blob: ff5593892ab3f5af79ff1d5a768c6529a82fadf9 [file] [log] [blame]
drh3d4501e2008-12-04 20:40:10 +00001/*
2** 2008 December 3
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh733bf1b2009-04-22 00:47:00 +000013** This module implements an object we call a "RowSet".
drh3d4501e2008-12-04 20:40:10 +000014**
drh733bf1b2009-04-22 00:47:00 +000015** The RowSet object is a collection of rowids. Rowids
16** are inserted into the RowSet in an arbitrary order. Inserts
17** can be intermixed with tests to see if a given rowid has been
18** previously inserted into the RowSet.
drh3d4501e2008-12-04 20:40:10 +000019**
drh733bf1b2009-04-22 00:47:00 +000020** After all inserts are finished, it is possible to extract the
21** elements of the RowSet in sorted order. Once this extraction
22** process has started, no new elements may be inserted.
drh3d4501e2008-12-04 20:40:10 +000023**
drh733bf1b2009-04-22 00:47:00 +000024** Hence, the primitive operations for a RowSet are:
drha9e364f2009-01-13 20:14:15 +000025**
drh733bf1b2009-04-22 00:47:00 +000026** CREATE
27** INSERT
28** TEST
29** SMALLEST
30** DESTROY
31**
32** The CREATE and DESTROY primitives are the constructor and destructor,
33** obviously. The INSERT primitive adds a new element to the RowSet.
34** TEST checks to see if an element is already in the RowSet. SMALLEST
35** extracts the least value from the RowSet.
36**
37** The INSERT primitive might allocate additional memory. Memory is
38** allocated in chunks so most INSERTs do no allocation. There is an
39** upper bound on the size of allocated memory. No memory is freed
40** until DESTROY.
41**
42** The TEST primitive includes a "batch" number. The TEST primitive
43** will only see elements that were inserted before the last change
44** in the batch number. In other words, if an INSERT occurs between
45** two TESTs where the TESTs have the same batch nubmer, then the
46** value added by the INSERT will not be visible to the second TEST.
47** The initial batch number is zero, so if the very first TEST contains
48** a non-zero batch number, it will see all prior INSERTs.
49**
50** No INSERTs may occurs after a SMALLEST. An assertion will fail if
51** that is attempted.
52**
peter.d.reid60ec9142014-09-06 16:39:46 +000053** The cost of an INSERT is roughly constant. (Sometimes new memory
drh733bf1b2009-04-22 00:47:00 +000054** has to be allocated on an INSERT.) The cost of a TEST with a new
55** batch number is O(NlogN) where N is the number of elements in the RowSet.
56** The cost of a TEST using the same batch number is O(logN). The cost
57** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
58** primitives are constant time. The cost of DESTROY is O(N).
59**
60** There is an added cost of O(N) when switching between TEST and
61** SMALLEST primitives.
drh3d4501e2008-12-04 20:40:10 +000062*/
63#include "sqliteInt.h"
64
drh733bf1b2009-04-22 00:47:00 +000065
66/*
67** Target size for allocation chunks.
68*/
69#define ROWSET_ALLOCATION_SIZE 1024
70
drh3d4501e2008-12-04 20:40:10 +000071/*
72** The number of rowset entries per allocation chunk.
73*/
drh733bf1b2009-04-22 00:47:00 +000074#define ROWSET_ENTRY_PER_CHUNK \
75 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
drh3d4501e2008-12-04 20:40:10 +000076
77/*
drh733bf1b2009-04-22 00:47:00 +000078** Each entry in a RowSet is an instance of the following object.
drh3343b432012-04-05 01:37:32 +000079**
80** This same object is reused to store a linked list of trees of RowSetEntry
81** objects. In that alternative use, pRight points to the next entry
82** in the list, pLeft points to the tree, and v is unused. The
83** RowSet.pForest value points to the head of this forest list.
drh3d4501e2008-12-04 20:40:10 +000084*/
85struct RowSetEntry {
86 i64 v; /* ROWID value for this entry */
drh733bf1b2009-04-22 00:47:00 +000087 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
88 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
drh3d4501e2008-12-04 20:40:10 +000089};
90
91/*
drh733bf1b2009-04-22 00:47:00 +000092** RowSetEntry objects are allocated in large chunks (instances of the
drh3d4501e2008-12-04 20:40:10 +000093** following structure) to reduce memory allocation overhead. The
94** chunks are kept on a linked list so that they can be deallocated
95** when the RowSet is destroyed.
96*/
97struct RowSetChunk {
drh733bf1b2009-04-22 00:47:00 +000098 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
drh3d4501e2008-12-04 20:40:10 +000099 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
100};
101
102/*
103** A RowSet in an instance of the following structure.
104**
105** A typedef of this structure if found in sqliteInt.h.
106*/
107struct RowSet {
108 struct RowSetChunk *pChunk; /* List of all chunk allocations */
109 sqlite3 *db; /* The database connection */
drh733bf1b2009-04-22 00:47:00 +0000110 struct RowSetEntry *pEntry; /* List of entries using pRight */
drh3d4501e2008-12-04 20:40:10 +0000111 struct RowSetEntry *pLast; /* Last entry on the pEntry list */
112 struct RowSetEntry *pFresh; /* Source of new entry objects */
drh3343b432012-04-05 01:37:32 +0000113 struct RowSetEntry *pForest; /* List of binary trees of entries */
drh3d4501e2008-12-04 20:40:10 +0000114 u16 nFresh; /* Number of objects on pFresh */
drhd83cad22014-04-10 02:24:48 +0000115 u16 rsFlags; /* Various flags */
116 int iBatch; /* Current insert batch */
drh3d4501e2008-12-04 20:40:10 +0000117};
118
119/*
drh3343b432012-04-05 01:37:32 +0000120** Allowed values for RowSet.rsFlags
121*/
122#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
123#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
124
125/*
drh3d4501e2008-12-04 20:40:10 +0000126** Turn bulk memory into a RowSet object. N bytes of memory
127** are available at pSpace. The db pointer is used as a memory context
128** for any subsequent allocations that need to occur.
129** Return a pointer to the new RowSet object.
130**
drhe2f02ba2009-01-09 01:12:27 +0000131** It must be the case that N is sufficient to make a Rowset. If not
132** an assertion fault occurs.
133**
134** If N is larger than the minimum, use the surplus as an initial
135** allocation of entries available to be filled.
drh3d4501e2008-12-04 20:40:10 +0000136*/
137RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
138 RowSet *p;
drh49145af2009-05-22 01:00:12 +0000139 assert( N >= ROUND8(sizeof(*p)) );
drhe2f02ba2009-01-09 01:12:27 +0000140 p = pSpace;
141 p->pChunk = 0;
142 p->db = db;
143 p->pEntry = 0;
144 p->pLast = 0;
drh3343b432012-04-05 01:37:32 +0000145 p->pForest = 0;
drh49145af2009-05-22 01:00:12 +0000146 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
147 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
drh3343b432012-04-05 01:37:32 +0000148 p->rsFlags = ROWSET_SORTED;
drh733bf1b2009-04-22 00:47:00 +0000149 p->iBatch = 0;
drh3d4501e2008-12-04 20:40:10 +0000150 return p;
151}
152
153/*
drh733bf1b2009-04-22 00:47:00 +0000154** Deallocate all chunks from a RowSet. This frees all memory that
155** the RowSet has allocated over its lifetime. This routine is
156** the destructor for the RowSet.
drh3d4501e2008-12-04 20:40:10 +0000157*/
158void sqlite3RowSetClear(RowSet *p){
159 struct RowSetChunk *pChunk, *pNextChunk;
160 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
drh733bf1b2009-04-22 00:47:00 +0000161 pNextChunk = pChunk->pNextChunk;
drh3d4501e2008-12-04 20:40:10 +0000162 sqlite3DbFree(p->db, pChunk);
163 }
164 p->pChunk = 0;
165 p->nFresh = 0;
166 p->pEntry = 0;
167 p->pLast = 0;
drh3343b432012-04-05 01:37:32 +0000168 p->pForest = 0;
169 p->rsFlags = ROWSET_SORTED;
170}
171
172/*
173** Allocate a new RowSetEntry object that is associated with the
174** given RowSet. Return a pointer to the new and completely uninitialized
175** objected.
176**
177** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
178** routine returns NULL.
179*/
180static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
181 assert( p!=0 );
182 if( p->nFresh==0 ){
183 struct RowSetChunk *pNew;
184 pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
185 if( pNew==0 ){
186 return 0;
187 }
188 pNew->pNextChunk = p->pChunk;
189 p->pChunk = pNew;
190 p->pFresh = pNew->aEntry;
191 p->nFresh = ROWSET_ENTRY_PER_CHUNK;
192 }
193 p->nFresh--;
194 return p->pFresh++;
drh3d4501e2008-12-04 20:40:10 +0000195}
196
197/*
198** Insert a new value into a RowSet.
199**
200** The mallocFailed flag of the database connection is set if a
201** memory allocation fails.
202*/
203void sqlite3RowSetInsert(RowSet *p, i64 rowid){
drh733bf1b2009-04-22 00:47:00 +0000204 struct RowSetEntry *pEntry; /* The new entry */
205 struct RowSetEntry *pLast; /* The last prior entry */
drh3343b432012-04-05 01:37:32 +0000206
207 /* This routine is never called after sqlite3RowSetNext() */
208 assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
209
210 pEntry = rowSetEntryAlloc(p);
211 if( pEntry==0 ) return;
drh3d4501e2008-12-04 20:40:10 +0000212 pEntry->v = rowid;
drh733bf1b2009-04-22 00:47:00 +0000213 pEntry->pRight = 0;
drh3d4501e2008-12-04 20:40:10 +0000214 pLast = p->pLast;
215 if( pLast ){
drh3343b432012-04-05 01:37:32 +0000216 if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){
217 p->rsFlags &= ~ROWSET_SORTED;
drh3d4501e2008-12-04 20:40:10 +0000218 }
drh733bf1b2009-04-22 00:47:00 +0000219 pLast->pRight = pEntry;
drh3d4501e2008-12-04 20:40:10 +0000220 }else{
drh3d4501e2008-12-04 20:40:10 +0000221 p->pEntry = pEntry;
222 }
223 p->pLast = pEntry;
224}
225
226/*
drh733bf1b2009-04-22 00:47:00 +0000227** Merge two lists of RowSetEntry objects. Remove duplicates.
drh3d4501e2008-12-04 20:40:10 +0000228**
drh733bf1b2009-04-22 00:47:00 +0000229** The input lists are connected via pRight pointers and are
230** assumed to each already be in sorted order.
drh3d4501e2008-12-04 20:40:10 +0000231*/
drh3343b432012-04-05 01:37:32 +0000232static struct RowSetEntry *rowSetEntryMerge(
drh3d4501e2008-12-04 20:40:10 +0000233 struct RowSetEntry *pA, /* First sorted list to be merged */
234 struct RowSetEntry *pB /* Second sorted list to be merged */
235){
236 struct RowSetEntry head;
237 struct RowSetEntry *pTail;
238
239 pTail = &head;
240 while( pA && pB ){
drh733bf1b2009-04-22 00:47:00 +0000241 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
242 assert( pB->pRight==0 || pB->v<=pB->pRight->v );
drh3d4501e2008-12-04 20:40:10 +0000243 if( pA->v<pB->v ){
drh733bf1b2009-04-22 00:47:00 +0000244 pTail->pRight = pA;
245 pA = pA->pRight;
246 pTail = pTail->pRight;
drh3d4501e2008-12-04 20:40:10 +0000247 }else if( pB->v<pA->v ){
drh733bf1b2009-04-22 00:47:00 +0000248 pTail->pRight = pB;
249 pB = pB->pRight;
250 pTail = pTail->pRight;
drh3d4501e2008-12-04 20:40:10 +0000251 }else{
drh733bf1b2009-04-22 00:47:00 +0000252 pA = pA->pRight;
drh3d4501e2008-12-04 20:40:10 +0000253 }
254 }
255 if( pA ){
drh733bf1b2009-04-22 00:47:00 +0000256 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
257 pTail->pRight = pA;
drh3d4501e2008-12-04 20:40:10 +0000258 }else{
drh733bf1b2009-04-22 00:47:00 +0000259 assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
260 pTail->pRight = pB;
drh3d4501e2008-12-04 20:40:10 +0000261 }
drh733bf1b2009-04-22 00:47:00 +0000262 return head.pRight;
drh3d4501e2008-12-04 20:40:10 +0000263}
264
265/*
drh3343b432012-04-05 01:37:32 +0000266** Sort all elements on the list of RowSetEntry objects into order of
267** increasing v.
drh3d4501e2008-12-04 20:40:10 +0000268*/
drh3343b432012-04-05 01:37:32 +0000269static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
drh3d4501e2008-12-04 20:40:10 +0000270 unsigned int i;
drh3343b432012-04-05 01:37:32 +0000271 struct RowSetEntry *pNext, *aBucket[40];
drh3d4501e2008-12-04 20:40:10 +0000272
drh3d4501e2008-12-04 20:40:10 +0000273 memset(aBucket, 0, sizeof(aBucket));
drh3343b432012-04-05 01:37:32 +0000274 while( pIn ){
275 pNext = pIn->pRight;
276 pIn->pRight = 0;
drh3d4501e2008-12-04 20:40:10 +0000277 for(i=0; aBucket[i]; i++){
drh3343b432012-04-05 01:37:32 +0000278 pIn = rowSetEntryMerge(aBucket[i], pIn);
drh3d4501e2008-12-04 20:40:10 +0000279 aBucket[i] = 0;
280 }
drh3343b432012-04-05 01:37:32 +0000281 aBucket[i] = pIn;
282 pIn = pNext;
drh3d4501e2008-12-04 20:40:10 +0000283 }
drh3343b432012-04-05 01:37:32 +0000284 pIn = 0;
drh3d4501e2008-12-04 20:40:10 +0000285 for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
drh3343b432012-04-05 01:37:32 +0000286 pIn = rowSetEntryMerge(pIn, aBucket[i]);
drh3d4501e2008-12-04 20:40:10 +0000287 }
drh3343b432012-04-05 01:37:32 +0000288 return pIn;
drh3d4501e2008-12-04 20:40:10 +0000289}
290
drh733bf1b2009-04-22 00:47:00 +0000291
drh3d4501e2008-12-04 20:40:10 +0000292/*
drh733bf1b2009-04-22 00:47:00 +0000293** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
294** Convert this tree into a linked list connected by the pRight pointers
295** and return pointers to the first and last elements of the new list.
296*/
297static void rowSetTreeToList(
298 struct RowSetEntry *pIn, /* Root of the input tree */
299 struct RowSetEntry **ppFirst, /* Write head of the output list here */
300 struct RowSetEntry **ppLast /* Write tail of the output list here */
301){
drh61495262009-04-22 15:32:59 +0000302 assert( pIn!=0 );
drh733bf1b2009-04-22 00:47:00 +0000303 if( pIn->pLeft ){
304 struct RowSetEntry *p;
305 rowSetTreeToList(pIn->pLeft, ppFirst, &p);
306 p->pRight = pIn;
307 }else{
308 *ppFirst = pIn;
309 }
310 if( pIn->pRight ){
311 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
312 }else{
313 *ppLast = pIn;
314 }
315 assert( (*ppLast)->pRight==0 );
316}
317
318
319/*
320** Convert a sorted list of elements (connected by pRight) into a binary
321** tree with depth of iDepth. A depth of 1 means the tree contains a single
322** node taken from the head of *ppList. A depth of 2 means a tree with
323** three nodes. And so forth.
324**
325** Use as many entries from the input list as required and update the
326** *ppList to point to the unused elements of the list. If the input
327** list contains too few elements, then construct an incomplete tree
328** and leave *ppList set to NULL.
329**
330** Return a pointer to the root of the constructed binary tree.
331*/
332static struct RowSetEntry *rowSetNDeepTree(
333 struct RowSetEntry **ppList,
334 int iDepth
335){
336 struct RowSetEntry *p; /* Root of the new tree */
337 struct RowSetEntry *pLeft; /* Left subtree */
338 if( *ppList==0 ){
339 return 0;
340 }
341 if( iDepth==1 ){
342 p = *ppList;
343 *ppList = p->pRight;
344 p->pLeft = p->pRight = 0;
345 return p;
346 }
347 pLeft = rowSetNDeepTree(ppList, iDepth-1);
348 p = *ppList;
349 if( p==0 ){
350 return pLeft;
351 }
352 p->pLeft = pLeft;
353 *ppList = p->pRight;
354 p->pRight = rowSetNDeepTree(ppList, iDepth-1);
355 return p;
356}
357
358/*
359** Convert a sorted list of elements into a binary tree. Make the tree
360** as deep as it needs to be in order to contain the entire list.
361*/
362static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
363 int iDepth; /* Depth of the tree so far */
364 struct RowSetEntry *p; /* Current tree root */
365 struct RowSetEntry *pLeft; /* Left subtree */
366
drh61495262009-04-22 15:32:59 +0000367 assert( pList!=0 );
drh733bf1b2009-04-22 00:47:00 +0000368 p = pList;
369 pList = p->pRight;
370 p->pLeft = p->pRight = 0;
371 for(iDepth=1; pList; iDepth++){
372 pLeft = p;
373 p = pList;
374 pList = p->pRight;
375 p->pLeft = pLeft;
376 p->pRight = rowSetNDeepTree(&pList, iDepth);
377 }
378 return p;
379}
380
381/*
drh3343b432012-04-05 01:37:32 +0000382** Take all the entries on p->pEntry and on the trees in p->pForest and
383** sort them all together into one big ordered list on p->pEntry.
384**
385** This routine should only be called once in the life of a RowSet.
drh733bf1b2009-04-22 00:47:00 +0000386*/
387static void rowSetToList(RowSet *p){
drh3343b432012-04-05 01:37:32 +0000388
389 /* This routine is called only once */
390 assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
391
392 if( (p->rsFlags & ROWSET_SORTED)==0 ){
393 p->pEntry = rowSetEntrySort(p->pEntry);
drh733bf1b2009-04-22 00:47:00 +0000394 }
drh3343b432012-04-05 01:37:32 +0000395
396 /* While this module could theoretically support it, sqlite3RowSetNext()
397 ** is never called after sqlite3RowSetText() for the same RowSet. So
398 ** there is never a forest to deal with. Should this change, simply
399 ** remove the assert() and the #if 0. */
400 assert( p->pForest==0 );
401#if 0
402 while( p->pForest ){
403 struct RowSetEntry *pTree = p->pForest->pLeft;
404 if( pTree ){
405 struct RowSetEntry *pHead, *pTail;
406 rowSetTreeToList(pTree, &pHead, &pTail);
407 p->pEntry = rowSetEntryMerge(p->pEntry, pHead);
408 }
409 p->pForest = p->pForest->pRight;
drh733bf1b2009-04-22 00:47:00 +0000410 }
drh3343b432012-04-05 01:37:32 +0000411#endif
412 p->rsFlags |= ROWSET_NEXT; /* Verify this routine is never called again */
drh733bf1b2009-04-22 00:47:00 +0000413}
414
415/*
416** Extract the smallest element from the RowSet.
drh3d4501e2008-12-04 20:40:10 +0000417** Write the element into *pRowid. Return 1 on success. Return
418** 0 if the RowSet is already empty.
drh733bf1b2009-04-22 00:47:00 +0000419**
420** After this routine has been called, the sqlite3RowSetInsert()
421** routine may not be called again.
drh3d4501e2008-12-04 20:40:10 +0000422*/
423int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
drh3343b432012-04-05 01:37:32 +0000424 assert( p!=0 );
425
426 /* Merge the forest into a single sorted list on first call */
427 if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p);
428
429 /* Return the next entry on the list */
drh3d4501e2008-12-04 20:40:10 +0000430 if( p->pEntry ){
431 *pRowid = p->pEntry->v;
drh733bf1b2009-04-22 00:47:00 +0000432 p->pEntry = p->pEntry->pRight;
drh3d4501e2008-12-04 20:40:10 +0000433 if( p->pEntry==0 ){
434 sqlite3RowSetClear(p);
435 }
436 return 1;
437 }else{
438 return 0;
439 }
440}
drh733bf1b2009-04-22 00:47:00 +0000441
442/*
mistachkind5578432012-08-25 10:01:29 +0000443** Check to see if element iRowid was inserted into the rowset as
drh733bf1b2009-04-22 00:47:00 +0000444** part of any insert batch prior to iBatch. Return 1 or 0.
drh3343b432012-04-05 01:37:32 +0000445**
peter.d.reid60ec9142014-09-06 16:39:46 +0000446** If this is the first test of a new batch and if there exist entries
447** on pRowSet->pEntry, then sort those entries into the forest at
drh3343b432012-04-05 01:37:32 +0000448** pRowSet->pForest so that they can be tested.
drh733bf1b2009-04-22 00:47:00 +0000449*/
drhd83cad22014-04-10 02:24:48 +0000450int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
drh3343b432012-04-05 01:37:32 +0000451 struct RowSetEntry *p, *pTree;
452
453 /* This routine is never called after sqlite3RowSetNext() */
454 assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
455
456 /* Sort entries into the forest on the first test of a new batch
457 */
drh733bf1b2009-04-22 00:47:00 +0000458 if( iBatch!=pRowSet->iBatch ){
drh3343b432012-04-05 01:37:32 +0000459 p = pRowSet->pEntry;
460 if( p ){
461 struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
462 if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){
463 p = rowSetEntrySort(p);
464 }
465 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
466 ppPrevTree = &pTree->pRight;
467 if( pTree->pLeft==0 ){
468 pTree->pLeft = rowSetListToTree(p);
469 break;
470 }else{
471 struct RowSetEntry *pAux, *pTail;
472 rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
473 pTree->pLeft = 0;
474 p = rowSetEntryMerge(pAux, p);
475 }
476 }
477 if( pTree==0 ){
478 *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
479 if( pTree ){
480 pTree->v = 0;
481 pTree->pRight = 0;
482 pTree->pLeft = rowSetListToTree(p);
483 }
484 }
drh733bf1b2009-04-22 00:47:00 +0000485 pRowSet->pEntry = 0;
486 pRowSet->pLast = 0;
drh3343b432012-04-05 01:37:32 +0000487 pRowSet->rsFlags |= ROWSET_SORTED;
drh733bf1b2009-04-22 00:47:00 +0000488 }
489 pRowSet->iBatch = iBatch;
490 }
drh3343b432012-04-05 01:37:32 +0000491
492 /* Test to see if the iRowid value appears anywhere in the forest.
493 ** Return 1 if it does and 0 if not.
494 */
495 for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
496 p = pTree->pLeft;
497 while( p ){
498 if( p->v<iRowid ){
499 p = p->pRight;
500 }else if( p->v>iRowid ){
501 p = p->pLeft;
502 }else{
503 return 1;
504 }
drh733bf1b2009-04-22 00:47:00 +0000505 }
506 }
507 return 0;
508}