blob: 0cd1a28778535a45228ff807e9a07f3f75fa1bc3 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000353 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
drh5e08d0f2016-06-04 21:05:54 +0000453
454/* Verify that the cursor and the BtShared agree about what is the current
455** database connetion. This is important in shared-cache mode. If the database
456** connection pointers get out-of-sync, it is possible for routines like
457** btreeInitPage() to reference an stale connection pointer that references a
458** a connection that has already closed. This routine is used inside assert()
459** statements only and for the purpose of double-checking that the btree code
460** does keep the database connection pointers up-to-date.
461*/
dan7a2347e2016-01-07 16:43:54 +0000462static int cursorOwnsBtShared(BtCursor *p){
463 assert( cursorHoldsMutex(p) );
464 return (p->pBtree->db==p->pBt->db);
465}
drh1fee73e2007-08-29 04:00:57 +0000466#endif
467
danielk197792d4d7a2007-05-04 12:05:56 +0000468/*
dan5a500af2014-03-11 20:33:04 +0000469** Invalidate the overflow cache of the cursor passed as the first argument.
470** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000471*/
drh036dbec2014-03-11 23:40:44 +0000472#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000473
474/*
475** Invalidate the overflow page-list cache for all cursors opened
476** on the shared btree structure pBt.
477*/
478static void invalidateAllOverflowCache(BtShared *pBt){
479 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000481 for(p=pBt->pCursor; p; p=p->pNext){
482 invalidateOverflowCache(p);
483 }
484}
danielk197796d48e92009-06-29 06:00:37 +0000485
dan5a500af2014-03-11 20:33:04 +0000486#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000487/*
488** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000489** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000490** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000491**
492** If argument isClearTable is true, then the entire contents of the
493** table is about to be deleted. In this case invalidate all incrblob
494** cursors open on any row within the table with root-page pgnoRoot.
495**
496** Otherwise, if argument isClearTable is false, then the row with
497** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000498** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000499*/
500static void invalidateIncrblobCursors(
501 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000502 i64 iRow, /* The rowid that might be changing */
503 int isClearTable /* True if all rows are being deleted */
504){
505 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000506 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000507 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000508 pBtree->hasIncrblobCur = 0;
509 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
510 if( (p->curFlags & BTCF_Incrblob)!=0 ){
511 pBtree->hasIncrblobCur = 1;
512 if( isClearTable || p->info.nKey==iRow ){
513 p->eState = CURSOR_INVALID;
514 }
danielk197796d48e92009-06-29 06:00:37 +0000515 }
516 }
517}
518
danielk197792d4d7a2007-05-04 12:05:56 +0000519#else
dan5a500af2014-03-11 20:33:04 +0000520 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000521 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000522#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000523
drh980b1a72006-08-16 16:42:48 +0000524/*
danielk1977bea2a942009-01-20 17:06:27 +0000525** Set bit pgno of the BtShared.pHasContent bitvec. This is called
526** when a page that previously contained data becomes a free-list leaf
527** page.
528**
529** The BtShared.pHasContent bitvec exists to work around an obscure
530** bug caused by the interaction of two useful IO optimizations surrounding
531** free-list leaf pages:
532**
533** 1) When all data is deleted from a page and the page becomes
534** a free-list leaf page, the page is not written to the database
535** (as free-list leaf pages contain no meaningful data). Sometimes
536** such a page is not even journalled (as it will not be modified,
537** why bother journalling it?).
538**
539** 2) When a free-list leaf page is reused, its content is not read
540** from the database or written to the journal file (why should it
541** be, if it is not at all meaningful?).
542**
543** By themselves, these optimizations work fine and provide a handy
544** performance boost to bulk delete or insert operations. However, if
545** a page is moved to the free-list and then reused within the same
546** transaction, a problem comes up. If the page is not journalled when
547** it is moved to the free-list and it is also not journalled when it
548** is extracted from the free-list and reused, then the original data
549** may be lost. In the event of a rollback, it may not be possible
550** to restore the database to its original configuration.
551**
552** The solution is the BtShared.pHasContent bitvec. Whenever a page is
553** moved to become a free-list leaf page, the corresponding bit is
554** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000555** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000556** set in BtShared.pHasContent. The contents of the bitvec are cleared
557** at the end of every transaction.
558*/
559static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
560 int rc = SQLITE_OK;
561 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000562 assert( pgno<=pBt->nPage );
563 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000564 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000565 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000566 }
567 }
568 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
569 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
570 }
571 return rc;
572}
573
574/*
575** Query the BtShared.pHasContent vector.
576**
577** This function is called when a free-list leaf page is removed from the
578** free-list for reuse. It returns false if it is safe to retrieve the
579** page from the pager layer with the 'no-content' flag set. True otherwise.
580*/
581static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
582 Bitvec *p = pBt->pHasContent;
583 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
584}
585
586/*
587** Clear (destroy) the BtShared.pHasContent bitvec. This should be
588** invoked at the conclusion of each write-transaction.
589*/
590static void btreeClearHasContent(BtShared *pBt){
591 sqlite3BitvecDestroy(pBt->pHasContent);
592 pBt->pHasContent = 0;
593}
594
595/*
drh138eeeb2013-03-27 03:15:23 +0000596** Release all of the apPage[] pages for a cursor.
597*/
598static void btreeReleaseAllCursorPages(BtCursor *pCur){
599 int i;
600 for(i=0; i<=pCur->iPage; i++){
601 releasePage(pCur->apPage[i]);
602 pCur->apPage[i] = 0;
603 }
604 pCur->iPage = -1;
605}
606
danf0ee1d32015-09-12 19:26:11 +0000607/*
608** The cursor passed as the only argument must point to a valid entry
609** when this function is called (i.e. have eState==CURSOR_VALID). This
610** function saves the current cursor key in variables pCur->nKey and
611** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
612** code otherwise.
613**
614** If the cursor is open on an intkey table, then the integer key
615** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
616** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
617** set to point to a malloced buffer pCur->nKey bytes in size containing
618** the key.
619*/
620static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000621 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000622 assert( CURSOR_VALID==pCur->eState );
623 assert( 0==pCur->pKey );
624 assert( cursorHoldsMutex(pCur) );
625
drha7c90c42016-06-04 20:37:10 +0000626 if( pCur->curIntKey ){
627 /* Only the rowid is required for a table btree */
628 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
629 }else{
630 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000631 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000632 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000633 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000634 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000635 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000636 if( rc==SQLITE_OK ){
637 pCur->pKey = pKey;
638 }else{
639 sqlite3_free(pKey);
640 }
641 }else{
mistachkinfad30392016-02-13 23:43:46 +0000642 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000643 }
644 }
645 assert( !pCur->curIntKey || !pCur->pKey );
646 return rc;
647}
drh138eeeb2013-03-27 03:15:23 +0000648
649/*
drh980b1a72006-08-16 16:42:48 +0000650** Save the current cursor position in the variables BtCursor.nKey
651** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000652**
653** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
654** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000655*/
656static int saveCursorPosition(BtCursor *pCur){
657 int rc;
658
drhd2f83132015-03-25 17:35:01 +0000659 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000660 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000661 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000662
drhd2f83132015-03-25 17:35:01 +0000663 if( pCur->eState==CURSOR_SKIPNEXT ){
664 pCur->eState = CURSOR_VALID;
665 }else{
666 pCur->skipNext = 0;
667 }
drh980b1a72006-08-16 16:42:48 +0000668
danf0ee1d32015-09-12 19:26:11 +0000669 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000670 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000671 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000672 pCur->eState = CURSOR_REQUIRESEEK;
673 }
674
dane755e102015-09-30 12:59:12 +0000675 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000676 return rc;
677}
678
drh637f3d82014-08-22 22:26:07 +0000679/* Forward reference */
680static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
681
drh980b1a72006-08-16 16:42:48 +0000682/*
drh0ee3dbe2009-10-16 15:05:18 +0000683** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000684** the table with root-page iRoot. "Saving the cursor position" means that
685** the location in the btree is remembered in such a way that it can be
686** moved back to the same spot after the btree has been modified. This
687** routine is called just before cursor pExcept is used to modify the
688** table, for example in BtreeDelete() or BtreeInsert().
689**
drh27fb7462015-06-30 02:47:36 +0000690** If there are two or more cursors on the same btree, then all such
691** cursors should have their BTCF_Multiple flag set. The btreeCursor()
692** routine enforces that rule. This routine only needs to be called in
693** the uncommon case when pExpect has the BTCF_Multiple flag set.
694**
695** If pExpect!=NULL and if no other cursors are found on the same root-page,
696** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
697** pointless call to this routine.
698**
drh637f3d82014-08-22 22:26:07 +0000699** Implementation note: This routine merely checks to see if any cursors
700** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
701** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000702*/
703static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
704 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000705 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000706 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000707 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000708 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
709 }
drh27fb7462015-06-30 02:47:36 +0000710 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
711 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
712 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000713}
714
715/* This helper routine to saveAllCursors does the actual work of saving
716** the cursors if and when a cursor is found that actually requires saving.
717** The common case is that no cursors need to be saved, so this routine is
718** broken out from its caller to avoid unnecessary stack pointer movement.
719*/
720static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000721 BtCursor *p, /* The first cursor that needs saving */
722 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
723 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000724){
725 do{
drh138eeeb2013-03-27 03:15:23 +0000726 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000727 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000728 int rc = saveCursorPosition(p);
729 if( SQLITE_OK!=rc ){
730 return rc;
731 }
732 }else{
733 testcase( p->iPage>0 );
734 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000735 }
736 }
drh637f3d82014-08-22 22:26:07 +0000737 p = p->pNext;
738 }while( p );
drh980b1a72006-08-16 16:42:48 +0000739 return SQLITE_OK;
740}
741
742/*
drhbf700f32007-03-31 02:36:44 +0000743** Clear the current cursor position.
744*/
danielk1977be51a652008-10-08 17:58:48 +0000745void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000746 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000747 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000748 pCur->pKey = 0;
749 pCur->eState = CURSOR_INVALID;
750}
751
752/*
danielk19773509a652009-07-06 18:56:13 +0000753** In this version of BtreeMoveto, pKey is a packed index record
754** such as is generated by the OP_MakeRecord opcode. Unpack the
755** record and then call BtreeMovetoUnpacked() to do the work.
756*/
757static int btreeMoveto(
758 BtCursor *pCur, /* Cursor open on the btree to be searched */
759 const void *pKey, /* Packed key if the btree is an index */
760 i64 nKey, /* Integer key for tables. Size of pKey for indices */
761 int bias, /* Bias search to the high end */
762 int *pRes /* Write search results here */
763){
764 int rc; /* Status code */
765 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhcb43a932016-10-03 01:21:51 +0000766 char aSpace[384]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000767 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000768
769 if( pKey ){
770 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000771 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
772 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
773 );
mistachkinfad30392016-02-13 23:43:46 +0000774 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000775 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000776 if( pIdxKey->nField==0 ){
777 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
778 return SQLITE_CORRUPT_BKPT;
779 }
danielk19773509a652009-07-06 18:56:13 +0000780 }else{
781 pIdxKey = 0;
782 }
783 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000784 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000785 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000786 }
787 return rc;
788}
789
790/*
drh980b1a72006-08-16 16:42:48 +0000791** Restore the cursor to the position it was in (or as close to as possible)
792** when saveCursorPosition() was called. Note that this call deletes the
793** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000794** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000795** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000796*/
danielk197730548662009-07-09 05:07:37 +0000797static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000798 int rc;
drhd2f83132015-03-25 17:35:01 +0000799 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000800 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000801 assert( pCur->eState>=CURSOR_REQUIRESEEK );
802 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000803 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000804 }
drh980b1a72006-08-16 16:42:48 +0000805 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000806 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000807 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000808 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000809 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000810 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000811 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000812 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
813 pCur->eState = CURSOR_SKIPNEXT;
814 }
drh980b1a72006-08-16 16:42:48 +0000815 }
816 return rc;
817}
818
drha3460582008-07-11 21:02:53 +0000819#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000820 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000821 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000822 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000823
drha3460582008-07-11 21:02:53 +0000824/*
drh6848dad2014-08-22 23:33:03 +0000825** Determine whether or not a cursor has moved from the position where
826** it was last placed, or has been invalidated for any other reason.
827** Cursors can move when the row they are pointing at is deleted out
828** from under them, for example. Cursor might also move if a btree
829** is rebalanced.
drha3460582008-07-11 21:02:53 +0000830**
drh6848dad2014-08-22 23:33:03 +0000831** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000832**
drh6848dad2014-08-22 23:33:03 +0000833** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
834** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000835*/
drh6848dad2014-08-22 23:33:03 +0000836int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000837 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000838}
839
840/*
841** This routine restores a cursor back to its original position after it
842** has been moved by some outside activity (such as a btree rebalance or
843** a row having been deleted out from under the cursor).
844**
845** On success, the *pDifferentRow parameter is false if the cursor is left
846** pointing at exactly the same row. *pDifferntRow is the row the cursor
847** was pointing to has been deleted, forcing the cursor to point to some
848** nearby row.
849**
850** This routine should only be called for a cursor that just returned
851** TRUE from sqlite3BtreeCursorHasMoved().
852*/
853int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000854 int rc;
855
drh6848dad2014-08-22 23:33:03 +0000856 assert( pCur!=0 );
857 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000858 rc = restoreCursorPosition(pCur);
859 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000860 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000861 return rc;
862 }
drh606a3572015-03-25 18:29:10 +0000863 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000864 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000865 }else{
drh606a3572015-03-25 18:29:10 +0000866 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000867 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000868 }
869 return SQLITE_OK;
870}
871
drhf7854c72015-10-27 13:24:37 +0000872#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000873/*
drh0df57012015-08-14 15:05:55 +0000874** Provide hints to the cursor. The particular hint given (and the type
875** and number of the varargs parameters) is determined by the eHintType
876** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000877*/
drh0df57012015-08-14 15:05:55 +0000878void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000879 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000880}
drhf7854c72015-10-27 13:24:37 +0000881#endif
882
883/*
884** Provide flag hints to the cursor.
885*/
886void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
887 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
888 pCur->hints = x;
889}
890
drh28935362013-12-07 20:39:19 +0000891
danielk1977599fcba2004-11-08 07:13:13 +0000892#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000893/*
drha3152892007-05-05 11:48:52 +0000894** Given a page number of a regular database page, return the page
895** number for the pointer-map page that contains the entry for the
896** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000897**
898** Return 0 (not a valid page) for pgno==1 since there is
899** no pointer map associated with page 1. The integrity_check logic
900** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000901*/
danielk1977266664d2006-02-10 08:24:21 +0000902static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000903 int nPagesPerMapPage;
904 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000905 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000906 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000907 nPagesPerMapPage = (pBt->usableSize/5)+1;
908 iPtrMap = (pgno-2)/nPagesPerMapPage;
909 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000910 if( ret==PENDING_BYTE_PAGE(pBt) ){
911 ret++;
912 }
913 return ret;
914}
danielk1977a19df672004-11-03 11:37:07 +0000915
danielk1977afcdd022004-10-31 16:25:42 +0000916/*
danielk1977afcdd022004-10-31 16:25:42 +0000917** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000918**
919** This routine updates the pointer map entry for page number 'key'
920** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000921**
922** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
923** a no-op. If an error occurs, the appropriate error code is written
924** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000925*/
drh98add2e2009-07-20 17:11:49 +0000926static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000927 DbPage *pDbPage; /* The pointer map page */
928 u8 *pPtrmap; /* The pointer map data */
929 Pgno iPtrmap; /* The pointer map page number */
930 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000931 int rc; /* Return code from subfunctions */
932
933 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000934
drh1fee73e2007-08-29 04:00:57 +0000935 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000936 /* The master-journal page number must never be used as a pointer map page */
937 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
938
danielk1977ac11ee62005-01-15 12:45:51 +0000939 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000940 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000941 *pRC = SQLITE_CORRUPT_BKPT;
942 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000943 }
danielk1977266664d2006-02-10 08:24:21 +0000944 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000945 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000946 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000947 *pRC = rc;
948 return;
danielk1977afcdd022004-10-31 16:25:42 +0000949 }
danielk19778c666b12008-07-18 09:34:57 +0000950 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000951 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000952 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000953 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000954 }
drhfc243732011-05-17 15:21:56 +0000955 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000956 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000957
drh615ae552005-01-16 23:21:00 +0000958 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
959 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000960 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000961 if( rc==SQLITE_OK ){
962 pPtrmap[offset] = eType;
963 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000964 }
danielk1977afcdd022004-10-31 16:25:42 +0000965 }
966
drh4925a552009-07-07 11:39:58 +0000967ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000968 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000969}
970
971/*
972** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000973**
974** This routine retrieves the pointer map entry for page 'key', writing
975** the type and parent page number to *pEType and *pPgno respectively.
976** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000977*/
danielk1977aef0bf62005-12-30 16:28:01 +0000978static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000979 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000980 int iPtrmap; /* Pointer map page index */
981 u8 *pPtrmap; /* Pointer map page data */
982 int offset; /* Offset of entry in pointer map */
983 int rc;
984
drh1fee73e2007-08-29 04:00:57 +0000985 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000986
danielk1977266664d2006-02-10 08:24:21 +0000987 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000988 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000989 if( rc!=0 ){
990 return rc;
991 }
danielk19773b8a05f2007-03-19 17:44:26 +0000992 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000993
danielk19778c666b12008-07-18 09:34:57 +0000994 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000995 if( offset<0 ){
996 sqlite3PagerUnref(pDbPage);
997 return SQLITE_CORRUPT_BKPT;
998 }
999 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001000 assert( pEType!=0 );
1001 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001002 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001003
danielk19773b8a05f2007-03-19 17:44:26 +00001004 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +00001005 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +00001006 return SQLITE_OK;
1007}
1008
danielk197785d90ca2008-07-19 14:25:15 +00001009#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001010 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001011 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001012 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001013#endif
danielk1977afcdd022004-10-31 16:25:42 +00001014
drh0d316a42002-08-11 20:10:47 +00001015/*
drh271efa52004-05-30 19:19:05 +00001016** Given a btree page and a cell index (0 means the first cell on
1017** the page, 1 means the second cell, and so forth) return a pointer
1018** to the cell content.
1019**
drhf44890a2015-06-27 03:58:15 +00001020** findCellPastPtr() does the same except it skips past the initial
1021** 4-byte child pointer found on interior pages, if there is one.
1022**
drh271efa52004-05-30 19:19:05 +00001023** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001024*/
drh1688c862008-07-18 02:44:17 +00001025#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001026 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001027#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001028 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001029
drh43605152004-05-29 21:46:49 +00001030
1031/*
drh5fa60512015-06-19 17:19:34 +00001032** This is common tail processing for btreeParseCellPtr() and
1033** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1034** on a single B-tree page. Make necessary adjustments to the CellInfo
1035** structure.
drh43605152004-05-29 21:46:49 +00001036*/
drh5fa60512015-06-19 17:19:34 +00001037static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1038 MemPage *pPage, /* Page containing the cell */
1039 u8 *pCell, /* Pointer to the cell text. */
1040 CellInfo *pInfo /* Fill in this structure */
1041){
1042 /* If the payload will not fit completely on the local page, we have
1043 ** to decide how much to store locally and how much to spill onto
1044 ** overflow pages. The strategy is to minimize the amount of unused
1045 ** space on overflow pages while keeping the amount of local storage
1046 ** in between minLocal and maxLocal.
1047 **
1048 ** Warning: changing the way overflow payload is distributed in any
1049 ** way will result in an incompatible file format.
1050 */
1051 int minLocal; /* Minimum amount of payload held locally */
1052 int maxLocal; /* Maximum amount of payload held locally */
1053 int surplus; /* Overflow payload available for local storage */
1054
1055 minLocal = pPage->minLocal;
1056 maxLocal = pPage->maxLocal;
1057 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1058 testcase( surplus==maxLocal );
1059 testcase( surplus==maxLocal+1 );
1060 if( surplus <= maxLocal ){
1061 pInfo->nLocal = (u16)surplus;
1062 }else{
1063 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001064 }
drh45ac1c72015-12-18 03:59:16 +00001065 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001066}
1067
1068/*
drh5fa60512015-06-19 17:19:34 +00001069** The following routines are implementations of the MemPage.xParseCell()
1070** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001071**
drh5fa60512015-06-19 17:19:34 +00001072** Parse a cell content block and fill in the CellInfo structure.
1073**
1074** btreeParseCellPtr() => table btree leaf nodes
1075** btreeParseCellNoPayload() => table btree internal nodes
1076** btreeParseCellPtrIndex() => index btree nodes
1077**
1078** There is also a wrapper function btreeParseCell() that works for
1079** all MemPage types and that references the cell by index rather than
1080** by pointer.
drh43605152004-05-29 21:46:49 +00001081*/
drh5fa60512015-06-19 17:19:34 +00001082static void btreeParseCellPtrNoPayload(
1083 MemPage *pPage, /* Page containing the cell */
1084 u8 *pCell, /* Pointer to the cell text. */
1085 CellInfo *pInfo /* Fill in this structure */
1086){
1087 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1088 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001089 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001090#ifndef SQLITE_DEBUG
1091 UNUSED_PARAMETER(pPage);
1092#endif
drh5fa60512015-06-19 17:19:34 +00001093 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1094 pInfo->nPayload = 0;
1095 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001096 pInfo->pPayload = 0;
1097 return;
1098}
danielk197730548662009-07-09 05:07:37 +00001099static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001100 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001101 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001102 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001103){
drh3e28ff52014-09-24 00:59:08 +00001104 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001105 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001106 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001107
drh1fee73e2007-08-29 04:00:57 +00001108 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001109 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001110 assert( pPage->intKeyLeaf );
1111 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001112 pIter = pCell;
1113
1114 /* The next block of code is equivalent to:
1115 **
1116 ** pIter += getVarint32(pIter, nPayload);
1117 **
1118 ** The code is inlined to avoid a function call.
1119 */
1120 nPayload = *pIter;
1121 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001122 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001123 nPayload &= 0x7f;
1124 do{
1125 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1126 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001127 }
drh56cb04e2015-06-19 18:24:37 +00001128 pIter++;
1129
1130 /* The next block of code is equivalent to:
1131 **
1132 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1133 **
1134 ** The code is inlined to avoid a function call.
1135 */
1136 iKey = *pIter;
1137 if( iKey>=0x80 ){
1138 u8 *pEnd = &pIter[7];
1139 iKey &= 0x7f;
1140 while(1){
1141 iKey = (iKey<<7) | (*++pIter & 0x7f);
1142 if( (*pIter)<0x80 ) break;
1143 if( pIter>=pEnd ){
1144 iKey = (iKey<<8) | *++pIter;
1145 break;
1146 }
1147 }
1148 }
1149 pIter++;
1150
1151 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001152 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001153 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001154 testcase( nPayload==pPage->maxLocal );
1155 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001156 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001157 /* This is the (easy) common case where the entire payload fits
1158 ** on the local page. No overflow is required.
1159 */
drhab1cc582014-09-23 21:25:19 +00001160 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1161 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001162 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001163 }else{
drh5fa60512015-06-19 17:19:34 +00001164 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001165 }
drh3aac2dd2004-04-26 14:10:20 +00001166}
drh5fa60512015-06-19 17:19:34 +00001167static void btreeParseCellPtrIndex(
1168 MemPage *pPage, /* Page containing the cell */
1169 u8 *pCell, /* Pointer to the cell text. */
1170 CellInfo *pInfo /* Fill in this structure */
1171){
1172 u8 *pIter; /* For scanning through pCell */
1173 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001174
drh5fa60512015-06-19 17:19:34 +00001175 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1176 assert( pPage->leaf==0 || pPage->leaf==1 );
1177 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001178 pIter = pCell + pPage->childPtrSize;
1179 nPayload = *pIter;
1180 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001181 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001182 nPayload &= 0x7f;
1183 do{
1184 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1185 }while( *(pIter)>=0x80 && pIter<pEnd );
1186 }
1187 pIter++;
1188 pInfo->nKey = nPayload;
1189 pInfo->nPayload = nPayload;
1190 pInfo->pPayload = pIter;
1191 testcase( nPayload==pPage->maxLocal );
1192 testcase( nPayload==pPage->maxLocal+1 );
1193 if( nPayload<=pPage->maxLocal ){
1194 /* This is the (easy) common case where the entire payload fits
1195 ** on the local page. No overflow is required.
1196 */
1197 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1198 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1199 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001200 }else{
1201 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001202 }
1203}
danielk197730548662009-07-09 05:07:37 +00001204static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001205 MemPage *pPage, /* Page containing the cell */
1206 int iCell, /* The cell index. First cell is 0 */
1207 CellInfo *pInfo /* Fill in this structure */
1208){
drh5fa60512015-06-19 17:19:34 +00001209 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001210}
drh3aac2dd2004-04-26 14:10:20 +00001211
1212/*
drh5fa60512015-06-19 17:19:34 +00001213** The following routines are implementations of the MemPage.xCellSize
1214** method.
1215**
drh43605152004-05-29 21:46:49 +00001216** Compute the total number of bytes that a Cell needs in the cell
1217** data area of the btree-page. The return number includes the cell
1218** data header and the local payload, but not any overflow page or
1219** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001220**
drh5fa60512015-06-19 17:19:34 +00001221** cellSizePtrNoPayload() => table internal nodes
1222** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001223*/
danielk1977ae5558b2009-04-29 11:31:47 +00001224static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001225 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1226 u8 *pEnd; /* End mark for a varint */
1227 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001228
1229#ifdef SQLITE_DEBUG
1230 /* The value returned by this function should always be the same as
1231 ** the (CellInfo.nSize) value found by doing a full parse of the
1232 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1233 ** this function verifies that this invariant is not violated. */
1234 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001235 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001236#endif
1237
drh3e28ff52014-09-24 00:59:08 +00001238 nSize = *pIter;
1239 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001240 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001241 nSize &= 0x7f;
1242 do{
1243 nSize = (nSize<<7) | (*++pIter & 0x7f);
1244 }while( *(pIter)>=0x80 && pIter<pEnd );
1245 }
1246 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001247 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001248 /* pIter now points at the 64-bit integer key value, a variable length
1249 ** integer. The following block moves pIter to point at the first byte
1250 ** past the end of the key value. */
1251 pEnd = &pIter[9];
1252 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001253 }
drh0a45c272009-07-08 01:49:11 +00001254 testcase( nSize==pPage->maxLocal );
1255 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001256 if( nSize<=pPage->maxLocal ){
1257 nSize += (u32)(pIter - pCell);
1258 if( nSize<4 ) nSize = 4;
1259 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001260 int minLocal = pPage->minLocal;
1261 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001262 testcase( nSize==pPage->maxLocal );
1263 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001264 if( nSize>pPage->maxLocal ){
1265 nSize = minLocal;
1266 }
drh3e28ff52014-09-24 00:59:08 +00001267 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001268 }
drhdc41d602014-09-22 19:51:35 +00001269 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001270 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001271}
drh25ada072015-06-19 15:07:14 +00001272static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1273 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1274 u8 *pEnd; /* End mark for a varint */
1275
1276#ifdef SQLITE_DEBUG
1277 /* The value returned by this function should always be the same as
1278 ** the (CellInfo.nSize) value found by doing a full parse of the
1279 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1280 ** this function verifies that this invariant is not violated. */
1281 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001282 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001283#else
1284 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001285#endif
1286
1287 assert( pPage->childPtrSize==4 );
1288 pEnd = pIter + 9;
1289 while( (*pIter++)&0x80 && pIter<pEnd );
1290 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1291 return (u16)(pIter - pCell);
1292}
1293
drh0ee3dbe2009-10-16 15:05:18 +00001294
1295#ifdef SQLITE_DEBUG
1296/* This variation on cellSizePtr() is used inside of assert() statements
1297** only. */
drha9121e42008-02-19 14:59:35 +00001298static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001299 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001300}
danielk1977bc6ada42004-06-30 08:20:16 +00001301#endif
drh3b7511c2001-05-26 13:15:44 +00001302
danielk197779a40da2005-01-16 08:00:01 +00001303#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001304/*
danielk197726836652005-01-17 01:33:13 +00001305** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001306** to an overflow page, insert an entry into the pointer-map
1307** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001308*/
drh98add2e2009-07-20 17:11:49 +00001309static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001310 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001311 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001312 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001313 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001314 if( info.nLocal<info.nPayload ){
1315 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001316 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001317 }
danielk1977ac11ee62005-01-15 12:45:51 +00001318}
danielk197779a40da2005-01-16 08:00:01 +00001319#endif
1320
danielk1977ac11ee62005-01-15 12:45:51 +00001321
drhda200cc2004-05-09 11:51:38 +00001322/*
drh72f82862001-05-24 21:06:34 +00001323** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001324** end of the page and all free space is collected into one
1325** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001326** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001327**
1328** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1329** b-tree page so that there are no freeblocks or fragment bytes, all
1330** unused bytes are contained in the unallocated space region, and all
1331** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001332*/
shane0af3f892008-11-12 04:55:34 +00001333static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001334 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001335 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001336 int hdr; /* Offset to the page header */
1337 int size; /* Size of a cell */
1338 int usableSize; /* Number of usable bytes on a page */
1339 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001340 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001341 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001342 unsigned char *data; /* The page data */
1343 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001344 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001345 int iCellFirst; /* First allowable cell index */
1346 int iCellLast; /* Last possible cell index */
1347
drh2af926b2001-05-15 00:39:25 +00001348
danielk19773b8a05f2007-03-19 17:44:26 +00001349 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001350 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001351 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001352 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001353 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001354 temp = 0;
1355 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001356 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001357 cellOffset = pPage->cellOffset;
1358 nCell = pPage->nCell;
1359 assert( nCell==get2byte(&data[hdr+3]) );
1360 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001361 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001362 iCellFirst = cellOffset + 2*nCell;
1363 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001364 for(i=0; i<nCell; i++){
1365 u8 *pAddr; /* The i-th cell pointer */
1366 pAddr = &data[cellOffset + i*2];
1367 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001368 testcase( pc==iCellFirst );
1369 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001370 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001371 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001372 */
1373 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001374 return SQLITE_CORRUPT_BKPT;
1375 }
drh17146622009-07-07 17:38:38 +00001376 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001377 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001378 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001379 if( cbrk<iCellFirst || pc+size>usableSize ){
1380 return SQLITE_CORRUPT_BKPT;
1381 }
drh7157e1d2009-07-09 13:25:32 +00001382 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001383 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001384 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001385 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001386 if( temp==0 ){
1387 int x;
1388 if( cbrk==pc ) continue;
1389 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1390 x = get2byte(&data[hdr+5]);
1391 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1392 src = temp;
1393 }
1394 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001395 }
drh17146622009-07-07 17:38:38 +00001396 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001397 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001398 data[hdr+1] = 0;
1399 data[hdr+2] = 0;
1400 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001401 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001402 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001403 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001404 return SQLITE_CORRUPT_BKPT;
1405 }
shane0af3f892008-11-12 04:55:34 +00001406 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001407}
1408
drha059ad02001-04-17 20:09:11 +00001409/*
dan8e9ba0c2014-10-14 17:27:04 +00001410** Search the free-list on page pPg for space to store a cell nByte bytes in
1411** size. If one can be found, return a pointer to the space and remove it
1412** from the free-list.
1413**
1414** If no suitable space can be found on the free-list, return NULL.
1415**
drhba0f9992014-10-30 20:48:44 +00001416** This function may detect corruption within pPg. If corruption is
1417** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001418**
drhb7580e82015-06-25 18:36:13 +00001419** Slots on the free list that are between 1 and 3 bytes larger than nByte
1420** will be ignored if adding the extra space to the fragmentation count
1421** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001422*/
drhb7580e82015-06-25 18:36:13 +00001423static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001424 const int hdr = pPg->hdrOffset;
1425 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001426 int iAddr = hdr + 1;
1427 int pc = get2byte(&aData[iAddr]);
1428 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001429 int usableSize = pPg->pBt->usableSize;
1430
drhb7580e82015-06-25 18:36:13 +00001431 assert( pc>0 );
1432 do{
dan8e9ba0c2014-10-14 17:27:04 +00001433 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001434 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1435 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001436 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001437 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001438 return 0;
1439 }
drh113762a2014-11-19 16:36:25 +00001440 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1441 ** freeblock form a big-endian integer which is the size of the freeblock
1442 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001443 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001444 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001445 testcase( x==4 );
1446 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001447 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1448 *pRc = SQLITE_CORRUPT_BKPT;
1449 return 0;
1450 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001451 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1452 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001453 if( aData[hdr+7]>57 ) return 0;
1454
dan8e9ba0c2014-10-14 17:27:04 +00001455 /* Remove the slot from the free-list. Update the number of
1456 ** fragmented bytes within the page. */
1457 memcpy(&aData[iAddr], &aData[pc], 2);
1458 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001459 }else{
1460 /* The slot remains on the free-list. Reduce its size to account
1461 ** for the portion used by the new allocation. */
1462 put2byte(&aData[pc+2], x);
1463 }
1464 return &aData[pc + x];
1465 }
drhb7580e82015-06-25 18:36:13 +00001466 iAddr = pc;
1467 pc = get2byte(&aData[pc]);
1468 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001469
1470 return 0;
1471}
1472
1473/*
danielk19776011a752009-04-01 16:25:32 +00001474** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001475** as the first argument. Write into *pIdx the index into pPage->aData[]
1476** of the first byte of allocated space. Return either SQLITE_OK or
1477** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001478**
drh0a45c272009-07-08 01:49:11 +00001479** The caller guarantees that there is sufficient space to make the
1480** allocation. This routine might need to defragment in order to bring
1481** all the space together, however. This routine will avoid using
1482** the first two bytes past the cell pointer area since presumably this
1483** allocation is being made in order to insert a new cell, so we will
1484** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001485*/
drh0a45c272009-07-08 01:49:11 +00001486static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001487 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1488 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001489 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001490 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001491 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001492
danielk19773b8a05f2007-03-19 17:44:26 +00001493 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001494 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001495 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001496 assert( nByte>=0 ); /* Minimum cell size is 4 */
1497 assert( pPage->nFree>=nByte );
1498 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001499 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001500
drh0a45c272009-07-08 01:49:11 +00001501 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1502 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001503 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001504 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1505 ** and the reserved space is zero (the usual value for reserved space)
1506 ** then the cell content offset of an empty page wants to be 65536.
1507 ** However, that integer is too large to be stored in a 2-byte unsigned
1508 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001509 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001510 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001511 if( gap>top ){
1512 if( top==0 && pPage->pBt->usableSize==65536 ){
1513 top = 65536;
1514 }else{
1515 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001516 }
1517 }
drh43605152004-05-29 21:46:49 +00001518
drh4c04f3c2014-08-20 11:56:14 +00001519 /* If there is enough space between gap and top for one more cell pointer
1520 ** array entry offset, and if the freelist is not empty, then search the
1521 ** freelist looking for a free slot big enough to satisfy the request.
1522 */
drh5e2f8b92001-05-28 00:41:15 +00001523 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001524 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001525 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001526 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001527 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001528 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001529 assert( pSpace>=data && (pSpace - data)<65536 );
1530 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001531 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001532 }else if( rc ){
1533 return rc;
drh9e572e62004-04-23 23:43:10 +00001534 }
1535 }
drh43605152004-05-29 21:46:49 +00001536
drh4c04f3c2014-08-20 11:56:14 +00001537 /* The request could not be fulfilled using a freelist slot. Check
1538 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001539 */
1540 testcase( gap+2+nByte==top );
1541 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001542 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001543 rc = defragmentPage(pPage);
1544 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001545 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001546 assert( gap+nByte<=top );
1547 }
1548
1549
drh43605152004-05-29 21:46:49 +00001550 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001551 ** and the cell content area. The btreeInitPage() call has already
1552 ** validated the freelist. Given that the freelist is valid, there
1553 ** is no way that the allocation can extend off the end of the page.
1554 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001555 */
drh0a45c272009-07-08 01:49:11 +00001556 top -= nByte;
drh43605152004-05-29 21:46:49 +00001557 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001558 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001559 *pIdx = top;
1560 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001561}
1562
1563/*
drh9e572e62004-04-23 23:43:10 +00001564** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001565** The first byte of the new free block is pPage->aData[iStart]
1566** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001567**
drh5f5c7532014-08-20 17:56:27 +00001568** Adjacent freeblocks are coalesced.
1569**
1570** Note that even though the freeblock list was checked by btreeInitPage(),
1571** that routine will not detect overlap between cells or freeblocks. Nor
1572** does it detect cells or freeblocks that encrouch into the reserved bytes
1573** at the end of the page. So do additional corruption checks inside this
1574** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001575*/
drh5f5c7532014-08-20 17:56:27 +00001576static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001577 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001578 u16 iFreeBlk; /* Address of the next freeblock */
1579 u8 hdr; /* Page header size. 0 or 100 */
1580 u8 nFrag = 0; /* Reduction in fragmentation */
1581 u16 iOrigSize = iSize; /* Original value of iSize */
1582 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1583 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001584 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001585
drh9e572e62004-04-23 23:43:10 +00001586 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001587 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001588 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001589 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001590 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001591 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001592 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001593
drh5f5c7532014-08-20 17:56:27 +00001594 /* Overwrite deleted information with zeros when the secure_delete
1595 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001596 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001597 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001598 }
drhfcce93f2006-02-22 03:08:32 +00001599
drh5f5c7532014-08-20 17:56:27 +00001600 /* The list of freeblocks must be in ascending order. Find the
1601 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001602 */
drh43605152004-05-29 21:46:49 +00001603 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001604 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001605 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1606 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1607 }else{
drh85f071b2016-09-17 19:34:32 +00001608 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1609 if( iFreeBlk<iPtr+4 ){
1610 if( iFreeBlk==0 ) break;
1611 return SQLITE_CORRUPT_BKPT;
1612 }
drh7bc4c452014-08-20 18:43:44 +00001613 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001614 }
drh7bc4c452014-08-20 18:43:44 +00001615 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1616 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1617
1618 /* At this point:
1619 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001620 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001621 **
1622 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1623 */
1624 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1625 nFrag = iFreeBlk - iEnd;
1626 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1627 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001628 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001629 iSize = iEnd - iStart;
1630 iFreeBlk = get2byte(&data[iFreeBlk]);
1631 }
1632
drh3f387402014-09-24 01:23:00 +00001633 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1634 ** pointer in the page header) then check to see if iStart should be
1635 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001636 */
1637 if( iPtr>hdr+1 ){
1638 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1639 if( iPtrEnd+3>=iStart ){
1640 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1641 nFrag += iStart - iPtrEnd;
1642 iSize = iEnd - iPtr;
1643 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001644 }
drh9e572e62004-04-23 23:43:10 +00001645 }
drh7bc4c452014-08-20 18:43:44 +00001646 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1647 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001648 }
drh7bc4c452014-08-20 18:43:44 +00001649 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001650 /* The new freeblock is at the beginning of the cell content area,
1651 ** so just extend the cell content area rather than create another
1652 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001653 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001654 put2byte(&data[hdr+1], iFreeBlk);
1655 put2byte(&data[hdr+5], iEnd);
1656 }else{
1657 /* Insert the new freeblock into the freelist */
1658 put2byte(&data[iPtr], iStart);
1659 put2byte(&data[iStart], iFreeBlk);
1660 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001661 }
drh5f5c7532014-08-20 17:56:27 +00001662 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001663 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001664}
1665
1666/*
drh271efa52004-05-30 19:19:05 +00001667** Decode the flags byte (the first byte of the header) for a page
1668** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001669**
1670** Only the following combinations are supported. Anything different
1671** indicates a corrupt database files:
1672**
1673** PTF_ZERODATA
1674** PTF_ZERODATA | PTF_LEAF
1675** PTF_LEAFDATA | PTF_INTKEY
1676** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001677*/
drh44845222008-07-17 18:39:57 +00001678static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001679 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001680
1681 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001682 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001683 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001684 flagByte &= ~PTF_LEAF;
1685 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001686 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001687 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001688 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001689 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1690 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001691 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001692 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1693 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001694 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001695 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001696 if( pPage->leaf ){
1697 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001698 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001699 }else{
1700 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001701 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001702 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001703 }
drh271efa52004-05-30 19:19:05 +00001704 pPage->maxLocal = pBt->maxLeaf;
1705 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001706 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001707 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1708 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001709 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001710 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1711 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001712 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001713 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001714 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001715 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001716 pPage->maxLocal = pBt->maxLocal;
1717 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001718 }else{
drhfdab0262014-11-20 15:30:50 +00001719 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1720 ** an error. */
drh44845222008-07-17 18:39:57 +00001721 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001722 }
drhc9166342012-01-05 23:32:06 +00001723 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001724 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001725}
1726
1727/*
drh7e3b0a02001-04-28 16:52:40 +00001728** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001729**
1730** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001731** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001732** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1733** guarantee that the page is well-formed. It only shows that
1734** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001735*/
danielk197730548662009-07-09 05:07:37 +00001736static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001737
danielk197771d5d2c2008-09-29 11:49:47 +00001738 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001739 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001740 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001741 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001742 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1743 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001744
1745 if( !pPage->isInit ){
drh380c08e2016-12-13 20:30:29 +00001746 int pc; /* Address of a freeblock within pPage->aData[] */
drhf49661a2008-12-10 16:45:50 +00001747 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001748 u8 *data; /* Equal to pPage->aData */
1749 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001750 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001751 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001752 int nFree; /* Number of unused bytes on the page */
1753 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001754 int iCellFirst; /* First allowable cell or freeblock offset */
1755 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001756
1757 pBt = pPage->pBt;
1758
danielk1977eaa06f62008-09-18 17:34:44 +00001759 hdr = pPage->hdrOffset;
1760 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001761 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1762 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001763 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001764 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1765 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001766 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001767 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001768 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001769 pPage->aDataEnd = &data[usableSize];
1770 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001771 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001772 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1773 ** the start of the cell content area. A zero value for this integer is
1774 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001775 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001776 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1777 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001778 pPage->nCell = get2byte(&data[hdr+3]);
1779 if( pPage->nCell>MX_CELL(pBt) ){
1780 /* To many cells for a single page. The page must be corrupt */
1781 return SQLITE_CORRUPT_BKPT;
1782 }
drhb908d762009-07-08 16:54:40 +00001783 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001784 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1785 ** possible for a root page of a table that contains no rows) then the
1786 ** offset to the cell content area will equal the page size minus the
1787 ** bytes of reserved space. */
1788 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001789
shane5eff7cf2009-08-10 03:57:58 +00001790 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001791 ** of page when parsing a cell.
1792 **
1793 ** The following block of code checks early to see if a cell extends
1794 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1795 ** returned if it does.
1796 */
drh0a45c272009-07-08 01:49:11 +00001797 iCellFirst = cellOffset + 2*pPage->nCell;
1798 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001799 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001800 int i; /* Index into the cell pointer array */
1801 int sz; /* Size of a cell */
1802
drh69e931e2009-06-03 21:04:35 +00001803 if( !pPage->leaf ) iCellLast--;
1804 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001805 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001806 testcase( pc==iCellFirst );
1807 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001808 if( pc<iCellFirst || pc>iCellLast ){
1809 return SQLITE_CORRUPT_BKPT;
1810 }
drh25ada072015-06-19 15:07:14 +00001811 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001812 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001813 if( pc+sz>usableSize ){
1814 return SQLITE_CORRUPT_BKPT;
1815 }
1816 }
drh0a45c272009-07-08 01:49:11 +00001817 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001818 }
drh69e931e2009-06-03 21:04:35 +00001819
drhfdab0262014-11-20 15:30:50 +00001820 /* Compute the total free space on the page
1821 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1822 ** start of the first freeblock on the page, or is zero if there are no
1823 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001824 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001825 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
drh77dc0ed2016-12-12 01:30:01 +00001826 if( pc>0 ){
1827 u32 next, size;
1828 if( pc<iCellFirst ){
drhfdab0262014-11-20 15:30:50 +00001829 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1830 ** always be at least one cell before the first freeblock.
drhfdab0262014-11-20 15:30:50 +00001831 */
danielk1977eaa06f62008-09-18 17:34:44 +00001832 return SQLITE_CORRUPT_BKPT;
1833 }
drh77dc0ed2016-12-12 01:30:01 +00001834 while( 1 ){
1835 if( pc>iCellLast ){
1836 return SQLITE_CORRUPT_BKPT; /* Freeblock off the end of the page */
1837 }
1838 next = get2byte(&data[pc]);
1839 size = get2byte(&data[pc+2]);
1840 nFree = nFree + size;
1841 if( next<=pc+size+3 ) break;
1842 pc = next;
danielk1977eaa06f62008-09-18 17:34:44 +00001843 }
drh77dc0ed2016-12-12 01:30:01 +00001844 if( next>0 ){
1845 return SQLITE_CORRUPT_BKPT; /* Freeblock not in ascending order */
1846 }
drh380c08e2016-12-13 20:30:29 +00001847 if( pc+size>(unsigned int)usableSize ){
drh77dc0ed2016-12-12 01:30:01 +00001848 return SQLITE_CORRUPT_BKPT; /* Last freeblock extends past page end */
1849 }
danielk1977eaa06f62008-09-18 17:34:44 +00001850 }
danielk197793c829c2009-06-03 17:26:17 +00001851
1852 /* At this point, nFree contains the sum of the offset to the start
1853 ** of the cell-content area plus the number of free bytes within
1854 ** the cell-content area. If this is greater than the usable-size
1855 ** of the page, then the page must be corrupted. This check also
1856 ** serves to verify that the offset to the start of the cell-content
1857 ** area, according to the page header, lies within the page.
1858 */
1859 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001860 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001861 }
shane5eff7cf2009-08-10 03:57:58 +00001862 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001863 pPage->isInit = 1;
1864 }
drh9e572e62004-04-23 23:43:10 +00001865 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001866}
1867
1868/*
drh8b2f49b2001-06-08 00:21:52 +00001869** Set up a raw page so that it looks like a database page holding
1870** no entries.
drhbd03cae2001-06-02 02:40:57 +00001871*/
drh9e572e62004-04-23 23:43:10 +00001872static void zeroPage(MemPage *pPage, int flags){
1873 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001874 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001875 u8 hdr = pPage->hdrOffset;
1876 u16 first;
drh9e572e62004-04-23 23:43:10 +00001877
danielk19773b8a05f2007-03-19 17:44:26 +00001878 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001879 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1880 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001881 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001882 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001883 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001884 memset(&data[hdr], 0, pBt->usableSize - hdr);
1885 }
drh1bd10f82008-12-10 21:19:56 +00001886 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001887 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001888 memset(&data[hdr+1], 0, 4);
1889 data[hdr+7] = 0;
1890 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001891 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001892 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001893 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001894 pPage->aDataEnd = &data[pBt->usableSize];
1895 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001896 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001897 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001898 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1899 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001900 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001901 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001902}
1903
drh897a8202008-09-18 01:08:15 +00001904
1905/*
1906** Convert a DbPage obtained from the pager into a MemPage used by
1907** the btree layer.
1908*/
1909static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1910 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001911 if( pgno!=pPage->pgno ){
1912 pPage->aData = sqlite3PagerGetData(pDbPage);
1913 pPage->pDbPage = pDbPage;
1914 pPage->pBt = pBt;
1915 pPage->pgno = pgno;
1916 pPage->hdrOffset = pgno==1 ? 100 : 0;
1917 }
1918 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001919 return pPage;
1920}
1921
drhbd03cae2001-06-02 02:40:57 +00001922/*
drh3aac2dd2004-04-26 14:10:20 +00001923** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001924** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001925**
drh7e8c6f12015-05-28 03:28:27 +00001926** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1927** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001928** to fetch the content. Just fill in the content with zeros for now.
1929** If in the future we call sqlite3PagerWrite() on this page, that
1930** means we have started to be concerned about content and the disk
1931** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001932*/
danielk197730548662009-07-09 05:07:37 +00001933static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001934 BtShared *pBt, /* The btree */
1935 Pgno pgno, /* Number of the page to fetch */
1936 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001937 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001938){
drh3aac2dd2004-04-26 14:10:20 +00001939 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001940 DbPage *pDbPage;
1941
drhb00fc3b2013-08-21 23:42:32 +00001942 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001943 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001944 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001945 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001946 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001947 return SQLITE_OK;
1948}
1949
1950/*
danielk1977bea2a942009-01-20 17:06:27 +00001951** Retrieve a page from the pager cache. If the requested page is not
1952** already in the pager cache return NULL. Initialize the MemPage.pBt and
1953** MemPage.aData elements if needed.
1954*/
1955static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1956 DbPage *pDbPage;
1957 assert( sqlite3_mutex_held(pBt->mutex) );
1958 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1959 if( pDbPage ){
1960 return btreePageFromDbPage(pDbPage, pgno, pBt);
1961 }
1962 return 0;
1963}
1964
1965/*
danielk197789d40042008-11-17 14:20:56 +00001966** Return the size of the database file in pages. If there is any kind of
1967** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001968*/
drhb1299152010-03-30 22:58:33 +00001969static Pgno btreePagecount(BtShared *pBt){
1970 return pBt->nPage;
1971}
1972u32 sqlite3BtreeLastPage(Btree *p){
1973 assert( sqlite3BtreeHoldsMutex(p) );
1974 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001975 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001976}
1977
1978/*
drh28f58dd2015-06-27 19:45:03 +00001979** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001980**
drh15a00212015-06-27 20:55:00 +00001981** If pCur!=0 then the page is being fetched as part of a moveToChild()
1982** call. Do additional sanity checking on the page in this case.
1983** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001984**
1985** The page is fetched as read-write unless pCur is not NULL and is
1986** a read-only cursor.
1987**
1988** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001989** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001990*/
1991static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001992 BtShared *pBt, /* The database file */
1993 Pgno pgno, /* Number of the page to get */
1994 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001995 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1996 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001997){
1998 int rc;
drh28f58dd2015-06-27 19:45:03 +00001999 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002000 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00002001 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2002 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002003 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002004
danba3cbf32010-06-30 04:29:03 +00002005 if( pgno>btreePagecount(pBt) ){
2006 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002007 goto getAndInitPage_error;
2008 }
drh9584f582015-11-04 20:22:37 +00002009 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002010 if( rc ){
2011 goto getAndInitPage_error;
2012 }
drh8dd1c252015-11-04 22:31:02 +00002013 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002014 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002015 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002016 rc = btreeInitPage(*ppPage);
2017 if( rc!=SQLITE_OK ){
2018 releasePage(*ppPage);
2019 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002020 }
drhee696e22004-08-30 16:52:17 +00002021 }
drh8dd1c252015-11-04 22:31:02 +00002022 assert( (*ppPage)->pgno==pgno );
2023 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002024
drh15a00212015-06-27 20:55:00 +00002025 /* If obtaining a child page for a cursor, we must verify that the page is
2026 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002027 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002028 rc = SQLITE_CORRUPT_BKPT;
2029 releasePage(*ppPage);
2030 goto getAndInitPage_error;
2031 }
drh28f58dd2015-06-27 19:45:03 +00002032 return SQLITE_OK;
2033
2034getAndInitPage_error:
2035 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002036 testcase( pgno==0 );
2037 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002038 return rc;
2039}
2040
2041/*
drh3aac2dd2004-04-26 14:10:20 +00002042** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002043** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002044*/
drhbbf0f862015-06-27 14:59:26 +00002045static void releasePageNotNull(MemPage *pPage){
2046 assert( pPage->aData );
2047 assert( pPage->pBt );
2048 assert( pPage->pDbPage!=0 );
2049 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2050 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2051 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2052 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002053}
drh3aac2dd2004-04-26 14:10:20 +00002054static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002055 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002056}
2057
2058/*
drh7e8c6f12015-05-28 03:28:27 +00002059** Get an unused page.
2060**
2061** This works just like btreeGetPage() with the addition:
2062**
2063** * If the page is already in use for some other purpose, immediately
2064** release it and return an SQLITE_CURRUPT error.
2065** * Make sure the isInit flag is clear
2066*/
2067static int btreeGetUnusedPage(
2068 BtShared *pBt, /* The btree */
2069 Pgno pgno, /* Number of the page to fetch */
2070 MemPage **ppPage, /* Return the page in this parameter */
2071 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2072){
2073 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2074 if( rc==SQLITE_OK ){
2075 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2076 releasePage(*ppPage);
2077 *ppPage = 0;
2078 return SQLITE_CORRUPT_BKPT;
2079 }
2080 (*ppPage)->isInit = 0;
2081 }else{
2082 *ppPage = 0;
2083 }
2084 return rc;
2085}
2086
drha059ad02001-04-17 20:09:11 +00002087
2088/*
drha6abd042004-06-09 17:37:22 +00002089** During a rollback, when the pager reloads information into the cache
2090** so that the cache is restored to its original state at the start of
2091** the transaction, for each page restored this routine is called.
2092**
2093** This routine needs to reset the extra data section at the end of the
2094** page to agree with the restored data.
2095*/
danielk1977eaa06f62008-09-18 17:34:44 +00002096static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002097 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002098 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002099 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002100 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002101 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002102 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002103 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002104 /* pPage might not be a btree page; it might be an overflow page
2105 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002106 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002107 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002108 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002109 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002110 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002111 }
drha6abd042004-06-09 17:37:22 +00002112 }
2113}
2114
2115/*
drhe5fe6902007-12-07 18:55:28 +00002116** Invoke the busy handler for a btree.
2117*/
danielk19771ceedd32008-11-19 10:22:33 +00002118static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002119 BtShared *pBt = (BtShared*)pArg;
2120 assert( pBt->db );
2121 assert( sqlite3_mutex_held(pBt->db->mutex) );
2122 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2123}
2124
2125/*
drhad3e0102004-09-03 23:32:18 +00002126** Open a database file.
2127**
drh382c0242001-10-06 16:33:02 +00002128** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002129** then an ephemeral database is created. The ephemeral database might
2130** be exclusively in memory, or it might use a disk-based memory cache.
2131** Either way, the ephemeral database will be automatically deleted
2132** when sqlite3BtreeClose() is called.
2133**
drhe53831d2007-08-17 01:14:38 +00002134** If zFilename is ":memory:" then an in-memory database is created
2135** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002136**
drh33f111d2012-01-17 15:29:14 +00002137** The "flags" parameter is a bitmask that might contain bits like
2138** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002139**
drhc47fd8e2009-04-30 13:30:32 +00002140** If the database is already opened in the same database connection
2141** and we are in shared cache mode, then the open will fail with an
2142** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2143** objects in the same database connection since doing so will lead
2144** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002145*/
drh23e11ca2004-05-04 17:27:28 +00002146int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002147 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002148 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002149 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002150 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002151 int flags, /* Options */
2152 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002153){
drh7555d8e2009-03-20 13:15:30 +00002154 BtShared *pBt = 0; /* Shared part of btree structure */
2155 Btree *p; /* Handle to return */
2156 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2157 int rc = SQLITE_OK; /* Result code from this function */
2158 u8 nReserve; /* Byte of unused space on each page */
2159 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002160
drh75c014c2010-08-30 15:02:28 +00002161 /* True if opening an ephemeral, temporary database */
2162 const int isTempDb = zFilename==0 || zFilename[0]==0;
2163
danielk1977aef0bf62005-12-30 16:28:01 +00002164 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002165 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002166 */
drhb0a7c9c2010-12-06 21:09:59 +00002167#ifdef SQLITE_OMIT_MEMORYDB
2168 const int isMemdb = 0;
2169#else
2170 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002171 || (isTempDb && sqlite3TempInMemory(db))
2172 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002173#endif
2174
drhe5fe6902007-12-07 18:55:28 +00002175 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002176 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002177 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002178 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2179
2180 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2181 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2182
2183 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2184 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002185
drh75c014c2010-08-30 15:02:28 +00002186 if( isMemdb ){
2187 flags |= BTREE_MEMORY;
2188 }
2189 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2190 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2191 }
drh17435752007-08-16 04:30:38 +00002192 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002193 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002194 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002195 }
2196 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002197 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002198#ifndef SQLITE_OMIT_SHARED_CACHE
2199 p->lock.pBtree = p;
2200 p->lock.iTable = 1;
2201#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002202
drh198bf392006-01-06 21:52:49 +00002203#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002204 /*
2205 ** If this Btree is a candidate for shared cache, try to find an
2206 ** existing BtShared object that we can share with
2207 */
drh4ab9d252012-05-26 20:08:49 +00002208 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002209 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002210 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002211 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002212 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002213 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002214
drhff0587c2007-08-29 17:43:19 +00002215 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002216 if( !zFullPathname ){
2217 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002218 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002219 }
drhafc8b7f2012-05-26 18:06:38 +00002220 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002221 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002222 }else{
2223 rc = sqlite3OsFullPathname(pVfs, zFilename,
2224 nFullPathname, zFullPathname);
2225 if( rc ){
2226 sqlite3_free(zFullPathname);
2227 sqlite3_free(p);
2228 return rc;
2229 }
drh070ad6b2011-11-17 11:43:19 +00002230 }
drh30ddce62011-10-15 00:16:30 +00002231#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002232 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2233 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002234 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002235 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002236#endif
drh78f82d12008-09-02 00:52:52 +00002237 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002238 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002239 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002240 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002241 int iDb;
2242 for(iDb=db->nDb-1; iDb>=0; iDb--){
2243 Btree *pExisting = db->aDb[iDb].pBt;
2244 if( pExisting && pExisting->pBt==pBt ){
2245 sqlite3_mutex_leave(mutexShared);
2246 sqlite3_mutex_leave(mutexOpen);
2247 sqlite3_free(zFullPathname);
2248 sqlite3_free(p);
2249 return SQLITE_CONSTRAINT;
2250 }
2251 }
drhff0587c2007-08-29 17:43:19 +00002252 p->pBt = pBt;
2253 pBt->nRef++;
2254 break;
2255 }
2256 }
2257 sqlite3_mutex_leave(mutexShared);
2258 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002259 }
drhff0587c2007-08-29 17:43:19 +00002260#ifdef SQLITE_DEBUG
2261 else{
2262 /* In debug mode, we mark all persistent databases as sharable
2263 ** even when they are not. This exercises the locking code and
2264 ** gives more opportunity for asserts(sqlite3_mutex_held())
2265 ** statements to find locking problems.
2266 */
2267 p->sharable = 1;
2268 }
2269#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002270 }
2271#endif
drha059ad02001-04-17 20:09:11 +00002272 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002273 /*
2274 ** The following asserts make sure that structures used by the btree are
2275 ** the right size. This is to guard against size changes that result
2276 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002277 */
drh062cf272015-03-23 19:03:51 +00002278 assert( sizeof(i64)==8 );
2279 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002280 assert( sizeof(u32)==4 );
2281 assert( sizeof(u16)==2 );
2282 assert( sizeof(Pgno)==4 );
2283
2284 pBt = sqlite3MallocZero( sizeof(*pBt) );
2285 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002286 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002287 goto btree_open_out;
2288 }
danielk197771d5d2c2008-09-29 11:49:47 +00002289 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002290 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002291 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002292 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002293 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2294 }
2295 if( rc!=SQLITE_OK ){
2296 goto btree_open_out;
2297 }
shanehbd2aaf92010-09-01 02:38:21 +00002298 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002299 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002300 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002301 p->pBt = pBt;
2302
drhe53831d2007-08-17 01:14:38 +00002303 pBt->pCursor = 0;
2304 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002305 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002306#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002307 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002308#endif
drh113762a2014-11-19 16:36:25 +00002309 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2310 ** determined by the 2-byte integer located at an offset of 16 bytes from
2311 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002312 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002313 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2314 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002315 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002316#ifndef SQLITE_OMIT_AUTOVACUUM
2317 /* If the magic name ":memory:" will create an in-memory database, then
2318 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2319 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2320 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2321 ** regular file-name. In this case the auto-vacuum applies as per normal.
2322 */
2323 if( zFilename && !isMemdb ){
2324 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2325 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2326 }
2327#endif
2328 nReserve = 0;
2329 }else{
drh113762a2014-11-19 16:36:25 +00002330 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2331 ** determined by the one-byte unsigned integer found at an offset of 20
2332 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002333 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002334 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002335#ifndef SQLITE_OMIT_AUTOVACUUM
2336 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2337 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2338#endif
2339 }
drhfa9601a2009-06-18 17:22:39 +00002340 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002341 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002342 pBt->usableSize = pBt->pageSize - nReserve;
2343 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002344
2345#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2346 /* Add the new BtShared object to the linked list sharable BtShareds.
2347 */
dan272989b2016-07-06 10:12:02 +00002348 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002349 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002350 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002351 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002352 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002353 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002354 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002355 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002356 goto btree_open_out;
2357 }
drhff0587c2007-08-29 17:43:19 +00002358 }
drhe53831d2007-08-17 01:14:38 +00002359 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002360 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2361 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002362 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002363 }
drheee46cf2004-11-06 00:02:48 +00002364#endif
drh90f5ecb2004-07-22 01:19:35 +00002365 }
danielk1977aef0bf62005-12-30 16:28:01 +00002366
drhcfed7bc2006-03-13 14:28:05 +00002367#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002368 /* If the new Btree uses a sharable pBtShared, then link the new
2369 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002370 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002371 */
drhe53831d2007-08-17 01:14:38 +00002372 if( p->sharable ){
2373 int i;
2374 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002375 for(i=0; i<db->nDb; i++){
2376 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002377 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002378 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002379 p->pNext = pSib;
2380 p->pPrev = 0;
2381 pSib->pPrev = p;
2382 }else{
drh3bfa7e82016-03-22 14:37:59 +00002383 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002384 pSib = pSib->pNext;
2385 }
2386 p->pNext = pSib->pNext;
2387 p->pPrev = pSib;
2388 if( p->pNext ){
2389 p->pNext->pPrev = p;
2390 }
2391 pSib->pNext = p;
2392 }
2393 break;
2394 }
2395 }
danielk1977aef0bf62005-12-30 16:28:01 +00002396 }
danielk1977aef0bf62005-12-30 16:28:01 +00002397#endif
2398 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002399
2400btree_open_out:
2401 if( rc!=SQLITE_OK ){
2402 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002403 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002404 }
drh17435752007-08-16 04:30:38 +00002405 sqlite3_free(pBt);
2406 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002407 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002408 }else{
dan0f5a1862016-08-13 14:30:23 +00002409 sqlite3_file *pFile;
2410
drh75c014c2010-08-30 15:02:28 +00002411 /* If the B-Tree was successfully opened, set the pager-cache size to the
2412 ** default value. Except, when opening on an existing shared pager-cache,
2413 ** do not change the pager-cache size.
2414 */
2415 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2416 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2417 }
dan0f5a1862016-08-13 14:30:23 +00002418
2419 pFile = sqlite3PagerFile(pBt->pPager);
2420 if( pFile->pMethods ){
2421 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2422 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002423 }
drh7555d8e2009-03-20 13:15:30 +00002424 if( mutexOpen ){
2425 assert( sqlite3_mutex_held(mutexOpen) );
2426 sqlite3_mutex_leave(mutexOpen);
2427 }
dan272989b2016-07-06 10:12:02 +00002428 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002429 return rc;
drha059ad02001-04-17 20:09:11 +00002430}
2431
2432/*
drhe53831d2007-08-17 01:14:38 +00002433** Decrement the BtShared.nRef counter. When it reaches zero,
2434** remove the BtShared structure from the sharing list. Return
2435** true if the BtShared.nRef counter reaches zero and return
2436** false if it is still positive.
2437*/
2438static int removeFromSharingList(BtShared *pBt){
2439#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002440 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002441 BtShared *pList;
2442 int removed = 0;
2443
drhd677b3d2007-08-20 22:48:41 +00002444 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002445 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002446 sqlite3_mutex_enter(pMaster);
2447 pBt->nRef--;
2448 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002449 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2450 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002451 }else{
drh78f82d12008-09-02 00:52:52 +00002452 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002453 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002454 pList=pList->pNext;
2455 }
drh34004ce2008-07-11 16:15:17 +00002456 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002457 pList->pNext = pBt->pNext;
2458 }
2459 }
drh3285db22007-09-03 22:00:39 +00002460 if( SQLITE_THREADSAFE ){
2461 sqlite3_mutex_free(pBt->mutex);
2462 }
drhe53831d2007-08-17 01:14:38 +00002463 removed = 1;
2464 }
2465 sqlite3_mutex_leave(pMaster);
2466 return removed;
2467#else
2468 return 1;
2469#endif
2470}
2471
2472/*
drhf7141992008-06-19 00:16:08 +00002473** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002474** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2475** pointer.
drhf7141992008-06-19 00:16:08 +00002476*/
2477static void allocateTempSpace(BtShared *pBt){
2478 if( !pBt->pTmpSpace ){
2479 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002480
2481 /* One of the uses of pBt->pTmpSpace is to format cells before
2482 ** inserting them into a leaf page (function fillInCell()). If
2483 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2484 ** by the various routines that manipulate binary cells. Which
2485 ** can mean that fillInCell() only initializes the first 2 or 3
2486 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2487 ** it into a database page. This is not actually a problem, but it
2488 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2489 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002490 ** zero the first 4 bytes of temp space here.
2491 **
2492 ** Also: Provide four bytes of initialized space before the
2493 ** beginning of pTmpSpace as an area available to prepend the
2494 ** left-child pointer to the beginning of a cell.
2495 */
2496 if( pBt->pTmpSpace ){
2497 memset(pBt->pTmpSpace, 0, 8);
2498 pBt->pTmpSpace += 4;
2499 }
drhf7141992008-06-19 00:16:08 +00002500 }
2501}
2502
2503/*
2504** Free the pBt->pTmpSpace allocation
2505*/
2506static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002507 if( pBt->pTmpSpace ){
2508 pBt->pTmpSpace -= 4;
2509 sqlite3PageFree(pBt->pTmpSpace);
2510 pBt->pTmpSpace = 0;
2511 }
drhf7141992008-06-19 00:16:08 +00002512}
2513
2514/*
drha059ad02001-04-17 20:09:11 +00002515** Close an open database and invalidate all cursors.
2516*/
danielk1977aef0bf62005-12-30 16:28:01 +00002517int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002518 BtShared *pBt = p->pBt;
2519 BtCursor *pCur;
2520
danielk1977aef0bf62005-12-30 16:28:01 +00002521 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002522 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002523 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002524 pCur = pBt->pCursor;
2525 while( pCur ){
2526 BtCursor *pTmp = pCur;
2527 pCur = pCur->pNext;
2528 if( pTmp->pBtree==p ){
2529 sqlite3BtreeCloseCursor(pTmp);
2530 }
drha059ad02001-04-17 20:09:11 +00002531 }
danielk1977aef0bf62005-12-30 16:28:01 +00002532
danielk19778d34dfd2006-01-24 16:37:57 +00002533 /* Rollback any active transaction and free the handle structure.
2534 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2535 ** this handle.
2536 */
drh47b7fc72014-11-11 01:33:57 +00002537 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002538 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002539
danielk1977aef0bf62005-12-30 16:28:01 +00002540 /* If there are still other outstanding references to the shared-btree
2541 ** structure, return now. The remainder of this procedure cleans
2542 ** up the shared-btree.
2543 */
drhe53831d2007-08-17 01:14:38 +00002544 assert( p->wantToLock==0 && p->locked==0 );
2545 if( !p->sharable || removeFromSharingList(pBt) ){
2546 /* The pBt is no longer on the sharing list, so we can access
2547 ** it without having to hold the mutex.
2548 **
2549 ** Clean out and delete the BtShared object.
2550 */
2551 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002552 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002553 if( pBt->xFreeSchema && pBt->pSchema ){
2554 pBt->xFreeSchema(pBt->pSchema);
2555 }
drhb9755982010-07-24 16:34:37 +00002556 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002557 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002558 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002559 }
2560
drhe53831d2007-08-17 01:14:38 +00002561#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002562 assert( p->wantToLock==0 );
2563 assert( p->locked==0 );
2564 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2565 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002566#endif
2567
drhe53831d2007-08-17 01:14:38 +00002568 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002569 return SQLITE_OK;
2570}
2571
2572/*
drh9b0cf342015-11-12 14:57:19 +00002573** Change the "soft" limit on the number of pages in the cache.
2574** Unused and unmodified pages will be recycled when the number of
2575** pages in the cache exceeds this soft limit. But the size of the
2576** cache is allowed to grow larger than this limit if it contains
2577** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002578*/
danielk1977aef0bf62005-12-30 16:28:01 +00002579int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2580 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002581 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002582 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002583 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002584 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002585 return SQLITE_OK;
2586}
2587
drh9b0cf342015-11-12 14:57:19 +00002588/*
2589** Change the "spill" limit on the number of pages in the cache.
2590** If the number of pages exceeds this limit during a write transaction,
2591** the pager might attempt to "spill" pages to the journal early in
2592** order to free up memory.
2593**
2594** The value returned is the current spill size. If zero is passed
2595** as an argument, no changes are made to the spill size setting, so
2596** using mxPage of 0 is a way to query the current spill size.
2597*/
2598int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2599 BtShared *pBt = p->pBt;
2600 int res;
2601 assert( sqlite3_mutex_held(p->db->mutex) );
2602 sqlite3BtreeEnter(p);
2603 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2604 sqlite3BtreeLeave(p);
2605 return res;
2606}
2607
drh18c7e402014-03-14 11:46:10 +00002608#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002609/*
dan5d8a1372013-03-19 19:28:06 +00002610** Change the limit on the amount of the database file that may be
2611** memory mapped.
2612*/
drh9b4c59f2013-04-15 17:03:42 +00002613int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002614 BtShared *pBt = p->pBt;
2615 assert( sqlite3_mutex_held(p->db->mutex) );
2616 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002617 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002618 sqlite3BtreeLeave(p);
2619 return SQLITE_OK;
2620}
drh18c7e402014-03-14 11:46:10 +00002621#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002622
2623/*
drh973b6e32003-02-12 14:09:42 +00002624** Change the way data is synced to disk in order to increase or decrease
2625** how well the database resists damage due to OS crashes and power
2626** failures. Level 1 is the same as asynchronous (no syncs() occur and
2627** there is a high probability of damage) Level 2 is the default. There
2628** is a very low but non-zero probability of damage. Level 3 reduces the
2629** probability of damage to near zero but with a write performance reduction.
2630*/
danielk197793758c82005-01-21 08:13:14 +00002631#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002632int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002633 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002634 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002635){
danielk1977aef0bf62005-12-30 16:28:01 +00002636 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002637 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002638 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002639 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002640 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002641 return SQLITE_OK;
2642}
danielk197793758c82005-01-21 08:13:14 +00002643#endif
drh973b6e32003-02-12 14:09:42 +00002644
drh2c8997b2005-08-27 16:36:48 +00002645/*
drh90f5ecb2004-07-22 01:19:35 +00002646** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002647** Or, if the page size has already been fixed, return SQLITE_READONLY
2648** without changing anything.
drh06f50212004-11-02 14:24:33 +00002649**
2650** The page size must be a power of 2 between 512 and 65536. If the page
2651** size supplied does not meet this constraint then the page size is not
2652** changed.
2653**
2654** Page sizes are constrained to be a power of two so that the region
2655** of the database file used for locking (beginning at PENDING_BYTE,
2656** the first byte past the 1GB boundary, 0x40000000) needs to occur
2657** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002658**
2659** If parameter nReserve is less than zero, then the number of reserved
2660** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002661**
drhc9166342012-01-05 23:32:06 +00002662** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002663** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002664*/
drhce4869f2009-04-02 20:16:58 +00002665int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002666 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002667 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002668 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002669 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002670#if SQLITE_HAS_CODEC
2671 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2672#endif
drhc9166342012-01-05 23:32:06 +00002673 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002674 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002675 return SQLITE_READONLY;
2676 }
2677 if( nReserve<0 ){
2678 nReserve = pBt->pageSize - pBt->usableSize;
2679 }
drhf49661a2008-12-10 16:45:50 +00002680 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002681 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2682 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002683 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002684 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002685 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002686 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002687 }
drhfa9601a2009-06-18 17:22:39 +00002688 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002689 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002690 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002691 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002692 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002693}
2694
2695/*
2696** Return the currently defined page size
2697*/
danielk1977aef0bf62005-12-30 16:28:01 +00002698int sqlite3BtreeGetPageSize(Btree *p){
2699 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002700}
drh7f751222009-03-17 22:33:00 +00002701
dan0094f372012-09-28 20:23:42 +00002702/*
2703** This function is similar to sqlite3BtreeGetReserve(), except that it
2704** may only be called if it is guaranteed that the b-tree mutex is already
2705** held.
2706**
2707** This is useful in one special case in the backup API code where it is
2708** known that the shared b-tree mutex is held, but the mutex on the
2709** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2710** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002711** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002712*/
2713int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002714 int n;
dan0094f372012-09-28 20:23:42 +00002715 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002716 n = p->pBt->pageSize - p->pBt->usableSize;
2717 return n;
dan0094f372012-09-28 20:23:42 +00002718}
2719
drh7f751222009-03-17 22:33:00 +00002720/*
2721** Return the number of bytes of space at the end of every page that
2722** are intentually left unused. This is the "reserved" space that is
2723** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002724**
2725** If SQLITE_HAS_MUTEX is defined then the number returned is the
2726** greater of the current reserved space and the maximum requested
2727** reserve space.
drh7f751222009-03-17 22:33:00 +00002728*/
drhad0961b2015-02-21 00:19:25 +00002729int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002730 int n;
2731 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002732 n = sqlite3BtreeGetReserveNoMutex(p);
2733#ifdef SQLITE_HAS_CODEC
2734 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2735#endif
drhd677b3d2007-08-20 22:48:41 +00002736 sqlite3BtreeLeave(p);
2737 return n;
drh2011d5f2004-07-22 02:40:37 +00002738}
drhf8e632b2007-05-08 14:51:36 +00002739
drhad0961b2015-02-21 00:19:25 +00002740
drhf8e632b2007-05-08 14:51:36 +00002741/*
2742** Set the maximum page count for a database if mxPage is positive.
2743** No changes are made if mxPage is 0 or negative.
2744** Regardless of the value of mxPage, return the maximum page count.
2745*/
2746int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002747 int n;
2748 sqlite3BtreeEnter(p);
2749 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2750 sqlite3BtreeLeave(p);
2751 return n;
drhf8e632b2007-05-08 14:51:36 +00002752}
drh5b47efa2010-02-12 18:18:39 +00002753
2754/*
drhc9166342012-01-05 23:32:06 +00002755** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2756** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002757** setting after the change.
2758*/
2759int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2760 int b;
drhaf034ed2010-02-12 19:46:26 +00002761 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002762 sqlite3BtreeEnter(p);
2763 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002764 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2765 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002766 }
drhc9166342012-01-05 23:32:06 +00002767 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002768 sqlite3BtreeLeave(p);
2769 return b;
2770}
drh90f5ecb2004-07-22 01:19:35 +00002771
2772/*
danielk1977951af802004-11-05 15:45:09 +00002773** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2774** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2775** is disabled. The default value for the auto-vacuum property is
2776** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2777*/
danielk1977aef0bf62005-12-30 16:28:01 +00002778int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002779#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002780 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002781#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002782 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002783 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002784 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002785
2786 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002787 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002788 rc = SQLITE_READONLY;
2789 }else{
drh076d4662009-02-18 20:31:18 +00002790 pBt->autoVacuum = av ?1:0;
2791 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002792 }
drhd677b3d2007-08-20 22:48:41 +00002793 sqlite3BtreeLeave(p);
2794 return rc;
danielk1977951af802004-11-05 15:45:09 +00002795#endif
2796}
2797
2798/*
2799** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2800** enabled 1 is returned. Otherwise 0.
2801*/
danielk1977aef0bf62005-12-30 16:28:01 +00002802int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002803#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002804 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002805#else
drhd677b3d2007-08-20 22:48:41 +00002806 int rc;
2807 sqlite3BtreeEnter(p);
2808 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002809 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2810 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2811 BTREE_AUTOVACUUM_INCR
2812 );
drhd677b3d2007-08-20 22:48:41 +00002813 sqlite3BtreeLeave(p);
2814 return rc;
danielk1977951af802004-11-05 15:45:09 +00002815#endif
2816}
2817
2818
2819/*
drha34b6762004-05-07 13:30:42 +00002820** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002821** also acquire a readlock on that file.
2822**
2823** SQLITE_OK is returned on success. If the file is not a
2824** well-formed database file, then SQLITE_CORRUPT is returned.
2825** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002826** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002827*/
danielk1977aef0bf62005-12-30 16:28:01 +00002828static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002829 int rc; /* Result code from subfunctions */
2830 MemPage *pPage1; /* Page 1 of the database file */
2831 int nPage; /* Number of pages in the database */
2832 int nPageFile = 0; /* Number of pages in the database file */
2833 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002834
drh1fee73e2007-08-29 04:00:57 +00002835 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002836 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002837 rc = sqlite3PagerSharedLock(pBt->pPager);
2838 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002839 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002840 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002841
2842 /* Do some checking to help insure the file we opened really is
2843 ** a valid database file.
2844 */
drhc2a4bab2010-04-02 12:46:45 +00002845 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002846 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002847 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002848 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002849 }
2850 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002851 u32 pageSize;
2852 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002853 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002854 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002855 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2856 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2857 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002858 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002859 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002860 }
dan5cf53532010-05-01 16:40:20 +00002861
2862#ifdef SQLITE_OMIT_WAL
2863 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002864 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002865 }
2866 if( page1[19]>1 ){
2867 goto page1_init_failed;
2868 }
2869#else
dane04dc882010-04-20 18:53:15 +00002870 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002871 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002872 }
dane04dc882010-04-20 18:53:15 +00002873 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002874 goto page1_init_failed;
2875 }
drhe5ae5732008-06-15 02:51:47 +00002876
dana470aeb2010-04-21 11:43:38 +00002877 /* If the write version is set to 2, this database should be accessed
2878 ** in WAL mode. If the log is not already open, open it now. Then
2879 ** return SQLITE_OK and return without populating BtShared.pPage1.
2880 ** The caller detects this and calls this function again. This is
2881 ** required as the version of page 1 currently in the page1 buffer
2882 ** may not be the latest version - there may be a newer one in the log
2883 ** file.
2884 */
drhc9166342012-01-05 23:32:06 +00002885 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002886 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002887 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002888 if( rc!=SQLITE_OK ){
2889 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002890 }else{
2891#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2892 sqlite3 *db;
2893 Db *pDb;
2894 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2895 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2896 if( pDb->bSyncSet==0
drhc2ae2072016-03-08 15:30:01 +00002897 && pDb->safety_level==SQLITE_DEFAULT_SYNCHRONOUS+1
drhe243de52016-03-08 15:14:26 +00002898 ){
drhc2ae2072016-03-08 15:30:01 +00002899 pDb->safety_level = SQLITE_DEFAULT_WAL_SYNCHRONOUS+1;
drhe243de52016-03-08 15:14:26 +00002900 sqlite3PagerSetFlags(pBt->pPager,
2901 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2902 }
2903 }
2904#endif
2905 if( isOpen==0 ){
2906 releasePage(pPage1);
2907 return SQLITE_OK;
2908 }
dane04dc882010-04-20 18:53:15 +00002909 }
dan8b5444b2010-04-27 14:37:47 +00002910 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002911 }
dan5cf53532010-05-01 16:40:20 +00002912#endif
dane04dc882010-04-20 18:53:15 +00002913
drh113762a2014-11-19 16:36:25 +00002914 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2915 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2916 **
drhe5ae5732008-06-15 02:51:47 +00002917 ** The original design allowed these amounts to vary, but as of
2918 ** version 3.6.0, we require them to be fixed.
2919 */
2920 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2921 goto page1_init_failed;
2922 }
drh113762a2014-11-19 16:36:25 +00002923 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2924 ** determined by the 2-byte integer located at an offset of 16 bytes from
2925 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002926 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002927 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2928 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002929 if( ((pageSize-1)&pageSize)!=0
2930 || pageSize>SQLITE_MAX_PAGE_SIZE
2931 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002932 ){
drh07d183d2005-05-01 22:52:42 +00002933 goto page1_init_failed;
2934 }
2935 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002936 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2937 ** integer at offset 20 is the number of bytes of space at the end of
2938 ** each page to reserve for extensions.
2939 **
2940 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2941 ** determined by the one-byte unsigned integer found at an offset of 20
2942 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002943 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002944 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002945 /* After reading the first page of the database assuming a page size
2946 ** of BtShared.pageSize, we have discovered that the page-size is
2947 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2948 ** zero and return SQLITE_OK. The caller will call this function
2949 ** again with the correct page-size.
2950 */
2951 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002952 pBt->usableSize = usableSize;
2953 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002954 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002955 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2956 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002957 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002958 }
danecac6702011-02-09 18:19:20 +00002959 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002960 rc = SQLITE_CORRUPT_BKPT;
2961 goto page1_init_failed;
2962 }
drh113762a2014-11-19 16:36:25 +00002963 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2964 ** be less than 480. In other words, if the page size is 512, then the
2965 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002966 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002967 goto page1_init_failed;
2968 }
drh43b18e12010-08-17 19:40:08 +00002969 pBt->pageSize = pageSize;
2970 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002971#ifndef SQLITE_OMIT_AUTOVACUUM
2972 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002973 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002974#endif
drh306dc212001-05-21 13:45:10 +00002975 }
drhb6f41482004-05-14 01:58:11 +00002976
2977 /* maxLocal is the maximum amount of payload to store locally for
2978 ** a cell. Make sure it is small enough so that at least minFanout
2979 ** cells can will fit on one page. We assume a 10-byte page header.
2980 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002981 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002982 ** 4-byte child pointer
2983 ** 9-byte nKey value
2984 ** 4-byte nData value
2985 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002986 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002987 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2988 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002989 */
shaneh1df2db72010-08-18 02:28:48 +00002990 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2991 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2992 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2993 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002994 if( pBt->maxLocal>127 ){
2995 pBt->max1bytePayload = 127;
2996 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002997 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002998 }
drh2e38c322004-09-03 18:38:44 +00002999 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003000 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003001 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003002 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003003
drh72f82862001-05-24 21:06:34 +00003004page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00003005 releasePage(pPage1);
3006 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003007 return rc;
drh306dc212001-05-21 13:45:10 +00003008}
3009
drh85ec3b62013-05-14 23:12:06 +00003010#ifndef NDEBUG
3011/*
3012** Return the number of cursors open on pBt. This is for use
3013** in assert() expressions, so it is only compiled if NDEBUG is not
3014** defined.
3015**
3016** Only write cursors are counted if wrOnly is true. If wrOnly is
3017** false then all cursors are counted.
3018**
3019** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003020** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003021** have been tripped into the CURSOR_FAULT state are not counted.
3022*/
3023static int countValidCursors(BtShared *pBt, int wrOnly){
3024 BtCursor *pCur;
3025 int r = 0;
3026 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003027 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3028 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003029 }
3030 return r;
3031}
3032#endif
3033
drh306dc212001-05-21 13:45:10 +00003034/*
drhb8ca3072001-12-05 00:21:20 +00003035** If there are no outstanding cursors and we are not in the middle
3036** of a transaction but there is a read lock on the database, then
3037** this routine unrefs the first page of the database file which
3038** has the effect of releasing the read lock.
3039**
drhb8ca3072001-12-05 00:21:20 +00003040** If there is a transaction in progress, this routine is a no-op.
3041*/
danielk1977aef0bf62005-12-30 16:28:01 +00003042static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003043 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003044 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003045 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003046 MemPage *pPage1 = pBt->pPage1;
3047 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003048 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003049 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003050 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003051 }
3052}
3053
3054/*
drhe39f2f92009-07-23 01:43:59 +00003055** If pBt points to an empty file then convert that empty file
3056** into a new empty database by initializing the first page of
3057** the database.
drh8b2f49b2001-06-08 00:21:52 +00003058*/
danielk1977aef0bf62005-12-30 16:28:01 +00003059static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003060 MemPage *pP1;
3061 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003062 int rc;
drhd677b3d2007-08-20 22:48:41 +00003063
drh1fee73e2007-08-29 04:00:57 +00003064 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003065 if( pBt->nPage>0 ){
3066 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003067 }
drh3aac2dd2004-04-26 14:10:20 +00003068 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003069 assert( pP1!=0 );
3070 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003071 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003072 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003073 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3074 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003075 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3076 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003077 data[18] = 1;
3078 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003079 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3080 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003081 data[21] = 64;
3082 data[22] = 32;
3083 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003084 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003085 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003086 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003087#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003088 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003089 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003090 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003091 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003092#endif
drhdd3cd972010-03-27 17:12:36 +00003093 pBt->nPage = 1;
3094 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003095 return SQLITE_OK;
3096}
3097
3098/*
danb483eba2012-10-13 19:58:11 +00003099** Initialize the first page of the database file (creating a database
3100** consisting of a single page and no schema objects). Return SQLITE_OK
3101** if successful, or an SQLite error code otherwise.
3102*/
3103int sqlite3BtreeNewDb(Btree *p){
3104 int rc;
3105 sqlite3BtreeEnter(p);
3106 p->pBt->nPage = 0;
3107 rc = newDatabase(p->pBt);
3108 sqlite3BtreeLeave(p);
3109 return rc;
3110}
3111
3112/*
danielk1977ee5741e2004-05-31 10:01:34 +00003113** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003114** is started if the second argument is nonzero, otherwise a read-
3115** transaction. If the second argument is 2 or more and exclusive
3116** transaction is started, meaning that no other process is allowed
3117** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003118** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003119** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003120**
danielk1977ee5741e2004-05-31 10:01:34 +00003121** A write-transaction must be started before attempting any
3122** changes to the database. None of the following routines
3123** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003124**
drh23e11ca2004-05-04 17:27:28 +00003125** sqlite3BtreeCreateTable()
3126** sqlite3BtreeCreateIndex()
3127** sqlite3BtreeClearTable()
3128** sqlite3BtreeDropTable()
3129** sqlite3BtreeInsert()
3130** sqlite3BtreeDelete()
3131** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003132**
drhb8ef32c2005-03-14 02:01:49 +00003133** If an initial attempt to acquire the lock fails because of lock contention
3134** and the database was previously unlocked, then invoke the busy handler
3135** if there is one. But if there was previously a read-lock, do not
3136** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3137** returned when there is already a read-lock in order to avoid a deadlock.
3138**
3139** Suppose there are two processes A and B. A has a read lock and B has
3140** a reserved lock. B tries to promote to exclusive but is blocked because
3141** of A's read lock. A tries to promote to reserved but is blocked by B.
3142** One or the other of the two processes must give way or there can be
3143** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3144** when A already has a read lock, we encourage A to give up and let B
3145** proceed.
drha059ad02001-04-17 20:09:11 +00003146*/
danielk1977aef0bf62005-12-30 16:28:01 +00003147int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3148 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003149 int rc = SQLITE_OK;
3150
drhd677b3d2007-08-20 22:48:41 +00003151 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003152 btreeIntegrity(p);
3153
danielk1977ee5741e2004-05-31 10:01:34 +00003154 /* If the btree is already in a write-transaction, or it
3155 ** is already in a read-transaction and a read-transaction
3156 ** is requested, this is a no-op.
3157 */
danielk1977aef0bf62005-12-30 16:28:01 +00003158 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003159 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003160 }
dan56c517a2013-09-26 11:04:33 +00003161 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003162
3163 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003164 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003165 rc = SQLITE_READONLY;
3166 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003167 }
3168
danielk1977404ca072009-03-16 13:19:36 +00003169#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003170 {
3171 sqlite3 *pBlock = 0;
3172 /* If another database handle has already opened a write transaction
3173 ** on this shared-btree structure and a second write transaction is
3174 ** requested, return SQLITE_LOCKED.
3175 */
3176 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3177 || (pBt->btsFlags & BTS_PENDING)!=0
3178 ){
3179 pBlock = pBt->pWriter->db;
3180 }else if( wrflag>1 ){
3181 BtLock *pIter;
3182 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3183 if( pIter->pBtree!=p ){
3184 pBlock = pIter->pBtree->db;
3185 break;
3186 }
danielk1977641b0f42007-12-21 04:47:25 +00003187 }
3188 }
drh5a1fb182016-01-08 19:34:39 +00003189 if( pBlock ){
3190 sqlite3ConnectionBlocked(p->db, pBlock);
3191 rc = SQLITE_LOCKED_SHAREDCACHE;
3192 goto trans_begun;
3193 }
danielk1977404ca072009-03-16 13:19:36 +00003194 }
danielk1977641b0f42007-12-21 04:47:25 +00003195#endif
3196
danielk1977602b4662009-07-02 07:47:33 +00003197 /* Any read-only or read-write transaction implies a read-lock on
3198 ** page 1. So if some other shared-cache client already has a write-lock
3199 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003200 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3201 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003202
drhc9166342012-01-05 23:32:06 +00003203 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3204 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003205 do {
danielk1977295dc102009-04-01 19:07:03 +00003206 /* Call lockBtree() until either pBt->pPage1 is populated or
3207 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3208 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3209 ** reading page 1 it discovers that the page-size of the database
3210 ** file is not pBt->pageSize. In this case lockBtree() will update
3211 ** pBt->pageSize to the page-size of the file on disk.
3212 */
3213 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003214
drhb8ef32c2005-03-14 02:01:49 +00003215 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003216 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003217 rc = SQLITE_READONLY;
3218 }else{
danielk1977d8293352009-04-30 09:10:37 +00003219 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003220 if( rc==SQLITE_OK ){
3221 rc = newDatabase(pBt);
3222 }
drhb8ef32c2005-03-14 02:01:49 +00003223 }
3224 }
3225
danielk1977bd434552009-03-18 10:33:00 +00003226 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003227 unlockBtreeIfUnused(pBt);
3228 }
danf9b76712010-06-01 14:12:45 +00003229 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003230 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003231
3232 if( rc==SQLITE_OK ){
3233 if( p->inTrans==TRANS_NONE ){
3234 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003235#ifndef SQLITE_OMIT_SHARED_CACHE
3236 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003237 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003238 p->lock.eLock = READ_LOCK;
3239 p->lock.pNext = pBt->pLock;
3240 pBt->pLock = &p->lock;
3241 }
3242#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003243 }
3244 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3245 if( p->inTrans>pBt->inTransaction ){
3246 pBt->inTransaction = p->inTrans;
3247 }
danielk1977404ca072009-03-16 13:19:36 +00003248 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003249 MemPage *pPage1 = pBt->pPage1;
3250#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003251 assert( !pBt->pWriter );
3252 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003253 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3254 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003255#endif
dan59257dc2010-08-04 11:34:31 +00003256
3257 /* If the db-size header field is incorrect (as it may be if an old
3258 ** client has been writing the database file), update it now. Doing
3259 ** this sooner rather than later means the database size can safely
3260 ** re-read the database size from page 1 if a savepoint or transaction
3261 ** rollback occurs within the transaction.
3262 */
3263 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3264 rc = sqlite3PagerWrite(pPage1->pDbPage);
3265 if( rc==SQLITE_OK ){
3266 put4byte(&pPage1->aData[28], pBt->nPage);
3267 }
3268 }
3269 }
danielk1977aef0bf62005-12-30 16:28:01 +00003270 }
3271
drhd677b3d2007-08-20 22:48:41 +00003272
3273trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003274 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003275 /* This call makes sure that the pager has the correct number of
3276 ** open savepoints. If the second parameter is greater than 0 and
3277 ** the sub-journal is not already open, then it will be opened here.
3278 */
danielk1977fd7f0452008-12-17 17:30:26 +00003279 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3280 }
danielk197712dd5492008-12-18 15:45:07 +00003281
danielk1977aef0bf62005-12-30 16:28:01 +00003282 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003283 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003284 return rc;
drha059ad02001-04-17 20:09:11 +00003285}
3286
danielk1977687566d2004-11-02 12:56:41 +00003287#ifndef SQLITE_OMIT_AUTOVACUUM
3288
3289/*
3290** Set the pointer-map entries for all children of page pPage. Also, if
3291** pPage contains cells that point to overflow pages, set the pointer
3292** map entries for the overflow pages as well.
3293*/
3294static int setChildPtrmaps(MemPage *pPage){
3295 int i; /* Counter variable */
3296 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003297 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003298 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003299 Pgno pgno = pPage->pgno;
3300
drh1fee73e2007-08-29 04:00:57 +00003301 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003302 rc = btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003303 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003304 nCell = pPage->nCell;
3305
3306 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003307 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003308
drh98add2e2009-07-20 17:11:49 +00003309 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003310
danielk1977687566d2004-11-02 12:56:41 +00003311 if( !pPage->leaf ){
3312 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003313 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003314 }
3315 }
3316
3317 if( !pPage->leaf ){
3318 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003319 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003320 }
3321
danielk1977687566d2004-11-02 12:56:41 +00003322 return rc;
3323}
3324
3325/*
drhf3aed592009-07-08 18:12:49 +00003326** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3327** that it points to iTo. Parameter eType describes the type of pointer to
3328** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003329**
3330** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3331** page of pPage.
3332**
3333** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3334** page pointed to by one of the cells on pPage.
3335**
3336** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3337** overflow page in the list.
3338*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003339static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003340 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003341 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003342 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003343 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003344 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003345 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003346 }
danielk1977f78fc082004-11-02 14:40:32 +00003347 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003348 }else{
danielk1977687566d2004-11-02 12:56:41 +00003349 int i;
3350 int nCell;
drha1f75d92015-05-24 10:18:12 +00003351 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003352
drha1f75d92015-05-24 10:18:12 +00003353 rc = btreeInitPage(pPage);
3354 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003355 nCell = pPage->nCell;
3356
danielk1977687566d2004-11-02 12:56:41 +00003357 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003358 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003359 if( eType==PTRMAP_OVERFLOW1 ){
3360 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003361 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00003362 if( info.nLocal<info.nPayload
3363 && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
3364 && iFrom==get4byte(pCell+info.nSize-4)
drhe42a9b42011-08-31 13:27:19 +00003365 ){
drh45ac1c72015-12-18 03:59:16 +00003366 put4byte(pCell+info.nSize-4, iTo);
drhe42a9b42011-08-31 13:27:19 +00003367 break;
danielk1977687566d2004-11-02 12:56:41 +00003368 }
3369 }else{
3370 if( get4byte(pCell)==iFrom ){
3371 put4byte(pCell, iTo);
3372 break;
3373 }
3374 }
3375 }
3376
3377 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003378 if( eType!=PTRMAP_BTREE ||
3379 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003380 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003381 }
danielk1977687566d2004-11-02 12:56:41 +00003382 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3383 }
danielk1977687566d2004-11-02 12:56:41 +00003384 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003385 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003386}
3387
danielk1977003ba062004-11-04 02:57:33 +00003388
danielk19777701e812005-01-10 12:59:51 +00003389/*
3390** Move the open database page pDbPage to location iFreePage in the
3391** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003392**
3393** The isCommit flag indicates that there is no need to remember that
3394** the journal needs to be sync()ed before database page pDbPage->pgno
3395** can be written to. The caller has already promised not to write to that
3396** page.
danielk19777701e812005-01-10 12:59:51 +00003397*/
danielk1977003ba062004-11-04 02:57:33 +00003398static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003399 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003400 MemPage *pDbPage, /* Open page to move */
3401 u8 eType, /* Pointer map 'type' entry for pDbPage */
3402 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003403 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003404 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003405){
3406 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3407 Pgno iDbPage = pDbPage->pgno;
3408 Pager *pPager = pBt->pPager;
3409 int rc;
3410
danielk1977a0bf2652004-11-04 14:30:04 +00003411 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3412 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003413 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003414 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003415
drh85b623f2007-12-13 21:54:09 +00003416 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003417 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3418 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003419 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003420 if( rc!=SQLITE_OK ){
3421 return rc;
3422 }
3423 pDbPage->pgno = iFreePage;
3424
3425 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3426 ** that point to overflow pages. The pointer map entries for all these
3427 ** pages need to be changed.
3428 **
3429 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3430 ** pointer to a subsequent overflow page. If this is the case, then
3431 ** the pointer map needs to be updated for the subsequent overflow page.
3432 */
danielk1977a0bf2652004-11-04 14:30:04 +00003433 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003434 rc = setChildPtrmaps(pDbPage);
3435 if( rc!=SQLITE_OK ){
3436 return rc;
3437 }
3438 }else{
3439 Pgno nextOvfl = get4byte(pDbPage->aData);
3440 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003441 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003442 if( rc!=SQLITE_OK ){
3443 return rc;
3444 }
3445 }
3446 }
3447
3448 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3449 ** that it points at iFreePage. Also fix the pointer map entry for
3450 ** iPtrPage.
3451 */
danielk1977a0bf2652004-11-04 14:30:04 +00003452 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003453 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003454 if( rc!=SQLITE_OK ){
3455 return rc;
3456 }
danielk19773b8a05f2007-03-19 17:44:26 +00003457 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003458 if( rc!=SQLITE_OK ){
3459 releasePage(pPtrPage);
3460 return rc;
3461 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003462 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003463 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003464 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003465 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003466 }
danielk1977003ba062004-11-04 02:57:33 +00003467 }
danielk1977003ba062004-11-04 02:57:33 +00003468 return rc;
3469}
3470
danielk1977dddbcdc2007-04-26 14:42:34 +00003471/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003472static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003473
3474/*
dan51f0b6d2013-02-22 20:16:34 +00003475** Perform a single step of an incremental-vacuum. If successful, return
3476** SQLITE_OK. If there is no work to do (and therefore no point in
3477** calling this function again), return SQLITE_DONE. Or, if an error
3478** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003479**
peter.d.reid60ec9142014-09-06 16:39:46 +00003480** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003481** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003482**
dan51f0b6d2013-02-22 20:16:34 +00003483** Parameter nFin is the number of pages that this database would contain
3484** were this function called until it returns SQLITE_DONE.
3485**
3486** If the bCommit parameter is non-zero, this function assumes that the
3487** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003488** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003489** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003490*/
dan51f0b6d2013-02-22 20:16:34 +00003491static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003492 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003493 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003494
drh1fee73e2007-08-29 04:00:57 +00003495 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003496 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003497
3498 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003499 u8 eType;
3500 Pgno iPtrPage;
3501
3502 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003503 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003504 return SQLITE_DONE;
3505 }
3506
3507 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3508 if( rc!=SQLITE_OK ){
3509 return rc;
3510 }
3511 if( eType==PTRMAP_ROOTPAGE ){
3512 return SQLITE_CORRUPT_BKPT;
3513 }
3514
3515 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003516 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003517 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003518 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003519 ** truncated to zero after this function returns, so it doesn't
3520 ** matter if it still contains some garbage entries.
3521 */
3522 Pgno iFreePg;
3523 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003524 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003525 if( rc!=SQLITE_OK ){
3526 return rc;
3527 }
3528 assert( iFreePg==iLastPg );
3529 releasePage(pFreePg);
3530 }
3531 } else {
3532 Pgno iFreePg; /* Index of free page to move pLastPg to */
3533 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003534 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3535 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003536
drhb00fc3b2013-08-21 23:42:32 +00003537 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003538 if( rc!=SQLITE_OK ){
3539 return rc;
3540 }
3541
dan51f0b6d2013-02-22 20:16:34 +00003542 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003543 ** is swapped with the first free page pulled off the free list.
3544 **
dan51f0b6d2013-02-22 20:16:34 +00003545 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003546 ** looping until a free-page located within the first nFin pages
3547 ** of the file is found.
3548 */
dan51f0b6d2013-02-22 20:16:34 +00003549 if( bCommit==0 ){
3550 eMode = BTALLOC_LE;
3551 iNear = nFin;
3552 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003553 do {
3554 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003555 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003556 if( rc!=SQLITE_OK ){
3557 releasePage(pLastPg);
3558 return rc;
3559 }
3560 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003561 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003562 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003563
dane1df4e32013-03-05 11:27:04 +00003564 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003565 releasePage(pLastPg);
3566 if( rc!=SQLITE_OK ){
3567 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003568 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003569 }
3570 }
3571
dan51f0b6d2013-02-22 20:16:34 +00003572 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003573 do {
danielk19773460d192008-12-27 15:23:13 +00003574 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003575 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3576 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003577 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003578 }
3579 return SQLITE_OK;
3580}
3581
3582/*
dan51f0b6d2013-02-22 20:16:34 +00003583** The database opened by the first argument is an auto-vacuum database
3584** nOrig pages in size containing nFree free pages. Return the expected
3585** size of the database in pages following an auto-vacuum operation.
3586*/
3587static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3588 int nEntry; /* Number of entries on one ptrmap page */
3589 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3590 Pgno nFin; /* Return value */
3591
3592 nEntry = pBt->usableSize/5;
3593 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3594 nFin = nOrig - nFree - nPtrmap;
3595 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3596 nFin--;
3597 }
3598 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3599 nFin--;
3600 }
dan51f0b6d2013-02-22 20:16:34 +00003601
3602 return nFin;
3603}
3604
3605/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003606** A write-transaction must be opened before calling this function.
3607** It performs a single unit of work towards an incremental vacuum.
3608**
3609** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003610** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003611** SQLITE_OK is returned. Otherwise an SQLite error code.
3612*/
3613int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003614 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003615 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003616
3617 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003618 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3619 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003620 rc = SQLITE_DONE;
3621 }else{
dan51f0b6d2013-02-22 20:16:34 +00003622 Pgno nOrig = btreePagecount(pBt);
3623 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3624 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3625
dan91384712013-02-24 11:50:43 +00003626 if( nOrig<nFin ){
3627 rc = SQLITE_CORRUPT_BKPT;
3628 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003629 rc = saveAllCursors(pBt, 0, 0);
3630 if( rc==SQLITE_OK ){
3631 invalidateAllOverflowCache(pBt);
3632 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3633 }
dan51f0b6d2013-02-22 20:16:34 +00003634 if( rc==SQLITE_OK ){
3635 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3636 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3637 }
3638 }else{
3639 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003640 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003641 }
drhd677b3d2007-08-20 22:48:41 +00003642 sqlite3BtreeLeave(p);
3643 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003644}
3645
3646/*
danielk19773b8a05f2007-03-19 17:44:26 +00003647** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003648** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003649**
3650** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3651** the database file should be truncated to during the commit process.
3652** i.e. the database has been reorganized so that only the first *pnTrunc
3653** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003654*/
danielk19773460d192008-12-27 15:23:13 +00003655static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003656 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003657 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003658 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003659
drh1fee73e2007-08-29 04:00:57 +00003660 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003661 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003662 assert(pBt->autoVacuum);
3663 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003664 Pgno nFin; /* Number of pages in database after autovacuuming */
3665 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003666 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003667 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003668
drhb1299152010-03-30 22:58:33 +00003669 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003670 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3671 /* It is not possible to create a database for which the final page
3672 ** is either a pointer-map page or the pending-byte page. If one
3673 ** is encountered, this indicates corruption.
3674 */
danielk19773460d192008-12-27 15:23:13 +00003675 return SQLITE_CORRUPT_BKPT;
3676 }
danielk1977ef165ce2009-04-06 17:50:03 +00003677
danielk19773460d192008-12-27 15:23:13 +00003678 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003679 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003680 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003681 if( nFin<nOrig ){
3682 rc = saveAllCursors(pBt, 0, 0);
3683 }
danielk19773460d192008-12-27 15:23:13 +00003684 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003685 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003686 }
danielk19773460d192008-12-27 15:23:13 +00003687 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003688 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3689 put4byte(&pBt->pPage1->aData[32], 0);
3690 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003691 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003692 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003693 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003694 }
3695 if( rc!=SQLITE_OK ){
3696 sqlite3PagerRollback(pPager);
3697 }
danielk1977687566d2004-11-02 12:56:41 +00003698 }
3699
dan0aed84d2013-03-26 14:16:20 +00003700 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003701 return rc;
3702}
danielk1977dddbcdc2007-04-26 14:42:34 +00003703
danielk1977a50d9aa2009-06-08 14:49:45 +00003704#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3705# define setChildPtrmaps(x) SQLITE_OK
3706#endif
danielk1977687566d2004-11-02 12:56:41 +00003707
3708/*
drh80e35f42007-03-30 14:06:34 +00003709** This routine does the first phase of a two-phase commit. This routine
3710** causes a rollback journal to be created (if it does not already exist)
3711** and populated with enough information so that if a power loss occurs
3712** the database can be restored to its original state by playing back
3713** the journal. Then the contents of the journal are flushed out to
3714** the disk. After the journal is safely on oxide, the changes to the
3715** database are written into the database file and flushed to oxide.
3716** At the end of this call, the rollback journal still exists on the
3717** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003718** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003719** commit process.
3720**
3721** This call is a no-op if no write-transaction is currently active on pBt.
3722**
3723** Otherwise, sync the database file for the btree pBt. zMaster points to
3724** the name of a master journal file that should be written into the
3725** individual journal file, or is NULL, indicating no master journal file
3726** (single database transaction).
3727**
3728** When this is called, the master journal should already have been
3729** created, populated with this journal pointer and synced to disk.
3730**
3731** Once this is routine has returned, the only thing required to commit
3732** the write-transaction for this database file is to delete the journal.
3733*/
3734int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3735 int rc = SQLITE_OK;
3736 if( p->inTrans==TRANS_WRITE ){
3737 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003738 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003739#ifndef SQLITE_OMIT_AUTOVACUUM
3740 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003741 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003742 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003743 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003744 return rc;
3745 }
3746 }
danbc1a3c62013-02-23 16:40:46 +00003747 if( pBt->bDoTruncate ){
3748 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3749 }
drh80e35f42007-03-30 14:06:34 +00003750#endif
drh49b9d332009-01-02 18:10:42 +00003751 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003752 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003753 }
3754 return rc;
3755}
3756
3757/*
danielk197794b30732009-07-02 17:21:57 +00003758** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3759** at the conclusion of a transaction.
3760*/
3761static void btreeEndTransaction(Btree *p){
3762 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003763 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003764 assert( sqlite3BtreeHoldsMutex(p) );
3765
danbc1a3c62013-02-23 16:40:46 +00003766#ifndef SQLITE_OMIT_AUTOVACUUM
3767 pBt->bDoTruncate = 0;
3768#endif
danc0537fe2013-06-28 19:41:43 +00003769 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003770 /* If there are other active statements that belong to this database
3771 ** handle, downgrade to a read-only transaction. The other statements
3772 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003773 downgradeAllSharedCacheTableLocks(p);
3774 p->inTrans = TRANS_READ;
3775 }else{
3776 /* If the handle had any kind of transaction open, decrement the
3777 ** transaction count of the shared btree. If the transaction count
3778 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3779 ** call below will unlock the pager. */
3780 if( p->inTrans!=TRANS_NONE ){
3781 clearAllSharedCacheTableLocks(p);
3782 pBt->nTransaction--;
3783 if( 0==pBt->nTransaction ){
3784 pBt->inTransaction = TRANS_NONE;
3785 }
3786 }
3787
3788 /* Set the current transaction state to TRANS_NONE and unlock the
3789 ** pager if this call closed the only read or write transaction. */
3790 p->inTrans = TRANS_NONE;
3791 unlockBtreeIfUnused(pBt);
3792 }
3793
3794 btreeIntegrity(p);
3795}
3796
3797/*
drh2aa679f2001-06-25 02:11:07 +00003798** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003799**
drh6e345992007-03-30 11:12:08 +00003800** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003801** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3802** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3803** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003804** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003805** routine has to do is delete or truncate or zero the header in the
3806** the rollback journal (which causes the transaction to commit) and
3807** drop locks.
drh6e345992007-03-30 11:12:08 +00003808**
dan60939d02011-03-29 15:40:55 +00003809** Normally, if an error occurs while the pager layer is attempting to
3810** finalize the underlying journal file, this function returns an error and
3811** the upper layer will attempt a rollback. However, if the second argument
3812** is non-zero then this b-tree transaction is part of a multi-file
3813** transaction. In this case, the transaction has already been committed
3814** (by deleting a master journal file) and the caller will ignore this
3815** functions return code. So, even if an error occurs in the pager layer,
3816** reset the b-tree objects internal state to indicate that the write
3817** transaction has been closed. This is quite safe, as the pager will have
3818** transitioned to the error state.
3819**
drh5e00f6c2001-09-13 13:46:56 +00003820** This will release the write lock on the database file. If there
3821** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003822*/
dan60939d02011-03-29 15:40:55 +00003823int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003824
drh075ed302010-10-14 01:17:30 +00003825 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003826 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003827 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003828
3829 /* If the handle has a write-transaction open, commit the shared-btrees
3830 ** transaction and set the shared state to TRANS_READ.
3831 */
3832 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003833 int rc;
drh075ed302010-10-14 01:17:30 +00003834 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003835 assert( pBt->inTransaction==TRANS_WRITE );
3836 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003837 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003838 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003839 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003840 return rc;
3841 }
drh3da9c042014-12-22 18:41:21 +00003842 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003843 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003844 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003845 }
danielk1977aef0bf62005-12-30 16:28:01 +00003846
danielk197794b30732009-07-02 17:21:57 +00003847 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003848 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003849 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003850}
3851
drh80e35f42007-03-30 14:06:34 +00003852/*
3853** Do both phases of a commit.
3854*/
3855int sqlite3BtreeCommit(Btree *p){
3856 int rc;
drhd677b3d2007-08-20 22:48:41 +00003857 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003858 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3859 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003860 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003861 }
drhd677b3d2007-08-20 22:48:41 +00003862 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003863 return rc;
3864}
3865
drhc39e0002004-05-07 23:50:57 +00003866/*
drhfb982642007-08-30 01:19:59 +00003867** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003868** code to errCode for every cursor on any BtShared that pBtree
3869** references. Or if the writeOnly flag is set to 1, then only
3870** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003871**
drh47b7fc72014-11-11 01:33:57 +00003872** Every cursor is a candidate to be tripped, including cursors
3873** that belong to other database connections that happen to be
3874** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003875**
dan80231042014-11-12 14:56:02 +00003876** This routine gets called when a rollback occurs. If the writeOnly
3877** flag is true, then only write-cursors need be tripped - read-only
3878** cursors save their current positions so that they may continue
3879** following the rollback. Or, if writeOnly is false, all cursors are
3880** tripped. In general, writeOnly is false if the transaction being
3881** rolled back modified the database schema. In this case b-tree root
3882** pages may be moved or deleted from the database altogether, making
3883** it unsafe for read cursors to continue.
3884**
3885** If the writeOnly flag is true and an error is encountered while
3886** saving the current position of a read-only cursor, all cursors,
3887** including all read-cursors are tripped.
3888**
3889** SQLITE_OK is returned if successful, or if an error occurs while
3890** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003891*/
dan80231042014-11-12 14:56:02 +00003892int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003893 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003894 int rc = SQLITE_OK;
3895
drh47b7fc72014-11-11 01:33:57 +00003896 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003897 if( pBtree ){
3898 sqlite3BtreeEnter(pBtree);
3899 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3900 int i;
3901 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003902 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003903 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003904 if( rc!=SQLITE_OK ){
3905 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3906 break;
3907 }
3908 }
3909 }else{
3910 sqlite3BtreeClearCursor(p);
3911 p->eState = CURSOR_FAULT;
3912 p->skipNext = errCode;
3913 }
3914 for(i=0; i<=p->iPage; i++){
3915 releasePage(p->apPage[i]);
3916 p->apPage[i] = 0;
3917 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003918 }
dan80231042014-11-12 14:56:02 +00003919 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003920 }
dan80231042014-11-12 14:56:02 +00003921 return rc;
drhfb982642007-08-30 01:19:59 +00003922}
3923
3924/*
drh47b7fc72014-11-11 01:33:57 +00003925** Rollback the transaction in progress.
3926**
3927** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3928** Only write cursors are tripped if writeOnly is true but all cursors are
3929** tripped if writeOnly is false. Any attempt to use
3930** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003931**
3932** This will release the write lock on the database file. If there
3933** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003934*/
drh47b7fc72014-11-11 01:33:57 +00003935int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003936 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003937 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003938 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003939
drh47b7fc72014-11-11 01:33:57 +00003940 assert( writeOnly==1 || writeOnly==0 );
3941 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003942 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003943 if( tripCode==SQLITE_OK ){
3944 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003945 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003946 }else{
3947 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003948 }
drh0f198a72012-02-13 16:43:16 +00003949 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003950 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3951 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3952 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003953 }
danielk1977aef0bf62005-12-30 16:28:01 +00003954 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003955
3956 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003957 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003958
danielk19778d34dfd2006-01-24 16:37:57 +00003959 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003960 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003961 if( rc2!=SQLITE_OK ){
3962 rc = rc2;
3963 }
3964
drh24cd67e2004-05-10 16:18:47 +00003965 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003966 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003967 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003968 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003969 int nPage = get4byte(28+(u8*)pPage1->aData);
3970 testcase( nPage==0 );
3971 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3972 testcase( pBt->nPage!=nPage );
3973 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003974 releasePage(pPage1);
3975 }
drh85ec3b62013-05-14 23:12:06 +00003976 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003977 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003978 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003979 }
danielk1977aef0bf62005-12-30 16:28:01 +00003980
danielk197794b30732009-07-02 17:21:57 +00003981 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003982 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003983 return rc;
3984}
3985
3986/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003987** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003988** back independently of the main transaction. You must start a transaction
3989** before starting a subtransaction. The subtransaction is ended automatically
3990** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003991**
3992** Statement subtransactions are used around individual SQL statements
3993** that are contained within a BEGIN...COMMIT block. If a constraint
3994** error occurs within the statement, the effect of that one statement
3995** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003996**
3997** A statement sub-transaction is implemented as an anonymous savepoint. The
3998** value passed as the second parameter is the total number of savepoints,
3999** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4000** are no active savepoints and no other statement-transactions open,
4001** iStatement is 1. This anonymous savepoint can be released or rolled back
4002** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004003*/
danielk1977bd434552009-03-18 10:33:00 +00004004int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004005 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004006 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004007 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004008 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004009 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004010 assert( iStatement>0 );
4011 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004012 assert( pBt->inTransaction==TRANS_WRITE );
4013 /* At the pager level, a statement transaction is a savepoint with
4014 ** an index greater than all savepoints created explicitly using
4015 ** SQL statements. It is illegal to open, release or rollback any
4016 ** such savepoints while the statement transaction savepoint is active.
4017 */
4018 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004019 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004020 return rc;
4021}
4022
4023/*
danielk1977fd7f0452008-12-17 17:30:26 +00004024** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4025** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004026** savepoint identified by parameter iSavepoint, depending on the value
4027** of op.
4028**
4029** Normally, iSavepoint is greater than or equal to zero. However, if op is
4030** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4031** contents of the entire transaction are rolled back. This is different
4032** from a normal transaction rollback, as no locks are released and the
4033** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004034*/
4035int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4036 int rc = SQLITE_OK;
4037 if( p && p->inTrans==TRANS_WRITE ){
4038 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004039 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4040 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4041 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004042 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004043 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004044 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4045 pBt->nPage = 0;
4046 }
drh9f0bbf92009-01-02 21:08:09 +00004047 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004048 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004049
4050 /* The database size was written into the offset 28 of the header
4051 ** when the transaction started, so we know that the value at offset
4052 ** 28 is nonzero. */
4053 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004054 }
danielk1977fd7f0452008-12-17 17:30:26 +00004055 sqlite3BtreeLeave(p);
4056 }
4057 return rc;
4058}
4059
4060/*
drh8b2f49b2001-06-08 00:21:52 +00004061** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004062** iTable. If a read-only cursor is requested, it is assumed that
4063** the caller already has at least a read-only transaction open
4064** on the database already. If a write-cursor is requested, then
4065** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004066**
drhe807bdb2016-01-21 17:06:33 +00004067** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4068** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4069** can be used for reading or for writing if other conditions for writing
4070** are also met. These are the conditions that must be met in order
4071** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004072**
drhe807bdb2016-01-21 17:06:33 +00004073** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004074**
drhfe5d71d2007-03-19 11:54:10 +00004075** 2: Other database connections that share the same pager cache
4076** but which are not in the READ_UNCOMMITTED state may not have
4077** cursors open with wrFlag==0 on the same table. Otherwise
4078** the changes made by this write cursor would be visible to
4079** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004080**
4081** 3: The database must be writable (not on read-only media)
4082**
4083** 4: There must be an active transaction.
4084**
drhe807bdb2016-01-21 17:06:33 +00004085** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4086** is set. If FORDELETE is set, that is a hint to the implementation that
4087** this cursor will only be used to seek to and delete entries of an index
4088** as part of a larger DELETE statement. The FORDELETE hint is not used by
4089** this implementation. But in a hypothetical alternative storage engine
4090** in which index entries are automatically deleted when corresponding table
4091** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4092** operations on this cursor can be no-ops and all READ operations can
4093** return a null row (2-bytes: 0x01 0x00).
4094**
drh6446c4d2001-12-15 14:22:18 +00004095** No checking is done to make sure that page iTable really is the
4096** root page of a b-tree. If it is not, then the cursor acquired
4097** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004098**
drhf25a5072009-11-18 23:01:25 +00004099** It is assumed that the sqlite3BtreeCursorZero() has been called
4100** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004101*/
drhd677b3d2007-08-20 22:48:41 +00004102static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004103 Btree *p, /* The btree */
4104 int iTable, /* Root page of table to open */
4105 int wrFlag, /* 1 to write. 0 read-only */
4106 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4107 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004108){
danielk19773e8add92009-07-04 17:16:00 +00004109 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004110 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004111
drh1fee73e2007-08-29 04:00:57 +00004112 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004113 assert( wrFlag==0
4114 || wrFlag==BTREE_WRCSR
4115 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4116 );
danielk197796d48e92009-06-29 06:00:37 +00004117
danielk1977602b4662009-07-02 07:47:33 +00004118 /* The following assert statements verify that if this is a sharable
4119 ** b-tree database, the connection is holding the required table locks,
4120 ** and that no other connection has any open cursor that conflicts with
4121 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004122 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004123 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4124
danielk19773e8add92009-07-04 17:16:00 +00004125 /* Assert that the caller has opened the required transaction. */
4126 assert( p->inTrans>TRANS_NONE );
4127 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4128 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004129 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004130
drh3fbb0222014-09-24 19:47:27 +00004131 if( wrFlag ){
4132 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004133 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004134 }
drhb1299152010-03-30 22:58:33 +00004135 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004136 assert( wrFlag==0 );
4137 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004138 }
danielk1977aef0bf62005-12-30 16:28:01 +00004139
danielk1977aef0bf62005-12-30 16:28:01 +00004140 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004141 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004142 pCur->pgnoRoot = (Pgno)iTable;
4143 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004144 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004145 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004146 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004147 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004148 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004149 /* If there are two or more cursors on the same btree, then all such
4150 ** cursors *must* have the BTCF_Multiple flag set. */
4151 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4152 if( pX->pgnoRoot==(Pgno)iTable ){
4153 pX->curFlags |= BTCF_Multiple;
4154 pCur->curFlags |= BTCF_Multiple;
4155 }
drha059ad02001-04-17 20:09:11 +00004156 }
drh27fb7462015-06-30 02:47:36 +00004157 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004158 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004159 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004160 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004161}
drhd677b3d2007-08-20 22:48:41 +00004162int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004163 Btree *p, /* The btree */
4164 int iTable, /* Root page of table to open */
4165 int wrFlag, /* 1 to write. 0 read-only */
4166 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4167 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004168){
4169 int rc;
dan08f901b2015-05-25 19:24:36 +00004170 if( iTable<1 ){
4171 rc = SQLITE_CORRUPT_BKPT;
4172 }else{
4173 sqlite3BtreeEnter(p);
4174 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4175 sqlite3BtreeLeave(p);
4176 }
drhd677b3d2007-08-20 22:48:41 +00004177 return rc;
4178}
drh7f751222009-03-17 22:33:00 +00004179
4180/*
4181** Return the size of a BtCursor object in bytes.
4182**
4183** This interfaces is needed so that users of cursors can preallocate
4184** sufficient storage to hold a cursor. The BtCursor object is opaque
4185** to users so they cannot do the sizeof() themselves - they must call
4186** this routine.
4187*/
4188int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004189 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004190}
4191
drh7f751222009-03-17 22:33:00 +00004192/*
drhf25a5072009-11-18 23:01:25 +00004193** Initialize memory that will be converted into a BtCursor object.
4194**
4195** The simple approach here would be to memset() the entire object
4196** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4197** do not need to be zeroed and they are large, so we can save a lot
4198** of run-time by skipping the initialization of those elements.
4199*/
4200void sqlite3BtreeCursorZero(BtCursor *p){
4201 memset(p, 0, offsetof(BtCursor, iPage));
4202}
4203
4204/*
drh5e00f6c2001-09-13 13:46:56 +00004205** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004206** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004207*/
drh3aac2dd2004-04-26 14:10:20 +00004208int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004209 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004210 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004211 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004212 BtShared *pBt = pCur->pBt;
4213 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004214 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004215 assert( pBt->pCursor!=0 );
4216 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004217 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004218 }else{
4219 BtCursor *pPrev = pBt->pCursor;
4220 do{
4221 if( pPrev->pNext==pCur ){
4222 pPrev->pNext = pCur->pNext;
4223 break;
4224 }
4225 pPrev = pPrev->pNext;
4226 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004227 }
danielk197771d5d2c2008-09-29 11:49:47 +00004228 for(i=0; i<=pCur->iPage; i++){
4229 releasePage(pCur->apPage[i]);
4230 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004231 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004232 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004233 /* sqlite3_free(pCur); */
4234 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004235 }
drh8c42ca92001-06-22 19:15:00 +00004236 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004237}
4238
drh5e2f8b92001-05-28 00:41:15 +00004239/*
drh86057612007-06-26 01:04:48 +00004240** Make sure the BtCursor* given in the argument has a valid
4241** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004242** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004243**
4244** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004245** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004246*/
drh9188b382004-05-14 21:12:22 +00004247#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004248 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004249 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004250 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004251 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004252 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004253 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004254 }
danielk19771cc5ed82007-05-16 17:28:43 +00004255#else
4256 #define assertCellInfo(x)
4257#endif
drhc5b41ac2015-06-17 02:11:46 +00004258static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4259 if( pCur->info.nSize==0 ){
4260 int iPage = pCur->iPage;
4261 pCur->curFlags |= BTCF_ValidNKey;
4262 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4263 }else{
4264 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004265 }
drhc5b41ac2015-06-17 02:11:46 +00004266}
drh9188b382004-05-14 21:12:22 +00004267
drhea8ffdf2009-07-22 00:35:23 +00004268#ifndef NDEBUG /* The next routine used only within assert() statements */
4269/*
4270** Return true if the given BtCursor is valid. A valid cursor is one
4271** that is currently pointing to a row in a (non-empty) table.
4272** This is a verification routine is used only within assert() statements.
4273*/
4274int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4275 return pCur && pCur->eState==CURSOR_VALID;
4276}
4277#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004278int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4279 assert( pCur!=0 );
4280 return pCur->eState==CURSOR_VALID;
4281}
drhea8ffdf2009-07-22 00:35:23 +00004282
drh9188b382004-05-14 21:12:22 +00004283/*
drha7c90c42016-06-04 20:37:10 +00004284** Return the value of the integer key or "rowid" for a table btree.
4285** This routine is only valid for a cursor that is pointing into a
4286** ordinary table btree. If the cursor points to an index btree or
4287** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004288*/
drha7c90c42016-06-04 20:37:10 +00004289i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004290 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004291 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004292 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004293 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004294 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004295}
drh2af926b2001-05-15 00:39:25 +00004296
drh72f82862001-05-24 21:06:34 +00004297/*
drha7c90c42016-06-04 20:37:10 +00004298** Return the number of bytes of payload for the entry that pCur is
4299** currently pointing to. For table btrees, this will be the amount
4300** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004301**
4302** The caller must guarantee that the cursor is pointing to a non-NULL
4303** valid entry. In other words, the calling procedure must guarantee
4304** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004305*/
drha7c90c42016-06-04 20:37:10 +00004306u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4307 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004308 assert( pCur->eState==CURSOR_VALID );
4309 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004310 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004311}
4312
4313/*
danielk1977d04417962007-05-02 13:16:30 +00004314** Given the page number of an overflow page in the database (parameter
4315** ovfl), this function finds the page number of the next page in the
4316** linked list of overflow pages. If possible, it uses the auto-vacuum
4317** pointer-map data instead of reading the content of page ovfl to do so.
4318**
4319** If an error occurs an SQLite error code is returned. Otherwise:
4320**
danielk1977bea2a942009-01-20 17:06:27 +00004321** The page number of the next overflow page in the linked list is
4322** written to *pPgnoNext. If page ovfl is the last page in its linked
4323** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004324**
danielk1977bea2a942009-01-20 17:06:27 +00004325** If ppPage is not NULL, and a reference to the MemPage object corresponding
4326** to page number pOvfl was obtained, then *ppPage is set to point to that
4327** reference. It is the responsibility of the caller to call releasePage()
4328** on *ppPage to free the reference. In no reference was obtained (because
4329** the pointer-map was used to obtain the value for *pPgnoNext), then
4330** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004331*/
4332static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004333 BtShared *pBt, /* The database file */
4334 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004335 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004336 Pgno *pPgnoNext /* OUT: Next overflow page number */
4337){
4338 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004339 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004340 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004341
drh1fee73e2007-08-29 04:00:57 +00004342 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004343 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004344
4345#ifndef SQLITE_OMIT_AUTOVACUUM
4346 /* Try to find the next page in the overflow list using the
4347 ** autovacuum pointer-map pages. Guess that the next page in
4348 ** the overflow list is page number (ovfl+1). If that guess turns
4349 ** out to be wrong, fall back to loading the data of page
4350 ** number ovfl to determine the next page number.
4351 */
4352 if( pBt->autoVacuum ){
4353 Pgno pgno;
4354 Pgno iGuess = ovfl+1;
4355 u8 eType;
4356
4357 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4358 iGuess++;
4359 }
4360
drhb1299152010-03-30 22:58:33 +00004361 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004362 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004363 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004364 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004365 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004366 }
4367 }
4368 }
4369#endif
4370
danielk1977d8a3f3d2009-07-11 11:45:23 +00004371 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004372 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004373 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004374 assert( rc==SQLITE_OK || pPage==0 );
4375 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004376 next = get4byte(pPage->aData);
4377 }
danielk1977443c0592009-01-16 15:21:05 +00004378 }
danielk197745d68822009-01-16 16:23:38 +00004379
danielk1977bea2a942009-01-20 17:06:27 +00004380 *pPgnoNext = next;
4381 if( ppPage ){
4382 *ppPage = pPage;
4383 }else{
4384 releasePage(pPage);
4385 }
4386 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004387}
4388
danielk1977da107192007-05-04 08:32:13 +00004389/*
4390** Copy data from a buffer to a page, or from a page to a buffer.
4391**
4392** pPayload is a pointer to data stored on database page pDbPage.
4393** If argument eOp is false, then nByte bytes of data are copied
4394** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4395** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4396** of data are copied from the buffer pBuf to pPayload.
4397**
4398** SQLITE_OK is returned on success, otherwise an error code.
4399*/
4400static int copyPayload(
4401 void *pPayload, /* Pointer to page data */
4402 void *pBuf, /* Pointer to buffer */
4403 int nByte, /* Number of bytes to copy */
4404 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4405 DbPage *pDbPage /* Page containing pPayload */
4406){
4407 if( eOp ){
4408 /* Copy data from buffer to page (a write operation) */
4409 int rc = sqlite3PagerWrite(pDbPage);
4410 if( rc!=SQLITE_OK ){
4411 return rc;
4412 }
4413 memcpy(pPayload, pBuf, nByte);
4414 }else{
4415 /* Copy data from page to buffer (a read operation) */
4416 memcpy(pBuf, pPayload, nByte);
4417 }
4418 return SQLITE_OK;
4419}
danielk1977d04417962007-05-02 13:16:30 +00004420
4421/*
danielk19779f8d6402007-05-02 17:48:45 +00004422** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004423** for the entry that the pCur cursor is pointing to. The eOp
4424** argument is interpreted as follows:
4425**
4426** 0: The operation is a read. Populate the overflow cache.
4427** 1: The operation is a write. Populate the overflow cache.
4428** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004429**
4430** A total of "amt" bytes are read or written beginning at "offset".
4431** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004432**
drh3bcdfd22009-07-12 02:32:21 +00004433** The content being read or written might appear on the main page
4434** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004435**
dan5a500af2014-03-11 20:33:04 +00004436** If the current cursor entry uses one or more overflow pages and the
4437** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004438** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004439** Subsequent calls use this cache to make seeking to the supplied offset
4440** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004441**
4442** Once an overflow page-list cache has been allocated, it may be
4443** invalidated if some other cursor writes to the same table, or if
4444** the cursor is moved to a different row. Additionally, in auto-vacuum
4445** mode, the following events may invalidate an overflow page-list cache.
4446**
4447** * An incremental vacuum,
4448** * A commit in auto_vacuum="full" mode,
4449** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004450*/
danielk19779f8d6402007-05-02 17:48:45 +00004451static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004452 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004453 u32 offset, /* Begin reading this far into payload */
4454 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004455 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004456 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004457){
4458 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004459 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004460 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004461 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004462 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004463#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004464 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004465 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004466#endif
drh3aac2dd2004-04-26 14:10:20 +00004467
danielk1977da107192007-05-04 08:32:13 +00004468 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004469 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004470 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004471 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004472 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004473
drh86057612007-06-26 01:04:48 +00004474 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004475 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004476#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004477 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004478#endif
drhab1cc582014-09-23 21:25:19 +00004479 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004480
drh0b982072016-03-22 14:10:45 +00004481 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004482 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004483 /* Trying to read or write past the end of the data is an error. The
4484 ** conditional above is really:
4485 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4486 ** but is recast into its current form to avoid integer overflow problems
4487 */
danielk197767fd7a92008-09-10 17:53:35 +00004488 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004489 }
danielk1977da107192007-05-04 08:32:13 +00004490
4491 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004492 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004493 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004494 if( a+offset>pCur->info.nLocal ){
4495 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004496 }
dan5a500af2014-03-11 20:33:04 +00004497 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004498 offset = 0;
drha34b6762004-05-07 13:30:42 +00004499 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004500 amt -= a;
drhdd793422001-06-28 01:54:48 +00004501 }else{
drhfa1a98a2004-05-14 19:08:17 +00004502 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004503 }
danielk1977da107192007-05-04 08:32:13 +00004504
dan85753662014-12-11 16:38:18 +00004505
danielk1977da107192007-05-04 08:32:13 +00004506 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004507 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004508 Pgno nextPage;
4509
drhfa1a98a2004-05-14 19:08:17 +00004510 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004511
drha38c9512014-04-01 01:24:34 +00004512 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4513 ** Except, do not allocate aOverflow[] for eOp==2.
4514 **
4515 ** The aOverflow[] array is sized at one entry for each overflow page
4516 ** in the overflow chain. The page number of the first overflow page is
4517 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4518 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004519 */
drh036dbec2014-03-11 23:40:44 +00004520 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004521 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004522 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004523 Pgno *aNew = (Pgno*)sqlite3Realloc(
4524 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004525 );
4526 if( aNew==0 ){
mistachkinfad30392016-02-13 23:43:46 +00004527 rc = SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004528 }else{
4529 pCur->nOvflAlloc = nOvfl*2;
4530 pCur->aOverflow = aNew;
4531 }
4532 }
4533 if( rc==SQLITE_OK ){
4534 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004535 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004536 }
4537 }
danielk1977da107192007-05-04 08:32:13 +00004538
4539 /* If the overflow page-list cache has been allocated and the
4540 ** entry for the first required overflow page is valid, skip
4541 ** directly to it.
4542 */
drh3f387402014-09-24 01:23:00 +00004543 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4544 && pCur->aOverflow[offset/ovflSize]
4545 ){
danielk19772dec9702007-05-02 16:48:37 +00004546 iIdx = (offset/ovflSize);
4547 nextPage = pCur->aOverflow[iIdx];
4548 offset = (offset%ovflSize);
4549 }
danielk1977da107192007-05-04 08:32:13 +00004550
4551 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4552
danielk1977da107192007-05-04 08:32:13 +00004553 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004554 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004555 assert( pCur->aOverflow[iIdx]==0
4556 || pCur->aOverflow[iIdx]==nextPage
4557 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004558 pCur->aOverflow[iIdx] = nextPage;
4559 }
danielk1977da107192007-05-04 08:32:13 +00004560
danielk1977d04417962007-05-02 13:16:30 +00004561 if( offset>=ovflSize ){
4562 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004563 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004564 ** data is not required. So first try to lookup the overflow
4565 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004566 ** function.
drha38c9512014-04-01 01:24:34 +00004567 **
4568 ** Note that the aOverflow[] array must be allocated because eOp!=2
4569 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004570 */
drha38c9512014-04-01 01:24:34 +00004571 assert( eOp!=2 );
4572 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004573 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004574 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004575 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004576 }else{
danielk1977da107192007-05-04 08:32:13 +00004577 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004578 }
danielk1977da107192007-05-04 08:32:13 +00004579 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004580 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004581 /* Need to read this page properly. It contains some of the
4582 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004583 */
danf4ba1092011-10-08 14:57:07 +00004584#ifdef SQLITE_DIRECT_OVERFLOW_READ
4585 sqlite3_file *fd;
4586#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004587 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004588 if( a + offset > ovflSize ){
4589 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004590 }
danf4ba1092011-10-08 14:57:07 +00004591
4592#ifdef SQLITE_DIRECT_OVERFLOW_READ
4593 /* If all the following are true:
4594 **
4595 ** 1) this is a read operation, and
4596 ** 2) data is required from the start of this overflow page, and
4597 ** 3) the database is file-backed, and
4598 ** 4) there is no open write-transaction, and
4599 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004600 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004601 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004602 **
4603 ** then data can be read directly from the database file into the
4604 ** output buffer, bypassing the page-cache altogether. This speeds
4605 ** up loading large records that span many overflow pages.
4606 */
dan5a500af2014-03-11 20:33:04 +00004607 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004608 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004609 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004610 && pBt->inTransaction==TRANS_READ /* (4) */
4611 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
dane24452e2016-10-21 10:49:39 +00004612 && 0==sqlite3PagerUseWal(pBt->pPager) /* (5) */
dan9501a642014-10-01 12:01:10 +00004613 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004614 ){
4615 u8 aSave[4];
4616 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004617 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004618 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004619 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004620 nextPage = get4byte(aWrite);
4621 memcpy(aWrite, aSave, 4);
4622 }else
4623#endif
4624
4625 {
4626 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004627 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004628 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004629 );
danf4ba1092011-10-08 14:57:07 +00004630 if( rc==SQLITE_OK ){
4631 aPayload = sqlite3PagerGetData(pDbPage);
4632 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004633 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004634 sqlite3PagerUnref(pDbPage);
4635 offset = 0;
4636 }
4637 }
4638 amt -= a;
4639 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004640 }
drh2af926b2001-05-15 00:39:25 +00004641 }
drh2af926b2001-05-15 00:39:25 +00004642 }
danielk1977cfe9a692004-06-16 12:00:29 +00004643
danielk1977da107192007-05-04 08:32:13 +00004644 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004645 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004646 }
danielk1977da107192007-05-04 08:32:13 +00004647 return rc;
drh2af926b2001-05-15 00:39:25 +00004648}
4649
drh72f82862001-05-24 21:06:34 +00004650/*
drhcb3cabd2016-11-25 19:18:28 +00004651** Read part of the payload for the row at which that cursor pCur is currently
4652** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004653** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004654**
drhcb3cabd2016-11-25 19:18:28 +00004655** pCur can be pointing to either a table or an index b-tree.
4656** If pointing to a table btree, then the content section is read. If
4657** pCur is pointing to an index b-tree then the key section is read.
4658**
4659** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4660** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4661** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004662**
drh3aac2dd2004-04-26 14:10:20 +00004663** Return SQLITE_OK on success or an error code if anything goes
4664** wrong. An error is returned if "offset+amt" is larger than
4665** the available payload.
drh72f82862001-05-24 21:06:34 +00004666*/
drhcb3cabd2016-11-25 19:18:28 +00004667int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004668 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004669 assert( pCur->eState==CURSOR_VALID );
4670 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4671 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4672 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004673}
danielk19773588ceb2008-06-10 17:30:26 +00004674#ifndef SQLITE_OMIT_INCRBLOB
drhcb3cabd2016-11-25 19:18:28 +00004675int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4676 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004677 if ( pCur->eState==CURSOR_INVALID ){
4678 return SQLITE_ABORT;
4679 }
dan7a2347e2016-01-07 16:43:54 +00004680 assert( cursorOwnsBtShared(pCur) );
drha3460582008-07-11 21:02:53 +00004681 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004682 if( rc==SQLITE_OK ){
4683 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004684 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4685 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004686 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004687 }
4688 return rc;
drh2af926b2001-05-15 00:39:25 +00004689}
drhcb3cabd2016-11-25 19:18:28 +00004690#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004691
drh72f82862001-05-24 21:06:34 +00004692/*
drh0e1c19e2004-05-11 00:58:56 +00004693** Return a pointer to payload information from the entry that the
4694** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004695** the key if index btrees (pPage->intKey==0) and is the data for
4696** table btrees (pPage->intKey==1). The number of bytes of available
4697** key/data is written into *pAmt. If *pAmt==0, then the value
4698** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004699**
4700** This routine is an optimization. It is common for the entire key
4701** and data to fit on the local page and for there to be no overflow
4702** pages. When that is so, this routine can be used to access the
4703** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004704** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004705** the key/data and copy it into a preallocated buffer.
4706**
4707** The pointer returned by this routine looks directly into the cached
4708** page of the database. The data might change or move the next time
4709** any btree routine is called.
4710*/
drh2a8d2262013-12-09 20:43:22 +00004711static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004712 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004713 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004714){
drhf3392e32015-04-15 17:26:55 +00004715 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004716 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004717 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004718 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004719 assert( cursorOwnsBtShared(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004720 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004721 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004722 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4723 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4724 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4725 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4726 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004727 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004728}
4729
4730
4731/*
drhe51c44f2004-05-30 20:46:09 +00004732** For the entry that cursor pCur is point to, return as
4733** many bytes of the key or data as are available on the local
4734** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004735**
4736** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004737** or be destroyed on the next call to any Btree routine,
4738** including calls from other threads against the same cache.
4739** Hence, a mutex on the BtShared should be held prior to calling
4740** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004741**
4742** These routines is used to get quick access to key and data
4743** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004744*/
drha7c90c42016-06-04 20:37:10 +00004745const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004746 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004747}
4748
4749
4750/*
drh8178a752003-01-05 21:41:40 +00004751** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004752** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004753**
4754** This function returns SQLITE_CORRUPT if the page-header flags field of
4755** the new child page does not match the flags field of the parent (i.e.
4756** if an intkey page appears to be the parent of a non-intkey page, or
4757** vice-versa).
drh72f82862001-05-24 21:06:34 +00004758*/
drh3aac2dd2004-04-26 14:10:20 +00004759static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004760 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004761
dan7a2347e2016-01-07 16:43:54 +00004762 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004763 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004764 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004765 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004766 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4767 return SQLITE_CORRUPT_BKPT;
4768 }
drh271efa52004-05-30 19:19:05 +00004769 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004770 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004771 pCur->iPage++;
4772 pCur->aiIdx[pCur->iPage] = 0;
4773 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4774 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004775}
4776
drhcbd33492015-03-25 13:06:54 +00004777#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004778/*
4779** Page pParent is an internal (non-leaf) tree page. This function
4780** asserts that page number iChild is the left-child if the iIdx'th
4781** cell in page pParent. Or, if iIdx is equal to the total number of
4782** cells in pParent, that page number iChild is the right-child of
4783** the page.
4784*/
4785static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004786 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4787 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004788 assert( iIdx<=pParent->nCell );
4789 if( iIdx==pParent->nCell ){
4790 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4791 }else{
4792 assert( get4byte(findCell(pParent, iIdx))==iChild );
4793 }
4794}
4795#else
4796# define assertParentIndex(x,y,z)
4797#endif
4798
drh72f82862001-05-24 21:06:34 +00004799/*
drh5e2f8b92001-05-28 00:41:15 +00004800** Move the cursor up to the parent page.
4801**
4802** pCur->idx is set to the cell index that contains the pointer
4803** to the page we are coming from. If we are coming from the
4804** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004805** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004806*/
danielk197730548662009-07-09 05:07:37 +00004807static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004808 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004809 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004810 assert( pCur->iPage>0 );
4811 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004812 assertParentIndex(
4813 pCur->apPage[pCur->iPage-1],
4814 pCur->aiIdx[pCur->iPage-1],
4815 pCur->apPage[pCur->iPage]->pgno
4816 );
dan6c2688c2012-01-12 15:05:03 +00004817 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004818 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004819 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004820 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004821}
4822
4823/*
danielk19778f880a82009-07-13 09:41:45 +00004824** Move the cursor to point to the root page of its b-tree structure.
4825**
4826** If the table has a virtual root page, then the cursor is moved to point
4827** to the virtual root page instead of the actual root page. A table has a
4828** virtual root page when the actual root page contains no cells and a
4829** single child page. This can only happen with the table rooted at page 1.
4830**
4831** If the b-tree structure is empty, the cursor state is set to
4832** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4833** cell located on the root (or virtual root) page and the cursor state
4834** is set to CURSOR_VALID.
4835**
4836** If this function returns successfully, it may be assumed that the
4837** page-header flags indicate that the [virtual] root-page is the expected
4838** kind of b-tree page (i.e. if when opening the cursor the caller did not
4839** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4840** indicating a table b-tree, or if the caller did specify a KeyInfo
4841** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4842** b-tree).
drh72f82862001-05-24 21:06:34 +00004843*/
drh5e2f8b92001-05-28 00:41:15 +00004844static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004845 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004846 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004847
dan7a2347e2016-01-07 16:43:54 +00004848 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004849 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4850 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4851 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4852 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4853 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004854 assert( pCur->skipNext!=SQLITE_OK );
4855 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004856 }
danielk1977be51a652008-10-08 17:58:48 +00004857 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004858 }
danielk197771d5d2c2008-09-29 11:49:47 +00004859
4860 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00004861 if( pCur->iPage ){
4862 do{
4863 assert( pCur->apPage[pCur->iPage]!=0 );
4864 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4865 }while( pCur->iPage);
4866 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00004867 }
dana205a482011-08-27 18:48:57 +00004868 }else if( pCur->pgnoRoot==0 ){
4869 pCur->eState = CURSOR_INVALID;
4870 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004871 }else{
drh28f58dd2015-06-27 19:45:03 +00004872 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004873 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004874 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004875 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004876 pCur->eState = CURSOR_INVALID;
drh7ad3eb62016-10-24 01:01:09 +00004877 return rc;
drh777e4c42006-01-13 04:31:58 +00004878 }
danielk1977172114a2009-07-07 15:47:12 +00004879 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004880 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004881 }
danielk197771d5d2c2008-09-29 11:49:47 +00004882 pRoot = pCur->apPage[0];
4883 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004884
4885 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4886 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4887 ** NULL, the caller expects a table b-tree. If this is not the case,
4888 ** return an SQLITE_CORRUPT error.
4889 **
4890 ** Earlier versions of SQLite assumed that this test could not fail
4891 ** if the root page was already loaded when this function was called (i.e.
4892 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4893 ** in such a way that page pRoot is linked into a second b-tree table
4894 ** (or the freelist). */
4895 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4896 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4897 return SQLITE_CORRUPT_BKPT;
4898 }
danielk19778f880a82009-07-13 09:41:45 +00004899
drh7ad3eb62016-10-24 01:01:09 +00004900skip_init:
danielk197771d5d2c2008-09-29 11:49:47 +00004901 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004902 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004903 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004904
drh7ad3eb62016-10-24 01:01:09 +00004905 pRoot = pCur->apPage[0];
drh4e8fe3f2013-12-06 23:25:27 +00004906 if( pRoot->nCell>0 ){
4907 pCur->eState = CURSOR_VALID;
4908 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004909 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004910 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004911 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004912 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004913 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004914 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004915 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004916 }
4917 return rc;
drh72f82862001-05-24 21:06:34 +00004918}
drh2af926b2001-05-15 00:39:25 +00004919
drh5e2f8b92001-05-28 00:41:15 +00004920/*
4921** Move the cursor down to the left-most leaf entry beneath the
4922** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004923**
4924** The left-most leaf is the one with the smallest key - the first
4925** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004926*/
4927static int moveToLeftmost(BtCursor *pCur){
4928 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004929 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004930 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004931
dan7a2347e2016-01-07 16:43:54 +00004932 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004933 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004934 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4935 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4936 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004937 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004938 }
drhd677b3d2007-08-20 22:48:41 +00004939 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004940}
4941
drh2dcc9aa2002-12-04 13:40:25 +00004942/*
4943** Move the cursor down to the right-most leaf entry beneath the
4944** page to which it is currently pointing. Notice the difference
4945** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4946** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4947** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004948**
4949** The right-most entry is the one with the largest key - the last
4950** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004951*/
4952static int moveToRightmost(BtCursor *pCur){
4953 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004954 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004955 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004956
dan7a2347e2016-01-07 16:43:54 +00004957 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004958 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004959 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004960 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004961 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004962 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004963 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004964 }
drhee6438d2014-09-01 13:29:32 +00004965 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4966 assert( pCur->info.nSize==0 );
4967 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4968 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004969}
4970
drh5e00f6c2001-09-13 13:46:56 +00004971/* Move the cursor to the first entry in the table. Return SQLITE_OK
4972** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004973** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004974*/
drh3aac2dd2004-04-26 14:10:20 +00004975int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004976 int rc;
drhd677b3d2007-08-20 22:48:41 +00004977
dan7a2347e2016-01-07 16:43:54 +00004978 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004979 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004980 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004981 if( rc==SQLITE_OK ){
4982 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004983 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004984 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004985 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004986 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004987 *pRes = 0;
4988 rc = moveToLeftmost(pCur);
4989 }
drh5e00f6c2001-09-13 13:46:56 +00004990 }
drh5e00f6c2001-09-13 13:46:56 +00004991 return rc;
4992}
drh5e2f8b92001-05-28 00:41:15 +00004993
drh9562b552002-02-19 15:00:07 +00004994/* Move the cursor to the last entry in the table. Return SQLITE_OK
4995** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004996** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004997*/
drh3aac2dd2004-04-26 14:10:20 +00004998int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004999 int rc;
drhd677b3d2007-08-20 22:48:41 +00005000
dan7a2347e2016-01-07 16:43:54 +00005001 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005002 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005003
5004 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005005 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005006#ifdef SQLITE_DEBUG
5007 /* This block serves to assert() that the cursor really does point
5008 ** to the last entry in the b-tree. */
5009 int ii;
5010 for(ii=0; ii<pCur->iPage; ii++){
5011 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5012 }
5013 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5014 assert( pCur->apPage[pCur->iPage]->leaf );
5015#endif
5016 return SQLITE_OK;
5017 }
5018
drh9562b552002-02-19 15:00:07 +00005019 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005020 if( rc==SQLITE_OK ){
5021 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005022 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005023 *pRes = 1;
5024 }else{
5025 assert( pCur->eState==CURSOR_VALID );
5026 *pRes = 0;
5027 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005028 if( rc==SQLITE_OK ){
5029 pCur->curFlags |= BTCF_AtLast;
5030 }else{
5031 pCur->curFlags &= ~BTCF_AtLast;
5032 }
5033
drhd677b3d2007-08-20 22:48:41 +00005034 }
drh9562b552002-02-19 15:00:07 +00005035 }
drh9562b552002-02-19 15:00:07 +00005036 return rc;
5037}
5038
drhe14006d2008-03-25 17:23:32 +00005039/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005040** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005041**
drhe63d9992008-08-13 19:11:48 +00005042** For INTKEY tables, the intKey parameter is used. pIdxKey
5043** must be NULL. For index tables, pIdxKey is used and intKey
5044** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005045**
drh5e2f8b92001-05-28 00:41:15 +00005046** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005047** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005048** were present. The cursor might point to an entry that comes
5049** before or after the key.
5050**
drh64022502009-01-09 14:11:04 +00005051** An integer is written into *pRes which is the result of
5052** comparing the key with the entry to which the cursor is
5053** pointing. The meaning of the integer written into
5054** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005055**
5056** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005057** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005058** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005059**
5060** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005061** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005062**
5063** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005064** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005065**
drhb1d607d2015-11-05 22:30:54 +00005066** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5067** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005068*/
drhe63d9992008-08-13 19:11:48 +00005069int sqlite3BtreeMovetoUnpacked(
5070 BtCursor *pCur, /* The cursor to be moved */
5071 UnpackedRecord *pIdxKey, /* Unpacked index key */
5072 i64 intKey, /* The table key */
5073 int biasRight, /* If true, bias the search to the high end */
5074 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005075){
drh72f82862001-05-24 21:06:34 +00005076 int rc;
dan3b9330f2014-02-27 20:44:18 +00005077 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005078
dan7a2347e2016-01-07 16:43:54 +00005079 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005080 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005081 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005082 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005083 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005084
5085 /* If the cursor is already positioned at the point we are trying
5086 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005087 if( pIdxKey==0
5088 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005089 ){
drhe63d9992008-08-13 19:11:48 +00005090 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005091 *pRes = 0;
5092 return SQLITE_OK;
5093 }
drh036dbec2014-03-11 23:40:44 +00005094 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005095 *pRes = -1;
5096 return SQLITE_OK;
5097 }
5098 }
5099
dan1fed5da2014-02-25 21:01:25 +00005100 if( pIdxKey ){
5101 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005102 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005103 assert( pIdxKey->default_rc==1
5104 || pIdxKey->default_rc==0
5105 || pIdxKey->default_rc==-1
5106 );
drh13a747e2014-03-03 21:46:55 +00005107 }else{
drhb6e8fd12014-03-06 01:56:33 +00005108 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005109 }
5110
drh5e2f8b92001-05-28 00:41:15 +00005111 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005112 if( rc ){
5113 return rc;
5114 }
dana205a482011-08-27 18:48:57 +00005115 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5116 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5117 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005118 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005119 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005120 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005121 return SQLITE_OK;
5122 }
drhc75d8862015-06-27 23:55:20 +00005123 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5124 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005125 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005126 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005127 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005128 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005129 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005130
5131 /* pPage->nCell must be greater than zero. If this is the root-page
5132 ** the cursor would have been INVALID above and this for(;;) loop
5133 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005134 ** would have already detected db corruption. Similarly, pPage must
5135 ** be the right kind (index or table) of b-tree page. Otherwise
5136 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005137 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005138 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005139 lwr = 0;
5140 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005141 assert( biasRight==0 || biasRight==1 );
5142 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005143 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005144 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005145 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005146 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005147 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005148 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005149 while( 0x80 <= *(pCell++) ){
5150 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5151 }
drhd172f862006-01-12 15:01:15 +00005152 }
drha2c20e42008-03-29 16:01:04 +00005153 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005154 if( nCellKey<intKey ){
5155 lwr = idx+1;
5156 if( lwr>upr ){ c = -1; break; }
5157 }else if( nCellKey>intKey ){
5158 upr = idx-1;
5159 if( lwr>upr ){ c = +1; break; }
5160 }else{
5161 assert( nCellKey==intKey );
drhd793f442013-11-25 14:10:15 +00005162 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005163 if( !pPage->leaf ){
5164 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005165 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005166 }else{
drhd95ef5c2016-11-11 18:19:05 +00005167 pCur->curFlags |= BTCF_ValidNKey;
5168 pCur->info.nKey = nCellKey;
5169 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005170 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005171 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005172 }
drhd793f442013-11-25 14:10:15 +00005173 }
drhebf10b12013-11-25 17:38:26 +00005174 assert( lwr+upr>=0 );
5175 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005176 }
5177 }else{
5178 for(;;){
drhc6827502015-05-28 15:14:32 +00005179 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005180 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005181
drhb2eced52010-08-12 02:41:12 +00005182 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005183 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005184 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005185 ** varint. This information is used to attempt to avoid parsing
5186 ** the entire cell by checking for the cases where the record is
5187 ** stored entirely within the b-tree page by inspecting the first
5188 ** 2 bytes of the cell.
5189 */
drhec3e6b12013-11-25 02:38:55 +00005190 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005191 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005192 /* This branch runs if the record-size field of the cell is a
5193 ** single byte varint and the record fits entirely on the main
5194 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005195 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005196 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005197 }else if( !(pCell[1] & 0x80)
5198 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5199 ){
5200 /* The record-size field is a 2 byte varint and the record
5201 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005202 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005203 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005204 }else{
danielk197711c327a2009-05-04 19:01:26 +00005205 /* The record flows over onto one or more overflow pages. In
5206 ** this case the whole cell needs to be parsed, a buffer allocated
5207 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005208 ** buffer before VdbeRecordCompare() can be called.
5209 **
5210 ** If the record is corrupt, the xRecordCompare routine may read
5211 ** up to two varints past the end of the buffer. An extra 18
5212 ** bytes of padding is allocated at the end of the buffer in
5213 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005214 void *pCellKey;
5215 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005216 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005217 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005218 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5219 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5220 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5221 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005222 if( nCell<2 ){
5223 rc = SQLITE_CORRUPT_BKPT;
5224 goto moveto_finish;
5225 }
5226 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005227 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005228 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005229 goto moveto_finish;
5230 }
drhd793f442013-11-25 14:10:15 +00005231 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005232 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005233 if( rc ){
5234 sqlite3_free(pCellKey);
5235 goto moveto_finish;
5236 }
drh75179de2014-09-16 14:37:35 +00005237 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005238 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005239 }
dan38fdead2014-04-01 10:19:02 +00005240 assert(
5241 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005242 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005243 );
drhbb933ef2013-11-25 15:01:38 +00005244 if( c<0 ){
5245 lwr = idx+1;
5246 }else if( c>0 ){
5247 upr = idx-1;
5248 }else{
5249 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005250 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005251 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005252 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005253 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005254 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005255 }
drhebf10b12013-11-25 17:38:26 +00005256 if( lwr>upr ) break;
5257 assert( lwr+upr>=0 );
5258 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005259 }
drh72f82862001-05-24 21:06:34 +00005260 }
drhb07028f2011-10-14 21:49:18 +00005261 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005262 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005263 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005264 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005265 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005266 *pRes = c;
5267 rc = SQLITE_OK;
5268 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005269 }
5270moveto_next_layer:
5271 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005272 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005273 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005274 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005275 }
drhf49661a2008-12-10 16:45:50 +00005276 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005277 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005278 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005279 }
drh1e968a02008-03-25 00:22:21 +00005280moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005281 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005282 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005283 return rc;
5284}
5285
drhd677b3d2007-08-20 22:48:41 +00005286
drh72f82862001-05-24 21:06:34 +00005287/*
drhc39e0002004-05-07 23:50:57 +00005288** Return TRUE if the cursor is not pointing at an entry of the table.
5289**
5290** TRUE will be returned after a call to sqlite3BtreeNext() moves
5291** past the last entry in the table or sqlite3BtreePrev() moves past
5292** the first entry. TRUE is also returned if the table is empty.
5293*/
5294int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005295 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5296 ** have been deleted? This API will need to change to return an error code
5297 ** as well as the boolean result value.
5298 */
5299 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005300}
5301
5302/*
drhbd03cae2001-06-02 02:40:57 +00005303** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005304** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005305** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005306** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005307**
drhee6438d2014-09-01 13:29:32 +00005308** The main entry point is sqlite3BtreeNext(). That routine is optimized
5309** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5310** to the next cell on the current page. The (slower) btreeNext() helper
5311** routine is called when it is necessary to move to a different page or
5312** to restore the cursor.
5313**
drhe39a7322014-02-03 14:04:11 +00005314** The calling function will set *pRes to 0 or 1. The initial *pRes value
5315** will be 1 if the cursor being stepped corresponds to an SQL index and
5316** if this routine could have been skipped if that SQL index had been
5317** a unique index. Otherwise the caller will have set *pRes to zero.
5318** Zero is the common case. The btree implementation is free to use the
5319** initial *pRes value as a hint to improve performance, but the current
5320** SQLite btree implementation does not. (Note that the comdb2 btree
5321** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005322*/
drhee6438d2014-09-01 13:29:32 +00005323static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005324 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005325 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005326 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005327
dan7a2347e2016-01-07 16:43:54 +00005328 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005329 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005330 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005331 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005332 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005333 rc = restoreCursorPosition(pCur);
5334 if( rc!=SQLITE_OK ){
5335 return rc;
5336 }
5337 if( CURSOR_INVALID==pCur->eState ){
5338 *pRes = 1;
5339 return SQLITE_OK;
5340 }
drh9b47ee32013-08-20 03:13:51 +00005341 if( pCur->skipNext ){
5342 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5343 pCur->eState = CURSOR_VALID;
5344 if( pCur->skipNext>0 ){
5345 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005346 return SQLITE_OK;
5347 }
drhf66f26a2013-08-19 20:04:10 +00005348 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005349 }
danielk1977da184232006-01-05 11:34:32 +00005350 }
danielk1977da184232006-01-05 11:34:32 +00005351
danielk197771d5d2c2008-09-29 11:49:47 +00005352 pPage = pCur->apPage[pCur->iPage];
5353 idx = ++pCur->aiIdx[pCur->iPage];
5354 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005355
5356 /* If the database file is corrupt, it is possible for the value of idx
5357 ** to be invalid here. This can only occur if a second cursor modifies
5358 ** the page while cursor pCur is holding a reference to it. Which can
5359 ** only happen if the database is corrupt in such a way as to link the
5360 ** page into more than one b-tree structure. */
5361 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005362
danielk197771d5d2c2008-09-29 11:49:47 +00005363 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005364 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005365 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005366 if( rc ) return rc;
5367 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005368 }
drh5e2f8b92001-05-28 00:41:15 +00005369 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005370 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005371 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005372 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005373 return SQLITE_OK;
5374 }
danielk197730548662009-07-09 05:07:37 +00005375 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005376 pPage = pCur->apPage[pCur->iPage];
5377 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005378 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005379 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005380 }else{
drhee6438d2014-09-01 13:29:32 +00005381 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005382 }
drh8178a752003-01-05 21:41:40 +00005383 }
drh3aac2dd2004-04-26 14:10:20 +00005384 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005385 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005386 }else{
5387 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005388 }
drh72f82862001-05-24 21:06:34 +00005389}
drhee6438d2014-09-01 13:29:32 +00005390int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5391 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005392 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005393 assert( pRes!=0 );
5394 assert( *pRes==0 || *pRes==1 );
5395 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5396 pCur->info.nSize = 0;
5397 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5398 *pRes = 0;
5399 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5400 pPage = pCur->apPage[pCur->iPage];
5401 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5402 pCur->aiIdx[pCur->iPage]--;
5403 return btreeNext(pCur, pRes);
5404 }
5405 if( pPage->leaf ){
5406 return SQLITE_OK;
5407 }else{
5408 return moveToLeftmost(pCur);
5409 }
5410}
drh72f82862001-05-24 21:06:34 +00005411
drh3b7511c2001-05-26 13:15:44 +00005412/*
drh2dcc9aa2002-12-04 13:40:25 +00005413** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005414** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005415** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005416** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005417**
drhee6438d2014-09-01 13:29:32 +00005418** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5419** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005420** to the previous cell on the current page. The (slower) btreePrevious()
5421** helper routine is called when it is necessary to move to a different page
5422** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005423**
drhe39a7322014-02-03 14:04:11 +00005424** The calling function will set *pRes to 0 or 1. The initial *pRes value
5425** will be 1 if the cursor being stepped corresponds to an SQL index and
5426** if this routine could have been skipped if that SQL index had been
5427** a unique index. Otherwise the caller will have set *pRes to zero.
5428** Zero is the common case. The btree implementation is free to use the
5429** initial *pRes value as a hint to improve performance, but the current
5430** SQLite btree implementation does not. (Note that the comdb2 btree
5431** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005432*/
drhee6438d2014-09-01 13:29:32 +00005433static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005434 int rc;
drh8178a752003-01-05 21:41:40 +00005435 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005436
dan7a2347e2016-01-07 16:43:54 +00005437 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005438 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005439 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005440 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005441 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5442 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005443 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005444 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005445 if( rc!=SQLITE_OK ){
5446 return rc;
drhf66f26a2013-08-19 20:04:10 +00005447 }
5448 if( CURSOR_INVALID==pCur->eState ){
5449 *pRes = 1;
5450 return SQLITE_OK;
5451 }
drh9b47ee32013-08-20 03:13:51 +00005452 if( pCur->skipNext ){
5453 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5454 pCur->eState = CURSOR_VALID;
5455 if( pCur->skipNext<0 ){
5456 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005457 return SQLITE_OK;
5458 }
drhf66f26a2013-08-19 20:04:10 +00005459 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005460 }
danielk1977da184232006-01-05 11:34:32 +00005461 }
danielk1977da184232006-01-05 11:34:32 +00005462
danielk197771d5d2c2008-09-29 11:49:47 +00005463 pPage = pCur->apPage[pCur->iPage];
5464 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005465 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005466 int idx = pCur->aiIdx[pCur->iPage];
5467 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005468 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005469 rc = moveToRightmost(pCur);
5470 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005471 while( pCur->aiIdx[pCur->iPage]==0 ){
5472 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005473 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005474 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005475 return SQLITE_OK;
5476 }
danielk197730548662009-07-09 05:07:37 +00005477 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005478 }
drhee6438d2014-09-01 13:29:32 +00005479 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005480 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005481
5482 pCur->aiIdx[pCur->iPage]--;
5483 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005484 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005485 rc = sqlite3BtreePrevious(pCur, pRes);
5486 }else{
5487 rc = SQLITE_OK;
5488 }
drh2dcc9aa2002-12-04 13:40:25 +00005489 }
drh2dcc9aa2002-12-04 13:40:25 +00005490 return rc;
5491}
drhee6438d2014-09-01 13:29:32 +00005492int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005493 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005494 assert( pRes!=0 );
5495 assert( *pRes==0 || *pRes==1 );
5496 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5497 *pRes = 0;
5498 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5499 pCur->info.nSize = 0;
5500 if( pCur->eState!=CURSOR_VALID
5501 || pCur->aiIdx[pCur->iPage]==0
5502 || pCur->apPage[pCur->iPage]->leaf==0
5503 ){
5504 return btreePrevious(pCur, pRes);
5505 }
5506 pCur->aiIdx[pCur->iPage]--;
5507 return SQLITE_OK;
5508}
drh2dcc9aa2002-12-04 13:40:25 +00005509
5510/*
drh3b7511c2001-05-26 13:15:44 +00005511** Allocate a new page from the database file.
5512**
danielk19773b8a05f2007-03-19 17:44:26 +00005513** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005514** has already been called on the new page.) The new page has also
5515** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005516** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005517**
5518** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005519** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005520**
drh82e647d2013-03-02 03:25:55 +00005521** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005522** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005523** attempt to keep related pages close to each other in the database file,
5524** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005525**
drh82e647d2013-03-02 03:25:55 +00005526** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5527** anywhere on the free-list, then it is guaranteed to be returned. If
5528** eMode is BTALLOC_LT then the page returned will be less than or equal
5529** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5530** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005531*/
drh4f0c5872007-03-26 22:05:01 +00005532static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005533 BtShared *pBt, /* The btree */
5534 MemPage **ppPage, /* Store pointer to the allocated page here */
5535 Pgno *pPgno, /* Store the page number here */
5536 Pgno nearby, /* Search for a page near this one */
5537 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005538){
drh3aac2dd2004-04-26 14:10:20 +00005539 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005540 int rc;
drh35cd6432009-06-05 14:17:21 +00005541 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005542 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005543 MemPage *pTrunk = 0;
5544 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005545 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005546
drh1fee73e2007-08-29 04:00:57 +00005547 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005548 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005549 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005550 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005551 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5552 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005553 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005554 testcase( n==mxPage-1 );
5555 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005556 return SQLITE_CORRUPT_BKPT;
5557 }
drh3aac2dd2004-04-26 14:10:20 +00005558 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005559 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005560 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005561 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005562 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005563
drh82e647d2013-03-02 03:25:55 +00005564 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005565 ** shows that the page 'nearby' is somewhere on the free-list, then
5566 ** the entire-list will be searched for that page.
5567 */
5568#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005569 if( eMode==BTALLOC_EXACT ){
5570 if( nearby<=mxPage ){
5571 u8 eType;
5572 assert( nearby>0 );
5573 assert( pBt->autoVacuum );
5574 rc = ptrmapGet(pBt, nearby, &eType, 0);
5575 if( rc ) return rc;
5576 if( eType==PTRMAP_FREEPAGE ){
5577 searchList = 1;
5578 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005579 }
dan51f0b6d2013-02-22 20:16:34 +00005580 }else if( eMode==BTALLOC_LE ){
5581 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005582 }
5583#endif
5584
5585 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5586 ** first free-list trunk page. iPrevTrunk is initially 1.
5587 */
danielk19773b8a05f2007-03-19 17:44:26 +00005588 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005589 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005590 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005591
5592 /* The code within this loop is run only once if the 'searchList' variable
5593 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005594 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5595 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005596 */
5597 do {
5598 pPrevTrunk = pTrunk;
5599 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005600 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5601 ** is the page number of the next freelist trunk page in the list or
5602 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005603 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005604 }else{
drh113762a2014-11-19 16:36:25 +00005605 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5606 ** stores the page number of the first page of the freelist, or zero if
5607 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005608 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005609 }
drhdf35a082009-07-09 02:24:35 +00005610 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005611 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005612 rc = SQLITE_CORRUPT_BKPT;
5613 }else{
drh7e8c6f12015-05-28 03:28:27 +00005614 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005615 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005616 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005617 pTrunk = 0;
5618 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005619 }
drhb07028f2011-10-14 21:49:18 +00005620 assert( pTrunk!=0 );
5621 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005622 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5623 ** is the number of leaf page pointers to follow. */
5624 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005625 if( k==0 && !searchList ){
5626 /* The trunk has no leaves and the list is not being searched.
5627 ** So extract the trunk page itself and use it as the newly
5628 ** allocated page */
5629 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005630 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005631 if( rc ){
5632 goto end_allocate_page;
5633 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005634 *pPgno = iTrunk;
5635 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5636 *ppPage = pTrunk;
5637 pTrunk = 0;
5638 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005639 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005640 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005641 rc = SQLITE_CORRUPT_BKPT;
5642 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005643#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005644 }else if( searchList
5645 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5646 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005647 /* The list is being searched and this trunk page is the page
5648 ** to allocate, regardless of whether it has leaves.
5649 */
dan51f0b6d2013-02-22 20:16:34 +00005650 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005651 *ppPage = pTrunk;
5652 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005653 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005654 if( rc ){
5655 goto end_allocate_page;
5656 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005657 if( k==0 ){
5658 if( !pPrevTrunk ){
5659 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5660 }else{
danf48c3552010-08-23 15:41:24 +00005661 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5662 if( rc!=SQLITE_OK ){
5663 goto end_allocate_page;
5664 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005665 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5666 }
5667 }else{
5668 /* The trunk page is required by the caller but it contains
5669 ** pointers to free-list leaves. The first leaf becomes a trunk
5670 ** page in this case.
5671 */
5672 MemPage *pNewTrunk;
5673 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005674 if( iNewTrunk>mxPage ){
5675 rc = SQLITE_CORRUPT_BKPT;
5676 goto end_allocate_page;
5677 }
drhdf35a082009-07-09 02:24:35 +00005678 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005679 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005680 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005681 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005682 }
danielk19773b8a05f2007-03-19 17:44:26 +00005683 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005684 if( rc!=SQLITE_OK ){
5685 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005686 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005687 }
5688 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5689 put4byte(&pNewTrunk->aData[4], k-1);
5690 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005691 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005692 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005693 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005694 put4byte(&pPage1->aData[32], iNewTrunk);
5695 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005696 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005697 if( rc ){
5698 goto end_allocate_page;
5699 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005700 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5701 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005702 }
5703 pTrunk = 0;
5704 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5705#endif
danielk1977e5765212009-06-17 11:13:28 +00005706 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005707 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005708 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005709 Pgno iPage;
5710 unsigned char *aData = pTrunk->aData;
5711 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005712 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005713 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005714 if( eMode==BTALLOC_LE ){
5715 for(i=0; i<k; i++){
5716 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005717 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005718 closest = i;
5719 break;
5720 }
5721 }
5722 }else{
5723 int dist;
5724 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5725 for(i=1; i<k; i++){
5726 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5727 if( d2<dist ){
5728 closest = i;
5729 dist = d2;
5730 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005731 }
5732 }
5733 }else{
5734 closest = 0;
5735 }
5736
5737 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005738 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005739 if( iPage>mxPage ){
5740 rc = SQLITE_CORRUPT_BKPT;
5741 goto end_allocate_page;
5742 }
drhdf35a082009-07-09 02:24:35 +00005743 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005744 if( !searchList
5745 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5746 ){
danielk1977bea2a942009-01-20 17:06:27 +00005747 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005748 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005749 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5750 ": %d more free pages\n",
5751 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005752 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5753 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005754 if( closest<k-1 ){
5755 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5756 }
5757 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005758 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005759 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005760 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005761 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005762 if( rc!=SQLITE_OK ){
5763 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005764 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005765 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005766 }
5767 searchList = 0;
5768 }
drhee696e22004-08-30 16:52:17 +00005769 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005770 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005771 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005772 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005773 }else{
danbc1a3c62013-02-23 16:40:46 +00005774 /* There are no pages on the freelist, so append a new page to the
5775 ** database image.
5776 **
5777 ** Normally, new pages allocated by this block can be requested from the
5778 ** pager layer with the 'no-content' flag set. This prevents the pager
5779 ** from trying to read the pages content from disk. However, if the
5780 ** current transaction has already run one or more incremental-vacuum
5781 ** steps, then the page we are about to allocate may contain content
5782 ** that is required in the event of a rollback. In this case, do
5783 ** not set the no-content flag. This causes the pager to load and journal
5784 ** the current page content before overwriting it.
5785 **
5786 ** Note that the pager will not actually attempt to load or journal
5787 ** content for any page that really does lie past the end of the database
5788 ** file on disk. So the effects of disabling the no-content optimization
5789 ** here are confined to those pages that lie between the end of the
5790 ** database image and the end of the database file.
5791 */
drh3f387402014-09-24 01:23:00 +00005792 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005793
drhdd3cd972010-03-27 17:12:36 +00005794 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5795 if( rc ) return rc;
5796 pBt->nPage++;
5797 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005798
danielk1977afcdd022004-10-31 16:25:42 +00005799#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005800 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005801 /* If *pPgno refers to a pointer-map page, allocate two new pages
5802 ** at the end of the file instead of one. The first allocated page
5803 ** becomes a new pointer-map page, the second is used by the caller.
5804 */
danielk1977ac861692009-03-28 10:54:22 +00005805 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005806 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5807 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005808 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005809 if( rc==SQLITE_OK ){
5810 rc = sqlite3PagerWrite(pPg->pDbPage);
5811 releasePage(pPg);
5812 }
5813 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005814 pBt->nPage++;
5815 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005816 }
5817#endif
drhdd3cd972010-03-27 17:12:36 +00005818 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5819 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005820
danielk1977599fcba2004-11-08 07:13:13 +00005821 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005822 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005823 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005824 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005825 if( rc!=SQLITE_OK ){
5826 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005827 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005828 }
drh3a4c1412004-05-09 20:40:11 +00005829 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005830 }
danielk1977599fcba2004-11-08 07:13:13 +00005831
5832 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005833
5834end_allocate_page:
5835 releasePage(pTrunk);
5836 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005837 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5838 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005839 return rc;
5840}
5841
5842/*
danielk1977bea2a942009-01-20 17:06:27 +00005843** This function is used to add page iPage to the database file free-list.
5844** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005845**
danielk1977bea2a942009-01-20 17:06:27 +00005846** The value passed as the second argument to this function is optional.
5847** If the caller happens to have a pointer to the MemPage object
5848** corresponding to page iPage handy, it may pass it as the second value.
5849** Otherwise, it may pass NULL.
5850**
5851** If a pointer to a MemPage object is passed as the second argument,
5852** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005853*/
danielk1977bea2a942009-01-20 17:06:27 +00005854static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5855 MemPage *pTrunk = 0; /* Free-list trunk page */
5856 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5857 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5858 MemPage *pPage; /* Page being freed. May be NULL. */
5859 int rc; /* Return Code */
5860 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005861
danielk1977bea2a942009-01-20 17:06:27 +00005862 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005863 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005864 assert( !pMemPage || pMemPage->pgno==iPage );
5865
danfb0246b2015-05-26 12:18:17 +00005866 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005867 if( pMemPage ){
5868 pPage = pMemPage;
5869 sqlite3PagerRef(pPage->pDbPage);
5870 }else{
5871 pPage = btreePageLookup(pBt, iPage);
5872 }
drh3aac2dd2004-04-26 14:10:20 +00005873
drha34b6762004-05-07 13:30:42 +00005874 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005875 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005876 if( rc ) goto freepage_out;
5877 nFree = get4byte(&pPage1->aData[36]);
5878 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005879
drhc9166342012-01-05 23:32:06 +00005880 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005881 /* If the secure_delete option is enabled, then
5882 ** always fully overwrite deleted information with zeros.
5883 */
drhb00fc3b2013-08-21 23:42:32 +00005884 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005885 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005886 ){
5887 goto freepage_out;
5888 }
5889 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005890 }
drhfcce93f2006-02-22 03:08:32 +00005891
danielk1977687566d2004-11-02 12:56:41 +00005892 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005893 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005894 */
danielk197785d90ca2008-07-19 14:25:15 +00005895 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005896 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005897 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005898 }
danielk1977687566d2004-11-02 12:56:41 +00005899
danielk1977bea2a942009-01-20 17:06:27 +00005900 /* Now manipulate the actual database free-list structure. There are two
5901 ** possibilities. If the free-list is currently empty, or if the first
5902 ** trunk page in the free-list is full, then this page will become a
5903 ** new free-list trunk page. Otherwise, it will become a leaf of the
5904 ** first trunk page in the current free-list. This block tests if it
5905 ** is possible to add the page as a new free-list leaf.
5906 */
5907 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005908 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005909
5910 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005911 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005912 if( rc!=SQLITE_OK ){
5913 goto freepage_out;
5914 }
5915
5916 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005917 assert( pBt->usableSize>32 );
5918 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005919 rc = SQLITE_CORRUPT_BKPT;
5920 goto freepage_out;
5921 }
drheeb844a2009-08-08 18:01:07 +00005922 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005923 /* In this case there is room on the trunk page to insert the page
5924 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005925 **
5926 ** Note that the trunk page is not really full until it contains
5927 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5928 ** coded. But due to a coding error in versions of SQLite prior to
5929 ** 3.6.0, databases with freelist trunk pages holding more than
5930 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5931 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005932 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005933 ** for now. At some point in the future (once everyone has upgraded
5934 ** to 3.6.0 or later) we should consider fixing the conditional above
5935 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005936 **
5937 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5938 ** avoid using the last six entries in the freelist trunk page array in
5939 ** order that database files created by newer versions of SQLite can be
5940 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005941 */
danielk19773b8a05f2007-03-19 17:44:26 +00005942 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005943 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005944 put4byte(&pTrunk->aData[4], nLeaf+1);
5945 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005946 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005947 sqlite3PagerDontWrite(pPage->pDbPage);
5948 }
danielk1977bea2a942009-01-20 17:06:27 +00005949 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005950 }
drh3a4c1412004-05-09 20:40:11 +00005951 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005952 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005953 }
drh3b7511c2001-05-26 13:15:44 +00005954 }
danielk1977bea2a942009-01-20 17:06:27 +00005955
5956 /* If control flows to this point, then it was not possible to add the
5957 ** the page being freed as a leaf page of the first trunk in the free-list.
5958 ** Possibly because the free-list is empty, or possibly because the
5959 ** first trunk in the free-list is full. Either way, the page being freed
5960 ** will become the new first trunk page in the free-list.
5961 */
drhb00fc3b2013-08-21 23:42:32 +00005962 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005963 goto freepage_out;
5964 }
5965 rc = sqlite3PagerWrite(pPage->pDbPage);
5966 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005967 goto freepage_out;
5968 }
5969 put4byte(pPage->aData, iTrunk);
5970 put4byte(&pPage->aData[4], 0);
5971 put4byte(&pPage1->aData[32], iPage);
5972 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5973
5974freepage_out:
5975 if( pPage ){
5976 pPage->isInit = 0;
5977 }
5978 releasePage(pPage);
5979 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005980 return rc;
5981}
drhc314dc72009-07-21 11:52:34 +00005982static void freePage(MemPage *pPage, int *pRC){
5983 if( (*pRC)==SQLITE_OK ){
5984 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5985 }
danielk1977bea2a942009-01-20 17:06:27 +00005986}
drh3b7511c2001-05-26 13:15:44 +00005987
5988/*
drh9bfdc252014-09-24 02:05:41 +00005989** Free any overflow pages associated with the given Cell. Write the
5990** local Cell size (the number of bytes on the original page, omitting
5991** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005992*/
drh9bfdc252014-09-24 02:05:41 +00005993static int clearCell(
5994 MemPage *pPage, /* The page that contains the Cell */
5995 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00005996 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00005997){
danielk1977aef0bf62005-12-30 16:28:01 +00005998 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005999 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006000 int rc;
drh94440812007-03-06 11:42:19 +00006001 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006002 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006003
drh1fee73e2007-08-29 04:00:57 +00006004 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006005 pPage->xParseCell(pPage, pCell, pInfo);
6006 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006007 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006008 }
drh80159da2016-12-09 17:32:51 +00006009 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006010 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006011 }
drh80159da2016-12-09 17:32:51 +00006012 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006013 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006014 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006015 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006016 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006017 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006018 );
drh72365832007-03-06 15:53:44 +00006019 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006020 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006021 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006022 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006023 /* 0 is not a legal page number and page 1 cannot be an
6024 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6025 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006026 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006027 }
danielk1977bea2a942009-01-20 17:06:27 +00006028 if( nOvfl ){
6029 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6030 if( rc ) return rc;
6031 }
dan887d4b22010-02-25 12:09:16 +00006032
shaneh1da207e2010-03-09 14:41:12 +00006033 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006034 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6035 ){
6036 /* There is no reason any cursor should have an outstanding reference
6037 ** to an overflow page belonging to a cell that is being deleted/updated.
6038 ** So if there exists more than one reference to this page, then it
6039 ** must not really be an overflow page and the database must be corrupt.
6040 ** It is helpful to detect this before calling freePage2(), as
6041 ** freePage2() may zero the page contents if secure-delete mode is
6042 ** enabled. If this 'overflow' page happens to be a page that the
6043 ** caller is iterating through or using in some other way, this
6044 ** can be problematic.
6045 */
6046 rc = SQLITE_CORRUPT_BKPT;
6047 }else{
6048 rc = freePage2(pBt, pOvfl, ovflPgno);
6049 }
6050
danielk1977bea2a942009-01-20 17:06:27 +00006051 if( pOvfl ){
6052 sqlite3PagerUnref(pOvfl->pDbPage);
6053 }
drh3b7511c2001-05-26 13:15:44 +00006054 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006055 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006056 }
drh5e2f8b92001-05-28 00:41:15 +00006057 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006058}
6059
6060/*
drh91025292004-05-03 19:49:32 +00006061** Create the byte sequence used to represent a cell on page pPage
6062** and write that byte sequence into pCell[]. Overflow pages are
6063** allocated and filled in as necessary. The calling procedure
6064** is responsible for making sure sufficient space has been allocated
6065** for pCell[].
6066**
6067** Note that pCell does not necessary need to point to the pPage->aData
6068** area. pCell might point to some temporary storage. The cell will
6069** be constructed in this temporary area then copied into pPage->aData
6070** later.
drh3b7511c2001-05-26 13:15:44 +00006071*/
6072static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006073 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006074 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006075 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006076 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006077){
drh3b7511c2001-05-26 13:15:44 +00006078 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006079 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006080 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006081 int spaceLeft;
6082 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006083 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006084 unsigned char *pPrior;
6085 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006086 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006087 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006088 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006089
drh1fee73e2007-08-29 04:00:57 +00006090 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006091
drhc5053fb2008-11-27 02:22:10 +00006092 /* pPage is not necessarily writeable since pCell might be auxiliary
6093 ** buffer space that is separate from the pPage buffer area */
6094 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6095 || sqlite3PagerIswriteable(pPage->pDbPage) );
6096
drh91025292004-05-03 19:49:32 +00006097 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006098 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006099 if( pPage->intKey ){
6100 nPayload = pX->nData + pX->nZero;
6101 pSrc = pX->pData;
6102 nSrc = pX->nData;
6103 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006104 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006105 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006106 }else{
drh8eeb4462016-05-21 20:03:42 +00006107 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6108 nSrc = nPayload = (int)pX->nKey;
6109 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006110 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006111 }
drhdfc2daa2016-05-21 23:25:29 +00006112
6113 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006114 if( nPayload<=pPage->maxLocal ){
6115 n = nHeader + nPayload;
6116 testcase( n==3 );
6117 testcase( n==4 );
6118 if( n<4 ) n = 4;
6119 *pnSize = n;
6120 spaceLeft = nPayload;
6121 pPrior = pCell;
6122 }else{
6123 int mn = pPage->minLocal;
6124 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6125 testcase( n==pPage->maxLocal );
6126 testcase( n==pPage->maxLocal+1 );
6127 if( n > pPage->maxLocal ) n = mn;
6128 spaceLeft = n;
6129 *pnSize = n + nHeader + 4;
6130 pPrior = &pCell[nHeader+n];
6131 }
drh3aac2dd2004-04-26 14:10:20 +00006132 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006133
drh6200c882014-09-23 22:36:25 +00006134 /* At this point variables should be set as follows:
6135 **
6136 ** nPayload Total payload size in bytes
6137 ** pPayload Begin writing payload here
6138 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6139 ** that means content must spill into overflow pages.
6140 ** *pnSize Size of the local cell (not counting overflow pages)
6141 ** pPrior Where to write the pgno of the first overflow page
6142 **
6143 ** Use a call to btreeParseCellPtr() to verify that the values above
6144 ** were computed correctly.
6145 */
6146#if SQLITE_DEBUG
6147 {
6148 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006149 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006150 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006151 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006152 assert( *pnSize == info.nSize );
6153 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006154 }
6155#endif
6156
6157 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006158 while( nPayload>0 ){
6159 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006160#ifndef SQLITE_OMIT_AUTOVACUUM
6161 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006162 if( pBt->autoVacuum ){
6163 do{
6164 pgnoOvfl++;
6165 } while(
6166 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6167 );
danielk1977b39f70b2007-05-17 18:28:11 +00006168 }
danielk1977afcdd022004-10-31 16:25:42 +00006169#endif
drhf49661a2008-12-10 16:45:50 +00006170 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006171#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006172 /* If the database supports auto-vacuum, and the second or subsequent
6173 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006174 ** for that page now.
6175 **
6176 ** If this is the first overflow page, then write a partial entry
6177 ** to the pointer-map. If we write nothing to this pointer-map slot,
6178 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006179 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006180 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006181 */
danielk19774ef24492007-05-23 09:52:41 +00006182 if( pBt->autoVacuum && rc==SQLITE_OK ){
6183 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006184 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006185 if( rc ){
6186 releasePage(pOvfl);
6187 }
danielk1977afcdd022004-10-31 16:25:42 +00006188 }
6189#endif
drh3b7511c2001-05-26 13:15:44 +00006190 if( rc ){
drh9b171272004-05-08 02:03:22 +00006191 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006192 return rc;
6193 }
drhc5053fb2008-11-27 02:22:10 +00006194
6195 /* If pToRelease is not zero than pPrior points into the data area
6196 ** of pToRelease. Make sure pToRelease is still writeable. */
6197 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6198
6199 /* If pPrior is part of the data area of pPage, then make sure pPage
6200 ** is still writeable */
6201 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6202 || sqlite3PagerIswriteable(pPage->pDbPage) );
6203
drh3aac2dd2004-04-26 14:10:20 +00006204 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006205 releasePage(pToRelease);
6206 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006207 pPrior = pOvfl->aData;
6208 put4byte(pPrior, 0);
6209 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006210 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006211 }
6212 n = nPayload;
6213 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006214
6215 /* If pToRelease is not zero than pPayload points into the data area
6216 ** of pToRelease. Make sure pToRelease is still writeable. */
6217 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6218
6219 /* If pPayload is part of the data area of pPage, then make sure pPage
6220 ** is still writeable */
6221 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6222 || sqlite3PagerIswriteable(pPage->pDbPage) );
6223
drhb026e052007-05-02 01:34:31 +00006224 if( nSrc>0 ){
6225 if( n>nSrc ) n = nSrc;
6226 assert( pSrc );
6227 memcpy(pPayload, pSrc, n);
6228 }else{
6229 memset(pPayload, 0, n);
6230 }
drh3b7511c2001-05-26 13:15:44 +00006231 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006232 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006233 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006234 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006235 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006236 }
drh9b171272004-05-08 02:03:22 +00006237 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006238 return SQLITE_OK;
6239}
6240
drh14acc042001-06-10 19:56:58 +00006241/*
6242** Remove the i-th cell from pPage. This routine effects pPage only.
6243** The cell content is not freed or deallocated. It is assumed that
6244** the cell content has been copied someplace else. This routine just
6245** removes the reference to the cell from pPage.
6246**
6247** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006248*/
drh98add2e2009-07-20 17:11:49 +00006249static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006250 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006251 u8 *data; /* pPage->aData */
6252 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006253 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006254 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006255
drh98add2e2009-07-20 17:11:49 +00006256 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006257 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006258 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006259 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006260 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006261 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006262 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006263 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006264 hdr = pPage->hdrOffset;
6265 testcase( pc==get2byte(&data[hdr+5]) );
6266 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006267 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006268 *pRC = SQLITE_CORRUPT_BKPT;
6269 return;
shane0af3f892008-11-12 04:55:34 +00006270 }
shanedcc50b72008-11-13 18:29:50 +00006271 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006272 if( rc ){
6273 *pRC = rc;
6274 return;
shanedcc50b72008-11-13 18:29:50 +00006275 }
drh14acc042001-06-10 19:56:58 +00006276 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006277 if( pPage->nCell==0 ){
6278 memset(&data[hdr+1], 0, 4);
6279 data[hdr+7] = 0;
6280 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6281 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6282 - pPage->childPtrSize - 8;
6283 }else{
6284 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6285 put2byte(&data[hdr+3], pPage->nCell);
6286 pPage->nFree += 2;
6287 }
drh14acc042001-06-10 19:56:58 +00006288}
6289
6290/*
6291** Insert a new cell on pPage at cell index "i". pCell points to the
6292** content of the cell.
6293**
6294** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006295** will not fit, then make a copy of the cell content into pTemp if
6296** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006297** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006298** in pTemp or the original pCell) and also record its index.
6299** Allocating a new entry in pPage->aCell[] implies that
6300** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006301**
6302** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006303*/
drh98add2e2009-07-20 17:11:49 +00006304static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006305 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006306 int i, /* New cell becomes the i-th cell of the page */
6307 u8 *pCell, /* Content of the new cell */
6308 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006309 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006310 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6311 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006312){
drh383d30f2010-02-26 13:07:37 +00006313 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006314 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006315 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006316 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006317
drhcb89f4a2016-05-21 11:23:26 +00006318 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006319 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006320 assert( MX_CELL(pPage->pBt)<=10921 );
6321 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006322 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6323 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006324 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006325 /* The cell should normally be sized correctly. However, when moving a
6326 ** malformed cell from a leaf page to an interior page, if the cell size
6327 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6328 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6329 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006330 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006331 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006332 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006333 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006334 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006335 }
danielk19774dbaa892009-06-16 16:50:22 +00006336 if( iChild ){
6337 put4byte(pCell, iChild);
6338 }
drh43605152004-05-29 21:46:49 +00006339 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006340 /* Comparison against ArraySize-1 since we hold back one extra slot
6341 ** as a contingency. In other words, never need more than 3 overflow
6342 ** slots but 4 are allocated, just to be safe. */
6343 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006344 pPage->apOvfl[j] = pCell;
6345 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006346
6347 /* When multiple overflows occur, they are always sequential and in
6348 ** sorted order. This invariants arise because multiple overflows can
6349 ** only occur when inserting divider cells into the parent page during
6350 ** balancing, and the dividers are adjacent and sorted.
6351 */
6352 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6353 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006354 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006355 int rc = sqlite3PagerWrite(pPage->pDbPage);
6356 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006357 *pRC = rc;
6358 return;
danielk19776e465eb2007-08-21 13:11:00 +00006359 }
6360 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006361 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006362 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006363 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006364 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006365 /* The allocateSpace() routine guarantees the following properties
6366 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006367 assert( idx >= 0 );
6368 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006369 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006370 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006371 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006372 if( iChild ){
6373 put4byte(&data[idx], iChild);
6374 }
drh2c8fb922015-06-25 19:53:48 +00006375 pIns = pPage->aCellIdx + i*2;
6376 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6377 put2byte(pIns, idx);
6378 pPage->nCell++;
6379 /* increment the cell count */
6380 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6381 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006382#ifndef SQLITE_OMIT_AUTOVACUUM
6383 if( pPage->pBt->autoVacuum ){
6384 /* The cell may contain a pointer to an overflow page. If so, write
6385 ** the entry for the overflow page into the pointer map.
6386 */
drh98add2e2009-07-20 17:11:49 +00006387 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006388 }
6389#endif
drh14acc042001-06-10 19:56:58 +00006390 }
6391}
6392
6393/*
drh1ffd2472015-06-23 02:37:30 +00006394** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006395** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006396*/
drh1ffd2472015-06-23 02:37:30 +00006397typedef struct CellArray CellArray;
6398struct CellArray {
6399 int nCell; /* Number of cells in apCell[] */
6400 MemPage *pRef; /* Reference page */
6401 u8 **apCell; /* All cells begin balanced */
6402 u16 *szCell; /* Local size of all cells in apCell[] */
6403};
drhfa1a98a2004-05-14 19:08:17 +00006404
drh1ffd2472015-06-23 02:37:30 +00006405/*
6406** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6407** computed.
6408*/
6409static void populateCellCache(CellArray *p, int idx, int N){
6410 assert( idx>=0 && idx+N<=p->nCell );
6411 while( N>0 ){
6412 assert( p->apCell[idx]!=0 );
6413 if( p->szCell[idx]==0 ){
6414 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6415 }else{
6416 assert( CORRUPT_DB ||
6417 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6418 }
6419 idx++;
6420 N--;
drhfa1a98a2004-05-14 19:08:17 +00006421 }
drh1ffd2472015-06-23 02:37:30 +00006422}
6423
6424/*
6425** Return the size of the Nth element of the cell array
6426*/
6427static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6428 assert( N>=0 && N<p->nCell );
6429 assert( p->szCell[N]==0 );
6430 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6431 return p->szCell[N];
6432}
6433static u16 cachedCellSize(CellArray *p, int N){
6434 assert( N>=0 && N<p->nCell );
6435 if( p->szCell[N] ) return p->szCell[N];
6436 return computeCellSize(p, N);
6437}
6438
6439/*
dan8e9ba0c2014-10-14 17:27:04 +00006440** Array apCell[] contains pointers to nCell b-tree page cells. The
6441** szCell[] array contains the size in bytes of each cell. This function
6442** replaces the current contents of page pPg with the contents of the cell
6443** array.
6444**
6445** Some of the cells in apCell[] may currently be stored in pPg. This
6446** function works around problems caused by this by making a copy of any
6447** such cells before overwriting the page data.
6448**
6449** The MemPage.nFree field is invalidated by this function. It is the
6450** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006451*/
drh658873b2015-06-22 20:02:04 +00006452static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006453 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006454 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006455 u8 **apCell, /* Array of cells */
6456 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006457){
6458 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6459 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6460 const int usableSize = pPg->pBt->usableSize;
6461 u8 * const pEnd = &aData[usableSize];
6462 int i;
6463 u8 *pCellptr = pPg->aCellIdx;
6464 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6465 u8 *pData;
6466
6467 i = get2byte(&aData[hdr+5]);
6468 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006469
dan8e9ba0c2014-10-14 17:27:04 +00006470 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006471 for(i=0; i<nCell; i++){
6472 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006473 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006474 pCell = &pTmp[pCell - aData];
6475 }
6476 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006477 put2byte(pCellptr, (pData - aData));
6478 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006479 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6480 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006481 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006482 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006483 }
6484
dand7b545b2014-10-13 18:03:27 +00006485 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006486 pPg->nCell = nCell;
6487 pPg->nOverflow = 0;
6488
6489 put2byte(&aData[hdr+1], 0);
6490 put2byte(&aData[hdr+3], pPg->nCell);
6491 put2byte(&aData[hdr+5], pData - aData);
6492 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006493 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006494}
6495
dan8e9ba0c2014-10-14 17:27:04 +00006496/*
6497** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6498** contains the size in bytes of each such cell. This function attempts to
6499** add the cells stored in the array to page pPg. If it cannot (because
6500** the page needs to be defragmented before the cells will fit), non-zero
6501** is returned. Otherwise, if the cells are added successfully, zero is
6502** returned.
6503**
6504** Argument pCellptr points to the first entry in the cell-pointer array
6505** (part of page pPg) to populate. After cell apCell[0] is written to the
6506** page body, a 16-bit offset is written to pCellptr. And so on, for each
6507** cell in the array. It is the responsibility of the caller to ensure
6508** that it is safe to overwrite this part of the cell-pointer array.
6509**
6510** When this function is called, *ppData points to the start of the
6511** content area on page pPg. If the size of the content area is extended,
6512** *ppData is updated to point to the new start of the content area
6513** before returning.
6514**
6515** Finally, argument pBegin points to the byte immediately following the
6516** end of the space required by this page for the cell-pointer area (for
6517** all cells - not just those inserted by the current call). If the content
6518** area must be extended to before this point in order to accomodate all
6519** cells in apCell[], then the cells do not fit and non-zero is returned.
6520*/
dand7b545b2014-10-13 18:03:27 +00006521static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006522 MemPage *pPg, /* Page to add cells to */
6523 u8 *pBegin, /* End of cell-pointer array */
6524 u8 **ppData, /* IN/OUT: Page content -area pointer */
6525 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006526 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006527 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006528 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006529){
6530 int i;
6531 u8 *aData = pPg->aData;
6532 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006533 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006534 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006535 for(i=iFirst; i<iEnd; i++){
6536 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006537 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006538 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006539 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006540 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006541 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006542 pSlot = pData;
6543 }
drh48310f82015-10-10 16:41:28 +00006544 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6545 ** database. But they might for a corrupt database. Hence use memmove()
6546 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6547 assert( (pSlot+sz)<=pCArray->apCell[i]
6548 || pSlot>=(pCArray->apCell[i]+sz)
6549 || CORRUPT_DB );
6550 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006551 put2byte(pCellptr, (pSlot - aData));
6552 pCellptr += 2;
6553 }
6554 *ppData = pData;
6555 return 0;
6556}
6557
dan8e9ba0c2014-10-14 17:27:04 +00006558/*
6559** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6560** contains the size in bytes of each such cell. This function adds the
6561** space associated with each cell in the array that is currently stored
6562** within the body of pPg to the pPg free-list. The cell-pointers and other
6563** fields of the page are not updated.
6564**
6565** This function returns the total number of cells added to the free-list.
6566*/
dand7b545b2014-10-13 18:03:27 +00006567static int pageFreeArray(
6568 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006569 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006570 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006571 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006572){
6573 u8 * const aData = pPg->aData;
6574 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006575 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006576 int nRet = 0;
6577 int i;
drhf7838932015-06-23 15:36:34 +00006578 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006579 u8 *pFree = 0;
6580 int szFree = 0;
6581
drhf7838932015-06-23 15:36:34 +00006582 for(i=iFirst; i<iEnd; i++){
6583 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006584 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006585 int sz;
6586 /* No need to use cachedCellSize() here. The sizes of all cells that
6587 ** are to be freed have already been computing while deciding which
6588 ** cells need freeing */
6589 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006590 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006591 if( pFree ){
6592 assert( pFree>aData && (pFree - aData)<65536 );
6593 freeSpace(pPg, (u16)(pFree - aData), szFree);
6594 }
dand7b545b2014-10-13 18:03:27 +00006595 pFree = pCell;
6596 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006597 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006598 }else{
6599 pFree = pCell;
6600 szFree += sz;
6601 }
6602 nRet++;
6603 }
6604 }
drhfefa0942014-11-05 21:21:08 +00006605 if( pFree ){
6606 assert( pFree>aData && (pFree - aData)<65536 );
6607 freeSpace(pPg, (u16)(pFree - aData), szFree);
6608 }
dand7b545b2014-10-13 18:03:27 +00006609 return nRet;
6610}
6611
dand7b545b2014-10-13 18:03:27 +00006612/*
drh5ab63772014-11-27 03:46:04 +00006613** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6614** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6615** with apCell[iOld]. After balancing, this page should hold nNew cells
6616** starting at apCell[iNew].
6617**
6618** This routine makes the necessary adjustments to pPg so that it contains
6619** the correct cells after being balanced.
6620**
dand7b545b2014-10-13 18:03:27 +00006621** The pPg->nFree field is invalid when this function returns. It is the
6622** responsibility of the caller to set it correctly.
6623*/
drh658873b2015-06-22 20:02:04 +00006624static int editPage(
dan09c68402014-10-11 20:00:24 +00006625 MemPage *pPg, /* Edit this page */
6626 int iOld, /* Index of first cell currently on page */
6627 int iNew, /* Index of new first cell on page */
6628 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006629 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006630){
dand7b545b2014-10-13 18:03:27 +00006631 u8 * const aData = pPg->aData;
6632 const int hdr = pPg->hdrOffset;
6633 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6634 int nCell = pPg->nCell; /* Cells stored on pPg */
6635 u8 *pData;
6636 u8 *pCellptr;
6637 int i;
6638 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6639 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006640
6641#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006642 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6643 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006644#endif
6645
dand7b545b2014-10-13 18:03:27 +00006646 /* Remove cells from the start and end of the page */
6647 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006648 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006649 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6650 nCell -= nShift;
6651 }
6652 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006653 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006654 }
dan09c68402014-10-11 20:00:24 +00006655
drh5ab63772014-11-27 03:46:04 +00006656 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006657 if( pData<pBegin ) goto editpage_fail;
6658
6659 /* Add cells to the start of the page */
6660 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006661 int nAdd = MIN(nNew,iOld-iNew);
6662 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006663 pCellptr = pPg->aCellIdx;
6664 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6665 if( pageInsertArray(
6666 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006667 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006668 ) ) goto editpage_fail;
6669 nCell += nAdd;
6670 }
6671
6672 /* Add any overflow cells */
6673 for(i=0; i<pPg->nOverflow; i++){
6674 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6675 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006676 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006677 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6678 nCell++;
6679 if( pageInsertArray(
6680 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006681 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006682 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006683 }
dand7b545b2014-10-13 18:03:27 +00006684 }
dan09c68402014-10-11 20:00:24 +00006685
dand7b545b2014-10-13 18:03:27 +00006686 /* Append cells to the end of the page */
6687 pCellptr = &pPg->aCellIdx[nCell*2];
6688 if( pageInsertArray(
6689 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006690 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006691 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006692
dand7b545b2014-10-13 18:03:27 +00006693 pPg->nCell = nNew;
6694 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006695
dand7b545b2014-10-13 18:03:27 +00006696 put2byte(&aData[hdr+3], pPg->nCell);
6697 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006698
6699#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006700 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006701 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006702 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006703 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006704 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006705 }
drh1ffd2472015-06-23 02:37:30 +00006706 assert( 0==memcmp(pCell, &aData[iOff],
6707 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006708 }
dan09c68402014-10-11 20:00:24 +00006709#endif
6710
drh658873b2015-06-22 20:02:04 +00006711 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006712 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006713 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006714 populateCellCache(pCArray, iNew, nNew);
6715 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006716}
6717
drh14acc042001-06-10 19:56:58 +00006718/*
drhc3b70572003-01-04 19:44:07 +00006719** The following parameters determine how many adjacent pages get involved
6720** in a balancing operation. NN is the number of neighbors on either side
6721** of the page that participate in the balancing operation. NB is the
6722** total number of pages that participate, including the target page and
6723** NN neighbors on either side.
6724**
6725** The minimum value of NN is 1 (of course). Increasing NN above 1
6726** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6727** in exchange for a larger degradation in INSERT and UPDATE performance.
6728** The value of NN appears to give the best results overall.
6729*/
6730#define NN 1 /* Number of neighbors on either side of pPage */
6731#define NB (NN*2+1) /* Total pages involved in the balance */
6732
danielk1977ac245ec2005-01-14 13:50:11 +00006733
drh615ae552005-01-16 23:21:00 +00006734#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006735/*
6736** This version of balance() handles the common special case where
6737** a new entry is being inserted on the extreme right-end of the
6738** tree, in other words, when the new entry will become the largest
6739** entry in the tree.
6740**
drhc314dc72009-07-21 11:52:34 +00006741** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006742** a new page to the right-hand side and put the one new entry in
6743** that page. This leaves the right side of the tree somewhat
6744** unbalanced. But odds are that we will be inserting new entries
6745** at the end soon afterwards so the nearly empty page will quickly
6746** fill up. On average.
6747**
6748** pPage is the leaf page which is the right-most page in the tree.
6749** pParent is its parent. pPage must have a single overflow entry
6750** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006751**
6752** The pSpace buffer is used to store a temporary copy of the divider
6753** cell that will be inserted into pParent. Such a cell consists of a 4
6754** byte page number followed by a variable length integer. In other
6755** words, at most 13 bytes. Hence the pSpace buffer must be at
6756** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006757*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006758static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6759 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006760 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006761 int rc; /* Return Code */
6762 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006763
drh1fee73e2007-08-29 04:00:57 +00006764 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006765 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006766 assert( pPage->nOverflow==1 );
6767
drh5d433ce2010-08-14 16:02:52 +00006768 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006769 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006770
danielk1977a50d9aa2009-06-08 14:49:45 +00006771 /* Allocate a new page. This page will become the right-sibling of
6772 ** pPage. Make the parent page writable, so that the new divider cell
6773 ** may be inserted. If both these operations are successful, proceed.
6774 */
drh4f0c5872007-03-26 22:05:01 +00006775 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006776
danielk1977eaa06f62008-09-18 17:34:44 +00006777 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006778
6779 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006780 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006781 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006782 u8 *pStop;
6783
drhc5053fb2008-11-27 02:22:10 +00006784 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006785 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6786 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006787 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006788 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006789 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006790
6791 /* If this is an auto-vacuum database, update the pointer map
6792 ** with entries for the new page, and any pointer from the
6793 ** cell on the page to an overflow page. If either of these
6794 ** operations fails, the return code is set, but the contents
6795 ** of the parent page are still manipulated by thh code below.
6796 ** That is Ok, at this point the parent page is guaranteed to
6797 ** be marked as dirty. Returning an error code will cause a
6798 ** rollback, undoing any changes made to the parent page.
6799 */
6800 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006801 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6802 if( szCell>pNew->minLocal ){
6803 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006804 }
6805 }
danielk1977eaa06f62008-09-18 17:34:44 +00006806
danielk19776f235cc2009-06-04 14:46:08 +00006807 /* Create a divider cell to insert into pParent. The divider cell
6808 ** consists of a 4-byte page number (the page number of pPage) and
6809 ** a variable length key value (which must be the same value as the
6810 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006811 **
danielk19776f235cc2009-06-04 14:46:08 +00006812 ** To find the largest key value on pPage, first find the right-most
6813 ** cell on pPage. The first two fields of this cell are the
6814 ** record-length (a variable length integer at most 32-bits in size)
6815 ** and the key value (a variable length integer, may have any value).
6816 ** The first of the while(...) loops below skips over the record-length
6817 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006818 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006819 */
danielk1977eaa06f62008-09-18 17:34:44 +00006820 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006821 pStop = &pCell[9];
6822 while( (*(pCell++)&0x80) && pCell<pStop );
6823 pStop = &pCell[9];
6824 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6825
danielk19774dbaa892009-06-16 16:50:22 +00006826 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006827 if( rc==SQLITE_OK ){
6828 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6829 0, pPage->pgno, &rc);
6830 }
danielk19776f235cc2009-06-04 14:46:08 +00006831
6832 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006833 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6834
danielk1977e08a3c42008-09-18 18:17:03 +00006835 /* Release the reference to the new page. */
6836 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006837 }
6838
danielk1977eaa06f62008-09-18 17:34:44 +00006839 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006840}
drh615ae552005-01-16 23:21:00 +00006841#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006842
danielk19774dbaa892009-06-16 16:50:22 +00006843#if 0
drhc3b70572003-01-04 19:44:07 +00006844/*
danielk19774dbaa892009-06-16 16:50:22 +00006845** This function does not contribute anything to the operation of SQLite.
6846** it is sometimes activated temporarily while debugging code responsible
6847** for setting pointer-map entries.
6848*/
6849static int ptrmapCheckPages(MemPage **apPage, int nPage){
6850 int i, j;
6851 for(i=0; i<nPage; i++){
6852 Pgno n;
6853 u8 e;
6854 MemPage *pPage = apPage[i];
6855 BtShared *pBt = pPage->pBt;
6856 assert( pPage->isInit );
6857
6858 for(j=0; j<pPage->nCell; j++){
6859 CellInfo info;
6860 u8 *z;
6861
6862 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006863 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006864 if( info.nLocal<info.nPayload ){
6865 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006866 ptrmapGet(pBt, ovfl, &e, &n);
6867 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6868 }
6869 if( !pPage->leaf ){
6870 Pgno child = get4byte(z);
6871 ptrmapGet(pBt, child, &e, &n);
6872 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6873 }
6874 }
6875 if( !pPage->leaf ){
6876 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6877 ptrmapGet(pBt, child, &e, &n);
6878 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6879 }
6880 }
6881 return 1;
6882}
6883#endif
6884
danielk1977cd581a72009-06-23 15:43:39 +00006885/*
6886** This function is used to copy the contents of the b-tree node stored
6887** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6888** the pointer-map entries for each child page are updated so that the
6889** parent page stored in the pointer map is page pTo. If pFrom contained
6890** any cells with overflow page pointers, then the corresponding pointer
6891** map entries are also updated so that the parent page is page pTo.
6892**
6893** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006894** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006895**
danielk197730548662009-07-09 05:07:37 +00006896** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006897**
6898** The performance of this function is not critical. It is only used by
6899** the balance_shallower() and balance_deeper() procedures, neither of
6900** which are called often under normal circumstances.
6901*/
drhc314dc72009-07-21 11:52:34 +00006902static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6903 if( (*pRC)==SQLITE_OK ){
6904 BtShared * const pBt = pFrom->pBt;
6905 u8 * const aFrom = pFrom->aData;
6906 u8 * const aTo = pTo->aData;
6907 int const iFromHdr = pFrom->hdrOffset;
6908 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006909 int rc;
drhc314dc72009-07-21 11:52:34 +00006910 int iData;
6911
6912
6913 assert( pFrom->isInit );
6914 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006915 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006916
6917 /* Copy the b-tree node content from page pFrom to page pTo. */
6918 iData = get2byte(&aFrom[iFromHdr+5]);
6919 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6920 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6921
6922 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006923 ** match the new data. The initialization of pTo can actually fail under
6924 ** fairly obscure circumstances, even though it is a copy of initialized
6925 ** page pFrom.
6926 */
drhc314dc72009-07-21 11:52:34 +00006927 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006928 rc = btreeInitPage(pTo);
6929 if( rc!=SQLITE_OK ){
6930 *pRC = rc;
6931 return;
6932 }
drhc314dc72009-07-21 11:52:34 +00006933
6934 /* If this is an auto-vacuum database, update the pointer-map entries
6935 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6936 */
6937 if( ISAUTOVACUUM ){
6938 *pRC = setChildPtrmaps(pTo);
6939 }
danielk1977cd581a72009-06-23 15:43:39 +00006940 }
danielk1977cd581a72009-06-23 15:43:39 +00006941}
6942
6943/*
danielk19774dbaa892009-06-16 16:50:22 +00006944** This routine redistributes cells on the iParentIdx'th child of pParent
6945** (hereafter "the page") and up to 2 siblings so that all pages have about the
6946** same amount of free space. Usually a single sibling on either side of the
6947** page are used in the balancing, though both siblings might come from one
6948** side if the page is the first or last child of its parent. If the page
6949** has fewer than 2 siblings (something which can only happen if the page
6950** is a root page or a child of a root page) then all available siblings
6951** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006952**
danielk19774dbaa892009-06-16 16:50:22 +00006953** The number of siblings of the page might be increased or decreased by
6954** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006955**
danielk19774dbaa892009-06-16 16:50:22 +00006956** Note that when this routine is called, some of the cells on the page
6957** might not actually be stored in MemPage.aData[]. This can happen
6958** if the page is overfull. This routine ensures that all cells allocated
6959** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006960**
danielk19774dbaa892009-06-16 16:50:22 +00006961** In the course of balancing the page and its siblings, cells may be
6962** inserted into or removed from the parent page (pParent). Doing so
6963** may cause the parent page to become overfull or underfull. If this
6964** happens, it is the responsibility of the caller to invoke the correct
6965** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006966**
drh5e00f6c2001-09-13 13:46:56 +00006967** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006968** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006969** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006970**
6971** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006972** buffer big enough to hold one page. If while inserting cells into the parent
6973** page (pParent) the parent page becomes overfull, this buffer is
6974** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006975** a maximum of four divider cells into the parent page, and the maximum
6976** size of a cell stored within an internal node is always less than 1/4
6977** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6978** enough for all overflow cells.
6979**
6980** If aOvflSpace is set to a null pointer, this function returns
6981** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006982*/
danielk19774dbaa892009-06-16 16:50:22 +00006983static int balance_nonroot(
6984 MemPage *pParent, /* Parent page of siblings being balanced */
6985 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006986 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006987 int isRoot, /* True if pParent is a root-page */
6988 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006989){
drh16a9b832007-05-05 18:39:25 +00006990 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006991 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006992 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006993 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006994 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006995 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006996 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006997 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006998 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006999 int usableSpace; /* Bytes in pPage beyond the header */
7000 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007001 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007002 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007003 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007004 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007005 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007006 u8 *pRight; /* Location in parent of right-sibling pointer */
7007 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007008 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7009 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007010 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007011 u8 *aSpace1; /* Space for copies of dividers cells */
7012 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007013 u8 abDone[NB+2]; /* True after i'th new page is populated */
7014 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007015 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007016 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007017 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007018
dan33ea4862014-10-09 19:35:37 +00007019 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007020 b.nCell = 0;
7021 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007022 pBt = pParent->pBt;
7023 assert( sqlite3_mutex_held(pBt->mutex) );
7024 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007025
danielk1977e5765212009-06-17 11:13:28 +00007026#if 0
drh43605152004-05-29 21:46:49 +00007027 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007028#endif
drh2e38c322004-09-03 18:38:44 +00007029
danielk19774dbaa892009-06-16 16:50:22 +00007030 /* At this point pParent may have at most one overflow cell. And if
7031 ** this overflow cell is present, it must be the cell with
7032 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007033 ** is called (indirectly) from sqlite3BtreeDelete().
7034 */
danielk19774dbaa892009-06-16 16:50:22 +00007035 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007036 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007037
danielk197711a8a862009-06-17 11:49:52 +00007038 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007039 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007040 }
7041
danielk1977a50d9aa2009-06-08 14:49:45 +00007042 /* Find the sibling pages to balance. Also locate the cells in pParent
7043 ** that divide the siblings. An attempt is made to find NN siblings on
7044 ** either side of pPage. More siblings are taken from one side, however,
7045 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007046 ** has NB or fewer children then all children of pParent are taken.
7047 **
7048 ** This loop also drops the divider cells from the parent page. This
7049 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007050 ** overflow cells in the parent page, since if any existed they will
7051 ** have already been removed.
7052 */
danielk19774dbaa892009-06-16 16:50:22 +00007053 i = pParent->nOverflow + pParent->nCell;
7054 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007055 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007056 }else{
dan7d6885a2012-08-08 14:04:56 +00007057 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007058 if( iParentIdx==0 ){
7059 nxDiv = 0;
7060 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007061 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007062 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007063 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007064 }
dan7d6885a2012-08-08 14:04:56 +00007065 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007066 }
dan7d6885a2012-08-08 14:04:56 +00007067 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007068 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7069 pRight = &pParent->aData[pParent->hdrOffset+8];
7070 }else{
7071 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7072 }
7073 pgno = get4byte(pRight);
7074 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007075 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007076 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007077 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007078 goto balance_cleanup;
7079 }
danielk1977634f2982005-03-28 08:44:07 +00007080 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007081 if( (i--)==0 ) break;
7082
drhf0bc50a2016-12-12 00:58:40 +00007083 if( pParent->nOverflow && ALWAYS(i+nxDiv==pParent->aiOvfl[0]) ){
drh2cbd78b2012-02-02 19:37:18 +00007084 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007085 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007086 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007087 pParent->nOverflow = 0;
7088 }else{
7089 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7090 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007091 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007092
7093 /* Drop the cell from the parent page. apDiv[i] still points to
7094 ** the cell within the parent, even though it has been dropped.
7095 ** This is safe because dropping a cell only overwrites the first
7096 ** four bytes of it, and this function does not need the first
7097 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007098 ** later on.
7099 **
drh8a575d92011-10-12 17:00:28 +00007100 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007101 ** the dropCell() routine will overwrite the entire cell with zeroes.
7102 ** In this case, temporarily copy the cell into the aOvflSpace[]
7103 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7104 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007105 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007106 int iOff;
7107
7108 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007109 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007110 rc = SQLITE_CORRUPT_BKPT;
7111 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7112 goto balance_cleanup;
7113 }else{
7114 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7115 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7116 }
drh5b47efa2010-02-12 18:18:39 +00007117 }
drh98add2e2009-07-20 17:11:49 +00007118 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007119 }
drh8b2f49b2001-06-08 00:21:52 +00007120 }
7121
drha9121e42008-02-19 14:59:35 +00007122 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007123 ** alignment */
drha9121e42008-02-19 14:59:35 +00007124 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007125
drh8b2f49b2001-06-08 00:21:52 +00007126 /*
danielk1977634f2982005-03-28 08:44:07 +00007127 ** Allocate space for memory structures
7128 */
drhfacf0302008-06-17 15:12:00 +00007129 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007130 nMaxCells*sizeof(u8*) /* b.apCell */
7131 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007132 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007133
drhcbd55b02014-11-04 14:22:27 +00007134 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7135 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007136 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007137 b.apCell = sqlite3ScratchMalloc( szScratch );
7138 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007139 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007140 goto balance_cleanup;
7141 }
drh1ffd2472015-06-23 02:37:30 +00007142 b.szCell = (u16*)&b.apCell[nMaxCells];
7143 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007144 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007145
7146 /*
7147 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007148 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007149 ** into space obtained from aSpace1[]. The divider cells have already
7150 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007151 **
7152 ** If the siblings are on leaf pages, then the child pointers of the
7153 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007154 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007155 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007156 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007157 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007158 **
7159 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7160 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007161 */
drh1ffd2472015-06-23 02:37:30 +00007162 b.pRef = apOld[0];
7163 leafCorrection = b.pRef->leaf*4;
7164 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007165 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007166 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007167 int limit = pOld->nCell;
7168 u8 *aData = pOld->aData;
7169 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007170 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007171 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007172
drh73d340a2015-05-28 11:23:11 +00007173 /* Verify that all sibling pages are of the same "type" (table-leaf,
7174 ** table-interior, index-leaf, or index-interior).
7175 */
7176 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7177 rc = SQLITE_CORRUPT_BKPT;
7178 goto balance_cleanup;
7179 }
7180
drhfe647dc2015-06-23 18:24:25 +00007181 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7182 ** constains overflow cells, include them in the b.apCell[] array
7183 ** in the correct spot.
7184 **
7185 ** Note that when there are multiple overflow cells, it is always the
7186 ** case that they are sequential and adjacent. This invariant arises
7187 ** because multiple overflows can only occurs when inserting divider
7188 ** cells into a parent on a prior balance, and divider cells are always
7189 ** adjacent and are inserted in order. There is an assert() tagged
7190 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7191 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007192 **
7193 ** This must be done in advance. Once the balance starts, the cell
7194 ** offset section of the btree page will be overwritten and we will no
7195 ** long be able to find the cells if a pointer to each cell is not saved
7196 ** first.
7197 */
drh36b78ee2016-01-20 01:32:00 +00007198 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007199 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007200 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007201 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007202 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007203 piCell += 2;
7204 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007205 }
drhfe647dc2015-06-23 18:24:25 +00007206 for(k=0; k<pOld->nOverflow; k++){
7207 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007208 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007209 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007210 }
drh1ffd2472015-06-23 02:37:30 +00007211 }
drhfe647dc2015-06-23 18:24:25 +00007212 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7213 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007214 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007215 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007216 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007217 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007218 }
7219
drh1ffd2472015-06-23 02:37:30 +00007220 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007221 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007222 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007223 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007224 assert( b.nCell<nMaxCells );
7225 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007226 pTemp = &aSpace1[iSpace1];
7227 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007228 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007229 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007230 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007231 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007232 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007233 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007234 if( !pOld->leaf ){
7235 assert( leafCorrection==0 );
7236 assert( pOld->hdrOffset==0 );
7237 /* The right pointer of the child page pOld becomes the left
7238 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007239 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007240 }else{
7241 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007242 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007243 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7244 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007245 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7246 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007247 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007248 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007249 }
7250 }
drh1ffd2472015-06-23 02:37:30 +00007251 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007252 }
drh8b2f49b2001-06-08 00:21:52 +00007253 }
7254
7255 /*
drh1ffd2472015-06-23 02:37:30 +00007256 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007257 ** Store this number in "k". Also compute szNew[] which is the total
7258 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007259 ** in b.apCell[] of the cell that divides page i from page i+1.
7260 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007261 **
drh96f5b762004-05-16 16:24:36 +00007262 ** Values computed by this block:
7263 **
7264 ** k: The total number of sibling pages
7265 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007266 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007267 ** the right of the i-th sibling page.
7268 ** usableSpace: Number of bytes of space available on each sibling.
7269 **
drh8b2f49b2001-06-08 00:21:52 +00007270 */
drh43605152004-05-29 21:46:49 +00007271 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007272 for(i=0; i<nOld; i++){
7273 MemPage *p = apOld[i];
7274 szNew[i] = usableSpace - p->nFree;
7275 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7276 for(j=0; j<p->nOverflow; j++){
7277 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7278 }
7279 cntNew[i] = cntOld[i];
7280 }
7281 k = nOld;
7282 for(i=0; i<k; i++){
7283 int sz;
7284 while( szNew[i]>usableSpace ){
7285 if( i+1>=k ){
7286 k = i+2;
7287 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7288 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007289 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007290 }
drh1ffd2472015-06-23 02:37:30 +00007291 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007292 szNew[i] -= sz;
7293 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007294 if( cntNew[i]<b.nCell ){
7295 sz = 2 + cachedCellSize(&b, cntNew[i]);
7296 }else{
7297 sz = 0;
7298 }
drh658873b2015-06-22 20:02:04 +00007299 }
7300 szNew[i+1] += sz;
7301 cntNew[i]--;
7302 }
drh1ffd2472015-06-23 02:37:30 +00007303 while( cntNew[i]<b.nCell ){
7304 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007305 if( szNew[i]+sz>usableSpace ) break;
7306 szNew[i] += sz;
7307 cntNew[i]++;
7308 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007309 if( cntNew[i]<b.nCell ){
7310 sz = 2 + cachedCellSize(&b, cntNew[i]);
7311 }else{
7312 sz = 0;
7313 }
drh658873b2015-06-22 20:02:04 +00007314 }
7315 szNew[i+1] -= sz;
7316 }
drh1ffd2472015-06-23 02:37:30 +00007317 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007318 k = i+1;
drh672073a2015-06-24 12:07:40 +00007319 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007320 rc = SQLITE_CORRUPT_BKPT;
7321 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007322 }
7323 }
drh96f5b762004-05-16 16:24:36 +00007324
7325 /*
7326 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007327 ** on the left side (siblings with smaller keys). The left siblings are
7328 ** always nearly full, while the right-most sibling might be nearly empty.
7329 ** The next block of code attempts to adjust the packing of siblings to
7330 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007331 **
7332 ** This adjustment is more than an optimization. The packing above might
7333 ** be so out of balance as to be illegal. For example, the right-most
7334 ** sibling might be completely empty. This adjustment is not optional.
7335 */
drh6019e162001-07-02 17:51:45 +00007336 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007337 int szRight = szNew[i]; /* Size of sibling on the right */
7338 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7339 int r; /* Index of right-most cell in left sibling */
7340 int d; /* Index of first cell to the left of right sibling */
7341
7342 r = cntNew[i-1] - 1;
7343 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007344 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007345 do{
drh1ffd2472015-06-23 02:37:30 +00007346 assert( d<nMaxCells );
7347 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007348 (void)cachedCellSize(&b, r);
7349 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007350 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007351 break;
7352 }
7353 szRight += b.szCell[d] + 2;
7354 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007355 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007356 r--;
7357 d--;
drh672073a2015-06-24 12:07:40 +00007358 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007359 szNew[i] = szRight;
7360 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007361 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7362 rc = SQLITE_CORRUPT_BKPT;
7363 goto balance_cleanup;
7364 }
drh6019e162001-07-02 17:51:45 +00007365 }
drh09d0deb2005-08-02 17:13:09 +00007366
drh2a0df922014-10-30 23:14:56 +00007367 /* Sanity check: For a non-corrupt database file one of the follwing
7368 ** must be true:
7369 ** (1) We found one or more cells (cntNew[0])>0), or
7370 ** (2) pPage is a virtual root page. A virtual root page is when
7371 ** the real root page is page 1 and we are the only child of
7372 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007373 */
drh2a0df922014-10-30 23:14:56 +00007374 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007375 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7376 apOld[0]->pgno, apOld[0]->nCell,
7377 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7378 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007379 ));
7380
drh8b2f49b2001-06-08 00:21:52 +00007381 /*
drh6b308672002-07-08 02:16:37 +00007382 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007383 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007384 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007385 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007386 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007387 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007388 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007389 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007390 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007391 nNew++;
danielk197728129562005-01-11 10:25:06 +00007392 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007393 }else{
drh7aa8f852006-03-28 00:24:44 +00007394 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007395 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007396 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007397 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007398 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007399 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007400 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007401
7402 /* Set the pointer-map entry for the new sibling page. */
7403 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007404 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007405 if( rc!=SQLITE_OK ){
7406 goto balance_cleanup;
7407 }
7408 }
drh6b308672002-07-08 02:16:37 +00007409 }
drh8b2f49b2001-06-08 00:21:52 +00007410 }
7411
7412 /*
dan33ea4862014-10-09 19:35:37 +00007413 ** Reassign page numbers so that the new pages are in ascending order.
7414 ** This helps to keep entries in the disk file in order so that a scan
7415 ** of the table is closer to a linear scan through the file. That in turn
7416 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007417 **
dan33ea4862014-10-09 19:35:37 +00007418 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7419 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007420 **
dan33ea4862014-10-09 19:35:37 +00007421 ** When NB==3, this one optimization makes the database about 25% faster
7422 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007423 */
dan33ea4862014-10-09 19:35:37 +00007424 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007425 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007426 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007427 for(j=0; j<i; j++){
7428 if( aPgno[j]==aPgno[i] ){
7429 /* This branch is taken if the set of sibling pages somehow contains
7430 ** duplicate entries. This can happen if the database is corrupt.
7431 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007432 ** we do the detection here in order to avoid populating the pager
7433 ** cache with two separate objects associated with the same
7434 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007435 assert( CORRUPT_DB );
7436 rc = SQLITE_CORRUPT_BKPT;
7437 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007438 }
7439 }
dan33ea4862014-10-09 19:35:37 +00007440 }
7441 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007442 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007443 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007444 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007445 }
drh00fe08a2014-10-31 00:05:23 +00007446 pgno = aPgOrder[iBest];
7447 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007448 if( iBest!=i ){
7449 if( iBest>i ){
7450 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7451 }
7452 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7453 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007454 }
7455 }
dan33ea4862014-10-09 19:35:37 +00007456
7457 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7458 "%d(%d nc=%d) %d(%d nc=%d)\n",
7459 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007460 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007461 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007462 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007463 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007464 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007465 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7466 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7467 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7468 ));
danielk19774dbaa892009-06-16 16:50:22 +00007469
7470 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7471 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007472
dan33ea4862014-10-09 19:35:37 +00007473 /* If the sibling pages are not leaves, ensure that the right-child pointer
7474 ** of the right-most new sibling page is set to the value that was
7475 ** originally in the same field of the right-most old sibling page. */
7476 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7477 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7478 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7479 }
danielk1977ac11ee62005-01-15 12:45:51 +00007480
dan33ea4862014-10-09 19:35:37 +00007481 /* Make any required updates to pointer map entries associated with
7482 ** cells stored on sibling pages following the balance operation. Pointer
7483 ** map entries associated with divider cells are set by the insertCell()
7484 ** routine. The associated pointer map entries are:
7485 **
7486 ** a) if the cell contains a reference to an overflow chain, the
7487 ** entry associated with the first page in the overflow chain, and
7488 **
7489 ** b) if the sibling pages are not leaves, the child page associated
7490 ** with the cell.
7491 **
7492 ** If the sibling pages are not leaves, then the pointer map entry
7493 ** associated with the right-child of each sibling may also need to be
7494 ** updated. This happens below, after the sibling pages have been
7495 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007496 */
dan33ea4862014-10-09 19:35:37 +00007497 if( ISAUTOVACUUM ){
7498 MemPage *pNew = apNew[0];
7499 u8 *aOld = pNew->aData;
7500 int cntOldNext = pNew->nCell + pNew->nOverflow;
7501 int usableSize = pBt->usableSize;
7502 int iNew = 0;
7503 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007504
drh1ffd2472015-06-23 02:37:30 +00007505 for(i=0; i<b.nCell; i++){
7506 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007507 if( i==cntOldNext ){
7508 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7509 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7510 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007511 }
dan33ea4862014-10-09 19:35:37 +00007512 if( i==cntNew[iNew] ){
7513 pNew = apNew[++iNew];
7514 if( !leafData ) continue;
7515 }
danielk197785d90ca2008-07-19 14:25:15 +00007516
dan33ea4862014-10-09 19:35:37 +00007517 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007518 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007519 ** or else the divider cell to the left of sibling page iOld. So,
7520 ** if sibling page iOld had the same page number as pNew, and if
7521 ** pCell really was a part of sibling page iOld (not a divider or
7522 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007523 if( iOld>=nNew
7524 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007525 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007526 ){
dan33ea4862014-10-09 19:35:37 +00007527 if( !leafCorrection ){
7528 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7529 }
drh1ffd2472015-06-23 02:37:30 +00007530 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007531 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007532 }
drhea82b372015-06-23 21:35:28 +00007533 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007534 }
drh14acc042001-06-10 19:56:58 +00007535 }
7536 }
dan33ea4862014-10-09 19:35:37 +00007537
7538 /* Insert new divider cells into pParent. */
7539 for(i=0; i<nNew-1; i++){
7540 u8 *pCell;
7541 u8 *pTemp;
7542 int sz;
7543 MemPage *pNew = apNew[i];
7544 j = cntNew[i];
7545
7546 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007547 assert( b.apCell[j]!=0 );
7548 pCell = b.apCell[j];
7549 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007550 pTemp = &aOvflSpace[iOvflSpace];
7551 if( !pNew->leaf ){
7552 memcpy(&pNew->aData[8], pCell, 4);
7553 }else if( leafData ){
7554 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007555 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007556 ** cell consists of the integer key for the right-most cell of
7557 ** the sibling-page assembled above only.
7558 */
7559 CellInfo info;
7560 j--;
drh1ffd2472015-06-23 02:37:30 +00007561 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007562 pCell = pTemp;
7563 sz = 4 + putVarint(&pCell[4], info.nKey);
7564 pTemp = 0;
7565 }else{
7566 pCell -= 4;
7567 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7568 ** previously stored on a leaf node, and its reported size was 4
7569 ** bytes, then it may actually be smaller than this
7570 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7571 ** any cell). But it is important to pass the correct size to
7572 ** insertCell(), so reparse the cell now.
7573 **
drhc1fb2b82016-03-09 03:29:27 +00007574 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7575 ** and WITHOUT ROWID tables with exactly one column which is the
7576 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007577 */
drh1ffd2472015-06-23 02:37:30 +00007578 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007579 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007580 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007581 }
7582 }
7583 iOvflSpace += sz;
7584 assert( sz<=pBt->maxLocal+23 );
7585 assert( iOvflSpace <= (int)pBt->pageSize );
7586 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7587 if( rc!=SQLITE_OK ) goto balance_cleanup;
7588 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7589 }
7590
7591 /* Now update the actual sibling pages. The order in which they are updated
7592 ** is important, as this code needs to avoid disrupting any page from which
7593 ** cells may still to be read. In practice, this means:
7594 **
drhd836d422014-10-31 14:26:36 +00007595 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7596 ** then it is not safe to update page apNew[iPg] until after
7597 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007598 **
drhd836d422014-10-31 14:26:36 +00007599 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7600 ** then it is not safe to update page apNew[iPg] until after
7601 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007602 **
7603 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007604 **
7605 ** The iPg value in the following loop starts at nNew-1 goes down
7606 ** to 0, then back up to nNew-1 again, thus making two passes over
7607 ** the pages. On the initial downward pass, only condition (1) above
7608 ** needs to be tested because (2) will always be true from the previous
7609 ** step. On the upward pass, both conditions are always true, so the
7610 ** upwards pass simply processes pages that were missed on the downward
7611 ** pass.
dan33ea4862014-10-09 19:35:37 +00007612 */
drhbec021b2014-10-31 12:22:00 +00007613 for(i=1-nNew; i<nNew; i++){
7614 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007615 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007616 if( abDone[iPg] ) continue; /* Skip pages already processed */
7617 if( i>=0 /* On the upwards pass, or... */
7618 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007619 ){
dan09c68402014-10-11 20:00:24 +00007620 int iNew;
7621 int iOld;
7622 int nNewCell;
7623
drhd836d422014-10-31 14:26:36 +00007624 /* Verify condition (1): If cells are moving left, update iPg
7625 ** only after iPg-1 has already been updated. */
7626 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7627
7628 /* Verify condition (2): If cells are moving right, update iPg
7629 ** only after iPg+1 has already been updated. */
7630 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7631
dan09c68402014-10-11 20:00:24 +00007632 if( iPg==0 ){
7633 iNew = iOld = 0;
7634 nNewCell = cntNew[0];
7635 }else{
drh1ffd2472015-06-23 02:37:30 +00007636 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007637 iNew = cntNew[iPg-1] + !leafData;
7638 nNewCell = cntNew[iPg] - iNew;
7639 }
7640
drh1ffd2472015-06-23 02:37:30 +00007641 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007642 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007643 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007644 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007645 assert( apNew[iPg]->nOverflow==0 );
7646 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007647 }
7648 }
drhd836d422014-10-31 14:26:36 +00007649
7650 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007651 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7652
drh7aa8f852006-03-28 00:24:44 +00007653 assert( nOld>0 );
7654 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007655
danielk197713bd99f2009-06-24 05:40:34 +00007656 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7657 /* The root page of the b-tree now contains no cells. The only sibling
7658 ** page is the right-child of the parent. Copy the contents of the
7659 ** child page into the parent, decreasing the overall height of the
7660 ** b-tree structure by one. This is described as the "balance-shallower"
7661 ** sub-algorithm in some documentation.
7662 **
7663 ** If this is an auto-vacuum database, the call to copyNodeContent()
7664 ** sets all pointer-map entries corresponding to database image pages
7665 ** for which the pointer is stored within the content being copied.
7666 **
drh768f2902014-10-31 02:51:41 +00007667 ** It is critical that the child page be defragmented before being
7668 ** copied into the parent, because if the parent is page 1 then it will
7669 ** by smaller than the child due to the database header, and so all the
7670 ** free space needs to be up front.
7671 */
drh9b5351d2015-09-30 14:19:08 +00007672 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007673 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007674 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007675 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007676 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7677 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007678 );
drhc314dc72009-07-21 11:52:34 +00007679 copyNodeContent(apNew[0], pParent, &rc);
7680 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007681 }else if( ISAUTOVACUUM && !leafCorrection ){
7682 /* Fix the pointer map entries associated with the right-child of each
7683 ** sibling page. All other pointer map entries have already been taken
7684 ** care of. */
7685 for(i=0; i<nNew; i++){
7686 u32 key = get4byte(&apNew[i]->aData[8]);
7687 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007688 }
dan33ea4862014-10-09 19:35:37 +00007689 }
danielk19774dbaa892009-06-16 16:50:22 +00007690
dan33ea4862014-10-09 19:35:37 +00007691 assert( pParent->isInit );
7692 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007693 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007694
dan33ea4862014-10-09 19:35:37 +00007695 /* Free any old pages that were not reused as new pages.
7696 */
7697 for(i=nNew; i<nOld; i++){
7698 freePage(apOld[i], &rc);
7699 }
danielk19774dbaa892009-06-16 16:50:22 +00007700
7701#if 0
dan33ea4862014-10-09 19:35:37 +00007702 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007703 /* The ptrmapCheckPages() contains assert() statements that verify that
7704 ** all pointer map pages are set correctly. This is helpful while
7705 ** debugging. This is usually disabled because a corrupt database may
7706 ** cause an assert() statement to fail. */
7707 ptrmapCheckPages(apNew, nNew);
7708 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007709 }
dan33ea4862014-10-09 19:35:37 +00007710#endif
danielk1977cd581a72009-06-23 15:43:39 +00007711
drh8b2f49b2001-06-08 00:21:52 +00007712 /*
drh14acc042001-06-10 19:56:58 +00007713 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007714 */
drh14acc042001-06-10 19:56:58 +00007715balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007716 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007717 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007718 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007719 }
drh14acc042001-06-10 19:56:58 +00007720 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007721 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007722 }
danielk1977eaa06f62008-09-18 17:34:44 +00007723
drh8b2f49b2001-06-08 00:21:52 +00007724 return rc;
7725}
7726
drh43605152004-05-29 21:46:49 +00007727
7728/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007729** This function is called when the root page of a b-tree structure is
7730** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007731**
danielk1977a50d9aa2009-06-08 14:49:45 +00007732** A new child page is allocated and the contents of the current root
7733** page, including overflow cells, are copied into the child. The root
7734** page is then overwritten to make it an empty page with the right-child
7735** pointer pointing to the new page.
7736**
7737** Before returning, all pointer-map entries corresponding to pages
7738** that the new child-page now contains pointers to are updated. The
7739** entry corresponding to the new right-child pointer of the root
7740** page is also updated.
7741**
7742** If successful, *ppChild is set to contain a reference to the child
7743** page and SQLITE_OK is returned. In this case the caller is required
7744** to call releasePage() on *ppChild exactly once. If an error occurs,
7745** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007746*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007747static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7748 int rc; /* Return value from subprocedures */
7749 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007750 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007751 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007752
danielk1977a50d9aa2009-06-08 14:49:45 +00007753 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007754 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007755
danielk1977a50d9aa2009-06-08 14:49:45 +00007756 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7757 ** page that will become the new right-child of pPage. Copy the contents
7758 ** of the node stored on pRoot into the new child page.
7759 */
drh98add2e2009-07-20 17:11:49 +00007760 rc = sqlite3PagerWrite(pRoot->pDbPage);
7761 if( rc==SQLITE_OK ){
7762 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007763 copyNodeContent(pRoot, pChild, &rc);
7764 if( ISAUTOVACUUM ){
7765 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007766 }
7767 }
7768 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007769 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007770 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007771 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007772 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007773 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7774 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7775 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007776
danielk1977a50d9aa2009-06-08 14:49:45 +00007777 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7778
7779 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007780 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7781 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7782 memcpy(pChild->apOvfl, pRoot->apOvfl,
7783 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007784 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007785
7786 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7787 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7788 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7789
7790 *ppChild = pChild;
7791 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007792}
7793
7794/*
danielk197771d5d2c2008-09-29 11:49:47 +00007795** The page that pCur currently points to has just been modified in
7796** some way. This function figures out if this modification means the
7797** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007798** routine. Balancing routines are:
7799**
7800** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007801** balance_deeper()
7802** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007803*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007804static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007805 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007806 const int nMin = pCur->pBt->usableSize * 2 / 3;
7807 u8 aBalanceQuickSpace[13];
7808 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007809
drhcc5f8a42016-02-06 22:32:06 +00007810 VVA_ONLY( int balance_quick_called = 0 );
7811 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007812
7813 do {
7814 int iPage = pCur->iPage;
7815 MemPage *pPage = pCur->apPage[iPage];
7816
7817 if( iPage==0 ){
7818 if( pPage->nOverflow ){
7819 /* The root page of the b-tree is overfull. In this case call the
7820 ** balance_deeper() function to create a new child for the root-page
7821 ** and copy the current contents of the root-page to it. The
7822 ** next iteration of the do-loop will balance the child page.
7823 */
drhcc5f8a42016-02-06 22:32:06 +00007824 assert( balance_deeper_called==0 );
7825 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007826 rc = balance_deeper(pPage, &pCur->apPage[1]);
7827 if( rc==SQLITE_OK ){
7828 pCur->iPage = 1;
7829 pCur->aiIdx[0] = 0;
7830 pCur->aiIdx[1] = 0;
7831 assert( pCur->apPage[1]->nOverflow );
7832 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007833 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007834 break;
7835 }
7836 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7837 break;
7838 }else{
7839 MemPage * const pParent = pCur->apPage[iPage-1];
7840 int const iIdx = pCur->aiIdx[iPage-1];
7841
7842 rc = sqlite3PagerWrite(pParent->pDbPage);
7843 if( rc==SQLITE_OK ){
7844#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007845 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007846 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007847 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007848 && pParent->pgno!=1
7849 && pParent->nCell==iIdx
7850 ){
7851 /* Call balance_quick() to create a new sibling of pPage on which
7852 ** to store the overflow cell. balance_quick() inserts a new cell
7853 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007854 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007855 ** use either balance_nonroot() or balance_deeper(). Until this
7856 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7857 ** buffer.
7858 **
7859 ** The purpose of the following assert() is to check that only a
7860 ** single call to balance_quick() is made for each call to this
7861 ** function. If this were not verified, a subtle bug involving reuse
7862 ** of the aBalanceQuickSpace[] might sneak in.
7863 */
drhcc5f8a42016-02-06 22:32:06 +00007864 assert( balance_quick_called==0 );
7865 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007866 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7867 }else
7868#endif
7869 {
7870 /* In this case, call balance_nonroot() to redistribute cells
7871 ** between pPage and up to 2 of its sibling pages. This involves
7872 ** modifying the contents of pParent, which may cause pParent to
7873 ** become overfull or underfull. The next iteration of the do-loop
7874 ** will balance the parent page to correct this.
7875 **
7876 ** If the parent page becomes overfull, the overflow cell or cells
7877 ** are stored in the pSpace buffer allocated immediately below.
7878 ** A subsequent iteration of the do-loop will deal with this by
7879 ** calling balance_nonroot() (balance_deeper() may be called first,
7880 ** but it doesn't deal with overflow cells - just moves them to a
7881 ** different page). Once this subsequent call to balance_nonroot()
7882 ** has completed, it is safe to release the pSpace buffer used by
7883 ** the previous call, as the overflow cell data will have been
7884 ** copied either into the body of a database page or into the new
7885 ** pSpace buffer passed to the latter call to balance_nonroot().
7886 */
7887 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007888 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7889 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007890 if( pFree ){
7891 /* If pFree is not NULL, it points to the pSpace buffer used
7892 ** by a previous call to balance_nonroot(). Its contents are
7893 ** now stored either on real database pages or within the
7894 ** new pSpace buffer, so it may be safely freed here. */
7895 sqlite3PageFree(pFree);
7896 }
7897
danielk19774dbaa892009-06-16 16:50:22 +00007898 /* The pSpace buffer will be freed after the next call to
7899 ** balance_nonroot(), or just before this function returns, whichever
7900 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007901 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007902 }
7903 }
7904
7905 pPage->nOverflow = 0;
7906
7907 /* The next iteration of the do-loop balances the parent page. */
7908 releasePage(pPage);
7909 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007910 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007911 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007912 }while( rc==SQLITE_OK );
7913
7914 if( pFree ){
7915 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007916 }
7917 return rc;
7918}
7919
drhf74b8d92002-09-01 23:20:45 +00007920
7921/*
drh8eeb4462016-05-21 20:03:42 +00007922** Insert a new record into the BTree. The content of the new record
7923** is described by the pX object. The pCur cursor is used only to
7924** define what table the record should be inserted into, and is left
7925** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00007926**
drh8eeb4462016-05-21 20:03:42 +00007927** For a table btree (used for rowid tables), only the pX.nKey value of
7928** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
7929** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
7930** hold the content of the row.
7931**
7932** For an index btree (used for indexes and WITHOUT ROWID tables), the
7933** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
7934** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00007935**
7936** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00007937** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
7938** been performed. In other words, if seekResult!=0 then the cursor
7939** is currently pointing to a cell that will be adjacent to the cell
7940** to be inserted. If seekResult<0 then pCur points to a cell that is
7941** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
7942** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00007943**
drheaf6ae22016-11-09 20:14:34 +00007944** If seekResult==0, that means pCur is pointing at some unknown location.
7945** In that case, this routine must seek the cursor to the correct insertion
7946** point for (pKey,nKey) before doing the insertion. For index btrees,
7947** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
7948** key values and pX->aMem can be used instead of pX->pKey to avoid having
7949** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00007950*/
drh3aac2dd2004-04-26 14:10:20 +00007951int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007952 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00007953 const BtreePayload *pX, /* Content of the row to be inserted */
danielk1977de630352009-05-04 11:42:29 +00007954 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007955 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007956){
drh3b7511c2001-05-26 13:15:44 +00007957 int rc;
drh3e9ca092009-09-08 01:14:48 +00007958 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007959 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007960 int idx;
drh3b7511c2001-05-26 13:15:44 +00007961 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007962 Btree *p = pCur->pBtree;
7963 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007964 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007965 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007966
drh98add2e2009-07-20 17:11:49 +00007967 if( pCur->eState==CURSOR_FAULT ){
7968 assert( pCur->skipNext!=SQLITE_OK );
7969 return pCur->skipNext;
7970 }
7971
dan7a2347e2016-01-07 16:43:54 +00007972 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00007973 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7974 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007975 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007976 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7977
danielk197731d31b82009-07-13 13:18:07 +00007978 /* Assert that the caller has been consistent. If this cursor was opened
7979 ** expecting an index b-tree, then the caller should be inserting blob
7980 ** keys with no associated data. If the cursor was opened expecting an
7981 ** intkey table, the caller should be inserting integer keys with a
7982 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00007983 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00007984
danielk19779c3acf32009-05-02 07:36:49 +00007985 /* Save the positions of any other cursors open on this table.
7986 **
danielk19773509a652009-07-06 18:56:13 +00007987 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007988 ** example, when inserting data into a table with auto-generated integer
7989 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7990 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007991 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007992 ** that the cursor is already where it needs to be and returns without
7993 ** doing any work. To avoid thwarting these optimizations, it is important
7994 ** not to clear the cursor here.
7995 */
drh27fb7462015-06-30 02:47:36 +00007996 if( pCur->curFlags & BTCF_Multiple ){
7997 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7998 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007999 }
8000
danielk197771d5d2c2008-09-29 11:49:47 +00008001 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008002 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008003 /* If this is an insert into a table b-tree, invalidate any incrblob
8004 ** cursors open on the row being replaced */
drh8eeb4462016-05-21 20:03:42 +00008005 invalidateIncrblobCursors(p, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008006
8007 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008008 ** new row onto the end, set the "loc" to avoid an unnecessary
8009 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008010 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8011 loc = 0;
8012 }else if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey>0
8013 && pCur->info.nKey==pX->nKey-1 ){
8014 loc = -1;
drh207c8172015-06-29 23:01:32 +00008015 }else if( loc==0 ){
drh8eeb4462016-05-21 20:03:42 +00008016 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, appendBias, &loc);
drh207c8172015-06-29 23:01:32 +00008017 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008018 }
drh207c8172015-06-29 23:01:32 +00008019 }else if( loc==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008020 if( pX->nMem ){
8021 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008022 r.pKeyInfo = pCur->pKeyInfo;
8023 r.aMem = pX->aMem;
8024 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008025 r.default_rc = 0;
8026 r.errCode = 0;
8027 r.r1 = 0;
8028 r.r2 = 0;
8029 r.eqSeen = 0;
drh9b4eaeb2016-11-09 00:10:33 +00008030 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, appendBias, &loc);
8031 }else{
8032 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, appendBias, &loc);
8033 }
drh4c301aa2009-07-15 17:25:45 +00008034 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008035 }
danielk1977b980d2212009-06-22 18:03:51 +00008036 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008037
drh14acc042001-06-10 19:56:58 +00008038 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008039 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008040 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008041
drh3a4c1412004-05-09 20:40:11 +00008042 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008043 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008044 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008045 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008046 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008047 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008048 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008049 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008050 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008051 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008052 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008053 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008054 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008055 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008056 rc = sqlite3PagerWrite(pPage->pDbPage);
8057 if( rc ){
8058 goto end_insert;
8059 }
danielk197771d5d2c2008-09-29 11:49:47 +00008060 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008061 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008062 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008063 }
drh80159da2016-12-09 17:32:51 +00008064 rc = clearCell(pPage, oldCell, &info);
8065 if( info.nSize==szNew && info.nLocal==info.nPayload ){
drhf9238252016-12-09 18:09:42 +00008066 /* Overwrite the old cell with the new if they are the same size.
8067 ** We could also try to do this if the old cell is smaller, then add
8068 ** the leftover space to the free list. But experiments show that
8069 ** doing that is no faster then skipping this optimization and just
8070 ** calling dropCell() and insertCell(). */
8071 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008072 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008073 memcpy(oldCell, newCell, szNew);
8074 return SQLITE_OK;
8075 }
8076 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008077 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008078 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008079 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008080 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008081 }else{
drh4b70f112004-05-02 21:12:19 +00008082 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008083 }
drh98add2e2009-07-20 17:11:49 +00008084 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008085 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008086 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008087
mistachkin48864df2013-03-21 21:20:32 +00008088 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008089 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008090 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008091 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008092 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008093 ** Previous versions of SQLite called moveToRoot() to move the cursor
8094 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008095 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8096 ** set the cursor state to "invalid". This makes common insert operations
8097 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008098 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008099 ** There is a subtle but important optimization here too. When inserting
8100 ** multiple records into an intkey b-tree using a single cursor (as can
8101 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8102 ** is advantageous to leave the cursor pointing to the last entry in
8103 ** the b-tree if possible. If the cursor is left pointing to the last
8104 ** entry in the table, and the next row inserted has an integer key
8105 ** larger than the largest existing key, it is possible to insert the
8106 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008107 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008108 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008109 if( pPage->nOverflow ){
8110 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008111 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008112 rc = balance(pCur);
8113
8114 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008115 ** fails. Internal data structure corruption will result otherwise.
8116 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8117 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008118 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008119 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008120 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008121 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008122
drh2e38c322004-09-03 18:38:44 +00008123end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008124 return rc;
8125}
8126
8127/*
danf0ee1d32015-09-12 19:26:11 +00008128** Delete the entry that the cursor is pointing to.
8129**
drhe807bdb2016-01-21 17:06:33 +00008130** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8131** the cursor is left pointing at an arbitrary location after the delete.
8132** But if that bit is set, then the cursor is left in a state such that
8133** the next call to BtreeNext() or BtreePrev() moves it to the same row
8134** as it would have been on if the call to BtreeDelete() had been omitted.
8135**
drhdef19e32016-01-27 16:26:25 +00008136** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8137** associated with a single table entry and its indexes. Only one of those
8138** deletes is considered the "primary" delete. The primary delete occurs
8139** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8140** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8141** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008142** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008143*/
drhe807bdb2016-01-21 17:06:33 +00008144int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008145 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008146 BtShared *pBt = p->pBt;
8147 int rc; /* Return code */
8148 MemPage *pPage; /* Page to delete cell from */
8149 unsigned char *pCell; /* Pointer to cell to delete */
8150 int iCellIdx; /* Index of cell to delete */
8151 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008152 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008153 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008154 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008155
dan7a2347e2016-01-07 16:43:54 +00008156 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008157 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008158 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008159 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008160 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8161 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008162 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8163 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008164 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008165
danielk19774dbaa892009-06-16 16:50:22 +00008166 iCellDepth = pCur->iPage;
8167 iCellIdx = pCur->aiIdx[iCellDepth];
8168 pPage = pCur->apPage[iCellDepth];
8169 pCell = findCell(pPage, iCellIdx);
8170
drhbfc7a8b2016-04-09 17:04:05 +00008171 /* If the bPreserve flag is set to true, then the cursor position must
8172 ** be preserved following this delete operation. If the current delete
8173 ** will cause a b-tree rebalance, then this is done by saving the cursor
8174 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8175 ** returning.
8176 **
8177 ** Or, if the current delete will not cause a rebalance, then the cursor
8178 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8179 ** before or after the deleted entry. In this case set bSkipnext to true. */
8180 if( bPreserve ){
8181 if( !pPage->leaf
8182 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8183 ){
8184 /* A b-tree rebalance will be required after deleting this entry.
8185 ** Save the cursor key. */
8186 rc = saveCursorKey(pCur);
8187 if( rc ) return rc;
8188 }else{
8189 bSkipnext = 1;
8190 }
8191 }
8192
danielk19774dbaa892009-06-16 16:50:22 +00008193 /* If the page containing the entry to delete is not a leaf page, move
8194 ** the cursor to the largest entry in the tree that is smaller than
8195 ** the entry being deleted. This cell will replace the cell being deleted
8196 ** from the internal node. The 'previous' entry is used for this instead
8197 ** of the 'next' entry, as the previous entry is always a part of the
8198 ** sub-tree headed by the child page of the cell being deleted. This makes
8199 ** balancing the tree following the delete operation easier. */
8200 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008201 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008202 rc = sqlite3BtreePrevious(pCur, &notUsed);
8203 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008204 }
8205
8206 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008207 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008208 if( pCur->curFlags & BTCF_Multiple ){
8209 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8210 if( rc ) return rc;
8211 }
drhd60f4f42012-03-23 14:23:52 +00008212
8213 /* If this is a delete operation to remove a row from a table b-tree,
8214 ** invalidate any incrblob cursors open on the row being deleted. */
8215 if( pCur->pKeyInfo==0 ){
8216 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8217 }
8218
danf0ee1d32015-09-12 19:26:11 +00008219 /* Make the page containing the entry to be deleted writable. Then free any
8220 ** overflow pages associated with the entry and finally remove the cell
8221 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008222 rc = sqlite3PagerWrite(pPage->pDbPage);
8223 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008224 rc = clearCell(pPage, pCell, &info);
8225 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008226 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008227
danielk19774dbaa892009-06-16 16:50:22 +00008228 /* If the cell deleted was not located on a leaf page, then the cursor
8229 ** is currently pointing to the largest entry in the sub-tree headed
8230 ** by the child-page of the cell that was just deleted from an internal
8231 ** node. The cell from the leaf node needs to be moved to the internal
8232 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008233 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008234 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8235 int nCell;
8236 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8237 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008238
danielk19774dbaa892009-06-16 16:50:22 +00008239 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008240 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008241 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008242 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008243 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008244 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008245 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008246 if( rc==SQLITE_OK ){
8247 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8248 }
drh98add2e2009-07-20 17:11:49 +00008249 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008250 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008251 }
danielk19774dbaa892009-06-16 16:50:22 +00008252
8253 /* Balance the tree. If the entry deleted was located on a leaf page,
8254 ** then the cursor still points to that page. In this case the first
8255 ** call to balance() repairs the tree, and the if(...) condition is
8256 ** never true.
8257 **
8258 ** Otherwise, if the entry deleted was on an internal node page, then
8259 ** pCur is pointing to the leaf page from which a cell was removed to
8260 ** replace the cell deleted from the internal node. This is slightly
8261 ** tricky as the leaf node may be underfull, and the internal node may
8262 ** be either under or overfull. In this case run the balancing algorithm
8263 ** on the leaf node first. If the balance proceeds far enough up the
8264 ** tree that we can be sure that any problem in the internal node has
8265 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8266 ** walk the cursor up the tree to the internal node and balance it as
8267 ** well. */
8268 rc = balance(pCur);
8269 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8270 while( pCur->iPage>iCellDepth ){
8271 releasePage(pCur->apPage[pCur->iPage--]);
8272 }
8273 rc = balance(pCur);
8274 }
8275
danielk19776b456a22005-03-21 04:04:02 +00008276 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008277 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008278 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008279 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008280 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008281 pCur->eState = CURSOR_SKIPNEXT;
8282 if( iCellIdx>=pPage->nCell ){
8283 pCur->skipNext = -1;
8284 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8285 }else{
8286 pCur->skipNext = 1;
8287 }
8288 }else{
8289 rc = moveToRoot(pCur);
8290 if( bPreserve ){
8291 pCur->eState = CURSOR_REQUIRESEEK;
8292 }
8293 }
danielk19776b456a22005-03-21 04:04:02 +00008294 }
drh5e2f8b92001-05-28 00:41:15 +00008295 return rc;
drh3b7511c2001-05-26 13:15:44 +00008296}
drh8b2f49b2001-06-08 00:21:52 +00008297
8298/*
drhc6b52df2002-01-04 03:09:29 +00008299** Create a new BTree table. Write into *piTable the page
8300** number for the root page of the new table.
8301**
drhab01f612004-05-22 02:55:23 +00008302** The type of type is determined by the flags parameter. Only the
8303** following values of flags are currently in use. Other values for
8304** flags might not work:
8305**
8306** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8307** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008308*/
drhd4187c72010-08-30 22:15:45 +00008309static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008310 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008311 MemPage *pRoot;
8312 Pgno pgnoRoot;
8313 int rc;
drhd4187c72010-08-30 22:15:45 +00008314 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008315
drh1fee73e2007-08-29 04:00:57 +00008316 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008317 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008318 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008319
danielk1977003ba062004-11-04 02:57:33 +00008320#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008321 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008322 if( rc ){
8323 return rc;
8324 }
danielk1977003ba062004-11-04 02:57:33 +00008325#else
danielk1977687566d2004-11-02 12:56:41 +00008326 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008327 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8328 MemPage *pPageMove; /* The page to move to. */
8329
danielk197720713f32007-05-03 11:43:33 +00008330 /* Creating a new table may probably require moving an existing database
8331 ** to make room for the new tables root page. In case this page turns
8332 ** out to be an overflow page, delete all overflow page-map caches
8333 ** held by open cursors.
8334 */
danielk197792d4d7a2007-05-04 12:05:56 +00008335 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008336
danielk1977003ba062004-11-04 02:57:33 +00008337 /* Read the value of meta[3] from the database to determine where the
8338 ** root page of the new table should go. meta[3] is the largest root-page
8339 ** created so far, so the new root-page is (meta[3]+1).
8340 */
danielk1977602b4662009-07-02 07:47:33 +00008341 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008342 pgnoRoot++;
8343
danielk1977599fcba2004-11-08 07:13:13 +00008344 /* The new root-page may not be allocated on a pointer-map page, or the
8345 ** PENDING_BYTE page.
8346 */
drh72190432008-01-31 14:54:43 +00008347 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008348 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008349 pgnoRoot++;
8350 }
drh499e15b2015-05-22 12:37:37 +00008351 assert( pgnoRoot>=3 || CORRUPT_DB );
8352 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008353
8354 /* Allocate a page. The page that currently resides at pgnoRoot will
8355 ** be moved to the allocated page (unless the allocated page happens
8356 ** to reside at pgnoRoot).
8357 */
dan51f0b6d2013-02-22 20:16:34 +00008358 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008359 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008360 return rc;
8361 }
danielk1977003ba062004-11-04 02:57:33 +00008362
8363 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008364 /* pgnoRoot is the page that will be used for the root-page of
8365 ** the new table (assuming an error did not occur). But we were
8366 ** allocated pgnoMove. If required (i.e. if it was not allocated
8367 ** by extending the file), the current page at position pgnoMove
8368 ** is already journaled.
8369 */
drheeb844a2009-08-08 18:01:07 +00008370 u8 eType = 0;
8371 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008372
danf7679ad2013-04-03 11:38:36 +00008373 /* Save the positions of any open cursors. This is required in
8374 ** case they are holding a reference to an xFetch reference
8375 ** corresponding to page pgnoRoot. */
8376 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008377 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008378 if( rc!=SQLITE_OK ){
8379 return rc;
8380 }
danielk1977f35843b2007-04-07 15:03:17 +00008381
8382 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008383 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008384 if( rc!=SQLITE_OK ){
8385 return rc;
8386 }
8387 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008388 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8389 rc = SQLITE_CORRUPT_BKPT;
8390 }
8391 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008392 releasePage(pRoot);
8393 return rc;
8394 }
drhccae6022005-02-26 17:31:26 +00008395 assert( eType!=PTRMAP_ROOTPAGE );
8396 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008397 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008398 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008399
8400 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008401 if( rc!=SQLITE_OK ){
8402 return rc;
8403 }
drhb00fc3b2013-08-21 23:42:32 +00008404 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008405 if( rc!=SQLITE_OK ){
8406 return rc;
8407 }
danielk19773b8a05f2007-03-19 17:44:26 +00008408 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008409 if( rc!=SQLITE_OK ){
8410 releasePage(pRoot);
8411 return rc;
8412 }
8413 }else{
8414 pRoot = pPageMove;
8415 }
8416
danielk197742741be2005-01-08 12:42:39 +00008417 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008418 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008419 if( rc ){
8420 releasePage(pRoot);
8421 return rc;
8422 }
drhbf592832010-03-30 15:51:12 +00008423
8424 /* When the new root page was allocated, page 1 was made writable in
8425 ** order either to increase the database filesize, or to decrement the
8426 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8427 */
8428 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008429 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008430 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008431 releasePage(pRoot);
8432 return rc;
8433 }
danielk197742741be2005-01-08 12:42:39 +00008434
danielk1977003ba062004-11-04 02:57:33 +00008435 }else{
drh4f0c5872007-03-26 22:05:01 +00008436 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008437 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008438 }
8439#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008440 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008441 if( createTabFlags & BTREE_INTKEY ){
8442 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8443 }else{
8444 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8445 }
8446 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008447 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008448 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008449 *piTable = (int)pgnoRoot;
8450 return SQLITE_OK;
8451}
drhd677b3d2007-08-20 22:48:41 +00008452int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8453 int rc;
8454 sqlite3BtreeEnter(p);
8455 rc = btreeCreateTable(p, piTable, flags);
8456 sqlite3BtreeLeave(p);
8457 return rc;
8458}
drh8b2f49b2001-06-08 00:21:52 +00008459
8460/*
8461** Erase the given database page and all its children. Return
8462** the page to the freelist.
8463*/
drh4b70f112004-05-02 21:12:19 +00008464static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008465 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008466 Pgno pgno, /* Page number to clear */
8467 int freePageFlag, /* Deallocate page if true */
8468 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008469){
danielk1977146ba992009-07-22 14:08:13 +00008470 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008471 int rc;
drh4b70f112004-05-02 21:12:19 +00008472 unsigned char *pCell;
8473 int i;
dan8ce71842014-01-14 20:14:09 +00008474 int hdr;
drh80159da2016-12-09 17:32:51 +00008475 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008476
drh1fee73e2007-08-29 04:00:57 +00008477 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008478 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008479 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008480 }
drh28f58dd2015-06-27 19:45:03 +00008481 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008482 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008483 if( pPage->bBusy ){
8484 rc = SQLITE_CORRUPT_BKPT;
8485 goto cleardatabasepage_out;
8486 }
8487 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008488 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008489 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008490 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008491 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008492 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008493 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008494 }
drh80159da2016-12-09 17:32:51 +00008495 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008496 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008497 }
drha34b6762004-05-07 13:30:42 +00008498 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008499 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008500 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008501 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008502 assert( pPage->intKey || CORRUPT_DB );
8503 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008504 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008505 }
8506 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008507 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008508 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008509 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008510 }
danielk19776b456a22005-03-21 04:04:02 +00008511
8512cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008513 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008514 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008515 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008516}
8517
8518/*
drhab01f612004-05-22 02:55:23 +00008519** Delete all information from a single table in the database. iTable is
8520** the page number of the root of the table. After this routine returns,
8521** the root page is empty, but still exists.
8522**
8523** This routine will fail with SQLITE_LOCKED if there are any open
8524** read cursors on the table. Open write cursors are moved to the
8525** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008526**
8527** If pnChange is not NULL, then table iTable must be an intkey table. The
8528** integer value pointed to by pnChange is incremented by the number of
8529** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008530*/
danielk1977c7af4842008-10-27 13:59:33 +00008531int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008532 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008533 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008534 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008535 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008536
drhc046e3e2009-07-15 11:26:44 +00008537 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008538
drhc046e3e2009-07-15 11:26:44 +00008539 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008540 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8541 ** is the root of a table b-tree - if it is not, the following call is
8542 ** a no-op). */
8543 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008544 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008545 }
drhd677b3d2007-08-20 22:48:41 +00008546 sqlite3BtreeLeave(p);
8547 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008548}
8549
8550/*
drh079a3072014-03-19 14:10:55 +00008551** Delete all information from the single table that pCur is open on.
8552**
8553** This routine only work for pCur on an ephemeral table.
8554*/
8555int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8556 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8557}
8558
8559/*
drh8b2f49b2001-06-08 00:21:52 +00008560** Erase all information in a table and add the root of the table to
8561** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008562** page 1) is never added to the freelist.
8563**
8564** This routine will fail with SQLITE_LOCKED if there are any open
8565** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008566**
8567** If AUTOVACUUM is enabled and the page at iTable is not the last
8568** root page in the database file, then the last root page
8569** in the database file is moved into the slot formerly occupied by
8570** iTable and that last slot formerly occupied by the last root page
8571** is added to the freelist instead of iTable. In this say, all
8572** root pages are kept at the beginning of the database file, which
8573** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8574** page number that used to be the last root page in the file before
8575** the move. If no page gets moved, *piMoved is set to 0.
8576** The last root page is recorded in meta[3] and the value of
8577** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008578*/
danielk197789d40042008-11-17 14:20:56 +00008579static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008580 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008581 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008582 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008583
drh1fee73e2007-08-29 04:00:57 +00008584 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008585 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008586 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008587
drhb00fc3b2013-08-21 23:42:32 +00008588 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008589 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008590 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008591 if( rc ){
8592 releasePage(pPage);
8593 return rc;
8594 }
danielk1977a0bf2652004-11-04 14:30:04 +00008595
drh205f48e2004-11-05 00:43:11 +00008596 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008597
danielk1977a0bf2652004-11-04 14:30:04 +00008598#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008599 freePage(pPage, &rc);
8600 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008601#else
drh055f2982016-01-15 15:06:41 +00008602 if( pBt->autoVacuum ){
8603 Pgno maxRootPgno;
8604 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008605
drh055f2982016-01-15 15:06:41 +00008606 if( iTable==maxRootPgno ){
8607 /* If the table being dropped is the table with the largest root-page
8608 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008609 */
drhc314dc72009-07-21 11:52:34 +00008610 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008611 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008612 if( rc!=SQLITE_OK ){
8613 return rc;
8614 }
8615 }else{
8616 /* The table being dropped does not have the largest root-page
8617 ** number in the database. So move the page that does into the
8618 ** gap left by the deleted root-page.
8619 */
8620 MemPage *pMove;
8621 releasePage(pPage);
8622 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8623 if( rc!=SQLITE_OK ){
8624 return rc;
8625 }
8626 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8627 releasePage(pMove);
8628 if( rc!=SQLITE_OK ){
8629 return rc;
8630 }
8631 pMove = 0;
8632 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8633 freePage(pMove, &rc);
8634 releasePage(pMove);
8635 if( rc!=SQLITE_OK ){
8636 return rc;
8637 }
8638 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008639 }
drh055f2982016-01-15 15:06:41 +00008640
8641 /* Set the new 'max-root-page' value in the database header. This
8642 ** is the old value less one, less one more if that happens to
8643 ** be a root-page number, less one again if that is the
8644 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008645 */
drh055f2982016-01-15 15:06:41 +00008646 maxRootPgno--;
8647 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8648 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8649 maxRootPgno--;
8650 }
8651 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8652
8653 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8654 }else{
8655 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008656 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008657 }
drh055f2982016-01-15 15:06:41 +00008658#endif
drh8b2f49b2001-06-08 00:21:52 +00008659 return rc;
8660}
drhd677b3d2007-08-20 22:48:41 +00008661int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8662 int rc;
8663 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008664 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008665 sqlite3BtreeLeave(p);
8666 return rc;
8667}
drh8b2f49b2001-06-08 00:21:52 +00008668
drh001bbcb2003-03-19 03:14:00 +00008669
drh8b2f49b2001-06-08 00:21:52 +00008670/*
danielk1977602b4662009-07-02 07:47:33 +00008671** This function may only be called if the b-tree connection already
8672** has a read or write transaction open on the database.
8673**
drh23e11ca2004-05-04 17:27:28 +00008674** Read the meta-information out of a database file. Meta[0]
8675** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008676** through meta[15] are available for use by higher layers. Meta[0]
8677** is read-only, the others are read/write.
8678**
8679** The schema layer numbers meta values differently. At the schema
8680** layer (and the SetCookie and ReadCookie opcodes) the number of
8681** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008682**
8683** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8684** of reading the value out of the header, it instead loads the "DataVersion"
8685** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8686** database file. It is a number computed by the pager. But its access
8687** pattern is the same as header meta values, and so it is convenient to
8688** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008689*/
danielk1977602b4662009-07-02 07:47:33 +00008690void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008691 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008692
drhd677b3d2007-08-20 22:48:41 +00008693 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008694 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008695 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008696 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008697 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008698
drh91618562014-12-19 19:28:02 +00008699 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008700 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008701 }else{
8702 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8703 }
drhae157872004-08-14 19:20:09 +00008704
danielk1977602b4662009-07-02 07:47:33 +00008705 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8706 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008707#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008708 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8709 pBt->btsFlags |= BTS_READ_ONLY;
8710 }
danielk1977003ba062004-11-04 02:57:33 +00008711#endif
drhae157872004-08-14 19:20:09 +00008712
drhd677b3d2007-08-20 22:48:41 +00008713 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008714}
8715
8716/*
drh23e11ca2004-05-04 17:27:28 +00008717** Write meta-information back into the database. Meta[0] is
8718** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008719*/
danielk1977aef0bf62005-12-30 16:28:01 +00008720int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8721 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008722 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008723 int rc;
drh23e11ca2004-05-04 17:27:28 +00008724 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008725 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008726 assert( p->inTrans==TRANS_WRITE );
8727 assert( pBt->pPage1!=0 );
8728 pP1 = pBt->pPage1->aData;
8729 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8730 if( rc==SQLITE_OK ){
8731 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008732#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008733 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008734 assert( pBt->autoVacuum || iMeta==0 );
8735 assert( iMeta==0 || iMeta==1 );
8736 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008737 }
drh64022502009-01-09 14:11:04 +00008738#endif
drh5df72a52002-06-06 23:16:05 +00008739 }
drhd677b3d2007-08-20 22:48:41 +00008740 sqlite3BtreeLeave(p);
8741 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008742}
drh8c42ca92001-06-22 19:15:00 +00008743
danielk1977a5533162009-02-24 10:01:51 +00008744#ifndef SQLITE_OMIT_BTREECOUNT
8745/*
8746** The first argument, pCur, is a cursor opened on some b-tree. Count the
8747** number of entries in the b-tree and write the result to *pnEntry.
8748**
8749** SQLITE_OK is returned if the operation is successfully executed.
8750** Otherwise, if an error is encountered (i.e. an IO error or database
8751** corruption) an SQLite error code is returned.
8752*/
8753int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8754 i64 nEntry = 0; /* Value to return in *pnEntry */
8755 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008756
8757 if( pCur->pgnoRoot==0 ){
8758 *pnEntry = 0;
8759 return SQLITE_OK;
8760 }
danielk1977a5533162009-02-24 10:01:51 +00008761 rc = moveToRoot(pCur);
8762
8763 /* Unless an error occurs, the following loop runs one iteration for each
8764 ** page in the B-Tree structure (not including overflow pages).
8765 */
8766 while( rc==SQLITE_OK ){
8767 int iIdx; /* Index of child node in parent */
8768 MemPage *pPage; /* Current page of the b-tree */
8769
8770 /* If this is a leaf page or the tree is not an int-key tree, then
8771 ** this page contains countable entries. Increment the entry counter
8772 ** accordingly.
8773 */
8774 pPage = pCur->apPage[pCur->iPage];
8775 if( pPage->leaf || !pPage->intKey ){
8776 nEntry += pPage->nCell;
8777 }
8778
8779 /* pPage is a leaf node. This loop navigates the cursor so that it
8780 ** points to the first interior cell that it points to the parent of
8781 ** the next page in the tree that has not yet been visited. The
8782 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8783 ** of the page, or to the number of cells in the page if the next page
8784 ** to visit is the right-child of its parent.
8785 **
8786 ** If all pages in the tree have been visited, return SQLITE_OK to the
8787 ** caller.
8788 */
8789 if( pPage->leaf ){
8790 do {
8791 if( pCur->iPage==0 ){
8792 /* All pages of the b-tree have been visited. Return successfully. */
8793 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008794 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008795 }
danielk197730548662009-07-09 05:07:37 +00008796 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008797 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8798
8799 pCur->aiIdx[pCur->iPage]++;
8800 pPage = pCur->apPage[pCur->iPage];
8801 }
8802
8803 /* Descend to the child node of the cell that the cursor currently
8804 ** points at. This is the right-child if (iIdx==pPage->nCell).
8805 */
8806 iIdx = pCur->aiIdx[pCur->iPage];
8807 if( iIdx==pPage->nCell ){
8808 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8809 }else{
8810 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8811 }
8812 }
8813
shanebe217792009-03-05 04:20:31 +00008814 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008815 return rc;
8816}
8817#endif
drhdd793422001-06-28 01:54:48 +00008818
drhdd793422001-06-28 01:54:48 +00008819/*
drh5eddca62001-06-30 21:53:53 +00008820** Return the pager associated with a BTree. This routine is used for
8821** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008822*/
danielk1977aef0bf62005-12-30 16:28:01 +00008823Pager *sqlite3BtreePager(Btree *p){
8824 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008825}
drh5eddca62001-06-30 21:53:53 +00008826
drhb7f91642004-10-31 02:22:47 +00008827#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008828/*
8829** Append a message to the error message string.
8830*/
drh2e38c322004-09-03 18:38:44 +00008831static void checkAppendMsg(
8832 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008833 const char *zFormat,
8834 ...
8835){
8836 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008837 if( !pCheck->mxErr ) return;
8838 pCheck->mxErr--;
8839 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008840 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008841 if( pCheck->errMsg.nChar ){
8842 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008843 }
drh867db832014-09-26 02:41:05 +00008844 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008845 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008846 }
drh5f4a6862016-01-30 12:50:25 +00008847 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008848 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008849 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008850 pCheck->mallocFailed = 1;
8851 }
drh5eddca62001-06-30 21:53:53 +00008852}
drhb7f91642004-10-31 02:22:47 +00008853#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008854
drhb7f91642004-10-31 02:22:47 +00008855#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008856
8857/*
8858** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8859** corresponds to page iPg is already set.
8860*/
8861static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8862 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8863 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8864}
8865
8866/*
8867** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8868*/
8869static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8870 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8871 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8872}
8873
8874
drh5eddca62001-06-30 21:53:53 +00008875/*
8876** Add 1 to the reference count for page iPage. If this is the second
8877** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008878** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008879** if this is the first reference to the page.
8880**
8881** Also check that the page number is in bounds.
8882*/
drh867db832014-09-26 02:41:05 +00008883static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008884 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008885 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008886 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008887 return 1;
8888 }
dan1235bb12012-04-03 17:43:28 +00008889 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008890 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008891 return 1;
8892 }
dan1235bb12012-04-03 17:43:28 +00008893 setPageReferenced(pCheck, iPage);
8894 return 0;
drh5eddca62001-06-30 21:53:53 +00008895}
8896
danielk1977afcdd022004-10-31 16:25:42 +00008897#ifndef SQLITE_OMIT_AUTOVACUUM
8898/*
8899** Check that the entry in the pointer-map for page iChild maps to
8900** page iParent, pointer type ptrType. If not, append an error message
8901** to pCheck.
8902*/
8903static void checkPtrmap(
8904 IntegrityCk *pCheck, /* Integrity check context */
8905 Pgno iChild, /* Child page number */
8906 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008907 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008908){
8909 int rc;
8910 u8 ePtrmapType;
8911 Pgno iPtrmapParent;
8912
8913 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8914 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008915 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008916 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008917 return;
8918 }
8919
8920 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008921 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008922 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8923 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8924 }
8925}
8926#endif
8927
drh5eddca62001-06-30 21:53:53 +00008928/*
8929** Check the integrity of the freelist or of an overflow page list.
8930** Verify that the number of pages on the list is N.
8931*/
drh30e58752002-03-02 20:41:57 +00008932static void checkList(
8933 IntegrityCk *pCheck, /* Integrity checking context */
8934 int isFreeList, /* True for a freelist. False for overflow page list */
8935 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008936 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008937){
8938 int i;
drh3a4c1412004-05-09 20:40:11 +00008939 int expected = N;
8940 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008941 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008942 DbPage *pOvflPage;
8943 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008944 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008945 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008946 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008947 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008948 break;
8949 }
drh867db832014-09-26 02:41:05 +00008950 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008951 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008952 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008953 break;
8954 }
danielk19773b8a05f2007-03-19 17:44:26 +00008955 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008956 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008957 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008958#ifndef SQLITE_OMIT_AUTOVACUUM
8959 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008960 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008961 }
8962#endif
drh43b18e12010-08-17 19:40:08 +00008963 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008964 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008965 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008966 N--;
8967 }else{
8968 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008969 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008970#ifndef SQLITE_OMIT_AUTOVACUUM
8971 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008972 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008973 }
8974#endif
drh867db832014-09-26 02:41:05 +00008975 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008976 }
8977 N -= n;
drh30e58752002-03-02 20:41:57 +00008978 }
drh30e58752002-03-02 20:41:57 +00008979 }
danielk1977afcdd022004-10-31 16:25:42 +00008980#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008981 else{
8982 /* If this database supports auto-vacuum and iPage is not the last
8983 ** page in this overflow list, check that the pointer-map entry for
8984 ** the following page matches iPage.
8985 */
8986 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008987 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008988 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008989 }
danielk1977afcdd022004-10-31 16:25:42 +00008990 }
8991#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008992 iPage = get4byte(pOvflData);
8993 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008994
8995 if( isFreeList && N<(iPage!=0) ){
8996 checkAppendMsg(pCheck, "free-page count in header is too small");
8997 }
drh5eddca62001-06-30 21:53:53 +00008998 }
8999}
drhb7f91642004-10-31 02:22:47 +00009000#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009001
drh67731a92015-04-16 11:56:03 +00009002/*
9003** An implementation of a min-heap.
9004**
9005** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009006** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009007** and aHeap[N*2+1].
9008**
9009** The heap property is this: Every node is less than or equal to both
9010** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009011** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009012**
9013** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9014** the heap, preserving the heap property. The btreeHeapPull() routine
9015** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009016** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009017** property.
9018**
9019** This heap is used for cell overlap and coverage testing. Each u32
9020** entry represents the span of a cell or freeblock on a btree page.
9021** The upper 16 bits are the index of the first byte of a range and the
9022** lower 16 bits are the index of the last byte of that range.
9023*/
9024static void btreeHeapInsert(u32 *aHeap, u32 x){
9025 u32 j, i = ++aHeap[0];
9026 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009027 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009028 x = aHeap[j];
9029 aHeap[j] = aHeap[i];
9030 aHeap[i] = x;
9031 i = j;
9032 }
9033}
9034static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9035 u32 j, i, x;
9036 if( (x = aHeap[0])==0 ) return 0;
9037 *pOut = aHeap[1];
9038 aHeap[1] = aHeap[x];
9039 aHeap[x] = 0xffffffff;
9040 aHeap[0]--;
9041 i = 1;
9042 while( (j = i*2)<=aHeap[0] ){
9043 if( aHeap[j]>aHeap[j+1] ) j++;
9044 if( aHeap[i]<aHeap[j] ) break;
9045 x = aHeap[i];
9046 aHeap[i] = aHeap[j];
9047 aHeap[j] = x;
9048 i = j;
9049 }
9050 return 1;
9051}
9052
drhb7f91642004-10-31 02:22:47 +00009053#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009054/*
9055** Do various sanity checks on a single page of a tree. Return
9056** the tree depth. Root pages return 0. Parents of root pages
9057** return 1, and so forth.
9058**
9059** These checks are done:
9060**
9061** 1. Make sure that cells and freeblocks do not overlap
9062** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009063** 2. Make sure integer cell keys are in order.
9064** 3. Check the integrity of overflow pages.
9065** 4. Recursively call checkTreePage on all children.
9066** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009067*/
9068static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009069 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009070 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009071 i64 *piMinKey, /* Write minimum integer primary key here */
9072 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009073){
drhcbc6b712015-07-02 16:17:30 +00009074 MemPage *pPage = 0; /* The page being analyzed */
9075 int i; /* Loop counter */
9076 int rc; /* Result code from subroutine call */
9077 int depth = -1, d2; /* Depth of a subtree */
9078 int pgno; /* Page number */
9079 int nFrag; /* Number of fragmented bytes on the page */
9080 int hdr; /* Offset to the page header */
9081 int cellStart; /* Offset to the start of the cell pointer array */
9082 int nCell; /* Number of cells */
9083 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9084 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9085 ** False if IPK must be strictly less than maxKey */
9086 u8 *data; /* Page content */
9087 u8 *pCell; /* Cell content */
9088 u8 *pCellIdx; /* Next element of the cell pointer array */
9089 BtShared *pBt; /* The BtShared object that owns pPage */
9090 u32 pc; /* Address of a cell */
9091 u32 usableSize; /* Usable size of the page */
9092 u32 contentOffset; /* Offset to the start of the cell content area */
9093 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009094 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009095 const char *saved_zPfx = pCheck->zPfx;
9096 int saved_v1 = pCheck->v1;
9097 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009098 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009099
drh5eddca62001-06-30 21:53:53 +00009100 /* Check that the page exists
9101 */
drhd9cb6ac2005-10-20 07:28:17 +00009102 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009103 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009104 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009105 if( checkRef(pCheck, iPage) ) return 0;
9106 pCheck->zPfx = "Page %d: ";
9107 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009108 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009109 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009110 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009111 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009112 }
danielk197793caf5a2009-07-11 06:55:33 +00009113
9114 /* Clear MemPage.isInit to make sure the corruption detection code in
9115 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009116 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009117 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009118 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009119 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009120 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009121 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009122 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009123 }
drhcbc6b712015-07-02 16:17:30 +00009124 data = pPage->aData;
9125 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009126
drhcbc6b712015-07-02 16:17:30 +00009127 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009128 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009129 contentOffset = get2byteNotZero(&data[hdr+5]);
9130 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9131
9132 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9133 ** number of cells on the page. */
9134 nCell = get2byte(&data[hdr+3]);
9135 assert( pPage->nCell==nCell );
9136
9137 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9138 ** immediately follows the b-tree page header. */
9139 cellStart = hdr + 12 - 4*pPage->leaf;
9140 assert( pPage->aCellIdx==&data[cellStart] );
9141 pCellIdx = &data[cellStart + 2*(nCell-1)];
9142
9143 if( !pPage->leaf ){
9144 /* Analyze the right-child page of internal pages */
9145 pgno = get4byte(&data[hdr+8]);
9146#ifndef SQLITE_OMIT_AUTOVACUUM
9147 if( pBt->autoVacuum ){
9148 pCheck->zPfx = "On page %d at right child: ";
9149 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9150 }
9151#endif
9152 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9153 keyCanBeEqual = 0;
9154 }else{
9155 /* For leaf pages, the coverage check will occur in the same loop
9156 ** as the other cell checks, so initialize the heap. */
9157 heap = pCheck->heap;
9158 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009159 }
9160
drhcbc6b712015-07-02 16:17:30 +00009161 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9162 ** integer offsets to the cell contents. */
9163 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009164 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009165
drhcbc6b712015-07-02 16:17:30 +00009166 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009167 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009168 assert( pCellIdx==&data[cellStart + i*2] );
9169 pc = get2byteAligned(pCellIdx);
9170 pCellIdx -= 2;
9171 if( pc<contentOffset || pc>usableSize-4 ){
9172 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9173 pc, contentOffset, usableSize-4);
9174 doCoverageCheck = 0;
9175 continue;
shaneh195475d2010-02-19 04:28:08 +00009176 }
drhcbc6b712015-07-02 16:17:30 +00009177 pCell = &data[pc];
9178 pPage->xParseCell(pPage, pCell, &info);
9179 if( pc+info.nSize>usableSize ){
9180 checkAppendMsg(pCheck, "Extends off end of page");
9181 doCoverageCheck = 0;
9182 continue;
drh5eddca62001-06-30 21:53:53 +00009183 }
9184
drhcbc6b712015-07-02 16:17:30 +00009185 /* Check for integer primary key out of range */
9186 if( pPage->intKey ){
9187 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9188 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9189 }
9190 maxKey = info.nKey;
9191 }
9192
9193 /* Check the content overflow list */
9194 if( info.nPayload>info.nLocal ){
9195 int nPage; /* Number of pages on the overflow chain */
9196 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009197 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009198 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009199 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009200#ifndef SQLITE_OMIT_AUTOVACUUM
9201 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009202 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009203 }
9204#endif
drh867db832014-09-26 02:41:05 +00009205 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009206 }
9207
drh5eddca62001-06-30 21:53:53 +00009208 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009209 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009210 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009211#ifndef SQLITE_OMIT_AUTOVACUUM
9212 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009213 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009214 }
9215#endif
drhcbc6b712015-07-02 16:17:30 +00009216 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9217 keyCanBeEqual = 0;
9218 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009219 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009220 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009221 }
drhcbc6b712015-07-02 16:17:30 +00009222 }else{
9223 /* Populate the coverage-checking heap for leaf pages */
9224 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009225 }
9226 }
drhcbc6b712015-07-02 16:17:30 +00009227 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009228
drh5eddca62001-06-30 21:53:53 +00009229 /* Check for complete coverage of the page
9230 */
drh867db832014-09-26 02:41:05 +00009231 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009232 if( doCoverageCheck && pCheck->mxErr>0 ){
9233 /* For leaf pages, the min-heap has already been initialized and the
9234 ** cells have already been inserted. But for internal pages, that has
9235 ** not yet been done, so do it now */
9236 if( !pPage->leaf ){
9237 heap = pCheck->heap;
9238 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009239 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009240 u32 size;
9241 pc = get2byteAligned(&data[cellStart+i*2]);
9242 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009243 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009244 }
drh2e38c322004-09-03 18:38:44 +00009245 }
drhcbc6b712015-07-02 16:17:30 +00009246 /* Add the freeblocks to the min-heap
9247 **
9248 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009249 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009250 ** freeblocks on the page.
9251 */
drh8c2bbb62009-07-10 02:52:20 +00009252 i = get2byte(&data[hdr+1]);
9253 while( i>0 ){
9254 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009255 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009256 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009257 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009258 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009259 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9260 ** big-endian integer which is the offset in the b-tree page of the next
9261 ** freeblock in the chain, or zero if the freeblock is the last on the
9262 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009263 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009264 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9265 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009266 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009267 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009268 i = j;
drh2e38c322004-09-03 18:38:44 +00009269 }
drhcbc6b712015-07-02 16:17:30 +00009270 /* Analyze the min-heap looking for overlap between cells and/or
9271 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009272 **
9273 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9274 ** There is an implied first entry the covers the page header, the cell
9275 ** pointer index, and the gap between the cell pointer index and the start
9276 ** of cell content.
9277 **
9278 ** The loop below pulls entries from the min-heap in order and compares
9279 ** the start_address against the previous end_address. If there is an
9280 ** overlap, that means bytes are used multiple times. If there is a gap,
9281 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009282 */
9283 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009284 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009285 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009286 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009287 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009288 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009289 break;
drh67731a92015-04-16 11:56:03 +00009290 }else{
drhcbc6b712015-07-02 16:17:30 +00009291 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009292 prev = x;
drh2e38c322004-09-03 18:38:44 +00009293 }
9294 }
drhcbc6b712015-07-02 16:17:30 +00009295 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009296 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9297 ** is stored in the fifth field of the b-tree page header.
9298 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9299 ** number of fragmented free bytes within the cell content area.
9300 */
drhcbc6b712015-07-02 16:17:30 +00009301 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009302 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009303 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009304 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009305 }
9306 }
drh867db832014-09-26 02:41:05 +00009307
9308end_of_check:
drh72e191e2015-07-04 11:14:20 +00009309 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009310 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009311 pCheck->zPfx = saved_zPfx;
9312 pCheck->v1 = saved_v1;
9313 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009314 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009315}
drhb7f91642004-10-31 02:22:47 +00009316#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009317
drhb7f91642004-10-31 02:22:47 +00009318#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009319/*
9320** This routine does a complete check of the given BTree file. aRoot[] is
9321** an array of pages numbers were each page number is the root page of
9322** a table. nRoot is the number of entries in aRoot.
9323**
danielk19773509a652009-07-06 18:56:13 +00009324** A read-only or read-write transaction must be opened before calling
9325** this function.
9326**
drhc890fec2008-08-01 20:10:08 +00009327** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009328** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009329** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009330** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009331*/
drh1dcdbc02007-01-27 02:24:54 +00009332char *sqlite3BtreeIntegrityCheck(
9333 Btree *p, /* The btree to be checked */
9334 int *aRoot, /* An array of root pages numbers for individual trees */
9335 int nRoot, /* Number of entries in aRoot[] */
9336 int mxErr, /* Stop reporting errors after this many */
9337 int *pnErr /* Write number of errors seen to this variable */
9338){
danielk197789d40042008-11-17 14:20:56 +00009339 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009340 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009341 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009342 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009343 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009344 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009345
drhd677b3d2007-08-20 22:48:41 +00009346 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009347 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009348 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9349 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009350 sCheck.pBt = pBt;
9351 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009352 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009353 sCheck.mxErr = mxErr;
9354 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009355 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009356 sCheck.zPfx = 0;
9357 sCheck.v1 = 0;
9358 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009359 sCheck.aPgRef = 0;
9360 sCheck.heap = 0;
9361 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009362 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009363 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009364 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009365 }
dan1235bb12012-04-03 17:43:28 +00009366
9367 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9368 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009369 sCheck.mallocFailed = 1;
9370 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009371 }
drhe05b3f82015-07-01 17:53:49 +00009372 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9373 if( sCheck.heap==0 ){
9374 sCheck.mallocFailed = 1;
9375 goto integrity_ck_cleanup;
9376 }
9377
drh42cac6d2004-11-20 20:31:11 +00009378 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009379 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009380
9381 /* Check the integrity of the freelist
9382 */
drh867db832014-09-26 02:41:05 +00009383 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009384 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009385 get4byte(&pBt->pPage1->aData[36]));
9386 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009387
9388 /* Check all the tables.
9389 */
drhcbc6b712015-07-02 16:17:30 +00009390 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9391 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009392 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009393 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009394 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009395#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009396 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009397 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009398 }
9399#endif
drhcbc6b712015-07-02 16:17:30 +00009400 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009401 }
drhcbc6b712015-07-02 16:17:30 +00009402 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009403
9404 /* Make sure every page in the file is referenced
9405 */
drh1dcdbc02007-01-27 02:24:54 +00009406 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009407#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009408 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009409 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009410 }
danielk1977afcdd022004-10-31 16:25:42 +00009411#else
9412 /* If the database supports auto-vacuum, make sure no tables contain
9413 ** references to pointer-map pages.
9414 */
dan1235bb12012-04-03 17:43:28 +00009415 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009416 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009417 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009418 }
dan1235bb12012-04-03 17:43:28 +00009419 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009420 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009421 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009422 }
9423#endif
drh5eddca62001-06-30 21:53:53 +00009424 }
9425
drh5eddca62001-06-30 21:53:53 +00009426 /* Clean up and report errors.
9427 */
drhe05b3f82015-07-01 17:53:49 +00009428integrity_ck_cleanup:
9429 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009430 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009431 if( sCheck.mallocFailed ){
9432 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009433 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009434 }
drh1dcdbc02007-01-27 02:24:54 +00009435 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009436 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009437 /* Make sure this analysis did not leave any unref() pages. */
9438 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9439 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009440 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009441}
drhb7f91642004-10-31 02:22:47 +00009442#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009443
drh73509ee2003-04-06 20:44:45 +00009444/*
drhd4e0bb02012-05-27 01:19:04 +00009445** Return the full pathname of the underlying database file. Return
9446** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009447**
9448** The pager filename is invariant as long as the pager is
9449** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009450*/
danielk1977aef0bf62005-12-30 16:28:01 +00009451const char *sqlite3BtreeGetFilename(Btree *p){
9452 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009453 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009454}
9455
9456/*
danielk19775865e3d2004-06-14 06:03:57 +00009457** Return the pathname of the journal file for this database. The return
9458** value of this routine is the same regardless of whether the journal file
9459** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009460**
9461** The pager journal filename is invariant as long as the pager is
9462** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009463*/
danielk1977aef0bf62005-12-30 16:28:01 +00009464const char *sqlite3BtreeGetJournalname(Btree *p){
9465 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009466 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009467}
9468
danielk19771d850a72004-05-31 08:26:49 +00009469/*
9470** Return non-zero if a transaction is active.
9471*/
danielk1977aef0bf62005-12-30 16:28:01 +00009472int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009473 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009474 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009475}
9476
dana550f2d2010-08-02 10:47:05 +00009477#ifndef SQLITE_OMIT_WAL
9478/*
9479** Run a checkpoint on the Btree passed as the first argument.
9480**
9481** Return SQLITE_LOCKED if this or any other connection has an open
9482** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009483**
dancdc1f042010-11-18 12:11:05 +00009484** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009485*/
dancdc1f042010-11-18 12:11:05 +00009486int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009487 int rc = SQLITE_OK;
9488 if( p ){
9489 BtShared *pBt = p->pBt;
9490 sqlite3BtreeEnter(p);
9491 if( pBt->inTransaction!=TRANS_NONE ){
9492 rc = SQLITE_LOCKED;
9493 }else{
dan7fb89902016-08-12 16:21:15 +00009494 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009495 }
9496 sqlite3BtreeLeave(p);
9497 }
9498 return rc;
9499}
9500#endif
9501
danielk19771d850a72004-05-31 08:26:49 +00009502/*
danielk19772372c2b2006-06-27 16:34:56 +00009503** Return non-zero if a read (or write) transaction is active.
9504*/
9505int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009506 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009507 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009508 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009509}
9510
danielk197704103022009-02-03 16:51:24 +00009511int sqlite3BtreeIsInBackup(Btree *p){
9512 assert( p );
9513 assert( sqlite3_mutex_held(p->db->mutex) );
9514 return p->nBackup!=0;
9515}
9516
danielk19772372c2b2006-06-27 16:34:56 +00009517/*
danielk1977da184232006-01-05 11:34:32 +00009518** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009519** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009520** purposes (for example, to store a high-level schema associated with
9521** the shared-btree). The btree layer manages reference counting issues.
9522**
9523** The first time this is called on a shared-btree, nBytes bytes of memory
9524** are allocated, zeroed, and returned to the caller. For each subsequent
9525** call the nBytes parameter is ignored and a pointer to the same blob
9526** of memory returned.
9527**
danielk1977171bfed2008-06-23 09:50:50 +00009528** If the nBytes parameter is 0 and the blob of memory has not yet been
9529** allocated, a null pointer is returned. If the blob has already been
9530** allocated, it is returned as normal.
9531**
danielk1977da184232006-01-05 11:34:32 +00009532** Just before the shared-btree is closed, the function passed as the
9533** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009534** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009535** on the memory, the btree layer does that.
9536*/
9537void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9538 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009539 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009540 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009541 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009542 pBt->xFreeSchema = xFree;
9543 }
drh27641702007-08-22 02:56:42 +00009544 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009545 return pBt->pSchema;
9546}
9547
danielk1977c87d34d2006-01-06 13:00:28 +00009548/*
danielk1977404ca072009-03-16 13:19:36 +00009549** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9550** btree as the argument handle holds an exclusive lock on the
9551** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009552*/
9553int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009554 int rc;
drhe5fe6902007-12-07 18:55:28 +00009555 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009556 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009557 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9558 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009559 sqlite3BtreeLeave(p);
9560 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009561}
9562
drha154dcd2006-03-22 22:10:07 +00009563
9564#ifndef SQLITE_OMIT_SHARED_CACHE
9565/*
9566** Obtain a lock on the table whose root page is iTab. The
9567** lock is a write lock if isWritelock is true or a read lock
9568** if it is false.
9569*/
danielk1977c00da102006-01-07 13:21:04 +00009570int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009571 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009572 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009573 if( p->sharable ){
9574 u8 lockType = READ_LOCK + isWriteLock;
9575 assert( READ_LOCK+1==WRITE_LOCK );
9576 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009577
drh6a9ad3d2008-04-02 16:29:30 +00009578 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009579 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009580 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009581 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009582 }
9583 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009584 }
9585 return rc;
9586}
drha154dcd2006-03-22 22:10:07 +00009587#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009588
danielk1977b4e9af92007-05-01 17:49:49 +00009589#ifndef SQLITE_OMIT_INCRBLOB
9590/*
9591** Argument pCsr must be a cursor opened for writing on an
9592** INTKEY table currently pointing at a valid table entry.
9593** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009594**
9595** Only the data content may only be modified, it is not possible to
9596** change the length of the data stored. If this function is called with
9597** parameters that attempt to write past the end of the existing data,
9598** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009599*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009600int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009601 int rc;
dan7a2347e2016-01-07 16:43:54 +00009602 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009603 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009604 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009605
danielk1977c9000e62009-07-08 13:55:28 +00009606 rc = restoreCursorPosition(pCsr);
9607 if( rc!=SQLITE_OK ){
9608 return rc;
9609 }
danielk19773588ceb2008-06-10 17:30:26 +00009610 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9611 if( pCsr->eState!=CURSOR_VALID ){
9612 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009613 }
9614
dan227a1c42013-04-03 11:17:39 +00009615 /* Save the positions of all other cursors open on this table. This is
9616 ** required in case any of them are holding references to an xFetch
9617 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009618 **
drh3f387402014-09-24 01:23:00 +00009619 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009620 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9621 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009622 */
drh370c9f42013-04-03 20:04:04 +00009623 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9624 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009625
danielk1977c9000e62009-07-08 13:55:28 +00009626 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009627 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009628 ** (b) there is a read/write transaction open,
9629 ** (c) the connection holds a write-lock on the table (if required),
9630 ** (d) there are no conflicting read-locks, and
9631 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009632 */
drh036dbec2014-03-11 23:40:44 +00009633 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009634 return SQLITE_READONLY;
9635 }
drhc9166342012-01-05 23:32:06 +00009636 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9637 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009638 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9639 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009640 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009641
drhfb192682009-07-11 18:26:28 +00009642 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009643}
danielk19772dec9702007-05-02 16:48:37 +00009644
9645/*
dan5a500af2014-03-11 20:33:04 +00009646** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009647*/
dan5a500af2014-03-11 20:33:04 +00009648void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009649 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009650 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009651}
danielk1977b4e9af92007-05-01 17:49:49 +00009652#endif
dane04dc882010-04-20 18:53:15 +00009653
9654/*
9655** Set both the "read version" (single byte at byte offset 18) and
9656** "write version" (single byte at byte offset 19) fields in the database
9657** header to iVersion.
9658*/
9659int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9660 BtShared *pBt = pBtree->pBt;
9661 int rc; /* Return code */
9662
dane04dc882010-04-20 18:53:15 +00009663 assert( iVersion==1 || iVersion==2 );
9664
danb9780022010-04-21 18:37:57 +00009665 /* If setting the version fields to 1, do not automatically open the
9666 ** WAL connection, even if the version fields are currently set to 2.
9667 */
drhc9166342012-01-05 23:32:06 +00009668 pBt->btsFlags &= ~BTS_NO_WAL;
9669 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009670
9671 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009672 if( rc==SQLITE_OK ){
9673 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009674 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009675 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009676 if( rc==SQLITE_OK ){
9677 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9678 if( rc==SQLITE_OK ){
9679 aData[18] = (u8)iVersion;
9680 aData[19] = (u8)iVersion;
9681 }
9682 }
9683 }
dane04dc882010-04-20 18:53:15 +00009684 }
9685
drhc9166342012-01-05 23:32:06 +00009686 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009687 return rc;
9688}
dan428c2182012-08-06 18:50:11 +00009689
drhe0997b32015-03-20 14:57:50 +00009690/*
9691** Return true if the cursor has a hint specified. This routine is
9692** only used from within assert() statements
9693*/
9694int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9695 return (pCsr->hints & mask)!=0;
9696}
drhe0997b32015-03-20 14:57:50 +00009697
drh781597f2014-05-21 08:21:07 +00009698/*
9699** Return true if the given Btree is read-only.
9700*/
9701int sqlite3BtreeIsReadonly(Btree *p){
9702 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9703}
drhdef68892014-11-04 12:11:23 +00009704
9705/*
9706** Return the size of the header added to each page by this module.
9707*/
drh37c057b2014-12-30 00:57:29 +00009708int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009709
drh5a1fb182016-01-08 19:34:39 +00009710#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009711/*
9712** Return true if the Btree passed as the only argument is sharable.
9713*/
9714int sqlite3BtreeSharable(Btree *p){
9715 return p->sharable;
9716}
dan272989b2016-07-06 10:12:02 +00009717
9718/*
9719** Return the number of connections to the BtShared object accessed by
9720** the Btree handle passed as the only argument. For private caches
9721** this is always 1. For shared caches it may be 1 or greater.
9722*/
9723int sqlite3BtreeConnectionCount(Btree *p){
9724 testcase( p->sharable );
9725 return p->pBt->nRef;
9726}
drh5a1fb182016-01-08 19:34:39 +00009727#endif