blob: 1f279b55f697a761bedb20247bb1c0217e46d244 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000493 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000494 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000495 pBtree->hasIncrblobCur = 0;
496 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497 if( (p->curFlags & BTCF_Incrblob)!=0 ){
498 pBtree->hasIncrblobCur = 1;
499 if( isClearTable || p->info.nKey==iRow ){
500 p->eState = CURSOR_INVALID;
501 }
danielk197796d48e92009-06-29 06:00:37 +0000502 }
503 }
504}
505
danielk197792d4d7a2007-05-04 12:05:56 +0000506#else
dan5a500af2014-03-11 20:33:04 +0000507 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000508 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000509#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000510
drh980b1a72006-08-16 16:42:48 +0000511/*
danielk1977bea2a942009-01-20 17:06:27 +0000512** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513** when a page that previously contained data becomes a free-list leaf
514** page.
515**
516** The BtShared.pHasContent bitvec exists to work around an obscure
517** bug caused by the interaction of two useful IO optimizations surrounding
518** free-list leaf pages:
519**
520** 1) When all data is deleted from a page and the page becomes
521** a free-list leaf page, the page is not written to the database
522** (as free-list leaf pages contain no meaningful data). Sometimes
523** such a page is not even journalled (as it will not be modified,
524** why bother journalling it?).
525**
526** 2) When a free-list leaf page is reused, its content is not read
527** from the database or written to the journal file (why should it
528** be, if it is not at all meaningful?).
529**
530** By themselves, these optimizations work fine and provide a handy
531** performance boost to bulk delete or insert operations. However, if
532** a page is moved to the free-list and then reused within the same
533** transaction, a problem comes up. If the page is not journalled when
534** it is moved to the free-list and it is also not journalled when it
535** is extracted from the free-list and reused, then the original data
536** may be lost. In the event of a rollback, it may not be possible
537** to restore the database to its original configuration.
538**
539** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540** moved to become a free-list leaf page, the corresponding bit is
541** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000542** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000543** set in BtShared.pHasContent. The contents of the bitvec are cleared
544** at the end of every transaction.
545*/
546static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547 int rc = SQLITE_OK;
548 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000549 assert( pgno<=pBt->nPage );
550 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000551 if( !pBt->pHasContent ){
552 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000553 }
554 }
555 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557 }
558 return rc;
559}
560
561/*
562** Query the BtShared.pHasContent vector.
563**
564** This function is called when a free-list leaf page is removed from the
565** free-list for reuse. It returns false if it is safe to retrieve the
566** page from the pager layer with the 'no-content' flag set. True otherwise.
567*/
568static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569 Bitvec *p = pBt->pHasContent;
570 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571}
572
573/*
574** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575** invoked at the conclusion of each write-transaction.
576*/
577static void btreeClearHasContent(BtShared *pBt){
578 sqlite3BitvecDestroy(pBt->pHasContent);
579 pBt->pHasContent = 0;
580}
581
582/*
drh138eeeb2013-03-27 03:15:23 +0000583** Release all of the apPage[] pages for a cursor.
584*/
585static void btreeReleaseAllCursorPages(BtCursor *pCur){
586 int i;
587 for(i=0; i<=pCur->iPage; i++){
588 releasePage(pCur->apPage[i]);
589 pCur->apPage[i] = 0;
590 }
591 pCur->iPage = -1;
592}
593
danf0ee1d32015-09-12 19:26:11 +0000594/*
595** The cursor passed as the only argument must point to a valid entry
596** when this function is called (i.e. have eState==CURSOR_VALID). This
597** function saves the current cursor key in variables pCur->nKey and
598** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
599** code otherwise.
600**
601** If the cursor is open on an intkey table, then the integer key
602** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
603** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
604** set to point to a malloced buffer pCur->nKey bytes in size containing
605** the key.
606*/
607static int saveCursorKey(BtCursor *pCur){
608 int rc;
609 assert( CURSOR_VALID==pCur->eState );
610 assert( 0==pCur->pKey );
611 assert( cursorHoldsMutex(pCur) );
612
613 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
614 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
615
616 /* If this is an intKey table, then the above call to BtreeKeySize()
617 ** stores the integer key in pCur->nKey. In this case this value is
618 ** all that is required. Otherwise, if pCur is not open on an intKey
619 ** table, then malloc space for and store the pCur->nKey bytes of key
620 ** data. */
621 if( 0==pCur->curIntKey ){
622 void *pKey = sqlite3Malloc( pCur->nKey );
623 if( pKey ){
624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
628 sqlite3_free(pKey);
629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
634 assert( !pCur->curIntKey || !pCur->pKey );
635 return rc;
636}
drh138eeeb2013-03-27 03:15:23 +0000637
638/*
drh980b1a72006-08-16 16:42:48 +0000639** Save the current cursor position in the variables BtCursor.nKey
640** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000641**
642** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
643** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000644*/
645static int saveCursorPosition(BtCursor *pCur){
646 int rc;
647
drhd2f83132015-03-25 17:35:01 +0000648 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000649 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000650 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000651
drhd2f83132015-03-25 17:35:01 +0000652 if( pCur->eState==CURSOR_SKIPNEXT ){
653 pCur->eState = CURSOR_VALID;
654 }else{
655 pCur->skipNext = 0;
656 }
drh980b1a72006-08-16 16:42:48 +0000657
danf0ee1d32015-09-12 19:26:11 +0000658 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000659 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000660 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000661 pCur->eState = CURSOR_REQUIRESEEK;
662 }
663
dane755e102015-09-30 12:59:12 +0000664 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000665 return rc;
666}
667
drh637f3d82014-08-22 22:26:07 +0000668/* Forward reference */
669static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
670
drh980b1a72006-08-16 16:42:48 +0000671/*
drh0ee3dbe2009-10-16 15:05:18 +0000672** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000673** the table with root-page iRoot. "Saving the cursor position" means that
674** the location in the btree is remembered in such a way that it can be
675** moved back to the same spot after the btree has been modified. This
676** routine is called just before cursor pExcept is used to modify the
677** table, for example in BtreeDelete() or BtreeInsert().
678**
drh27fb7462015-06-30 02:47:36 +0000679** If there are two or more cursors on the same btree, then all such
680** cursors should have their BTCF_Multiple flag set. The btreeCursor()
681** routine enforces that rule. This routine only needs to be called in
682** the uncommon case when pExpect has the BTCF_Multiple flag set.
683**
684** If pExpect!=NULL and if no other cursors are found on the same root-page,
685** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
686** pointless call to this routine.
687**
drh637f3d82014-08-22 22:26:07 +0000688** Implementation note: This routine merely checks to see if any cursors
689** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
690** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000691*/
692static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
693 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000694 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000695 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000696 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000697 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
698 }
drh27fb7462015-06-30 02:47:36 +0000699 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
700 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
701 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000702}
703
704/* This helper routine to saveAllCursors does the actual work of saving
705** the cursors if and when a cursor is found that actually requires saving.
706** The common case is that no cursors need to be saved, so this routine is
707** broken out from its caller to avoid unnecessary stack pointer movement.
708*/
709static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000710 BtCursor *p, /* The first cursor that needs saving */
711 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
712 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000713){
714 do{
drh138eeeb2013-03-27 03:15:23 +0000715 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000716 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000717 int rc = saveCursorPosition(p);
718 if( SQLITE_OK!=rc ){
719 return rc;
720 }
721 }else{
722 testcase( p->iPage>0 );
723 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000724 }
725 }
drh637f3d82014-08-22 22:26:07 +0000726 p = p->pNext;
727 }while( p );
drh980b1a72006-08-16 16:42:48 +0000728 return SQLITE_OK;
729}
730
731/*
drhbf700f32007-03-31 02:36:44 +0000732** Clear the current cursor position.
733*/
danielk1977be51a652008-10-08 17:58:48 +0000734void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000735 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000736 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000737 pCur->pKey = 0;
738 pCur->eState = CURSOR_INVALID;
739}
740
741/*
danielk19773509a652009-07-06 18:56:13 +0000742** In this version of BtreeMoveto, pKey is a packed index record
743** such as is generated by the OP_MakeRecord opcode. Unpack the
744** record and then call BtreeMovetoUnpacked() to do the work.
745*/
746static int btreeMoveto(
747 BtCursor *pCur, /* Cursor open on the btree to be searched */
748 const void *pKey, /* Packed key if the btree is an index */
749 i64 nKey, /* Integer key for tables. Size of pKey for indices */
750 int bias, /* Bias search to the high end */
751 int *pRes /* Write search results here */
752){
753 int rc; /* Status code */
754 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000755 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000756 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000757
758 if( pKey ){
759 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000760 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
761 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
762 );
danielk19773509a652009-07-06 18:56:13 +0000763 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000764 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000765 if( pIdxKey->nField==0 ){
766 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
767 return SQLITE_CORRUPT_BKPT;
768 }
danielk19773509a652009-07-06 18:56:13 +0000769 }else{
770 pIdxKey = 0;
771 }
772 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000773 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000774 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000775 }
776 return rc;
777}
778
779/*
drh980b1a72006-08-16 16:42:48 +0000780** Restore the cursor to the position it was in (or as close to as possible)
781** when saveCursorPosition() was called. Note that this call deletes the
782** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000783** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000784** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000785*/
danielk197730548662009-07-09 05:07:37 +0000786static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000787 int rc;
drhd2f83132015-03-25 17:35:01 +0000788 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000789 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000790 assert( pCur->eState>=CURSOR_REQUIRESEEK );
791 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000792 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000793 }
drh980b1a72006-08-16 16:42:48 +0000794 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000795 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000796 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000797 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000798 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000799 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000800 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000801 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
802 pCur->eState = CURSOR_SKIPNEXT;
803 }
drh980b1a72006-08-16 16:42:48 +0000804 }
805 return rc;
806}
807
drha3460582008-07-11 21:02:53 +0000808#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000809 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000810 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000811 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000812
drha3460582008-07-11 21:02:53 +0000813/*
drh6848dad2014-08-22 23:33:03 +0000814** Determine whether or not a cursor has moved from the position where
815** it was last placed, or has been invalidated for any other reason.
816** Cursors can move when the row they are pointing at is deleted out
817** from under them, for example. Cursor might also move if a btree
818** is rebalanced.
drha3460582008-07-11 21:02:53 +0000819**
drh6848dad2014-08-22 23:33:03 +0000820** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000821**
drh6848dad2014-08-22 23:33:03 +0000822** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
823** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000824*/
drh6848dad2014-08-22 23:33:03 +0000825int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000826 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000827}
828
829/*
830** This routine restores a cursor back to its original position after it
831** has been moved by some outside activity (such as a btree rebalance or
832** a row having been deleted out from under the cursor).
833**
834** On success, the *pDifferentRow parameter is false if the cursor is left
835** pointing at exactly the same row. *pDifferntRow is the row the cursor
836** was pointing to has been deleted, forcing the cursor to point to some
837** nearby row.
838**
839** This routine should only be called for a cursor that just returned
840** TRUE from sqlite3BtreeCursorHasMoved().
841*/
842int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000843 int rc;
844
drh6848dad2014-08-22 23:33:03 +0000845 assert( pCur!=0 );
846 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000847 rc = restoreCursorPosition(pCur);
848 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000849 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000850 return rc;
851 }
drh606a3572015-03-25 18:29:10 +0000852 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000853 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000854 }else{
drh606a3572015-03-25 18:29:10 +0000855 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000856 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000857 }
858 return SQLITE_OK;
859}
860
drhf7854c72015-10-27 13:24:37 +0000861#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000862/*
drh0df57012015-08-14 15:05:55 +0000863** Provide hints to the cursor. The particular hint given (and the type
864** and number of the varargs parameters) is determined by the eHintType
865** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000866*/
drh0df57012015-08-14 15:05:55 +0000867void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000868 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000869}
drhf7854c72015-10-27 13:24:37 +0000870#endif
871
872/*
873** Provide flag hints to the cursor.
874*/
875void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
876 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
877 pCur->hints = x;
878}
879
drh28935362013-12-07 20:39:19 +0000880
danielk1977599fcba2004-11-08 07:13:13 +0000881#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000882/*
drha3152892007-05-05 11:48:52 +0000883** Given a page number of a regular database page, return the page
884** number for the pointer-map page that contains the entry for the
885** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000886**
887** Return 0 (not a valid page) for pgno==1 since there is
888** no pointer map associated with page 1. The integrity_check logic
889** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000890*/
danielk1977266664d2006-02-10 08:24:21 +0000891static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000892 int nPagesPerMapPage;
893 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000894 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000895 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000896 nPagesPerMapPage = (pBt->usableSize/5)+1;
897 iPtrMap = (pgno-2)/nPagesPerMapPage;
898 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000899 if( ret==PENDING_BYTE_PAGE(pBt) ){
900 ret++;
901 }
902 return ret;
903}
danielk1977a19df672004-11-03 11:37:07 +0000904
danielk1977afcdd022004-10-31 16:25:42 +0000905/*
danielk1977afcdd022004-10-31 16:25:42 +0000906** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000907**
908** This routine updates the pointer map entry for page number 'key'
909** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000910**
911** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
912** a no-op. If an error occurs, the appropriate error code is written
913** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000914*/
drh98add2e2009-07-20 17:11:49 +0000915static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000916 DbPage *pDbPage; /* The pointer map page */
917 u8 *pPtrmap; /* The pointer map data */
918 Pgno iPtrmap; /* The pointer map page number */
919 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000920 int rc; /* Return code from subfunctions */
921
922 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000923
drh1fee73e2007-08-29 04:00:57 +0000924 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000925 /* The master-journal page number must never be used as a pointer map page */
926 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
927
danielk1977ac11ee62005-01-15 12:45:51 +0000928 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000929 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000930 *pRC = SQLITE_CORRUPT_BKPT;
931 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000932 }
danielk1977266664d2006-02-10 08:24:21 +0000933 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000934 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000935 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000936 *pRC = rc;
937 return;
danielk1977afcdd022004-10-31 16:25:42 +0000938 }
danielk19778c666b12008-07-18 09:34:57 +0000939 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000940 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000941 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000942 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000943 }
drhfc243732011-05-17 15:21:56 +0000944 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000945 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000946
drh615ae552005-01-16 23:21:00 +0000947 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
948 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000949 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000950 if( rc==SQLITE_OK ){
951 pPtrmap[offset] = eType;
952 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000953 }
danielk1977afcdd022004-10-31 16:25:42 +0000954 }
955
drh4925a552009-07-07 11:39:58 +0000956ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000957 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000958}
959
960/*
961** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000962**
963** This routine retrieves the pointer map entry for page 'key', writing
964** the type and parent page number to *pEType and *pPgno respectively.
965** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000966*/
danielk1977aef0bf62005-12-30 16:28:01 +0000967static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000968 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000969 int iPtrmap; /* Pointer map page index */
970 u8 *pPtrmap; /* Pointer map page data */
971 int offset; /* Offset of entry in pointer map */
972 int rc;
973
drh1fee73e2007-08-29 04:00:57 +0000974 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000975
danielk1977266664d2006-02-10 08:24:21 +0000976 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000977 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000978 if( rc!=0 ){
979 return rc;
980 }
danielk19773b8a05f2007-03-19 17:44:26 +0000981 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000982
danielk19778c666b12008-07-18 09:34:57 +0000983 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000984 if( offset<0 ){
985 sqlite3PagerUnref(pDbPage);
986 return SQLITE_CORRUPT_BKPT;
987 }
988 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000989 assert( pEType!=0 );
990 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000991 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000992
danielk19773b8a05f2007-03-19 17:44:26 +0000993 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000994 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000995 return SQLITE_OK;
996}
997
danielk197785d90ca2008-07-19 14:25:15 +0000998#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000999 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001000 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001001 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001002#endif
danielk1977afcdd022004-10-31 16:25:42 +00001003
drh0d316a42002-08-11 20:10:47 +00001004/*
drh271efa52004-05-30 19:19:05 +00001005** Given a btree page and a cell index (0 means the first cell on
1006** the page, 1 means the second cell, and so forth) return a pointer
1007** to the cell content.
1008**
drhf44890a2015-06-27 03:58:15 +00001009** findCellPastPtr() does the same except it skips past the initial
1010** 4-byte child pointer found on interior pages, if there is one.
1011**
drh271efa52004-05-30 19:19:05 +00001012** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001013*/
drh1688c862008-07-18 02:44:17 +00001014#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001015 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001016#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001017 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001018
drh43605152004-05-29 21:46:49 +00001019
1020/*
drh5fa60512015-06-19 17:19:34 +00001021** This is common tail processing for btreeParseCellPtr() and
1022** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1023** on a single B-tree page. Make necessary adjustments to the CellInfo
1024** structure.
drh43605152004-05-29 21:46:49 +00001025*/
drh5fa60512015-06-19 17:19:34 +00001026static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1027 MemPage *pPage, /* Page containing the cell */
1028 u8 *pCell, /* Pointer to the cell text. */
1029 CellInfo *pInfo /* Fill in this structure */
1030){
1031 /* If the payload will not fit completely on the local page, we have
1032 ** to decide how much to store locally and how much to spill onto
1033 ** overflow pages. The strategy is to minimize the amount of unused
1034 ** space on overflow pages while keeping the amount of local storage
1035 ** in between minLocal and maxLocal.
1036 **
1037 ** Warning: changing the way overflow payload is distributed in any
1038 ** way will result in an incompatible file format.
1039 */
1040 int minLocal; /* Minimum amount of payload held locally */
1041 int maxLocal; /* Maximum amount of payload held locally */
1042 int surplus; /* Overflow payload available for local storage */
1043
1044 minLocal = pPage->minLocal;
1045 maxLocal = pPage->maxLocal;
1046 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1047 testcase( surplus==maxLocal );
1048 testcase( surplus==maxLocal+1 );
1049 if( surplus <= maxLocal ){
1050 pInfo->nLocal = (u16)surplus;
1051 }else{
1052 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001053 }
drh5fa60512015-06-19 17:19:34 +00001054 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1055 pInfo->nSize = pInfo->iOverflow + 4;
drh43605152004-05-29 21:46:49 +00001056}
1057
1058/*
drh5fa60512015-06-19 17:19:34 +00001059** The following routines are implementations of the MemPage.xParseCell()
1060** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001061**
drh5fa60512015-06-19 17:19:34 +00001062** Parse a cell content block and fill in the CellInfo structure.
1063**
1064** btreeParseCellPtr() => table btree leaf nodes
1065** btreeParseCellNoPayload() => table btree internal nodes
1066** btreeParseCellPtrIndex() => index btree nodes
1067**
1068** There is also a wrapper function btreeParseCell() that works for
1069** all MemPage types and that references the cell by index rather than
1070** by pointer.
drh43605152004-05-29 21:46:49 +00001071*/
drh5fa60512015-06-19 17:19:34 +00001072static void btreeParseCellPtrNoPayload(
1073 MemPage *pPage, /* Page containing the cell */
1074 u8 *pCell, /* Pointer to the cell text. */
1075 CellInfo *pInfo /* Fill in this structure */
1076){
1077 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1078 assert( pPage->leaf==0 );
1079 assert( pPage->noPayload );
1080 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001081#ifndef SQLITE_DEBUG
1082 UNUSED_PARAMETER(pPage);
1083#endif
drh5fa60512015-06-19 17:19:34 +00001084 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1085 pInfo->nPayload = 0;
1086 pInfo->nLocal = 0;
1087 pInfo->iOverflow = 0;
1088 pInfo->pPayload = 0;
1089 return;
1090}
danielk197730548662009-07-09 05:07:37 +00001091static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001092 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001093 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001094 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001095){
drh3e28ff52014-09-24 00:59:08 +00001096 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001097 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001098 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001099
drh1fee73e2007-08-29 04:00:57 +00001100 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001101 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001102 assert( pPage->intKeyLeaf || pPage->noPayload );
1103 assert( pPage->noPayload==0 );
1104 assert( pPage->intKeyLeaf );
1105 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001106 pIter = pCell;
1107
1108 /* The next block of code is equivalent to:
1109 **
1110 ** pIter += getVarint32(pIter, nPayload);
1111 **
1112 ** The code is inlined to avoid a function call.
1113 */
1114 nPayload = *pIter;
1115 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001116 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001117 nPayload &= 0x7f;
1118 do{
1119 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1120 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001121 }
drh56cb04e2015-06-19 18:24:37 +00001122 pIter++;
1123
1124 /* The next block of code is equivalent to:
1125 **
1126 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1127 **
1128 ** The code is inlined to avoid a function call.
1129 */
1130 iKey = *pIter;
1131 if( iKey>=0x80 ){
1132 u8 *pEnd = &pIter[7];
1133 iKey &= 0x7f;
1134 while(1){
1135 iKey = (iKey<<7) | (*++pIter & 0x7f);
1136 if( (*pIter)<0x80 ) break;
1137 if( pIter>=pEnd ){
1138 iKey = (iKey<<8) | *++pIter;
1139 break;
1140 }
1141 }
1142 }
1143 pIter++;
1144
1145 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001146 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001147 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001148 testcase( nPayload==pPage->maxLocal );
1149 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001150 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001151 /* This is the (easy) common case where the entire payload fits
1152 ** on the local page. No overflow is required.
1153 */
drhab1cc582014-09-23 21:25:19 +00001154 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1155 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001156 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001157 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001158 }else{
drh5fa60512015-06-19 17:19:34 +00001159 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001160 }
drh3aac2dd2004-04-26 14:10:20 +00001161}
drh5fa60512015-06-19 17:19:34 +00001162static void btreeParseCellPtrIndex(
1163 MemPage *pPage, /* Page containing the cell */
1164 u8 *pCell, /* Pointer to the cell text. */
1165 CellInfo *pInfo /* Fill in this structure */
1166){
1167 u8 *pIter; /* For scanning through pCell */
1168 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001169
drh5fa60512015-06-19 17:19:34 +00001170 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1171 assert( pPage->leaf==0 || pPage->leaf==1 );
1172 assert( pPage->intKeyLeaf==0 );
1173 assert( pPage->noPayload==0 );
1174 pIter = pCell + pPage->childPtrSize;
1175 nPayload = *pIter;
1176 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001177 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001178 nPayload &= 0x7f;
1179 do{
1180 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1181 }while( *(pIter)>=0x80 && pIter<pEnd );
1182 }
1183 pIter++;
1184 pInfo->nKey = nPayload;
1185 pInfo->nPayload = nPayload;
1186 pInfo->pPayload = pIter;
1187 testcase( nPayload==pPage->maxLocal );
1188 testcase( nPayload==pPage->maxLocal+1 );
1189 if( nPayload<=pPage->maxLocal ){
1190 /* This is the (easy) common case where the entire payload fits
1191 ** on the local page. No overflow is required.
1192 */
1193 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1194 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1195 pInfo->nLocal = (u16)nPayload;
1196 pInfo->iOverflow = 0;
1197 }else{
1198 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001199 }
1200}
danielk197730548662009-07-09 05:07:37 +00001201static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001202 MemPage *pPage, /* Page containing the cell */
1203 int iCell, /* The cell index. First cell is 0 */
1204 CellInfo *pInfo /* Fill in this structure */
1205){
drh5fa60512015-06-19 17:19:34 +00001206 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001207}
drh3aac2dd2004-04-26 14:10:20 +00001208
1209/*
drh5fa60512015-06-19 17:19:34 +00001210** The following routines are implementations of the MemPage.xCellSize
1211** method.
1212**
drh43605152004-05-29 21:46:49 +00001213** Compute the total number of bytes that a Cell needs in the cell
1214** data area of the btree-page. The return number includes the cell
1215** data header and the local payload, but not any overflow page or
1216** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001217**
drh5fa60512015-06-19 17:19:34 +00001218** cellSizePtrNoPayload() => table internal nodes
1219** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001220*/
danielk1977ae5558b2009-04-29 11:31:47 +00001221static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001222 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1223 u8 *pEnd; /* End mark for a varint */
1224 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001225
1226#ifdef SQLITE_DEBUG
1227 /* The value returned by this function should always be the same as
1228 ** the (CellInfo.nSize) value found by doing a full parse of the
1229 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1230 ** this function verifies that this invariant is not violated. */
1231 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001232 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001233#endif
1234
drh25ada072015-06-19 15:07:14 +00001235 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001236 nSize = *pIter;
1237 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001238 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001239 nSize &= 0x7f;
1240 do{
1241 nSize = (nSize<<7) | (*++pIter & 0x7f);
1242 }while( *(pIter)>=0x80 && pIter<pEnd );
1243 }
1244 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001245 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001246 /* pIter now points at the 64-bit integer key value, a variable length
1247 ** integer. The following block moves pIter to point at the first byte
1248 ** past the end of the key value. */
1249 pEnd = &pIter[9];
1250 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001251 }
drh0a45c272009-07-08 01:49:11 +00001252 testcase( nSize==pPage->maxLocal );
1253 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001254 if( nSize<=pPage->maxLocal ){
1255 nSize += (u32)(pIter - pCell);
1256 if( nSize<4 ) nSize = 4;
1257 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001258 int minLocal = pPage->minLocal;
1259 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001260 testcase( nSize==pPage->maxLocal );
1261 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001262 if( nSize>pPage->maxLocal ){
1263 nSize = minLocal;
1264 }
drh3e28ff52014-09-24 00:59:08 +00001265 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001266 }
drhdc41d602014-09-22 19:51:35 +00001267 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001268 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001269}
drh25ada072015-06-19 15:07:14 +00001270static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1271 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1272 u8 *pEnd; /* End mark for a varint */
1273
1274#ifdef SQLITE_DEBUG
1275 /* The value returned by this function should always be the same as
1276 ** the (CellInfo.nSize) value found by doing a full parse of the
1277 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1278 ** this function verifies that this invariant is not violated. */
1279 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001280 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001281#else
1282 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001283#endif
1284
1285 assert( pPage->childPtrSize==4 );
1286 pEnd = pIter + 9;
1287 while( (*pIter++)&0x80 && pIter<pEnd );
1288 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1289 return (u16)(pIter - pCell);
1290}
1291
drh0ee3dbe2009-10-16 15:05:18 +00001292
1293#ifdef SQLITE_DEBUG
1294/* This variation on cellSizePtr() is used inside of assert() statements
1295** only. */
drha9121e42008-02-19 14:59:35 +00001296static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001297 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001298}
danielk1977bc6ada42004-06-30 08:20:16 +00001299#endif
drh3b7511c2001-05-26 13:15:44 +00001300
danielk197779a40da2005-01-16 08:00:01 +00001301#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001302/*
danielk197726836652005-01-17 01:33:13 +00001303** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001304** to an overflow page, insert an entry into the pointer-map
1305** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001306*/
drh98add2e2009-07-20 17:11:49 +00001307static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001308 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001309 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001310 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001311 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001312 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001313 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001314 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001315 }
danielk1977ac11ee62005-01-15 12:45:51 +00001316}
danielk197779a40da2005-01-16 08:00:01 +00001317#endif
1318
danielk1977ac11ee62005-01-15 12:45:51 +00001319
drhda200cc2004-05-09 11:51:38 +00001320/*
drh72f82862001-05-24 21:06:34 +00001321** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001322** end of the page and all free space is collected into one
1323** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001324** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001325**
1326** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1327** b-tree page so that there are no freeblocks or fragment bytes, all
1328** unused bytes are contained in the unallocated space region, and all
1329** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001330*/
shane0af3f892008-11-12 04:55:34 +00001331static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001332 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001333 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001334 int hdr; /* Offset to the page header */
1335 int size; /* Size of a cell */
1336 int usableSize; /* Number of usable bytes on a page */
1337 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001338 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001339 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001340 unsigned char *data; /* The page data */
1341 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001342 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001343 int iCellFirst; /* First allowable cell index */
1344 int iCellLast; /* Last possible cell index */
1345
drh2af926b2001-05-15 00:39:25 +00001346
danielk19773b8a05f2007-03-19 17:44:26 +00001347 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001348 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001349 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001350 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001351 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001352 temp = 0;
1353 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001354 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001355 cellOffset = pPage->cellOffset;
1356 nCell = pPage->nCell;
1357 assert( nCell==get2byte(&data[hdr+3]) );
1358 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001359 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001360 iCellFirst = cellOffset + 2*nCell;
1361 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001362 for(i=0; i<nCell; i++){
1363 u8 *pAddr; /* The i-th cell pointer */
1364 pAddr = &data[cellOffset + i*2];
1365 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001366 testcase( pc==iCellFirst );
1367 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001368 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001369 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001370 */
1371 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001372 return SQLITE_CORRUPT_BKPT;
1373 }
drh17146622009-07-07 17:38:38 +00001374 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001375 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001376 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001377 if( cbrk<iCellFirst || pc+size>usableSize ){
1378 return SQLITE_CORRUPT_BKPT;
1379 }
drh7157e1d2009-07-09 13:25:32 +00001380 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001381 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001382 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001383 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001384 if( temp==0 ){
1385 int x;
1386 if( cbrk==pc ) continue;
1387 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1388 x = get2byte(&data[hdr+5]);
1389 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1390 src = temp;
1391 }
1392 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001393 }
drh17146622009-07-07 17:38:38 +00001394 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001395 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001396 data[hdr+1] = 0;
1397 data[hdr+2] = 0;
1398 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001399 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001400 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001401 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001402 return SQLITE_CORRUPT_BKPT;
1403 }
shane0af3f892008-11-12 04:55:34 +00001404 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001405}
1406
drha059ad02001-04-17 20:09:11 +00001407/*
dan8e9ba0c2014-10-14 17:27:04 +00001408** Search the free-list on page pPg for space to store a cell nByte bytes in
1409** size. If one can be found, return a pointer to the space and remove it
1410** from the free-list.
1411**
1412** If no suitable space can be found on the free-list, return NULL.
1413**
drhba0f9992014-10-30 20:48:44 +00001414** This function may detect corruption within pPg. If corruption is
1415** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001416**
drhb7580e82015-06-25 18:36:13 +00001417** Slots on the free list that are between 1 and 3 bytes larger than nByte
1418** will be ignored if adding the extra space to the fragmentation count
1419** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001420*/
drhb7580e82015-06-25 18:36:13 +00001421static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001422 const int hdr = pPg->hdrOffset;
1423 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001424 int iAddr = hdr + 1;
1425 int pc = get2byte(&aData[iAddr]);
1426 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001427 int usableSize = pPg->pBt->usableSize;
1428
drhb7580e82015-06-25 18:36:13 +00001429 assert( pc>0 );
1430 do{
dan8e9ba0c2014-10-14 17:27:04 +00001431 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001432 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1433 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001434 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001435 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001436 return 0;
1437 }
drh113762a2014-11-19 16:36:25 +00001438 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1439 ** freeblock form a big-endian integer which is the size of the freeblock
1440 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001441 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001442 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001443 testcase( x==4 );
1444 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001445 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1446 *pRc = SQLITE_CORRUPT_BKPT;
1447 return 0;
1448 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001449 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1450 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001451 if( aData[hdr+7]>57 ) return 0;
1452
dan8e9ba0c2014-10-14 17:27:04 +00001453 /* Remove the slot from the free-list. Update the number of
1454 ** fragmented bytes within the page. */
1455 memcpy(&aData[iAddr], &aData[pc], 2);
1456 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001457 }else{
1458 /* The slot remains on the free-list. Reduce its size to account
1459 ** for the portion used by the new allocation. */
1460 put2byte(&aData[pc+2], x);
1461 }
1462 return &aData[pc + x];
1463 }
drhb7580e82015-06-25 18:36:13 +00001464 iAddr = pc;
1465 pc = get2byte(&aData[pc]);
1466 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001467
1468 return 0;
1469}
1470
1471/*
danielk19776011a752009-04-01 16:25:32 +00001472** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001473** as the first argument. Write into *pIdx the index into pPage->aData[]
1474** of the first byte of allocated space. Return either SQLITE_OK or
1475** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001476**
drh0a45c272009-07-08 01:49:11 +00001477** The caller guarantees that there is sufficient space to make the
1478** allocation. This routine might need to defragment in order to bring
1479** all the space together, however. This routine will avoid using
1480** the first two bytes past the cell pointer area since presumably this
1481** allocation is being made in order to insert a new cell, so we will
1482** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001483*/
drh0a45c272009-07-08 01:49:11 +00001484static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001485 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1486 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001487 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001488 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001489 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001490
danielk19773b8a05f2007-03-19 17:44:26 +00001491 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001492 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001493 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001494 assert( nByte>=0 ); /* Minimum cell size is 4 */
1495 assert( pPage->nFree>=nByte );
1496 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001497 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001498
drh0a45c272009-07-08 01:49:11 +00001499 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1500 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001501 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001502 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1503 ** and the reserved space is zero (the usual value for reserved space)
1504 ** then the cell content offset of an empty page wants to be 65536.
1505 ** However, that integer is too large to be stored in a 2-byte unsigned
1506 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001507 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001508 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001509 if( gap>top ){
1510 if( top==0 && pPage->pBt->usableSize==65536 ){
1511 top = 65536;
1512 }else{
1513 return SQLITE_CORRUPT_BKPT;
drh9e572e62004-04-23 23:43:10 +00001514 }
1515 }
drh43605152004-05-29 21:46:49 +00001516
drh4c04f3c2014-08-20 11:56:14 +00001517 /* If there is enough space between gap and top for one more cell pointer
1518 ** array entry offset, and if the freelist is not empty, then search the
1519 ** freelist looking for a free slot big enough to satisfy the request.
1520 */
drh5e2f8b92001-05-28 00:41:15 +00001521 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001522 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001523 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001524 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001525 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001526 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001527 assert( pSpace>=data && (pSpace - data)<65536 );
1528 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001529 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001530 }else if( rc ){
1531 return rc;
drh9e572e62004-04-23 23:43:10 +00001532 }
1533 }
drh43605152004-05-29 21:46:49 +00001534
drh4c04f3c2014-08-20 11:56:14 +00001535 /* The request could not be fulfilled using a freelist slot. Check
1536 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001537 */
1538 testcase( gap+2+nByte==top );
1539 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001540 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001541 rc = defragmentPage(pPage);
1542 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001543 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001544 assert( gap+nByte<=top );
1545 }
1546
1547
drh43605152004-05-29 21:46:49 +00001548 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001549 ** and the cell content area. The btreeInitPage() call has already
1550 ** validated the freelist. Given that the freelist is valid, there
1551 ** is no way that the allocation can extend off the end of the page.
1552 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001553 */
drh0a45c272009-07-08 01:49:11 +00001554 top -= nByte;
drh43605152004-05-29 21:46:49 +00001555 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001556 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001557 *pIdx = top;
1558 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001559}
1560
1561/*
drh9e572e62004-04-23 23:43:10 +00001562** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001563** The first byte of the new free block is pPage->aData[iStart]
1564** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001565**
drh5f5c7532014-08-20 17:56:27 +00001566** Adjacent freeblocks are coalesced.
1567**
1568** Note that even though the freeblock list was checked by btreeInitPage(),
1569** that routine will not detect overlap between cells or freeblocks. Nor
1570** does it detect cells or freeblocks that encrouch into the reserved bytes
1571** at the end of the page. So do additional corruption checks inside this
1572** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001573*/
drh5f5c7532014-08-20 17:56:27 +00001574static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001575 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001576 u16 iFreeBlk; /* Address of the next freeblock */
1577 u8 hdr; /* Page header size. 0 or 100 */
1578 u8 nFrag = 0; /* Reduction in fragmentation */
1579 u16 iOrigSize = iSize; /* Original value of iSize */
1580 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1581 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001582 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001583
drh9e572e62004-04-23 23:43:10 +00001584 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001585 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001586 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001587 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001588 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001589 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001590 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001591
drh5f5c7532014-08-20 17:56:27 +00001592 /* Overwrite deleted information with zeros when the secure_delete
1593 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001594 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001595 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001596 }
drhfcce93f2006-02-22 03:08:32 +00001597
drh5f5c7532014-08-20 17:56:27 +00001598 /* The list of freeblocks must be in ascending order. Find the
1599 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001600 */
drh43605152004-05-29 21:46:49 +00001601 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001602 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001603 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1604 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1605 }else{
1606 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1607 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1608 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001609 }
drh7bc4c452014-08-20 18:43:44 +00001610 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1611 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1612
1613 /* At this point:
1614 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001615 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001616 **
1617 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1618 */
1619 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1620 nFrag = iFreeBlk - iEnd;
1621 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1622 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001623 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001624 iSize = iEnd - iStart;
1625 iFreeBlk = get2byte(&data[iFreeBlk]);
1626 }
1627
drh3f387402014-09-24 01:23:00 +00001628 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1629 ** pointer in the page header) then check to see if iStart should be
1630 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001631 */
1632 if( iPtr>hdr+1 ){
1633 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1634 if( iPtrEnd+3>=iStart ){
1635 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1636 nFrag += iStart - iPtrEnd;
1637 iSize = iEnd - iPtr;
1638 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001639 }
drh9e572e62004-04-23 23:43:10 +00001640 }
drh7bc4c452014-08-20 18:43:44 +00001641 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1642 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001643 }
drh7bc4c452014-08-20 18:43:44 +00001644 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001645 /* The new freeblock is at the beginning of the cell content area,
1646 ** so just extend the cell content area rather than create another
1647 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001648 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001649 put2byte(&data[hdr+1], iFreeBlk);
1650 put2byte(&data[hdr+5], iEnd);
1651 }else{
1652 /* Insert the new freeblock into the freelist */
1653 put2byte(&data[iPtr], iStart);
1654 put2byte(&data[iStart], iFreeBlk);
1655 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001656 }
drh5f5c7532014-08-20 17:56:27 +00001657 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001658 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001659}
1660
1661/*
drh271efa52004-05-30 19:19:05 +00001662** Decode the flags byte (the first byte of the header) for a page
1663** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001664**
1665** Only the following combinations are supported. Anything different
1666** indicates a corrupt database files:
1667**
1668** PTF_ZERODATA
1669** PTF_ZERODATA | PTF_LEAF
1670** PTF_LEAFDATA | PTF_INTKEY
1671** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001672*/
drh44845222008-07-17 18:39:57 +00001673static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001674 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001675
1676 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001677 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001678 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001679 flagByte &= ~PTF_LEAF;
1680 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001681 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001682 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001683 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001684 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1685 ** table b-tree page. */
1686 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1687 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1688 ** table b-tree page. */
1689 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001690 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001691 if( pPage->leaf ){
1692 pPage->intKeyLeaf = 1;
1693 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001694 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001695 }else{
1696 pPage->intKeyLeaf = 0;
1697 pPage->noPayload = 1;
1698 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001699 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001700 }
drh271efa52004-05-30 19:19:05 +00001701 pPage->maxLocal = pBt->maxLeaf;
1702 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001703 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001704 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1705 ** index b-tree page. */
1706 assert( (PTF_ZERODATA)==2 );
1707 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1708 ** index b-tree page. */
1709 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001710 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001711 pPage->intKeyLeaf = 0;
1712 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001713 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001714 pPage->maxLocal = pBt->maxLocal;
1715 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001716 }else{
drhfdab0262014-11-20 15:30:50 +00001717 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1718 ** an error. */
drh44845222008-07-17 18:39:57 +00001719 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001720 }
drhc9166342012-01-05 23:32:06 +00001721 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001722 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001723}
1724
1725/*
drh7e3b0a02001-04-28 16:52:40 +00001726** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001727**
1728** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001729** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001730** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1731** guarantee that the page is well-formed. It only shows that
1732** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001733*/
danielk197730548662009-07-09 05:07:37 +00001734static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001735
danielk197771d5d2c2008-09-29 11:49:47 +00001736 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001737 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001738 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001739 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001740 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1741 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001742
1743 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001744 u16 pc; /* Address of a freeblock within pPage->aData[] */
1745 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001746 u8 *data; /* Equal to pPage->aData */
1747 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001748 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001749 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001750 int nFree; /* Number of unused bytes on the page */
1751 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001752 int iCellFirst; /* First allowable cell or freeblock offset */
1753 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001754
1755 pBt = pPage->pBt;
1756
danielk1977eaa06f62008-09-18 17:34:44 +00001757 hdr = pPage->hdrOffset;
1758 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001759 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1760 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001761 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001762 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1763 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001764 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001765 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001766 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001767 pPage->aDataEnd = &data[usableSize];
1768 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001769 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001770 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1771 ** the start of the cell content area. A zero value for this integer is
1772 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001773 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001774 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1775 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001776 pPage->nCell = get2byte(&data[hdr+3]);
1777 if( pPage->nCell>MX_CELL(pBt) ){
1778 /* To many cells for a single page. The page must be corrupt */
1779 return SQLITE_CORRUPT_BKPT;
1780 }
drhb908d762009-07-08 16:54:40 +00001781 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001782 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1783 ** possible for a root page of a table that contains no rows) then the
1784 ** offset to the cell content area will equal the page size minus the
1785 ** bytes of reserved space. */
1786 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001787
shane5eff7cf2009-08-10 03:57:58 +00001788 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001789 ** of page when parsing a cell.
1790 **
1791 ** The following block of code checks early to see if a cell extends
1792 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1793 ** returned if it does.
1794 */
drh0a45c272009-07-08 01:49:11 +00001795 iCellFirst = cellOffset + 2*pPage->nCell;
1796 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001797 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001798 int i; /* Index into the cell pointer array */
1799 int sz; /* Size of a cell */
1800
drh69e931e2009-06-03 21:04:35 +00001801 if( !pPage->leaf ) iCellLast--;
1802 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001803 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001804 testcase( pc==iCellFirst );
1805 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001806 if( pc<iCellFirst || pc>iCellLast ){
1807 return SQLITE_CORRUPT_BKPT;
1808 }
drh25ada072015-06-19 15:07:14 +00001809 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001810 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001811 if( pc+sz>usableSize ){
1812 return SQLITE_CORRUPT_BKPT;
1813 }
1814 }
drh0a45c272009-07-08 01:49:11 +00001815 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001816 }
drh69e931e2009-06-03 21:04:35 +00001817
drhfdab0262014-11-20 15:30:50 +00001818 /* Compute the total free space on the page
1819 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1820 ** start of the first freeblock on the page, or is zero if there are no
1821 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001822 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001823 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001824 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001825 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001826 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001827 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1828 ** always be at least one cell before the first freeblock.
1829 **
1830 ** Or, the freeblock is off the end of the page
1831 */
danielk1977eaa06f62008-09-18 17:34:44 +00001832 return SQLITE_CORRUPT_BKPT;
1833 }
1834 next = get2byte(&data[pc]);
1835 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001836 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1837 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001838 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001839 return SQLITE_CORRUPT_BKPT;
1840 }
shane85095702009-06-15 16:27:08 +00001841 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001842 pc = next;
1843 }
danielk197793c829c2009-06-03 17:26:17 +00001844
1845 /* At this point, nFree contains the sum of the offset to the start
1846 ** of the cell-content area plus the number of free bytes within
1847 ** the cell-content area. If this is greater than the usable-size
1848 ** of the page, then the page must be corrupted. This check also
1849 ** serves to verify that the offset to the start of the cell-content
1850 ** area, according to the page header, lies within the page.
1851 */
1852 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001853 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001854 }
shane5eff7cf2009-08-10 03:57:58 +00001855 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001856 pPage->isInit = 1;
1857 }
drh9e572e62004-04-23 23:43:10 +00001858 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001859}
1860
1861/*
drh8b2f49b2001-06-08 00:21:52 +00001862** Set up a raw page so that it looks like a database page holding
1863** no entries.
drhbd03cae2001-06-02 02:40:57 +00001864*/
drh9e572e62004-04-23 23:43:10 +00001865static void zeroPage(MemPage *pPage, int flags){
1866 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001867 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001868 u8 hdr = pPage->hdrOffset;
1869 u16 first;
drh9e572e62004-04-23 23:43:10 +00001870
danielk19773b8a05f2007-03-19 17:44:26 +00001871 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001872 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1873 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001874 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001875 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001876 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001877 memset(&data[hdr], 0, pBt->usableSize - hdr);
1878 }
drh1bd10f82008-12-10 21:19:56 +00001879 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001880 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001881 memset(&data[hdr+1], 0, 4);
1882 data[hdr+7] = 0;
1883 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001884 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001885 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001886 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001887 pPage->aDataEnd = &data[pBt->usableSize];
1888 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001889 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001890 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001891 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1892 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001893 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001894 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001895}
1896
drh897a8202008-09-18 01:08:15 +00001897
1898/*
1899** Convert a DbPage obtained from the pager into a MemPage used by
1900** the btree layer.
1901*/
1902static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1903 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001904 if( pgno!=pPage->pgno ){
1905 pPage->aData = sqlite3PagerGetData(pDbPage);
1906 pPage->pDbPage = pDbPage;
1907 pPage->pBt = pBt;
1908 pPage->pgno = pgno;
1909 pPage->hdrOffset = pgno==1 ? 100 : 0;
1910 }
1911 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001912 return pPage;
1913}
1914
drhbd03cae2001-06-02 02:40:57 +00001915/*
drh3aac2dd2004-04-26 14:10:20 +00001916** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001917** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001918**
drh7e8c6f12015-05-28 03:28:27 +00001919** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1920** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001921** to fetch the content. Just fill in the content with zeros for now.
1922** If in the future we call sqlite3PagerWrite() on this page, that
1923** means we have started to be concerned about content and the disk
1924** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001925*/
danielk197730548662009-07-09 05:07:37 +00001926static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001927 BtShared *pBt, /* The btree */
1928 Pgno pgno, /* Number of the page to fetch */
1929 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001930 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001931){
drh3aac2dd2004-04-26 14:10:20 +00001932 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001933 DbPage *pDbPage;
1934
drhb00fc3b2013-08-21 23:42:32 +00001935 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001936 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001937 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001938 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001939 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001940 return SQLITE_OK;
1941}
1942
1943/*
danielk1977bea2a942009-01-20 17:06:27 +00001944** Retrieve a page from the pager cache. If the requested page is not
1945** already in the pager cache return NULL. Initialize the MemPage.pBt and
1946** MemPage.aData elements if needed.
1947*/
1948static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1949 DbPage *pDbPage;
1950 assert( sqlite3_mutex_held(pBt->mutex) );
1951 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1952 if( pDbPage ){
1953 return btreePageFromDbPage(pDbPage, pgno, pBt);
1954 }
1955 return 0;
1956}
1957
1958/*
danielk197789d40042008-11-17 14:20:56 +00001959** Return the size of the database file in pages. If there is any kind of
1960** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001961*/
drhb1299152010-03-30 22:58:33 +00001962static Pgno btreePagecount(BtShared *pBt){
1963 return pBt->nPage;
1964}
1965u32 sqlite3BtreeLastPage(Btree *p){
1966 assert( sqlite3BtreeHoldsMutex(p) );
1967 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001968 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001969}
1970
1971/*
drh28f58dd2015-06-27 19:45:03 +00001972** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001973**
drh15a00212015-06-27 20:55:00 +00001974** If pCur!=0 then the page is being fetched as part of a moveToChild()
1975** call. Do additional sanity checking on the page in this case.
1976** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001977**
1978** The page is fetched as read-write unless pCur is not NULL and is
1979** a read-only cursor.
1980**
1981** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001982** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001983*/
1984static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001985 BtShared *pBt, /* The database file */
1986 Pgno pgno, /* Number of the page to get */
1987 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001988 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1989 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001990){
1991 int rc;
drh28f58dd2015-06-27 19:45:03 +00001992 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001993 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001994 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1995 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001996 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001997
danba3cbf32010-06-30 04:29:03 +00001998 if( pgno>btreePagecount(pBt) ){
1999 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002000 goto getAndInitPage_error;
2001 }
drh9584f582015-11-04 20:22:37 +00002002 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002003 if( rc ){
2004 goto getAndInitPage_error;
2005 }
drh8dd1c252015-11-04 22:31:02 +00002006 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002007 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002008 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002009 rc = btreeInitPage(*ppPage);
2010 if( rc!=SQLITE_OK ){
2011 releasePage(*ppPage);
2012 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002013 }
drhee696e22004-08-30 16:52:17 +00002014 }
drh8dd1c252015-11-04 22:31:02 +00002015 assert( (*ppPage)->pgno==pgno );
2016 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002017
drh15a00212015-06-27 20:55:00 +00002018 /* If obtaining a child page for a cursor, we must verify that the page is
2019 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002020 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002021 rc = SQLITE_CORRUPT_BKPT;
2022 releasePage(*ppPage);
2023 goto getAndInitPage_error;
2024 }
drh28f58dd2015-06-27 19:45:03 +00002025 return SQLITE_OK;
2026
2027getAndInitPage_error:
2028 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002029 testcase( pgno==0 );
2030 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002031 return rc;
2032}
2033
2034/*
drh3aac2dd2004-04-26 14:10:20 +00002035** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002036** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002037*/
drhbbf0f862015-06-27 14:59:26 +00002038static void releasePageNotNull(MemPage *pPage){
2039 assert( pPage->aData );
2040 assert( pPage->pBt );
2041 assert( pPage->pDbPage!=0 );
2042 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2043 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2044 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2045 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002046}
drh3aac2dd2004-04-26 14:10:20 +00002047static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002048 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002049}
2050
2051/*
drh7e8c6f12015-05-28 03:28:27 +00002052** Get an unused page.
2053**
2054** This works just like btreeGetPage() with the addition:
2055**
2056** * If the page is already in use for some other purpose, immediately
2057** release it and return an SQLITE_CURRUPT error.
2058** * Make sure the isInit flag is clear
2059*/
2060static int btreeGetUnusedPage(
2061 BtShared *pBt, /* The btree */
2062 Pgno pgno, /* Number of the page to fetch */
2063 MemPage **ppPage, /* Return the page in this parameter */
2064 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2065){
2066 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2067 if( rc==SQLITE_OK ){
2068 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2069 releasePage(*ppPage);
2070 *ppPage = 0;
2071 return SQLITE_CORRUPT_BKPT;
2072 }
2073 (*ppPage)->isInit = 0;
2074 }else{
2075 *ppPage = 0;
2076 }
2077 return rc;
2078}
2079
drha059ad02001-04-17 20:09:11 +00002080
2081/*
drha6abd042004-06-09 17:37:22 +00002082** During a rollback, when the pager reloads information into the cache
2083** so that the cache is restored to its original state at the start of
2084** the transaction, for each page restored this routine is called.
2085**
2086** This routine needs to reset the extra data section at the end of the
2087** page to agree with the restored data.
2088*/
danielk1977eaa06f62008-09-18 17:34:44 +00002089static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002090 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002091 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002092 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002093 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002094 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002095 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002096 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002097 /* pPage might not be a btree page; it might be an overflow page
2098 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002099 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002100 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002101 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002102 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002103 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002104 }
drha6abd042004-06-09 17:37:22 +00002105 }
2106}
2107
2108/*
drhe5fe6902007-12-07 18:55:28 +00002109** Invoke the busy handler for a btree.
2110*/
danielk19771ceedd32008-11-19 10:22:33 +00002111static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002112 BtShared *pBt = (BtShared*)pArg;
2113 assert( pBt->db );
2114 assert( sqlite3_mutex_held(pBt->db->mutex) );
2115 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2116}
2117
2118/*
drhad3e0102004-09-03 23:32:18 +00002119** Open a database file.
2120**
drh382c0242001-10-06 16:33:02 +00002121** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002122** then an ephemeral database is created. The ephemeral database might
2123** be exclusively in memory, or it might use a disk-based memory cache.
2124** Either way, the ephemeral database will be automatically deleted
2125** when sqlite3BtreeClose() is called.
2126**
drhe53831d2007-08-17 01:14:38 +00002127** If zFilename is ":memory:" then an in-memory database is created
2128** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002129**
drh33f111d2012-01-17 15:29:14 +00002130** The "flags" parameter is a bitmask that might contain bits like
2131** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002132**
drhc47fd8e2009-04-30 13:30:32 +00002133** If the database is already opened in the same database connection
2134** and we are in shared cache mode, then the open will fail with an
2135** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2136** objects in the same database connection since doing so will lead
2137** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002138*/
drh23e11ca2004-05-04 17:27:28 +00002139int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002140 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002141 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002142 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002143 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002144 int flags, /* Options */
2145 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002146){
drh7555d8e2009-03-20 13:15:30 +00002147 BtShared *pBt = 0; /* Shared part of btree structure */
2148 Btree *p; /* Handle to return */
2149 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2150 int rc = SQLITE_OK; /* Result code from this function */
2151 u8 nReserve; /* Byte of unused space on each page */
2152 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002153
drh75c014c2010-08-30 15:02:28 +00002154 /* True if opening an ephemeral, temporary database */
2155 const int isTempDb = zFilename==0 || zFilename[0]==0;
2156
danielk1977aef0bf62005-12-30 16:28:01 +00002157 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002158 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002159 */
drhb0a7c9c2010-12-06 21:09:59 +00002160#ifdef SQLITE_OMIT_MEMORYDB
2161 const int isMemdb = 0;
2162#else
2163 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002164 || (isTempDb && sqlite3TempInMemory(db))
2165 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002166#endif
2167
drhe5fe6902007-12-07 18:55:28 +00002168 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002169 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002170 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002171 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2172
2173 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2174 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2175
2176 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2177 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002178
drh75c014c2010-08-30 15:02:28 +00002179 if( isMemdb ){
2180 flags |= BTREE_MEMORY;
2181 }
2182 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2183 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2184 }
drh17435752007-08-16 04:30:38 +00002185 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002186 if( !p ){
2187 return SQLITE_NOMEM;
2188 }
2189 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002190 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002191#ifndef SQLITE_OMIT_SHARED_CACHE
2192 p->lock.pBtree = p;
2193 p->lock.iTable = 1;
2194#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002195
drh198bf392006-01-06 21:52:49 +00002196#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002197 /*
2198 ** If this Btree is a candidate for shared cache, try to find an
2199 ** existing BtShared object that we can share with
2200 */
drh4ab9d252012-05-26 20:08:49 +00002201 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002202 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002203 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002204 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002205 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002206 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002207
drhff0587c2007-08-29 17:43:19 +00002208 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002209 if( !zFullPathname ){
2210 sqlite3_free(p);
2211 return SQLITE_NOMEM;
2212 }
drhafc8b7f2012-05-26 18:06:38 +00002213 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002214 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002215 }else{
2216 rc = sqlite3OsFullPathname(pVfs, zFilename,
2217 nFullPathname, zFullPathname);
2218 if( rc ){
2219 sqlite3_free(zFullPathname);
2220 sqlite3_free(p);
2221 return rc;
2222 }
drh070ad6b2011-11-17 11:43:19 +00002223 }
drh30ddce62011-10-15 00:16:30 +00002224#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002225 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2226 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002227 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002228 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002229#endif
drh78f82d12008-09-02 00:52:52 +00002230 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002231 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002232 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002233 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002234 int iDb;
2235 for(iDb=db->nDb-1; iDb>=0; iDb--){
2236 Btree *pExisting = db->aDb[iDb].pBt;
2237 if( pExisting && pExisting->pBt==pBt ){
2238 sqlite3_mutex_leave(mutexShared);
2239 sqlite3_mutex_leave(mutexOpen);
2240 sqlite3_free(zFullPathname);
2241 sqlite3_free(p);
2242 return SQLITE_CONSTRAINT;
2243 }
2244 }
drhff0587c2007-08-29 17:43:19 +00002245 p->pBt = pBt;
2246 pBt->nRef++;
2247 break;
2248 }
2249 }
2250 sqlite3_mutex_leave(mutexShared);
2251 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002252 }
drhff0587c2007-08-29 17:43:19 +00002253#ifdef SQLITE_DEBUG
2254 else{
2255 /* In debug mode, we mark all persistent databases as sharable
2256 ** even when they are not. This exercises the locking code and
2257 ** gives more opportunity for asserts(sqlite3_mutex_held())
2258 ** statements to find locking problems.
2259 */
2260 p->sharable = 1;
2261 }
2262#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002263 }
2264#endif
drha059ad02001-04-17 20:09:11 +00002265 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002266 /*
2267 ** The following asserts make sure that structures used by the btree are
2268 ** the right size. This is to guard against size changes that result
2269 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002270 */
drh062cf272015-03-23 19:03:51 +00002271 assert( sizeof(i64)==8 );
2272 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002273 assert( sizeof(u32)==4 );
2274 assert( sizeof(u16)==2 );
2275 assert( sizeof(Pgno)==4 );
2276
2277 pBt = sqlite3MallocZero( sizeof(*pBt) );
2278 if( pBt==0 ){
2279 rc = SQLITE_NOMEM;
2280 goto btree_open_out;
2281 }
danielk197771d5d2c2008-09-29 11:49:47 +00002282 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002283 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002284 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002285 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002286 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2287 }
2288 if( rc!=SQLITE_OK ){
2289 goto btree_open_out;
2290 }
shanehbd2aaf92010-09-01 02:38:21 +00002291 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002292 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002293 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002294 p->pBt = pBt;
2295
drhe53831d2007-08-17 01:14:38 +00002296 pBt->pCursor = 0;
2297 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002298 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002299#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002300 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002301#endif
drh113762a2014-11-19 16:36:25 +00002302 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2303 ** determined by the 2-byte integer located at an offset of 16 bytes from
2304 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002305 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002306 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2307 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002308 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002309#ifndef SQLITE_OMIT_AUTOVACUUM
2310 /* If the magic name ":memory:" will create an in-memory database, then
2311 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2312 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2313 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2314 ** regular file-name. In this case the auto-vacuum applies as per normal.
2315 */
2316 if( zFilename && !isMemdb ){
2317 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2318 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2319 }
2320#endif
2321 nReserve = 0;
2322 }else{
drh113762a2014-11-19 16:36:25 +00002323 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2324 ** determined by the one-byte unsigned integer found at an offset of 20
2325 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002326 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002327 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002328#ifndef SQLITE_OMIT_AUTOVACUUM
2329 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2330 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2331#endif
2332 }
drhfa9601a2009-06-18 17:22:39 +00002333 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002334 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002335 pBt->usableSize = pBt->pageSize - nReserve;
2336 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002337
2338#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2339 /* Add the new BtShared object to the linked list sharable BtShareds.
2340 */
2341 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002342 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002343 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002344 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002345 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002346 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002347 if( pBt->mutex==0 ){
2348 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002349 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002350 goto btree_open_out;
2351 }
drhff0587c2007-08-29 17:43:19 +00002352 }
drhe53831d2007-08-17 01:14:38 +00002353 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002354 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2355 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002356 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002357 }
drheee46cf2004-11-06 00:02:48 +00002358#endif
drh90f5ecb2004-07-22 01:19:35 +00002359 }
danielk1977aef0bf62005-12-30 16:28:01 +00002360
drhcfed7bc2006-03-13 14:28:05 +00002361#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002362 /* If the new Btree uses a sharable pBtShared, then link the new
2363 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002364 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002365 */
drhe53831d2007-08-17 01:14:38 +00002366 if( p->sharable ){
2367 int i;
2368 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002369 for(i=0; i<db->nDb; i++){
2370 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002371 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2372 if( p->pBt<pSib->pBt ){
2373 p->pNext = pSib;
2374 p->pPrev = 0;
2375 pSib->pPrev = p;
2376 }else{
drhabddb0c2007-08-20 13:14:28 +00002377 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002378 pSib = pSib->pNext;
2379 }
2380 p->pNext = pSib->pNext;
2381 p->pPrev = pSib;
2382 if( p->pNext ){
2383 p->pNext->pPrev = p;
2384 }
2385 pSib->pNext = p;
2386 }
2387 break;
2388 }
2389 }
danielk1977aef0bf62005-12-30 16:28:01 +00002390 }
danielk1977aef0bf62005-12-30 16:28:01 +00002391#endif
2392 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002393
2394btree_open_out:
2395 if( rc!=SQLITE_OK ){
2396 if( pBt && pBt->pPager ){
2397 sqlite3PagerClose(pBt->pPager);
2398 }
drh17435752007-08-16 04:30:38 +00002399 sqlite3_free(pBt);
2400 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002401 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002402 }else{
2403 /* If the B-Tree was successfully opened, set the pager-cache size to the
2404 ** default value. Except, when opening on an existing shared pager-cache,
2405 ** do not change the pager-cache size.
2406 */
2407 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2408 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2409 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002410 }
drh7555d8e2009-03-20 13:15:30 +00002411 if( mutexOpen ){
2412 assert( sqlite3_mutex_held(mutexOpen) );
2413 sqlite3_mutex_leave(mutexOpen);
2414 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002415 return rc;
drha059ad02001-04-17 20:09:11 +00002416}
2417
2418/*
drhe53831d2007-08-17 01:14:38 +00002419** Decrement the BtShared.nRef counter. When it reaches zero,
2420** remove the BtShared structure from the sharing list. Return
2421** true if the BtShared.nRef counter reaches zero and return
2422** false if it is still positive.
2423*/
2424static int removeFromSharingList(BtShared *pBt){
2425#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002426 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002427 BtShared *pList;
2428 int removed = 0;
2429
drhd677b3d2007-08-20 22:48:41 +00002430 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002431 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002432 sqlite3_mutex_enter(pMaster);
2433 pBt->nRef--;
2434 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002435 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2436 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002437 }else{
drh78f82d12008-09-02 00:52:52 +00002438 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002439 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002440 pList=pList->pNext;
2441 }
drh34004ce2008-07-11 16:15:17 +00002442 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002443 pList->pNext = pBt->pNext;
2444 }
2445 }
drh3285db22007-09-03 22:00:39 +00002446 if( SQLITE_THREADSAFE ){
2447 sqlite3_mutex_free(pBt->mutex);
2448 }
drhe53831d2007-08-17 01:14:38 +00002449 removed = 1;
2450 }
2451 sqlite3_mutex_leave(pMaster);
2452 return removed;
2453#else
2454 return 1;
2455#endif
2456}
2457
2458/*
drhf7141992008-06-19 00:16:08 +00002459** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002460** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2461** pointer.
drhf7141992008-06-19 00:16:08 +00002462*/
2463static void allocateTempSpace(BtShared *pBt){
2464 if( !pBt->pTmpSpace ){
2465 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002466
2467 /* One of the uses of pBt->pTmpSpace is to format cells before
2468 ** inserting them into a leaf page (function fillInCell()). If
2469 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2470 ** by the various routines that manipulate binary cells. Which
2471 ** can mean that fillInCell() only initializes the first 2 or 3
2472 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2473 ** it into a database page. This is not actually a problem, but it
2474 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2475 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002476 ** zero the first 4 bytes of temp space here.
2477 **
2478 ** Also: Provide four bytes of initialized space before the
2479 ** beginning of pTmpSpace as an area available to prepend the
2480 ** left-child pointer to the beginning of a cell.
2481 */
2482 if( pBt->pTmpSpace ){
2483 memset(pBt->pTmpSpace, 0, 8);
2484 pBt->pTmpSpace += 4;
2485 }
drhf7141992008-06-19 00:16:08 +00002486 }
2487}
2488
2489/*
2490** Free the pBt->pTmpSpace allocation
2491*/
2492static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002493 if( pBt->pTmpSpace ){
2494 pBt->pTmpSpace -= 4;
2495 sqlite3PageFree(pBt->pTmpSpace);
2496 pBt->pTmpSpace = 0;
2497 }
drhf7141992008-06-19 00:16:08 +00002498}
2499
2500/*
drha059ad02001-04-17 20:09:11 +00002501** Close an open database and invalidate all cursors.
2502*/
danielk1977aef0bf62005-12-30 16:28:01 +00002503int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002504 BtShared *pBt = p->pBt;
2505 BtCursor *pCur;
2506
danielk1977aef0bf62005-12-30 16:28:01 +00002507 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002508 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002509 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002510 pCur = pBt->pCursor;
2511 while( pCur ){
2512 BtCursor *pTmp = pCur;
2513 pCur = pCur->pNext;
2514 if( pTmp->pBtree==p ){
2515 sqlite3BtreeCloseCursor(pTmp);
2516 }
drha059ad02001-04-17 20:09:11 +00002517 }
danielk1977aef0bf62005-12-30 16:28:01 +00002518
danielk19778d34dfd2006-01-24 16:37:57 +00002519 /* Rollback any active transaction and free the handle structure.
2520 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2521 ** this handle.
2522 */
drh47b7fc72014-11-11 01:33:57 +00002523 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002524 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002525
danielk1977aef0bf62005-12-30 16:28:01 +00002526 /* If there are still other outstanding references to the shared-btree
2527 ** structure, return now. The remainder of this procedure cleans
2528 ** up the shared-btree.
2529 */
drhe53831d2007-08-17 01:14:38 +00002530 assert( p->wantToLock==0 && p->locked==0 );
2531 if( !p->sharable || removeFromSharingList(pBt) ){
2532 /* The pBt is no longer on the sharing list, so we can access
2533 ** it without having to hold the mutex.
2534 **
2535 ** Clean out and delete the BtShared object.
2536 */
2537 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002538 sqlite3PagerClose(pBt->pPager);
2539 if( pBt->xFreeSchema && pBt->pSchema ){
2540 pBt->xFreeSchema(pBt->pSchema);
2541 }
drhb9755982010-07-24 16:34:37 +00002542 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002543 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002544 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002545 }
2546
drhe53831d2007-08-17 01:14:38 +00002547#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002548 assert( p->wantToLock==0 );
2549 assert( p->locked==0 );
2550 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2551 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002552#endif
2553
drhe53831d2007-08-17 01:14:38 +00002554 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002555 return SQLITE_OK;
2556}
2557
2558/*
drh9b0cf342015-11-12 14:57:19 +00002559** Change the "soft" limit on the number of pages in the cache.
2560** Unused and unmodified pages will be recycled when the number of
2561** pages in the cache exceeds this soft limit. But the size of the
2562** cache is allowed to grow larger than this limit if it contains
2563** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002564*/
danielk1977aef0bf62005-12-30 16:28:01 +00002565int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2566 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002567 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002568 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002569 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002570 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002571 return SQLITE_OK;
2572}
2573
drh9b0cf342015-11-12 14:57:19 +00002574/*
2575** Change the "spill" limit on the number of pages in the cache.
2576** If the number of pages exceeds this limit during a write transaction,
2577** the pager might attempt to "spill" pages to the journal early in
2578** order to free up memory.
2579**
2580** The value returned is the current spill size. If zero is passed
2581** as an argument, no changes are made to the spill size setting, so
2582** using mxPage of 0 is a way to query the current spill size.
2583*/
2584int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2585 BtShared *pBt = p->pBt;
2586 int res;
2587 assert( sqlite3_mutex_held(p->db->mutex) );
2588 sqlite3BtreeEnter(p);
2589 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2590 sqlite3BtreeLeave(p);
2591 return res;
2592}
2593
drh18c7e402014-03-14 11:46:10 +00002594#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002595/*
dan5d8a1372013-03-19 19:28:06 +00002596** Change the limit on the amount of the database file that may be
2597** memory mapped.
2598*/
drh9b4c59f2013-04-15 17:03:42 +00002599int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002600 BtShared *pBt = p->pBt;
2601 assert( sqlite3_mutex_held(p->db->mutex) );
2602 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002603 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002604 sqlite3BtreeLeave(p);
2605 return SQLITE_OK;
2606}
drh18c7e402014-03-14 11:46:10 +00002607#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002608
2609/*
drh973b6e32003-02-12 14:09:42 +00002610** Change the way data is synced to disk in order to increase or decrease
2611** how well the database resists damage due to OS crashes and power
2612** failures. Level 1 is the same as asynchronous (no syncs() occur and
2613** there is a high probability of damage) Level 2 is the default. There
2614** is a very low but non-zero probability of damage. Level 3 reduces the
2615** probability of damage to near zero but with a write performance reduction.
2616*/
danielk197793758c82005-01-21 08:13:14 +00002617#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002618int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002619 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002620 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002621){
danielk1977aef0bf62005-12-30 16:28:01 +00002622 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002623 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002624 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002625 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002626 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002627 return SQLITE_OK;
2628}
danielk197793758c82005-01-21 08:13:14 +00002629#endif
drh973b6e32003-02-12 14:09:42 +00002630
drh2c8997b2005-08-27 16:36:48 +00002631/*
2632** Return TRUE if the given btree is set to safety level 1. In other
2633** words, return TRUE if no sync() occurs on the disk files.
2634*/
danielk1977aef0bf62005-12-30 16:28:01 +00002635int sqlite3BtreeSyncDisabled(Btree *p){
2636 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002637 int rc;
drhe5fe6902007-12-07 18:55:28 +00002638 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002639 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002640 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002641 rc = sqlite3PagerNosync(pBt->pPager);
2642 sqlite3BtreeLeave(p);
2643 return rc;
drh2c8997b2005-08-27 16:36:48 +00002644}
2645
drh973b6e32003-02-12 14:09:42 +00002646/*
drh90f5ecb2004-07-22 01:19:35 +00002647** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002648** Or, if the page size has already been fixed, return SQLITE_READONLY
2649** without changing anything.
drh06f50212004-11-02 14:24:33 +00002650**
2651** The page size must be a power of 2 between 512 and 65536. If the page
2652** size supplied does not meet this constraint then the page size is not
2653** changed.
2654**
2655** Page sizes are constrained to be a power of two so that the region
2656** of the database file used for locking (beginning at PENDING_BYTE,
2657** the first byte past the 1GB boundary, 0x40000000) needs to occur
2658** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002659**
2660** If parameter nReserve is less than zero, then the number of reserved
2661** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002662**
drhc9166342012-01-05 23:32:06 +00002663** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002664** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002665*/
drhce4869f2009-04-02 20:16:58 +00002666int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002667 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002668 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002669 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002670 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002671#if SQLITE_HAS_CODEC
2672 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2673#endif
drhc9166342012-01-05 23:32:06 +00002674 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002675 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002676 return SQLITE_READONLY;
2677 }
2678 if( nReserve<0 ){
2679 nReserve = pBt->pageSize - pBt->usableSize;
2680 }
drhf49661a2008-12-10 16:45:50 +00002681 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002682 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2683 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002684 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002685 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002686 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002687 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002688 }
drhfa9601a2009-06-18 17:22:39 +00002689 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002690 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002691 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002692 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002693 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002694}
2695
2696/*
2697** Return the currently defined page size
2698*/
danielk1977aef0bf62005-12-30 16:28:01 +00002699int sqlite3BtreeGetPageSize(Btree *p){
2700 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002701}
drh7f751222009-03-17 22:33:00 +00002702
dan0094f372012-09-28 20:23:42 +00002703/*
2704** This function is similar to sqlite3BtreeGetReserve(), except that it
2705** may only be called if it is guaranteed that the b-tree mutex is already
2706** held.
2707**
2708** This is useful in one special case in the backup API code where it is
2709** known that the shared b-tree mutex is held, but the mutex on the
2710** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2711** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002712** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002713*/
2714int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002715 int n;
dan0094f372012-09-28 20:23:42 +00002716 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002717 n = p->pBt->pageSize - p->pBt->usableSize;
2718 return n;
dan0094f372012-09-28 20:23:42 +00002719}
2720
drh7f751222009-03-17 22:33:00 +00002721/*
2722** Return the number of bytes of space at the end of every page that
2723** are intentually left unused. This is the "reserved" space that is
2724** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002725**
2726** If SQLITE_HAS_MUTEX is defined then the number returned is the
2727** greater of the current reserved space and the maximum requested
2728** reserve space.
drh7f751222009-03-17 22:33:00 +00002729*/
drhad0961b2015-02-21 00:19:25 +00002730int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002731 int n;
2732 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002733 n = sqlite3BtreeGetReserveNoMutex(p);
2734#ifdef SQLITE_HAS_CODEC
2735 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2736#endif
drhd677b3d2007-08-20 22:48:41 +00002737 sqlite3BtreeLeave(p);
2738 return n;
drh2011d5f2004-07-22 02:40:37 +00002739}
drhf8e632b2007-05-08 14:51:36 +00002740
drhad0961b2015-02-21 00:19:25 +00002741
drhf8e632b2007-05-08 14:51:36 +00002742/*
2743** Set the maximum page count for a database if mxPage is positive.
2744** No changes are made if mxPage is 0 or negative.
2745** Regardless of the value of mxPage, return the maximum page count.
2746*/
2747int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002748 int n;
2749 sqlite3BtreeEnter(p);
2750 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2751 sqlite3BtreeLeave(p);
2752 return n;
drhf8e632b2007-05-08 14:51:36 +00002753}
drh5b47efa2010-02-12 18:18:39 +00002754
2755/*
drhc9166342012-01-05 23:32:06 +00002756** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2757** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002758** setting after the change.
2759*/
2760int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2761 int b;
drhaf034ed2010-02-12 19:46:26 +00002762 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002763 sqlite3BtreeEnter(p);
2764 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002765 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2766 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002767 }
drhc9166342012-01-05 23:32:06 +00002768 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002769 sqlite3BtreeLeave(p);
2770 return b;
2771}
drh90f5ecb2004-07-22 01:19:35 +00002772
2773/*
danielk1977951af802004-11-05 15:45:09 +00002774** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2775** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2776** is disabled. The default value for the auto-vacuum property is
2777** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2778*/
danielk1977aef0bf62005-12-30 16:28:01 +00002779int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002780#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002781 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002782#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002783 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002784 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002785 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002786
2787 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002788 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002789 rc = SQLITE_READONLY;
2790 }else{
drh076d4662009-02-18 20:31:18 +00002791 pBt->autoVacuum = av ?1:0;
2792 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002793 }
drhd677b3d2007-08-20 22:48:41 +00002794 sqlite3BtreeLeave(p);
2795 return rc;
danielk1977951af802004-11-05 15:45:09 +00002796#endif
2797}
2798
2799/*
2800** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2801** enabled 1 is returned. Otherwise 0.
2802*/
danielk1977aef0bf62005-12-30 16:28:01 +00002803int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002804#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002805 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002806#else
drhd677b3d2007-08-20 22:48:41 +00002807 int rc;
2808 sqlite3BtreeEnter(p);
2809 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002810 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2811 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2812 BTREE_AUTOVACUUM_INCR
2813 );
drhd677b3d2007-08-20 22:48:41 +00002814 sqlite3BtreeLeave(p);
2815 return rc;
danielk1977951af802004-11-05 15:45:09 +00002816#endif
2817}
2818
2819
2820/*
drha34b6762004-05-07 13:30:42 +00002821** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002822** also acquire a readlock on that file.
2823**
2824** SQLITE_OK is returned on success. If the file is not a
2825** well-formed database file, then SQLITE_CORRUPT is returned.
2826** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002827** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002828*/
danielk1977aef0bf62005-12-30 16:28:01 +00002829static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002830 int rc; /* Result code from subfunctions */
2831 MemPage *pPage1; /* Page 1 of the database file */
2832 int nPage; /* Number of pages in the database */
2833 int nPageFile = 0; /* Number of pages in the database file */
2834 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002835
drh1fee73e2007-08-29 04:00:57 +00002836 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002837 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002838 rc = sqlite3PagerSharedLock(pBt->pPager);
2839 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002840 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002841 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002842
2843 /* Do some checking to help insure the file we opened really is
2844 ** a valid database file.
2845 */
drhc2a4bab2010-04-02 12:46:45 +00002846 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002847 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002848 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002849 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002850 }
2851 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002852 u32 pageSize;
2853 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002854 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002855 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002856 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2857 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2858 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002859 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002860 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002861 }
dan5cf53532010-05-01 16:40:20 +00002862
2863#ifdef SQLITE_OMIT_WAL
2864 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002865 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002866 }
2867 if( page1[19]>1 ){
2868 goto page1_init_failed;
2869 }
2870#else
dane04dc882010-04-20 18:53:15 +00002871 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002872 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002873 }
dane04dc882010-04-20 18:53:15 +00002874 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002875 goto page1_init_failed;
2876 }
drhe5ae5732008-06-15 02:51:47 +00002877
dana470aeb2010-04-21 11:43:38 +00002878 /* If the write version is set to 2, this database should be accessed
2879 ** in WAL mode. If the log is not already open, open it now. Then
2880 ** return SQLITE_OK and return without populating BtShared.pPage1.
2881 ** The caller detects this and calls this function again. This is
2882 ** required as the version of page 1 currently in the page1 buffer
2883 ** may not be the latest version - there may be a newer one in the log
2884 ** file.
2885 */
drhc9166342012-01-05 23:32:06 +00002886 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002887 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002888 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002889 if( rc!=SQLITE_OK ){
2890 goto page1_init_failed;
2891 }else if( isOpen==0 ){
2892 releasePage(pPage1);
2893 return SQLITE_OK;
2894 }
dan8b5444b2010-04-27 14:37:47 +00002895 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002896 }
dan5cf53532010-05-01 16:40:20 +00002897#endif
dane04dc882010-04-20 18:53:15 +00002898
drh113762a2014-11-19 16:36:25 +00002899 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2900 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2901 **
drhe5ae5732008-06-15 02:51:47 +00002902 ** The original design allowed these amounts to vary, but as of
2903 ** version 3.6.0, we require them to be fixed.
2904 */
2905 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2906 goto page1_init_failed;
2907 }
drh113762a2014-11-19 16:36:25 +00002908 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2909 ** determined by the 2-byte integer located at an offset of 16 bytes from
2910 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002911 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002912 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2913 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002914 if( ((pageSize-1)&pageSize)!=0
2915 || pageSize>SQLITE_MAX_PAGE_SIZE
2916 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002917 ){
drh07d183d2005-05-01 22:52:42 +00002918 goto page1_init_failed;
2919 }
2920 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002921 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2922 ** integer at offset 20 is the number of bytes of space at the end of
2923 ** each page to reserve for extensions.
2924 **
2925 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2926 ** determined by the one-byte unsigned integer found at an offset of 20
2927 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002928 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002929 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002930 /* After reading the first page of the database assuming a page size
2931 ** of BtShared.pageSize, we have discovered that the page-size is
2932 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2933 ** zero and return SQLITE_OK. The caller will call this function
2934 ** again with the correct page-size.
2935 */
2936 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002937 pBt->usableSize = usableSize;
2938 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002939 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002940 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2941 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002942 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002943 }
danecac6702011-02-09 18:19:20 +00002944 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002945 rc = SQLITE_CORRUPT_BKPT;
2946 goto page1_init_failed;
2947 }
drh113762a2014-11-19 16:36:25 +00002948 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2949 ** be less than 480. In other words, if the page size is 512, then the
2950 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002951 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002952 goto page1_init_failed;
2953 }
drh43b18e12010-08-17 19:40:08 +00002954 pBt->pageSize = pageSize;
2955 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002956#ifndef SQLITE_OMIT_AUTOVACUUM
2957 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002958 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002959#endif
drh306dc212001-05-21 13:45:10 +00002960 }
drhb6f41482004-05-14 01:58:11 +00002961
2962 /* maxLocal is the maximum amount of payload to store locally for
2963 ** a cell. Make sure it is small enough so that at least minFanout
2964 ** cells can will fit on one page. We assume a 10-byte page header.
2965 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002966 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002967 ** 4-byte child pointer
2968 ** 9-byte nKey value
2969 ** 4-byte nData value
2970 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002971 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002972 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2973 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002974 */
shaneh1df2db72010-08-18 02:28:48 +00002975 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2976 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2977 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2978 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002979 if( pBt->maxLocal>127 ){
2980 pBt->max1bytePayload = 127;
2981 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002982 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002983 }
drh2e38c322004-09-03 18:38:44 +00002984 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002985 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002986 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002987 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002988
drh72f82862001-05-24 21:06:34 +00002989page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002990 releasePage(pPage1);
2991 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002992 return rc;
drh306dc212001-05-21 13:45:10 +00002993}
2994
drh85ec3b62013-05-14 23:12:06 +00002995#ifndef NDEBUG
2996/*
2997** Return the number of cursors open on pBt. This is for use
2998** in assert() expressions, so it is only compiled if NDEBUG is not
2999** defined.
3000**
3001** Only write cursors are counted if wrOnly is true. If wrOnly is
3002** false then all cursors are counted.
3003**
3004** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003005** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003006** have been tripped into the CURSOR_FAULT state are not counted.
3007*/
3008static int countValidCursors(BtShared *pBt, int wrOnly){
3009 BtCursor *pCur;
3010 int r = 0;
3011 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003012 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3013 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003014 }
3015 return r;
3016}
3017#endif
3018
drh306dc212001-05-21 13:45:10 +00003019/*
drhb8ca3072001-12-05 00:21:20 +00003020** If there are no outstanding cursors and we are not in the middle
3021** of a transaction but there is a read lock on the database, then
3022** this routine unrefs the first page of the database file which
3023** has the effect of releasing the read lock.
3024**
drhb8ca3072001-12-05 00:21:20 +00003025** If there is a transaction in progress, this routine is a no-op.
3026*/
danielk1977aef0bf62005-12-30 16:28:01 +00003027static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003028 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003029 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003030 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003031 MemPage *pPage1 = pBt->pPage1;
3032 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003033 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003034 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003035 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003036 }
3037}
3038
3039/*
drhe39f2f92009-07-23 01:43:59 +00003040** If pBt points to an empty file then convert that empty file
3041** into a new empty database by initializing the first page of
3042** the database.
drh8b2f49b2001-06-08 00:21:52 +00003043*/
danielk1977aef0bf62005-12-30 16:28:01 +00003044static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003045 MemPage *pP1;
3046 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003047 int rc;
drhd677b3d2007-08-20 22:48:41 +00003048
drh1fee73e2007-08-29 04:00:57 +00003049 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003050 if( pBt->nPage>0 ){
3051 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003052 }
drh3aac2dd2004-04-26 14:10:20 +00003053 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003054 assert( pP1!=0 );
3055 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003056 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003057 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003058 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3059 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003060 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3061 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003062 data[18] = 1;
3063 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003064 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3065 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003066 data[21] = 64;
3067 data[22] = 32;
3068 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003069 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003070 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003071 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003072#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003073 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003074 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003075 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003076 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003077#endif
drhdd3cd972010-03-27 17:12:36 +00003078 pBt->nPage = 1;
3079 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003080 return SQLITE_OK;
3081}
3082
3083/*
danb483eba2012-10-13 19:58:11 +00003084** Initialize the first page of the database file (creating a database
3085** consisting of a single page and no schema objects). Return SQLITE_OK
3086** if successful, or an SQLite error code otherwise.
3087*/
3088int sqlite3BtreeNewDb(Btree *p){
3089 int rc;
3090 sqlite3BtreeEnter(p);
3091 p->pBt->nPage = 0;
3092 rc = newDatabase(p->pBt);
3093 sqlite3BtreeLeave(p);
3094 return rc;
3095}
3096
3097/*
danielk1977ee5741e2004-05-31 10:01:34 +00003098** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003099** is started if the second argument is nonzero, otherwise a read-
3100** transaction. If the second argument is 2 or more and exclusive
3101** transaction is started, meaning that no other process is allowed
3102** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003103** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003104** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003105**
danielk1977ee5741e2004-05-31 10:01:34 +00003106** A write-transaction must be started before attempting any
3107** changes to the database. None of the following routines
3108** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003109**
drh23e11ca2004-05-04 17:27:28 +00003110** sqlite3BtreeCreateTable()
3111** sqlite3BtreeCreateIndex()
3112** sqlite3BtreeClearTable()
3113** sqlite3BtreeDropTable()
3114** sqlite3BtreeInsert()
3115** sqlite3BtreeDelete()
3116** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003117**
drhb8ef32c2005-03-14 02:01:49 +00003118** If an initial attempt to acquire the lock fails because of lock contention
3119** and the database was previously unlocked, then invoke the busy handler
3120** if there is one. But if there was previously a read-lock, do not
3121** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3122** returned when there is already a read-lock in order to avoid a deadlock.
3123**
3124** Suppose there are two processes A and B. A has a read lock and B has
3125** a reserved lock. B tries to promote to exclusive but is blocked because
3126** of A's read lock. A tries to promote to reserved but is blocked by B.
3127** One or the other of the two processes must give way or there can be
3128** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3129** when A already has a read lock, we encourage A to give up and let B
3130** proceed.
drha059ad02001-04-17 20:09:11 +00003131*/
danielk1977aef0bf62005-12-30 16:28:01 +00003132int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003133 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003134 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003135 int rc = SQLITE_OK;
3136
drhd677b3d2007-08-20 22:48:41 +00003137 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003138 btreeIntegrity(p);
3139
danielk1977ee5741e2004-05-31 10:01:34 +00003140 /* If the btree is already in a write-transaction, or it
3141 ** is already in a read-transaction and a read-transaction
3142 ** is requested, this is a no-op.
3143 */
danielk1977aef0bf62005-12-30 16:28:01 +00003144 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003145 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003146 }
dan56c517a2013-09-26 11:04:33 +00003147 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003148
3149 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003150 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003151 rc = SQLITE_READONLY;
3152 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003153 }
3154
danielk1977404ca072009-03-16 13:19:36 +00003155#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003156 /* If another database handle has already opened a write transaction
3157 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003158 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003159 */
drhc9166342012-01-05 23:32:06 +00003160 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3161 || (pBt->btsFlags & BTS_PENDING)!=0
3162 ){
danielk1977404ca072009-03-16 13:19:36 +00003163 pBlock = pBt->pWriter->db;
3164 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003165 BtLock *pIter;
3166 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3167 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003168 pBlock = pIter->pBtree->db;
3169 break;
danielk1977641b0f42007-12-21 04:47:25 +00003170 }
3171 }
3172 }
danielk1977404ca072009-03-16 13:19:36 +00003173 if( pBlock ){
3174 sqlite3ConnectionBlocked(p->db, pBlock);
3175 rc = SQLITE_LOCKED_SHAREDCACHE;
3176 goto trans_begun;
3177 }
danielk1977641b0f42007-12-21 04:47:25 +00003178#endif
3179
danielk1977602b4662009-07-02 07:47:33 +00003180 /* Any read-only or read-write transaction implies a read-lock on
3181 ** page 1. So if some other shared-cache client already has a write-lock
3182 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003183 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3184 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003185
drhc9166342012-01-05 23:32:06 +00003186 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3187 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003188 do {
danielk1977295dc102009-04-01 19:07:03 +00003189 /* Call lockBtree() until either pBt->pPage1 is populated or
3190 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3191 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3192 ** reading page 1 it discovers that the page-size of the database
3193 ** file is not pBt->pageSize. In this case lockBtree() will update
3194 ** pBt->pageSize to the page-size of the file on disk.
3195 */
3196 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003197
drhb8ef32c2005-03-14 02:01:49 +00003198 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003199 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003200 rc = SQLITE_READONLY;
3201 }else{
danielk1977d8293352009-04-30 09:10:37 +00003202 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003203 if( rc==SQLITE_OK ){
3204 rc = newDatabase(pBt);
3205 }
drhb8ef32c2005-03-14 02:01:49 +00003206 }
3207 }
3208
danielk1977bd434552009-03-18 10:33:00 +00003209 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003210 unlockBtreeIfUnused(pBt);
3211 }
danf9b76712010-06-01 14:12:45 +00003212 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003213 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003214
3215 if( rc==SQLITE_OK ){
3216 if( p->inTrans==TRANS_NONE ){
3217 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003218#ifndef SQLITE_OMIT_SHARED_CACHE
3219 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003220 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003221 p->lock.eLock = READ_LOCK;
3222 p->lock.pNext = pBt->pLock;
3223 pBt->pLock = &p->lock;
3224 }
3225#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003226 }
3227 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3228 if( p->inTrans>pBt->inTransaction ){
3229 pBt->inTransaction = p->inTrans;
3230 }
danielk1977404ca072009-03-16 13:19:36 +00003231 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003232 MemPage *pPage1 = pBt->pPage1;
3233#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003234 assert( !pBt->pWriter );
3235 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003236 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3237 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003238#endif
dan59257dc2010-08-04 11:34:31 +00003239
3240 /* If the db-size header field is incorrect (as it may be if an old
3241 ** client has been writing the database file), update it now. Doing
3242 ** this sooner rather than later means the database size can safely
3243 ** re-read the database size from page 1 if a savepoint or transaction
3244 ** rollback occurs within the transaction.
3245 */
3246 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3247 rc = sqlite3PagerWrite(pPage1->pDbPage);
3248 if( rc==SQLITE_OK ){
3249 put4byte(&pPage1->aData[28], pBt->nPage);
3250 }
3251 }
3252 }
danielk1977aef0bf62005-12-30 16:28:01 +00003253 }
3254
drhd677b3d2007-08-20 22:48:41 +00003255
3256trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003257 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003258 /* This call makes sure that the pager has the correct number of
3259 ** open savepoints. If the second parameter is greater than 0 and
3260 ** the sub-journal is not already open, then it will be opened here.
3261 */
danielk1977fd7f0452008-12-17 17:30:26 +00003262 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3263 }
danielk197712dd5492008-12-18 15:45:07 +00003264
danielk1977aef0bf62005-12-30 16:28:01 +00003265 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003266 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003267 return rc;
drha059ad02001-04-17 20:09:11 +00003268}
3269
danielk1977687566d2004-11-02 12:56:41 +00003270#ifndef SQLITE_OMIT_AUTOVACUUM
3271
3272/*
3273** Set the pointer-map entries for all children of page pPage. Also, if
3274** pPage contains cells that point to overflow pages, set the pointer
3275** map entries for the overflow pages as well.
3276*/
3277static int setChildPtrmaps(MemPage *pPage){
3278 int i; /* Counter variable */
3279 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003280 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003281 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003282 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003283 Pgno pgno = pPage->pgno;
3284
drh1fee73e2007-08-29 04:00:57 +00003285 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003286 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003287 if( rc!=SQLITE_OK ){
3288 goto set_child_ptrmaps_out;
3289 }
danielk1977687566d2004-11-02 12:56:41 +00003290 nCell = pPage->nCell;
3291
3292 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003293 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003294
drh98add2e2009-07-20 17:11:49 +00003295 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003296
danielk1977687566d2004-11-02 12:56:41 +00003297 if( !pPage->leaf ){
3298 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003299 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003300 }
3301 }
3302
3303 if( !pPage->leaf ){
3304 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003305 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003306 }
3307
3308set_child_ptrmaps_out:
3309 pPage->isInit = isInitOrig;
3310 return rc;
3311}
3312
3313/*
drhf3aed592009-07-08 18:12:49 +00003314** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3315** that it points to iTo. Parameter eType describes the type of pointer to
3316** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003317**
3318** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3319** page of pPage.
3320**
3321** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3322** page pointed to by one of the cells on pPage.
3323**
3324** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3325** overflow page in the list.
3326*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003327static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003328 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003329 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003330 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003331 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003332 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003333 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003334 }
danielk1977f78fc082004-11-02 14:40:32 +00003335 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003336 }else{
drhf49661a2008-12-10 16:45:50 +00003337 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003338 int i;
3339 int nCell;
drha1f75d92015-05-24 10:18:12 +00003340 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003341
drha1f75d92015-05-24 10:18:12 +00003342 rc = btreeInitPage(pPage);
3343 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003344 nCell = pPage->nCell;
3345
danielk1977687566d2004-11-02 12:56:41 +00003346 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003347 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003348 if( eType==PTRMAP_OVERFLOW1 ){
3349 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003350 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003351 if( info.iOverflow
3352 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3353 && iFrom==get4byte(&pCell[info.iOverflow])
3354 ){
3355 put4byte(&pCell[info.iOverflow], iTo);
3356 break;
danielk1977687566d2004-11-02 12:56:41 +00003357 }
3358 }else{
3359 if( get4byte(pCell)==iFrom ){
3360 put4byte(pCell, iTo);
3361 break;
3362 }
3363 }
3364 }
3365
3366 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003367 if( eType!=PTRMAP_BTREE ||
3368 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003369 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003370 }
danielk1977687566d2004-11-02 12:56:41 +00003371 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3372 }
3373
3374 pPage->isInit = isInitOrig;
3375 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003376 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003377}
3378
danielk1977003ba062004-11-04 02:57:33 +00003379
danielk19777701e812005-01-10 12:59:51 +00003380/*
3381** Move the open database page pDbPage to location iFreePage in the
3382** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003383**
3384** The isCommit flag indicates that there is no need to remember that
3385** the journal needs to be sync()ed before database page pDbPage->pgno
3386** can be written to. The caller has already promised not to write to that
3387** page.
danielk19777701e812005-01-10 12:59:51 +00003388*/
danielk1977003ba062004-11-04 02:57:33 +00003389static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003390 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003391 MemPage *pDbPage, /* Open page to move */
3392 u8 eType, /* Pointer map 'type' entry for pDbPage */
3393 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003394 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003395 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003396){
3397 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3398 Pgno iDbPage = pDbPage->pgno;
3399 Pager *pPager = pBt->pPager;
3400 int rc;
3401
danielk1977a0bf2652004-11-04 14:30:04 +00003402 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3403 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003404 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003405 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003406
drh85b623f2007-12-13 21:54:09 +00003407 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003408 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3409 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003410 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003411 if( rc!=SQLITE_OK ){
3412 return rc;
3413 }
3414 pDbPage->pgno = iFreePage;
3415
3416 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3417 ** that point to overflow pages. The pointer map entries for all these
3418 ** pages need to be changed.
3419 **
3420 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3421 ** pointer to a subsequent overflow page. If this is the case, then
3422 ** the pointer map needs to be updated for the subsequent overflow page.
3423 */
danielk1977a0bf2652004-11-04 14:30:04 +00003424 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003425 rc = setChildPtrmaps(pDbPage);
3426 if( rc!=SQLITE_OK ){
3427 return rc;
3428 }
3429 }else{
3430 Pgno nextOvfl = get4byte(pDbPage->aData);
3431 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003432 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003433 if( rc!=SQLITE_OK ){
3434 return rc;
3435 }
3436 }
3437 }
3438
3439 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3440 ** that it points at iFreePage. Also fix the pointer map entry for
3441 ** iPtrPage.
3442 */
danielk1977a0bf2652004-11-04 14:30:04 +00003443 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003444 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003445 if( rc!=SQLITE_OK ){
3446 return rc;
3447 }
danielk19773b8a05f2007-03-19 17:44:26 +00003448 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003449 if( rc!=SQLITE_OK ){
3450 releasePage(pPtrPage);
3451 return rc;
3452 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003453 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003454 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003455 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003456 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003457 }
danielk1977003ba062004-11-04 02:57:33 +00003458 }
danielk1977003ba062004-11-04 02:57:33 +00003459 return rc;
3460}
3461
danielk1977dddbcdc2007-04-26 14:42:34 +00003462/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003463static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003464
3465/*
dan51f0b6d2013-02-22 20:16:34 +00003466** Perform a single step of an incremental-vacuum. If successful, return
3467** SQLITE_OK. If there is no work to do (and therefore no point in
3468** calling this function again), return SQLITE_DONE. Or, if an error
3469** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003470**
peter.d.reid60ec9142014-09-06 16:39:46 +00003471** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003472** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003473**
dan51f0b6d2013-02-22 20:16:34 +00003474** Parameter nFin is the number of pages that this database would contain
3475** were this function called until it returns SQLITE_DONE.
3476**
3477** If the bCommit parameter is non-zero, this function assumes that the
3478** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003479** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003480** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003481*/
dan51f0b6d2013-02-22 20:16:34 +00003482static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003483 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003484 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003485
drh1fee73e2007-08-29 04:00:57 +00003486 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003487 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003488
3489 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003490 u8 eType;
3491 Pgno iPtrPage;
3492
3493 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003494 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003495 return SQLITE_DONE;
3496 }
3497
3498 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3499 if( rc!=SQLITE_OK ){
3500 return rc;
3501 }
3502 if( eType==PTRMAP_ROOTPAGE ){
3503 return SQLITE_CORRUPT_BKPT;
3504 }
3505
3506 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003507 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003508 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003509 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003510 ** truncated to zero after this function returns, so it doesn't
3511 ** matter if it still contains some garbage entries.
3512 */
3513 Pgno iFreePg;
3514 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003515 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003516 if( rc!=SQLITE_OK ){
3517 return rc;
3518 }
3519 assert( iFreePg==iLastPg );
3520 releasePage(pFreePg);
3521 }
3522 } else {
3523 Pgno iFreePg; /* Index of free page to move pLastPg to */
3524 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003525 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3526 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003527
drhb00fc3b2013-08-21 23:42:32 +00003528 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003529 if( rc!=SQLITE_OK ){
3530 return rc;
3531 }
3532
dan51f0b6d2013-02-22 20:16:34 +00003533 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003534 ** is swapped with the first free page pulled off the free list.
3535 **
dan51f0b6d2013-02-22 20:16:34 +00003536 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003537 ** looping until a free-page located within the first nFin pages
3538 ** of the file is found.
3539 */
dan51f0b6d2013-02-22 20:16:34 +00003540 if( bCommit==0 ){
3541 eMode = BTALLOC_LE;
3542 iNear = nFin;
3543 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003544 do {
3545 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003546 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003547 if( rc!=SQLITE_OK ){
3548 releasePage(pLastPg);
3549 return rc;
3550 }
3551 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003552 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003553 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003554
dane1df4e32013-03-05 11:27:04 +00003555 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003556 releasePage(pLastPg);
3557 if( rc!=SQLITE_OK ){
3558 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003559 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003560 }
3561 }
3562
dan51f0b6d2013-02-22 20:16:34 +00003563 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003564 do {
danielk19773460d192008-12-27 15:23:13 +00003565 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003566 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3567 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003568 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003569 }
3570 return SQLITE_OK;
3571}
3572
3573/*
dan51f0b6d2013-02-22 20:16:34 +00003574** The database opened by the first argument is an auto-vacuum database
3575** nOrig pages in size containing nFree free pages. Return the expected
3576** size of the database in pages following an auto-vacuum operation.
3577*/
3578static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3579 int nEntry; /* Number of entries on one ptrmap page */
3580 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3581 Pgno nFin; /* Return value */
3582
3583 nEntry = pBt->usableSize/5;
3584 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3585 nFin = nOrig - nFree - nPtrmap;
3586 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3587 nFin--;
3588 }
3589 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3590 nFin--;
3591 }
dan51f0b6d2013-02-22 20:16:34 +00003592
3593 return nFin;
3594}
3595
3596/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003597** A write-transaction must be opened before calling this function.
3598** It performs a single unit of work towards an incremental vacuum.
3599**
3600** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003601** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003602** SQLITE_OK is returned. Otherwise an SQLite error code.
3603*/
3604int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003605 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003606 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003607
3608 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003609 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3610 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003611 rc = SQLITE_DONE;
3612 }else{
dan51f0b6d2013-02-22 20:16:34 +00003613 Pgno nOrig = btreePagecount(pBt);
3614 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3615 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3616
dan91384712013-02-24 11:50:43 +00003617 if( nOrig<nFin ){
3618 rc = SQLITE_CORRUPT_BKPT;
3619 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003620 rc = saveAllCursors(pBt, 0, 0);
3621 if( rc==SQLITE_OK ){
3622 invalidateAllOverflowCache(pBt);
3623 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3624 }
dan51f0b6d2013-02-22 20:16:34 +00003625 if( rc==SQLITE_OK ){
3626 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3627 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3628 }
3629 }else{
3630 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003631 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003632 }
drhd677b3d2007-08-20 22:48:41 +00003633 sqlite3BtreeLeave(p);
3634 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003635}
3636
3637/*
danielk19773b8a05f2007-03-19 17:44:26 +00003638** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003639** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003640**
3641** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3642** the database file should be truncated to during the commit process.
3643** i.e. the database has been reorganized so that only the first *pnTrunc
3644** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003645*/
danielk19773460d192008-12-27 15:23:13 +00003646static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003647 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003648 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003649 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003650
drh1fee73e2007-08-29 04:00:57 +00003651 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003652 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003653 assert(pBt->autoVacuum);
3654 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003655 Pgno nFin; /* Number of pages in database after autovacuuming */
3656 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003657 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003658 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003659
drhb1299152010-03-30 22:58:33 +00003660 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003661 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3662 /* It is not possible to create a database for which the final page
3663 ** is either a pointer-map page or the pending-byte page. If one
3664 ** is encountered, this indicates corruption.
3665 */
danielk19773460d192008-12-27 15:23:13 +00003666 return SQLITE_CORRUPT_BKPT;
3667 }
danielk1977ef165ce2009-04-06 17:50:03 +00003668
danielk19773460d192008-12-27 15:23:13 +00003669 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003670 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003671 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003672 if( nFin<nOrig ){
3673 rc = saveAllCursors(pBt, 0, 0);
3674 }
danielk19773460d192008-12-27 15:23:13 +00003675 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003676 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003677 }
danielk19773460d192008-12-27 15:23:13 +00003678 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003679 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3680 put4byte(&pBt->pPage1->aData[32], 0);
3681 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003682 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003683 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003684 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003685 }
3686 if( rc!=SQLITE_OK ){
3687 sqlite3PagerRollback(pPager);
3688 }
danielk1977687566d2004-11-02 12:56:41 +00003689 }
3690
dan0aed84d2013-03-26 14:16:20 +00003691 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003692 return rc;
3693}
danielk1977dddbcdc2007-04-26 14:42:34 +00003694
danielk1977a50d9aa2009-06-08 14:49:45 +00003695#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3696# define setChildPtrmaps(x) SQLITE_OK
3697#endif
danielk1977687566d2004-11-02 12:56:41 +00003698
3699/*
drh80e35f42007-03-30 14:06:34 +00003700** This routine does the first phase of a two-phase commit. This routine
3701** causes a rollback journal to be created (if it does not already exist)
3702** and populated with enough information so that if a power loss occurs
3703** the database can be restored to its original state by playing back
3704** the journal. Then the contents of the journal are flushed out to
3705** the disk. After the journal is safely on oxide, the changes to the
3706** database are written into the database file and flushed to oxide.
3707** At the end of this call, the rollback journal still exists on the
3708** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003709** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003710** commit process.
3711**
3712** This call is a no-op if no write-transaction is currently active on pBt.
3713**
3714** Otherwise, sync the database file for the btree pBt. zMaster points to
3715** the name of a master journal file that should be written into the
3716** individual journal file, or is NULL, indicating no master journal file
3717** (single database transaction).
3718**
3719** When this is called, the master journal should already have been
3720** created, populated with this journal pointer and synced to disk.
3721**
3722** Once this is routine has returned, the only thing required to commit
3723** the write-transaction for this database file is to delete the journal.
3724*/
3725int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3726 int rc = SQLITE_OK;
3727 if( p->inTrans==TRANS_WRITE ){
3728 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003729 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003730#ifndef SQLITE_OMIT_AUTOVACUUM
3731 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003732 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003733 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003734 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003735 return rc;
3736 }
3737 }
danbc1a3c62013-02-23 16:40:46 +00003738 if( pBt->bDoTruncate ){
3739 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3740 }
drh80e35f42007-03-30 14:06:34 +00003741#endif
drh49b9d332009-01-02 18:10:42 +00003742 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003743 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003744 }
3745 return rc;
3746}
3747
3748/*
danielk197794b30732009-07-02 17:21:57 +00003749** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3750** at the conclusion of a transaction.
3751*/
3752static void btreeEndTransaction(Btree *p){
3753 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003754 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003755 assert( sqlite3BtreeHoldsMutex(p) );
3756
danbc1a3c62013-02-23 16:40:46 +00003757#ifndef SQLITE_OMIT_AUTOVACUUM
3758 pBt->bDoTruncate = 0;
3759#endif
danc0537fe2013-06-28 19:41:43 +00003760 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003761 /* If there are other active statements that belong to this database
3762 ** handle, downgrade to a read-only transaction. The other statements
3763 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003764 downgradeAllSharedCacheTableLocks(p);
3765 p->inTrans = TRANS_READ;
3766 }else{
3767 /* If the handle had any kind of transaction open, decrement the
3768 ** transaction count of the shared btree. If the transaction count
3769 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3770 ** call below will unlock the pager. */
3771 if( p->inTrans!=TRANS_NONE ){
3772 clearAllSharedCacheTableLocks(p);
3773 pBt->nTransaction--;
3774 if( 0==pBt->nTransaction ){
3775 pBt->inTransaction = TRANS_NONE;
3776 }
3777 }
3778
3779 /* Set the current transaction state to TRANS_NONE and unlock the
3780 ** pager if this call closed the only read or write transaction. */
3781 p->inTrans = TRANS_NONE;
3782 unlockBtreeIfUnused(pBt);
3783 }
3784
3785 btreeIntegrity(p);
3786}
3787
3788/*
drh2aa679f2001-06-25 02:11:07 +00003789** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003790**
drh6e345992007-03-30 11:12:08 +00003791** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003792** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3793** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3794** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003795** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003796** routine has to do is delete or truncate or zero the header in the
3797** the rollback journal (which causes the transaction to commit) and
3798** drop locks.
drh6e345992007-03-30 11:12:08 +00003799**
dan60939d02011-03-29 15:40:55 +00003800** Normally, if an error occurs while the pager layer is attempting to
3801** finalize the underlying journal file, this function returns an error and
3802** the upper layer will attempt a rollback. However, if the second argument
3803** is non-zero then this b-tree transaction is part of a multi-file
3804** transaction. In this case, the transaction has already been committed
3805** (by deleting a master journal file) and the caller will ignore this
3806** functions return code. So, even if an error occurs in the pager layer,
3807** reset the b-tree objects internal state to indicate that the write
3808** transaction has been closed. This is quite safe, as the pager will have
3809** transitioned to the error state.
3810**
drh5e00f6c2001-09-13 13:46:56 +00003811** This will release the write lock on the database file. If there
3812** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003813*/
dan60939d02011-03-29 15:40:55 +00003814int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003815
drh075ed302010-10-14 01:17:30 +00003816 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003817 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003818 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003819
3820 /* If the handle has a write-transaction open, commit the shared-btrees
3821 ** transaction and set the shared state to TRANS_READ.
3822 */
3823 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003824 int rc;
drh075ed302010-10-14 01:17:30 +00003825 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003826 assert( pBt->inTransaction==TRANS_WRITE );
3827 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003828 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003829 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003830 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003831 return rc;
3832 }
drh3da9c042014-12-22 18:41:21 +00003833 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003834 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003835 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003836 }
danielk1977aef0bf62005-12-30 16:28:01 +00003837
danielk197794b30732009-07-02 17:21:57 +00003838 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003839 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003840 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003841}
3842
drh80e35f42007-03-30 14:06:34 +00003843/*
3844** Do both phases of a commit.
3845*/
3846int sqlite3BtreeCommit(Btree *p){
3847 int rc;
drhd677b3d2007-08-20 22:48:41 +00003848 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003849 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3850 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003851 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003852 }
drhd677b3d2007-08-20 22:48:41 +00003853 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003854 return rc;
3855}
3856
drhc39e0002004-05-07 23:50:57 +00003857/*
drhfb982642007-08-30 01:19:59 +00003858** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003859** code to errCode for every cursor on any BtShared that pBtree
3860** references. Or if the writeOnly flag is set to 1, then only
3861** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003862**
drh47b7fc72014-11-11 01:33:57 +00003863** Every cursor is a candidate to be tripped, including cursors
3864** that belong to other database connections that happen to be
3865** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003866**
dan80231042014-11-12 14:56:02 +00003867** This routine gets called when a rollback occurs. If the writeOnly
3868** flag is true, then only write-cursors need be tripped - read-only
3869** cursors save their current positions so that they may continue
3870** following the rollback. Or, if writeOnly is false, all cursors are
3871** tripped. In general, writeOnly is false if the transaction being
3872** rolled back modified the database schema. In this case b-tree root
3873** pages may be moved or deleted from the database altogether, making
3874** it unsafe for read cursors to continue.
3875**
3876** If the writeOnly flag is true and an error is encountered while
3877** saving the current position of a read-only cursor, all cursors,
3878** including all read-cursors are tripped.
3879**
3880** SQLITE_OK is returned if successful, or if an error occurs while
3881** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003882*/
dan80231042014-11-12 14:56:02 +00003883int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003884 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003885 int rc = SQLITE_OK;
3886
drh47b7fc72014-11-11 01:33:57 +00003887 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003888 if( pBtree ){
3889 sqlite3BtreeEnter(pBtree);
3890 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3891 int i;
3892 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003893 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003894 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003895 if( rc!=SQLITE_OK ){
3896 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3897 break;
3898 }
3899 }
3900 }else{
3901 sqlite3BtreeClearCursor(p);
3902 p->eState = CURSOR_FAULT;
3903 p->skipNext = errCode;
3904 }
3905 for(i=0; i<=p->iPage; i++){
3906 releasePage(p->apPage[i]);
3907 p->apPage[i] = 0;
3908 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003909 }
dan80231042014-11-12 14:56:02 +00003910 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003911 }
dan80231042014-11-12 14:56:02 +00003912 return rc;
drhfb982642007-08-30 01:19:59 +00003913}
3914
3915/*
drh47b7fc72014-11-11 01:33:57 +00003916** Rollback the transaction in progress.
3917**
3918** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3919** Only write cursors are tripped if writeOnly is true but all cursors are
3920** tripped if writeOnly is false. Any attempt to use
3921** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003922**
3923** This will release the write lock on the database file. If there
3924** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003925*/
drh47b7fc72014-11-11 01:33:57 +00003926int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003927 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003928 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003929 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003930
drh47b7fc72014-11-11 01:33:57 +00003931 assert( writeOnly==1 || writeOnly==0 );
3932 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003933 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003934 if( tripCode==SQLITE_OK ){
3935 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003936 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003937 }else{
3938 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003939 }
drh0f198a72012-02-13 16:43:16 +00003940 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003941 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3942 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3943 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003944 }
danielk1977aef0bf62005-12-30 16:28:01 +00003945 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003946
3947 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003948 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003949
danielk19778d34dfd2006-01-24 16:37:57 +00003950 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003951 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003952 if( rc2!=SQLITE_OK ){
3953 rc = rc2;
3954 }
3955
drh24cd67e2004-05-10 16:18:47 +00003956 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003957 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003958 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003959 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003960 int nPage = get4byte(28+(u8*)pPage1->aData);
3961 testcase( nPage==0 );
3962 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3963 testcase( pBt->nPage!=nPage );
3964 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003965 releasePage(pPage1);
3966 }
drh85ec3b62013-05-14 23:12:06 +00003967 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003968 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003969 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003970 }
danielk1977aef0bf62005-12-30 16:28:01 +00003971
danielk197794b30732009-07-02 17:21:57 +00003972 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003973 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003974 return rc;
3975}
3976
3977/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003978** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003979** back independently of the main transaction. You must start a transaction
3980** before starting a subtransaction. The subtransaction is ended automatically
3981** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003982**
3983** Statement subtransactions are used around individual SQL statements
3984** that are contained within a BEGIN...COMMIT block. If a constraint
3985** error occurs within the statement, the effect of that one statement
3986** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003987**
3988** A statement sub-transaction is implemented as an anonymous savepoint. The
3989** value passed as the second parameter is the total number of savepoints,
3990** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3991** are no active savepoints and no other statement-transactions open,
3992** iStatement is 1. This anonymous savepoint can be released or rolled back
3993** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003994*/
danielk1977bd434552009-03-18 10:33:00 +00003995int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003996 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003997 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003998 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003999 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004000 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004001 assert( iStatement>0 );
4002 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004003 assert( pBt->inTransaction==TRANS_WRITE );
4004 /* At the pager level, a statement transaction is a savepoint with
4005 ** an index greater than all savepoints created explicitly using
4006 ** SQL statements. It is illegal to open, release or rollback any
4007 ** such savepoints while the statement transaction savepoint is active.
4008 */
4009 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004010 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004011 return rc;
4012}
4013
4014/*
danielk1977fd7f0452008-12-17 17:30:26 +00004015** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4016** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004017** savepoint identified by parameter iSavepoint, depending on the value
4018** of op.
4019**
4020** Normally, iSavepoint is greater than or equal to zero. However, if op is
4021** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4022** contents of the entire transaction are rolled back. This is different
4023** from a normal transaction rollback, as no locks are released and the
4024** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004025*/
4026int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4027 int rc = SQLITE_OK;
4028 if( p && p->inTrans==TRANS_WRITE ){
4029 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004030 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4031 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4032 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00004033 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00004034 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004035 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4036 pBt->nPage = 0;
4037 }
drh9f0bbf92009-01-02 21:08:09 +00004038 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004039 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004040
4041 /* The database size was written into the offset 28 of the header
4042 ** when the transaction started, so we know that the value at offset
4043 ** 28 is nonzero. */
4044 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004045 }
danielk1977fd7f0452008-12-17 17:30:26 +00004046 sqlite3BtreeLeave(p);
4047 }
4048 return rc;
4049}
4050
4051/*
drh8b2f49b2001-06-08 00:21:52 +00004052** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004053** iTable. If a read-only cursor is requested, it is assumed that
4054** the caller already has at least a read-only transaction open
4055** on the database already. If a write-cursor is requested, then
4056** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004057**
4058** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00004059** If wrFlag==1, then the cursor can be used for reading or for
4060** writing if other conditions for writing are also met. These
4061** are the conditions that must be met in order for writing to
4062** be allowed:
drh6446c4d2001-12-15 14:22:18 +00004063**
drhf74b8d92002-09-01 23:20:45 +00004064** 1: The cursor must have been opened with wrFlag==1
4065**
drhfe5d71d2007-03-19 11:54:10 +00004066** 2: Other database connections that share the same pager cache
4067** but which are not in the READ_UNCOMMITTED state may not have
4068** cursors open with wrFlag==0 on the same table. Otherwise
4069** the changes made by this write cursor would be visible to
4070** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004071**
4072** 3: The database must be writable (not on read-only media)
4073**
4074** 4: There must be an active transaction.
4075**
drh6446c4d2001-12-15 14:22:18 +00004076** No checking is done to make sure that page iTable really is the
4077** root page of a b-tree. If it is not, then the cursor acquired
4078** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004079**
drhf25a5072009-11-18 23:01:25 +00004080** It is assumed that the sqlite3BtreeCursorZero() has been called
4081** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004082*/
drhd677b3d2007-08-20 22:48:41 +00004083static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004084 Btree *p, /* The btree */
4085 int iTable, /* Root page of table to open */
4086 int wrFlag, /* 1 to write. 0 read-only */
4087 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4088 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004089){
danielk19773e8add92009-07-04 17:16:00 +00004090 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004091 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004092
drh1fee73e2007-08-29 04:00:57 +00004093 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004094 assert( wrFlag==0
4095 || wrFlag==BTREE_WRCSR
4096 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4097 );
danielk197796d48e92009-06-29 06:00:37 +00004098
danielk1977602b4662009-07-02 07:47:33 +00004099 /* The following assert statements verify that if this is a sharable
4100 ** b-tree database, the connection is holding the required table locks,
4101 ** and that no other connection has any open cursor that conflicts with
4102 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004103 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004104 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4105
danielk19773e8add92009-07-04 17:16:00 +00004106 /* Assert that the caller has opened the required transaction. */
4107 assert( p->inTrans>TRANS_NONE );
4108 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4109 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004110 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004111
drh3fbb0222014-09-24 19:47:27 +00004112 if( wrFlag ){
4113 allocateTempSpace(pBt);
4114 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
drha0c9a112004-03-10 13:42:37 +00004115 }
drhb1299152010-03-30 22:58:33 +00004116 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004117 assert( wrFlag==0 );
4118 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004119 }
danielk1977aef0bf62005-12-30 16:28:01 +00004120
danielk1977aef0bf62005-12-30 16:28:01 +00004121 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004122 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004123 pCur->pgnoRoot = (Pgno)iTable;
4124 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004125 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004126 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004127 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004128 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004129 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004130 /* If there are two or more cursors on the same btree, then all such
4131 ** cursors *must* have the BTCF_Multiple flag set. */
4132 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4133 if( pX->pgnoRoot==(Pgno)iTable ){
4134 pX->curFlags |= BTCF_Multiple;
4135 pCur->curFlags |= BTCF_Multiple;
4136 }
drha059ad02001-04-17 20:09:11 +00004137 }
drh27fb7462015-06-30 02:47:36 +00004138 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004139 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004140 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004141 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004142}
drhd677b3d2007-08-20 22:48:41 +00004143int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004144 Btree *p, /* The btree */
4145 int iTable, /* Root page of table to open */
4146 int wrFlag, /* 1 to write. 0 read-only */
4147 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4148 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004149){
4150 int rc;
dan08f901b2015-05-25 19:24:36 +00004151 if( iTable<1 ){
4152 rc = SQLITE_CORRUPT_BKPT;
4153 }else{
4154 sqlite3BtreeEnter(p);
4155 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4156 sqlite3BtreeLeave(p);
4157 }
drhd677b3d2007-08-20 22:48:41 +00004158 return rc;
4159}
drh7f751222009-03-17 22:33:00 +00004160
4161/*
4162** Return the size of a BtCursor object in bytes.
4163**
4164** This interfaces is needed so that users of cursors can preallocate
4165** sufficient storage to hold a cursor. The BtCursor object is opaque
4166** to users so they cannot do the sizeof() themselves - they must call
4167** this routine.
4168*/
4169int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004170 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004171}
4172
drh7f751222009-03-17 22:33:00 +00004173/*
drhf25a5072009-11-18 23:01:25 +00004174** Initialize memory that will be converted into a BtCursor object.
4175**
4176** The simple approach here would be to memset() the entire object
4177** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4178** do not need to be zeroed and they are large, so we can save a lot
4179** of run-time by skipping the initialization of those elements.
4180*/
4181void sqlite3BtreeCursorZero(BtCursor *p){
4182 memset(p, 0, offsetof(BtCursor, iPage));
4183}
4184
4185/*
drh5e00f6c2001-09-13 13:46:56 +00004186** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004187** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004188*/
drh3aac2dd2004-04-26 14:10:20 +00004189int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004190 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004191 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004192 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004193 BtShared *pBt = pCur->pBt;
4194 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004195 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004196 assert( pBt->pCursor!=0 );
4197 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004198 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004199 }else{
4200 BtCursor *pPrev = pBt->pCursor;
4201 do{
4202 if( pPrev->pNext==pCur ){
4203 pPrev->pNext = pCur->pNext;
4204 break;
4205 }
4206 pPrev = pPrev->pNext;
4207 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004208 }
danielk197771d5d2c2008-09-29 11:49:47 +00004209 for(i=0; i<=pCur->iPage; i++){
4210 releasePage(pCur->apPage[i]);
4211 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004212 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004213 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004214 /* sqlite3_free(pCur); */
4215 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004216 }
drh8c42ca92001-06-22 19:15:00 +00004217 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004218}
4219
drh5e2f8b92001-05-28 00:41:15 +00004220/*
drh86057612007-06-26 01:04:48 +00004221** Make sure the BtCursor* given in the argument has a valid
4222** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004223** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004224**
4225** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004226** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004227*/
drh9188b382004-05-14 21:12:22 +00004228#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004229 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004230 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004231 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004232 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004233 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004234 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004235 }
danielk19771cc5ed82007-05-16 17:28:43 +00004236#else
4237 #define assertCellInfo(x)
4238#endif
drhc5b41ac2015-06-17 02:11:46 +00004239static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4240 if( pCur->info.nSize==0 ){
4241 int iPage = pCur->iPage;
4242 pCur->curFlags |= BTCF_ValidNKey;
4243 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4244 }else{
4245 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004246 }
drhc5b41ac2015-06-17 02:11:46 +00004247}
drh9188b382004-05-14 21:12:22 +00004248
drhea8ffdf2009-07-22 00:35:23 +00004249#ifndef NDEBUG /* The next routine used only within assert() statements */
4250/*
4251** Return true if the given BtCursor is valid. A valid cursor is one
4252** that is currently pointing to a row in a (non-empty) table.
4253** This is a verification routine is used only within assert() statements.
4254*/
4255int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4256 return pCur && pCur->eState==CURSOR_VALID;
4257}
4258#endif /* NDEBUG */
4259
drh9188b382004-05-14 21:12:22 +00004260/*
drh3aac2dd2004-04-26 14:10:20 +00004261** Set *pSize to the size of the buffer needed to hold the value of
4262** the key for the current entry. If the cursor is not pointing
4263** to a valid entry, *pSize is set to 0.
4264**
drh4b70f112004-05-02 21:12:19 +00004265** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004266** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004267**
4268** The caller must position the cursor prior to invoking this routine.
4269**
4270** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004271*/
drh4a1c3802004-05-12 15:15:47 +00004272int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004273 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004274 assert( pCur->eState==CURSOR_VALID );
4275 getCellInfo(pCur);
4276 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004277 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004278}
drh2af926b2001-05-15 00:39:25 +00004279
drh72f82862001-05-24 21:06:34 +00004280/*
drh0e1c19e2004-05-11 00:58:56 +00004281** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004282** cursor currently points to.
4283**
4284** The caller must guarantee that the cursor is pointing to a non-NULL
4285** valid entry. In other words, the calling procedure must guarantee
4286** that the cursor has Cursor.eState==CURSOR_VALID.
4287**
4288** Failure is not possible. This function always returns SQLITE_OK.
4289** It might just as well be a procedure (returning void) but we continue
4290** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004291*/
4292int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004293 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004294 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004295 assert( pCur->iPage>=0 );
4296 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004297 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004298 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004299 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004300 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004301}
4302
4303/*
danielk1977d04417962007-05-02 13:16:30 +00004304** Given the page number of an overflow page in the database (parameter
4305** ovfl), this function finds the page number of the next page in the
4306** linked list of overflow pages. If possible, it uses the auto-vacuum
4307** pointer-map data instead of reading the content of page ovfl to do so.
4308**
4309** If an error occurs an SQLite error code is returned. Otherwise:
4310**
danielk1977bea2a942009-01-20 17:06:27 +00004311** The page number of the next overflow page in the linked list is
4312** written to *pPgnoNext. If page ovfl is the last page in its linked
4313** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004314**
danielk1977bea2a942009-01-20 17:06:27 +00004315** If ppPage is not NULL, and a reference to the MemPage object corresponding
4316** to page number pOvfl was obtained, then *ppPage is set to point to that
4317** reference. It is the responsibility of the caller to call releasePage()
4318** on *ppPage to free the reference. In no reference was obtained (because
4319** the pointer-map was used to obtain the value for *pPgnoNext), then
4320** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004321*/
4322static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004323 BtShared *pBt, /* The database file */
4324 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004325 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004326 Pgno *pPgnoNext /* OUT: Next overflow page number */
4327){
4328 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004329 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004330 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004331
drh1fee73e2007-08-29 04:00:57 +00004332 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004333 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004334
4335#ifndef SQLITE_OMIT_AUTOVACUUM
4336 /* Try to find the next page in the overflow list using the
4337 ** autovacuum pointer-map pages. Guess that the next page in
4338 ** the overflow list is page number (ovfl+1). If that guess turns
4339 ** out to be wrong, fall back to loading the data of page
4340 ** number ovfl to determine the next page number.
4341 */
4342 if( pBt->autoVacuum ){
4343 Pgno pgno;
4344 Pgno iGuess = ovfl+1;
4345 u8 eType;
4346
4347 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4348 iGuess++;
4349 }
4350
drhb1299152010-03-30 22:58:33 +00004351 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004352 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004353 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004354 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004355 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004356 }
4357 }
4358 }
4359#endif
4360
danielk1977d8a3f3d2009-07-11 11:45:23 +00004361 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004362 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004363 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004364 assert( rc==SQLITE_OK || pPage==0 );
4365 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004366 next = get4byte(pPage->aData);
4367 }
danielk1977443c0592009-01-16 15:21:05 +00004368 }
danielk197745d68822009-01-16 16:23:38 +00004369
danielk1977bea2a942009-01-20 17:06:27 +00004370 *pPgnoNext = next;
4371 if( ppPage ){
4372 *ppPage = pPage;
4373 }else{
4374 releasePage(pPage);
4375 }
4376 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004377}
4378
danielk1977da107192007-05-04 08:32:13 +00004379/*
4380** Copy data from a buffer to a page, or from a page to a buffer.
4381**
4382** pPayload is a pointer to data stored on database page pDbPage.
4383** If argument eOp is false, then nByte bytes of data are copied
4384** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4385** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4386** of data are copied from the buffer pBuf to pPayload.
4387**
4388** SQLITE_OK is returned on success, otherwise an error code.
4389*/
4390static int copyPayload(
4391 void *pPayload, /* Pointer to page data */
4392 void *pBuf, /* Pointer to buffer */
4393 int nByte, /* Number of bytes to copy */
4394 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4395 DbPage *pDbPage /* Page containing pPayload */
4396){
4397 if( eOp ){
4398 /* Copy data from buffer to page (a write operation) */
4399 int rc = sqlite3PagerWrite(pDbPage);
4400 if( rc!=SQLITE_OK ){
4401 return rc;
4402 }
4403 memcpy(pPayload, pBuf, nByte);
4404 }else{
4405 /* Copy data from page to buffer (a read operation) */
4406 memcpy(pBuf, pPayload, nByte);
4407 }
4408 return SQLITE_OK;
4409}
danielk1977d04417962007-05-02 13:16:30 +00004410
4411/*
danielk19779f8d6402007-05-02 17:48:45 +00004412** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004413** for the entry that the pCur cursor is pointing to. The eOp
4414** argument is interpreted as follows:
4415**
4416** 0: The operation is a read. Populate the overflow cache.
4417** 1: The operation is a write. Populate the overflow cache.
4418** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004419**
4420** A total of "amt" bytes are read or written beginning at "offset".
4421** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004422**
drh3bcdfd22009-07-12 02:32:21 +00004423** The content being read or written might appear on the main page
4424** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004425**
dan5a500af2014-03-11 20:33:04 +00004426** If the current cursor entry uses one or more overflow pages and the
4427** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004428** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004429** Subsequent calls use this cache to make seeking to the supplied offset
4430** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004431**
4432** Once an overflow page-list cache has been allocated, it may be
4433** invalidated if some other cursor writes to the same table, or if
4434** the cursor is moved to a different row. Additionally, in auto-vacuum
4435** mode, the following events may invalidate an overflow page-list cache.
4436**
4437** * An incremental vacuum,
4438** * A commit in auto_vacuum="full" mode,
4439** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004440*/
danielk19779f8d6402007-05-02 17:48:45 +00004441static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004442 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004443 u32 offset, /* Begin reading this far into payload */
4444 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004445 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004446 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004447){
4448 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004449 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004450 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004451 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004452 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004453#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004454 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004455 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004456#endif
drh3aac2dd2004-04-26 14:10:20 +00004457
danielk1977da107192007-05-04 08:32:13 +00004458 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004459 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004460 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004461 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004462 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004463
drh86057612007-06-26 01:04:48 +00004464 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004465 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004466#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004467 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004468#endif
drhab1cc582014-09-23 21:25:19 +00004469 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004470
drhab1cc582014-09-23 21:25:19 +00004471 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004472 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004473 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004474 }
danielk1977da107192007-05-04 08:32:13 +00004475
4476 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004477 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004478 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004479 if( a+offset>pCur->info.nLocal ){
4480 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004481 }
dan5a500af2014-03-11 20:33:04 +00004482 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004483 offset = 0;
drha34b6762004-05-07 13:30:42 +00004484 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004485 amt -= a;
drhdd793422001-06-28 01:54:48 +00004486 }else{
drhfa1a98a2004-05-14 19:08:17 +00004487 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004488 }
danielk1977da107192007-05-04 08:32:13 +00004489
dan85753662014-12-11 16:38:18 +00004490
danielk1977da107192007-05-04 08:32:13 +00004491 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004492 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004493 Pgno nextPage;
4494
drhfa1a98a2004-05-14 19:08:17 +00004495 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004496
drha38c9512014-04-01 01:24:34 +00004497 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4498 ** Except, do not allocate aOverflow[] for eOp==2.
4499 **
4500 ** The aOverflow[] array is sized at one entry for each overflow page
4501 ** in the overflow chain. The page number of the first overflow page is
4502 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4503 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004504 */
drh036dbec2014-03-11 23:40:44 +00004505 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004506 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004507 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004508 Pgno *aNew = (Pgno*)sqlite3Realloc(
4509 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004510 );
4511 if( aNew==0 ){
4512 rc = SQLITE_NOMEM;
4513 }else{
4514 pCur->nOvflAlloc = nOvfl*2;
4515 pCur->aOverflow = aNew;
4516 }
4517 }
4518 if( rc==SQLITE_OK ){
4519 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004520 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004521 }
4522 }
danielk1977da107192007-05-04 08:32:13 +00004523
4524 /* If the overflow page-list cache has been allocated and the
4525 ** entry for the first required overflow page is valid, skip
4526 ** directly to it.
4527 */
drh3f387402014-09-24 01:23:00 +00004528 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4529 && pCur->aOverflow[offset/ovflSize]
4530 ){
danielk19772dec9702007-05-02 16:48:37 +00004531 iIdx = (offset/ovflSize);
4532 nextPage = pCur->aOverflow[iIdx];
4533 offset = (offset%ovflSize);
4534 }
danielk1977da107192007-05-04 08:32:13 +00004535
4536 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4537
danielk1977da107192007-05-04 08:32:13 +00004538 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004539 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
drhb0df9632015-10-16 23:55:08 +00004540 assert( pCur->aOverflow[iIdx]==0
4541 || pCur->aOverflow[iIdx]==nextPage
4542 || CORRUPT_DB );
danielk1977da107192007-05-04 08:32:13 +00004543 pCur->aOverflow[iIdx] = nextPage;
4544 }
danielk1977da107192007-05-04 08:32:13 +00004545
danielk1977d04417962007-05-02 13:16:30 +00004546 if( offset>=ovflSize ){
4547 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004548 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004549 ** data is not required. So first try to lookup the overflow
4550 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004551 ** function.
drha38c9512014-04-01 01:24:34 +00004552 **
4553 ** Note that the aOverflow[] array must be allocated because eOp!=2
4554 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004555 */
drha38c9512014-04-01 01:24:34 +00004556 assert( eOp!=2 );
4557 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004558 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004559 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004560 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004561 }else{
danielk1977da107192007-05-04 08:32:13 +00004562 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004563 }
danielk1977da107192007-05-04 08:32:13 +00004564 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004565 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004566 /* Need to read this page properly. It contains some of the
4567 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004568 */
danf4ba1092011-10-08 14:57:07 +00004569#ifdef SQLITE_DIRECT_OVERFLOW_READ
4570 sqlite3_file *fd;
4571#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004572 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004573 if( a + offset > ovflSize ){
4574 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004575 }
danf4ba1092011-10-08 14:57:07 +00004576
4577#ifdef SQLITE_DIRECT_OVERFLOW_READ
4578 /* If all the following are true:
4579 **
4580 ** 1) this is a read operation, and
4581 ** 2) data is required from the start of this overflow page, and
4582 ** 3) the database is file-backed, and
4583 ** 4) there is no open write-transaction, and
4584 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004585 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004586 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004587 **
4588 ** then data can be read directly from the database file into the
4589 ** output buffer, bypassing the page-cache altogether. This speeds
4590 ** up loading large records that span many overflow pages.
4591 */
dan5a500af2014-03-11 20:33:04 +00004592 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004593 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004594 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004595 && pBt->inTransaction==TRANS_READ /* (4) */
4596 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4597 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004598 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004599 ){
4600 u8 aSave[4];
4601 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004602 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004603 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004604 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004605 nextPage = get4byte(aWrite);
4606 memcpy(aWrite, aSave, 4);
4607 }else
4608#endif
4609
4610 {
4611 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004612 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004613 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004614 );
danf4ba1092011-10-08 14:57:07 +00004615 if( rc==SQLITE_OK ){
4616 aPayload = sqlite3PagerGetData(pDbPage);
4617 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004618 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004619 sqlite3PagerUnref(pDbPage);
4620 offset = 0;
4621 }
4622 }
4623 amt -= a;
4624 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004625 }
drh2af926b2001-05-15 00:39:25 +00004626 }
drh2af926b2001-05-15 00:39:25 +00004627 }
danielk1977cfe9a692004-06-16 12:00:29 +00004628
danielk1977da107192007-05-04 08:32:13 +00004629 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004630 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004631 }
danielk1977da107192007-05-04 08:32:13 +00004632 return rc;
drh2af926b2001-05-15 00:39:25 +00004633}
4634
drh72f82862001-05-24 21:06:34 +00004635/*
drh3aac2dd2004-04-26 14:10:20 +00004636** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004637** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004638** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004639**
drh5d1a8722009-07-22 18:07:40 +00004640** The caller must ensure that pCur is pointing to a valid row
4641** in the table.
4642**
drh3aac2dd2004-04-26 14:10:20 +00004643** Return SQLITE_OK on success or an error code if anything goes
4644** wrong. An error is returned if "offset+amt" is larger than
4645** the available payload.
drh72f82862001-05-24 21:06:34 +00004646*/
drha34b6762004-05-07 13:30:42 +00004647int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004648 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004649 assert( pCur->eState==CURSOR_VALID );
4650 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4651 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4652 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004653}
4654
4655/*
drh3aac2dd2004-04-26 14:10:20 +00004656** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004657** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004658** begins at "offset".
4659**
4660** Return SQLITE_OK on success or an error code if anything goes
4661** wrong. An error is returned if "offset+amt" is larger than
4662** the available payload.
drh72f82862001-05-24 21:06:34 +00004663*/
drh3aac2dd2004-04-26 14:10:20 +00004664int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004665 int rc;
4666
danielk19773588ceb2008-06-10 17:30:26 +00004667#ifndef SQLITE_OMIT_INCRBLOB
4668 if ( pCur->eState==CURSOR_INVALID ){
4669 return SQLITE_ABORT;
4670 }
4671#endif
4672
drh1fee73e2007-08-29 04:00:57 +00004673 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004674 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004675 if( rc==SQLITE_OK ){
4676 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004677 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4678 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004679 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004680 }
4681 return rc;
drh2af926b2001-05-15 00:39:25 +00004682}
4683
drh72f82862001-05-24 21:06:34 +00004684/*
drh0e1c19e2004-05-11 00:58:56 +00004685** Return a pointer to payload information from the entry that the
4686** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004687** the key if index btrees (pPage->intKey==0) and is the data for
4688** table btrees (pPage->intKey==1). The number of bytes of available
4689** key/data is written into *pAmt. If *pAmt==0, then the value
4690** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004691**
4692** This routine is an optimization. It is common for the entire key
4693** and data to fit on the local page and for there to be no overflow
4694** pages. When that is so, this routine can be used to access the
4695** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004696** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004697** the key/data and copy it into a preallocated buffer.
4698**
4699** The pointer returned by this routine looks directly into the cached
4700** page of the database. The data might change or move the next time
4701** any btree routine is called.
4702*/
drh2a8d2262013-12-09 20:43:22 +00004703static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004704 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004705 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004706){
drhf3392e32015-04-15 17:26:55 +00004707 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004708 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004709 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004710 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004711 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004712 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004713 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004714 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4715 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4716 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4717 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4718 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004719 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004720}
4721
4722
4723/*
drhe51c44f2004-05-30 20:46:09 +00004724** For the entry that cursor pCur is point to, return as
4725** many bytes of the key or data as are available on the local
4726** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004727**
4728** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004729** or be destroyed on the next call to any Btree routine,
4730** including calls from other threads against the same cache.
4731** Hence, a mutex on the BtShared should be held prior to calling
4732** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004733**
4734** These routines is used to get quick access to key and data
4735** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004736*/
drh501932c2013-11-21 21:59:53 +00004737const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004738 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004739}
drh501932c2013-11-21 21:59:53 +00004740const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004741 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004742}
4743
4744
4745/*
drh8178a752003-01-05 21:41:40 +00004746** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004747** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004748**
4749** This function returns SQLITE_CORRUPT if the page-header flags field of
4750** the new child page does not match the flags field of the parent (i.e.
4751** if an intkey page appears to be the parent of a non-intkey page, or
4752** vice-versa).
drh72f82862001-05-24 21:06:34 +00004753*/
drh3aac2dd2004-04-26 14:10:20 +00004754static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004755 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004756
drh1fee73e2007-08-29 04:00:57 +00004757 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004758 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004759 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004760 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004761 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4762 return SQLITE_CORRUPT_BKPT;
4763 }
drh271efa52004-05-30 19:19:05 +00004764 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004765 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004766 pCur->iPage++;
4767 pCur->aiIdx[pCur->iPage] = 0;
4768 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4769 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004770}
4771
drhcbd33492015-03-25 13:06:54 +00004772#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004773/*
4774** Page pParent is an internal (non-leaf) tree page. This function
4775** asserts that page number iChild is the left-child if the iIdx'th
4776** cell in page pParent. Or, if iIdx is equal to the total number of
4777** cells in pParent, that page number iChild is the right-child of
4778** the page.
4779*/
4780static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004781 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4782 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004783 assert( iIdx<=pParent->nCell );
4784 if( iIdx==pParent->nCell ){
4785 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4786 }else{
4787 assert( get4byte(findCell(pParent, iIdx))==iChild );
4788 }
4789}
4790#else
4791# define assertParentIndex(x,y,z)
4792#endif
4793
drh72f82862001-05-24 21:06:34 +00004794/*
drh5e2f8b92001-05-28 00:41:15 +00004795** Move the cursor up to the parent page.
4796**
4797** pCur->idx is set to the cell index that contains the pointer
4798** to the page we are coming from. If we are coming from the
4799** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004800** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004801*/
danielk197730548662009-07-09 05:07:37 +00004802static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004803 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004804 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004805 assert( pCur->iPage>0 );
4806 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004807 assertParentIndex(
4808 pCur->apPage[pCur->iPage-1],
4809 pCur->aiIdx[pCur->iPage-1],
4810 pCur->apPage[pCur->iPage]->pgno
4811 );
dan6c2688c2012-01-12 15:05:03 +00004812 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004813 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004814 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004815 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004816}
4817
4818/*
danielk19778f880a82009-07-13 09:41:45 +00004819** Move the cursor to point to the root page of its b-tree structure.
4820**
4821** If the table has a virtual root page, then the cursor is moved to point
4822** to the virtual root page instead of the actual root page. A table has a
4823** virtual root page when the actual root page contains no cells and a
4824** single child page. This can only happen with the table rooted at page 1.
4825**
4826** If the b-tree structure is empty, the cursor state is set to
4827** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4828** cell located on the root (or virtual root) page and the cursor state
4829** is set to CURSOR_VALID.
4830**
4831** If this function returns successfully, it may be assumed that the
4832** page-header flags indicate that the [virtual] root-page is the expected
4833** kind of b-tree page (i.e. if when opening the cursor the caller did not
4834** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4835** indicating a table b-tree, or if the caller did specify a KeyInfo
4836** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4837** b-tree).
drh72f82862001-05-24 21:06:34 +00004838*/
drh5e2f8b92001-05-28 00:41:15 +00004839static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004840 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004841 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004842
drh1fee73e2007-08-29 04:00:57 +00004843 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004844 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4845 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4846 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4847 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4848 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004849 assert( pCur->skipNext!=SQLITE_OK );
4850 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004851 }
danielk1977be51a652008-10-08 17:58:48 +00004852 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004853 }
danielk197771d5d2c2008-09-29 11:49:47 +00004854
4855 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004856 while( pCur->iPage ){
4857 assert( pCur->apPage[pCur->iPage]!=0 );
4858 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4859 }
dana205a482011-08-27 18:48:57 +00004860 }else if( pCur->pgnoRoot==0 ){
4861 pCur->eState = CURSOR_INVALID;
4862 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004863 }else{
drh28f58dd2015-06-27 19:45:03 +00004864 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004865 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004866 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004867 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004868 pCur->eState = CURSOR_INVALID;
4869 return rc;
4870 }
danielk1977172114a2009-07-07 15:47:12 +00004871 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004872 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004873 }
danielk197771d5d2c2008-09-29 11:49:47 +00004874 pRoot = pCur->apPage[0];
4875 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004876
4877 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4878 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4879 ** NULL, the caller expects a table b-tree. If this is not the case,
4880 ** return an SQLITE_CORRUPT error.
4881 **
4882 ** Earlier versions of SQLite assumed that this test could not fail
4883 ** if the root page was already loaded when this function was called (i.e.
4884 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4885 ** in such a way that page pRoot is linked into a second b-tree table
4886 ** (or the freelist). */
4887 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4888 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4889 return SQLITE_CORRUPT_BKPT;
4890 }
danielk19778f880a82009-07-13 09:41:45 +00004891
danielk197771d5d2c2008-09-29 11:49:47 +00004892 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004893 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004894 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004895
drh4e8fe3f2013-12-06 23:25:27 +00004896 if( pRoot->nCell>0 ){
4897 pCur->eState = CURSOR_VALID;
4898 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004899 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004900 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004901 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004902 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004903 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004904 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004905 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004906 }
4907 return rc;
drh72f82862001-05-24 21:06:34 +00004908}
drh2af926b2001-05-15 00:39:25 +00004909
drh5e2f8b92001-05-28 00:41:15 +00004910/*
4911** Move the cursor down to the left-most leaf entry beneath the
4912** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004913**
4914** The left-most leaf is the one with the smallest key - the first
4915** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004916*/
4917static int moveToLeftmost(BtCursor *pCur){
4918 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004919 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004920 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004921
drh1fee73e2007-08-29 04:00:57 +00004922 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004923 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004924 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4925 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4926 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004927 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004928 }
drhd677b3d2007-08-20 22:48:41 +00004929 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004930}
4931
drh2dcc9aa2002-12-04 13:40:25 +00004932/*
4933** Move the cursor down to the right-most leaf entry beneath the
4934** page to which it is currently pointing. Notice the difference
4935** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4936** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4937** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004938**
4939** The right-most entry is the one with the largest key - the last
4940** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004941*/
4942static int moveToRightmost(BtCursor *pCur){
4943 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004944 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004945 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004946
drh1fee73e2007-08-29 04:00:57 +00004947 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004948 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004949 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004950 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004951 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004952 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004953 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004954 }
drhee6438d2014-09-01 13:29:32 +00004955 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4956 assert( pCur->info.nSize==0 );
4957 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4958 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004959}
4960
drh5e00f6c2001-09-13 13:46:56 +00004961/* Move the cursor to the first entry in the table. Return SQLITE_OK
4962** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004963** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004964*/
drh3aac2dd2004-04-26 14:10:20 +00004965int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004966 int rc;
drhd677b3d2007-08-20 22:48:41 +00004967
drh1fee73e2007-08-29 04:00:57 +00004968 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004969 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004970 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004971 if( rc==SQLITE_OK ){
4972 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004973 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004974 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004975 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004976 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004977 *pRes = 0;
4978 rc = moveToLeftmost(pCur);
4979 }
drh5e00f6c2001-09-13 13:46:56 +00004980 }
drh5e00f6c2001-09-13 13:46:56 +00004981 return rc;
4982}
drh5e2f8b92001-05-28 00:41:15 +00004983
drh9562b552002-02-19 15:00:07 +00004984/* Move the cursor to the last entry in the table. Return SQLITE_OK
4985** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004986** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004987*/
drh3aac2dd2004-04-26 14:10:20 +00004988int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004989 int rc;
drhd677b3d2007-08-20 22:48:41 +00004990
drh1fee73e2007-08-29 04:00:57 +00004991 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004992 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004993
4994 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004995 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004996#ifdef SQLITE_DEBUG
4997 /* This block serves to assert() that the cursor really does point
4998 ** to the last entry in the b-tree. */
4999 int ii;
5000 for(ii=0; ii<pCur->iPage; ii++){
5001 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5002 }
5003 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
5004 assert( pCur->apPage[pCur->iPage]->leaf );
5005#endif
5006 return SQLITE_OK;
5007 }
5008
drh9562b552002-02-19 15:00:07 +00005009 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005010 if( rc==SQLITE_OK ){
5011 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005012 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005013 *pRes = 1;
5014 }else{
5015 assert( pCur->eState==CURSOR_VALID );
5016 *pRes = 0;
5017 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005018 if( rc==SQLITE_OK ){
5019 pCur->curFlags |= BTCF_AtLast;
5020 }else{
5021 pCur->curFlags &= ~BTCF_AtLast;
5022 }
5023
drhd677b3d2007-08-20 22:48:41 +00005024 }
drh9562b552002-02-19 15:00:07 +00005025 }
drh9562b552002-02-19 15:00:07 +00005026 return rc;
5027}
5028
drhe14006d2008-03-25 17:23:32 +00005029/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005030** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005031**
drhe63d9992008-08-13 19:11:48 +00005032** For INTKEY tables, the intKey parameter is used. pIdxKey
5033** must be NULL. For index tables, pIdxKey is used and intKey
5034** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005035**
drh5e2f8b92001-05-28 00:41:15 +00005036** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005037** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005038** were present. The cursor might point to an entry that comes
5039** before or after the key.
5040**
drh64022502009-01-09 14:11:04 +00005041** An integer is written into *pRes which is the result of
5042** comparing the key with the entry to which the cursor is
5043** pointing. The meaning of the integer written into
5044** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005045**
5046** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005047** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005048** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005049**
5050** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005051** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005052**
5053** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005054** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005055**
drhb1d607d2015-11-05 22:30:54 +00005056** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5057** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005058*/
drhe63d9992008-08-13 19:11:48 +00005059int sqlite3BtreeMovetoUnpacked(
5060 BtCursor *pCur, /* The cursor to be moved */
5061 UnpackedRecord *pIdxKey, /* Unpacked index key */
5062 i64 intKey, /* The table key */
5063 int biasRight, /* If true, bias the search to the high end */
5064 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005065){
drh72f82862001-05-24 21:06:34 +00005066 int rc;
dan3b9330f2014-02-27 20:44:18 +00005067 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005068
drh1fee73e2007-08-29 04:00:57 +00005069 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005070 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005071 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005072 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005073
5074 /* If the cursor is already positioned at the point we are trying
5075 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005076 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005077 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005078 ){
drhe63d9992008-08-13 19:11:48 +00005079 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005080 *pRes = 0;
5081 return SQLITE_OK;
5082 }
drh036dbec2014-03-11 23:40:44 +00005083 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005084 *pRes = -1;
5085 return SQLITE_OK;
5086 }
5087 }
5088
dan1fed5da2014-02-25 21:01:25 +00005089 if( pIdxKey ){
5090 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005091 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005092 assert( pIdxKey->default_rc==1
5093 || pIdxKey->default_rc==0
5094 || pIdxKey->default_rc==-1
5095 );
drh13a747e2014-03-03 21:46:55 +00005096 }else{
drhb6e8fd12014-03-06 01:56:33 +00005097 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005098 }
5099
drh5e2f8b92001-05-28 00:41:15 +00005100 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005101 if( rc ){
5102 return rc;
5103 }
dana205a482011-08-27 18:48:57 +00005104 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5105 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5106 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005107 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005108 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005109 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005110 return SQLITE_OK;
5111 }
drhc75d8862015-06-27 23:55:20 +00005112 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5113 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005114 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005115 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005116 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005117 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005118 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005119
5120 /* pPage->nCell must be greater than zero. If this is the root-page
5121 ** the cursor would have been INVALID above and this for(;;) loop
5122 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005123 ** would have already detected db corruption. Similarly, pPage must
5124 ** be the right kind (index or table) of b-tree page. Otherwise
5125 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005126 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005127 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005128 lwr = 0;
5129 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005130 assert( biasRight==0 || biasRight==1 );
5131 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005132 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005133 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005134 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005135 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005136 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005137 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005138 while( 0x80 <= *(pCell++) ){
5139 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5140 }
drhd172f862006-01-12 15:01:15 +00005141 }
drha2c20e42008-03-29 16:01:04 +00005142 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005143 if( nCellKey<intKey ){
5144 lwr = idx+1;
5145 if( lwr>upr ){ c = -1; break; }
5146 }else if( nCellKey>intKey ){
5147 upr = idx-1;
5148 if( lwr>upr ){ c = +1; break; }
5149 }else{
5150 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005151 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005152 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005153 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005154 if( !pPage->leaf ){
5155 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005156 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005157 }else{
5158 *pRes = 0;
5159 rc = SQLITE_OK;
5160 goto moveto_finish;
5161 }
drhd793f442013-11-25 14:10:15 +00005162 }
drhebf10b12013-11-25 17:38:26 +00005163 assert( lwr+upr>=0 );
5164 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005165 }
5166 }else{
5167 for(;;){
drhc6827502015-05-28 15:14:32 +00005168 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005169 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005170
drhb2eced52010-08-12 02:41:12 +00005171 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005172 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005173 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005174 ** varint. This information is used to attempt to avoid parsing
5175 ** the entire cell by checking for the cases where the record is
5176 ** stored entirely within the b-tree page by inspecting the first
5177 ** 2 bytes of the cell.
5178 */
drhec3e6b12013-11-25 02:38:55 +00005179 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005180 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005181 /* This branch runs if the record-size field of the cell is a
5182 ** single byte varint and the record fits entirely on the main
5183 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005184 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005185 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005186 }else if( !(pCell[1] & 0x80)
5187 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5188 ){
5189 /* The record-size field is a 2 byte varint and the record
5190 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005191 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005192 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005193 }else{
danielk197711c327a2009-05-04 19:01:26 +00005194 /* The record flows over onto one or more overflow pages. In
5195 ** this case the whole cell needs to be parsed, a buffer allocated
5196 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005197 ** buffer before VdbeRecordCompare() can be called.
5198 **
5199 ** If the record is corrupt, the xRecordCompare routine may read
5200 ** up to two varints past the end of the buffer. An extra 18
5201 ** bytes of padding is allocated at the end of the buffer in
5202 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005203 void *pCellKey;
5204 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005205 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005206 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005207 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5208 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5209 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5210 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005211 if( nCell<2 ){
5212 rc = SQLITE_CORRUPT_BKPT;
5213 goto moveto_finish;
5214 }
5215 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005216 if( pCellKey==0 ){
5217 rc = SQLITE_NOMEM;
5218 goto moveto_finish;
5219 }
drhd793f442013-11-25 14:10:15 +00005220 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005221 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005222 if( rc ){
5223 sqlite3_free(pCellKey);
5224 goto moveto_finish;
5225 }
drh75179de2014-09-16 14:37:35 +00005226 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005227 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005228 }
dan38fdead2014-04-01 10:19:02 +00005229 assert(
5230 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005231 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005232 );
drhbb933ef2013-11-25 15:01:38 +00005233 if( c<0 ){
5234 lwr = idx+1;
5235 }else if( c>0 ){
5236 upr = idx-1;
5237 }else{
5238 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005239 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005240 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005241 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005242 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005243 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005244 }
drhebf10b12013-11-25 17:38:26 +00005245 if( lwr>upr ) break;
5246 assert( lwr+upr>=0 );
5247 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005248 }
drh72f82862001-05-24 21:06:34 +00005249 }
drhb07028f2011-10-14 21:49:18 +00005250 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005251 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005252 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005253 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005254 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005255 *pRes = c;
5256 rc = SQLITE_OK;
5257 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005258 }
5259moveto_next_layer:
5260 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005261 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005262 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005263 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005264 }
drhf49661a2008-12-10 16:45:50 +00005265 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005266 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005267 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005268 }
drh1e968a02008-03-25 00:22:21 +00005269moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005270 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005271 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005272 return rc;
5273}
5274
drhd677b3d2007-08-20 22:48:41 +00005275
drh72f82862001-05-24 21:06:34 +00005276/*
drhc39e0002004-05-07 23:50:57 +00005277** Return TRUE if the cursor is not pointing at an entry of the table.
5278**
5279** TRUE will be returned after a call to sqlite3BtreeNext() moves
5280** past the last entry in the table or sqlite3BtreePrev() moves past
5281** the first entry. TRUE is also returned if the table is empty.
5282*/
5283int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005284 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5285 ** have been deleted? This API will need to change to return an error code
5286 ** as well as the boolean result value.
5287 */
5288 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005289}
5290
5291/*
drhbd03cae2001-06-02 02:40:57 +00005292** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005293** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005294** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005295** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005296**
drhee6438d2014-09-01 13:29:32 +00005297** The main entry point is sqlite3BtreeNext(). That routine is optimized
5298** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5299** to the next cell on the current page. The (slower) btreeNext() helper
5300** routine is called when it is necessary to move to a different page or
5301** to restore the cursor.
5302**
drhe39a7322014-02-03 14:04:11 +00005303** The calling function will set *pRes to 0 or 1. The initial *pRes value
5304** will be 1 if the cursor being stepped corresponds to an SQL index and
5305** if this routine could have been skipped if that SQL index had been
5306** a unique index. Otherwise the caller will have set *pRes to zero.
5307** Zero is the common case. The btree implementation is free to use the
5308** initial *pRes value as a hint to improve performance, but the current
5309** SQLite btree implementation does not. (Note that the comdb2 btree
5310** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005311*/
drhee6438d2014-09-01 13:29:32 +00005312static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005313 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005314 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005315 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005316
drh1fee73e2007-08-29 04:00:57 +00005317 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005318 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005319 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005320 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005321 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005322 rc = restoreCursorPosition(pCur);
5323 if( rc!=SQLITE_OK ){
5324 return rc;
5325 }
5326 if( CURSOR_INVALID==pCur->eState ){
5327 *pRes = 1;
5328 return SQLITE_OK;
5329 }
drh9b47ee32013-08-20 03:13:51 +00005330 if( pCur->skipNext ){
5331 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5332 pCur->eState = CURSOR_VALID;
5333 if( pCur->skipNext>0 ){
5334 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005335 return SQLITE_OK;
5336 }
drhf66f26a2013-08-19 20:04:10 +00005337 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005338 }
danielk1977da184232006-01-05 11:34:32 +00005339 }
danielk1977da184232006-01-05 11:34:32 +00005340
danielk197771d5d2c2008-09-29 11:49:47 +00005341 pPage = pCur->apPage[pCur->iPage];
5342 idx = ++pCur->aiIdx[pCur->iPage];
5343 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005344
5345 /* If the database file is corrupt, it is possible for the value of idx
5346 ** to be invalid here. This can only occur if a second cursor modifies
5347 ** the page while cursor pCur is holding a reference to it. Which can
5348 ** only happen if the database is corrupt in such a way as to link the
5349 ** page into more than one b-tree structure. */
5350 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005351
danielk197771d5d2c2008-09-29 11:49:47 +00005352 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005353 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005354 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005355 if( rc ) return rc;
5356 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005357 }
drh5e2f8b92001-05-28 00:41:15 +00005358 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005359 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005360 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005361 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005362 return SQLITE_OK;
5363 }
danielk197730548662009-07-09 05:07:37 +00005364 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005365 pPage = pCur->apPage[pCur->iPage];
5366 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005367 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005368 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005369 }else{
drhee6438d2014-09-01 13:29:32 +00005370 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005371 }
drh8178a752003-01-05 21:41:40 +00005372 }
drh3aac2dd2004-04-26 14:10:20 +00005373 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005374 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005375 }else{
5376 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005377 }
drh72f82862001-05-24 21:06:34 +00005378}
drhee6438d2014-09-01 13:29:32 +00005379int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5380 MemPage *pPage;
5381 assert( cursorHoldsMutex(pCur) );
5382 assert( pRes!=0 );
5383 assert( *pRes==0 || *pRes==1 );
5384 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5385 pCur->info.nSize = 0;
5386 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5387 *pRes = 0;
5388 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5389 pPage = pCur->apPage[pCur->iPage];
5390 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5391 pCur->aiIdx[pCur->iPage]--;
5392 return btreeNext(pCur, pRes);
5393 }
5394 if( pPage->leaf ){
5395 return SQLITE_OK;
5396 }else{
5397 return moveToLeftmost(pCur);
5398 }
5399}
drh72f82862001-05-24 21:06:34 +00005400
drh3b7511c2001-05-26 13:15:44 +00005401/*
drh2dcc9aa2002-12-04 13:40:25 +00005402** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005403** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005404** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005405** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005406**
drhee6438d2014-09-01 13:29:32 +00005407** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5408** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005409** to the previous cell on the current page. The (slower) btreePrevious()
5410** helper routine is called when it is necessary to move to a different page
5411** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005412**
drhe39a7322014-02-03 14:04:11 +00005413** The calling function will set *pRes to 0 or 1. The initial *pRes value
5414** will be 1 if the cursor being stepped corresponds to an SQL index and
5415** if this routine could have been skipped if that SQL index had been
5416** a unique index. Otherwise the caller will have set *pRes to zero.
5417** Zero is the common case. The btree implementation is free to use the
5418** initial *pRes value as a hint to improve performance, but the current
5419** SQLite btree implementation does not. (Note that the comdb2 btree
5420** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005421*/
drhee6438d2014-09-01 13:29:32 +00005422static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005423 int rc;
drh8178a752003-01-05 21:41:40 +00005424 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005425
drh1fee73e2007-08-29 04:00:57 +00005426 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005427 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005428 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005429 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005430 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5431 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005432 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005433 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005434 if( rc!=SQLITE_OK ){
5435 return rc;
drhf66f26a2013-08-19 20:04:10 +00005436 }
5437 if( CURSOR_INVALID==pCur->eState ){
5438 *pRes = 1;
5439 return SQLITE_OK;
5440 }
drh9b47ee32013-08-20 03:13:51 +00005441 if( pCur->skipNext ){
5442 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5443 pCur->eState = CURSOR_VALID;
5444 if( pCur->skipNext<0 ){
5445 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005446 return SQLITE_OK;
5447 }
drhf66f26a2013-08-19 20:04:10 +00005448 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005449 }
danielk1977da184232006-01-05 11:34:32 +00005450 }
danielk1977da184232006-01-05 11:34:32 +00005451
danielk197771d5d2c2008-09-29 11:49:47 +00005452 pPage = pCur->apPage[pCur->iPage];
5453 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005454 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005455 int idx = pCur->aiIdx[pCur->iPage];
5456 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005457 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005458 rc = moveToRightmost(pCur);
5459 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005460 while( pCur->aiIdx[pCur->iPage]==0 ){
5461 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005462 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005463 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005464 return SQLITE_OK;
5465 }
danielk197730548662009-07-09 05:07:37 +00005466 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005467 }
drhee6438d2014-09-01 13:29:32 +00005468 assert( pCur->info.nSize==0 );
5469 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005470
5471 pCur->aiIdx[pCur->iPage]--;
5472 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005473 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005474 rc = sqlite3BtreePrevious(pCur, pRes);
5475 }else{
5476 rc = SQLITE_OK;
5477 }
drh2dcc9aa2002-12-04 13:40:25 +00005478 }
drh2dcc9aa2002-12-04 13:40:25 +00005479 return rc;
5480}
drhee6438d2014-09-01 13:29:32 +00005481int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5482 assert( cursorHoldsMutex(pCur) );
5483 assert( pRes!=0 );
5484 assert( *pRes==0 || *pRes==1 );
5485 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5486 *pRes = 0;
5487 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5488 pCur->info.nSize = 0;
5489 if( pCur->eState!=CURSOR_VALID
5490 || pCur->aiIdx[pCur->iPage]==0
5491 || pCur->apPage[pCur->iPage]->leaf==0
5492 ){
5493 return btreePrevious(pCur, pRes);
5494 }
5495 pCur->aiIdx[pCur->iPage]--;
5496 return SQLITE_OK;
5497}
drh2dcc9aa2002-12-04 13:40:25 +00005498
5499/*
drh3b7511c2001-05-26 13:15:44 +00005500** Allocate a new page from the database file.
5501**
danielk19773b8a05f2007-03-19 17:44:26 +00005502** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005503** has already been called on the new page.) The new page has also
5504** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005505** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005506**
5507** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005508** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005509**
drh82e647d2013-03-02 03:25:55 +00005510** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005511** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005512** attempt to keep related pages close to each other in the database file,
5513** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005514**
drh82e647d2013-03-02 03:25:55 +00005515** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5516** anywhere on the free-list, then it is guaranteed to be returned. If
5517** eMode is BTALLOC_LT then the page returned will be less than or equal
5518** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5519** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005520*/
drh4f0c5872007-03-26 22:05:01 +00005521static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005522 BtShared *pBt, /* The btree */
5523 MemPage **ppPage, /* Store pointer to the allocated page here */
5524 Pgno *pPgno, /* Store the page number here */
5525 Pgno nearby, /* Search for a page near this one */
5526 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005527){
drh3aac2dd2004-04-26 14:10:20 +00005528 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005529 int rc;
drh35cd6432009-06-05 14:17:21 +00005530 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005531 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005532 MemPage *pTrunk = 0;
5533 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005534 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005535
drh1fee73e2007-08-29 04:00:57 +00005536 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005537 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005538 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005539 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005540 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5541 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005542 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005543 testcase( n==mxPage-1 );
5544 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005545 return SQLITE_CORRUPT_BKPT;
5546 }
drh3aac2dd2004-04-26 14:10:20 +00005547 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005548 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005549 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005550 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005551 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005552
drh82e647d2013-03-02 03:25:55 +00005553 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005554 ** shows that the page 'nearby' is somewhere on the free-list, then
5555 ** the entire-list will be searched for that page.
5556 */
5557#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005558 if( eMode==BTALLOC_EXACT ){
5559 if( nearby<=mxPage ){
5560 u8 eType;
5561 assert( nearby>0 );
5562 assert( pBt->autoVacuum );
5563 rc = ptrmapGet(pBt, nearby, &eType, 0);
5564 if( rc ) return rc;
5565 if( eType==PTRMAP_FREEPAGE ){
5566 searchList = 1;
5567 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005568 }
dan51f0b6d2013-02-22 20:16:34 +00005569 }else if( eMode==BTALLOC_LE ){
5570 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005571 }
5572#endif
5573
5574 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5575 ** first free-list trunk page. iPrevTrunk is initially 1.
5576 */
danielk19773b8a05f2007-03-19 17:44:26 +00005577 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005578 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005579 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005580
5581 /* The code within this loop is run only once if the 'searchList' variable
5582 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005583 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5584 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005585 */
5586 do {
5587 pPrevTrunk = pTrunk;
5588 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005589 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5590 ** is the page number of the next freelist trunk page in the list or
5591 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005592 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005593 }else{
drh113762a2014-11-19 16:36:25 +00005594 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5595 ** stores the page number of the first page of the freelist, or zero if
5596 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005597 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005598 }
drhdf35a082009-07-09 02:24:35 +00005599 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005600 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005601 rc = SQLITE_CORRUPT_BKPT;
5602 }else{
drh7e8c6f12015-05-28 03:28:27 +00005603 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005604 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005605 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005606 pTrunk = 0;
5607 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005608 }
drhb07028f2011-10-14 21:49:18 +00005609 assert( pTrunk!=0 );
5610 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005611 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5612 ** is the number of leaf page pointers to follow. */
5613 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005614 if( k==0 && !searchList ){
5615 /* The trunk has no leaves and the list is not being searched.
5616 ** So extract the trunk page itself and use it as the newly
5617 ** allocated page */
5618 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005619 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005620 if( rc ){
5621 goto end_allocate_page;
5622 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005623 *pPgno = iTrunk;
5624 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5625 *ppPage = pTrunk;
5626 pTrunk = 0;
5627 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005628 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005629 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005630 rc = SQLITE_CORRUPT_BKPT;
5631 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005632#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005633 }else if( searchList
5634 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5635 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005636 /* The list is being searched and this trunk page is the page
5637 ** to allocate, regardless of whether it has leaves.
5638 */
dan51f0b6d2013-02-22 20:16:34 +00005639 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005640 *ppPage = pTrunk;
5641 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005642 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005643 if( rc ){
5644 goto end_allocate_page;
5645 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005646 if( k==0 ){
5647 if( !pPrevTrunk ){
5648 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5649 }else{
danf48c3552010-08-23 15:41:24 +00005650 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5651 if( rc!=SQLITE_OK ){
5652 goto end_allocate_page;
5653 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005654 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5655 }
5656 }else{
5657 /* The trunk page is required by the caller but it contains
5658 ** pointers to free-list leaves. The first leaf becomes a trunk
5659 ** page in this case.
5660 */
5661 MemPage *pNewTrunk;
5662 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005663 if( iNewTrunk>mxPage ){
5664 rc = SQLITE_CORRUPT_BKPT;
5665 goto end_allocate_page;
5666 }
drhdf35a082009-07-09 02:24:35 +00005667 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005668 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005669 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005670 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005671 }
danielk19773b8a05f2007-03-19 17:44:26 +00005672 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005673 if( rc!=SQLITE_OK ){
5674 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005675 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005676 }
5677 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5678 put4byte(&pNewTrunk->aData[4], k-1);
5679 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005680 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005681 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005682 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005683 put4byte(&pPage1->aData[32], iNewTrunk);
5684 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005685 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005686 if( rc ){
5687 goto end_allocate_page;
5688 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005689 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5690 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005691 }
5692 pTrunk = 0;
5693 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5694#endif
danielk1977e5765212009-06-17 11:13:28 +00005695 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005696 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005697 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005698 Pgno iPage;
5699 unsigned char *aData = pTrunk->aData;
5700 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005701 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005702 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005703 if( eMode==BTALLOC_LE ){
5704 for(i=0; i<k; i++){
5705 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005706 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005707 closest = i;
5708 break;
5709 }
5710 }
5711 }else{
5712 int dist;
5713 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5714 for(i=1; i<k; i++){
5715 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5716 if( d2<dist ){
5717 closest = i;
5718 dist = d2;
5719 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005720 }
5721 }
5722 }else{
5723 closest = 0;
5724 }
5725
5726 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005727 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005728 if( iPage>mxPage ){
5729 rc = SQLITE_CORRUPT_BKPT;
5730 goto end_allocate_page;
5731 }
drhdf35a082009-07-09 02:24:35 +00005732 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005733 if( !searchList
5734 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5735 ){
danielk1977bea2a942009-01-20 17:06:27 +00005736 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005737 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005738 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5739 ": %d more free pages\n",
5740 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005741 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5742 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005743 if( closest<k-1 ){
5744 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5745 }
5746 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005747 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005748 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005749 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005750 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005751 if( rc!=SQLITE_OK ){
5752 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005753 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005754 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005755 }
5756 searchList = 0;
5757 }
drhee696e22004-08-30 16:52:17 +00005758 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005759 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005760 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005761 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005762 }else{
danbc1a3c62013-02-23 16:40:46 +00005763 /* There are no pages on the freelist, so append a new page to the
5764 ** database image.
5765 **
5766 ** Normally, new pages allocated by this block can be requested from the
5767 ** pager layer with the 'no-content' flag set. This prevents the pager
5768 ** from trying to read the pages content from disk. However, if the
5769 ** current transaction has already run one or more incremental-vacuum
5770 ** steps, then the page we are about to allocate may contain content
5771 ** that is required in the event of a rollback. In this case, do
5772 ** not set the no-content flag. This causes the pager to load and journal
5773 ** the current page content before overwriting it.
5774 **
5775 ** Note that the pager will not actually attempt to load or journal
5776 ** content for any page that really does lie past the end of the database
5777 ** file on disk. So the effects of disabling the no-content optimization
5778 ** here are confined to those pages that lie between the end of the
5779 ** database image and the end of the database file.
5780 */
drh3f387402014-09-24 01:23:00 +00005781 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005782
drhdd3cd972010-03-27 17:12:36 +00005783 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5784 if( rc ) return rc;
5785 pBt->nPage++;
5786 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005787
danielk1977afcdd022004-10-31 16:25:42 +00005788#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005789 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005790 /* If *pPgno refers to a pointer-map page, allocate two new pages
5791 ** at the end of the file instead of one. The first allocated page
5792 ** becomes a new pointer-map page, the second is used by the caller.
5793 */
danielk1977ac861692009-03-28 10:54:22 +00005794 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005795 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5796 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005797 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005798 if( rc==SQLITE_OK ){
5799 rc = sqlite3PagerWrite(pPg->pDbPage);
5800 releasePage(pPg);
5801 }
5802 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005803 pBt->nPage++;
5804 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005805 }
5806#endif
drhdd3cd972010-03-27 17:12:36 +00005807 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5808 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005809
danielk1977599fcba2004-11-08 07:13:13 +00005810 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005811 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005812 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005813 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005814 if( rc!=SQLITE_OK ){
5815 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005816 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005817 }
drh3a4c1412004-05-09 20:40:11 +00005818 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005819 }
danielk1977599fcba2004-11-08 07:13:13 +00005820
5821 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005822
5823end_allocate_page:
5824 releasePage(pTrunk);
5825 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005826 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5827 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005828 return rc;
5829}
5830
5831/*
danielk1977bea2a942009-01-20 17:06:27 +00005832** This function is used to add page iPage to the database file free-list.
5833** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005834**
danielk1977bea2a942009-01-20 17:06:27 +00005835** The value passed as the second argument to this function is optional.
5836** If the caller happens to have a pointer to the MemPage object
5837** corresponding to page iPage handy, it may pass it as the second value.
5838** Otherwise, it may pass NULL.
5839**
5840** If a pointer to a MemPage object is passed as the second argument,
5841** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005842*/
danielk1977bea2a942009-01-20 17:06:27 +00005843static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5844 MemPage *pTrunk = 0; /* Free-list trunk page */
5845 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5846 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5847 MemPage *pPage; /* Page being freed. May be NULL. */
5848 int rc; /* Return Code */
5849 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005850
danielk1977bea2a942009-01-20 17:06:27 +00005851 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005852 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005853 assert( !pMemPage || pMemPage->pgno==iPage );
5854
danfb0246b2015-05-26 12:18:17 +00005855 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005856 if( pMemPage ){
5857 pPage = pMemPage;
5858 sqlite3PagerRef(pPage->pDbPage);
5859 }else{
5860 pPage = btreePageLookup(pBt, iPage);
5861 }
drh3aac2dd2004-04-26 14:10:20 +00005862
drha34b6762004-05-07 13:30:42 +00005863 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005864 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005865 if( rc ) goto freepage_out;
5866 nFree = get4byte(&pPage1->aData[36]);
5867 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005868
drhc9166342012-01-05 23:32:06 +00005869 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005870 /* If the secure_delete option is enabled, then
5871 ** always fully overwrite deleted information with zeros.
5872 */
drhb00fc3b2013-08-21 23:42:32 +00005873 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005874 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005875 ){
5876 goto freepage_out;
5877 }
5878 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005879 }
drhfcce93f2006-02-22 03:08:32 +00005880
danielk1977687566d2004-11-02 12:56:41 +00005881 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005882 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005883 */
danielk197785d90ca2008-07-19 14:25:15 +00005884 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005885 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005886 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005887 }
danielk1977687566d2004-11-02 12:56:41 +00005888
danielk1977bea2a942009-01-20 17:06:27 +00005889 /* Now manipulate the actual database free-list structure. There are two
5890 ** possibilities. If the free-list is currently empty, or if the first
5891 ** trunk page in the free-list is full, then this page will become a
5892 ** new free-list trunk page. Otherwise, it will become a leaf of the
5893 ** first trunk page in the current free-list. This block tests if it
5894 ** is possible to add the page as a new free-list leaf.
5895 */
5896 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005897 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005898
5899 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005900 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005901 if( rc!=SQLITE_OK ){
5902 goto freepage_out;
5903 }
5904
5905 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005906 assert( pBt->usableSize>32 );
5907 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005908 rc = SQLITE_CORRUPT_BKPT;
5909 goto freepage_out;
5910 }
drheeb844a2009-08-08 18:01:07 +00005911 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005912 /* In this case there is room on the trunk page to insert the page
5913 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005914 **
5915 ** Note that the trunk page is not really full until it contains
5916 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5917 ** coded. But due to a coding error in versions of SQLite prior to
5918 ** 3.6.0, databases with freelist trunk pages holding more than
5919 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5920 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005921 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005922 ** for now. At some point in the future (once everyone has upgraded
5923 ** to 3.6.0 or later) we should consider fixing the conditional above
5924 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005925 **
5926 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5927 ** avoid using the last six entries in the freelist trunk page array in
5928 ** order that database files created by newer versions of SQLite can be
5929 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005930 */
danielk19773b8a05f2007-03-19 17:44:26 +00005931 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005932 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005933 put4byte(&pTrunk->aData[4], nLeaf+1);
5934 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005935 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005936 sqlite3PagerDontWrite(pPage->pDbPage);
5937 }
danielk1977bea2a942009-01-20 17:06:27 +00005938 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005939 }
drh3a4c1412004-05-09 20:40:11 +00005940 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005941 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005942 }
drh3b7511c2001-05-26 13:15:44 +00005943 }
danielk1977bea2a942009-01-20 17:06:27 +00005944
5945 /* If control flows to this point, then it was not possible to add the
5946 ** the page being freed as a leaf page of the first trunk in the free-list.
5947 ** Possibly because the free-list is empty, or possibly because the
5948 ** first trunk in the free-list is full. Either way, the page being freed
5949 ** will become the new first trunk page in the free-list.
5950 */
drhb00fc3b2013-08-21 23:42:32 +00005951 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005952 goto freepage_out;
5953 }
5954 rc = sqlite3PagerWrite(pPage->pDbPage);
5955 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005956 goto freepage_out;
5957 }
5958 put4byte(pPage->aData, iTrunk);
5959 put4byte(&pPage->aData[4], 0);
5960 put4byte(&pPage1->aData[32], iPage);
5961 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5962
5963freepage_out:
5964 if( pPage ){
5965 pPage->isInit = 0;
5966 }
5967 releasePage(pPage);
5968 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005969 return rc;
5970}
drhc314dc72009-07-21 11:52:34 +00005971static void freePage(MemPage *pPage, int *pRC){
5972 if( (*pRC)==SQLITE_OK ){
5973 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5974 }
danielk1977bea2a942009-01-20 17:06:27 +00005975}
drh3b7511c2001-05-26 13:15:44 +00005976
5977/*
drh9bfdc252014-09-24 02:05:41 +00005978** Free any overflow pages associated with the given Cell. Write the
5979** local Cell size (the number of bytes on the original page, omitting
5980** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005981*/
drh9bfdc252014-09-24 02:05:41 +00005982static int clearCell(
5983 MemPage *pPage, /* The page that contains the Cell */
5984 unsigned char *pCell, /* First byte of the Cell */
5985 u16 *pnSize /* Write the size of the Cell here */
5986){
danielk1977aef0bf62005-12-30 16:28:01 +00005987 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005988 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005989 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005990 int rc;
drh94440812007-03-06 11:42:19 +00005991 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005992 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005993
drh1fee73e2007-08-29 04:00:57 +00005994 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005995 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005996 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005997 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005998 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005999 }
drhe42a9b42011-08-31 13:27:19 +00006000 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006001 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006002 }
drh6f11bef2004-05-13 01:12:56 +00006003 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00006004 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006005 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00006006 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006007 assert( nOvfl>0 ||
6008 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
6009 );
drh72365832007-03-06 15:53:44 +00006010 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006011 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006012 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006013 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006014 /* 0 is not a legal page number and page 1 cannot be an
6015 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6016 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006017 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006018 }
danielk1977bea2a942009-01-20 17:06:27 +00006019 if( nOvfl ){
6020 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6021 if( rc ) return rc;
6022 }
dan887d4b22010-02-25 12:09:16 +00006023
shaneh1da207e2010-03-09 14:41:12 +00006024 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006025 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6026 ){
6027 /* There is no reason any cursor should have an outstanding reference
6028 ** to an overflow page belonging to a cell that is being deleted/updated.
6029 ** So if there exists more than one reference to this page, then it
6030 ** must not really be an overflow page and the database must be corrupt.
6031 ** It is helpful to detect this before calling freePage2(), as
6032 ** freePage2() may zero the page contents if secure-delete mode is
6033 ** enabled. If this 'overflow' page happens to be a page that the
6034 ** caller is iterating through or using in some other way, this
6035 ** can be problematic.
6036 */
6037 rc = SQLITE_CORRUPT_BKPT;
6038 }else{
6039 rc = freePage2(pBt, pOvfl, ovflPgno);
6040 }
6041
danielk1977bea2a942009-01-20 17:06:27 +00006042 if( pOvfl ){
6043 sqlite3PagerUnref(pOvfl->pDbPage);
6044 }
drh3b7511c2001-05-26 13:15:44 +00006045 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006046 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006047 }
drh5e2f8b92001-05-28 00:41:15 +00006048 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006049}
6050
6051/*
drh91025292004-05-03 19:49:32 +00006052** Create the byte sequence used to represent a cell on page pPage
6053** and write that byte sequence into pCell[]. Overflow pages are
6054** allocated and filled in as necessary. The calling procedure
6055** is responsible for making sure sufficient space has been allocated
6056** for pCell[].
6057**
6058** Note that pCell does not necessary need to point to the pPage->aData
6059** area. pCell might point to some temporary storage. The cell will
6060** be constructed in this temporary area then copied into pPage->aData
6061** later.
drh3b7511c2001-05-26 13:15:44 +00006062*/
6063static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006064 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006065 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006066 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006067 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006068 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006069 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006070){
drh3b7511c2001-05-26 13:15:44 +00006071 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006072 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006073 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006074 int spaceLeft;
6075 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006076 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006077 unsigned char *pPrior;
6078 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006079 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006080 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006081 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006082
drh1fee73e2007-08-29 04:00:57 +00006083 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006084
drhc5053fb2008-11-27 02:22:10 +00006085 /* pPage is not necessarily writeable since pCell might be auxiliary
6086 ** buffer space that is separate from the pPage buffer area */
6087 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6088 || sqlite3PagerIswriteable(pPage->pDbPage) );
6089
drh91025292004-05-03 19:49:32 +00006090 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006091 nHeader = pPage->childPtrSize;
6092 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006093 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006094 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006095 }else{
drh6200c882014-09-23 22:36:25 +00006096 assert( nData==0 );
6097 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006098 }
drh6f11bef2004-05-13 01:12:56 +00006099 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006100
drh6200c882014-09-23 22:36:25 +00006101 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006102 if( pPage->intKey ){
6103 pSrc = pData;
6104 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006105 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006106 }else{
drh98ef0f62015-06-30 01:25:52 +00006107 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006108 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006109 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006110 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006111 }
drh6200c882014-09-23 22:36:25 +00006112 if( nPayload<=pPage->maxLocal ){
6113 n = nHeader + nPayload;
6114 testcase( n==3 );
6115 testcase( n==4 );
6116 if( n<4 ) n = 4;
6117 *pnSize = n;
6118 spaceLeft = nPayload;
6119 pPrior = pCell;
6120 }else{
6121 int mn = pPage->minLocal;
6122 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6123 testcase( n==pPage->maxLocal );
6124 testcase( n==pPage->maxLocal+1 );
6125 if( n > pPage->maxLocal ) n = mn;
6126 spaceLeft = n;
6127 *pnSize = n + nHeader + 4;
6128 pPrior = &pCell[nHeader+n];
6129 }
drh3aac2dd2004-04-26 14:10:20 +00006130 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006131
drh6200c882014-09-23 22:36:25 +00006132 /* At this point variables should be set as follows:
6133 **
6134 ** nPayload Total payload size in bytes
6135 ** pPayload Begin writing payload here
6136 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6137 ** that means content must spill into overflow pages.
6138 ** *pnSize Size of the local cell (not counting overflow pages)
6139 ** pPrior Where to write the pgno of the first overflow page
6140 **
6141 ** Use a call to btreeParseCellPtr() to verify that the values above
6142 ** were computed correctly.
6143 */
6144#if SQLITE_DEBUG
6145 {
6146 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006147 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006148 assert( nHeader=(int)(info.pPayload - pCell) );
6149 assert( info.nKey==nKey );
6150 assert( *pnSize == info.nSize );
6151 assert( spaceLeft == info.nLocal );
6152 assert( pPrior == &pCell[info.iOverflow] );
6153 }
6154#endif
6155
6156 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006157 while( nPayload>0 ){
6158 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006159#ifndef SQLITE_OMIT_AUTOVACUUM
6160 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006161 if( pBt->autoVacuum ){
6162 do{
6163 pgnoOvfl++;
6164 } while(
6165 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6166 );
danielk1977b39f70b2007-05-17 18:28:11 +00006167 }
danielk1977afcdd022004-10-31 16:25:42 +00006168#endif
drhf49661a2008-12-10 16:45:50 +00006169 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006170#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006171 /* If the database supports auto-vacuum, and the second or subsequent
6172 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006173 ** for that page now.
6174 **
6175 ** If this is the first overflow page, then write a partial entry
6176 ** to the pointer-map. If we write nothing to this pointer-map slot,
6177 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006178 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006179 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006180 */
danielk19774ef24492007-05-23 09:52:41 +00006181 if( pBt->autoVacuum && rc==SQLITE_OK ){
6182 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006183 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006184 if( rc ){
6185 releasePage(pOvfl);
6186 }
danielk1977afcdd022004-10-31 16:25:42 +00006187 }
6188#endif
drh3b7511c2001-05-26 13:15:44 +00006189 if( rc ){
drh9b171272004-05-08 02:03:22 +00006190 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006191 return rc;
6192 }
drhc5053fb2008-11-27 02:22:10 +00006193
6194 /* If pToRelease is not zero than pPrior points into the data area
6195 ** of pToRelease. Make sure pToRelease is still writeable. */
6196 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6197
6198 /* If pPrior is part of the data area of pPage, then make sure pPage
6199 ** is still writeable */
6200 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6201 || sqlite3PagerIswriteable(pPage->pDbPage) );
6202
drh3aac2dd2004-04-26 14:10:20 +00006203 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006204 releasePage(pToRelease);
6205 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006206 pPrior = pOvfl->aData;
6207 put4byte(pPrior, 0);
6208 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006209 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006210 }
6211 n = nPayload;
6212 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006213
6214 /* If pToRelease is not zero than pPayload points into the data area
6215 ** of pToRelease. Make sure pToRelease is still writeable. */
6216 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6217
6218 /* If pPayload is part of the data area of pPage, then make sure pPage
6219 ** is still writeable */
6220 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6221 || sqlite3PagerIswriteable(pPage->pDbPage) );
6222
drhb026e052007-05-02 01:34:31 +00006223 if( nSrc>0 ){
6224 if( n>nSrc ) n = nSrc;
6225 assert( pSrc );
6226 memcpy(pPayload, pSrc, n);
6227 }else{
6228 memset(pPayload, 0, n);
6229 }
drh3b7511c2001-05-26 13:15:44 +00006230 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006231 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006232 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006233 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006234 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006235 if( nSrc==0 ){
6236 nSrc = nData;
6237 pSrc = pData;
6238 }
drhdd793422001-06-28 01:54:48 +00006239 }
drh9b171272004-05-08 02:03:22 +00006240 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006241 return SQLITE_OK;
6242}
6243
drh14acc042001-06-10 19:56:58 +00006244/*
6245** Remove the i-th cell from pPage. This routine effects pPage only.
6246** The cell content is not freed or deallocated. It is assumed that
6247** the cell content has been copied someplace else. This routine just
6248** removes the reference to the cell from pPage.
6249**
6250** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006251*/
drh98add2e2009-07-20 17:11:49 +00006252static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006253 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006254 u8 *data; /* pPage->aData */
6255 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006256 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006257 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006258
drh98add2e2009-07-20 17:11:49 +00006259 if( *pRC ) return;
6260
drh8c42ca92001-06-22 19:15:00 +00006261 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006262 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006263 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006264 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006265 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006266 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006267 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006268 hdr = pPage->hdrOffset;
6269 testcase( pc==get2byte(&data[hdr+5]) );
6270 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006271 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006272 *pRC = SQLITE_CORRUPT_BKPT;
6273 return;
shane0af3f892008-11-12 04:55:34 +00006274 }
shanedcc50b72008-11-13 18:29:50 +00006275 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006276 if( rc ){
6277 *pRC = rc;
6278 return;
shanedcc50b72008-11-13 18:29:50 +00006279 }
drh14acc042001-06-10 19:56:58 +00006280 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006281 if( pPage->nCell==0 ){
6282 memset(&data[hdr+1], 0, 4);
6283 data[hdr+7] = 0;
6284 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6285 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6286 - pPage->childPtrSize - 8;
6287 }else{
6288 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6289 put2byte(&data[hdr+3], pPage->nCell);
6290 pPage->nFree += 2;
6291 }
drh14acc042001-06-10 19:56:58 +00006292}
6293
6294/*
6295** Insert a new cell on pPage at cell index "i". pCell points to the
6296** content of the cell.
6297**
6298** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006299** will not fit, then make a copy of the cell content into pTemp if
6300** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006301** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006302** in pTemp or the original pCell) and also record its index.
6303** Allocating a new entry in pPage->aCell[] implies that
6304** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006305*/
drh98add2e2009-07-20 17:11:49 +00006306static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006307 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006308 int i, /* New cell becomes the i-th cell of the page */
6309 u8 *pCell, /* Content of the new cell */
6310 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006311 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006312 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6313 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006314){
drh383d30f2010-02-26 13:07:37 +00006315 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006316 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006317 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006318 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006319
drh98add2e2009-07-20 17:11:49 +00006320 if( *pRC ) return;
6321
drh43605152004-05-29 21:46:49 +00006322 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006323 assert( MX_CELL(pPage->pBt)<=10921 );
6324 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006325 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6326 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006327 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006328 /* The cell should normally be sized correctly. However, when moving a
6329 ** malformed cell from a leaf page to an interior page, if the cell size
6330 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6331 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6332 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006333 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006334 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006335 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006336 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006337 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006338 }
danielk19774dbaa892009-06-16 16:50:22 +00006339 if( iChild ){
6340 put4byte(pCell, iChild);
6341 }
drh43605152004-05-29 21:46:49 +00006342 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006343 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6344 pPage->apOvfl[j] = pCell;
6345 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006346
6347 /* When multiple overflows occur, they are always sequential and in
6348 ** sorted order. This invariants arise because multiple overflows can
6349 ** only occur when inserting divider cells into the parent page during
6350 ** balancing, and the dividers are adjacent and sorted.
6351 */
6352 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6353 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006354 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006355 int rc = sqlite3PagerWrite(pPage->pDbPage);
6356 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006357 *pRC = rc;
6358 return;
danielk19776e465eb2007-08-21 13:11:00 +00006359 }
6360 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006361 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006362 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006363 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006364 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006365 /* The allocateSpace() routine guarantees the following properties
6366 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006367 assert( idx >= 0 );
6368 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006369 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006370 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006371 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006372 if( iChild ){
6373 put4byte(&data[idx], iChild);
6374 }
drh2c8fb922015-06-25 19:53:48 +00006375 pIns = pPage->aCellIdx + i*2;
6376 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6377 put2byte(pIns, idx);
6378 pPage->nCell++;
6379 /* increment the cell count */
6380 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6381 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006382#ifndef SQLITE_OMIT_AUTOVACUUM
6383 if( pPage->pBt->autoVacuum ){
6384 /* The cell may contain a pointer to an overflow page. If so, write
6385 ** the entry for the overflow page into the pointer map.
6386 */
drh98add2e2009-07-20 17:11:49 +00006387 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006388 }
6389#endif
drh14acc042001-06-10 19:56:58 +00006390 }
6391}
6392
6393/*
drh1ffd2472015-06-23 02:37:30 +00006394** A CellArray object contains a cache of pointers and sizes for a
6395** consecutive sequence of cells that might be held multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006396*/
drh1ffd2472015-06-23 02:37:30 +00006397typedef struct CellArray CellArray;
6398struct CellArray {
6399 int nCell; /* Number of cells in apCell[] */
6400 MemPage *pRef; /* Reference page */
6401 u8 **apCell; /* All cells begin balanced */
6402 u16 *szCell; /* Local size of all cells in apCell[] */
6403};
drhfa1a98a2004-05-14 19:08:17 +00006404
drh1ffd2472015-06-23 02:37:30 +00006405/*
6406** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6407** computed.
6408*/
6409static void populateCellCache(CellArray *p, int idx, int N){
6410 assert( idx>=0 && idx+N<=p->nCell );
6411 while( N>0 ){
6412 assert( p->apCell[idx]!=0 );
6413 if( p->szCell[idx]==0 ){
6414 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6415 }else{
6416 assert( CORRUPT_DB ||
6417 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6418 }
6419 idx++;
6420 N--;
drhfa1a98a2004-05-14 19:08:17 +00006421 }
drh1ffd2472015-06-23 02:37:30 +00006422}
6423
6424/*
6425** Return the size of the Nth element of the cell array
6426*/
6427static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6428 assert( N>=0 && N<p->nCell );
6429 assert( p->szCell[N]==0 );
6430 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6431 return p->szCell[N];
6432}
6433static u16 cachedCellSize(CellArray *p, int N){
6434 assert( N>=0 && N<p->nCell );
6435 if( p->szCell[N] ) return p->szCell[N];
6436 return computeCellSize(p, N);
6437}
6438
6439/*
dan8e9ba0c2014-10-14 17:27:04 +00006440** Array apCell[] contains pointers to nCell b-tree page cells. The
6441** szCell[] array contains the size in bytes of each cell. This function
6442** replaces the current contents of page pPg with the contents of the cell
6443** array.
6444**
6445** Some of the cells in apCell[] may currently be stored in pPg. This
6446** function works around problems caused by this by making a copy of any
6447** such cells before overwriting the page data.
6448**
6449** The MemPage.nFree field is invalidated by this function. It is the
6450** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006451*/
drh658873b2015-06-22 20:02:04 +00006452static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006453 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006454 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006455 u8 **apCell, /* Array of cells */
6456 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006457){
6458 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6459 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6460 const int usableSize = pPg->pBt->usableSize;
6461 u8 * const pEnd = &aData[usableSize];
6462 int i;
6463 u8 *pCellptr = pPg->aCellIdx;
6464 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6465 u8 *pData;
6466
6467 i = get2byte(&aData[hdr+5]);
6468 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006469
dan8e9ba0c2014-10-14 17:27:04 +00006470 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006471 for(i=0; i<nCell; i++){
6472 u8 *pCell = apCell[i];
6473 if( pCell>aData && pCell<pEnd ){
6474 pCell = &pTmp[pCell - aData];
6475 }
6476 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006477 put2byte(pCellptr, (pData - aData));
6478 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006479 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6480 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006481 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006482 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006483 }
6484
dand7b545b2014-10-13 18:03:27 +00006485 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006486 pPg->nCell = nCell;
6487 pPg->nOverflow = 0;
6488
6489 put2byte(&aData[hdr+1], 0);
6490 put2byte(&aData[hdr+3], pPg->nCell);
6491 put2byte(&aData[hdr+5], pData - aData);
6492 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006493 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006494}
6495
dan8e9ba0c2014-10-14 17:27:04 +00006496/*
6497** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6498** contains the size in bytes of each such cell. This function attempts to
6499** add the cells stored in the array to page pPg. If it cannot (because
6500** the page needs to be defragmented before the cells will fit), non-zero
6501** is returned. Otherwise, if the cells are added successfully, zero is
6502** returned.
6503**
6504** Argument pCellptr points to the first entry in the cell-pointer array
6505** (part of page pPg) to populate. After cell apCell[0] is written to the
6506** page body, a 16-bit offset is written to pCellptr. And so on, for each
6507** cell in the array. It is the responsibility of the caller to ensure
6508** that it is safe to overwrite this part of the cell-pointer array.
6509**
6510** When this function is called, *ppData points to the start of the
6511** content area on page pPg. If the size of the content area is extended,
6512** *ppData is updated to point to the new start of the content area
6513** before returning.
6514**
6515** Finally, argument pBegin points to the byte immediately following the
6516** end of the space required by this page for the cell-pointer area (for
6517** all cells - not just those inserted by the current call). If the content
6518** area must be extended to before this point in order to accomodate all
6519** cells in apCell[], then the cells do not fit and non-zero is returned.
6520*/
dand7b545b2014-10-13 18:03:27 +00006521static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006522 MemPage *pPg, /* Page to add cells to */
6523 u8 *pBegin, /* End of cell-pointer array */
6524 u8 **ppData, /* IN/OUT: Page content -area pointer */
6525 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006526 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006527 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006528 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006529){
6530 int i;
6531 u8 *aData = pPg->aData;
6532 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006533 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006534 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006535 for(i=iFirst; i<iEnd; i++){
6536 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006537 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006538 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006539 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006540 pData -= sz;
6541 if( pData<pBegin ) return 1;
6542 pSlot = pData;
6543 }
drh48310f82015-10-10 16:41:28 +00006544 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6545 ** database. But they might for a corrupt database. Hence use memmove()
6546 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6547 assert( (pSlot+sz)<=pCArray->apCell[i]
6548 || pSlot>=(pCArray->apCell[i]+sz)
6549 || CORRUPT_DB );
6550 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006551 put2byte(pCellptr, (pSlot - aData));
6552 pCellptr += 2;
6553 }
6554 *ppData = pData;
6555 return 0;
6556}
6557
dan8e9ba0c2014-10-14 17:27:04 +00006558/*
6559** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6560** contains the size in bytes of each such cell. This function adds the
6561** space associated with each cell in the array that is currently stored
6562** within the body of pPg to the pPg free-list. The cell-pointers and other
6563** fields of the page are not updated.
6564**
6565** This function returns the total number of cells added to the free-list.
6566*/
dand7b545b2014-10-13 18:03:27 +00006567static int pageFreeArray(
6568 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006569 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006570 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006571 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006572){
6573 u8 * const aData = pPg->aData;
6574 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006575 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006576 int nRet = 0;
6577 int i;
drhf7838932015-06-23 15:36:34 +00006578 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006579 u8 *pFree = 0;
6580 int szFree = 0;
6581
drhf7838932015-06-23 15:36:34 +00006582 for(i=iFirst; i<iEnd; i++){
6583 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006584 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006585 int sz;
6586 /* No need to use cachedCellSize() here. The sizes of all cells that
6587 ** are to be freed have already been computing while deciding which
6588 ** cells need freeing */
6589 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006590 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006591 if( pFree ){
6592 assert( pFree>aData && (pFree - aData)<65536 );
6593 freeSpace(pPg, (u16)(pFree - aData), szFree);
6594 }
dand7b545b2014-10-13 18:03:27 +00006595 pFree = pCell;
6596 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006597 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006598 }else{
6599 pFree = pCell;
6600 szFree += sz;
6601 }
6602 nRet++;
6603 }
6604 }
drhfefa0942014-11-05 21:21:08 +00006605 if( pFree ){
6606 assert( pFree>aData && (pFree - aData)<65536 );
6607 freeSpace(pPg, (u16)(pFree - aData), szFree);
6608 }
dand7b545b2014-10-13 18:03:27 +00006609 return nRet;
6610}
6611
dand7b545b2014-10-13 18:03:27 +00006612/*
drh5ab63772014-11-27 03:46:04 +00006613** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6614** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6615** with apCell[iOld]. After balancing, this page should hold nNew cells
6616** starting at apCell[iNew].
6617**
6618** This routine makes the necessary adjustments to pPg so that it contains
6619** the correct cells after being balanced.
6620**
dand7b545b2014-10-13 18:03:27 +00006621** The pPg->nFree field is invalid when this function returns. It is the
6622** responsibility of the caller to set it correctly.
6623*/
drh658873b2015-06-22 20:02:04 +00006624static int editPage(
dan09c68402014-10-11 20:00:24 +00006625 MemPage *pPg, /* Edit this page */
6626 int iOld, /* Index of first cell currently on page */
6627 int iNew, /* Index of new first cell on page */
6628 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006629 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006630){
dand7b545b2014-10-13 18:03:27 +00006631 u8 * const aData = pPg->aData;
6632 const int hdr = pPg->hdrOffset;
6633 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6634 int nCell = pPg->nCell; /* Cells stored on pPg */
6635 u8 *pData;
6636 u8 *pCellptr;
6637 int i;
6638 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6639 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006640
6641#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006642 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6643 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006644#endif
6645
dand7b545b2014-10-13 18:03:27 +00006646 /* Remove cells from the start and end of the page */
6647 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006648 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006649 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6650 nCell -= nShift;
6651 }
6652 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006653 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006654 }
dan09c68402014-10-11 20:00:24 +00006655
drh5ab63772014-11-27 03:46:04 +00006656 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006657 if( pData<pBegin ) goto editpage_fail;
6658
6659 /* Add cells to the start of the page */
6660 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006661 int nAdd = MIN(nNew,iOld-iNew);
6662 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006663 pCellptr = pPg->aCellIdx;
6664 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6665 if( pageInsertArray(
6666 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006667 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006668 ) ) goto editpage_fail;
6669 nCell += nAdd;
6670 }
6671
6672 /* Add any overflow cells */
6673 for(i=0; i<pPg->nOverflow; i++){
6674 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6675 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006676 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006677 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6678 nCell++;
6679 if( pageInsertArray(
6680 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006681 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006682 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006683 }
dand7b545b2014-10-13 18:03:27 +00006684 }
dan09c68402014-10-11 20:00:24 +00006685
dand7b545b2014-10-13 18:03:27 +00006686 /* Append cells to the end of the page */
6687 pCellptr = &pPg->aCellIdx[nCell*2];
6688 if( pageInsertArray(
6689 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006690 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006691 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006692
dand7b545b2014-10-13 18:03:27 +00006693 pPg->nCell = nNew;
6694 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006695
dand7b545b2014-10-13 18:03:27 +00006696 put2byte(&aData[hdr+3], pPg->nCell);
6697 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006698
6699#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006700 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006701 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006702 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006703 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6704 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006705 }
drh1ffd2472015-06-23 02:37:30 +00006706 assert( 0==memcmp(pCell, &aData[iOff],
6707 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006708 }
dan09c68402014-10-11 20:00:24 +00006709#endif
6710
drh658873b2015-06-22 20:02:04 +00006711 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006712 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006713 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006714 populateCellCache(pCArray, iNew, nNew);
6715 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006716}
6717
drh14acc042001-06-10 19:56:58 +00006718/*
drhc3b70572003-01-04 19:44:07 +00006719** The following parameters determine how many adjacent pages get involved
6720** in a balancing operation. NN is the number of neighbors on either side
6721** of the page that participate in the balancing operation. NB is the
6722** total number of pages that participate, including the target page and
6723** NN neighbors on either side.
6724**
6725** The minimum value of NN is 1 (of course). Increasing NN above 1
6726** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6727** in exchange for a larger degradation in INSERT and UPDATE performance.
6728** The value of NN appears to give the best results overall.
6729*/
6730#define NN 1 /* Number of neighbors on either side of pPage */
6731#define NB (NN*2+1) /* Total pages involved in the balance */
6732
danielk1977ac245ec2005-01-14 13:50:11 +00006733
drh615ae552005-01-16 23:21:00 +00006734#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006735/*
6736** This version of balance() handles the common special case where
6737** a new entry is being inserted on the extreme right-end of the
6738** tree, in other words, when the new entry will become the largest
6739** entry in the tree.
6740**
drhc314dc72009-07-21 11:52:34 +00006741** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006742** a new page to the right-hand side and put the one new entry in
6743** that page. This leaves the right side of the tree somewhat
6744** unbalanced. But odds are that we will be inserting new entries
6745** at the end soon afterwards so the nearly empty page will quickly
6746** fill up. On average.
6747**
6748** pPage is the leaf page which is the right-most page in the tree.
6749** pParent is its parent. pPage must have a single overflow entry
6750** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006751**
6752** The pSpace buffer is used to store a temporary copy of the divider
6753** cell that will be inserted into pParent. Such a cell consists of a 4
6754** byte page number followed by a variable length integer. In other
6755** words, at most 13 bytes. Hence the pSpace buffer must be at
6756** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006757*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006758static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6759 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006760 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006761 int rc; /* Return Code */
6762 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006763
drh1fee73e2007-08-29 04:00:57 +00006764 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006765 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006766 assert( pPage->nOverflow==1 );
6767
drh5d433ce2010-08-14 16:02:52 +00006768 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006769 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006770
danielk1977a50d9aa2009-06-08 14:49:45 +00006771 /* Allocate a new page. This page will become the right-sibling of
6772 ** pPage. Make the parent page writable, so that the new divider cell
6773 ** may be inserted. If both these operations are successful, proceed.
6774 */
drh4f0c5872007-03-26 22:05:01 +00006775 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006776
danielk1977eaa06f62008-09-18 17:34:44 +00006777 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006778
6779 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006780 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006781 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006782 u8 *pStop;
6783
drhc5053fb2008-11-27 02:22:10 +00006784 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006785 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6786 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006787 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006788 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006789 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006790
6791 /* If this is an auto-vacuum database, update the pointer map
6792 ** with entries for the new page, and any pointer from the
6793 ** cell on the page to an overflow page. If either of these
6794 ** operations fails, the return code is set, but the contents
6795 ** of the parent page are still manipulated by thh code below.
6796 ** That is Ok, at this point the parent page is guaranteed to
6797 ** be marked as dirty. Returning an error code will cause a
6798 ** rollback, undoing any changes made to the parent page.
6799 */
6800 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006801 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6802 if( szCell>pNew->minLocal ){
6803 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006804 }
6805 }
danielk1977eaa06f62008-09-18 17:34:44 +00006806
danielk19776f235cc2009-06-04 14:46:08 +00006807 /* Create a divider cell to insert into pParent. The divider cell
6808 ** consists of a 4-byte page number (the page number of pPage) and
6809 ** a variable length key value (which must be the same value as the
6810 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006811 **
danielk19776f235cc2009-06-04 14:46:08 +00006812 ** To find the largest key value on pPage, first find the right-most
6813 ** cell on pPage. The first two fields of this cell are the
6814 ** record-length (a variable length integer at most 32-bits in size)
6815 ** and the key value (a variable length integer, may have any value).
6816 ** The first of the while(...) loops below skips over the record-length
6817 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006818 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006819 */
danielk1977eaa06f62008-09-18 17:34:44 +00006820 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006821 pStop = &pCell[9];
6822 while( (*(pCell++)&0x80) && pCell<pStop );
6823 pStop = &pCell[9];
6824 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6825
danielk19774dbaa892009-06-16 16:50:22 +00006826 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006827 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6828 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006829
6830 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006831 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6832
danielk1977e08a3c42008-09-18 18:17:03 +00006833 /* Release the reference to the new page. */
6834 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006835 }
6836
danielk1977eaa06f62008-09-18 17:34:44 +00006837 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006838}
drh615ae552005-01-16 23:21:00 +00006839#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006840
danielk19774dbaa892009-06-16 16:50:22 +00006841#if 0
drhc3b70572003-01-04 19:44:07 +00006842/*
danielk19774dbaa892009-06-16 16:50:22 +00006843** This function does not contribute anything to the operation of SQLite.
6844** it is sometimes activated temporarily while debugging code responsible
6845** for setting pointer-map entries.
6846*/
6847static int ptrmapCheckPages(MemPage **apPage, int nPage){
6848 int i, j;
6849 for(i=0; i<nPage; i++){
6850 Pgno n;
6851 u8 e;
6852 MemPage *pPage = apPage[i];
6853 BtShared *pBt = pPage->pBt;
6854 assert( pPage->isInit );
6855
6856 for(j=0; j<pPage->nCell; j++){
6857 CellInfo info;
6858 u8 *z;
6859
6860 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006861 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006862 if( info.iOverflow ){
6863 Pgno ovfl = get4byte(&z[info.iOverflow]);
6864 ptrmapGet(pBt, ovfl, &e, &n);
6865 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6866 }
6867 if( !pPage->leaf ){
6868 Pgno child = get4byte(z);
6869 ptrmapGet(pBt, child, &e, &n);
6870 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6871 }
6872 }
6873 if( !pPage->leaf ){
6874 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6875 ptrmapGet(pBt, child, &e, &n);
6876 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6877 }
6878 }
6879 return 1;
6880}
6881#endif
6882
danielk1977cd581a72009-06-23 15:43:39 +00006883/*
6884** This function is used to copy the contents of the b-tree node stored
6885** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6886** the pointer-map entries for each child page are updated so that the
6887** parent page stored in the pointer map is page pTo. If pFrom contained
6888** any cells with overflow page pointers, then the corresponding pointer
6889** map entries are also updated so that the parent page is page pTo.
6890**
6891** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006892** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006893**
danielk197730548662009-07-09 05:07:37 +00006894** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006895**
6896** The performance of this function is not critical. It is only used by
6897** the balance_shallower() and balance_deeper() procedures, neither of
6898** which are called often under normal circumstances.
6899*/
drhc314dc72009-07-21 11:52:34 +00006900static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6901 if( (*pRC)==SQLITE_OK ){
6902 BtShared * const pBt = pFrom->pBt;
6903 u8 * const aFrom = pFrom->aData;
6904 u8 * const aTo = pTo->aData;
6905 int const iFromHdr = pFrom->hdrOffset;
6906 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006907 int rc;
drhc314dc72009-07-21 11:52:34 +00006908 int iData;
6909
6910
6911 assert( pFrom->isInit );
6912 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006913 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006914
6915 /* Copy the b-tree node content from page pFrom to page pTo. */
6916 iData = get2byte(&aFrom[iFromHdr+5]);
6917 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6918 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6919
6920 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006921 ** match the new data. The initialization of pTo can actually fail under
6922 ** fairly obscure circumstances, even though it is a copy of initialized
6923 ** page pFrom.
6924 */
drhc314dc72009-07-21 11:52:34 +00006925 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006926 rc = btreeInitPage(pTo);
6927 if( rc!=SQLITE_OK ){
6928 *pRC = rc;
6929 return;
6930 }
drhc314dc72009-07-21 11:52:34 +00006931
6932 /* If this is an auto-vacuum database, update the pointer-map entries
6933 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6934 */
6935 if( ISAUTOVACUUM ){
6936 *pRC = setChildPtrmaps(pTo);
6937 }
danielk1977cd581a72009-06-23 15:43:39 +00006938 }
danielk1977cd581a72009-06-23 15:43:39 +00006939}
6940
6941/*
danielk19774dbaa892009-06-16 16:50:22 +00006942** This routine redistributes cells on the iParentIdx'th child of pParent
6943** (hereafter "the page") and up to 2 siblings so that all pages have about the
6944** same amount of free space. Usually a single sibling on either side of the
6945** page are used in the balancing, though both siblings might come from one
6946** side if the page is the first or last child of its parent. If the page
6947** has fewer than 2 siblings (something which can only happen if the page
6948** is a root page or a child of a root page) then all available siblings
6949** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006950**
danielk19774dbaa892009-06-16 16:50:22 +00006951** The number of siblings of the page might be increased or decreased by
6952** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006953**
danielk19774dbaa892009-06-16 16:50:22 +00006954** Note that when this routine is called, some of the cells on the page
6955** might not actually be stored in MemPage.aData[]. This can happen
6956** if the page is overfull. This routine ensures that all cells allocated
6957** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006958**
danielk19774dbaa892009-06-16 16:50:22 +00006959** In the course of balancing the page and its siblings, cells may be
6960** inserted into or removed from the parent page (pParent). Doing so
6961** may cause the parent page to become overfull or underfull. If this
6962** happens, it is the responsibility of the caller to invoke the correct
6963** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006964**
drh5e00f6c2001-09-13 13:46:56 +00006965** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006966** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006967** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006968**
6969** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006970** buffer big enough to hold one page. If while inserting cells into the parent
6971** page (pParent) the parent page becomes overfull, this buffer is
6972** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006973** a maximum of four divider cells into the parent page, and the maximum
6974** size of a cell stored within an internal node is always less than 1/4
6975** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6976** enough for all overflow cells.
6977**
6978** If aOvflSpace is set to a null pointer, this function returns
6979** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006980*/
danielk19774dbaa892009-06-16 16:50:22 +00006981static int balance_nonroot(
6982 MemPage *pParent, /* Parent page of siblings being balanced */
6983 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006984 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006985 int isRoot, /* True if pParent is a root-page */
6986 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006987){
drh16a9b832007-05-05 18:39:25 +00006988 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006989 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006990 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006991 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006992 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006993 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006994 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006995 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006996 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006997 int usableSpace; /* Bytes in pPage beyond the header */
6998 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006999 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007000 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007001 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007002 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007003 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007004 u8 *pRight; /* Location in parent of right-sibling pointer */
7005 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007006 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7007 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007008 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007009 u8 *aSpace1; /* Space for copies of dividers cells */
7010 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007011 u8 abDone[NB+2]; /* True after i'th new page is populated */
7012 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007013 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007014 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007015 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007016
dan33ea4862014-10-09 19:35:37 +00007017 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007018 b.nCell = 0;
7019 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007020 pBt = pParent->pBt;
7021 assert( sqlite3_mutex_held(pBt->mutex) );
7022 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007023
danielk1977e5765212009-06-17 11:13:28 +00007024#if 0
drh43605152004-05-29 21:46:49 +00007025 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007026#endif
drh2e38c322004-09-03 18:38:44 +00007027
danielk19774dbaa892009-06-16 16:50:22 +00007028 /* At this point pParent may have at most one overflow cell. And if
7029 ** this overflow cell is present, it must be the cell with
7030 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007031 ** is called (indirectly) from sqlite3BtreeDelete().
7032 */
danielk19774dbaa892009-06-16 16:50:22 +00007033 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007034 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007035
danielk197711a8a862009-06-17 11:49:52 +00007036 if( !aOvflSpace ){
7037 return SQLITE_NOMEM;
7038 }
7039
danielk1977a50d9aa2009-06-08 14:49:45 +00007040 /* Find the sibling pages to balance. Also locate the cells in pParent
7041 ** that divide the siblings. An attempt is made to find NN siblings on
7042 ** either side of pPage. More siblings are taken from one side, however,
7043 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007044 ** has NB or fewer children then all children of pParent are taken.
7045 **
7046 ** This loop also drops the divider cells from the parent page. This
7047 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007048 ** overflow cells in the parent page, since if any existed they will
7049 ** have already been removed.
7050 */
danielk19774dbaa892009-06-16 16:50:22 +00007051 i = pParent->nOverflow + pParent->nCell;
7052 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007053 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007054 }else{
dan7d6885a2012-08-08 14:04:56 +00007055 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007056 if( iParentIdx==0 ){
7057 nxDiv = 0;
7058 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007059 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007060 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007061 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007062 }
dan7d6885a2012-08-08 14:04:56 +00007063 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007064 }
dan7d6885a2012-08-08 14:04:56 +00007065 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007066 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7067 pRight = &pParent->aData[pParent->hdrOffset+8];
7068 }else{
7069 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7070 }
7071 pgno = get4byte(pRight);
7072 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007073 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007074 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007075 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007076 goto balance_cleanup;
7077 }
danielk1977634f2982005-03-28 08:44:07 +00007078 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007079 if( (i--)==0 ) break;
7080
drh2cbd78b2012-02-02 19:37:18 +00007081 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7082 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007083 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007084 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007085 pParent->nOverflow = 0;
7086 }else{
7087 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7088 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007089 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007090
7091 /* Drop the cell from the parent page. apDiv[i] still points to
7092 ** the cell within the parent, even though it has been dropped.
7093 ** This is safe because dropping a cell only overwrites the first
7094 ** four bytes of it, and this function does not need the first
7095 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007096 ** later on.
7097 **
drh8a575d92011-10-12 17:00:28 +00007098 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007099 ** the dropCell() routine will overwrite the entire cell with zeroes.
7100 ** In this case, temporarily copy the cell into the aOvflSpace[]
7101 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7102 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007103 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007104 int iOff;
7105
7106 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007107 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007108 rc = SQLITE_CORRUPT_BKPT;
7109 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7110 goto balance_cleanup;
7111 }else{
7112 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7113 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7114 }
drh5b47efa2010-02-12 18:18:39 +00007115 }
drh98add2e2009-07-20 17:11:49 +00007116 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007117 }
drh8b2f49b2001-06-08 00:21:52 +00007118 }
7119
drha9121e42008-02-19 14:59:35 +00007120 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007121 ** alignment */
drha9121e42008-02-19 14:59:35 +00007122 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007123
drh8b2f49b2001-06-08 00:21:52 +00007124 /*
danielk1977634f2982005-03-28 08:44:07 +00007125 ** Allocate space for memory structures
7126 */
drhfacf0302008-06-17 15:12:00 +00007127 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007128 nMaxCells*sizeof(u8*) /* b.apCell */
7129 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007130 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007131
drhcbd55b02014-11-04 14:22:27 +00007132 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7133 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007134 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007135 b.apCell = sqlite3ScratchMalloc( szScratch );
7136 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007137 rc = SQLITE_NOMEM;
7138 goto balance_cleanup;
7139 }
drh1ffd2472015-06-23 02:37:30 +00007140 b.szCell = (u16*)&b.apCell[nMaxCells];
7141 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007142 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007143
7144 /*
7145 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007146 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007147 ** into space obtained from aSpace1[]. The divider cells have already
7148 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007149 **
7150 ** If the siblings are on leaf pages, then the child pointers of the
7151 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007152 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007153 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007154 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007155 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007156 **
7157 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7158 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007159 */
drh1ffd2472015-06-23 02:37:30 +00007160 b.pRef = apOld[0];
7161 leafCorrection = b.pRef->leaf*4;
7162 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007163 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007164 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007165 int limit = pOld->nCell;
7166 u8 *aData = pOld->aData;
7167 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007168 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007169 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007170
drh73d340a2015-05-28 11:23:11 +00007171 /* Verify that all sibling pages are of the same "type" (table-leaf,
7172 ** table-interior, index-leaf, or index-interior).
7173 */
7174 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7175 rc = SQLITE_CORRUPT_BKPT;
7176 goto balance_cleanup;
7177 }
7178
drhfe647dc2015-06-23 18:24:25 +00007179 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7180 ** constains overflow cells, include them in the b.apCell[] array
7181 ** in the correct spot.
7182 **
7183 ** Note that when there are multiple overflow cells, it is always the
7184 ** case that they are sequential and adjacent. This invariant arises
7185 ** because multiple overflows can only occurs when inserting divider
7186 ** cells into a parent on a prior balance, and divider cells are always
7187 ** adjacent and are inserted in order. There is an assert() tagged
7188 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7189 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007190 **
7191 ** This must be done in advance. Once the balance starts, the cell
7192 ** offset section of the btree page will be overwritten and we will no
7193 ** long be able to find the cells if a pointer to each cell is not saved
7194 ** first.
7195 */
drh1ffd2472015-06-23 02:37:30 +00007196 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007197 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007198 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007199 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007200 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007201 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007202 piCell += 2;
7203 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007204 }
drhfe647dc2015-06-23 18:24:25 +00007205 for(k=0; k<pOld->nOverflow; k++){
7206 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007207 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007208 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007209 }
drh1ffd2472015-06-23 02:37:30 +00007210 }
drhfe647dc2015-06-23 18:24:25 +00007211 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7212 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007213 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007214 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007215 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007216 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007217 }
7218
drh1ffd2472015-06-23 02:37:30 +00007219 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007220 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007221 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007222 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007223 assert( b.nCell<nMaxCells );
7224 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007225 pTemp = &aSpace1[iSpace1];
7226 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007227 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007228 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007229 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007230 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007231 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007232 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007233 if( !pOld->leaf ){
7234 assert( leafCorrection==0 );
7235 assert( pOld->hdrOffset==0 );
7236 /* The right pointer of the child page pOld becomes the left
7237 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007238 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007239 }else{
7240 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007241 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007242 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7243 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007244 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7245 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007246 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007247 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007248 }
7249 }
drh1ffd2472015-06-23 02:37:30 +00007250 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007251 }
drh8b2f49b2001-06-08 00:21:52 +00007252 }
7253
7254 /*
drh1ffd2472015-06-23 02:37:30 +00007255 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007256 ** Store this number in "k". Also compute szNew[] which is the total
7257 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007258 ** in b.apCell[] of the cell that divides page i from page i+1.
7259 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007260 **
drh96f5b762004-05-16 16:24:36 +00007261 ** Values computed by this block:
7262 **
7263 ** k: The total number of sibling pages
7264 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007265 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007266 ** the right of the i-th sibling page.
7267 ** usableSpace: Number of bytes of space available on each sibling.
7268 **
drh8b2f49b2001-06-08 00:21:52 +00007269 */
drh43605152004-05-29 21:46:49 +00007270 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007271 for(i=0; i<nOld; i++){
7272 MemPage *p = apOld[i];
7273 szNew[i] = usableSpace - p->nFree;
7274 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7275 for(j=0; j<p->nOverflow; j++){
7276 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7277 }
7278 cntNew[i] = cntOld[i];
7279 }
7280 k = nOld;
7281 for(i=0; i<k; i++){
7282 int sz;
7283 while( szNew[i]>usableSpace ){
7284 if( i+1>=k ){
7285 k = i+2;
7286 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7287 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007288 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007289 }
drh1ffd2472015-06-23 02:37:30 +00007290 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007291 szNew[i] -= sz;
7292 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007293 if( cntNew[i]<b.nCell ){
7294 sz = 2 + cachedCellSize(&b, cntNew[i]);
7295 }else{
7296 sz = 0;
7297 }
drh658873b2015-06-22 20:02:04 +00007298 }
7299 szNew[i+1] += sz;
7300 cntNew[i]--;
7301 }
drh1ffd2472015-06-23 02:37:30 +00007302 while( cntNew[i]<b.nCell ){
7303 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007304 if( szNew[i]+sz>usableSpace ) break;
7305 szNew[i] += sz;
7306 cntNew[i]++;
7307 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007308 if( cntNew[i]<b.nCell ){
7309 sz = 2 + cachedCellSize(&b, cntNew[i]);
7310 }else{
7311 sz = 0;
7312 }
drh658873b2015-06-22 20:02:04 +00007313 }
7314 szNew[i+1] -= sz;
7315 }
drh1ffd2472015-06-23 02:37:30 +00007316 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007317 k = i+1;
drh672073a2015-06-24 12:07:40 +00007318 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007319 rc = SQLITE_CORRUPT_BKPT;
7320 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007321 }
7322 }
drh96f5b762004-05-16 16:24:36 +00007323
7324 /*
7325 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007326 ** on the left side (siblings with smaller keys). The left siblings are
7327 ** always nearly full, while the right-most sibling might be nearly empty.
7328 ** The next block of code attempts to adjust the packing of siblings to
7329 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007330 **
7331 ** This adjustment is more than an optimization. The packing above might
7332 ** be so out of balance as to be illegal. For example, the right-most
7333 ** sibling might be completely empty. This adjustment is not optional.
7334 */
drh6019e162001-07-02 17:51:45 +00007335 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007336 int szRight = szNew[i]; /* Size of sibling on the right */
7337 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7338 int r; /* Index of right-most cell in left sibling */
7339 int d; /* Index of first cell to the left of right sibling */
7340
7341 r = cntNew[i-1] - 1;
7342 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007343 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007344 do{
drh1ffd2472015-06-23 02:37:30 +00007345 assert( d<nMaxCells );
7346 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007347 (void)cachedCellSize(&b, r);
7348 if( szRight!=0
7349 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7350 break;
7351 }
7352 szRight += b.szCell[d] + 2;
7353 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007354 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007355 r--;
7356 d--;
drh672073a2015-06-24 12:07:40 +00007357 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007358 szNew[i] = szRight;
7359 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007360 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7361 rc = SQLITE_CORRUPT_BKPT;
7362 goto balance_cleanup;
7363 }
drh6019e162001-07-02 17:51:45 +00007364 }
drh09d0deb2005-08-02 17:13:09 +00007365
drh2a0df922014-10-30 23:14:56 +00007366 /* Sanity check: For a non-corrupt database file one of the follwing
7367 ** must be true:
7368 ** (1) We found one or more cells (cntNew[0])>0), or
7369 ** (2) pPage is a virtual root page. A virtual root page is when
7370 ** the real root page is page 1 and we are the only child of
7371 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007372 */
drh2a0df922014-10-30 23:14:56 +00007373 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007374 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7375 apOld[0]->pgno, apOld[0]->nCell,
7376 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7377 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007378 ));
7379
drh8b2f49b2001-06-08 00:21:52 +00007380 /*
drh6b308672002-07-08 02:16:37 +00007381 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007382 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007383 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007384 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007385 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007386 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007387 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007388 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007389 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007390 nNew++;
danielk197728129562005-01-11 10:25:06 +00007391 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007392 }else{
drh7aa8f852006-03-28 00:24:44 +00007393 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007394 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007395 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007396 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007397 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007398 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007399 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007400
7401 /* Set the pointer-map entry for the new sibling page. */
7402 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007403 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007404 if( rc!=SQLITE_OK ){
7405 goto balance_cleanup;
7406 }
7407 }
drh6b308672002-07-08 02:16:37 +00007408 }
drh8b2f49b2001-06-08 00:21:52 +00007409 }
7410
7411 /*
dan33ea4862014-10-09 19:35:37 +00007412 ** Reassign page numbers so that the new pages are in ascending order.
7413 ** This helps to keep entries in the disk file in order so that a scan
7414 ** of the table is closer to a linear scan through the file. That in turn
7415 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007416 **
dan33ea4862014-10-09 19:35:37 +00007417 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7418 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007419 **
dan33ea4862014-10-09 19:35:37 +00007420 ** When NB==3, this one optimization makes the database about 25% faster
7421 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007422 */
dan33ea4862014-10-09 19:35:37 +00007423 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007424 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007425 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007426 for(j=0; j<i; j++){
7427 if( aPgno[j]==aPgno[i] ){
7428 /* This branch is taken if the set of sibling pages somehow contains
7429 ** duplicate entries. This can happen if the database is corrupt.
7430 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007431 ** we do the detection here in order to avoid populating the pager
7432 ** cache with two separate objects associated with the same
7433 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007434 assert( CORRUPT_DB );
7435 rc = SQLITE_CORRUPT_BKPT;
7436 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007437 }
7438 }
dan33ea4862014-10-09 19:35:37 +00007439 }
7440 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007441 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007442 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007443 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007444 }
drh00fe08a2014-10-31 00:05:23 +00007445 pgno = aPgOrder[iBest];
7446 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007447 if( iBest!=i ){
7448 if( iBest>i ){
7449 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7450 }
7451 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7452 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007453 }
7454 }
dan33ea4862014-10-09 19:35:37 +00007455
7456 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7457 "%d(%d nc=%d) %d(%d nc=%d)\n",
7458 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007459 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007460 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007461 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007462 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007463 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007464 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7465 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7466 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7467 ));
danielk19774dbaa892009-06-16 16:50:22 +00007468
7469 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7470 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007471
dan33ea4862014-10-09 19:35:37 +00007472 /* If the sibling pages are not leaves, ensure that the right-child pointer
7473 ** of the right-most new sibling page is set to the value that was
7474 ** originally in the same field of the right-most old sibling page. */
7475 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7476 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7477 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7478 }
danielk1977ac11ee62005-01-15 12:45:51 +00007479
dan33ea4862014-10-09 19:35:37 +00007480 /* Make any required updates to pointer map entries associated with
7481 ** cells stored on sibling pages following the balance operation. Pointer
7482 ** map entries associated with divider cells are set by the insertCell()
7483 ** routine. The associated pointer map entries are:
7484 **
7485 ** a) if the cell contains a reference to an overflow chain, the
7486 ** entry associated with the first page in the overflow chain, and
7487 **
7488 ** b) if the sibling pages are not leaves, the child page associated
7489 ** with the cell.
7490 **
7491 ** If the sibling pages are not leaves, then the pointer map entry
7492 ** associated with the right-child of each sibling may also need to be
7493 ** updated. This happens below, after the sibling pages have been
7494 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007495 */
dan33ea4862014-10-09 19:35:37 +00007496 if( ISAUTOVACUUM ){
7497 MemPage *pNew = apNew[0];
7498 u8 *aOld = pNew->aData;
7499 int cntOldNext = pNew->nCell + pNew->nOverflow;
7500 int usableSize = pBt->usableSize;
7501 int iNew = 0;
7502 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007503
drh1ffd2472015-06-23 02:37:30 +00007504 for(i=0; i<b.nCell; i++){
7505 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007506 if( i==cntOldNext ){
7507 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7508 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7509 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007510 }
dan33ea4862014-10-09 19:35:37 +00007511 if( i==cntNew[iNew] ){
7512 pNew = apNew[++iNew];
7513 if( !leafData ) continue;
7514 }
danielk197785d90ca2008-07-19 14:25:15 +00007515
dan33ea4862014-10-09 19:35:37 +00007516 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007517 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007518 ** or else the divider cell to the left of sibling page iOld. So,
7519 ** if sibling page iOld had the same page number as pNew, and if
7520 ** pCell really was a part of sibling page iOld (not a divider or
7521 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007522 if( iOld>=nNew
7523 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007524 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007525 ){
dan33ea4862014-10-09 19:35:37 +00007526 if( !leafCorrection ){
7527 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7528 }
drh1ffd2472015-06-23 02:37:30 +00007529 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007530 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007531 }
drhea82b372015-06-23 21:35:28 +00007532 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007533 }
drh14acc042001-06-10 19:56:58 +00007534 }
7535 }
dan33ea4862014-10-09 19:35:37 +00007536
7537 /* Insert new divider cells into pParent. */
7538 for(i=0; i<nNew-1; i++){
7539 u8 *pCell;
7540 u8 *pTemp;
7541 int sz;
7542 MemPage *pNew = apNew[i];
7543 j = cntNew[i];
7544
7545 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007546 assert( b.apCell[j]!=0 );
7547 pCell = b.apCell[j];
7548 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007549 pTemp = &aOvflSpace[iOvflSpace];
7550 if( !pNew->leaf ){
7551 memcpy(&pNew->aData[8], pCell, 4);
7552 }else if( leafData ){
7553 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007554 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007555 ** cell consists of the integer key for the right-most cell of
7556 ** the sibling-page assembled above only.
7557 */
7558 CellInfo info;
7559 j--;
drh1ffd2472015-06-23 02:37:30 +00007560 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007561 pCell = pTemp;
7562 sz = 4 + putVarint(&pCell[4], info.nKey);
7563 pTemp = 0;
7564 }else{
7565 pCell -= 4;
7566 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7567 ** previously stored on a leaf node, and its reported size was 4
7568 ** bytes, then it may actually be smaller than this
7569 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7570 ** any cell). But it is important to pass the correct size to
7571 ** insertCell(), so reparse the cell now.
7572 **
7573 ** Note that this can never happen in an SQLite data file, as all
7574 ** cells are at least 4 bytes. It only happens in b-trees used
7575 ** to evaluate "IN (SELECT ...)" and similar clauses.
7576 */
drh1ffd2472015-06-23 02:37:30 +00007577 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007578 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007579 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007580 }
7581 }
7582 iOvflSpace += sz;
7583 assert( sz<=pBt->maxLocal+23 );
7584 assert( iOvflSpace <= (int)pBt->pageSize );
7585 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7586 if( rc!=SQLITE_OK ) goto balance_cleanup;
7587 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7588 }
7589
7590 /* Now update the actual sibling pages. The order in which they are updated
7591 ** is important, as this code needs to avoid disrupting any page from which
7592 ** cells may still to be read. In practice, this means:
7593 **
drhd836d422014-10-31 14:26:36 +00007594 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7595 ** then it is not safe to update page apNew[iPg] until after
7596 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007597 **
drhd836d422014-10-31 14:26:36 +00007598 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7599 ** then it is not safe to update page apNew[iPg] until after
7600 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007601 **
7602 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007603 **
7604 ** The iPg value in the following loop starts at nNew-1 goes down
7605 ** to 0, then back up to nNew-1 again, thus making two passes over
7606 ** the pages. On the initial downward pass, only condition (1) above
7607 ** needs to be tested because (2) will always be true from the previous
7608 ** step. On the upward pass, both conditions are always true, so the
7609 ** upwards pass simply processes pages that were missed on the downward
7610 ** pass.
dan33ea4862014-10-09 19:35:37 +00007611 */
drhbec021b2014-10-31 12:22:00 +00007612 for(i=1-nNew; i<nNew; i++){
7613 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007614 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007615 if( abDone[iPg] ) continue; /* Skip pages already processed */
7616 if( i>=0 /* On the upwards pass, or... */
7617 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007618 ){
dan09c68402014-10-11 20:00:24 +00007619 int iNew;
7620 int iOld;
7621 int nNewCell;
7622
drhd836d422014-10-31 14:26:36 +00007623 /* Verify condition (1): If cells are moving left, update iPg
7624 ** only after iPg-1 has already been updated. */
7625 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7626
7627 /* Verify condition (2): If cells are moving right, update iPg
7628 ** only after iPg+1 has already been updated. */
7629 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7630
dan09c68402014-10-11 20:00:24 +00007631 if( iPg==0 ){
7632 iNew = iOld = 0;
7633 nNewCell = cntNew[0];
7634 }else{
drh1ffd2472015-06-23 02:37:30 +00007635 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007636 iNew = cntNew[iPg-1] + !leafData;
7637 nNewCell = cntNew[iPg] - iNew;
7638 }
7639
drh1ffd2472015-06-23 02:37:30 +00007640 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007641 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007642 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007643 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007644 assert( apNew[iPg]->nOverflow==0 );
7645 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007646 }
7647 }
drhd836d422014-10-31 14:26:36 +00007648
7649 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007650 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7651
drh7aa8f852006-03-28 00:24:44 +00007652 assert( nOld>0 );
7653 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007654
danielk197713bd99f2009-06-24 05:40:34 +00007655 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7656 /* The root page of the b-tree now contains no cells. The only sibling
7657 ** page is the right-child of the parent. Copy the contents of the
7658 ** child page into the parent, decreasing the overall height of the
7659 ** b-tree structure by one. This is described as the "balance-shallower"
7660 ** sub-algorithm in some documentation.
7661 **
7662 ** If this is an auto-vacuum database, the call to copyNodeContent()
7663 ** sets all pointer-map entries corresponding to database image pages
7664 ** for which the pointer is stored within the content being copied.
7665 **
drh768f2902014-10-31 02:51:41 +00007666 ** It is critical that the child page be defragmented before being
7667 ** copied into the parent, because if the parent is page 1 then it will
7668 ** by smaller than the child due to the database header, and so all the
7669 ** free space needs to be up front.
7670 */
drh9b5351d2015-09-30 14:19:08 +00007671 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007672 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007673 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007674 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007675 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7676 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007677 );
drhc314dc72009-07-21 11:52:34 +00007678 copyNodeContent(apNew[0], pParent, &rc);
7679 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007680 }else if( ISAUTOVACUUM && !leafCorrection ){
7681 /* Fix the pointer map entries associated with the right-child of each
7682 ** sibling page. All other pointer map entries have already been taken
7683 ** care of. */
7684 for(i=0; i<nNew; i++){
7685 u32 key = get4byte(&apNew[i]->aData[8]);
7686 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007687 }
dan33ea4862014-10-09 19:35:37 +00007688 }
danielk19774dbaa892009-06-16 16:50:22 +00007689
dan33ea4862014-10-09 19:35:37 +00007690 assert( pParent->isInit );
7691 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007692 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007693
dan33ea4862014-10-09 19:35:37 +00007694 /* Free any old pages that were not reused as new pages.
7695 */
7696 for(i=nNew; i<nOld; i++){
7697 freePage(apOld[i], &rc);
7698 }
danielk19774dbaa892009-06-16 16:50:22 +00007699
7700#if 0
dan33ea4862014-10-09 19:35:37 +00007701 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007702 /* The ptrmapCheckPages() contains assert() statements that verify that
7703 ** all pointer map pages are set correctly. This is helpful while
7704 ** debugging. This is usually disabled because a corrupt database may
7705 ** cause an assert() statement to fail. */
7706 ptrmapCheckPages(apNew, nNew);
7707 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007708 }
dan33ea4862014-10-09 19:35:37 +00007709#endif
danielk1977cd581a72009-06-23 15:43:39 +00007710
drh8b2f49b2001-06-08 00:21:52 +00007711 /*
drh14acc042001-06-10 19:56:58 +00007712 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007713 */
drh14acc042001-06-10 19:56:58 +00007714balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007715 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007716 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007717 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007718 }
drh14acc042001-06-10 19:56:58 +00007719 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007720 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007721 }
danielk1977eaa06f62008-09-18 17:34:44 +00007722
drh8b2f49b2001-06-08 00:21:52 +00007723 return rc;
7724}
7725
drh43605152004-05-29 21:46:49 +00007726
7727/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007728** This function is called when the root page of a b-tree structure is
7729** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007730**
danielk1977a50d9aa2009-06-08 14:49:45 +00007731** A new child page is allocated and the contents of the current root
7732** page, including overflow cells, are copied into the child. The root
7733** page is then overwritten to make it an empty page with the right-child
7734** pointer pointing to the new page.
7735**
7736** Before returning, all pointer-map entries corresponding to pages
7737** that the new child-page now contains pointers to are updated. The
7738** entry corresponding to the new right-child pointer of the root
7739** page is also updated.
7740**
7741** If successful, *ppChild is set to contain a reference to the child
7742** page and SQLITE_OK is returned. In this case the caller is required
7743** to call releasePage() on *ppChild exactly once. If an error occurs,
7744** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007745*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007746static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7747 int rc; /* Return value from subprocedures */
7748 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007749 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007750 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007751
danielk1977a50d9aa2009-06-08 14:49:45 +00007752 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007753 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007754
danielk1977a50d9aa2009-06-08 14:49:45 +00007755 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7756 ** page that will become the new right-child of pPage. Copy the contents
7757 ** of the node stored on pRoot into the new child page.
7758 */
drh98add2e2009-07-20 17:11:49 +00007759 rc = sqlite3PagerWrite(pRoot->pDbPage);
7760 if( rc==SQLITE_OK ){
7761 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007762 copyNodeContent(pRoot, pChild, &rc);
7763 if( ISAUTOVACUUM ){
7764 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007765 }
7766 }
7767 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007768 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007769 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007771 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007772 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7773 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7774 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007775
danielk1977a50d9aa2009-06-08 14:49:45 +00007776 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7777
7778 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007779 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7780 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7781 memcpy(pChild->apOvfl, pRoot->apOvfl,
7782 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007783 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007784
7785 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7786 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7787 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7788
7789 *ppChild = pChild;
7790 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007791}
7792
7793/*
danielk197771d5d2c2008-09-29 11:49:47 +00007794** The page that pCur currently points to has just been modified in
7795** some way. This function figures out if this modification means the
7796** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007797** routine. Balancing routines are:
7798**
7799** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007800** balance_deeper()
7801** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007802*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007803static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007804 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007805 const int nMin = pCur->pBt->usableSize * 2 / 3;
7806 u8 aBalanceQuickSpace[13];
7807 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007808
shane75ac1de2009-06-09 18:58:52 +00007809 TESTONLY( int balance_quick_called = 0 );
7810 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007811
7812 do {
7813 int iPage = pCur->iPage;
7814 MemPage *pPage = pCur->apPage[iPage];
7815
7816 if( iPage==0 ){
7817 if( pPage->nOverflow ){
7818 /* The root page of the b-tree is overfull. In this case call the
7819 ** balance_deeper() function to create a new child for the root-page
7820 ** and copy the current contents of the root-page to it. The
7821 ** next iteration of the do-loop will balance the child page.
7822 */
7823 assert( (balance_deeper_called++)==0 );
7824 rc = balance_deeper(pPage, &pCur->apPage[1]);
7825 if( rc==SQLITE_OK ){
7826 pCur->iPage = 1;
7827 pCur->aiIdx[0] = 0;
7828 pCur->aiIdx[1] = 0;
7829 assert( pCur->apPage[1]->nOverflow );
7830 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007831 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007832 break;
7833 }
7834 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7835 break;
7836 }else{
7837 MemPage * const pParent = pCur->apPage[iPage-1];
7838 int const iIdx = pCur->aiIdx[iPage-1];
7839
7840 rc = sqlite3PagerWrite(pParent->pDbPage);
7841 if( rc==SQLITE_OK ){
7842#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007843 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007844 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007845 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007846 && pParent->pgno!=1
7847 && pParent->nCell==iIdx
7848 ){
7849 /* Call balance_quick() to create a new sibling of pPage on which
7850 ** to store the overflow cell. balance_quick() inserts a new cell
7851 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007852 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007853 ** use either balance_nonroot() or balance_deeper(). Until this
7854 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7855 ** buffer.
7856 **
7857 ** The purpose of the following assert() is to check that only a
7858 ** single call to balance_quick() is made for each call to this
7859 ** function. If this were not verified, a subtle bug involving reuse
7860 ** of the aBalanceQuickSpace[] might sneak in.
7861 */
7862 assert( (balance_quick_called++)==0 );
7863 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7864 }else
7865#endif
7866 {
7867 /* In this case, call balance_nonroot() to redistribute cells
7868 ** between pPage and up to 2 of its sibling pages. This involves
7869 ** modifying the contents of pParent, which may cause pParent to
7870 ** become overfull or underfull. The next iteration of the do-loop
7871 ** will balance the parent page to correct this.
7872 **
7873 ** If the parent page becomes overfull, the overflow cell or cells
7874 ** are stored in the pSpace buffer allocated immediately below.
7875 ** A subsequent iteration of the do-loop will deal with this by
7876 ** calling balance_nonroot() (balance_deeper() may be called first,
7877 ** but it doesn't deal with overflow cells - just moves them to a
7878 ** different page). Once this subsequent call to balance_nonroot()
7879 ** has completed, it is safe to release the pSpace buffer used by
7880 ** the previous call, as the overflow cell data will have been
7881 ** copied either into the body of a database page or into the new
7882 ** pSpace buffer passed to the latter call to balance_nonroot().
7883 */
7884 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007885 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7886 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007887 if( pFree ){
7888 /* If pFree is not NULL, it points to the pSpace buffer used
7889 ** by a previous call to balance_nonroot(). Its contents are
7890 ** now stored either on real database pages or within the
7891 ** new pSpace buffer, so it may be safely freed here. */
7892 sqlite3PageFree(pFree);
7893 }
7894
danielk19774dbaa892009-06-16 16:50:22 +00007895 /* The pSpace buffer will be freed after the next call to
7896 ** balance_nonroot(), or just before this function returns, whichever
7897 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007898 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007899 }
7900 }
7901
7902 pPage->nOverflow = 0;
7903
7904 /* The next iteration of the do-loop balances the parent page. */
7905 releasePage(pPage);
7906 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007907 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007908 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007909 }while( rc==SQLITE_OK );
7910
7911 if( pFree ){
7912 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007913 }
7914 return rc;
7915}
7916
drhf74b8d92002-09-01 23:20:45 +00007917
7918/*
drh3b7511c2001-05-26 13:15:44 +00007919** Insert a new record into the BTree. The key is given by (pKey,nKey)
7920** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007921** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007922** is left pointing at a random location.
7923**
7924** For an INTKEY table, only the nKey value of the key is used. pKey is
7925** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007926**
7927** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007928** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007929** been performed. seekResult is the search result returned (a negative
7930** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007931** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007932** (pKey, nKey)).
7933**
drh3e9ca092009-09-08 01:14:48 +00007934** If the seekResult parameter is non-zero, then the caller guarantees that
7935** cursor pCur is pointing at the existing copy of a row that is to be
7936** overwritten. If the seekResult parameter is 0, then cursor pCur may
7937** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007938** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007939*/
drh3aac2dd2004-04-26 14:10:20 +00007940int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007941 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007942 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007943 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007944 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007945 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007946 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007947){
drh3b7511c2001-05-26 13:15:44 +00007948 int rc;
drh3e9ca092009-09-08 01:14:48 +00007949 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007950 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007951 int idx;
drh3b7511c2001-05-26 13:15:44 +00007952 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007953 Btree *p = pCur->pBtree;
7954 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007955 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007956 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007957
drh98add2e2009-07-20 17:11:49 +00007958 if( pCur->eState==CURSOR_FAULT ){
7959 assert( pCur->skipNext!=SQLITE_OK );
7960 return pCur->skipNext;
7961 }
7962
drh1fee73e2007-08-29 04:00:57 +00007963 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007964 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7965 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007966 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007967 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7968
danielk197731d31b82009-07-13 13:18:07 +00007969 /* Assert that the caller has been consistent. If this cursor was opened
7970 ** expecting an index b-tree, then the caller should be inserting blob
7971 ** keys with no associated data. If the cursor was opened expecting an
7972 ** intkey table, the caller should be inserting integer keys with a
7973 ** blob of associated data. */
7974 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7975
danielk19779c3acf32009-05-02 07:36:49 +00007976 /* Save the positions of any other cursors open on this table.
7977 **
danielk19773509a652009-07-06 18:56:13 +00007978 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007979 ** example, when inserting data into a table with auto-generated integer
7980 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7981 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007982 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007983 ** that the cursor is already where it needs to be and returns without
7984 ** doing any work. To avoid thwarting these optimizations, it is important
7985 ** not to clear the cursor here.
7986 */
drh27fb7462015-06-30 02:47:36 +00007987 if( pCur->curFlags & BTCF_Multiple ){
7988 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7989 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007990 }
7991
danielk197771d5d2c2008-09-29 11:49:47 +00007992 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00007993 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007994 /* If this is an insert into a table b-tree, invalidate any incrblob
7995 ** cursors open on the row being replaced */
drh4a1c3802004-05-12 15:15:47 +00007996 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007997
7998 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00007999 ** new row onto the end, set the "loc" to avoid an unnecessary
8000 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00008001 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
8002 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00008003 loc = -1;
8004 }else if( loc==0 ){
8005 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
8006 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008007 }
drh207c8172015-06-29 23:01:32 +00008008 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00008009 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
8010 if( rc ) return rc;
drhf74b8d92002-09-01 23:20:45 +00008011 }
danielk1977b980d2212009-06-22 18:03:51 +00008012 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
drh3aac2dd2004-04-26 14:10:20 +00008013
drh3b7511c2001-05-26 13:15:44 +00008014 pPage = pCur->apPage[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008015 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00008016 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008017
drh3a4c1412004-05-09 20:40:11 +00008018 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8019 pCur->pgnoRoot, nKey, nData, pPage->pgno,
8020 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008021 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008022 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008023 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00008024 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00008025 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008026 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008027 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00008028 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00008029 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00008030 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00008031 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008032 rc = sqlite3PagerWrite(pPage->pDbPage);
8033 if( rc ){
8034 goto end_insert;
8035 }
danielk197771d5d2c2008-09-29 11:49:47 +00008036 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008037 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008038 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008039 }
drh9bfdc252014-09-24 02:05:41 +00008040 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008041 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008042 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008043 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008044 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008045 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008046 }else{
drh4b70f112004-05-02 21:12:19 +00008047 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008048 }
drh98add2e2009-07-20 17:11:49 +00008049 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00008050 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008051
mistachkin48864df2013-03-21 21:20:32 +00008052 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008053 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008054 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008055 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008056 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008057 ** Previous versions of SQLite called moveToRoot() to move the cursor
8058 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008059 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8060 ** set the cursor state to "invalid". This makes common insert operations
8061 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008062 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008063 ** There is a subtle but important optimization here too. When inserting
8064 ** multiple records into an intkey b-tree using a single cursor (as can
8065 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8066 ** is advantageous to leave the cursor pointing to the last entry in
8067 ** the b-tree if possible. If the cursor is left pointing to the last
8068 ** entry in the table, and the next row inserted has an integer key
8069 ** larger than the largest existing key, it is possible to insert the
8070 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008071 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008072 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008073 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008074 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008075 rc = balance(pCur);
8076
8077 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008078 ** fails. Internal data structure corruption will result otherwise.
8079 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8080 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008081 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008082 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008083 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008084 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008085
drh2e38c322004-09-03 18:38:44 +00008086end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008087 return rc;
8088}
8089
8090/*
danf0ee1d32015-09-12 19:26:11 +00008091** Delete the entry that the cursor is pointing to.
8092**
8093** If the second parameter is zero, then the cursor is left pointing at an
8094** arbitrary location after the delete. If it is non-zero, then the cursor
8095** is left in a state such that the next call to BtreeNext() or BtreePrev()
8096** moves it to the same row as it would if the call to BtreeDelete() had
8097** been omitted.
drh3b7511c2001-05-26 13:15:44 +00008098*/
danf0ee1d32015-09-12 19:26:11 +00008099int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
drhd677b3d2007-08-20 22:48:41 +00008100 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008101 BtShared *pBt = p->pBt;
8102 int rc; /* Return code */
8103 MemPage *pPage; /* Page to delete cell from */
8104 unsigned char *pCell; /* Pointer to cell to delete */
8105 int iCellIdx; /* Index of cell to delete */
8106 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008107 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008108 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drh8b2f49b2001-06-08 00:21:52 +00008109
drh1fee73e2007-08-29 04:00:57 +00008110 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00008111 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008112 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008113 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008114 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8115 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008116 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8117 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008118
danielk19774dbaa892009-06-16 16:50:22 +00008119 iCellDepth = pCur->iPage;
8120 iCellIdx = pCur->aiIdx[iCellDepth];
8121 pPage = pCur->apPage[iCellDepth];
8122 pCell = findCell(pPage, iCellIdx);
8123
8124 /* If the page containing the entry to delete is not a leaf page, move
8125 ** the cursor to the largest entry in the tree that is smaller than
8126 ** the entry being deleted. This cell will replace the cell being deleted
8127 ** from the internal node. The 'previous' entry is used for this instead
8128 ** of the 'next' entry, as the previous entry is always a part of the
8129 ** sub-tree headed by the child page of the cell being deleted. This makes
8130 ** balancing the tree following the delete operation easier. */
8131 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008132 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008133 rc = sqlite3BtreePrevious(pCur, &notUsed);
8134 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008135 }
8136
8137 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008138 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008139 if( pCur->curFlags & BTCF_Multiple ){
8140 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8141 if( rc ) return rc;
8142 }
drhd60f4f42012-03-23 14:23:52 +00008143
8144 /* If this is a delete operation to remove a row from a table b-tree,
8145 ** invalidate any incrblob cursors open on the row being deleted. */
8146 if( pCur->pKeyInfo==0 ){
8147 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8148 }
8149
danf0ee1d32015-09-12 19:26:11 +00008150 /* If the bPreserve flag is set to true, then the cursor position must
8151 ** be preserved following this delete operation. If the current delete
8152 ** will cause a b-tree rebalance, then this is done by saving the cursor
8153 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8154 ** returning.
8155 **
8156 ** Or, if the current delete will not cause a rebalance, then the cursor
8157 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8158 ** before or after the deleted entry. In this case set bSkipnext to true. */
8159 if( bPreserve ){
8160 if( !pPage->leaf
drh66336f32015-09-14 14:08:25 +00008161 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
danf0ee1d32015-09-12 19:26:11 +00008162 ){
8163 /* A b-tree rebalance will be required after deleting this entry.
8164 ** Save the cursor key. */
8165 rc = saveCursorKey(pCur);
8166 if( rc ) return rc;
8167 }else{
8168 bSkipnext = 1;
8169 }
8170 }
8171
8172 /* Make the page containing the entry to be deleted writable. Then free any
8173 ** overflow pages associated with the entry and finally remove the cell
8174 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008175 rc = sqlite3PagerWrite(pPage->pDbPage);
8176 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008177 rc = clearCell(pPage, pCell, &szCell);
8178 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008179 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008180
danielk19774dbaa892009-06-16 16:50:22 +00008181 /* If the cell deleted was not located on a leaf page, then the cursor
8182 ** is currently pointing to the largest entry in the sub-tree headed
8183 ** by the child-page of the cell that was just deleted from an internal
8184 ** node. The cell from the leaf node needs to be moved to the internal
8185 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008186 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008187 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8188 int nCell;
8189 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8190 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008191
danielk19774dbaa892009-06-16 16:50:22 +00008192 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008193 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008194 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008195 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008196 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008197 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008198 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008199 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8200 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008201 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008202 }
danielk19774dbaa892009-06-16 16:50:22 +00008203
8204 /* Balance the tree. If the entry deleted was located on a leaf page,
8205 ** then the cursor still points to that page. In this case the first
8206 ** call to balance() repairs the tree, and the if(...) condition is
8207 ** never true.
8208 **
8209 ** Otherwise, if the entry deleted was on an internal node page, then
8210 ** pCur is pointing to the leaf page from which a cell was removed to
8211 ** replace the cell deleted from the internal node. This is slightly
8212 ** tricky as the leaf node may be underfull, and the internal node may
8213 ** be either under or overfull. In this case run the balancing algorithm
8214 ** on the leaf node first. If the balance proceeds far enough up the
8215 ** tree that we can be sure that any problem in the internal node has
8216 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8217 ** walk the cursor up the tree to the internal node and balance it as
8218 ** well. */
8219 rc = balance(pCur);
8220 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8221 while( pCur->iPage>iCellDepth ){
8222 releasePage(pCur->apPage[pCur->iPage--]);
8223 }
8224 rc = balance(pCur);
8225 }
8226
danielk19776b456a22005-03-21 04:04:02 +00008227 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008228 if( bSkipnext ){
8229 assert( bPreserve && pCur->iPage==iCellDepth );
drh78ac1092015-09-20 22:57:47 +00008230 assert( pPage==pCur->apPage[pCur->iPage] );
8231 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008232 pCur->eState = CURSOR_SKIPNEXT;
8233 if( iCellIdx>=pPage->nCell ){
8234 pCur->skipNext = -1;
8235 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8236 }else{
8237 pCur->skipNext = 1;
8238 }
8239 }else{
8240 rc = moveToRoot(pCur);
8241 if( bPreserve ){
8242 pCur->eState = CURSOR_REQUIRESEEK;
8243 }
8244 }
danielk19776b456a22005-03-21 04:04:02 +00008245 }
drh5e2f8b92001-05-28 00:41:15 +00008246 return rc;
drh3b7511c2001-05-26 13:15:44 +00008247}
drh8b2f49b2001-06-08 00:21:52 +00008248
8249/*
drhc6b52df2002-01-04 03:09:29 +00008250** Create a new BTree table. Write into *piTable the page
8251** number for the root page of the new table.
8252**
drhab01f612004-05-22 02:55:23 +00008253** The type of type is determined by the flags parameter. Only the
8254** following values of flags are currently in use. Other values for
8255** flags might not work:
8256**
8257** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8258** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008259*/
drhd4187c72010-08-30 22:15:45 +00008260static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008261 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008262 MemPage *pRoot;
8263 Pgno pgnoRoot;
8264 int rc;
drhd4187c72010-08-30 22:15:45 +00008265 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008266
drh1fee73e2007-08-29 04:00:57 +00008267 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008268 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008269 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008270
danielk1977003ba062004-11-04 02:57:33 +00008271#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008272 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008273 if( rc ){
8274 return rc;
8275 }
danielk1977003ba062004-11-04 02:57:33 +00008276#else
danielk1977687566d2004-11-02 12:56:41 +00008277 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008278 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8279 MemPage *pPageMove; /* The page to move to. */
8280
danielk197720713f32007-05-03 11:43:33 +00008281 /* Creating a new table may probably require moving an existing database
8282 ** to make room for the new tables root page. In case this page turns
8283 ** out to be an overflow page, delete all overflow page-map caches
8284 ** held by open cursors.
8285 */
danielk197792d4d7a2007-05-04 12:05:56 +00008286 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008287
danielk1977003ba062004-11-04 02:57:33 +00008288 /* Read the value of meta[3] from the database to determine where the
8289 ** root page of the new table should go. meta[3] is the largest root-page
8290 ** created so far, so the new root-page is (meta[3]+1).
8291 */
danielk1977602b4662009-07-02 07:47:33 +00008292 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008293 pgnoRoot++;
8294
danielk1977599fcba2004-11-08 07:13:13 +00008295 /* The new root-page may not be allocated on a pointer-map page, or the
8296 ** PENDING_BYTE page.
8297 */
drh72190432008-01-31 14:54:43 +00008298 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008299 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008300 pgnoRoot++;
8301 }
drh499e15b2015-05-22 12:37:37 +00008302 assert( pgnoRoot>=3 || CORRUPT_DB );
8303 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008304
8305 /* Allocate a page. The page that currently resides at pgnoRoot will
8306 ** be moved to the allocated page (unless the allocated page happens
8307 ** to reside at pgnoRoot).
8308 */
dan51f0b6d2013-02-22 20:16:34 +00008309 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008310 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008311 return rc;
8312 }
danielk1977003ba062004-11-04 02:57:33 +00008313
8314 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008315 /* pgnoRoot is the page that will be used for the root-page of
8316 ** the new table (assuming an error did not occur). But we were
8317 ** allocated pgnoMove. If required (i.e. if it was not allocated
8318 ** by extending the file), the current page at position pgnoMove
8319 ** is already journaled.
8320 */
drheeb844a2009-08-08 18:01:07 +00008321 u8 eType = 0;
8322 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008323
danf7679ad2013-04-03 11:38:36 +00008324 /* Save the positions of any open cursors. This is required in
8325 ** case they are holding a reference to an xFetch reference
8326 ** corresponding to page pgnoRoot. */
8327 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008328 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008329 if( rc!=SQLITE_OK ){
8330 return rc;
8331 }
danielk1977f35843b2007-04-07 15:03:17 +00008332
8333 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008334 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008335 if( rc!=SQLITE_OK ){
8336 return rc;
8337 }
8338 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008339 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8340 rc = SQLITE_CORRUPT_BKPT;
8341 }
8342 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008343 releasePage(pRoot);
8344 return rc;
8345 }
drhccae6022005-02-26 17:31:26 +00008346 assert( eType!=PTRMAP_ROOTPAGE );
8347 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008348 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008349 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008350
8351 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008352 if( rc!=SQLITE_OK ){
8353 return rc;
8354 }
drhb00fc3b2013-08-21 23:42:32 +00008355 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008356 if( rc!=SQLITE_OK ){
8357 return rc;
8358 }
danielk19773b8a05f2007-03-19 17:44:26 +00008359 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008360 if( rc!=SQLITE_OK ){
8361 releasePage(pRoot);
8362 return rc;
8363 }
8364 }else{
8365 pRoot = pPageMove;
8366 }
8367
danielk197742741be2005-01-08 12:42:39 +00008368 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008369 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008370 if( rc ){
8371 releasePage(pRoot);
8372 return rc;
8373 }
drhbf592832010-03-30 15:51:12 +00008374
8375 /* When the new root page was allocated, page 1 was made writable in
8376 ** order either to increase the database filesize, or to decrement the
8377 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8378 */
8379 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008380 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008381 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008382 releasePage(pRoot);
8383 return rc;
8384 }
danielk197742741be2005-01-08 12:42:39 +00008385
danielk1977003ba062004-11-04 02:57:33 +00008386 }else{
drh4f0c5872007-03-26 22:05:01 +00008387 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008388 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008389 }
8390#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008391 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008392 if( createTabFlags & BTREE_INTKEY ){
8393 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8394 }else{
8395 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8396 }
8397 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008398 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008399 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008400 *piTable = (int)pgnoRoot;
8401 return SQLITE_OK;
8402}
drhd677b3d2007-08-20 22:48:41 +00008403int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8404 int rc;
8405 sqlite3BtreeEnter(p);
8406 rc = btreeCreateTable(p, piTable, flags);
8407 sqlite3BtreeLeave(p);
8408 return rc;
8409}
drh8b2f49b2001-06-08 00:21:52 +00008410
8411/*
8412** Erase the given database page and all its children. Return
8413** the page to the freelist.
8414*/
drh4b70f112004-05-02 21:12:19 +00008415static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008416 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008417 Pgno pgno, /* Page number to clear */
8418 int freePageFlag, /* Deallocate page if true */
8419 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008420){
danielk1977146ba992009-07-22 14:08:13 +00008421 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008422 int rc;
drh4b70f112004-05-02 21:12:19 +00008423 unsigned char *pCell;
8424 int i;
dan8ce71842014-01-14 20:14:09 +00008425 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008426 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008427
drh1fee73e2007-08-29 04:00:57 +00008428 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008429 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008430 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008431 }
drh28f58dd2015-06-27 19:45:03 +00008432 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008433 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008434 if( pPage->bBusy ){
8435 rc = SQLITE_CORRUPT_BKPT;
8436 goto cleardatabasepage_out;
8437 }
8438 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008439 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008440 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008441 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008442 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008443 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008444 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008445 }
drh9bfdc252014-09-24 02:05:41 +00008446 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008447 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008448 }
drha34b6762004-05-07 13:30:42 +00008449 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008450 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008451 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008452 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008453 assert( pPage->intKey || CORRUPT_DB );
8454 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008455 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008456 }
8457 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008458 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008459 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008460 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008461 }
danielk19776b456a22005-03-21 04:04:02 +00008462
8463cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008464 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008465 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008466 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008467}
8468
8469/*
drhab01f612004-05-22 02:55:23 +00008470** Delete all information from a single table in the database. iTable is
8471** the page number of the root of the table. After this routine returns,
8472** the root page is empty, but still exists.
8473**
8474** This routine will fail with SQLITE_LOCKED if there are any open
8475** read cursors on the table. Open write cursors are moved to the
8476** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008477**
8478** If pnChange is not NULL, then table iTable must be an intkey table. The
8479** integer value pointed to by pnChange is incremented by the number of
8480** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008481*/
danielk1977c7af4842008-10-27 13:59:33 +00008482int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008483 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008484 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008485 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008486 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008487
drhc046e3e2009-07-15 11:26:44 +00008488 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008489
drhc046e3e2009-07-15 11:26:44 +00008490 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008491 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8492 ** is the root of a table b-tree - if it is not, the following call is
8493 ** a no-op). */
8494 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008495 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008496 }
drhd677b3d2007-08-20 22:48:41 +00008497 sqlite3BtreeLeave(p);
8498 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008499}
8500
8501/*
drh079a3072014-03-19 14:10:55 +00008502** Delete all information from the single table that pCur is open on.
8503**
8504** This routine only work for pCur on an ephemeral table.
8505*/
8506int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8507 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8508}
8509
8510/*
drh8b2f49b2001-06-08 00:21:52 +00008511** Erase all information in a table and add the root of the table to
8512** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008513** page 1) is never added to the freelist.
8514**
8515** This routine will fail with SQLITE_LOCKED if there are any open
8516** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008517**
8518** If AUTOVACUUM is enabled and the page at iTable is not the last
8519** root page in the database file, then the last root page
8520** in the database file is moved into the slot formerly occupied by
8521** iTable and that last slot formerly occupied by the last root page
8522** is added to the freelist instead of iTable. In this say, all
8523** root pages are kept at the beginning of the database file, which
8524** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8525** page number that used to be the last root page in the file before
8526** the move. If no page gets moved, *piMoved is set to 0.
8527** The last root page is recorded in meta[3] and the value of
8528** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008529*/
danielk197789d40042008-11-17 14:20:56 +00008530static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008531 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008532 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008533 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008534
drh1fee73e2007-08-29 04:00:57 +00008535 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008536 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008537
danielk1977e6efa742004-11-10 11:55:10 +00008538 /* It is illegal to drop a table if any cursors are open on the
8539 ** database. This is because in auto-vacuum mode the backend may
8540 ** need to move another root-page to fill a gap left by the deleted
8541 ** root page. If an open cursor was using this page a problem would
8542 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008543 **
8544 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008545 */
drhc046e3e2009-07-15 11:26:44 +00008546 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008547 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8548 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008549 }
danielk1977a0bf2652004-11-04 14:30:04 +00008550
drhb00fc3b2013-08-21 23:42:32 +00008551 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008552 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008553 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008554 if( rc ){
8555 releasePage(pPage);
8556 return rc;
8557 }
danielk1977a0bf2652004-11-04 14:30:04 +00008558
drh205f48e2004-11-05 00:43:11 +00008559 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008560
drh4b70f112004-05-02 21:12:19 +00008561 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008562#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008563 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008564 releasePage(pPage);
8565#else
8566 if( pBt->autoVacuum ){
8567 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008568 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008569
8570 if( iTable==maxRootPgno ){
8571 /* If the table being dropped is the table with the largest root-page
8572 ** number in the database, put the root page on the free list.
8573 */
drhc314dc72009-07-21 11:52:34 +00008574 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008575 releasePage(pPage);
8576 if( rc!=SQLITE_OK ){
8577 return rc;
8578 }
8579 }else{
8580 /* The table being dropped does not have the largest root-page
8581 ** number in the database. So move the page that does into the
8582 ** gap left by the deleted root-page.
8583 */
8584 MemPage *pMove;
8585 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008586 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008587 if( rc!=SQLITE_OK ){
8588 return rc;
8589 }
danielk19774c999992008-07-16 18:17:55 +00008590 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008591 releasePage(pMove);
8592 if( rc!=SQLITE_OK ){
8593 return rc;
8594 }
drhfe3313f2009-07-21 19:02:20 +00008595 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008596 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008597 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008598 releasePage(pMove);
8599 if( rc!=SQLITE_OK ){
8600 return rc;
8601 }
8602 *piMoved = maxRootPgno;
8603 }
8604
danielk1977599fcba2004-11-08 07:13:13 +00008605 /* Set the new 'max-root-page' value in the database header. This
8606 ** is the old value less one, less one more if that happens to
8607 ** be a root-page number, less one again if that is the
8608 ** PENDING_BYTE_PAGE.
8609 */
danielk197787a6e732004-11-05 12:58:25 +00008610 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008611 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8612 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008613 maxRootPgno--;
8614 }
danielk1977599fcba2004-11-08 07:13:13 +00008615 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8616
danielk1977aef0bf62005-12-30 16:28:01 +00008617 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008618 }else{
drhc314dc72009-07-21 11:52:34 +00008619 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008620 releasePage(pPage);
8621 }
8622#endif
drh2aa679f2001-06-25 02:11:07 +00008623 }else{
drhc046e3e2009-07-15 11:26:44 +00008624 /* If sqlite3BtreeDropTable was called on page 1.
8625 ** This really never should happen except in a corrupt
8626 ** database.
8627 */
drha34b6762004-05-07 13:30:42 +00008628 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008629 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008630 }
drh8b2f49b2001-06-08 00:21:52 +00008631 return rc;
8632}
drhd677b3d2007-08-20 22:48:41 +00008633int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8634 int rc;
8635 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008636 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008637 sqlite3BtreeLeave(p);
8638 return rc;
8639}
drh8b2f49b2001-06-08 00:21:52 +00008640
drh001bbcb2003-03-19 03:14:00 +00008641
drh8b2f49b2001-06-08 00:21:52 +00008642/*
danielk1977602b4662009-07-02 07:47:33 +00008643** This function may only be called if the b-tree connection already
8644** has a read or write transaction open on the database.
8645**
drh23e11ca2004-05-04 17:27:28 +00008646** Read the meta-information out of a database file. Meta[0]
8647** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008648** through meta[15] are available for use by higher layers. Meta[0]
8649** is read-only, the others are read/write.
8650**
8651** The schema layer numbers meta values differently. At the schema
8652** layer (and the SetCookie and ReadCookie opcodes) the number of
8653** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008654**
8655** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8656** of reading the value out of the header, it instead loads the "DataVersion"
8657** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8658** database file. It is a number computed by the pager. But its access
8659** pattern is the same as header meta values, and so it is convenient to
8660** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008661*/
danielk1977602b4662009-07-02 07:47:33 +00008662void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008663 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008664
drhd677b3d2007-08-20 22:48:41 +00008665 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008666 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008667 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008668 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008669 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008670
drh91618562014-12-19 19:28:02 +00008671 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008672 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008673 }else{
8674 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8675 }
drhae157872004-08-14 19:20:09 +00008676
danielk1977602b4662009-07-02 07:47:33 +00008677 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8678 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008679#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008680 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8681 pBt->btsFlags |= BTS_READ_ONLY;
8682 }
danielk1977003ba062004-11-04 02:57:33 +00008683#endif
drhae157872004-08-14 19:20:09 +00008684
drhd677b3d2007-08-20 22:48:41 +00008685 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008686}
8687
8688/*
drh23e11ca2004-05-04 17:27:28 +00008689** Write meta-information back into the database. Meta[0] is
8690** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008691*/
danielk1977aef0bf62005-12-30 16:28:01 +00008692int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8693 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008694 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008695 int rc;
drh23e11ca2004-05-04 17:27:28 +00008696 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008697 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008698 assert( p->inTrans==TRANS_WRITE );
8699 assert( pBt->pPage1!=0 );
8700 pP1 = pBt->pPage1->aData;
8701 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8702 if( rc==SQLITE_OK ){
8703 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008704#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008705 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008706 assert( pBt->autoVacuum || iMeta==0 );
8707 assert( iMeta==0 || iMeta==1 );
8708 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008709 }
drh64022502009-01-09 14:11:04 +00008710#endif
drh5df72a52002-06-06 23:16:05 +00008711 }
drhd677b3d2007-08-20 22:48:41 +00008712 sqlite3BtreeLeave(p);
8713 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008714}
drh8c42ca92001-06-22 19:15:00 +00008715
danielk1977a5533162009-02-24 10:01:51 +00008716#ifndef SQLITE_OMIT_BTREECOUNT
8717/*
8718** The first argument, pCur, is a cursor opened on some b-tree. Count the
8719** number of entries in the b-tree and write the result to *pnEntry.
8720**
8721** SQLITE_OK is returned if the operation is successfully executed.
8722** Otherwise, if an error is encountered (i.e. an IO error or database
8723** corruption) an SQLite error code is returned.
8724*/
8725int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8726 i64 nEntry = 0; /* Value to return in *pnEntry */
8727 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008728
8729 if( pCur->pgnoRoot==0 ){
8730 *pnEntry = 0;
8731 return SQLITE_OK;
8732 }
danielk1977a5533162009-02-24 10:01:51 +00008733 rc = moveToRoot(pCur);
8734
8735 /* Unless an error occurs, the following loop runs one iteration for each
8736 ** page in the B-Tree structure (not including overflow pages).
8737 */
8738 while( rc==SQLITE_OK ){
8739 int iIdx; /* Index of child node in parent */
8740 MemPage *pPage; /* Current page of the b-tree */
8741
8742 /* If this is a leaf page or the tree is not an int-key tree, then
8743 ** this page contains countable entries. Increment the entry counter
8744 ** accordingly.
8745 */
8746 pPage = pCur->apPage[pCur->iPage];
8747 if( pPage->leaf || !pPage->intKey ){
8748 nEntry += pPage->nCell;
8749 }
8750
8751 /* pPage is a leaf node. This loop navigates the cursor so that it
8752 ** points to the first interior cell that it points to the parent of
8753 ** the next page in the tree that has not yet been visited. The
8754 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8755 ** of the page, or to the number of cells in the page if the next page
8756 ** to visit is the right-child of its parent.
8757 **
8758 ** If all pages in the tree have been visited, return SQLITE_OK to the
8759 ** caller.
8760 */
8761 if( pPage->leaf ){
8762 do {
8763 if( pCur->iPage==0 ){
8764 /* All pages of the b-tree have been visited. Return successfully. */
8765 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008766 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008767 }
danielk197730548662009-07-09 05:07:37 +00008768 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008769 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8770
8771 pCur->aiIdx[pCur->iPage]++;
8772 pPage = pCur->apPage[pCur->iPage];
8773 }
8774
8775 /* Descend to the child node of the cell that the cursor currently
8776 ** points at. This is the right-child if (iIdx==pPage->nCell).
8777 */
8778 iIdx = pCur->aiIdx[pCur->iPage];
8779 if( iIdx==pPage->nCell ){
8780 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8781 }else{
8782 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8783 }
8784 }
8785
shanebe217792009-03-05 04:20:31 +00008786 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008787 return rc;
8788}
8789#endif
drhdd793422001-06-28 01:54:48 +00008790
drhdd793422001-06-28 01:54:48 +00008791/*
drh5eddca62001-06-30 21:53:53 +00008792** Return the pager associated with a BTree. This routine is used for
8793** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008794*/
danielk1977aef0bf62005-12-30 16:28:01 +00008795Pager *sqlite3BtreePager(Btree *p){
8796 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008797}
drh5eddca62001-06-30 21:53:53 +00008798
drhb7f91642004-10-31 02:22:47 +00008799#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008800/*
8801** Append a message to the error message string.
8802*/
drh2e38c322004-09-03 18:38:44 +00008803static void checkAppendMsg(
8804 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008805 const char *zFormat,
8806 ...
8807){
8808 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008809 if( !pCheck->mxErr ) return;
8810 pCheck->mxErr--;
8811 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008812 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008813 if( pCheck->errMsg.nChar ){
8814 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008815 }
drh867db832014-09-26 02:41:05 +00008816 if( pCheck->zPfx ){
drhd37bea52015-09-02 15:37:50 +00008817 sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008818 }
8819 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8820 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008821 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008822 pCheck->mallocFailed = 1;
8823 }
drh5eddca62001-06-30 21:53:53 +00008824}
drhb7f91642004-10-31 02:22:47 +00008825#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008826
drhb7f91642004-10-31 02:22:47 +00008827#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008828
8829/*
8830** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8831** corresponds to page iPg is already set.
8832*/
8833static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8834 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8835 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8836}
8837
8838/*
8839** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8840*/
8841static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8842 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8843 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8844}
8845
8846
drh5eddca62001-06-30 21:53:53 +00008847/*
8848** Add 1 to the reference count for page iPage. If this is the second
8849** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008850** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008851** if this is the first reference to the page.
8852**
8853** Also check that the page number is in bounds.
8854*/
drh867db832014-09-26 02:41:05 +00008855static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008856 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008857 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008858 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008859 return 1;
8860 }
dan1235bb12012-04-03 17:43:28 +00008861 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008862 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008863 return 1;
8864 }
dan1235bb12012-04-03 17:43:28 +00008865 setPageReferenced(pCheck, iPage);
8866 return 0;
drh5eddca62001-06-30 21:53:53 +00008867}
8868
danielk1977afcdd022004-10-31 16:25:42 +00008869#ifndef SQLITE_OMIT_AUTOVACUUM
8870/*
8871** Check that the entry in the pointer-map for page iChild maps to
8872** page iParent, pointer type ptrType. If not, append an error message
8873** to pCheck.
8874*/
8875static void checkPtrmap(
8876 IntegrityCk *pCheck, /* Integrity check context */
8877 Pgno iChild, /* Child page number */
8878 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008879 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008880){
8881 int rc;
8882 u8 ePtrmapType;
8883 Pgno iPtrmapParent;
8884
8885 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8886 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008887 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008888 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008889 return;
8890 }
8891
8892 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008893 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008894 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8895 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8896 }
8897}
8898#endif
8899
drh5eddca62001-06-30 21:53:53 +00008900/*
8901** Check the integrity of the freelist or of an overflow page list.
8902** Verify that the number of pages on the list is N.
8903*/
drh30e58752002-03-02 20:41:57 +00008904static void checkList(
8905 IntegrityCk *pCheck, /* Integrity checking context */
8906 int isFreeList, /* True for a freelist. False for overflow page list */
8907 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008908 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008909){
8910 int i;
drh3a4c1412004-05-09 20:40:11 +00008911 int expected = N;
8912 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008913 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008914 DbPage *pOvflPage;
8915 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008916 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008917 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008918 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008919 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008920 break;
8921 }
drh867db832014-09-26 02:41:05 +00008922 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00008923 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00008924 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008925 break;
8926 }
danielk19773b8a05f2007-03-19 17:44:26 +00008927 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008928 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008929 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008930#ifndef SQLITE_OMIT_AUTOVACUUM
8931 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008932 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008933 }
8934#endif
drh43b18e12010-08-17 19:40:08 +00008935 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008936 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008937 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008938 N--;
8939 }else{
8940 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008941 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008942#ifndef SQLITE_OMIT_AUTOVACUUM
8943 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008944 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008945 }
8946#endif
drh867db832014-09-26 02:41:05 +00008947 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008948 }
8949 N -= n;
drh30e58752002-03-02 20:41:57 +00008950 }
drh30e58752002-03-02 20:41:57 +00008951 }
danielk1977afcdd022004-10-31 16:25:42 +00008952#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008953 else{
8954 /* If this database supports auto-vacuum and iPage is not the last
8955 ** page in this overflow list, check that the pointer-map entry for
8956 ** the following page matches iPage.
8957 */
8958 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008959 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008960 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008961 }
danielk1977afcdd022004-10-31 16:25:42 +00008962 }
8963#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008964 iPage = get4byte(pOvflData);
8965 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008966
8967 if( isFreeList && N<(iPage!=0) ){
8968 checkAppendMsg(pCheck, "free-page count in header is too small");
8969 }
drh5eddca62001-06-30 21:53:53 +00008970 }
8971}
drhb7f91642004-10-31 02:22:47 +00008972#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008973
drh67731a92015-04-16 11:56:03 +00008974/*
8975** An implementation of a min-heap.
8976**
8977** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008978** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008979** and aHeap[N*2+1].
8980**
8981** The heap property is this: Every node is less than or equal to both
8982** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008983** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008984**
8985** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8986** the heap, preserving the heap property. The btreeHeapPull() routine
8987** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008988** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008989** property.
8990**
8991** This heap is used for cell overlap and coverage testing. Each u32
8992** entry represents the span of a cell or freeblock on a btree page.
8993** The upper 16 bits are the index of the first byte of a range and the
8994** lower 16 bits are the index of the last byte of that range.
8995*/
8996static void btreeHeapInsert(u32 *aHeap, u32 x){
8997 u32 j, i = ++aHeap[0];
8998 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008999 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009000 x = aHeap[j];
9001 aHeap[j] = aHeap[i];
9002 aHeap[i] = x;
9003 i = j;
9004 }
9005}
9006static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9007 u32 j, i, x;
9008 if( (x = aHeap[0])==0 ) return 0;
9009 *pOut = aHeap[1];
9010 aHeap[1] = aHeap[x];
9011 aHeap[x] = 0xffffffff;
9012 aHeap[0]--;
9013 i = 1;
9014 while( (j = i*2)<=aHeap[0] ){
9015 if( aHeap[j]>aHeap[j+1] ) j++;
9016 if( aHeap[i]<aHeap[j] ) break;
9017 x = aHeap[i];
9018 aHeap[i] = aHeap[j];
9019 aHeap[j] = x;
9020 i = j;
9021 }
9022 return 1;
9023}
9024
drhb7f91642004-10-31 02:22:47 +00009025#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009026/*
9027** Do various sanity checks on a single page of a tree. Return
9028** the tree depth. Root pages return 0. Parents of root pages
9029** return 1, and so forth.
9030**
9031** These checks are done:
9032**
9033** 1. Make sure that cells and freeblocks do not overlap
9034** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009035** 2. Make sure integer cell keys are in order.
9036** 3. Check the integrity of overflow pages.
9037** 4. Recursively call checkTreePage on all children.
9038** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009039*/
9040static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009041 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009042 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009043 i64 *piMinKey, /* Write minimum integer primary key here */
9044 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009045){
drhcbc6b712015-07-02 16:17:30 +00009046 MemPage *pPage = 0; /* The page being analyzed */
9047 int i; /* Loop counter */
9048 int rc; /* Result code from subroutine call */
9049 int depth = -1, d2; /* Depth of a subtree */
9050 int pgno; /* Page number */
9051 int nFrag; /* Number of fragmented bytes on the page */
9052 int hdr; /* Offset to the page header */
9053 int cellStart; /* Offset to the start of the cell pointer array */
9054 int nCell; /* Number of cells */
9055 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9056 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9057 ** False if IPK must be strictly less than maxKey */
9058 u8 *data; /* Page content */
9059 u8 *pCell; /* Cell content */
9060 u8 *pCellIdx; /* Next element of the cell pointer array */
9061 BtShared *pBt; /* The BtShared object that owns pPage */
9062 u32 pc; /* Address of a cell */
9063 u32 usableSize; /* Usable size of the page */
9064 u32 contentOffset; /* Offset to the start of the cell content area */
9065 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009066 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009067 const char *saved_zPfx = pCheck->zPfx;
9068 int saved_v1 = pCheck->v1;
9069 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009070 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009071
drh5eddca62001-06-30 21:53:53 +00009072 /* Check that the page exists
9073 */
drhd9cb6ac2005-10-20 07:28:17 +00009074 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009075 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009076 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009077 if( checkRef(pCheck, iPage) ) return 0;
9078 pCheck->zPfx = "Page %d: ";
9079 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009080 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009081 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009082 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009083 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009084 }
danielk197793caf5a2009-07-11 06:55:33 +00009085
9086 /* Clear MemPage.isInit to make sure the corruption detection code in
9087 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009088 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009089 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009090 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009091 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009092 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009093 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009094 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009095 }
drhcbc6b712015-07-02 16:17:30 +00009096 data = pPage->aData;
9097 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009098
drhcbc6b712015-07-02 16:17:30 +00009099 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009100 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009101 contentOffset = get2byteNotZero(&data[hdr+5]);
9102 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9103
9104 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9105 ** number of cells on the page. */
9106 nCell = get2byte(&data[hdr+3]);
9107 assert( pPage->nCell==nCell );
9108
9109 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9110 ** immediately follows the b-tree page header. */
9111 cellStart = hdr + 12 - 4*pPage->leaf;
9112 assert( pPage->aCellIdx==&data[cellStart] );
9113 pCellIdx = &data[cellStart + 2*(nCell-1)];
9114
9115 if( !pPage->leaf ){
9116 /* Analyze the right-child page of internal pages */
9117 pgno = get4byte(&data[hdr+8]);
9118#ifndef SQLITE_OMIT_AUTOVACUUM
9119 if( pBt->autoVacuum ){
9120 pCheck->zPfx = "On page %d at right child: ";
9121 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9122 }
9123#endif
9124 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9125 keyCanBeEqual = 0;
9126 }else{
9127 /* For leaf pages, the coverage check will occur in the same loop
9128 ** as the other cell checks, so initialize the heap. */
9129 heap = pCheck->heap;
9130 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009131 }
9132
drhcbc6b712015-07-02 16:17:30 +00009133 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9134 ** integer offsets to the cell contents. */
9135 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009136 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009137
drhcbc6b712015-07-02 16:17:30 +00009138 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009139 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009140 assert( pCellIdx==&data[cellStart + i*2] );
9141 pc = get2byteAligned(pCellIdx);
9142 pCellIdx -= 2;
9143 if( pc<contentOffset || pc>usableSize-4 ){
9144 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9145 pc, contentOffset, usableSize-4);
9146 doCoverageCheck = 0;
9147 continue;
shaneh195475d2010-02-19 04:28:08 +00009148 }
drhcbc6b712015-07-02 16:17:30 +00009149 pCell = &data[pc];
9150 pPage->xParseCell(pPage, pCell, &info);
9151 if( pc+info.nSize>usableSize ){
9152 checkAppendMsg(pCheck, "Extends off end of page");
9153 doCoverageCheck = 0;
9154 continue;
drh5eddca62001-06-30 21:53:53 +00009155 }
9156
drhcbc6b712015-07-02 16:17:30 +00009157 /* Check for integer primary key out of range */
9158 if( pPage->intKey ){
9159 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9160 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9161 }
9162 maxKey = info.nKey;
9163 }
9164
9165 /* Check the content overflow list */
9166 if( info.nPayload>info.nLocal ){
9167 int nPage; /* Number of pages on the overflow chain */
9168 Pgno pgnoOvfl; /* First page of the overflow chain */
9169 assert( pc + info.iOverflow <= usableSize );
9170 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9171 pgnoOvfl = get4byte(&pCell[info.iOverflow]);
drhda200cc2004-05-09 11:51:38 +00009172#ifndef SQLITE_OMIT_AUTOVACUUM
9173 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009174 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009175 }
9176#endif
drh867db832014-09-26 02:41:05 +00009177 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009178 }
9179
drh5eddca62001-06-30 21:53:53 +00009180 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009181 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009182 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009183#ifndef SQLITE_OMIT_AUTOVACUUM
9184 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009185 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009186 }
9187#endif
drhcbc6b712015-07-02 16:17:30 +00009188 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9189 keyCanBeEqual = 0;
9190 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009191 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009192 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009193 }
drhcbc6b712015-07-02 16:17:30 +00009194 }else{
9195 /* Populate the coverage-checking heap for leaf pages */
9196 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009197 }
9198 }
drhcbc6b712015-07-02 16:17:30 +00009199 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009200
drh5eddca62001-06-30 21:53:53 +00009201 /* Check for complete coverage of the page
9202 */
drh867db832014-09-26 02:41:05 +00009203 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009204 if( doCoverageCheck && pCheck->mxErr>0 ){
9205 /* For leaf pages, the min-heap has already been initialized and the
9206 ** cells have already been inserted. But for internal pages, that has
9207 ** not yet been done, so do it now */
9208 if( !pPage->leaf ){
9209 heap = pCheck->heap;
9210 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009211 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009212 u32 size;
9213 pc = get2byteAligned(&data[cellStart+i*2]);
9214 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009215 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009216 }
drh2e38c322004-09-03 18:38:44 +00009217 }
drhcbc6b712015-07-02 16:17:30 +00009218 /* Add the freeblocks to the min-heap
9219 **
9220 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009221 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009222 ** freeblocks on the page.
9223 */
drh8c2bbb62009-07-10 02:52:20 +00009224 i = get2byte(&data[hdr+1]);
9225 while( i>0 ){
9226 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009227 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009228 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009229 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009230 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009231 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9232 ** big-endian integer which is the offset in the b-tree page of the next
9233 ** freeblock in the chain, or zero if the freeblock is the last on the
9234 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009235 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009236 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9237 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009238 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009239 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009240 i = j;
drh2e38c322004-09-03 18:38:44 +00009241 }
drhcbc6b712015-07-02 16:17:30 +00009242 /* Analyze the min-heap looking for overlap between cells and/or
9243 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009244 **
9245 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9246 ** There is an implied first entry the covers the page header, the cell
9247 ** pointer index, and the gap between the cell pointer index and the start
9248 ** of cell content.
9249 **
9250 ** The loop below pulls entries from the min-heap in order and compares
9251 ** the start_address against the previous end_address. If there is an
9252 ** overlap, that means bytes are used multiple times. If there is a gap,
9253 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009254 */
9255 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009256 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009257 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009258 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009259 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009260 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009261 break;
drh67731a92015-04-16 11:56:03 +00009262 }else{
drhcbc6b712015-07-02 16:17:30 +00009263 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009264 prev = x;
drh2e38c322004-09-03 18:38:44 +00009265 }
9266 }
drhcbc6b712015-07-02 16:17:30 +00009267 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009268 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9269 ** is stored in the fifth field of the b-tree page header.
9270 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9271 ** number of fragmented free bytes within the cell content area.
9272 */
drhcbc6b712015-07-02 16:17:30 +00009273 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009274 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009275 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009276 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009277 }
9278 }
drh867db832014-09-26 02:41:05 +00009279
9280end_of_check:
drh72e191e2015-07-04 11:14:20 +00009281 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009282 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009283 pCheck->zPfx = saved_zPfx;
9284 pCheck->v1 = saved_v1;
9285 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009286 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009287}
drhb7f91642004-10-31 02:22:47 +00009288#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009289
drhb7f91642004-10-31 02:22:47 +00009290#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009291/*
9292** This routine does a complete check of the given BTree file. aRoot[] is
9293** an array of pages numbers were each page number is the root page of
9294** a table. nRoot is the number of entries in aRoot.
9295**
danielk19773509a652009-07-06 18:56:13 +00009296** A read-only or read-write transaction must be opened before calling
9297** this function.
9298**
drhc890fec2008-08-01 20:10:08 +00009299** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009300** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009301** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009302** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009303*/
drh1dcdbc02007-01-27 02:24:54 +00009304char *sqlite3BtreeIntegrityCheck(
9305 Btree *p, /* The btree to be checked */
9306 int *aRoot, /* An array of root pages numbers for individual trees */
9307 int nRoot, /* Number of entries in aRoot[] */
9308 int mxErr, /* Stop reporting errors after this many */
9309 int *pnErr /* Write number of errors seen to this variable */
9310){
danielk197789d40042008-11-17 14:20:56 +00009311 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009312 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009313 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009314 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009315 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009316 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009317
drhd677b3d2007-08-20 22:48:41 +00009318 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009319 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhe05b3f82015-07-01 17:53:49 +00009320 assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
drh5eddca62001-06-30 21:53:53 +00009321 sCheck.pBt = pBt;
9322 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009323 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009324 sCheck.mxErr = mxErr;
9325 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009326 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009327 sCheck.zPfx = 0;
9328 sCheck.v1 = 0;
9329 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009330 sCheck.aPgRef = 0;
9331 sCheck.heap = 0;
9332 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh0de8c112002-07-06 16:32:14 +00009333 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009334 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009335 }
dan1235bb12012-04-03 17:43:28 +00009336
9337 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9338 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009339 sCheck.mallocFailed = 1;
9340 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009341 }
drhe05b3f82015-07-01 17:53:49 +00009342 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9343 if( sCheck.heap==0 ){
9344 sCheck.mallocFailed = 1;
9345 goto integrity_ck_cleanup;
9346 }
9347
drh42cac6d2004-11-20 20:31:11 +00009348 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009349 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009350
9351 /* Check the integrity of the freelist
9352 */
drh867db832014-09-26 02:41:05 +00009353 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009354 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009355 get4byte(&pBt->pPage1->aData[36]));
9356 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009357
9358 /* Check all the tables.
9359 */
drhcbc6b712015-07-02 16:17:30 +00009360 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9361 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009362 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009363 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009364 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009365#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009366 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009367 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009368 }
9369#endif
drhcbc6b712015-07-02 16:17:30 +00009370 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009371 }
drhcbc6b712015-07-02 16:17:30 +00009372 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009373
9374 /* Make sure every page in the file is referenced
9375 */
drh1dcdbc02007-01-27 02:24:54 +00009376 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009377#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009378 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009379 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009380 }
danielk1977afcdd022004-10-31 16:25:42 +00009381#else
9382 /* If the database supports auto-vacuum, make sure no tables contain
9383 ** references to pointer-map pages.
9384 */
dan1235bb12012-04-03 17:43:28 +00009385 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009386 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009387 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009388 }
dan1235bb12012-04-03 17:43:28 +00009389 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009390 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009391 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009392 }
9393#endif
drh5eddca62001-06-30 21:53:53 +00009394 }
9395
drh5eddca62001-06-30 21:53:53 +00009396 /* Clean up and report errors.
9397 */
drhe05b3f82015-07-01 17:53:49 +00009398integrity_ck_cleanup:
9399 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009400 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009401 if( sCheck.mallocFailed ){
9402 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009403 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009404 }
drh1dcdbc02007-01-27 02:24:54 +00009405 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009406 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009407 /* Make sure this analysis did not leave any unref() pages. */
9408 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9409 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009410 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009411}
drhb7f91642004-10-31 02:22:47 +00009412#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009413
drh73509ee2003-04-06 20:44:45 +00009414/*
drhd4e0bb02012-05-27 01:19:04 +00009415** Return the full pathname of the underlying database file. Return
9416** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009417**
9418** The pager filename is invariant as long as the pager is
9419** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009420*/
danielk1977aef0bf62005-12-30 16:28:01 +00009421const char *sqlite3BtreeGetFilename(Btree *p){
9422 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009423 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009424}
9425
9426/*
danielk19775865e3d2004-06-14 06:03:57 +00009427** Return the pathname of the journal file for this database. The return
9428** value of this routine is the same regardless of whether the journal file
9429** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009430**
9431** The pager journal filename is invariant as long as the pager is
9432** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009433*/
danielk1977aef0bf62005-12-30 16:28:01 +00009434const char *sqlite3BtreeGetJournalname(Btree *p){
9435 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009436 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009437}
9438
danielk19771d850a72004-05-31 08:26:49 +00009439/*
9440** Return non-zero if a transaction is active.
9441*/
danielk1977aef0bf62005-12-30 16:28:01 +00009442int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009443 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009444 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009445}
9446
dana550f2d2010-08-02 10:47:05 +00009447#ifndef SQLITE_OMIT_WAL
9448/*
9449** Run a checkpoint on the Btree passed as the first argument.
9450**
9451** Return SQLITE_LOCKED if this or any other connection has an open
9452** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009453**
dancdc1f042010-11-18 12:11:05 +00009454** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009455*/
dancdc1f042010-11-18 12:11:05 +00009456int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009457 int rc = SQLITE_OK;
9458 if( p ){
9459 BtShared *pBt = p->pBt;
9460 sqlite3BtreeEnter(p);
9461 if( pBt->inTransaction!=TRANS_NONE ){
9462 rc = SQLITE_LOCKED;
9463 }else{
dancdc1f042010-11-18 12:11:05 +00009464 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009465 }
9466 sqlite3BtreeLeave(p);
9467 }
9468 return rc;
9469}
9470#endif
9471
danielk19771d850a72004-05-31 08:26:49 +00009472/*
danielk19772372c2b2006-06-27 16:34:56 +00009473** Return non-zero if a read (or write) transaction is active.
9474*/
9475int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009476 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009477 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009478 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009479}
9480
danielk197704103022009-02-03 16:51:24 +00009481int sqlite3BtreeIsInBackup(Btree *p){
9482 assert( p );
9483 assert( sqlite3_mutex_held(p->db->mutex) );
9484 return p->nBackup!=0;
9485}
9486
danielk19772372c2b2006-06-27 16:34:56 +00009487/*
danielk1977da184232006-01-05 11:34:32 +00009488** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009489** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009490** purposes (for example, to store a high-level schema associated with
9491** the shared-btree). The btree layer manages reference counting issues.
9492**
9493** The first time this is called on a shared-btree, nBytes bytes of memory
9494** are allocated, zeroed, and returned to the caller. For each subsequent
9495** call the nBytes parameter is ignored and a pointer to the same blob
9496** of memory returned.
9497**
danielk1977171bfed2008-06-23 09:50:50 +00009498** If the nBytes parameter is 0 and the blob of memory has not yet been
9499** allocated, a null pointer is returned. If the blob has already been
9500** allocated, it is returned as normal.
9501**
danielk1977da184232006-01-05 11:34:32 +00009502** Just before the shared-btree is closed, the function passed as the
9503** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009504** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009505** on the memory, the btree layer does that.
9506*/
9507void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9508 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009509 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009510 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009511 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009512 pBt->xFreeSchema = xFree;
9513 }
drh27641702007-08-22 02:56:42 +00009514 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009515 return pBt->pSchema;
9516}
9517
danielk1977c87d34d2006-01-06 13:00:28 +00009518/*
danielk1977404ca072009-03-16 13:19:36 +00009519** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9520** btree as the argument handle holds an exclusive lock on the
9521** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009522*/
9523int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009524 int rc;
drhe5fe6902007-12-07 18:55:28 +00009525 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009526 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009527 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9528 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009529 sqlite3BtreeLeave(p);
9530 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009531}
9532
drha154dcd2006-03-22 22:10:07 +00009533
9534#ifndef SQLITE_OMIT_SHARED_CACHE
9535/*
9536** Obtain a lock on the table whose root page is iTab. The
9537** lock is a write lock if isWritelock is true or a read lock
9538** if it is false.
9539*/
danielk1977c00da102006-01-07 13:21:04 +00009540int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009541 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009542 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009543 if( p->sharable ){
9544 u8 lockType = READ_LOCK + isWriteLock;
9545 assert( READ_LOCK+1==WRITE_LOCK );
9546 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009547
drh6a9ad3d2008-04-02 16:29:30 +00009548 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009549 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009550 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009551 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009552 }
9553 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009554 }
9555 return rc;
9556}
drha154dcd2006-03-22 22:10:07 +00009557#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009558
danielk1977b4e9af92007-05-01 17:49:49 +00009559#ifndef SQLITE_OMIT_INCRBLOB
9560/*
9561** Argument pCsr must be a cursor opened for writing on an
9562** INTKEY table currently pointing at a valid table entry.
9563** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009564**
9565** Only the data content may only be modified, it is not possible to
9566** change the length of the data stored. If this function is called with
9567** parameters that attempt to write past the end of the existing data,
9568** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009569*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009570int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009571 int rc;
drh1fee73e2007-08-29 04:00:57 +00009572 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009573 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009574 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009575
danielk1977c9000e62009-07-08 13:55:28 +00009576 rc = restoreCursorPosition(pCsr);
9577 if( rc!=SQLITE_OK ){
9578 return rc;
9579 }
danielk19773588ceb2008-06-10 17:30:26 +00009580 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9581 if( pCsr->eState!=CURSOR_VALID ){
9582 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009583 }
9584
dan227a1c42013-04-03 11:17:39 +00009585 /* Save the positions of all other cursors open on this table. This is
9586 ** required in case any of them are holding references to an xFetch
9587 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009588 **
drh3f387402014-09-24 01:23:00 +00009589 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009590 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9591 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009592 */
drh370c9f42013-04-03 20:04:04 +00009593 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9594 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009595
danielk1977c9000e62009-07-08 13:55:28 +00009596 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009597 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009598 ** (b) there is a read/write transaction open,
9599 ** (c) the connection holds a write-lock on the table (if required),
9600 ** (d) there are no conflicting read-locks, and
9601 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009602 */
drh036dbec2014-03-11 23:40:44 +00009603 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009604 return SQLITE_READONLY;
9605 }
drhc9166342012-01-05 23:32:06 +00009606 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9607 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009608 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9609 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009610 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009611
drhfb192682009-07-11 18:26:28 +00009612 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009613}
danielk19772dec9702007-05-02 16:48:37 +00009614
9615/*
dan5a500af2014-03-11 20:33:04 +00009616** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009617*/
dan5a500af2014-03-11 20:33:04 +00009618void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009619 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009620 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009621}
danielk1977b4e9af92007-05-01 17:49:49 +00009622#endif
dane04dc882010-04-20 18:53:15 +00009623
9624/*
9625** Set both the "read version" (single byte at byte offset 18) and
9626** "write version" (single byte at byte offset 19) fields in the database
9627** header to iVersion.
9628*/
9629int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9630 BtShared *pBt = pBtree->pBt;
9631 int rc; /* Return code */
9632
dane04dc882010-04-20 18:53:15 +00009633 assert( iVersion==1 || iVersion==2 );
9634
danb9780022010-04-21 18:37:57 +00009635 /* If setting the version fields to 1, do not automatically open the
9636 ** WAL connection, even if the version fields are currently set to 2.
9637 */
drhc9166342012-01-05 23:32:06 +00009638 pBt->btsFlags &= ~BTS_NO_WAL;
9639 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009640
9641 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009642 if( rc==SQLITE_OK ){
9643 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009644 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009645 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009646 if( rc==SQLITE_OK ){
9647 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9648 if( rc==SQLITE_OK ){
9649 aData[18] = (u8)iVersion;
9650 aData[19] = (u8)iVersion;
9651 }
9652 }
9653 }
dane04dc882010-04-20 18:53:15 +00009654 }
9655
drhc9166342012-01-05 23:32:06 +00009656 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009657 return rc;
9658}
dan428c2182012-08-06 18:50:11 +00009659
drhe0997b32015-03-20 14:57:50 +00009660/*
9661** Return true if the cursor has a hint specified. This routine is
9662** only used from within assert() statements
9663*/
9664int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9665 return (pCsr->hints & mask)!=0;
9666}
drhe0997b32015-03-20 14:57:50 +00009667
drh781597f2014-05-21 08:21:07 +00009668/*
9669** Return true if the given Btree is read-only.
9670*/
9671int sqlite3BtreeIsReadonly(Btree *p){
9672 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9673}
drhdef68892014-11-04 12:11:23 +00009674
9675/*
9676** Return the size of the header added to each page by this module.
9677*/
drh37c057b2014-12-30 00:57:29 +00009678int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }