f198a72012-02-13 16:43:16 +00002694 sqlite3RollbackAll(db, SQLITE_OK);
danc3da6672014-10-28 18:24:16 +00002695 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002696 }
danielk1977bd434552009-03-18 10:33:00 +00002697 db->nStatement = 0;
2698 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002699 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002700 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002701 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002702 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002703 }else{
drh21021a52012-02-13 17:01:51 +00002704 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002705 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002706 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002707 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002708 }
danielk19771d850a72004-05-31 08:26:49 +00002709 }
danielk197707cb5602006-01-20 10:55:05 +00002710
danielk1977bd434552009-03-18 10:33:00 +00002711 /* If eStatementOp is non-zero, then a statement transaction needs to
2712 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2713 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002714 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2715 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002716 */
danielk1977bd434552009-03-18 10:33:00 +00002717 if( eStatementOp ){
2718 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002719 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002720 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002721 p->rc = rc;
2722 sqlite3DbFree(db, p->zErrMsg);
2723 p->zErrMsg = 0;
2724 }
drh21021a52012-02-13 17:01:51 +00002725 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002726 sqlite3CloseSavepoints(db);
2727 db->autoCommit = 1;
danc3da6672014-10-28 18:24:16 +00002728 p->nChange = 0;
danielk197707cb5602006-01-20 10:55:05 +00002729 }
danielk197777d83ba2004-05-31 10:08:14 +00002730 }
danielk197707cb5602006-01-20 10:55:05 +00002731
danielk1977bd434552009-03-18 10:33:00 +00002732 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2733 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002734 */
drh6be240e2009-07-14 02:33:02 +00002735 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002736 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002737 sqlite3VdbeSetChanges(db, p->nChange);
2738 }else{
2739 sqlite3VdbeSetChanges(db, 0);
2740 }
2741 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002742 }
drhff0587c2007-08-29 17:43:19 +00002743
2744 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002745 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002746 }
danielk19771d850a72004-05-31 08:26:49 +00002747
danielk197765fd59f2006-06-24 11:51:33 +00002748 /* We have successfully halted and closed the VM. Record this fact. */
2749 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002750 db->nVdbeActive--;
2751 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002752 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002753 assert( db->nVdbeActive>=db->nVdbeRead );
2754 assert( db->nVdbeRead>=db->nVdbeWrite );
2755 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002756 }
drh92f02c32004-09-02 14:57:08 +00002757 p->magic = VDBE_MAGIC_HALT;
2758 checkActiveVdbeCnt(db);
drhb84e5742016-02-05 02:42:54 +00002759 if( db->mallocFailed ){
mistachkinfad30392016-02-13 23:43:46 +00002760 p->rc = SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002761 }
danielk19771d850a72004-05-31 08:26:49 +00002762
danielk1977404ca072009-03-16 13:19:36 +00002763 /* If the auto-commit flag is set to true, then any locks that were held
2764 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2765 ** to invoke any required unlock-notify callbacks.
2766 */
2767 if( db->autoCommit ){
2768 sqlite3ConnectionUnlocked(db);
2769 }
2770
drh4f7d3a52013-06-27 23:54:02 +00002771 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002772 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002773}
drh4cf7c7f2007-08-28 23:28:07 +00002774
drh92f02c32004-09-02 14:57:08 +00002775
2776/*
drh3c23a882007-01-09 14:01:13 +00002777** Each VDBE holds the result of the most recent sqlite3_step() call
2778** in p->rc. This routine sets that result back to SQLITE_OK.
2779*/
2780void sqlite3VdbeResetStepResult(Vdbe *p){
2781 p->rc = SQLITE_OK;
2782}
2783
2784/*
dan029ead62011-10-27 15:19:58 +00002785** Copy the error code and error message belonging to the VDBE passed
2786** as the first argument to its database handle (so that they will be
2787** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2788**
2789** This function does not clear the VDBE error code or message, just
2790** copies them to the database handle.
2791*/
2792int sqlite3VdbeTransferError(Vdbe *p){
2793 sqlite3 *db = p->db;
2794 int rc = p->rc;
2795 if( p->zErrMsg ){
drh4a642b62016-02-05 01:55:27 +00002796 db->bBenignMalloc++;
dan029ead62011-10-27 15:19:58 +00002797 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002798 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002799 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2800 sqlite3EndBenignMalloc();
drh4a642b62016-02-05 01:55:27 +00002801 db->bBenignMalloc--;
dan029ead62011-10-27 15:19:58 +00002802 db->errCode = rc;
2803 }else{
drh13f40da2014-08-22 18:00:11 +00002804 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002805 }
2806 return rc;
2807}
2808
danac455932012-11-26 19:50:41 +00002809#ifdef SQLITE_ENABLE_SQLLOG
2810/*
2811** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2812** invoke it.
2813*/
2814static void vdbeInvokeSqllog(Vdbe *v){
2815 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2816 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2817 assert( v->db->init.busy==0 );
2818 if( zExpanded ){
2819 sqlite3GlobalConfig.xSqllog(
2820 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2821 );
2822 sqlite3DbFree(v->db, zExpanded);
2823 }
2824 }
2825}
2826#else
2827# define vdbeInvokeSqllog(x)
2828#endif
2829
dan029ead62011-10-27 15:19:58 +00002830/*
drh92f02c32004-09-02 14:57:08 +00002831** Clean up a VDBE after execution but do not delete the VDBE just yet.
2832** Write any error messages into *pzErrMsg. Return the result code.
2833**
2834** After this routine is run, the VDBE should be ready to be executed
2835** again.
2836**
2837** To look at it another way, this routine resets the state of the
2838** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2839** VDBE_MAGIC_INIT.
2840*/
drhc890fec2008-08-01 20:10:08 +00002841int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002842 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002843 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002844
2845 /* If the VM did not run to completion or if it encountered an
2846 ** error, then it might not have been halted properly. So halt
2847 ** it now.
2848 */
2849 sqlite3VdbeHalt(p);
2850
drhfb7e7652005-01-24 00:28:42 +00002851 /* If the VDBE has be run even partially, then transfer the error code
2852 ** and error message from the VDBE into the main database structure. But
2853 ** if the VDBE has just been set to run but has not actually executed any
2854 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002855 */
drhfb7e7652005-01-24 00:28:42 +00002856 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002857 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002858 sqlite3VdbeTransferError(p);
2859 sqlite3DbFree(db, p->zErrMsg);
2860 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002861 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002862 }else if( p->rc && p->expired ){
2863 /* The expired flag was set on the VDBE before the first call
2864 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2865 ** called), set the database error in this case as well.
2866 */
drh13f40da2014-08-22 18:00:11 +00002867 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002868 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002869 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002870 }
2871
2872 /* Reclaim all memory used by the VDBE
2873 */
drhc890fec2008-08-01 20:10:08 +00002874 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002875
2876 /* Save profiling information from this VDBE run.
2877 */
drh9a324642003-09-06 20:12:01 +00002878#ifdef VDBE_PROFILE
2879 {
2880 FILE *out = fopen("vdbe_profile.out", "a");
2881 if( out ){
2882 int i;
2883 fprintf(out, "---- ");
2884 for(i=0; i<p->nOp; i++){
2885 fprintf(out, "%02x", p->aOp[i].opcode);
2886 }
2887 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002888 if( p->zSql ){
2889 char c, pc = 0;
2890 fprintf(out, "-- ");
2891 for(i=0; (c = p->zSql[i])!=0; i++){
2892 if( pc=='\n' ) fprintf(out, "-- ");
2893 putc(c, out);
2894 pc = c;
2895 }
2896 if( pc!='\n' ) fprintf(out, "\n");
2897 }
drh9a324642003-09-06 20:12:01 +00002898 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002899 char zHdr[100];
2900 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002901 p->aOp[i].cnt,
2902 p->aOp[i].cycles,
2903 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2904 );
drh15ab9412014-02-24 14:24:01 +00002905 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002906 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002907 }
2908 fclose(out);
2909 }
2910 }
2911#endif
drh7fa20922013-09-17 23:36:33 +00002912 p->iCurrentTime = 0;
drhab3182f2016-10-01 00:37:50 +00002913 p->magic = VDBE_MAGIC_RESET;
drh4ac285a2006-09-15 07:28:50 +00002914 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002915}
drh92f02c32004-09-02 14:57:08 +00002916
drh9a324642003-09-06 20:12:01 +00002917/*
2918** Clean up and delete a VDBE after execution. Return an integer which is
2919** the result code. Write any error message text into *pzErrMsg.
2920*/
danielk19779e6db7d2004-06-21 08:18:51 +00002921int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002922 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002923 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002924 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002925 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002926 }
danielk19774adee202004-05-08 08:23:19 +00002927 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002928 return rc;
2929}
2930
2931/*
dan0c547792013-07-18 17:12:08 +00002932** If parameter iOp is less than zero, then invoke the destructor for
2933** all auxiliary data pointers currently cached by the VM passed as
2934** the first argument.
2935**
2936** Or, if iOp is greater than or equal to zero, then the destructor is
2937** only invoked for those auxiliary data pointers created by the user
2938** function invoked by the OP_Function opcode at instruction iOp of
2939** VM pVdbe, and only then if:
2940**
2941** * the associated function parameter is the 32nd or later (counting
2942** from left to right), or
2943**
2944** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002945** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002946*/
drhb9626cf2016-02-22 16:04:31 +00002947void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
dan0c547792013-07-18 17:12:08 +00002948 while( *pp ){
2949 AuxData *pAux = *pp;
2950 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002951 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002952 ){
drh693e6712014-01-24 22:58:00 +00002953 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002954 if( pAux->xDelete ){
2955 pAux->xDelete(pAux->pAux);
2956 }
dan0c547792013-07-18 17:12:08 +00002957 *pp = pAux->pNext;
drhb9626cf2016-02-22 16:04:31 +00002958 sqlite3DbFree(db, pAux);
dan0c547792013-07-18 17:12:08 +00002959 }else{
2960 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002961 }
2962 }
2963}
2964
2965/*
drhcb103b92012-10-26 00:11:23 +00002966** Free all memory associated with the Vdbe passed as the second argument,
2967** except for object itself, which is preserved.
2968**
dand46def72010-07-24 11:28:28 +00002969** The difference between this function and sqlite3VdbeDelete() is that
2970** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002971** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002972*/
drhcb103b92012-10-26 00:11:23 +00002973void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002974 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002975 int i;
dand46def72010-07-24 11:28:28 +00002976 assert( p->db==0 || p->db==db );
dand46def72010-07-24 11:28:28 +00002977 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002978 for(pSub=p->pProgram; pSub; pSub=pNext){
2979 pNext = pSub->pNext;
2980 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2981 sqlite3DbFree(db, pSub);
2982 }
drhab3182f2016-10-01 00:37:50 +00002983 if( p->magic!=VDBE_MAGIC_INIT ){
drh8dfef112016-10-01 16:53:45 +00002984 releaseMemArray(p->aVar, p->nVar);
drhab3182f2016-10-01 00:37:50 +00002985 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
drh8dfef112016-10-01 16:53:45 +00002986 sqlite3DbFree(db, p->azVar);
2987 sqlite3DbFree(db, p->pFree);
drhab3182f2016-10-01 00:37:50 +00002988 }
dand46def72010-07-24 11:28:28 +00002989 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00002990 sqlite3DbFree(db, p->aColName);
2991 sqlite3DbFree(db, p->zSql);
dan6f9702e2014-11-01 20:38:06 +00002992#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan6f9702e2014-11-01 20:38:06 +00002993 for(i=0; i<p->nScan; i++){
2994 sqlite3DbFree(db, p->aScan[i].zName);
2995 }
2996 sqlite3DbFree(db, p->aScan);
2997#endif
dand46def72010-07-24 11:28:28 +00002998}
2999
3000/*
drh9a324642003-09-06 20:12:01 +00003001** Delete an entire VDBE.
3002*/
danielk19774adee202004-05-08 08:23:19 +00003003void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00003004 sqlite3 *db;
3005
drhfa3be902009-07-07 02:44:07 +00003006 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00003007 db = p->db;
drh4245c402012-06-02 14:32:21 +00003008 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00003009 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00003010 if( p->pPrev ){
3011 p->pPrev->pNext = p->pNext;
3012 }else{
drh633e6d52008-07-28 19:34:53 +00003013 assert( db->pVdbe==p );
3014 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00003015 }
3016 if( p->pNext ){
3017 p->pNext->pPrev = p->pPrev;
3018 }
drh9a324642003-09-06 20:12:01 +00003019 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00003020 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00003021 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00003022}
drha11846b2004-01-07 18:52:56 +00003023
3024/*
drh6848dad2014-08-22 23:33:03 +00003025** The cursor "p" has a pending seek operation that has not yet been
3026** carried out. Seek the cursor now. If an error occurs, return
3027** the appropriate error code.
3028*/
3029static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
3030 int res, rc;
3031#ifdef SQLITE_TEST
3032 extern int sqlite3_search_count;
3033#endif
3034 assert( p->deferredMoveto );
3035 assert( p->isTable );
drhc960dcb2015-11-20 19:22:01 +00003036 assert( p->eCurType==CURTYPE_BTREE );
3037 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
drh6848dad2014-08-22 23:33:03 +00003038 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00003039 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00003040#ifdef SQLITE_TEST
3041 sqlite3_search_count++;
3042#endif
3043 p->deferredMoveto = 0;
3044 p->cacheStatus = CACHE_STALE;
3045 return SQLITE_OK;
3046}
3047
3048/*
3049** Something has moved cursor "p" out of place. Maybe the row it was
3050** pointed to was deleted out from under it. Or maybe the btree was
3051** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00003052** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00003053** cursor, set the cursor to point to a NULL row.
3054*/
3055static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3056 int isDifferentRow, rc;
drhc960dcb2015-11-20 19:22:01 +00003057 assert( p->eCurType==CURTYPE_BTREE );
3058 assert( p->uc.pCursor!=0 );
3059 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3060 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
drh6848dad2014-08-22 23:33:03 +00003061 p->cacheStatus = CACHE_STALE;
3062 if( isDifferentRow ) p->nullRow = 1;
3063 return rc;
3064}
3065
3066/*
drhc22284f2014-10-13 16:02:20 +00003067** Check to ensure that the cursor is valid. Restore the cursor
3068** if need be. Return any I/O error from the restore operation.
3069*/
3070int sqlite3VdbeCursorRestore(VdbeCursor *p){
drhc960dcb2015-11-20 19:22:01 +00003071 assert( p->eCurType==CURTYPE_BTREE );
3072 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
drhc22284f2014-10-13 16:02:20 +00003073 return handleMovedCursor(p);
3074 }
3075 return SQLITE_OK;
3076}
3077
3078/*
drh9a65f2c2009-06-22 19:05:40 +00003079** Make sure the cursor p is ready to read or write the row to which it
3080** was last positioned. Return an error code if an OOM fault or I/O error
3081** prevents us from positioning the cursor to its correct position.
3082**
drha11846b2004-01-07 18:52:56 +00003083** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00003084** MoveTo now. If no move is pending, check to see if the row has been
3085** deleted out from under the cursor and if it has, mark the row as
3086** a NULL row.
3087**
3088** If the cursor is already pointing to the correct row and that row has
3089** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00003090*/
dande892d92016-01-29 19:29:45 +00003091int sqlite3VdbeCursorMoveto(VdbeCursor **pp, int *piCol){
3092 VdbeCursor *p = *pp;
drhc960dcb2015-11-20 19:22:01 +00003093 if( p->eCurType==CURTYPE_BTREE ){
3094 if( p->deferredMoveto ){
drhb1702022016-01-30 00:45:18 +00003095 int iMap;
3096 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 ){
dande892d92016-01-29 19:29:45 +00003097 *pp = p->pAltCursor;
drhb1702022016-01-30 00:45:18 +00003098 *piCol = iMap - 1;
dande892d92016-01-29 19:29:45 +00003099 return SQLITE_OK;
3100 }
drhc960dcb2015-11-20 19:22:01 +00003101 return handleDeferredMoveto(p);
3102 }
3103 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3104 return handleMovedCursor(p);
3105 }
drha11846b2004-01-07 18:52:56 +00003106 }
3107 return SQLITE_OK;
3108}
danielk19774adee202004-05-08 08:23:19 +00003109
drhab9f7f12004-05-08 10:56:11 +00003110/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003111** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00003112**
danielk1977cfcdaef2004-05-12 07:33:33 +00003113** sqlite3VdbeSerialType()
3114** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00003115** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00003116** sqlite3VdbeSerialPut()
3117** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00003118**
3119** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00003120** data and index records. Each serialized value consists of a
3121** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3122** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00003123**
danielk1977cfcdaef2004-05-12 07:33:33 +00003124** In an SQLite index record, the serial type is stored directly before
3125** the blob of data that it corresponds to. In a table record, all serial
3126** types are stored at the start of the record, and the blobs of data at
3127** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00003128** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00003129**
3130** The following table describes the various storage classes for data:
3131**
3132** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00003133** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00003134** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00003135** 1 1 signed integer
3136** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00003137** 3 3 signed integer
3138** 4 4 signed integer
3139** 5 6 signed integer
3140** 6 8 signed integer
3141** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00003142** 8 0 Integer constant 0
3143** 9 0 Integer constant 1
3144** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00003145** N>=12 and even (N-12)/2 BLOB
3146** N>=13 and odd (N-13)/2 text
3147**
drh35a59652006-01-02 18:24:40 +00003148** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3149** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00003150*/
3151
3152/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003153** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00003154*/
drhbe37c122015-10-16 14:54:17 +00003155u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
danielk1977cfcdaef2004-05-12 07:33:33 +00003156 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00003157 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00003158
drhbe37c122015-10-16 14:54:17 +00003159 assert( pLen!=0 );
danielk1977cfcdaef2004-05-12 07:33:33 +00003160 if( flags&MEM_Null ){
drhbe37c122015-10-16 14:54:17 +00003161 *pLen = 0;
drha19b7752004-05-30 21:14:58 +00003162 return 0;
danielk197790e4d952004-05-10 10:05:53 +00003163 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003164 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00003165 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00003166# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00003167 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00003168 u64 u;
drhcfd654b2011-03-05 13:54:15 +00003169 if( i<0 ){
drh1b40e632014-11-20 02:58:10 +00003170 u = ~i;
drhcfd654b2011-03-05 13:54:15 +00003171 }else{
3172 u = i;
3173 }
drh56690b32012-09-17 15:36:31 +00003174 if( u<=127 ){
drhbe37c122015-10-16 14:54:17 +00003175 if( (i&1)==i && file_format>=4 ){
3176 *pLen = 0;
3177 return 8+(u32)u;
3178 }else{
3179 *pLen = 1;
3180 return 1;
3181 }
drh56690b32012-09-17 15:36:31 +00003182 }
drhbe37c122015-10-16 14:54:17 +00003183 if( u<=32767 ){ *pLen = 2; return 2; }
3184 if( u<=8388607 ){ *pLen = 3; return 3; }
3185 if( u<=2147483647 ){ *pLen = 4; return 4; }
3186 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3187 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003188 return 6;
danielk197790e4d952004-05-10 10:05:53 +00003189 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003190 if( flags&MEM_Real ){
drhbe37c122015-10-16 14:54:17 +00003191 *pLen = 8;
drha19b7752004-05-30 21:14:58 +00003192 return 7;
danielk197790e4d952004-05-10 10:05:53 +00003193 }
danielk1977e4359752008-11-03 09:39:45 +00003194 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00003195 assert( pMem->n>=0 );
3196 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00003197 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00003198 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00003199 }
drhbe37c122015-10-16 14:54:17 +00003200 *pLen = n;
drhfdf972a2007-05-02 13:30:27 +00003201 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00003202}
3203
3204/*
drhfaf37272015-10-16 14:23:42 +00003205** The sizes for serial types less than 128
drhc5ef7152015-06-28 02:58:51 +00003206*/
3207static const u8 sqlite3SmallTypeSizes[] = {
drhfaf37272015-10-16 14:23:42 +00003208 /* 0 1 2 3 4 5 6 7 8 9 */
3209/* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3210/* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3211/* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3212/* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3213/* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3214/* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3215/* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3216/* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3217/* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3218/* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3219/* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3220/* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3221/* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
drhc5ef7152015-06-28 02:58:51 +00003222};
3223
3224/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003225** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00003226*/
drh35cd6432009-06-05 14:17:21 +00003227u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drhfaf37272015-10-16 14:23:42 +00003228 if( serial_type>=128 ){
drh51846b52004-05-28 16:00:21 +00003229 return (serial_type-12)/2;
3230 }else{
drhfaf37272015-10-16 14:23:42 +00003231 assert( serial_type<12
3232 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
drhc5ef7152015-06-28 02:58:51 +00003233 return sqlite3SmallTypeSizes[serial_type];
drh51846b52004-05-28 16:00:21 +00003234 }
danielk1977192ac1d2004-05-10 07:17:30 +00003235}
drhfaf37272015-10-16 14:23:42 +00003236u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3237 assert( serial_type<128 );
3238 return sqlite3SmallTypeSizes[serial_type];
3239}
danielk1977192ac1d2004-05-10 07:17:30 +00003240
3241/*
drh110daac2007-05-04 11:59:31 +00003242** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00003243** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00003244** upper 4 bytes. Return the result.
3245**
drh7a4f5022007-05-23 07:20:08 +00003246** For most architectures, this is a no-op.
3247**
3248** (later): It is reported to me that the mixed-endian problem
3249** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3250** that early versions of GCC stored the two words of a 64-bit
3251** float in the wrong order. And that error has been propagated
3252** ever since. The blame is not necessarily with GCC, though.
3253** GCC might have just copying the problem from a prior compiler.
3254** I am also told that newer versions of GCC that follow a different
3255** ABI get the byte order right.
3256**
3257** Developers using SQLite on an ARM7 should compile and run their
3258** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3259** enabled, some asserts below will ensure that the byte order of
3260** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00003261**
3262** (2007-08-30) Frank van Vugt has studied this problem closely
3263** and has send his findings to the SQLite developers. Frank
3264** writes that some Linux kernels offer floating point hardware
3265** emulation that uses only 32-bit mantissas instead of a full
3266** 48-bits as required by the IEEE standard. (This is the
3267** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3268** byte swapping becomes very complicated. To avoid problems,
3269** the necessary byte swapping is carried out using a 64-bit integer
3270** rather than a 64-bit float. Frank assures us that the code here
3271** works for him. We, the developers, have no way to independently
3272** verify this, but Frank seems to know what he is talking about
3273** so we trust him.
drh110daac2007-05-04 11:59:31 +00003274*/
3275#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00003276static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00003277 union {
drh60d09a72007-08-30 15:05:08 +00003278 u64 r;
drh110daac2007-05-04 11:59:31 +00003279 u32 i[2];
3280 } u;
3281 u32 t;
3282
3283 u.r = in;
3284 t = u.i[0];
3285 u.i[0] = u.i[1];
3286 u.i[1] = t;
3287 return u.r;
3288}
3289# define swapMixedEndianFloat(X) X = floatSwap(X)
3290#else
3291# define swapMixedEndianFloat(X)
3292#endif
3293
3294/*
danielk1977cfcdaef2004-05-12 07:33:33 +00003295** Write the serialized data blob for the value stored in pMem into
3296** buf. It is assumed that the caller has allocated sufficient space.
3297** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00003298**
drh038b7bc2013-12-09 23:17:22 +00003299** nBuf is the amount of space left in buf[]. The caller is responsible
3300** for allocating enough space to buf[] to hold the entire field, exclusive
3301** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00003302**
3303** Return the number of bytes actually written into buf[]. The number
3304** of bytes in the zero-filled tail is included in the return value only
3305** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00003306*/
drha9ab4812013-12-11 11:00:44 +00003307u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00003308 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00003309
drh1483e142004-05-21 21:12:42 +00003310 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00003311 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00003312 u64 v;
drh35cd6432009-06-05 14:17:21 +00003313 u32 i;
drha19b7752004-05-30 21:14:58 +00003314 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003315 assert( sizeof(v)==sizeof(pMem->u.r) );
3316 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00003317 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00003318 }else{
drh3c024d62007-03-30 11:23:45 +00003319 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00003320 }
drhc5ef7152015-06-28 02:58:51 +00003321 len = i = sqlite3SmallTypeSizes[serial_type];
drh3f5b1992014-08-22 13:22:32 +00003322 assert( i>0 );
3323 do{
3324 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00003325 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00003326 }while( i );
drh1483e142004-05-21 21:12:42 +00003327 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00003328 }
drhd946db02005-12-29 19:23:06 +00003329
danielk1977cfcdaef2004-05-12 07:33:33 +00003330 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003331 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003332 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003333 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003334 len = pMem->n;
drh72ea29d2015-12-08 16:58:45 +00003335 if( len>0 ) memcpy(buf, pMem->z, len);
drhd946db02005-12-29 19:23:06 +00003336 return len;
3337 }
3338
3339 /* NULL or constants 0 or 1 */
3340 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003341}
3342
drhf926d1e2014-03-04 04:04:33 +00003343/* Input "x" is a sequence of unsigned characters that represent a
3344** big-endian integer. Return the equivalent native integer
3345*/
3346#define ONE_BYTE_INT(x) ((i8)(x)[0])
3347#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3348#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3349#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003350#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003351
danielk1977cfcdaef2004-05-12 07:33:33 +00003352/*
3353** Deserialize the data blob pointed to by buf as serial type serial_type
3354** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003355**
3356** This function is implemented as two separate routines for performance.
3357** The few cases that require local variables are broken out into a separate
3358** routine so that in most cases the overhead of moving the stack pointer
3359** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003360*/
drh14a924a2014-08-22 14:34:05 +00003361static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003362 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003363 u32 serial_type, /* Serial type to deserialize */
3364 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003365){
drh8932bec2014-08-22 14:56:13 +00003366 u64 x = FOUR_BYTE_UINT(buf);
3367 u32 y = FOUR_BYTE_UINT(buf+4);
3368 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003369 if( serial_type==6 ){
drh654858d2014-11-20 02:18:14 +00003370 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3371 ** twos-complement integer. */
drh14a924a2014-08-22 14:34:05 +00003372 pMem->u.i = *(i64*)&x;
3373 pMem->flags = MEM_Int;
3374 testcase( pMem->u.i<0 );
3375 }else{
drh654858d2014-11-20 02:18:14 +00003376 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3377 ** floating point number. */
drh14a924a2014-08-22 14:34:05 +00003378#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3379 /* Verify that integers and floating point values use the same
3380 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3381 ** defined that 64-bit floating point values really are mixed
3382 ** endian.
3383 */
3384 static const u64 t1 = ((u64)0x3ff00000)<<32;
3385 static const double r1 = 1.0;
3386 u64 t2 = t1;
3387 swapMixedEndianFloat(t2);
3388 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3389#endif
drh74eaba42014-09-18 17:52:15 +00003390 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003391 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003392 memcpy(&pMem->u.r, &x, sizeof(x));
3393 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003394 }
3395 return 8;
3396}
danielk1977b1bc9532004-05-22 03:05:33 +00003397u32 sqlite3VdbeSerialGet(
3398 const unsigned char *buf, /* Buffer to deserialize from */
3399 u32 serial_type, /* Serial type to deserialize */
3400 Mem *pMem /* Memory cell to write value into */
3401){
drh3c685822005-05-21 18:32:18 +00003402 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003403 case 10: /* Reserved for future use */
3404 case 11: /* Reserved for future use */
drh654858d2014-11-20 02:18:14 +00003405 case 0: { /* Null */
3406 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
drh3c685822005-05-21 18:32:18 +00003407 pMem->flags = MEM_Null;
3408 break;
3409 }
drh654858d2014-11-20 02:18:14 +00003410 case 1: {
3411 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3412 ** integer. */
drhf926d1e2014-03-04 04:04:33 +00003413 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003414 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003415 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003416 return 1;
drh1483e142004-05-21 21:12:42 +00003417 }
drh3c685822005-05-21 18:32:18 +00003418 case 2: { /* 2-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003419 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3420 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003421 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003422 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003423 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003424 return 2;
3425 }
3426 case 3: { /* 3-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003427 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3428 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003429 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003430 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003431 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003432 return 3;
3433 }
3434 case 4: { /* 4-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003435 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3436 ** twos-complement integer. */
drh8932bec2014-08-22 14:56:13 +00003437 pMem->u.i = FOUR_BYTE_INT(buf);
drhc8bb4302015-11-06 17:28:00 +00003438#ifdef __HP_cc
3439 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3440 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3441#endif
drh3c685822005-05-21 18:32:18 +00003442 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003443 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003444 return 4;
3445 }
3446 case 5: { /* 6-byte signed integer */
drh654858d2014-11-20 02:18:14 +00003447 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3448 ** twos-complement integer. */
drhf926d1e2014-03-04 04:04:33 +00003449 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003450 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003451 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003452 return 6;
3453 }
drh91124b32005-08-18 18:15:05 +00003454 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003455 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003456 /* These use local variables, so do them in a separate routine
3457 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003458 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003459 }
drhd946db02005-12-29 19:23:06 +00003460 case 8: /* Integer 0 */
3461 case 9: { /* Integer 1 */
drh654858d2014-11-20 02:18:14 +00003462 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3463 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
drh3c024d62007-03-30 11:23:45 +00003464 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003465 pMem->flags = MEM_Int;
3466 return 0;
3467 }
drh3c685822005-05-21 18:32:18 +00003468 default: {
drh654858d2014-11-20 02:18:14 +00003469 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3470 ** length.
3471 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3472 ** (N-13)/2 bytes in length. */
drhc138daf2013-11-19 13:55:34 +00003473 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003474 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003475 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003476 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003477 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003478 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003479 }
drh3c685822005-05-21 18:32:18 +00003480 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003481}
drh1e968a02008-03-25 00:22:21 +00003482/*
dan03e9cfc2011-09-05 14:20:27 +00003483** This routine is used to allocate sufficient space for an UnpackedRecord
3484** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3485** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003486**
dan03e9cfc2011-09-05 14:20:27 +00003487** The space is either allocated using sqlite3DbMallocRaw() or from within
3488** the unaligned buffer passed via the second and third arguments (presumably
3489** stack space). If the former, then *ppFree is set to a pointer that should
3490** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3491** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3492** before returning.
drh1e968a02008-03-25 00:22:21 +00003493**
dan03e9cfc2011-09-05 14:20:27 +00003494** If an OOM error occurs, NULL is returned.
3495*/
3496UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3497 KeyInfo *pKeyInfo, /* Description of the record */
3498 char *pSpace, /* Unaligned space available */
3499 int szSpace, /* Size of pSpace[] in bytes */
3500 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00003501){
dan03e9cfc2011-09-05 14:20:27 +00003502 UnpackedRecord *p; /* Unpacked record to return */
3503 int nOff; /* Increment pSpace by nOff to align it */
3504 int nByte; /* Number of bytes required for *p */
3505
3506 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00003507 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3508 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3509 */
3510 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00003511 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00003512 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00003513 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3514 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00003515 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00003516 }else{
dan42acb3e2011-09-05 20:16:38 +00003517 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00003518 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00003519 }
dan42acb3e2011-09-05 20:16:38 +00003520
3521 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003522 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003523 p->pKeyInfo = pKeyInfo;
3524 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003525 return p;
3526}
3527
3528/*
3529** Given the nKey-byte encoding of a record in pKey[], populate the
3530** UnpackedRecord structure indicated by the fourth argument with the
3531** contents of the decoded record.
3532*/
3533void sqlite3VdbeRecordUnpack(
3534 KeyInfo *pKeyInfo, /* Information about the record format */
3535 int nKey, /* Size of the binary record */
3536 const void *pKey, /* The binary record */
3537 UnpackedRecord *p /* Populate this structure before returning. */
3538){
3539 const unsigned char *aKey = (const unsigned char *)pKey;
3540 int d;
3541 u32 idx; /* Offset in aKey[] to read from */
3542 u16 u; /* Unsigned loop counter */
3543 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003544 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003545
dan1fed5da2014-02-25 21:01:25 +00003546 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003547 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003548 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003549 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003550 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003551 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003552 u32 serial_type;
3553
danielk197700e13612008-11-17 19:18:54 +00003554 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003555 pMem->enc = pKeyInfo->enc;
3556 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003557 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003558 pMem->szMalloc = 0;
drh304637c2011-03-18 16:47:27 +00003559 pMem->z = 0;
drh1e968a02008-03-25 00:22:21 +00003560 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003561 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003562 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003563 }
drh7d10d5a2008-08-20 16:35:10 +00003564 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003565 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003566}
3567
dan3833e932014-03-01 19:44:56 +00003568#if SQLITE_DEBUG
drh1e968a02008-03-25 00:22:21 +00003569/*
dan3833e932014-03-01 19:44:56 +00003570** This function compares two index or table record keys in the same way
3571** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3572** this function deserializes and compares values using the
3573** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3574** in assert() statements to ensure that the optimized code in
3575** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh79211e12014-05-02 17:33:16 +00003576**
3577** Return true if the result of comparison is equivalent to desiredResult.
3578** Return false if there is a disagreement.
drh1e968a02008-03-25 00:22:21 +00003579*/
dan3833e932014-03-01 19:44:56 +00003580static int vdbeRecordCompareDebug(
drhec1fc802008-08-13 14:07:40 +00003581 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003582 const UnpackedRecord *pPKey2, /* Right key */
3583 int desiredResult /* Correct answer */
drh1e968a02008-03-25 00:22:21 +00003584){
drhdf003d62013-08-01 19:17:39 +00003585 u32 d1; /* Offset into aKey[] of next data element */
drh1e968a02008-03-25 00:22:21 +00003586 u32 idx1; /* Offset into aKey[] of next header element */
3587 u32 szHdr1; /* Number of bytes in header */
3588 int i = 0;
drh1e968a02008-03-25 00:22:21 +00003589 int rc = 0;
3590 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3591 KeyInfo *pKeyInfo;
3592 Mem mem1;
3593
3594 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003595 if( pKeyInfo->db==0 ) return 1;
drh1e968a02008-03-25 00:22:21 +00003596 mem1.enc = pKeyInfo->enc;
drh37272632009-11-16 21:28:45 +00003597 mem1.db = pKeyInfo->db;
drhd93a8b22009-11-16 03:13:40 +00003598 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003599 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
drh8b249a82009-11-16 02:14:00 +00003600
3601 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3602 ** We could initialize it, as shown here, to silence those complaints.
drh5275d2e2011-04-27 01:00:17 +00003603 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
drh8b249a82009-11-16 02:14:00 +00003604 ** the unnecessary initialization has a measurable negative performance
3605 ** impact, since this routine is a very high runner. And so, we choose
3606 ** to ignore the compiler warnings and leave this variable uninitialized.
3607 */
3608 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
drh1e968a02008-03-25 00:22:21 +00003609
shane3f8d5cf2008-04-24 19:15:09 +00003610 idx1 = getVarint32(aKey1, szHdr1);
drh46981362015-07-08 12:25:38 +00003611 if( szHdr1>98307 ) return SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00003612 d1 = szHdr1;
drhb2023662013-11-29 15:39:36 +00003613 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
drhe1a022e2012-09-17 17:16:53 +00003614 assert( pKeyInfo->aSortOrder!=0 );
dan89bc0212013-12-03 09:49:52 +00003615 assert( pKeyInfo->nField>0 );
3616 assert( idx1<=szHdr1 || CORRUPT_DB );
drh0b9dada2013-11-25 22:24:36 +00003617 do{
drh1e968a02008-03-25 00:22:21 +00003618 u32 serial_type1;
3619
3620 /* Read the serial types for the next element in each key. */
shane3f8d5cf2008-04-24 19:15:09 +00003621 idx1 += getVarint32( aKey1+idx1, serial_type1 );
drhaf5b2af2013-08-05 15:32:09 +00003622
3623 /* Verify that there is enough key space remaining to avoid
3624 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3625 ** always be greater than or equal to the amount of required key space.
3626 ** Use that approximation to avoid the more expensive call to
3627 ** sqlite3VdbeSerialTypeLen() in the common case.
3628 */
3629 if( d1+serial_type1+2>(u32)nKey1
3630 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3631 ){
3632 break;
3633 }
drh1e968a02008-03-25 00:22:21 +00003634
3635 /* Extract the values to be compared.
3636 */
3637 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3638
3639 /* Do the comparison
3640 */
drh323df792013-08-05 19:11:29 +00003641 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
drh1e968a02008-03-25 00:22:21 +00003642 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003643 assert( mem1.szMalloc==0 ); /* See comment below */
drh323df792013-08-05 19:11:29 +00003644 if( pKeyInfo->aSortOrder[i] ){
drh6f225d02013-10-26 13:36:51 +00003645 rc = -rc; /* Invert the result for DESC sort order. */
drh8b249a82009-11-16 02:14:00 +00003646 }
drh79211e12014-05-02 17:33:16 +00003647 goto debugCompareEnd;
drh1e968a02008-03-25 00:22:21 +00003648 }
3649 i++;
drh0b9dada2013-11-25 22:24:36 +00003650 }while( idx1<szHdr1 && i<pPKey2->nField );
drh407414c2009-07-14 14:15:27 +00003651
drh8b249a82009-11-16 02:14:00 +00003652 /* No memory allocation is ever used on mem1. Prove this using
3653 ** the following assert(). If the assert() fails, it indicates a
3654 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
danielk1977de630352009-05-04 11:42:29 +00003655 */
drh17bcb102014-09-18 21:25:33 +00003656 assert( mem1.szMalloc==0 );
danielk1977de630352009-05-04 11:42:29 +00003657
drh8b249a82009-11-16 02:14:00 +00003658 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003659 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003660 ** value. */
drh79211e12014-05-02 17:33:16 +00003661 rc = pPKey2->default_rc;
3662
3663debugCompareEnd:
3664 if( desiredResult==0 && rc==0 ) return 1;
3665 if( desiredResult<0 && rc<0 ) return 1;
3666 if( desiredResult>0 && rc>0 ) return 1;
3667 if( CORRUPT_DB ) return 1;
3668 if( pKeyInfo->db->mallocFailed ) return 1;
3669 return 0;
dan1fed5da2014-02-25 21:01:25 +00003670}
dan3833e932014-03-01 19:44:56 +00003671#endif
dan1fed5da2014-02-25 21:01:25 +00003672
drhe1bb8022015-01-19 19:48:52 +00003673#if SQLITE_DEBUG
3674/*
3675** Count the number of fields (a.k.a. columns) in the record given by
3676** pKey,nKey. The verify that this count is less than or equal to the
3677** limit given by pKeyInfo->nField + pKeyInfo->nXField.
3678**
3679** If this constraint is not satisfied, it means that the high-speed
3680** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
3681** not work correctly. If this assert() ever fires, it probably means
3682** that the KeyInfo.nField or KeyInfo.nXField values were computed
3683** incorrectly.
3684*/
3685static void vdbeAssertFieldCountWithinLimits(
3686 int nKey, const void *pKey, /* The record to verify */
3687 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
3688){
3689 int nField = 0;
3690 u32 szHdr;
3691 u32 idx;
3692 u32 notUsed;
3693 const unsigned char *aKey = (const unsigned char*)pKey;
3694
3695 if( CORRUPT_DB ) return;
3696 idx = getVarint32(aKey, szHdr);
mistachkin1b3ee492015-01-21 00:51:08 +00003697 assert( nKey>=0 );
3698 assert( szHdr<=(u32)nKey );
drhe1bb8022015-01-19 19:48:52 +00003699 while( idx<szHdr ){
3700 idx += getVarint32(aKey+idx, notUsed);
3701 nField++;
3702 }
3703 assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
3704}
drh1af3c642015-01-19 20:57:19 +00003705#else
3706# define vdbeAssertFieldCountWithinLimits(A,B,C)
drhe1bb8022015-01-19 19:48:52 +00003707#endif
3708
dan3833e932014-03-01 19:44:56 +00003709/*
3710** Both *pMem1 and *pMem2 contain string values. Compare the two values
3711** using the collation sequence pColl. As usual, return a negative , zero
3712** or positive value if *pMem1 is less than, equal to or greater than
3713** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3714*/
dan1fed5da2014-02-25 21:01:25 +00003715static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003716 const Mem *pMem1,
3717 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003718 const CollSeq *pColl,
3719 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003720){
3721 if( pMem1->enc==pColl->enc ){
3722 /* The strings are already in the correct encoding. Call the
3723 ** comparison function directly */
3724 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3725 }else{
3726 int rc;
3727 const void *v1, *v2;
3728 int n1, n2;
3729 Mem c1;
3730 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003731 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3732 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003733 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3734 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3735 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3736 n1 = v1==0 ? 0 : c1.n;
3737 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3738 n2 = v2==0 ? 0 : c2.n;
3739 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
mistachkinfad30392016-02-13 23:43:46 +00003740 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
dan1fed5da2014-02-25 21:01:25 +00003741 sqlite3VdbeMemRelease(&c1);
3742 sqlite3VdbeMemRelease(&c2);
3743 return rc;
3744 }
3745}
3746
3747/*
drh64caee42016-09-09 19:33:00 +00003748** The input pBlob is guaranteed to be a Blob that is not marked
3749** with MEM_Zero. Return true if it could be a zero-blob.
3750*/
drh8aaf7bc2016-09-20 01:19:18 +00003751static int isAllZero(const char *z, int n){
drh64caee42016-09-09 19:33:00 +00003752 int i;
drh8aaf7bc2016-09-20 01:19:18 +00003753 for(i=0; i<n; i++){
3754 if( z[i] ) return 0;
3755 }
3756 return 1;
drh64caee42016-09-09 19:33:00 +00003757}
3758
3759/*
drh982ff722014-09-16 03:24:43 +00003760** Compare two blobs. Return negative, zero, or positive if the first
3761** is less than, equal to, or greater than the second, respectively.
3762** If one blob is a prefix of the other, then the shorter is the lessor.
3763*/
3764static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
drh64caee42016-09-09 19:33:00 +00003765 int c;
3766 int n1 = pB1->n;
3767 int n2 = pB2->n;
3768
3769 /* It is possible to have a Blob value that has some non-zero content
3770 ** followed by zero content. But that only comes up for Blobs formed
3771 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
3772 ** sqlite3MemCompare(). */
3773 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
3774 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
3775
3776 if( (pB1->flags|pB2->flags) & MEM_Zero ){
3777 if( pB1->flags & pB2->flags & MEM_Zero ){
3778 return pB1->u.nZero - pB2->u.nZero;
3779 }else if( pB1->flags & MEM_Zero ){
drh8aaf7bc2016-09-20 01:19:18 +00003780 if( !isAllZero(pB2->z, pB2->n) ) return -1;
drh64caee42016-09-09 19:33:00 +00003781 return pB1->u.nZero - n2;
3782 }else{
drh8aaf7bc2016-09-20 01:19:18 +00003783 if( !isAllZero(pB1->z, pB1->n) ) return +1;
drh64caee42016-09-09 19:33:00 +00003784 return n1 - pB2->u.nZero;
3785 }
3786 }
3787 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
drh982ff722014-09-16 03:24:43 +00003788 if( c ) return c;
drh64caee42016-09-09 19:33:00 +00003789 return n1 - n2;
drh982ff722014-09-16 03:24:43 +00003790}
3791
drh2ab410a2015-11-06 14:59:07 +00003792/*
3793** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
3794** number. Return negative, zero, or positive if the first (i64) is less than,
3795** equal to, or greater than the second (double).
3796*/
3797static int sqlite3IntFloatCompare(i64 i, double r){
3798 if( sizeof(LONGDOUBLE_TYPE)>8 ){
3799 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
3800 if( x<r ) return -1;
3801 if( x>r ) return +1;
3802 return 0;
3803 }else{
3804 i64 y;
3805 double s;
3806 if( r<-9223372036854775808.0 ) return +1;
3807 if( r>9223372036854775807.0 ) return -1;
3808 y = (i64)r;
3809 if( i<y ) return -1;
3810 if( i>y ){
3811 if( y==SMALLEST_INT64 && r>0.0 ) return -1;
3812 return +1;
3813 }
3814 s = (double)i;
3815 if( s<r ) return -1;
3816 if( s>r ) return +1;
3817 return 0;
3818 }
3819}
drh982ff722014-09-16 03:24:43 +00003820
3821/*
dan1fed5da2014-02-25 21:01:25 +00003822** Compare the values contained by the two memory cells, returning
3823** negative, zero or positive if pMem1 is less than, equal to, or greater
3824** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3825** and reals) sorted numerically, followed by text ordered by the collating
3826** sequence pColl and finally blob's ordered by memcmp().
3827**
3828** Two NULL values are considered equal by this function.
3829*/
3830int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003831 int f1, f2;
3832 int combined_flags;
3833
3834 f1 = pMem1->flags;
3835 f2 = pMem2->flags;
3836 combined_flags = f1|f2;
3837 assert( (combined_flags & MEM_RowSet)==0 );
3838
3839 /* If one value is NULL, it is less than the other. If both values
3840 ** are NULL, return 0.
drh8b249a82009-11-16 02:14:00 +00003841 */
dan1fed5da2014-02-25 21:01:25 +00003842 if( combined_flags&MEM_Null ){
3843 return (f2&MEM_Null) - (f1&MEM_Null);
3844 }
3845
drh2ab410a2015-11-06 14:59:07 +00003846 /* At least one of the two values is a number
dan1fed5da2014-02-25 21:01:25 +00003847 */
3848 if( combined_flags&(MEM_Int|MEM_Real) ){
dan1fed5da2014-02-25 21:01:25 +00003849 if( (f1 & f2 & MEM_Int)!=0 ){
3850 if( pMem1->u.i < pMem2->u.i ) return -1;
drh2ab410a2015-11-06 14:59:07 +00003851 if( pMem1->u.i > pMem2->u.i ) return +1;
dan1fed5da2014-02-25 21:01:25 +00003852 return 0;
3853 }
drh2ab410a2015-11-06 14:59:07 +00003854 if( (f1 & f2 & MEM_Real)!=0 ){
3855 if( pMem1->u.r < pMem2->u.r ) return -1;
3856 if( pMem1->u.r > pMem2->u.r ) return +1;
3857 return 0;
3858 }
3859 if( (f1&MEM_Int)!=0 ){
3860 if( (f2&MEM_Real)!=0 ){
3861 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
3862 }else{
3863 return -1;
3864 }
3865 }
dan1fed5da2014-02-25 21:01:25 +00003866 if( (f1&MEM_Real)!=0 ){
drh2ab410a2015-11-06 14:59:07 +00003867 if( (f2&MEM_Int)!=0 ){
3868 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
3869 }else{
3870 return -1;
3871 }
dan1fed5da2014-02-25 21:01:25 +00003872 }
drh2ab410a2015-11-06 14:59:07 +00003873 return +1;
dan1fed5da2014-02-25 21:01:25 +00003874 }
3875
3876 /* If one value is a string and the other is a blob, the string is less.
3877 ** If both are strings, compare using the collating functions.
3878 */
3879 if( combined_flags&MEM_Str ){
3880 if( (f1 & MEM_Str)==0 ){
3881 return 1;
3882 }
3883 if( (f2 & MEM_Str)==0 ){
3884 return -1;
3885 }
3886
drhe5520e22015-12-31 04:34:26 +00003887 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
dan1fed5da2014-02-25 21:01:25 +00003888 assert( pMem1->enc==SQLITE_UTF8 ||
3889 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3890
3891 /* The collation sequence must be defined at this point, even if
3892 ** the user deletes the collation sequence after the vdbe program is
3893 ** compiled (this was not always the case).
3894 */
3895 assert( !pColl || pColl->xCmp );
3896
3897 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003898 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003899 }
3900 /* If a NULL pointer was passed as the collate function, fall through
3901 ** to the blob case and use memcmp(). */
3902 }
3903
3904 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003905 return sqlite3BlobCompare(pMem1, pMem2);
drh1e968a02008-03-25 00:22:21 +00003906}
dan1fed5da2014-02-25 21:01:25 +00003907
3908
dan3833e932014-03-01 19:44:56 +00003909/*
3910** The first argument passed to this function is a serial-type that
3911** corresponds to an integer - all values between 1 and 9 inclusive
3912** except 7. The second points to a buffer containing an integer value
3913** serialized according to serial_type. This function deserializes
3914** and returns the value.
3915*/
dan3b9330f2014-02-27 20:44:18 +00003916static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003917 u32 y;
dan3833e932014-03-01 19:44:56 +00003918 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003919 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003920 case 0:
dan3b9330f2014-02-27 20:44:18 +00003921 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003922 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003923 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003924 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003925 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003926 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003927 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003928 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003929 return THREE_BYTE_INT(aKey);
3930 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003931 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003932 y = FOUR_BYTE_UINT(aKey);
3933 return (i64)*(int*)&y;
3934 }
dan3b9330f2014-02-27 20:44:18 +00003935 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003936 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003937 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
danielk1977a7a8e142008-02-13 18:25:27 +00003938 }
dan3b9330f2014-02-27 20:44:18 +00003939 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003940 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003941 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003942 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3943 return (i64)*(i64*)&x;
danielk19779a96b662007-11-29 17:05:18 +00003944 }
dan3b9330f2014-02-27 20:44:18 +00003945 }
danielk19779a96b662007-11-29 17:05:18 +00003946
dan3b9330f2014-02-27 20:44:18 +00003947 return (serial_type - 8);
danielk1977eb015e02004-05-18 01:31:14 +00003948}
danielk1977eb015e02004-05-18 01:31:14 +00003949
dan3833e932014-03-01 19:44:56 +00003950/*
3951** This function compares the two table rows or index records
3952** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3953** or positive integer if key1 is less than, equal to or
3954** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003955** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003956** key must be a parsed key such as obtained from
3957** sqlite3VdbeParseRecord.
3958**
3959** If argument bSkip is non-zero, it is assumed that the caller has already
3960** determined that the first fields of the keys are equal.
3961**
3962** Key1 and Key2 do not have to contain the same number of fields. If all
3963** fields that appear in both keys are equal, then pPKey2->default_rc is
3964** returned.
drha1f7c0a2014-03-28 03:12:48 +00003965**
dan38fdead2014-04-01 10:19:02 +00003966** If database corruption is discovered, set pPKey2->errCode to
3967** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3968** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3969** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003970*/
dan7004f3f2015-03-30 12:06:26 +00003971int sqlite3VdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003972 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003973 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003974 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003975){
dan3833e932014-03-01 19:44:56 +00003976 u32 d1; /* Offset into aKey[] of next data element */
3977 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003978 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003979 u32 idx1; /* Offset of first type in header */
3980 int rc = 0; /* Return value */
3981 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003982 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3983 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3984 Mem mem1;
3985
dan3833e932014-03-01 19:44:56 +00003986 /* If bSkip is true, then the caller has already determined that the first
3987 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00003988 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00003989 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00003990 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00003991 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00003992 szHdr1 = aKey1[0];
3993 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00003994 i = 1;
3995 pRhs++;
dan3833e932014-03-01 19:44:56 +00003996 }else{
3997 idx1 = getVarint32(aKey1, szHdr1);
3998 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00003999 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004000 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004001 return 0; /* Corruption */
4002 }
dan3833e932014-03-01 19:44:56 +00004003 i = 0;
dan3b9330f2014-02-27 20:44:18 +00004004 }
4005
drh17bcb102014-09-18 21:25:33 +00004006 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00004007 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
4008 || CORRUPT_DB );
4009 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
4010 assert( pPKey2->pKeyInfo->nField>0 );
4011 assert( idx1<=szHdr1 || CORRUPT_DB );
4012 do{
dan1fed5da2014-02-25 21:01:25 +00004013 u32 serial_type;
4014
4015 /* RHS is an integer */
4016 if( pRhs->flags & MEM_Int ){
4017 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00004018 testcase( serial_type==12 );
danb95e1192015-05-26 20:31:20 +00004019 if( serial_type>=10 ){
dan1fed5da2014-02-25 21:01:25 +00004020 rc = +1;
4021 }else if( serial_type==0 ){
4022 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00004023 }else if( serial_type==7 ){
dan1fed5da2014-02-25 21:01:25 +00004024 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh2ab410a2015-11-06 14:59:07 +00004025 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
dan3b9330f2014-02-27 20:44:18 +00004026 }else{
4027 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4028 i64 rhs = pRhs->u.i;
4029 if( lhs<rhs ){
4030 rc = -1;
4031 }else if( lhs>rhs ){
4032 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00004033 }
4034 }
4035 }
4036
4037 /* RHS is real */
4038 else if( pRhs->flags & MEM_Real ){
4039 serial_type = aKey1[idx1];
dancc7aa1f2015-05-26 20:07:32 +00004040 if( serial_type>=10 ){
4041 /* Serial types 12 or greater are strings and blobs (greater than
4042 ** numbers). Types 10 and 11 are currently "reserved for future
4043 ** use", so it doesn't really matter what the results of comparing
4044 ** them to numberic values are. */
dan1fed5da2014-02-25 21:01:25 +00004045 rc = +1;
4046 }else if( serial_type==0 ){
4047 rc = -1;
4048 }else{
dan1fed5da2014-02-25 21:01:25 +00004049 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4050 if( serial_type==7 ){
drh2ab410a2015-11-06 14:59:07 +00004051 if( mem1.u.r<pRhs->u.r ){
4052 rc = -1;
4053 }else if( mem1.u.r>pRhs->u.r ){
4054 rc = +1;
4055 }
dan1fed5da2014-02-25 21:01:25 +00004056 }else{
drh2ab410a2015-11-06 14:59:07 +00004057 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
dan1fed5da2014-02-25 21:01:25 +00004058 }
4059 }
4060 }
4061
4062 /* RHS is a string */
4063 else if( pRhs->flags & MEM_Str ){
4064 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00004065 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00004066 if( serial_type<12 ){
4067 rc = -1;
4068 }else if( !(serial_type & 0x01) ){
4069 rc = +1;
4070 }else{
4071 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00004072 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4073 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00004074 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004075 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004076 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00004077 }else if( pKeyInfo->aColl[i] ){
4078 mem1.enc = pKeyInfo->enc;
4079 mem1.db = pKeyInfo->db;
4080 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00004081 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00004082 rc = vdbeCompareMemString(
4083 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4084 );
dan1fed5da2014-02-25 21:01:25 +00004085 }else{
4086 int nCmp = MIN(mem1.n, pRhs->n);
4087 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4088 if( rc==0 ) rc = mem1.n - pRhs->n;
4089 }
4090 }
4091 }
4092
4093 /* RHS is a blob */
4094 else if( pRhs->flags & MEM_Blob ){
drh8aaf7bc2016-09-20 01:19:18 +00004095 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
dan1fed5da2014-02-25 21:01:25 +00004096 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00004097 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00004098 if( serial_type<12 || (serial_type & 0x01) ){
4099 rc = -1;
4100 }else{
4101 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00004102 testcase( (d1+nStr)==(unsigned)nKey1 );
4103 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00004104 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004105 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004106 return 0; /* Corruption */
drh8aaf7bc2016-09-20 01:19:18 +00004107 }else if( pRhs->flags & MEM_Zero ){
4108 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4109 rc = 1;
4110 }else{
4111 rc = nStr - pRhs->u.nZero;
4112 }
dan1fed5da2014-02-25 21:01:25 +00004113 }else{
4114 int nCmp = MIN(nStr, pRhs->n);
4115 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4116 if( rc==0 ) rc = nStr - pRhs->n;
4117 }
4118 }
4119 }
4120
4121 /* RHS is null */
4122 else{
4123 serial_type = aKey1[idx1];
4124 rc = (serial_type!=0);
4125 }
4126
4127 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00004128 if( pKeyInfo->aSortOrder[i] ){
4129 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00004130 }
drh79211e12014-05-02 17:33:16 +00004131 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00004132 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00004133 return rc;
4134 }
4135
4136 i++;
dan3b9330f2014-02-27 20:44:18 +00004137 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00004138 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4139 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00004140 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00004141
4142 /* No memory allocation is ever used on mem1. Prove this using
4143 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00004144 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00004145 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00004146
4147 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00004148 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00004149 ** value. */
dan3833e932014-03-01 19:44:56 +00004150 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00004151 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00004152 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00004153 );
drh70528d72015-11-05 20:25:09 +00004154 pPKey2->eqSeen = 1;
dan1fed5da2014-02-25 21:01:25 +00004155 return pPKey2->default_rc;
4156}
drh75179de2014-09-16 14:37:35 +00004157int sqlite3VdbeRecordCompare(
4158 int nKey1, const void *pKey1, /* Left key */
4159 UnpackedRecord *pPKey2 /* Right key */
4160){
dan7004f3f2015-03-30 12:06:26 +00004161 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
drh75179de2014-09-16 14:37:35 +00004162}
4163
dan1fed5da2014-02-25 21:01:25 +00004164
dan3833e932014-03-01 19:44:56 +00004165/*
4166** This function is an optimized version of sqlite3VdbeRecordCompare()
4167** that (a) the first field of pPKey2 is an integer, and (b) the
4168** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4169** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00004170**
4171** To avoid concerns about buffer overreads, this routine is only used
4172** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00004173*/
dan3b9330f2014-02-27 20:44:18 +00004174static int vdbeRecordCompareInt(
4175 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004176 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004177){
dan9b8afef2014-03-03 20:48:50 +00004178 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00004179 int serial_type = ((const u8*)pKey1)[1];
4180 int res;
drhf926d1e2014-03-04 04:04:33 +00004181 u32 y;
4182 u64 x;
drh5f6eb1a2016-09-15 00:04:46 +00004183 i64 v;
dan3b9330f2014-02-27 20:44:18 +00004184 i64 lhs;
4185
drhe1bb8022015-01-19 19:48:52 +00004186 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
drhe2ac5062014-03-26 12:02:38 +00004187 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00004188 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00004189 case 1: { /* 1-byte signed integer */
4190 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004191 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004192 break;
4193 }
drhf926d1e2014-03-04 04:04:33 +00004194 case 2: { /* 2-byte signed integer */
4195 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004196 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004197 break;
4198 }
4199 case 3: { /* 3-byte signed integer */
4200 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004201 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004202 break;
4203 }
4204 case 4: { /* 4-byte signed integer */
4205 y = FOUR_BYTE_UINT(aKey);
4206 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00004207 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004208 break;
4209 }
4210 case 5: { /* 6-byte signed integer */
4211 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00004212 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00004213 break;
4214 }
4215 case 6: { /* 8-byte signed integer */
4216 x = FOUR_BYTE_UINT(aKey);
4217 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4218 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00004219 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00004220 break;
4221 }
dan3b9330f2014-02-27 20:44:18 +00004222 case 8:
4223 lhs = 0;
4224 break;
dan3b9330f2014-02-27 20:44:18 +00004225 case 9:
4226 lhs = 1;
4227 break;
4228
dan063d4a02014-02-28 09:48:30 +00004229 /* This case could be removed without changing the results of running
4230 ** this code. Including it causes gcc to generate a faster switch
4231 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00004232 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00004233 ** (as gcc is clever enough to combine the two like cases). Other
4234 ** compilers might be similar. */
4235 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00004236 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00004237
dan3b9330f2014-02-27 20:44:18 +00004238 default:
drh75179de2014-09-16 14:37:35 +00004239 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00004240 }
4241
drh5f6eb1a2016-09-15 00:04:46 +00004242 v = pPKey2->aMem[0].u.i;
dan3b9330f2014-02-27 20:44:18 +00004243 if( v>lhs ){
4244 res = pPKey2->r1;
4245 }else if( v<lhs ){
4246 res = pPKey2->r2;
4247 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00004248 /* The first fields of the two keys are equal. Compare the trailing
4249 ** fields. */
dan7004f3f2015-03-30 12:06:26 +00004250 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004251 }else{
dan063d4a02014-02-28 09:48:30 +00004252 /* The first fields of the two keys are equal and there are no trailing
4253 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00004254 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004255 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004256 }
4257
drh79211e12014-05-02 17:33:16 +00004258 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00004259 return res;
4260}
4261
dan3833e932014-03-01 19:44:56 +00004262/*
4263** This function is an optimized version of sqlite3VdbeRecordCompare()
4264** that (a) the first field of pPKey2 is a string, that (b) the first field
4265** uses the collation sequence BINARY and (c) that the size-of-header varint
4266** at the start of (pKey1/nKey1) fits in a single byte.
4267*/
dan3b9330f2014-02-27 20:44:18 +00004268static int vdbeRecordCompareString(
4269 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00004270 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00004271){
4272 const u8 *aKey1 = (const u8*)pKey1;
4273 int serial_type;
4274 int res;
4275
drh2ab410a2015-11-06 14:59:07 +00004276 assert( pPKey2->aMem[0].flags & MEM_Str );
drhe1bb8022015-01-19 19:48:52 +00004277 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
dan3b9330f2014-02-27 20:44:18 +00004278 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00004279 if( serial_type<12 ){
4280 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4281 }else if( !(serial_type & 0x01) ){
4282 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4283 }else{
4284 int nCmp;
4285 int nStr;
dan3833e932014-03-01 19:44:56 +00004286 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00004287
4288 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00004289 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00004290 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00004291 return 0; /* Corruption */
4292 }
dan3b9330f2014-02-27 20:44:18 +00004293 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00004294 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00004295
4296 if( res==0 ){
4297 res = nStr - pPKey2->aMem[0].n;
4298 if( res==0 ){
4299 if( pPKey2->nField>1 ){
dan7004f3f2015-03-30 12:06:26 +00004300 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00004301 }else{
4302 res = pPKey2->default_rc;
drh70528d72015-11-05 20:25:09 +00004303 pPKey2->eqSeen = 1;
dan3b9330f2014-02-27 20:44:18 +00004304 }
4305 }else if( res>0 ){
4306 res = pPKey2->r2;
4307 }else{
4308 res = pPKey2->r1;
4309 }
4310 }else if( res>0 ){
4311 res = pPKey2->r2;
4312 }else{
4313 res = pPKey2->r1;
4314 }
4315 }
4316
drh66141812014-06-30 20:25:03 +00004317 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00004318 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00004319 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00004320 );
4321 return res;
4322}
4323
dan3833e932014-03-01 19:44:56 +00004324/*
4325** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4326** suitable for comparing serialized records to the unpacked record passed
4327** as the only argument.
4328*/
dan1fed5da2014-02-25 21:01:25 +00004329RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00004330 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4331 ** that the size-of-header varint that occurs at the start of each record
4332 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4333 ** also assumes that it is safe to overread a buffer by at least the
4334 ** maximum possible legal header size plus 8 bytes. Because there is
4335 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4336 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4337 ** limit the size of the header to 64 bytes in cases where the first field
4338 ** is an integer.
4339 **
4340 ** The easiest way to enforce this limit is to consider only records with
4341 ** 13 fields or less. If the first field is an integer, the maximum legal
4342 ** header size is (12*5 + 1 + 1) bytes. */
4343 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00004344 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00004345 if( p->pKeyInfo->aSortOrder[0] ){
4346 p->r1 = 1;
4347 p->r2 = -1;
4348 }else{
4349 p->r1 = -1;
4350 p->r2 = 1;
4351 }
dan1fed5da2014-02-25 21:01:25 +00004352 if( (flags & MEM_Int) ){
4353 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00004354 }
drhb6e8fd12014-03-06 01:56:33 +00004355 testcase( flags & MEM_Real );
4356 testcase( flags & MEM_Null );
4357 testcase( flags & MEM_Blob );
4358 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
4359 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00004360 return vdbeRecordCompareString;
4361 }
4362 }
dan3b9330f2014-02-27 20:44:18 +00004363
dan3833e932014-03-01 19:44:56 +00004364 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00004365}
danielk1977eb015e02004-05-18 01:31:14 +00004366
4367/*
drh7a224de2004-06-02 01:22:02 +00004368** pCur points at an index entry created using the OP_MakeRecord opcode.
4369** Read the rowid (the last field in the record) and store it in *rowid.
4370** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00004371**
4372** pCur might be pointing to text obtained from a corrupt database file.
4373** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00004374*/
drh35f6b932009-06-23 14:15:04 +00004375int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00004376 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004377 int rc;
drhd5788202004-05-28 08:21:05 +00004378 u32 szHdr; /* Size of the header */
4379 u32 typeRowid; /* Serial type of the rowid */
4380 u32 lenRowid; /* Size of the rowid */
4381 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00004382
drh88a003e2008-12-11 16:17:03 +00004383 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00004384 ** than 2GiB are support - anything large must be database corruption.
4385 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00004386 ** this code can safely assume that nCellKey is 32-bits
4387 */
drhea8ffdf2009-07-22 00:35:23 +00004388 assert( sqlite3BtreeCursorIsValid(pCur) );
drha7c90c42016-06-04 20:37:10 +00004389 nCellKey = sqlite3BtreePayloadSize(pCur);
drh7b746032009-06-26 12:15:22 +00004390 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00004391
4392 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00004393 sqlite3VdbeMemInit(&m, db, 0);
drhcb3cabd2016-11-25 19:18:28 +00004394 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
drhd5788202004-05-28 08:21:05 +00004395 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00004396 return rc;
4397 }
drh88a003e2008-12-11 16:17:03 +00004398
4399 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00004400 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00004401 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00004402 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00004403 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00004404 goto idx_rowid_corruption;
4405 }
4406
4407 /* The last field of the index should be an integer - the ROWID.
4408 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00004409 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00004410 testcase( typeRowid==1 );
4411 testcase( typeRowid==2 );
4412 testcase( typeRowid==3 );
4413 testcase( typeRowid==4 );
4414 testcase( typeRowid==5 );
4415 testcase( typeRowid==6 );
4416 testcase( typeRowid==8 );
4417 testcase( typeRowid==9 );
4418 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4419 goto idx_rowid_corruption;
4420 }
drhc5ef7152015-06-28 02:58:51 +00004421 lenRowid = sqlite3SmallTypeSizes[typeRowid];
drheeb844a2009-08-08 18:01:07 +00004422 testcase( (u32)m.n==szHdr+lenRowid );
4423 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00004424 goto idx_rowid_corruption;
4425 }
4426
4427 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00004428 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00004429 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00004430 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004431 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00004432
4433 /* Jump here if database corruption is detected after m has been
4434 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4435idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00004436 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00004437 sqlite3VdbeMemRelease(&m);
4438 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004439}
4440
drh7cf6e4d2004-05-19 14:56:55 +00004441/*
drh5f82e3c2009-07-06 00:44:08 +00004442** Compare the key of the index entry that cursor pC is pointing to against
4443** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00004444** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00004445** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00004446**
drh5f82e3c2009-07-06 00:44:08 +00004447** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00004448** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00004449** is ignored as well. Hence, this routine only compares the prefixes
4450** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00004451*/
danielk1977183f9f72004-05-13 05:20:26 +00004452int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00004453 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00004454 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00004455 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00004456 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00004457){
drh61fc5952007-04-01 23:49:51 +00004458 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00004459 int rc;
drhc960dcb2015-11-20 19:22:01 +00004460 BtCursor *pCur;
drhd5788202004-05-28 08:21:05 +00004461 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00004462
drhc960dcb2015-11-20 19:22:01 +00004463 assert( pC->eCurType==CURTYPE_BTREE );
4464 pCur = pC->uc.pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004465 assert( sqlite3BtreeCursorIsValid(pCur) );
drha7c90c42016-06-04 20:37:10 +00004466 nCellKey = sqlite3BtreePayloadSize(pCur);
drh56689692014-03-03 19:29:28 +00004467 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004468 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004469 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004470 *res = 0;
drh9978c972010-02-23 17:36:32 +00004471 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004472 }
drhd3b74202014-09-17 16:41:15 +00004473 sqlite3VdbeMemInit(&m, db, 0);
drhcb3cabd2016-11-25 19:18:28 +00004474 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, &m);
drhec1fc802008-08-13 14:07:40 +00004475 if( rc ){
drhd5788202004-05-28 08:21:05 +00004476 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004477 }
drh75179de2014-09-16 14:37:35 +00004478 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004479 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004480 return SQLITE_OK;
4481}
danielk1977b28af712004-06-21 06:50:26 +00004482
4483/*
4484** This routine sets the value to be returned by subsequent calls to
4485** sqlite3_changes() on the database handle 'db'.
4486*/
4487void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004488 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004489 db->nChange = nChange;
4490 db->nTotalChange += nChange;
4491}
4492
4493/*
4494** Set a flag in the vdbe to update the change counter when it is finalised
4495** or reset.
4496*/
drh4794f732004-11-05 17:17:50 +00004497void sqlite3VdbeCountChanges(Vdbe *v){
4498 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004499}
drhd89bd002005-01-22 03:03:54 +00004500
4501/*
4502** Mark every prepared statement associated with a database connection
4503** as expired.
4504**
4505** An expired statement means that recompilation of the statement is
4506** recommend. Statements expire when things happen that make their
4507** programs obsolete. Removing user-defined functions or collating
4508** sequences, or changing an authorization function are the types of
4509** things that make prepared statements obsolete.
4510*/
4511void sqlite3ExpirePreparedStatements(sqlite3 *db){
4512 Vdbe *p;
4513 for(p = db->pVdbe; p; p=p->pNext){
4514 p->expired = 1;
4515 }
4516}
danielk1977aee18ef2005-03-09 12:26:50 +00004517
4518/*
4519** Return the database associated with the Vdbe.
4520*/
4521sqlite3 *sqlite3VdbeDb(Vdbe *v){
4522 return v->db;
4523}
dan937d0de2009-10-15 18:35:38 +00004524
4525/*
4526** Return a pointer to an sqlite3_value structure containing the value bound
4527** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4528** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4529** constants) to the value before returning it.
4530**
4531** The returned value must be freed by the caller using sqlite3ValueFree().
4532*/
drhcf0fd4a2013-08-01 12:21:58 +00004533sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004534 assert( iVar>0 );
4535 if( v ){
4536 Mem *pMem = &v->aVar[iVar-1];
4537 if( 0==(pMem->flags & MEM_Null) ){
4538 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4539 if( pRet ){
4540 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4541 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004542 }
4543 return pRet;
4544 }
4545 }
4546 return 0;
4547}
4548
4549/*
4550** Configure SQL variable iVar so that binding a new value to it signals
4551** to sqlite3_reoptimize() that re-preparing the statement may result
4552** in a better query plan.
4553*/
dan1d2ce4f2009-10-19 18:11:09 +00004554void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004555 assert( iVar>0 );
4556 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00004557 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00004558 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004559 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004560 }
4561}
dan46c47d42011-03-01 18:42:07 +00004562
dan016f7812013-08-21 17:35:48 +00004563#ifndef SQLITE_OMIT_VIRTUALTABLE
4564/*
4565** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4566** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4567** in memory obtained from sqlite3DbMalloc).
4568*/
4569void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
dan5c3aa052016-01-20 08:47:55 +00004570 if( pVtab->zErrMsg ){
4571 sqlite3 *db = p->db;
4572 sqlite3DbFree(db, p->zErrMsg);
4573 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4574 sqlite3_free(pVtab->zErrMsg);
4575 pVtab->zErrMsg = 0;
4576 }
dan016f7812013-08-21 17:35:48 +00004577}
4578#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh32683532013-08-22 15:07:08 +00004579
drh9b1c62d2011-03-30 21:04:43 +00004580#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan93bca692011-09-14 19:41:44 +00004581
4582/*
4583** If the second argument is not NULL, release any allocations associated
4584** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
4585** structure itself, using sqlite3DbFree().
4586**
4587** This function is used to free UnpackedRecord structures allocated by
4588** the vdbeUnpackRecord() function found in vdbeapi.c.
4589*/
4590static void vdbeFreeUnpacked(sqlite3 *db, UnpackedRecord *p){
4591 if( p ){
4592 int i;
4593 for(i=0; i<p->nField; i++){
4594 Mem *pMem = &p->aMem[i];
4595 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
4596 }
4597 sqlite3DbFree(db, p);
4598 }
4599}
drh74c33022016-03-30 12:56:55 +00004600#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
dan93bca692011-09-14 19:41:44 +00004601
drh74c33022016-03-30 12:56:55 +00004602#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004603/*
4604** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
4605** then cursor passed as the second argument should point to the row about
4606** to be update or deleted. If the application calls sqlite3_preupdate_old(),
4607** the required value will be read from the row the cursor points to.
4608*/
4609void sqlite3VdbePreUpdateHook(
4610 Vdbe *v, /* Vdbe pre-update hook is invoked by */
4611 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
4612 int op, /* SQLITE_INSERT, UPDATE or DELETE */
4613 const char *zDb, /* Database name */
dan319eeb72011-03-19 08:38:50 +00004614 Table *pTab, /* Modified table */
dan46c47d42011-03-01 18:42:07 +00004615 i64 iKey1, /* Initial key value */
dan37db03b2011-03-16 19:59:18 +00004616 int iReg /* Register for new.* record */
dan46c47d42011-03-01 18:42:07 +00004617){
4618 sqlite3 *db = v->db;
dan37db03b2011-03-16 19:59:18 +00004619 i64 iKey2;
dan46c47d42011-03-01 18:42:07 +00004620 PreUpdate preupdate;
dan319eeb72011-03-19 08:38:50 +00004621 const char *zTbl = pTab->zName;
drhc4645da2012-09-28 13:05:48 +00004622 static const u8 fakeSortOrder = 0;
dan46c47d42011-03-01 18:42:07 +00004623
drh304637c2011-03-18 16:47:27 +00004624 assert( db->pPreUpdate==0 );
4625 memset(&preupdate, 0, sizeof(PreUpdate));
dan37db03b2011-03-16 19:59:18 +00004626 if( op==SQLITE_UPDATE ){
4627 iKey2 = v->aMem[iReg].u.i;
4628 }else{
4629 iKey2 = iKey1;
4630 }
4631
dane437ca52011-07-11 19:45:38 +00004632 assert( pCsr->nField==pTab->nCol
4633 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
4634 );
4635
dan37db03b2011-03-16 19:59:18 +00004636 preupdate.v = v;
dan46c47d42011-03-01 18:42:07 +00004637 preupdate.pCsr = pCsr;
4638 preupdate.op = op;
dan37db03b2011-03-16 19:59:18 +00004639 preupdate.iNewReg = iReg;
dan4fccf432011-03-08 19:22:50 +00004640 preupdate.keyinfo.db = db;
4641 preupdate.keyinfo.enc = ENC(db);
dane437ca52011-07-11 19:45:38 +00004642 preupdate.keyinfo.nField = pTab->nCol;
drh498dcae2013-03-13 11:42:00 +00004643 preupdate.keyinfo.aSortOrder = (u8*)&fakeSortOrder;
dan319eeb72011-03-19 08:38:50 +00004644 preupdate.iKey1 = iKey1;
4645 preupdate.iKey2 = iKey2;
dane43635a2016-10-21 21:21:45 +00004646 preupdate.pTab = pTab;
dan319eeb72011-03-19 08:38:50 +00004647
dan46c47d42011-03-01 18:42:07 +00004648 db->pPreUpdate = &preupdate;
4649 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
4650 db->pPreUpdate = 0;
4651 sqlite3DbFree(db, preupdate.aRecord);
dan93bca692011-09-14 19:41:44 +00004652 vdbeFreeUnpacked(db, preupdate.pUnpacked);
4653 vdbeFreeUnpacked(db, preupdate.pNewUnpacked);
dan37db03b2011-03-16 19:59:18 +00004654 if( preupdate.aNew ){
4655 int i;
4656 for(i=0; i<pCsr->nField; i++){
4657 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
4658 }
drhea022cf2011-03-18 15:13:31 +00004659 sqlite3DbFree(db, preupdate.aNew);
dan37db03b2011-03-16 19:59:18 +00004660 }
dan46c47d42011-03-01 18:42:07 +00004661}
drh9b1c62d2011-03-30 21:04:43 +00004662#endif /* SQLITE_ENABLE_PREUPDATE_HOOK */