blob: f81bfa8a79fd85d5c5195971ceb43deb3e992291 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh0fd61352014-02-07 02:29:45 +000090** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +000091** is executed. This is used to test whether or not the foreign key
92** operation implemented using OP_FkIsZero is working. This variable
93** has no function other than to help verify the correct operation of the
94** library.
95*/
96#ifdef SQLITE_TEST
97int sqlite3_found_count = 0;
98#endif
99
100/*
drhb7654112008-01-12 12:48:07 +0000101** Test a register to see if it exceeds the current maximum blob size.
102** If it does, record the new maximum blob size.
103*/
drh678ccce2008-03-31 18:19:54 +0000104#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000105# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000106#else
107# define UPDATE_MAX_BLOBSIZE(P)
108#endif
109
110/*
drh5655c542014-02-19 19:14:34 +0000111** Invoke the VDBE coverage callback, if that callback is defined. This
112** feature is used for test suite validation only and does not appear an
113** production builds.
114**
115** M is an integer, 2 or 3, that indices how many different ways the
116** branch can go. It is usually 2. "I" is the direction the branch
117** goes. 0 means falls through. 1 means branch is taken. 2 means the
118** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000119**
120** iSrcLine is the source code line (from the __LINE__ macro) that
121** generated the VDBE instruction. This instrumentation assumes that all
122** source code is in a single file (the amalgamation). Special values 1
123** and 2 for the iSrcLine parameter mean that this particular branch is
124** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000125*/
126#if !defined(SQLITE_VDBE_COVERAGE)
127# define VdbeBranchTaken(I,M)
128#else
drh5655c542014-02-19 19:14:34 +0000129# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
140 }
141 }
drh688852a2014-02-17 22:40:43 +0000142#endif
143
144/*
drh9cbf3422008-01-17 16:22:13 +0000145** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000146** already. Return non-zero if a malloc() fails.
147*/
drhb21c8cd2007-08-21 19:33:56 +0000148#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000150 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000151
152/*
danielk1977bd7e4602004-05-24 07:34:48 +0000153** An ephemeral string value (signified by the MEM_Ephem flag) contains
154** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000155** is responsible for deallocating that string. Because the register
156** does not control the string, it might be deleted without the register
157** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000158**
159** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000160** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000161** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000162*/
drhb21c8cd2007-08-21 19:33:56 +0000163#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000164 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000166
dan689ab892011-08-12 15:02:00 +0000167/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drh0fd61352014-02-07 02:29:45 +0000168#define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000169
danielk19771cc5ed82007-05-16 17:28:43 +0000170/*
drhdfe88ec2008-11-03 20:55:06 +0000171** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000172** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000173*/
drhdfe88ec2008-11-03 20:55:06 +0000174static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000177 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000178 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000180){
181 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000182 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000183 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000184 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000185 **
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
194 **
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur];
200
danielk19775f096132008-03-28 15:44:09 +0000201 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000202 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000203 nByte =
drh5cc10232013-11-21 01:04:02 +0000204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000206
drh290c1942004-08-21 17:54:45 +0000207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000210 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000211 }
drh322f2852014-09-19 00:43:39 +0000212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000214 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000215 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000217 pCx->aOffset = &pCx->aType[nField];
danielk1977cd3e8f72008-03-25 09:47:35 +0000218 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000219 pCx->pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhf25a5072009-11-18 23:01:25 +0000221 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 }
danielk197794eb6a12005-12-15 15:22:08 +0000223 }
drh4774b132004-06-12 20:12:51 +0000224 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000225}
226
danielk19773d1bfea2004-05-14 11:00:53 +0000227/*
drh29d72102006-02-09 22:13:41 +0000228** Try to convert a value into a numeric representation if we can
229** do so without loss of information. In other words, if the string
230** looks like a number, convert it into a number. If it does not
231** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000232**
233** If the bTryForInt flag is true, then extra effort is made to give
234** an integer representation. Strings that look like floating point
235** values but which have no fractional component (example: '48.00')
236** will have a MEM_Int representation when bTryForInt is true.
237**
238** If bTryForInt is false, then if the input string contains a decimal
239** point or exponential notation, the result is only MEM_Real, even
240** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000241*/
drhbd9507c2014-08-23 17:21:37 +0000242static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000243 double rValue;
244 i64 iValue;
245 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249 pRec->u.i = iValue;
250 pRec->flags |= MEM_Int;
251 }else{
drh74eaba42014-09-18 17:52:15 +0000252 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000253 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000255 }
256}
257
258/*
drh8a512562005-11-14 22:29:05 +0000259** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000260**
drh8a512562005-11-14 22:29:05 +0000261** SQLITE_AFF_INTEGER:
262** SQLITE_AFF_REAL:
263** SQLITE_AFF_NUMERIC:
264** Try to convert pRec to an integer representation or a
265** floating-point representation if an integer representation
266** is not possible. Note that the integer representation is
267** always preferred, even if the affinity is REAL, because
268** an integer representation is more space efficient on disk.
269**
270** SQLITE_AFF_TEXT:
271** Convert pRec to a text representation.
272**
273** SQLITE_AFF_NONE:
274** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000275*/
drh17435752007-08-16 04:30:38 +0000276static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000277 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */
280){
drh7ea31cc2014-09-18 14:36:00 +0000281 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000284 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000287 }else{
288 sqlite3VdbeIntegerAffinity(pRec);
289 }
drh17c40292004-07-21 02:53:29 +0000290 }
drh7ea31cc2014-09-18 14:36:00 +0000291 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1);
298 }
danielk19773d1bfea2004-05-14 11:00:53 +0000299 }
300}
301
danielk1977aee18ef2005-03-09 12:26:50 +0000302/*
drh29d72102006-02-09 22:13:41 +0000303** Try to convert the type of a function argument or a result column
304** into a numeric representation. Use either INTEGER or REAL whichever
305** is appropriate. But only do the conversion if it is possible without
306** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000307*/
308int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000309 int eType = sqlite3_value_type(pVal);
310 if( eType==SQLITE_TEXT ){
311 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000312 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000313 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000314 }
drh1b27b8c2014-02-10 03:21:57 +0000315 return eType;
drh29d72102006-02-09 22:13:41 +0000316}
317
318/*
danielk1977aee18ef2005-03-09 12:26:50 +0000319** Exported version of applyAffinity(). This one works on sqlite3_value*,
320** not the internal Mem* type.
321*/
danielk19771e536952007-08-16 10:09:01 +0000322void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000323 sqlite3_value *pVal,
324 u8 affinity,
325 u8 enc
326){
drhb21c8cd2007-08-21 19:33:56 +0000327 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000328}
329
drh3d1d90a2014-03-24 15:00:15 +0000330/*
drhf1a89ed2014-08-23 17:41:15 +0000331** pMem currently only holds a string type (or maybe a BLOB that we can
332** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000333** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000334** accordingly.
335*/
336static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
337 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
338 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000339 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000340 return 0;
341 }
342 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
343 return MEM_Int;
344 }
345 return MEM_Real;
346}
347
348/*
drh3d1d90a2014-03-24 15:00:15 +0000349** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
350** none.
351**
352** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000353** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000354*/
355static u16 numericType(Mem *pMem){
356 if( pMem->flags & (MEM_Int|MEM_Real) ){
357 return pMem->flags & (MEM_Int|MEM_Real);
358 }
359 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000360 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000361 }
362 return 0;
363}
364
danielk1977b5402fb2005-01-12 07:15:04 +0000365#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000366/*
danielk1977ca6b2912004-05-21 10:49:47 +0000367** Write a nice string representation of the contents of cell pMem
368** into buffer zBuf, length nBuf.
369*/
drh74161702006-02-24 02:53:49 +0000370void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000371 char *zCsr = zBuf;
372 int f = pMem->flags;
373
drh57196282004-10-06 15:41:16 +0000374 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000375
danielk1977ca6b2912004-05-21 10:49:47 +0000376 if( f&MEM_Blob ){
377 int i;
378 char c;
379 if( f & MEM_Dyn ){
380 c = 'z';
381 assert( (f & (MEM_Static|MEM_Ephem))==0 );
382 }else if( f & MEM_Static ){
383 c = 't';
384 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
385 }else if( f & MEM_Ephem ){
386 c = 'e';
387 assert( (f & (MEM_Static|MEM_Dyn))==0 );
388 }else{
389 c = 's';
390 }
391
drh5bb3eb92007-05-04 13:15:55 +0000392 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000393 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000394 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000395 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000396 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000397 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000398 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000399 }
400 for(i=0; i<16 && i<pMem->n; i++){
401 char z = pMem->z[i];
402 if( z<32 || z>126 ) *zCsr++ = '.';
403 else *zCsr++ = z;
404 }
405
drhe718efe2007-05-10 21:14:03 +0000406 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000407 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000408 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000409 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000410 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000411 }
danielk1977b1bc9532004-05-22 03:05:33 +0000412 *zCsr = '\0';
413 }else if( f & MEM_Str ){
414 int j, k;
415 zBuf[0] = ' ';
416 if( f & MEM_Dyn ){
417 zBuf[1] = 'z';
418 assert( (f & (MEM_Static|MEM_Ephem))==0 );
419 }else if( f & MEM_Static ){
420 zBuf[1] = 't';
421 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
422 }else if( f & MEM_Ephem ){
423 zBuf[1] = 'e';
424 assert( (f & (MEM_Static|MEM_Dyn))==0 );
425 }else{
426 zBuf[1] = 's';
427 }
428 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000429 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000430 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000431 zBuf[k++] = '[';
432 for(j=0; j<15 && j<pMem->n; j++){
433 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000434 if( c>=0x20 && c<0x7f ){
435 zBuf[k++] = c;
436 }else{
437 zBuf[k++] = '.';
438 }
439 }
440 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000441 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000442 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000443 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000444 }
danielk1977ca6b2912004-05-21 10:49:47 +0000445}
446#endif
447
drh5b6afba2008-01-05 16:29:28 +0000448#ifdef SQLITE_DEBUG
449/*
450** Print the value of a register for tracing purposes:
451*/
drh84e55a82013-11-13 17:58:23 +0000452static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000453 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000454 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000455 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000456 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000457 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000458 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000459 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000460 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000461#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000462 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000463 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000464#endif
drh733bf1b2009-04-22 00:47:00 +0000465 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000466 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000467 }else{
468 char zBuf[200];
469 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000470 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000471 }
472}
drh84e55a82013-11-13 17:58:23 +0000473static void registerTrace(int iReg, Mem *p){
474 printf("REG[%d] = ", iReg);
475 memTracePrint(p);
476 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000477}
478#endif
479
480#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000481# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000482#else
483# define REGISTER_TRACE(R,M)
484#endif
485
danielk197784ac9d02004-05-18 09:58:06 +0000486
drh7b396862003-01-01 23:06:20 +0000487#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000488
489/*
490** hwtime.h contains inline assembler code for implementing
491** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000492*/
shane9bcbdad2008-05-29 20:22:37 +0000493#include "hwtime.h"
494
drh7b396862003-01-01 23:06:20 +0000495#endif
496
danielk1977fd7f0452008-12-17 17:30:26 +0000497#ifndef NDEBUG
498/*
499** This function is only called from within an assert() expression. It
500** checks that the sqlite3.nTransaction variable is correctly set to
501** the number of non-transaction savepoints currently in the
502** linked list starting at sqlite3.pSavepoint.
503**
504** Usage:
505**
506** assert( checkSavepointCount(db) );
507*/
508static int checkSavepointCount(sqlite3 *db){
509 int n = 0;
510 Savepoint *p;
511 for(p=db->pSavepoint; p; p=p->pNext) n++;
512 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
513 return 1;
514}
515#endif
516
drhb9755982010-07-24 16:34:37 +0000517
518/*
drh0fd61352014-02-07 02:29:45 +0000519** Execute as much of a VDBE program as we can.
520** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000521*/
danielk19774adee202004-05-08 08:23:19 +0000522int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000523 Vdbe *p /* The VDBE */
524){
shaneh84f4b2f2010-02-26 01:46:54 +0000525 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000526 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000527 Op *pOp; /* Current operation */
528 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000529 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000530 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000531 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000532 int iCompare = 0; /* Result of last OP_Compare operation */
533 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000534#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000535 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000536#endif
drha6c2ed92009-11-14 23:22:23 +0000537 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000538 Mem *pIn1 = 0; /* 1st input operand */
539 Mem *pIn2 = 0; /* 2nd input operand */
540 Mem *pIn3 = 0; /* 3rd input operand */
541 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000542 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000543 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000544#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000545 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000546#endif
drh856c1032009-06-02 15:21:42 +0000547 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000548
drhca48c902008-01-18 14:08:24 +0000549 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000550 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000551 if( p->rc==SQLITE_NOMEM ){
552 /* This happens if a malloc() inside a call to sqlite3_column_text() or
553 ** sqlite3_column_text16() failed. */
554 goto no_mem;
555 }
drh3a840692003-01-29 22:58:26 +0000556 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000557 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000558 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000559 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000560 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000561 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000562 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000563 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000564 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000565#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
566 if( db->xProgress ){
567 assert( 0 < db->nProgressOps );
drh9b47ee32013-08-20 03:13:51 +0000568 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000569 if( nProgressLimit==0 ){
570 nProgressLimit = db->nProgressOps;
571 }else{
572 nProgressLimit %= (unsigned)db->nProgressOps;
573 }
574 }
575#endif
drh3c23a882007-01-09 14:01:13 +0000576#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000577 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000578 if( p->pc==0
579 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
580 ){
drh3c23a882007-01-09 14:01:13 +0000581 int i;
drh84e55a82013-11-13 17:58:23 +0000582 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000583 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000584 if( p->db->flags & SQLITE_VdbeListing ){
585 printf("VDBE Program Listing:\n");
586 for(i=0; i<p->nOp; i++){
587 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
588 }
drh3c23a882007-01-09 14:01:13 +0000589 }
drh84e55a82013-11-13 17:58:23 +0000590 if( p->db->flags & SQLITE_VdbeEQP ){
591 for(i=0; i<p->nOp; i++){
592 if( aOp[i].opcode==OP_Explain ){
593 if( once ) printf("VDBE Query Plan:\n");
594 printf("%s\n", aOp[i].p4.z);
595 once = 0;
596 }
597 }
598 }
599 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000600 }
danielk19772d1d86f2008-06-20 14:59:51 +0000601 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000602#endif
drhb86ccfb2003-01-28 23:13:10 +0000603 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000604 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000605 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000606#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000607 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000608#endif
drhbf159fa2013-06-25 22:01:22 +0000609 nVmStep++;
drhbbe879d2009-11-14 18:04:35 +0000610 pOp = &aOp[pc];
dan6f9702e2014-11-01 20:38:06 +0000611#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +0000612 if( p->anExec ) p->anExec[pc]++;
dan6f9702e2014-11-01 20:38:06 +0000613#endif
drh6e142f52000-06-08 13:36:40 +0000614
danielk19778b60e0f2005-01-12 09:10:39 +0000615 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000616 */
danielk19778b60e0f2005-01-12 09:10:39 +0000617#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000618 if( db->flags & SQLITE_VdbeTrace ){
619 sqlite3VdbePrintOp(stdout, pc, pOp);
drh75897232000-05-29 14:26:00 +0000620 }
drh3f7d4e42004-07-24 14:35:58 +0000621#endif
622
drh6e142f52000-06-08 13:36:40 +0000623
drhf6038712004-02-08 18:07:34 +0000624 /* Check to see if we need to simulate an interrupt. This only happens
625 ** if we have a special test build.
626 */
627#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000628 if( sqlite3_interrupt_count>0 ){
629 sqlite3_interrupt_count--;
630 if( sqlite3_interrupt_count==0 ){
631 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000632 }
633 }
634#endif
635
drhb5b407e2012-08-29 10:28:43 +0000636 /* On any opcode with the "out2-prerelease" tag, free any
drh3c657212009-11-17 23:59:58 +0000637 ** external allocations out of mem[p2] and set mem[p2] to be
638 ** an undefined integer. Opcodes will either fill in the integer
639 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000640 */
drha6c2ed92009-11-14 23:22:23 +0000641 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000642 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
643 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000644 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000645 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000646 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +0000647 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
drh3c657212009-11-17 23:59:58 +0000648 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000649 }
drh3c657212009-11-17 23:59:58 +0000650
651 /* Sanity checking on other operands */
652#ifdef SQLITE_DEBUG
653 if( (pOp->opflags & OPFLG_IN1)!=0 ){
654 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +0000655 assert( pOp->p1<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000656 assert( memIsValid(&aMem[pOp->p1]) );
drh75fd0542014-03-01 16:24:44 +0000657 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000658 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
659 }
660 if( (pOp->opflags & OPFLG_IN2)!=0 ){
661 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000662 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000663 assert( memIsValid(&aMem[pOp->p2]) );
drh75fd0542014-03-01 16:24:44 +0000664 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000665 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
666 }
667 if( (pOp->opflags & OPFLG_IN3)!=0 ){
668 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000669 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000670 assert( memIsValid(&aMem[pOp->p3]) );
drh75fd0542014-03-01 16:24:44 +0000671 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000672 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
673 }
674 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
675 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000676 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000677 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000678 }
679 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
680 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000681 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000682 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000683 }
684#endif
drh93952eb2009-11-13 19:43:43 +0000685
drh75897232000-05-29 14:26:00 +0000686 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000687
drh5e00f6c2001-09-13 13:46:56 +0000688/*****************************************************************************
689** What follows is a massive switch statement where each case implements a
690** separate instruction in the virtual machine. If we follow the usual
691** indentation conventions, each case should be indented by 6 spaces. But
692** that is a lot of wasted space on the left margin. So the code within
693** the switch statement will break with convention and be flush-left. Another
694** big comment (similar to this one) will mark the point in the code where
695** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000696**
697** The formatting of each case is important. The makefile for SQLite
698** generates two C files "opcodes.h" and "opcodes.c" by scanning this
699** file looking for lines that begin with "case OP_". The opcodes.h files
700** will be filled with #defines that give unique integer values to each
701** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000702** each string is the symbolic name for the corresponding opcode. If the
703** case statement is followed by a comment of the form "/# same as ... #/"
704** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000705**
drh9cbf3422008-01-17 16:22:13 +0000706** Other keywords in the comment that follows each case are used to
707** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
708** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
709** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000710**
drhac82fcf2002-09-08 17:23:41 +0000711** Documentation about VDBE opcodes is generated by scanning this file
712** for lines of that contain "Opcode:". That line and all subsequent
713** comment lines are used in the generation of the opcode.html documentation
714** file.
715**
716** SUMMARY:
717**
718** Formatting is important to scripts that scan this file.
719** Do not deviate from the formatting style currently in use.
720**
drh5e00f6c2001-09-13 13:46:56 +0000721*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000722
drh9cbf3422008-01-17 16:22:13 +0000723/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000724**
725** An unconditional jump to address P2.
726** The next instruction executed will be
727** the one at index P2 from the beginning of
728** the program.
drhfe705102014-03-06 13:38:37 +0000729**
730** The P1 parameter is not actually used by this opcode. However, it
731** is sometimes set to 1 instead of 0 as a hint to the command-line shell
732** that this Goto is the bottom of a loop and that the lines from P2 down
733** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000734*/
drh9cbf3422008-01-17 16:22:13 +0000735case OP_Goto: { /* jump */
drh5e00f6c2001-09-13 13:46:56 +0000736 pc = pOp->p2 - 1;
drh49afe3a2013-07-10 03:05:14 +0000737
738 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
739 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
740 ** completion. Check to see if sqlite3_interrupt() has been called
741 ** or if the progress callback needs to be invoked.
742 **
743 ** This code uses unstructured "goto" statements and does not look clean.
744 ** But that is not due to sloppy coding habits. The code is written this
745 ** way for performance, to avoid having to run the interrupt and progress
746 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
747 ** faster according to "valgrind --tool=cachegrind" */
748check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000749 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000750#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
751 /* Call the progress callback if it is configured and the required number
752 ** of VDBE ops have been executed (either since this invocation of
753 ** sqlite3VdbeExec() or since last time the progress callback was called).
754 ** If the progress callback returns non-zero, exit the virtual machine with
755 ** a return code SQLITE_ABORT.
756 */
drh0d1961e2013-07-25 16:27:51 +0000757 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000758 assert( db->nProgressOps!=0 );
759 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
760 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000761 rc = SQLITE_INTERRUPT;
762 goto vdbe_error_halt;
763 }
drh49afe3a2013-07-10 03:05:14 +0000764 }
765#endif
766
drh5e00f6c2001-09-13 13:46:56 +0000767 break;
768}
drh75897232000-05-29 14:26:00 +0000769
drh2eb95372008-06-06 15:04:36 +0000770/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000771**
drh2eb95372008-06-06 15:04:36 +0000772** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000773** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000774*/
drhb8475df2011-12-09 16:21:19 +0000775case OP_Gosub: { /* jump */
dan3bc9f742013-08-15 16:18:39 +0000776 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000777 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000778 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000779 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000780 pIn1->flags = MEM_Int;
781 pIn1->u.i = pc;
782 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000783 pc = pOp->p2 - 1;
784 break;
785}
786
drh2eb95372008-06-06 15:04:36 +0000787/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000788**
drh81cf13e2014-02-07 18:27:53 +0000789** Jump to the next instruction after the address in register P1. After
790** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000791*/
drh2eb95372008-06-06 15:04:36 +0000792case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000793 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000794 assert( pIn1->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000795 pc = (int)pIn1->u.i;
drh81cf13e2014-02-07 18:27:53 +0000796 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000797 break;
798}
799
drhed71a832014-02-07 19:18:10 +0000800/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000801**
drh5dad9a32014-07-25 18:37:42 +0000802** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000803** located at address P3.
804**
drh5dad9a32014-07-25 18:37:42 +0000805** If P2!=0 then the coroutine implementation immediately follows
806** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000807** address P2.
drh5dad9a32014-07-25 18:37:42 +0000808**
809** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000810*/
811case OP_InitCoroutine: { /* jump */
drhed71a832014-02-07 19:18:10 +0000812 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
813 assert( pOp->p2>=0 && pOp->p2<p->nOp );
814 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000815 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000816 assert( !VdbeMemDynamic(pOut) );
817 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000818 pOut->flags = MEM_Int;
drhed71a832014-02-07 19:18:10 +0000819 if( pOp->p2 ) pc = pOp->p2 - 1;
drh81cf13e2014-02-07 18:27:53 +0000820 break;
821}
822
823/* Opcode: EndCoroutine P1 * * * *
824**
drhbc5cf382014-08-06 01:08:07 +0000825** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000826** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000827** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000828**
829** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000830*/
831case OP_EndCoroutine: { /* in1 */
832 VdbeOp *pCaller;
833 pIn1 = &aMem[pOp->p1];
834 assert( pIn1->flags==MEM_Int );
835 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
836 pCaller = &aOp[pIn1->u.i];
837 assert( pCaller->opcode==OP_Yield );
838 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
839 pc = pCaller->p2 - 1;
840 pIn1->flags = MEM_Undefined;
841 break;
842}
843
844/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000845**
drh5dad9a32014-07-25 18:37:42 +0000846** Swap the program counter with the value in register P1. This
847** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000848**
drh5dad9a32014-07-25 18:37:42 +0000849** If the coroutine that is launched by this instruction ends with
850** Yield or Return then continue to the next instruction. But if
851** the coroutine launched by this instruction ends with
852** EndCoroutine, then jump to P2 rather than continuing with the
853** next instruction.
854**
855** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000856*/
drh81cf13e2014-02-07 18:27:53 +0000857case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000858 int pcDest;
drh3c657212009-11-17 23:59:58 +0000859 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000860 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000861 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000862 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000863 pIn1->u.i = pc;
864 REGISTER_TRACE(pOp->p1, pIn1);
865 pc = pcDest;
866 break;
867}
868
drhf9c8ce32013-11-05 13:33:55 +0000869/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000870** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000871**
drhef8662b2011-06-20 21:47:58 +0000872** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000873** parameter P1, P2, and P4 as if this were a Halt instruction. If the
874** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000875** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000876*/
877case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000878 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000879 if( (pIn3->flags & MEM_Null)==0 ) break;
880 /* Fall through into OP_Halt */
881}
drhe00ee6e2008-06-20 15:24:01 +0000882
drhf9c8ce32013-11-05 13:33:55 +0000883/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000884**
drh3d4501e2008-12-04 20:40:10 +0000885** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000886** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000887**
drh92f02c32004-09-02 14:57:08 +0000888** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
889** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
890** For errors, it can be some other value. If P1!=0 then P2 will determine
891** whether or not to rollback the current transaction. Do not rollback
892** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
893** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000894** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000895**
drh66a51672008-01-03 00:01:23 +0000896** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000897**
drhf9c8ce32013-11-05 13:33:55 +0000898** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
899**
900** 0: (no change)
901** 1: NOT NULL contraint failed: P4
902** 2: UNIQUE constraint failed: P4
903** 3: CHECK constraint failed: P4
904** 4: FOREIGN KEY constraint failed: P4
905**
906** If P5 is not zero and P4 is NULL, then everything after the ":" is
907** omitted.
908**
drh9cfcf5d2002-01-29 18:41:24 +0000909** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000910** every program. So a jump past the last instruction of the program
911** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000912*/
drh9cbf3422008-01-17 16:22:13 +0000913case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000914 const char *zType;
915 const char *zLogFmt;
916
dan165921a2009-08-28 18:53:45 +0000917 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000918 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000919 VdbeFrame *pFrame = p->pFrame;
920 p->pFrame = pFrame->pParent;
921 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000922 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000923 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000924 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000925 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000926 /* Instruction pc is the OP_Program that invoked the sub-program
927 ** currently being halted. If the p2 instruction of this OP_Halt
928 ** instruction is set to OE_Ignore, then the sub-program is throwing
929 ** an IGNORE exception. In this case jump to the address specified
930 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000931 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000932 }
drhbbe879d2009-11-14 18:04:35 +0000933 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000934 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000935 break;
936 }
drh92f02c32004-09-02 14:57:08 +0000937 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000938 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000939 p->pc = pc;
drhf9c8ce32013-11-05 13:33:55 +0000940 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000941 if( pOp->p5 ){
942 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
943 "FOREIGN KEY" };
944 assert( pOp->p5>=1 && pOp->p5<=4 );
945 testcase( pOp->p5==1 );
946 testcase( pOp->p5==2 );
947 testcase( pOp->p5==3 );
948 testcase( pOp->p5==4 );
949 zType = azType[pOp->p5-1];
950 }else{
951 zType = 0;
952 }
drh4308e342013-11-11 16:55:52 +0000953 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000954 zLogFmt = "abort at %d in [%s]: %s";
955 if( zType && pOp->p4.z ){
956 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed: %s",
957 zType, pOp->p4.z);
958 }else if( pOp->p4.z ){
959 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000960 }else{
drh4308e342013-11-11 16:55:52 +0000961 sqlite3SetString(&p->zErrMsg, db, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000962 }
963 sqlite3_log(pOp->p1, zLogFmt, pc, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000964 }
drh92f02c32004-09-02 14:57:08 +0000965 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000966 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000967 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000968 p->rc = rc = SQLITE_BUSY;
969 }else{
drhd91c1a12013-02-09 13:58:25 +0000970 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000971 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000972 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000973 }
drh900b31e2007-08-28 02:27:51 +0000974 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000975}
drhc61053b2000-06-04 12:58:36 +0000976
drh4c583122008-01-04 22:01:03 +0000977/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +0000978** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +0000979**
drh9cbf3422008-01-17 16:22:13 +0000980** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000981*/
drh4c583122008-01-04 22:01:03 +0000982case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000983 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000984 break;
985}
986
drh4c583122008-01-04 22:01:03 +0000987/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +0000988** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +0000989**
drh66a51672008-01-03 00:01:23 +0000990** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000991** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000992*/
drh4c583122008-01-04 22:01:03 +0000993case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000994 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000995 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000996 break;
997}
drh4f26d6c2004-05-26 23:25:30 +0000998
drh13573c72010-01-12 17:04:07 +0000999#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001000/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001001** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001002**
drh4c583122008-01-04 22:01:03 +00001003** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001004** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001005*/
drh4c583122008-01-04 22:01:03 +00001006case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
1007 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001008 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001009 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001010 break;
1011}
drh13573c72010-01-12 17:04:07 +00001012#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001013
drh3c84ddf2008-01-09 02:15:38 +00001014/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001015** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001016**
drh66a51672008-01-03 00:01:23 +00001017** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001018** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001019** this transformation, the length of string P4 is computed and stored
1020** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001021*/
drh4c583122008-01-04 22:01:03 +00001022case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +00001023 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +00001024 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001025 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001026
1027#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001028 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001029 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1030 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +00001031 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001032 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001033 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001034 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001035 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001036 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001037 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001038 }
drh66a51672008-01-03 00:01:23 +00001039 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001040 pOp->p4.z = pOut->z;
1041 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001042 }
danielk197793758c82005-01-21 08:13:14 +00001043#endif
drhbb4957f2008-03-20 14:03:29 +00001044 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001045 goto too_big;
1046 }
1047 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001048}
drhf4479502004-05-27 03:12:53 +00001049
drhf07cf6e2015-03-06 16:45:16 +00001050/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001051** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001052**
drh9cbf3422008-01-17 16:22:13 +00001053** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001054**
1055** If P5!=0 and the content of register P3 is greater than zero, then
drha9c18a92015-03-06 20:49:52 +00001056** the datatype of the register P2 is converted to BLOB. The content is
1057** the same sequence of bytes, it is merely interpreted as a BLOB instead
1058** of a string, as if it had been CAST.
drhf4479502004-05-27 03:12:53 +00001059*/
drh4c583122008-01-04 22:01:03 +00001060case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +00001061 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +00001062 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1063 pOut->z = pOp->p4.z;
1064 pOut->n = pOp->p1;
1065 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001066 UPDATE_MAX_BLOBSIZE(pOut);
drhf07cf6e2015-03-06 16:45:16 +00001067 if( pOp->p5 ){
1068 assert( pOp->p3>0 );
1069 assert( pOp->p3<=(p->nMem-p->nCursor) );
1070 pIn3 = &aMem[pOp->p3];
1071 assert( pIn3->flags & MEM_Int );
1072 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1073 }
danielk1977c572ef72004-05-27 09:28:41 +00001074 break;
1075}
1076
drh053a1282012-09-19 21:15:46 +00001077/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001078** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001079**
drhb8475df2011-12-09 16:21:19 +00001080** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001081** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001082** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001083** set to NULL.
1084**
1085** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1086** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1087** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001088*/
drh4c583122008-01-04 22:01:03 +00001089case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +00001090 int cnt;
drh053a1282012-09-19 21:15:46 +00001091 u16 nullFlag;
drhb8475df2011-12-09 16:21:19 +00001092 cnt = pOp->p3-pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00001093 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001094 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001095 while( cnt>0 ){
1096 pOut++;
1097 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001098 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001099 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001100 cnt--;
1101 }
drhf0863fe2005-06-12 21:35:51 +00001102 break;
1103}
1104
drh05a86c52014-02-16 01:55:49 +00001105/* Opcode: SoftNull P1 * * * *
1106** Synopsis: r[P1]=NULL
1107**
1108** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1109** instruction, but do not free any string or blob memory associated with
1110** the register, so that if the value was a string or blob that was
1111** previously copied using OP_SCopy, the copies will continue to be valid.
1112*/
1113case OP_SoftNull: {
1114 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1115 pOut = &aMem[pOp->p1];
1116 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1117 break;
1118}
drhf0863fe2005-06-12 21:35:51 +00001119
drha5750cf2014-02-07 13:20:31 +00001120/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001121** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001122**
drh9de221d2008-01-05 06:51:30 +00001123** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001124** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001125*/
drh4c583122008-01-04 22:01:03 +00001126case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +00001127 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +00001128 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001129 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001130 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001131 break;
1132}
1133
drheaf52d82010-05-12 13:50:23 +00001134/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001135** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001136**
drheaf52d82010-05-12 13:50:23 +00001137** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001138**
drh0fd61352014-02-07 02:29:45 +00001139** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001140** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001141*/
drheaf52d82010-05-12 13:50:23 +00001142case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001143 Mem *pVar; /* Value being transferred */
1144
drheaf52d82010-05-12 13:50:23 +00001145 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001146 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001147 pVar = &p->aVar[pOp->p1 - 1];
1148 if( sqlite3VdbeMemTooBig(pVar) ){
1149 goto too_big;
drh023ae032007-05-08 12:12:16 +00001150 }
drheaf52d82010-05-12 13:50:23 +00001151 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1152 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001153 break;
1154}
danielk1977295ba552004-05-19 10:34:51 +00001155
drhb21e7c72008-06-22 12:37:57 +00001156/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001157** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001158**
drh079a3072014-03-19 14:10:55 +00001159** Move the P3 values in register P1..P1+P3-1 over into
1160** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001161** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001162** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1163** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001164*/
drhe1349cb2008-04-01 00:36:10 +00001165case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001166 int n; /* Number of registers left to copy */
1167 int p1; /* Register to copy from */
1168 int p2; /* Register to copy to */
1169
drhe09f43f2013-11-21 04:18:31 +00001170 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001171 p1 = pOp->p1;
1172 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001173 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001174 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001175
drha6c2ed92009-11-14 23:22:23 +00001176 pIn1 = &aMem[p1];
1177 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001178 do{
dan3bc9f742013-08-15 16:18:39 +00001179 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1180 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001181 assert( memIsValid(pIn1) );
1182 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001183 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001184#ifdef SQLITE_DEBUG
1185 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1186 pOut->pScopyFrom += p1 - pOp->p2;
1187 }
1188#endif
drhb21e7c72008-06-22 12:37:57 +00001189 REGISTER_TRACE(p2++, pOut);
1190 pIn1++;
1191 pOut++;
drh079a3072014-03-19 14:10:55 +00001192 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001193 break;
1194}
1195
drhe8e4af72012-09-21 00:04:28 +00001196/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001197** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001198**
drhe8e4af72012-09-21 00:04:28 +00001199** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001200**
1201** This instruction makes a deep copy of the value. A duplicate
1202** is made of any string or blob constant. See also OP_SCopy.
1203*/
drhe8e4af72012-09-21 00:04:28 +00001204case OP_Copy: {
1205 int n;
1206
1207 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001208 pIn1 = &aMem[pOp->p1];
1209 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001210 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001211 while( 1 ){
1212 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1213 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001214#ifdef SQLITE_DEBUG
1215 pOut->pScopyFrom = 0;
1216#endif
drhe8e4af72012-09-21 00:04:28 +00001217 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1218 if( (n--)==0 ) break;
1219 pOut++;
1220 pIn1++;
1221 }
drhe1349cb2008-04-01 00:36:10 +00001222 break;
1223}
1224
drhb1fdb2a2008-01-05 04:06:03 +00001225/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001226** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001227**
drh9cbf3422008-01-17 16:22:13 +00001228** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001229**
1230** This instruction makes a shallow copy of the value. If the value
1231** is a string or blob, then the copy is only a pointer to the
1232** original and hence if the original changes so will the copy.
1233** Worse, if the original is deallocated, the copy becomes invalid.
1234** Thus the program must guarantee that the original will not change
1235** during the lifetime of the copy. Use OP_Copy to make a complete
1236** copy.
1237*/
drh26198bb2013-10-31 11:15:09 +00001238case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001239 pIn1 = &aMem[pOp->p1];
1240 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001241 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001242 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001243#ifdef SQLITE_DEBUG
1244 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1245#endif
drh5e00f6c2001-09-13 13:46:56 +00001246 break;
1247}
drh75897232000-05-29 14:26:00 +00001248
drh9cbf3422008-01-17 16:22:13 +00001249/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001250** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001251**
shane21e7feb2008-05-30 15:59:49 +00001252** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001253** results. This opcode causes the sqlite3_step() call to terminate
1254** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001255** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001256** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001257*/
drh9cbf3422008-01-17 16:22:13 +00001258case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001259 Mem *pMem;
1260 int i;
1261 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001262 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +00001263 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001264
drhe6400b92013-11-13 23:48:46 +00001265#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1266 /* Run the progress counter just before returning.
1267 */
1268 if( db->xProgress!=0
1269 && nVmStep>=nProgressLimit
1270 && db->xProgress(db->pProgressArg)!=0
1271 ){
1272 rc = SQLITE_INTERRUPT;
1273 goto vdbe_error_halt;
1274 }
1275#endif
1276
dan32b09f22009-09-23 17:29:59 +00001277 /* If this statement has violated immediate foreign key constraints, do
1278 ** not return the number of rows modified. And do not RELEASE the statement
1279 ** transaction. It needs to be rolled back. */
1280 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1281 assert( db->flags&SQLITE_CountRows );
1282 assert( p->usesStmtJournal );
1283 break;
1284 }
1285
danielk1977bd434552009-03-18 10:33:00 +00001286 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1287 ** DML statements invoke this opcode to return the number of rows
1288 ** modified to the user. This is the only way that a VM that
1289 ** opens a statement transaction may invoke this opcode.
1290 **
1291 ** In case this is such a statement, close any statement transaction
1292 ** opened by this VM before returning control to the user. This is to
1293 ** ensure that statement-transactions are always nested, not overlapping.
1294 ** If the open statement-transaction is not closed here, then the user
1295 ** may step another VM that opens its own statement transaction. This
1296 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001297 **
1298 ** The statement transaction is never a top-level transaction. Hence
1299 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001300 */
1301 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001302 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1303 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001304 break;
1305 }
1306
drhd4e70eb2008-01-02 00:34:36 +00001307 /* Invalidate all ephemeral cursor row caches */
1308 p->cacheCtr = (p->cacheCtr + 2)|1;
1309
1310 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001311 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001312 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001313 */
drha6c2ed92009-11-14 23:22:23 +00001314 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001315 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001316 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001317 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001318 assert( (pMem[i].flags & MEM_Ephem)==0
1319 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001320 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001321 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001322 }
drh28039692008-03-17 16:54:01 +00001323 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001324
1325 /* Return SQLITE_ROW
1326 */
drhd4e70eb2008-01-02 00:34:36 +00001327 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001328 rc = SQLITE_ROW;
1329 goto vdbe_return;
1330}
1331
drh5b6afba2008-01-05 16:29:28 +00001332/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001333** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001334**
drh5b6afba2008-01-05 16:29:28 +00001335** Add the text in register P1 onto the end of the text in
1336** register P2 and store the result in register P3.
1337** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001338**
1339** P3 = P2 || P1
1340**
1341** It is illegal for P1 and P3 to be the same register. Sometimes,
1342** if P3 is the same register as P2, the implementation is able
1343** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001344*/
drh5b6afba2008-01-05 16:29:28 +00001345case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001346 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001347
drh3c657212009-11-17 23:59:58 +00001348 pIn1 = &aMem[pOp->p1];
1349 pIn2 = &aMem[pOp->p2];
1350 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001351 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001352 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001353 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001354 break;
drh5e00f6c2001-09-13 13:46:56 +00001355 }
drha0c06522009-06-17 22:50:41 +00001356 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001357 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001358 Stringify(pIn2, encoding);
1359 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001360 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001361 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001362 }
drh9c1905f2008-12-10 22:32:56 +00001363 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001364 goto no_mem;
1365 }
drhc91b2fd2014-03-01 18:13:23 +00001366 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001367 if( pOut!=pIn2 ){
1368 memcpy(pOut->z, pIn2->z, pIn2->n);
1369 }
1370 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001371 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001372 pOut->z[nByte+1] = 0;
1373 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001374 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001375 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001376 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001377 break;
1378}
drh75897232000-05-29 14:26:00 +00001379
drh3c84ddf2008-01-09 02:15:38 +00001380/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001381** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001382**
drh60a713c2008-01-21 16:22:45 +00001383** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001384** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001385** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001386*/
drh3c84ddf2008-01-09 02:15:38 +00001387/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001388** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001389**
drh3c84ddf2008-01-09 02:15:38 +00001390**
shane21e7feb2008-05-30 15:59:49 +00001391** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001392** and store the result in register P3.
1393** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001394*/
drh3c84ddf2008-01-09 02:15:38 +00001395/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001396** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001397**
drh60a713c2008-01-21 16:22:45 +00001398** Subtract the value in register P1 from the value in register P2
1399** and store the result in register P3.
1400** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001401*/
drh9cbf3422008-01-17 16:22:13 +00001402/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001403** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001404**
drh60a713c2008-01-21 16:22:45 +00001405** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001406** and store the result in register P3 (P3=P2/P1). If the value in
1407** register P1 is zero, then the result is NULL. If either input is
1408** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001409*/
drh9cbf3422008-01-17 16:22:13 +00001410/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001411** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001412**
drh40864a12013-11-15 18:58:37 +00001413** Compute the remainder after integer register P2 is divided by
1414** register P1 and store the result in register P3.
1415** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001416** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001417*/
drh5b6afba2008-01-05 16:29:28 +00001418case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1419case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1420case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1421case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1422case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001423 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001424 u16 flags; /* Combined MEM_* flags from both inputs */
1425 u16 type1; /* Numeric type of left operand */
1426 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001427 i64 iA; /* Integer value of left operand */
1428 i64 iB; /* Integer value of right operand */
1429 double rA; /* Real value of left operand */
1430 double rB; /* Real value of right operand */
1431
drh3c657212009-11-17 23:59:58 +00001432 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001433 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001434 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001435 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001436 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001437 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001438 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001439 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001440 iA = pIn1->u.i;
1441 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001442 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001443 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001444 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1445 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1446 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001447 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001448 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001449 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001450 iB /= iA;
drh75897232000-05-29 14:26:00 +00001451 break;
1452 }
drhbf4133c2001-10-13 02:59:08 +00001453 default: {
drh856c1032009-06-02 15:21:42 +00001454 if( iA==0 ) goto arithmetic_result_is_null;
1455 if( iA==-1 ) iA = 1;
1456 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001457 break;
1458 }
drh75897232000-05-29 14:26:00 +00001459 }
drh856c1032009-06-02 15:21:42 +00001460 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001461 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001462 }else{
drhbe707b32012-12-10 22:19:14 +00001463 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001464fp_math:
drh856c1032009-06-02 15:21:42 +00001465 rA = sqlite3VdbeRealValue(pIn1);
1466 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001467 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001468 case OP_Add: rB += rA; break;
1469 case OP_Subtract: rB -= rA; break;
1470 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001471 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001472 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001473 if( rA==(double)0 ) goto arithmetic_result_is_null;
1474 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001475 break;
1476 }
drhbf4133c2001-10-13 02:59:08 +00001477 default: {
shane75ac1de2009-06-09 18:58:52 +00001478 iA = (i64)rA;
1479 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001480 if( iA==0 ) goto arithmetic_result_is_null;
1481 if( iA==-1 ) iA = 1;
1482 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001483 break;
1484 }
drh5e00f6c2001-09-13 13:46:56 +00001485 }
drhc5a7b512010-01-13 16:25:42 +00001486#ifdef SQLITE_OMIT_FLOATING_POINT
1487 pOut->u.i = rB;
1488 MemSetTypeFlag(pOut, MEM_Int);
1489#else
drh856c1032009-06-02 15:21:42 +00001490 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001491 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001492 }
drh74eaba42014-09-18 17:52:15 +00001493 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001494 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001495 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001496 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001497 }
drhc5a7b512010-01-13 16:25:42 +00001498#endif
drh5e00f6c2001-09-13 13:46:56 +00001499 }
1500 break;
1501
drha05a7222008-01-19 03:35:58 +00001502arithmetic_result_is_null:
1503 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001504 break;
1505}
1506
drh7a957892012-02-02 17:35:43 +00001507/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001508**
drh66a51672008-01-03 00:01:23 +00001509** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001510** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1511** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001512** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001513**
drh7a957892012-02-02 17:35:43 +00001514** If P1 is not zero, then it is a register that a subsequent min() or
1515** max() aggregate will set to 1 if the current row is not the minimum or
1516** maximum. The P1 register is initialized to 0 by this instruction.
1517**
danielk1977dc1bdc42004-06-11 10:51:27 +00001518** The interface used by the implementation of the aforementioned functions
1519** to retrieve the collation sequence set by this opcode is not available
1520** publicly, only to user functions defined in func.c.
1521*/
drh9cbf3422008-01-17 16:22:13 +00001522case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001523 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001524 if( pOp->p1 ){
1525 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1526 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001527 break;
1528}
1529
drh98757152008-01-09 23:04:12 +00001530/* Opcode: Function P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001531** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001532**
drh66a51672008-01-03 00:01:23 +00001533** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001534** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001535** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001536** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001537**
drh13449892005-09-07 21:22:45 +00001538** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001539** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001540** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001541** whether meta data associated with a user function argument using the
1542** sqlite3_set_auxdata() API may be safely retained until the next
1543** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001544**
drh13449892005-09-07 21:22:45 +00001545** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001546*/
drh0bce8352002-02-28 00:41:10 +00001547case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001548 int i;
drh6810ce62004-01-31 19:22:56 +00001549 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001550 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001551 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001552 int n;
drh1350b032002-02-27 19:00:20 +00001553
drh856c1032009-06-02 15:21:42 +00001554 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001555 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001556 assert( apVal || n==0 );
dan3bc9f742013-08-15 16:18:39 +00001557 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9bd038f2014-08-27 14:14:06 +00001558 ctx.pOut = &aMem[pOp->p3];
1559 memAboutToChange(p, ctx.pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001560
dan3bc9f742013-08-15 16:18:39 +00001561 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001562 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001563 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001564 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001565 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001566 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001567 Deephemeralize(pArg);
drhab5cd702010-04-07 14:32:11 +00001568 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001569 }
danielk197751ad0ec2004-05-24 12:39:02 +00001570
dan0c547792013-07-18 17:12:08 +00001571 assert( pOp->p4type==P4_FUNCDEF );
1572 ctx.pFunc = pOp->p4.pFunc;
dan0c547792013-07-18 17:12:08 +00001573 ctx.iOp = pc;
1574 ctx.pVdbe = p;
drh9bd038f2014-08-27 14:14:06 +00001575 MemSetTypeFlag(ctx.pOut, MEM_Null);
drh9b47ee32013-08-20 03:13:51 +00001576 ctx.fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001577 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001578 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh3b130be2014-09-26 01:10:02 +00001579 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
danielk19777e18c252004-05-25 11:47:24 +00001580
drh90669c12006-01-20 15:45:36 +00001581 /* If the function returned an error, throw an exception */
drh9b47ee32013-08-20 03:13:51 +00001582 if( ctx.fErrorOrAux ){
1583 if( ctx.isError ){
drh9bd038f2014-08-27 14:14:06 +00001584 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(ctx.pOut));
drh9b47ee32013-08-20 03:13:51 +00001585 rc = ctx.isError;
1586 }
1587 sqlite3VdbeDeleteAuxData(p, pc, pOp->p1);
drh90669c12006-01-20 15:45:36 +00001588 }
1589
drh9cbf3422008-01-17 16:22:13 +00001590 /* Copy the result of the function into register P3 */
drh9bd038f2014-08-27 14:14:06 +00001591 sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
1592 if( sqlite3VdbeMemTooBig(ctx.pOut) ){
drh023ae032007-05-08 12:12:16 +00001593 goto too_big;
1594 }
drh7b94e7f2011-04-04 12:29:20 +00001595
drh9bd038f2014-08-27 14:14:06 +00001596 REGISTER_TRACE(pOp->p3, ctx.pOut);
1597 UPDATE_MAX_BLOBSIZE(ctx.pOut);
drh8e0a2f92002-02-23 23:45:45 +00001598 break;
1599}
1600
drh98757152008-01-09 23:04:12 +00001601/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001602** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001603**
drh98757152008-01-09 23:04:12 +00001604** Take the bit-wise AND of the values in register P1 and P2 and
1605** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001606** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001607*/
drh98757152008-01-09 23:04:12 +00001608/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001609** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001610**
drh98757152008-01-09 23:04:12 +00001611** Take the bit-wise OR of the values in register P1 and P2 and
1612** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001613** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001614*/
drh98757152008-01-09 23:04:12 +00001615/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001616** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001617**
drh98757152008-01-09 23:04:12 +00001618** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001619** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001620** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001621** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001622*/
drh98757152008-01-09 23:04:12 +00001623/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001624** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001625**
drh98757152008-01-09 23:04:12 +00001626** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001627** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001628** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001629** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001630*/
drh5b6afba2008-01-05 16:29:28 +00001631case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1632case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1633case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1634case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001635 i64 iA;
1636 u64 uA;
1637 i64 iB;
1638 u8 op;
drh6810ce62004-01-31 19:22:56 +00001639
drh3c657212009-11-17 23:59:58 +00001640 pIn1 = &aMem[pOp->p1];
1641 pIn2 = &aMem[pOp->p2];
1642 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001643 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001644 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001645 break;
1646 }
drh158b9cb2011-03-05 20:59:46 +00001647 iA = sqlite3VdbeIntValue(pIn2);
1648 iB = sqlite3VdbeIntValue(pIn1);
1649 op = pOp->opcode;
1650 if( op==OP_BitAnd ){
1651 iA &= iB;
1652 }else if( op==OP_BitOr ){
1653 iA |= iB;
1654 }else if( iB!=0 ){
1655 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1656
1657 /* If shifting by a negative amount, shift in the other direction */
1658 if( iB<0 ){
1659 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1660 op = 2*OP_ShiftLeft + 1 - op;
1661 iB = iB>(-64) ? -iB : 64;
1662 }
1663
1664 if( iB>=64 ){
1665 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1666 }else{
1667 memcpy(&uA, &iA, sizeof(uA));
1668 if( op==OP_ShiftLeft ){
1669 uA <<= iB;
1670 }else{
1671 uA >>= iB;
1672 /* Sign-extend on a right shift of a negative number */
1673 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1674 }
1675 memcpy(&iA, &uA, sizeof(iA));
1676 }
drhbf4133c2001-10-13 02:59:08 +00001677 }
drh158b9cb2011-03-05 20:59:46 +00001678 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001679 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001680 break;
1681}
1682
drh8558cde2008-01-05 05:20:10 +00001683/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001684** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001685**
danielk19770cdc0222008-06-26 18:04:03 +00001686** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001687** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001688**
drh8558cde2008-01-05 05:20:10 +00001689** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001690*/
drh9cbf3422008-01-17 16:22:13 +00001691case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001692 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001693 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001694 sqlite3VdbeMemIntegerify(pIn1);
1695 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001696 break;
1697}
1698
drh9cbf3422008-01-17 16:22:13 +00001699/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001700**
drh9cbf3422008-01-17 16:22:13 +00001701** Force the value in register P1 to be an integer. If the value
1702** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001703** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001704** raise an SQLITE_MISMATCH exception.
1705*/
drh9cbf3422008-01-17 16:22:13 +00001706case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001707 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001708 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001709 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001710 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001711 if( (pIn1->flags & MEM_Int)==0 ){
1712 if( pOp->p2==0 ){
1713 rc = SQLITE_MISMATCH;
1714 goto abort_due_to_error;
1715 }else{
1716 pc = pOp->p2 - 1;
1717 break;
1718 }
drh8aff1012001-12-22 14:49:24 +00001719 }
drh8aff1012001-12-22 14:49:24 +00001720 }
drh83b301b2013-11-20 00:59:02 +00001721 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001722 break;
1723}
1724
drh13573c72010-01-12 17:04:07 +00001725#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001726/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001727**
drh2133d822008-01-03 18:44:59 +00001728** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001729**
drh8a512562005-11-14 22:29:05 +00001730** This opcode is used when extracting information from a column that
1731** has REAL affinity. Such column values may still be stored as
1732** integers, for space efficiency, but after extraction we want them
1733** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001734*/
drh9cbf3422008-01-17 16:22:13 +00001735case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001736 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001737 if( pIn1->flags & MEM_Int ){
1738 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001739 }
drh487e2622005-06-25 18:42:14 +00001740 break;
1741}
drh13573c72010-01-12 17:04:07 +00001742#endif
drh487e2622005-06-25 18:42:14 +00001743
drh8df447f2005-11-01 15:48:24 +00001744#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001745/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001746** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001747**
drh4169e432014-08-25 20:11:52 +00001748** Force the value in register P1 to be the type defined by P2.
1749**
1750** <ul>
1751** <li value="97"> TEXT
1752** <li value="98"> BLOB
1753** <li value="99"> NUMERIC
1754** <li value="100"> INTEGER
1755** <li value="101"> REAL
1756** </ul>
drh487e2622005-06-25 18:42:14 +00001757**
1758** A NULL value is not changed by this routine. It remains NULL.
1759*/
drh4169e432014-08-25 20:11:52 +00001760case OP_Cast: { /* in1 */
drh7ea31cc2014-09-18 14:36:00 +00001761 assert( pOp->p2>=SQLITE_AFF_NONE && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001762 testcase( pOp->p2==SQLITE_AFF_TEXT );
1763 testcase( pOp->p2==SQLITE_AFF_NONE );
1764 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1765 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1766 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001767 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001768 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001769 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001770 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001771 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001772 break;
1773}
drh8a512562005-11-14 22:29:05 +00001774#endif /* SQLITE_OMIT_CAST */
1775
drh35573352008-01-08 23:54:25 +00001776/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001777** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001778**
drh35573352008-01-08 23:54:25 +00001779** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1780** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001781**
drh35573352008-01-08 23:54:25 +00001782** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1783** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001784** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001785**
drh35573352008-01-08 23:54:25 +00001786** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001787** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001788** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001789** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001790** affinity is used. Note that the affinity conversions are stored
1791** back into the input registers P1 and P3. So this opcode can cause
1792** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001793**
1794** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001795** the values are compared. If both values are blobs then memcmp() is
1796** used to determine the results of the comparison. If both values
1797** are text, then the appropriate collating function specified in
1798** P4 is used to do the comparison. If P4 is not specified then
1799** memcmp() is used to compare text string. If both values are
1800** numeric, then a numeric comparison is used. If the two values
1801** are of different types, then numbers are considered less than
1802** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001803**
drh35573352008-01-08 23:54:25 +00001804** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1805** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001806**
1807** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1808** equal to one another, provided that they do not have their MEM_Cleared
1809** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001810*/
drh9cbf3422008-01-17 16:22:13 +00001811/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001812** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001813**
drh35573352008-01-08 23:54:25 +00001814** This works just like the Lt opcode except that the jump is taken if
1815** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001816** additional information.
drh6a2fe092009-09-23 02:29:36 +00001817**
1818** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1819** true or false and is never NULL. If both operands are NULL then the result
1820** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001821** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001822** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001823*/
drh9cbf3422008-01-17 16:22:13 +00001824/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001825** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001826**
drh35573352008-01-08 23:54:25 +00001827** This works just like the Lt opcode except that the jump is taken if
1828** the operands in registers P1 and P3 are equal.
1829** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001830**
1831** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1832** true or false and is never NULL. If both operands are NULL then the result
1833** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001834** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001835** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001836*/
drh9cbf3422008-01-17 16:22:13 +00001837/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001838** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001839**
drh35573352008-01-08 23:54:25 +00001840** This works just like the Lt opcode except that the jump is taken if
1841** the content of register P3 is less than or equal to the content of
1842** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001843*/
drh9cbf3422008-01-17 16:22:13 +00001844/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001845** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001846**
drh35573352008-01-08 23:54:25 +00001847** This works just like the Lt opcode except that the jump is taken if
1848** the content of register P3 is greater than the content of
1849** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001850*/
drh9cbf3422008-01-17 16:22:13 +00001851/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001852** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001853**
drh35573352008-01-08 23:54:25 +00001854** This works just like the Lt opcode except that the jump is taken if
1855** the content of register P3 is greater than or equal to the content of
1856** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001857*/
drh9cbf3422008-01-17 16:22:13 +00001858case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1859case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1860case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1861case OP_Le: /* same as TK_LE, jump, in1, in3 */
1862case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1863case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001864 int res; /* Result of the comparison of pIn1 against pIn3 */
1865 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001866 u16 flags1; /* Copy of initial value of pIn1->flags */
1867 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001868
drh3c657212009-11-17 23:59:58 +00001869 pIn1 = &aMem[pOp->p1];
1870 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001871 flags1 = pIn1->flags;
1872 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001873 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001874 /* One or both operands are NULL */
1875 if( pOp->p5 & SQLITE_NULLEQ ){
1876 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1877 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1878 ** or not both operands are null.
1879 */
1880 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001881 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001882 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001883 if( (flags1&MEM_Null)!=0
1884 && (flags3&MEM_Null)!=0
1885 && (flags3&MEM_Cleared)==0
1886 ){
1887 res = 0; /* Results are equal */
1888 }else{
1889 res = 1; /* Results are not equal */
1890 }
drh6a2fe092009-09-23 02:29:36 +00001891 }else{
1892 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1893 ** then the result is always NULL.
1894 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1895 */
drh688852a2014-02-17 22:40:43 +00001896 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001897 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001898 MemSetTypeFlag(pOut, MEM_Null);
1899 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001900 }else{
drhf4345e42014-02-18 11:31:59 +00001901 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001902 if( pOp->p5 & SQLITE_JUMPIFNULL ){
1903 pc = pOp->p2-1;
1904 }
drh6a2fe092009-09-23 02:29:36 +00001905 }
1906 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001907 }
drh6a2fe092009-09-23 02:29:36 +00001908 }else{
1909 /* Neither operand is NULL. Do a comparison. */
1910 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001911 if( affinity>=SQLITE_AFF_NUMERIC ){
drhe7a34662014-09-19 22:44:20 +00001912 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001913 applyNumericAffinity(pIn1,0);
1914 }
drhe7a34662014-09-19 22:44:20 +00001915 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001916 applyNumericAffinity(pIn3,0);
1917 }
1918 }else if( affinity==SQLITE_AFF_TEXT ){
1919 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001920 testcase( pIn1->flags & MEM_Int );
1921 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001922 sqlite3VdbeMemStringify(pIn1, encoding, 1);
1923 }
1924 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001925 testcase( pIn3->flags & MEM_Int );
1926 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001927 sqlite3VdbeMemStringify(pIn3, encoding, 1);
1928 }
drh6a2fe092009-09-23 02:29:36 +00001929 }
drh6a2fe092009-09-23 02:29:36 +00001930 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhca5506b2014-09-17 23:37:38 +00001931 if( pIn1->flags & MEM_Zero ){
1932 sqlite3VdbeMemExpandBlob(pIn1);
1933 flags1 &= ~MEM_Zero;
1934 }
1935 if( pIn3->flags & MEM_Zero ){
1936 sqlite3VdbeMemExpandBlob(pIn3);
1937 flags3 &= ~MEM_Zero;
1938 }
drh24a09622014-09-18 16:28:59 +00001939 if( db->mallocFailed ) goto no_mem;
drh6a2fe092009-09-23 02:29:36 +00001940 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001941 }
danielk1977a37cdde2004-05-16 11:15:36 +00001942 switch( pOp->opcode ){
1943 case OP_Eq: res = res==0; break;
1944 case OP_Ne: res = res!=0; break;
1945 case OP_Lt: res = res<0; break;
1946 case OP_Le: res = res<=0; break;
1947 case OP_Gt: res = res>0; break;
1948 default: res = res>=0; break;
1949 }
1950
drh35573352008-01-08 23:54:25 +00001951 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001952 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001953 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001954 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001955 pOut->u.i = res;
1956 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001957 }else{
drhf4345e42014-02-18 11:31:59 +00001958 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00001959 if( res ){
1960 pc = pOp->p2-1;
1961 }
danielk1977a37cdde2004-05-16 11:15:36 +00001962 }
danb7dca7d2010-03-05 16:32:12 +00001963 /* Undo any changes made by applyAffinity() to the input registers. */
drhca5506b2014-09-17 23:37:38 +00001964 pIn1->flags = flags1;
1965 pIn3->flags = flags3;
danielk1977a37cdde2004-05-16 11:15:36 +00001966 break;
1967}
drhc9b84a12002-06-20 11:36:48 +00001968
drh0acb7e42008-06-25 00:12:41 +00001969/* Opcode: Permutation * * * P4 *
1970**
shanebe217792009-03-05 04:20:31 +00001971** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001972** of integers in P4.
1973**
drh953f7612012-12-07 22:18:54 +00001974** The permutation is only valid until the next OP_Compare that has
1975** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1976** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00001977*/
1978case OP_Permutation: {
1979 assert( pOp->p4type==P4_INTARRAY );
1980 assert( pOp->p4.ai );
1981 aPermute = pOp->p4.ai;
1982 break;
1983}
1984
drh953f7612012-12-07 22:18:54 +00001985/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00001986** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00001987**
drh710c4842010-08-30 01:17:20 +00001988** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1989** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001990** the comparison for use by the next OP_Jump instruct.
1991**
drh0ca10df2012-12-08 13:26:23 +00001992** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1993** determined by the most recent OP_Permutation operator. If the
1994** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1995** order.
1996**
drh0acb7e42008-06-25 00:12:41 +00001997** P4 is a KeyInfo structure that defines collating sequences and sort
1998** orders for the comparison. The permutation applies to registers
1999** only. The KeyInfo elements are used sequentially.
2000**
2001** The comparison is a sort comparison, so NULLs compare equal,
2002** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002003** and strings are less than blobs.
2004*/
2005case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002006 int n;
2007 int i;
2008 int p1;
2009 int p2;
2010 const KeyInfo *pKeyInfo;
2011 int idx;
2012 CollSeq *pColl; /* Collating sequence to use on this term */
2013 int bRev; /* True for DESCENDING sort order */
2014
drh953f7612012-12-07 22:18:54 +00002015 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002016 n = pOp->p3;
2017 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002018 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002019 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002020 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002021 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002022#if SQLITE_DEBUG
2023 if( aPermute ){
2024 int k, mx = 0;
2025 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
dan3bc9f742013-08-15 16:18:39 +00002026 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2027 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002028 }else{
dan3bc9f742013-08-15 16:18:39 +00002029 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2030 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002031 }
2032#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002033 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002034 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002035 assert( memIsValid(&aMem[p1+idx]) );
2036 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002037 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2038 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002039 assert( i<pKeyInfo->nField );
2040 pColl = pKeyInfo->aColl[i];
2041 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002042 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002043 if( iCompare ){
2044 if( bRev ) iCompare = -iCompare;
2045 break;
2046 }
drh16ee60f2008-06-20 18:13:25 +00002047 }
drh0acb7e42008-06-25 00:12:41 +00002048 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002049 break;
2050}
2051
2052/* Opcode: Jump P1 P2 P3 * *
2053**
2054** Jump to the instruction at address P1, P2, or P3 depending on whether
2055** in the most recent OP_Compare instruction the P1 vector was less than
2056** equal to, or greater than the P2 vector, respectively.
2057*/
drh0acb7e42008-06-25 00:12:41 +00002058case OP_Jump: { /* jump */
2059 if( iCompare<0 ){
drh688852a2014-02-17 22:40:43 +00002060 pc = pOp->p1 - 1; VdbeBranchTaken(0,3);
drh0acb7e42008-06-25 00:12:41 +00002061 }else if( iCompare==0 ){
drh688852a2014-02-17 22:40:43 +00002062 pc = pOp->p2 - 1; VdbeBranchTaken(1,3);
drh16ee60f2008-06-20 18:13:25 +00002063 }else{
drh688852a2014-02-17 22:40:43 +00002064 pc = pOp->p3 - 1; VdbeBranchTaken(2,3);
drh16ee60f2008-06-20 18:13:25 +00002065 }
2066 break;
2067}
2068
drh5b6afba2008-01-05 16:29:28 +00002069/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002070** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002071**
drh5b6afba2008-01-05 16:29:28 +00002072** Take the logical AND of the values in registers P1 and P2 and
2073** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002074**
drh5b6afba2008-01-05 16:29:28 +00002075** If either P1 or P2 is 0 (false) then the result is 0 even if
2076** the other input is NULL. A NULL and true or two NULLs give
2077** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002078*/
drh5b6afba2008-01-05 16:29:28 +00002079/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002080** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002081**
2082** Take the logical OR of the values in register P1 and P2 and
2083** store the answer in register P3.
2084**
2085** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2086** even if the other input is NULL. A NULL and false or two NULLs
2087** give a NULL output.
2088*/
2089case OP_And: /* same as TK_AND, in1, in2, out3 */
2090case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002091 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2092 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002093
drh3c657212009-11-17 23:59:58 +00002094 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002095 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002096 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002097 }else{
drh5b6afba2008-01-05 16:29:28 +00002098 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002099 }
drh3c657212009-11-17 23:59:58 +00002100 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002101 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002102 v2 = 2;
2103 }else{
drh5b6afba2008-01-05 16:29:28 +00002104 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002105 }
2106 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002107 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002108 v1 = and_logic[v1*3+v2];
2109 }else{
drh5b6afba2008-01-05 16:29:28 +00002110 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002111 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002112 }
drh3c657212009-11-17 23:59:58 +00002113 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002114 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002115 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002116 }else{
drh5b6afba2008-01-05 16:29:28 +00002117 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002118 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002119 }
drh5e00f6c2001-09-13 13:46:56 +00002120 break;
2121}
2122
drhe99fa2a2008-12-15 15:27:51 +00002123/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002124** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002125**
drhe99fa2a2008-12-15 15:27:51 +00002126** Interpret the value in register P1 as a boolean value. Store the
2127** boolean complement in register P2. If the value in register P1 is
2128** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002129*/
drh93952eb2009-11-13 19:43:43 +00002130case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002131 pIn1 = &aMem[pOp->p1];
2132 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002133 sqlite3VdbeMemSetNull(pOut);
2134 if( (pIn1->flags & MEM_Null)==0 ){
2135 pOut->flags = MEM_Int;
2136 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002137 }
drh5e00f6c2001-09-13 13:46:56 +00002138 break;
2139}
2140
drhe99fa2a2008-12-15 15:27:51 +00002141/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002142** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002143**
drhe99fa2a2008-12-15 15:27:51 +00002144** Interpret the content of register P1 as an integer. Store the
2145** ones-complement of the P1 value into register P2. If P1 holds
2146** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002147*/
drh93952eb2009-11-13 19:43:43 +00002148case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002149 pIn1 = &aMem[pOp->p1];
2150 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002151 sqlite3VdbeMemSetNull(pOut);
2152 if( (pIn1->flags & MEM_Null)==0 ){
2153 pOut->flags = MEM_Int;
2154 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002155 }
drhbf4133c2001-10-13 02:59:08 +00002156 break;
2157}
2158
drh48f2d3b2011-09-16 01:34:43 +00002159/* Opcode: Once P1 P2 * * *
2160**
drh5dad9a32014-07-25 18:37:42 +00002161** Check the "once" flag number P1. If it is set, jump to instruction P2.
2162** Otherwise, set the flag and fall through to the next instruction.
2163** In other words, this opcode causes all following opcodes up through P2
2164** (but not including P2) to run just once and to be skipped on subsequent
2165** times through the loop.
2166**
2167** All "once" flags are initially cleared whenever a prepared statement
2168** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002169*/
dan1d8cb212011-12-09 13:24:16 +00002170case OP_Once: { /* jump */
2171 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002172 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002173 if( p->aOnceFlag[pOp->p1] ){
2174 pc = pOp->p2-1;
2175 }else{
2176 p->aOnceFlag[pOp->p1] = 1;
2177 }
2178 break;
2179}
2180
drh3c84ddf2008-01-09 02:15:38 +00002181/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002182**
drhef8662b2011-06-20 21:47:58 +00002183** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002184** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002185** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002186*/
drh3c84ddf2008-01-09 02:15:38 +00002187/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002188**
drhef8662b2011-06-20 21:47:58 +00002189** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002190** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002191** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002192*/
drh9cbf3422008-01-17 16:22:13 +00002193case OP_If: /* jump, in1 */
2194case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002195 int c;
drh3c657212009-11-17 23:59:58 +00002196 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002197 if( pIn1->flags & MEM_Null ){
2198 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002199 }else{
drhba0232a2005-06-06 17:27:19 +00002200#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002201 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002202#else
drh3c84ddf2008-01-09 02:15:38 +00002203 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002204#endif
drhf5905aa2002-05-26 20:54:33 +00002205 if( pOp->opcode==OP_IfNot ) c = !c;
2206 }
drh688852a2014-02-17 22:40:43 +00002207 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002208 if( c ){
2209 pc = pOp->p2-1;
2210 }
drh5e00f6c2001-09-13 13:46:56 +00002211 break;
2212}
2213
drh830ecf92009-06-18 00:41:55 +00002214/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002215** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002216**
drh830ecf92009-06-18 00:41:55 +00002217** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002218*/
drh9cbf3422008-01-17 16:22:13 +00002219case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002220 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002221 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002222 if( (pIn1->flags & MEM_Null)!=0 ){
2223 pc = pOp->p2 - 1;
2224 }
drh477df4b2008-01-05 18:48:24 +00002225 break;
2226}
2227
drh98757152008-01-09 23:04:12 +00002228/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002229** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002230**
drh6a288a32008-01-07 19:20:24 +00002231** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002232*/
drh9cbf3422008-01-17 16:22:13 +00002233case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002234 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002235 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002236 if( (pIn1->flags & MEM_Null)==0 ){
2237 pc = pOp->p2 - 1;
2238 }
drh5e00f6c2001-09-13 13:46:56 +00002239 break;
2240}
2241
drh3e9ca092009-09-08 01:14:48 +00002242/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002243** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002244**
danielk1977cfcdaef2004-05-12 07:33:33 +00002245** Interpret the data that cursor P1 points to as a structure built using
2246** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002247** information about the format of the data.) Extract the P2-th column
2248** from this record. If there are less that (P2+1)
2249** values in the record, extract a NULL.
2250**
drh9cbf3422008-01-17 16:22:13 +00002251** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002252**
danielk19771f4aa332008-01-03 09:51:55 +00002253** If the column contains fewer than P2 fields, then extract a NULL. Or,
2254** if the P4 argument is a P4_MEM use the value of the P4 argument as
2255** the result.
drh3e9ca092009-09-08 01:14:48 +00002256**
2257** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2258** then the cache of the cursor is reset prior to extracting the column.
2259** The first OP_Column against a pseudo-table after the value of the content
2260** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002261**
drhdda5c082012-03-28 13:41:10 +00002262** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2263** the result is guaranteed to only be used as the argument of a length()
2264** or typeof() function, respectively. The loading of large blobs can be
2265** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002266*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002267case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002268 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002269 int p2; /* column number to retrieve */
2270 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002271 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002272 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002273 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002274 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002275 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002276 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002277 const u8 *zData; /* Part of the record being decoded */
2278 const u8 *zHdr; /* Next unparsed byte of the header */
2279 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002280 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002281 u32 szField; /* Number of bytes in the content of a field */
drh501932c2013-11-21 21:59:53 +00002282 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002283 u32 t; /* A type code from the record header */
drh0c8f7602014-09-19 16:56:45 +00002284 u16 fx; /* pDest->flags value */
drh3e9ca092009-09-08 01:14:48 +00002285 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002286
drh399af1d2013-11-20 17:25:55 +00002287 p2 = pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00002288 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002289 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002290 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002291 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2292 pC = p->apCsr[pOp->p1];
drha5759672012-10-30 14:39:12 +00002293 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002294 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002295 aOffset = pC->aOffset;
danielk19770817d0d2007-02-14 09:19:36 +00002296#ifndef SQLITE_OMIT_VIRTUALTABLE
drh380d6852013-11-20 20:58:00 +00002297 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
danielk19770817d0d2007-02-14 09:19:36 +00002298#endif
shane36840fd2009-06-26 16:32:13 +00002299 pCrsr = pC->pCursor;
drh380d6852013-11-20 20:58:00 +00002300 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2301 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
drh399af1d2013-11-20 17:25:55 +00002302
2303 /* If the cursor cache is stale, bring it up-to-date */
2304 rc = sqlite3VdbeCursorMoveto(pC);
2305 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002306 if( pC->cacheStatus!=p->cacheCtr ){
drhc8606e42013-11-20 19:28:03 +00002307 if( pC->nullRow ){
2308 if( pCrsr==0 ){
2309 assert( pC->pseudoTableReg>0 );
2310 pReg = &aMem[pC->pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002311 assert( pReg->flags & MEM_Blob );
2312 assert( memIsValid(pReg) );
2313 pC->payloadSize = pC->szRow = avail = pReg->n;
2314 pC->aRow = (u8*)pReg->z;
2315 }else{
drh6b5631e2014-11-05 15:57:39 +00002316 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002317 goto op_column_out;
2318 }
danielk197784ac9d02004-05-18 09:58:06 +00002319 }else{
drhc8606e42013-11-20 19:28:03 +00002320 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002321 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002322 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2323 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2324 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2325 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2326 ** payload size, so it is impossible for payloadSize64 to be
2327 ** larger than 32 bits. */
2328 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2329 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2330 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002331 }else{
drh399af1d2013-11-20 17:25:55 +00002332 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2333 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2334 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2335 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002336 }
drh399af1d2013-11-20 17:25:55 +00002337 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2338 if( pC->payloadSize <= (u32)avail ){
2339 pC->szRow = pC->payloadSize;
drhe61cffc2004-06-12 18:12:15 +00002340 }else{
drh399af1d2013-11-20 17:25:55 +00002341 pC->szRow = avail;
2342 }
2343 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2344 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002345 }
drhd3194f52004-05-27 19:59:32 +00002346 }
drh399af1d2013-11-20 17:25:55 +00002347 pC->cacheStatus = p->cacheCtr;
2348 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2349 pC->nHdrParsed = 0;
2350 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002351
2352 /* Make sure a corrupt database has not given us an oversize header.
2353 ** Do this now to avoid an oversize memory allocation.
2354 **
2355 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2356 ** types use so much data space that there can only be 4096 and 32 of
2357 ** them, respectively. So the maximum header length results from a
2358 ** 3-byte type for each of the maximum of 32768 columns plus three
2359 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2360 */
drh399af1d2013-11-20 17:25:55 +00002361 if( offset > 98307 || offset > pC->payloadSize ){
drh35cd6432009-06-05 14:17:21 +00002362 rc = SQLITE_CORRUPT_BKPT;
drhc8606e42013-11-20 19:28:03 +00002363 goto op_column_error;
drh35cd6432009-06-05 14:17:21 +00002364 }
drhc81aa2e2014-10-11 23:31:52 +00002365
2366 if( avail<offset ){
2367 /* pC->aRow does not have to hold the entire row, but it does at least
2368 ** need to cover the header of the record. If pC->aRow does not contain
2369 ** the complete header, then set it to zero, forcing the header to be
2370 ** dynamically allocated. */
2371 pC->aRow = 0;
2372 pC->szRow = 0;
2373 }
2374
2375 /* The following goto is an optimization. It can be omitted and
2376 ** everything will still work. But OP_Column is measurably faster
2377 ** by skipping the subsequent conditional, which is always true.
2378 */
2379 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2380 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002381 }
drh35cd6432009-06-05 14:17:21 +00002382
drh399af1d2013-11-20 17:25:55 +00002383 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002384 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002385 */
drhc8606e42013-11-20 19:28:03 +00002386 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002387 /* If there is more header available for parsing in the record, try
2388 ** to extract additional fields up through the p2+1-th field
drhd3194f52004-05-27 19:59:32 +00002389 */
drhc81aa2e2014-10-11 23:31:52 +00002390 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002391 if( pC->iHdrOffset<aOffset[0] ){
2392 /* Make sure zData points to enough of the record to cover the header. */
2393 if( pC->aRow==0 ){
2394 memset(&sMem, 0, sizeof(sMem));
drh14da87f2013-11-20 21:51:33 +00002395 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2396 !pC->isTable, &sMem);
drhc8606e42013-11-20 19:28:03 +00002397 if( rc!=SQLITE_OK ){
2398 goto op_column_error;
2399 }
2400 zData = (u8*)sMem.z;
2401 }else{
2402 zData = pC->aRow;
2403 }
2404
drh0c8f7602014-09-19 16:56:45 +00002405 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002406 i = pC->nHdrParsed;
2407 offset = aOffset[i];
2408 zHdr = zData + pC->iHdrOffset;
2409 zEndHdr = zData + aOffset[0];
2410 assert( i<=p2 && zHdr<zEndHdr );
2411 do{
2412 if( zHdr[0]<0x80 ){
2413 t = zHdr[0];
2414 zHdr++;
2415 }else{
2416 zHdr += sqlite3GetVarint32(zHdr, &t);
2417 }
drh0c8f7602014-09-19 16:56:45 +00002418 pC->aType[i] = t;
drhc8606e42013-11-20 19:28:03 +00002419 szField = sqlite3VdbeSerialTypeLen(t);
2420 offset += szField;
2421 if( offset<szField ){ /* True if offset overflows */
2422 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2423 break;
2424 }
2425 i++;
2426 aOffset[i] = offset;
2427 }while( i<=p2 && zHdr<zEndHdr );
2428 pC->nHdrParsed = i;
2429 pC->iHdrOffset = (u32)(zHdr - zData);
2430 if( pC->aRow==0 ){
2431 sqlite3VdbeMemRelease(&sMem);
2432 sMem.flags = MEM_Null;
2433 }
2434
drh8dd83622014-10-13 23:39:02 +00002435 /* The record is corrupt if any of the following are true:
2436 ** (1) the bytes of the header extend past the declared header size
2437 ** (zHdr>zEndHdr)
2438 ** (2) the entire header was used but not all data was used
2439 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2440 ** (3) the end of the data extends beyond the end of the record.
2441 ** (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002442 */
drh8dd83622014-10-13 23:39:02 +00002443 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
drhc8606e42013-11-20 19:28:03 +00002444 || (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002445 ){
2446 rc = SQLITE_CORRUPT_BKPT;
2447 goto op_column_error;
2448 }
2449 }
2450
drh380d6852013-11-20 20:58:00 +00002451 /* If after trying to extra new entries from the header, nHdrParsed is
2452 ** still not up to p2, that means that the record has fewer than p2
2453 ** columns. So the result will be either the default value or a NULL.
2454 */
drhc8606e42013-11-20 19:28:03 +00002455 if( pC->nHdrParsed<=p2 ){
2456 if( pOp->p4type==P4_MEM ){
2457 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2458 }else{
drh22e8d832014-10-29 00:58:38 +00002459 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002460 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002461 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002462 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002463 }
danielk1977192ac1d2004-05-10 07:17:30 +00002464
drh380d6852013-11-20 20:58:00 +00002465 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002466 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002467 ** all valid.
drh9188b382004-05-14 21:12:22 +00002468 */
drhc8606e42013-11-20 19:28:03 +00002469 assert( p2<pC->nHdrParsed );
2470 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002471 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002472 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh0c8f7602014-09-19 16:56:45 +00002473 t = pC->aType[p2];
drhc8606e42013-11-20 19:28:03 +00002474 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002475 /* This is the common case where the desired content fits on the original
2476 ** page - where the content is not on an overflow page */
drh0c8f7602014-09-19 16:56:45 +00002477 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
danielk197736963fd2005-02-19 08:18:05 +00002478 }else{
drh58c96082013-12-23 11:33:32 +00002479 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002480 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2481 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2482 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002483 ){
drh2a2a6962014-09-16 18:22:44 +00002484 /* Content is irrelevant for
2485 ** 1. the typeof() function,
2486 ** 2. the length(X) function if X is a blob, and
2487 ** 3. if the content length is zero.
2488 ** So we might as well use bogus content rather than reading
2489 ** content from disk. NULL will work for the value for strings
2490 ** and blobs and whatever is in the payloadSize64 variable
2491 ** will work for everything else. */
2492 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002493 }else{
drh14da87f2013-11-20 21:51:33 +00002494 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002495 pDest);
drhc8606e42013-11-20 19:28:03 +00002496 if( rc!=SQLITE_OK ){
2497 goto op_column_error;
2498 }
drh2a2a6962014-09-16 18:22:44 +00002499 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2500 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002501 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002502 }
drhc8606e42013-11-20 19:28:03 +00002503 pDest->enc = encoding;
drhd3194f52004-05-27 19:59:32 +00002504
danielk19773c9cc8d2005-01-17 03:40:08 +00002505op_column_out:
drh7b5ebca2014-09-19 15:28:33 +00002506 /* If the column value is an ephemeral string, go ahead and persist
2507 ** that string in case the cursor moves before the column value is
2508 ** used. The following code does the equivalent of Deephemeralize()
2509 ** but does it faster. */
2510 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
drh0c8f7602014-09-19 16:56:45 +00002511 fx = pDest->flags & (MEM_Str|MEM_Blob);
2512 assert( fx!=0 );
drh7b5ebca2014-09-19 15:28:33 +00002513 zData = (const u8*)pDest->z;
2514 len = pDest->n;
2515 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2516 memcpy(pDest->z, zData, len);
2517 pDest->z[len] = 0;
2518 pDest->z[len+1] = 0;
drh0c8f7602014-09-19 16:56:45 +00002519 pDest->flags = fx|MEM_Term;
drh7b5ebca2014-09-19 15:28:33 +00002520 }
drhc8606e42013-11-20 19:28:03 +00002521op_column_error:
drhb7654112008-01-12 12:48:07 +00002522 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002523 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002524 break;
2525}
2526
danielk1977751de562008-04-18 09:01:15 +00002527/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002528** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002529**
2530** Apply affinities to a range of P2 registers starting with P1.
2531**
2532** P4 is a string that is P2 characters long. The nth character of the
2533** string indicates the column affinity that should be used for the nth
2534** memory cell in the range.
2535*/
2536case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002537 const char *zAffinity; /* The affinity to be applied */
2538 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002539
drh856c1032009-06-02 15:21:42 +00002540 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002541 assert( zAffinity!=0 );
2542 assert( zAffinity[pOp->p2]==0 );
2543 pIn1 = &aMem[pOp->p1];
2544 while( (cAff = *(zAffinity++))!=0 ){
dan3bc9f742013-08-15 16:18:39 +00002545 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002546 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002547 applyAffinity(pIn1, cAff, encoding);
2548 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002549 }
2550 break;
2551}
2552
drh1db639c2008-01-17 02:36:28 +00002553/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002554** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002555**
drh710c4842010-08-30 01:17:20 +00002556** Convert P2 registers beginning with P1 into the [record format]
2557** use as a data record in a database table or as a key
2558** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002559**
danielk1977751de562008-04-18 09:01:15 +00002560** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002561** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002562** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002563**
drh8a512562005-11-14 22:29:05 +00002564** The mapping from character to affinity is given by the SQLITE_AFF_
2565** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002566**
drh66a51672008-01-03 00:01:23 +00002567** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002568*/
drh1db639c2008-01-17 02:36:28 +00002569case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002570 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2571 Mem *pRec; /* The new record */
2572 u64 nData; /* Number of bytes of data space */
2573 int nHdr; /* Number of bytes of header space */
2574 i64 nByte; /* Data space required for this record */
2575 int nZero; /* Number of zero bytes at the end of the record */
2576 int nVarint; /* Number of bytes in a varint */
2577 u32 serial_type; /* Type field */
2578 Mem *pData0; /* First field to be combined into the record */
2579 Mem *pLast; /* Last field of the record */
2580 int nField; /* Number of fields in the record */
2581 char *zAffinity; /* The affinity string for the record */
2582 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002583 int i; /* Space used in zNewRecord[] header */
2584 int j; /* Space used in zNewRecord[] content */
drh856c1032009-06-02 15:21:42 +00002585 int len; /* Length of a field */
2586
drhf3218fe2004-05-28 08:21:02 +00002587 /* Assuming the record contains N fields, the record format looks
2588 ** like this:
2589 **
drh7a224de2004-06-02 01:22:02 +00002590 ** ------------------------------------------------------------------------
2591 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2592 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002593 **
drh9cbf3422008-01-17 16:22:13 +00002594 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002595 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002596 **
2597 ** Each type field is a varint representing the serial type of the
2598 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002599 ** hdr-size field is also a varint which is the offset from the beginning
2600 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002601 */
drh856c1032009-06-02 15:21:42 +00002602 nData = 0; /* Number of bytes of data space */
2603 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002604 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002605 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002606 zAffinity = pOp->p4.z;
dan3bc9f742013-08-15 16:18:39 +00002607 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002608 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002609 nField = pOp->p2;
2610 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002611 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002612
drh2b4ded92010-09-27 21:09:31 +00002613 /* Identify the output register */
2614 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2615 pOut = &aMem[pOp->p3];
2616 memAboutToChange(p, pOut);
2617
drh3e6c0602013-12-10 20:53:01 +00002618 /* Apply the requested affinity to all inputs
2619 */
2620 assert( pData0<=pLast );
2621 if( zAffinity ){
2622 pRec = pData0;
2623 do{
drh57bf4a82014-02-17 14:59:22 +00002624 applyAffinity(pRec++, *(zAffinity++), encoding);
2625 assert( zAffinity[0]==0 || pRec<=pLast );
2626 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002627 }
2628
drhf3218fe2004-05-28 08:21:02 +00002629 /* Loop through the elements that will make up the record to figure
2630 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002631 */
drh038b7bc2013-12-09 23:17:22 +00002632 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002633 do{
drh2b4ded92010-09-27 21:09:31 +00002634 assert( memIsValid(pRec) );
drhfacf47a2014-10-13 20:12:47 +00002635 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002636 len = sqlite3VdbeSerialTypeLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002637 if( pRec->flags & MEM_Zero ){
2638 if( nData ){
2639 sqlite3VdbeMemExpandBlob(pRec);
2640 }else{
2641 nZero += pRec->u.nZero;
2642 len -= pRec->u.nZero;
2643 }
2644 }
drhae7e1512007-05-02 16:51:59 +00002645 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002646 testcase( serial_type==127 );
2647 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002648 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002649 }while( (--pRec)>=pData0 );
danielk19773d1bfea2004-05-14 11:00:53 +00002650
drh654858d2014-11-20 02:18:14 +00002651 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2652 ** which determines the total number of bytes in the header. The varint
2653 ** value is the size of the header in bytes including the size varint
2654 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002655 testcase( nHdr==126 );
2656 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002657 if( nHdr<=126 ){
2658 /* The common case */
2659 nHdr += 1;
2660 }else{
2661 /* Rare case of a really large header */
2662 nVarint = sqlite3VarintLen(nHdr);
2663 nHdr += nVarint;
2664 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002665 }
drh038b7bc2013-12-09 23:17:22 +00002666 nByte = nHdr+nData;
drhbb4957f2008-03-20 14:03:29 +00002667 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002668 goto too_big;
2669 }
drhf3218fe2004-05-28 08:21:02 +00002670
danielk1977a7a8e142008-02-13 18:25:27 +00002671 /* Make sure the output register has a buffer large enough to store
2672 ** the new record. The output register (pOp->p3) is not allowed to
2673 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002674 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002675 */
drh322f2852014-09-19 00:43:39 +00002676 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002677 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002678 }
danielk1977a7a8e142008-02-13 18:25:27 +00002679 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002680
2681 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002682 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002683 j = nHdr;
2684 assert( pData0<=pLast );
2685 pRec = pData0;
2686 do{
drhfacf47a2014-10-13 20:12:47 +00002687 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002688 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2689 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002690 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002691 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2692 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002693 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002694 }while( (++pRec)<=pLast );
2695 assert( i==nHdr );
2696 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002697
dan3bc9f742013-08-15 16:18:39 +00002698 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002699 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002700 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002701 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002702 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002703 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002704 }
drh477df4b2008-01-05 18:48:24 +00002705 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002706 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002707 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002708 break;
2709}
2710
danielk1977a5533162009-02-24 10:01:51 +00002711/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002712** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002713**
2714** Store the number of entries (an integer value) in the table or index
2715** opened by cursor P1 in register P2
2716*/
2717#ifndef SQLITE_OMIT_BTREECOUNT
2718case OP_Count: { /* out2-prerelease */
2719 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002720 BtCursor *pCrsr;
2721
2722 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh3da046d2013-11-11 03:24:11 +00002723 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002724 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002725 rc = sqlite3BtreeCount(pCrsr, &nEntry);
danielk1977a5533162009-02-24 10:01:51 +00002726 pOut->u.i = nEntry;
2727 break;
2728}
2729#endif
2730
danielk1977fd7f0452008-12-17 17:30:26 +00002731/* Opcode: Savepoint P1 * * P4 *
2732**
2733** Open, release or rollback the savepoint named by parameter P4, depending
2734** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2735** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2736*/
2737case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002738 int p1; /* Value of P1 operand */
2739 char *zName; /* Name of savepoint */
2740 int nName;
2741 Savepoint *pNew;
2742 Savepoint *pSavepoint;
2743 Savepoint *pTmp;
2744 int iSavepoint;
2745 int ii;
2746
2747 p1 = pOp->p1;
2748 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002749
2750 /* Assert that the p1 parameter is valid. Also that if there is no open
2751 ** transaction, then there cannot be any savepoints.
2752 */
2753 assert( db->pSavepoint==0 || db->autoCommit==0 );
2754 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2755 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2756 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002757 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002758
2759 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002760 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002761 /* A new savepoint cannot be created if there are active write
2762 ** statements (i.e. open read/write incremental blob handles).
2763 */
2764 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2765 "SQL statements in progress");
2766 rc = SQLITE_BUSY;
2767 }else{
drh856c1032009-06-02 15:21:42 +00002768 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002769
drhbe07ec52011-06-03 12:15:26 +00002770#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002771 /* This call is Ok even if this savepoint is actually a transaction
2772 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2773 ** If this is a transaction savepoint being opened, it is guaranteed
2774 ** that the db->aVTrans[] array is empty. */
2775 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002776 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2777 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002778 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002779#endif
dand9495cd2011-04-27 12:08:04 +00002780
danielk1977fd7f0452008-12-17 17:30:26 +00002781 /* Create a new savepoint structure. */
2782 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2783 if( pNew ){
2784 pNew->zName = (char *)&pNew[1];
2785 memcpy(pNew->zName, zName, nName+1);
2786
2787 /* If there is no open transaction, then mark this as a special
2788 ** "transaction savepoint". */
2789 if( db->autoCommit ){
2790 db->autoCommit = 0;
2791 db->isTransactionSavepoint = 1;
2792 }else{
2793 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002794 }
danielk1977fd7f0452008-12-17 17:30:26 +00002795
2796 /* Link the new savepoint into the database handle's list. */
2797 pNew->pNext = db->pSavepoint;
2798 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002799 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002800 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002801 }
2802 }
2803 }else{
drh856c1032009-06-02 15:21:42 +00002804 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002805
2806 /* Find the named savepoint. If there is no such savepoint, then an
2807 ** an error is returned to the user. */
2808 for(
drh856c1032009-06-02 15:21:42 +00002809 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002810 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002811 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002812 ){
2813 iSavepoint++;
2814 }
2815 if( !pSavepoint ){
2816 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2817 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002818 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002819 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002820 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002821 */
2822 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002823 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002824 );
2825 rc = SQLITE_BUSY;
2826 }else{
2827
2828 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002829 ** and this is a RELEASE command, then the current transaction
2830 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002831 */
2832 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2833 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002834 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002835 goto vdbe_return;
2836 }
danielk1977fd7f0452008-12-17 17:30:26 +00002837 db->autoCommit = 1;
2838 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2839 p->pc = pc;
2840 db->autoCommit = 0;
2841 p->rc = rc = SQLITE_BUSY;
2842 goto vdbe_return;
2843 }
danielk197734cf35d2008-12-18 18:31:38 +00002844 db->isTransactionSavepoint = 0;
2845 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002846 }else{
drh47b7fc72014-11-11 01:33:57 +00002847 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00002848 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002849 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00002850 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00002851 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00002852 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2853 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00002854 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00002855 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00002856 }
drh47b7fc72014-11-11 01:33:57 +00002857 }else{
2858 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00002859 }
2860 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002861 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2862 if( rc!=SQLITE_OK ){
2863 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002864 }
danielk1977fd7f0452008-12-17 17:30:26 +00002865 }
drh47b7fc72014-11-11 01:33:57 +00002866 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00002867 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002868 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002869 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002870 }
2871 }
2872
2873 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2874 ** savepoints nested inside of the savepoint being operated on. */
2875 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002876 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002877 db->pSavepoint = pTmp->pNext;
2878 sqlite3DbFree(db, pTmp);
2879 db->nSavepoint--;
2880 }
2881
dan1da40a32009-09-19 17:00:31 +00002882 /* If it is a RELEASE, then destroy the savepoint being operated on
2883 ** too. If it is a ROLLBACK TO, then set the number of deferred
2884 ** constraint violations present in the database to the value stored
2885 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002886 if( p1==SAVEPOINT_RELEASE ){
2887 assert( pSavepoint==db->pSavepoint );
2888 db->pSavepoint = pSavepoint->pNext;
2889 sqlite3DbFree(db, pSavepoint);
2890 if( !isTransaction ){
2891 db->nSavepoint--;
2892 }
dan1da40a32009-09-19 17:00:31 +00002893 }else{
2894 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002895 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002896 }
dand9495cd2011-04-27 12:08:04 +00002897
2898 if( !isTransaction ){
2899 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2900 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2901 }
danielk1977fd7f0452008-12-17 17:30:26 +00002902 }
2903 }
2904
2905 break;
2906}
2907
drh98757152008-01-09 23:04:12 +00002908/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002909**
2910** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002911** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002912** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2913** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002914**
2915** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002916*/
drh9cbf3422008-01-17 16:22:13 +00002917case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002918 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002919 int iRollback;
drh856c1032009-06-02 15:21:42 +00002920 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002921
drh856c1032009-06-02 15:21:42 +00002922 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002923 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002924 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002925 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002926 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002927 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002928 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002929
drh0f198a72012-02-13 16:43:16 +00002930#if 0
drh4f7d3a52013-06-27 23:54:02 +00002931 if( turnOnAC && iRollback && db->nVdbeActive>1 ){
drhad4a4b82008-11-05 16:37:34 +00002932 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002933 ** still running, and a transaction is active, return an error indicating
2934 ** that the other VMs must complete first.
2935 */
drhad4a4b82008-11-05 16:37:34 +00002936 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2937 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002938 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002939 }else
2940#endif
drh4f7d3a52013-06-27 23:54:02 +00002941 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002942 /* If this instruction implements a COMMIT and other VMs are writing
2943 ** return an error indicating that the other VMs must complete first.
2944 */
2945 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2946 "SQL statements in progress");
2947 rc = SQLITE_BUSY;
2948 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002949 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002950 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002951 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002952 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002953 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002954 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002955 }else{
shane7d3846a2008-12-11 02:58:26 +00002956 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002957 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002958 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002959 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002960 p->rc = rc = SQLITE_BUSY;
2961 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002962 }
danielk19771d850a72004-05-31 08:26:49 +00002963 }
danielk1977bd434552009-03-18 10:33:00 +00002964 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002965 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002966 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002967 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002968 }else{
drh900b31e2007-08-28 02:27:51 +00002969 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002970 }
drh900b31e2007-08-28 02:27:51 +00002971 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002972 }else{
drhf089aa42008-07-08 19:34:06 +00002973 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002974 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002975 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002976 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002977
2978 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002979 }
2980 break;
2981}
2982
drhb22f7c82014-02-06 23:56:27 +00002983/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00002984**
drh05a86c52014-02-16 01:55:49 +00002985** Begin a transaction on database P1 if a transaction is not already
2986** active.
2987** If P2 is non-zero, then a write-transaction is started, or if a
2988** read-transaction is already active, it is upgraded to a write-transaction.
2989** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00002990**
drh001bbcb2003-03-19 03:14:00 +00002991** P1 is the index of the database file on which the transaction is
2992** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002993** file used for temporary tables. Indices of 2 or more are used for
2994** attached databases.
drhcabb0812002-09-14 13:47:32 +00002995**
dane0af83a2009-09-08 19:15:01 +00002996** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2997** true (this flag is set if the Vdbe may modify more than one row and may
2998** throw an ABORT exception), a statement transaction may also be opened.
2999** More specifically, a statement transaction is opened iff the database
3000** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003001** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003002** VDBE to be rolled back after an error without having to roll back the
3003** entire transaction. If no error is encountered, the statement transaction
3004** will automatically commit when the VDBE halts.
3005**
drhb22f7c82014-02-06 23:56:27 +00003006** If P5!=0 then this opcode also checks the schema cookie against P3
3007** and the schema generation counter against P4.
3008** The cookie changes its value whenever the database schema changes.
3009** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003010** and that the current process needs to reread the schema. If the schema
3011** cookie in P3 differs from the schema cookie in the database header or
3012** if the schema generation counter in P4 differs from the current
3013** generation counter, then an SQLITE_SCHEMA error is raised and execution
3014** halts. The sqlite3_step() wrapper function might then reprepare the
3015** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003016*/
drh9cbf3422008-01-17 16:22:13 +00003017case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003018 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003019 int iMeta;
3020 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003021
drh1713afb2013-06-28 01:24:57 +00003022 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003023 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003024 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003025 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003026 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3027 rc = SQLITE_READONLY;
3028 goto abort_due_to_error;
3029 }
drh653b82a2009-06-22 11:10:47 +00003030 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003031
danielk197724162fe2004-06-04 06:22:00 +00003032 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003033 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00003034 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00003035 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00003036 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00003037 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003038 }
drh9e9f1bd2009-10-13 15:36:51 +00003039 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003040 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003041 }
dane0af83a2009-09-08 19:15:01 +00003042
3043 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003044 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003045 ){
3046 assert( sqlite3BtreeIsInTrans(pBt) );
3047 if( p->iStatement==0 ){
3048 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3049 db->nStatement++;
3050 p->iStatement = db->nSavepoint + db->nStatement;
3051 }
dana311b802011-04-26 19:21:34 +00003052
drh346506f2011-05-25 01:16:42 +00003053 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003054 if( rc==SQLITE_OK ){
3055 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3056 }
dan1da40a32009-09-19 17:00:31 +00003057
3058 /* Store the current value of the database handles deferred constraint
3059 ** counter. If the statement transaction needs to be rolled back,
3060 ** the value of this counter needs to be restored too. */
3061 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00003062 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003063 }
drhb22f7c82014-02-06 23:56:27 +00003064
drh51a74d42015-02-28 01:04:27 +00003065 /* Gather the schema version number for checking:
3066 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3067 ** each time a query is executed to ensure that the internal cache of the
3068 ** schema used when compiling the SQL query matches the schema of the
3069 ** database against which the compiled query is actually executed.
3070 */
drhb22f7c82014-02-06 23:56:27 +00003071 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3072 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3073 }else{
3074 iGen = iMeta = 0;
3075 }
3076 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3077 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3078 sqlite3DbFree(db, p->zErrMsg);
3079 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3080 /* If the schema-cookie from the database file matches the cookie
3081 ** stored with the in-memory representation of the schema, do
3082 ** not reload the schema from the database file.
3083 **
3084 ** If virtual-tables are in use, this is not just an optimization.
3085 ** Often, v-tables store their data in other SQLite tables, which
3086 ** are queried from within xNext() and other v-table methods using
3087 ** prepared queries. If such a query is out-of-date, we do not want to
3088 ** discard the database schema, as the user code implementing the
3089 ** v-table would have to be ready for the sqlite3_vtab structure itself
3090 ** to be invalidated whenever sqlite3_step() is called from within
3091 ** a v-table method.
3092 */
3093 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3094 sqlite3ResetOneSchema(db, pOp->p1);
3095 }
3096 p->expired = 1;
3097 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003098 }
drh5e00f6c2001-09-13 13:46:56 +00003099 break;
3100}
3101
drhb1fdb2a2008-01-05 04:06:03 +00003102/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003103**
drh9cbf3422008-01-17 16:22:13 +00003104** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003105** P3==1 is the schema version. P3==2 is the database format.
3106** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003107** the main database file and P1==1 is the database file used to store
3108** temporary tables.
drh4a324312001-12-21 14:30:42 +00003109**
drh50e5dad2001-09-15 00:57:28 +00003110** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003111** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003112** executing this instruction.
3113*/
drh4c583122008-01-04 22:01:03 +00003114case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00003115 int iMeta;
drh856c1032009-06-02 15:21:42 +00003116 int iDb;
3117 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003118
drh1713afb2013-06-28 01:24:57 +00003119 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003120 iDb = pOp->p1;
3121 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003122 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003123 assert( iDb>=0 && iDb<db->nDb );
3124 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003125 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003126
danielk1977602b4662009-07-02 07:47:33 +00003127 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00003128 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003129 break;
3130}
3131
drh98757152008-01-09 23:04:12 +00003132/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003133**
drh98757152008-01-09 23:04:12 +00003134** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003135** into cookie number P2 of database P1. P2==1 is the schema version.
3136** P2==2 is the database format. P2==3 is the recommended pager cache
3137** size, and so forth. P1==0 is the main database file and P1==1 is the
3138** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003139**
3140** A transaction must be started before executing this opcode.
3141*/
drh9cbf3422008-01-17 16:22:13 +00003142case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003143 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003144 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003145 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003146 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003147 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003148 pDb = &db->aDb[pOp->p1];
3149 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003150 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003151 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003152 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003153 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003154 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3155 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003156 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003157 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003158 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003159 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003160 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003161 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003162 }
drhfd426c62006-01-30 15:34:22 +00003163 if( pOp->p1==1 ){
3164 /* Invalidate all prepared statements whenever the TEMP database
3165 ** schema is changed. Ticket #1644 */
3166 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003167 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003168 }
drh50e5dad2001-09-15 00:57:28 +00003169 break;
3170}
3171
drh98757152008-01-09 23:04:12 +00003172/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003173** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003174**
drhecdc7532001-09-23 02:35:53 +00003175** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003176** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003177** P3==0 means the main database, P3==1 means the database used for
3178** temporary tables, and P3>1 means used the corresponding attached
3179** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003180** values need not be contiguous but all P1 values should be small integers.
3181** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003182**
drh98757152008-01-09 23:04:12 +00003183** If P5!=0 then use the content of register P2 as the root page, not
3184** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003185**
drhb19a2bc2001-09-16 00:13:26 +00003186** There will be a read lock on the database whenever there is an
3187** open cursor. If the database was unlocked prior to this instruction
3188** then a read lock is acquired as part of this instruction. A read
3189** lock allows other processes to read the database but prohibits
3190** any other process from modifying the database. The read lock is
3191** released when all cursors are closed. If this instruction attempts
3192** to get a read lock but fails, the script terminates with an
3193** SQLITE_BUSY error code.
3194**
danielk1977d336e222009-02-20 10:58:41 +00003195** The P4 value may be either an integer (P4_INT32) or a pointer to
3196** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3197** structure, then said structure defines the content and collating
3198** sequence of the index being opened. Otherwise, if P4 is an integer
3199** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003200**
drh35263192014-07-22 20:02:19 +00003201** See also: OpenWrite, ReopenIdx
3202*/
3203/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3204** Synopsis: root=P2 iDb=P3
3205**
3206** The ReopenIdx opcode works exactly like ReadOpen except that it first
3207** checks to see if the cursor on P1 is already open with a root page
3208** number of P2 and if it is this opcode becomes a no-op. In other words,
3209** if the cursor is already open, do not reopen it.
3210**
3211** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3212** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3213** every other ReopenIdx or OpenRead for the same cursor number.
3214**
3215** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003216*/
drh98757152008-01-09 23:04:12 +00003217/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003218** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003219**
3220** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003221** page is P2. Or if P5!=0 use the content of register P2 to find the
3222** root page.
drhecdc7532001-09-23 02:35:53 +00003223**
danielk1977d336e222009-02-20 10:58:41 +00003224** The P4 value may be either an integer (P4_INT32) or a pointer to
3225** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3226** structure, then said structure defines the content and collating
3227** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003228** value, it is set to the number of columns in the table, or to the
3229** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003230**
drh001bbcb2003-03-19 03:14:00 +00003231** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003232** in read/write mode. For a given table, there can be one or more read-only
3233** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003234**
drh001bbcb2003-03-19 03:14:00 +00003235** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003236*/
drh35263192014-07-22 20:02:19 +00003237case OP_ReopenIdx: {
3238 VdbeCursor *pCur;
3239
3240 assert( pOp->p5==0 );
3241 assert( pOp->p4type==P4_KEYINFO );
3242 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003243 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003244 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3245 break;
3246 }
3247 /* If the cursor is not currently open or is open on a different
3248 ** index, then fall through into OP_OpenRead to force a reopen */
3249}
drh9cbf3422008-01-17 16:22:13 +00003250case OP_OpenRead:
3251case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003252 int nField;
3253 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003254 int p2;
3255 int iDb;
drhf57b3392001-10-08 13:22:32 +00003256 int wrFlag;
3257 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003258 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003259 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003260
dan428c2182012-08-06 18:50:11 +00003261 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3262 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
drh1713afb2013-06-28 01:24:57 +00003263 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003264 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3265 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003266
danfa401de2009-10-16 14:55:03 +00003267 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003268 rc = SQLITE_ABORT_ROLLBACK;
danfa401de2009-10-16 14:55:03 +00003269 break;
3270 }
3271
drh856c1032009-06-02 15:21:42 +00003272 nField = 0;
3273 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003274 p2 = pOp->p2;
3275 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003276 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003277 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003278 pDb = &db->aDb[iDb];
3279 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003280 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003281 if( pOp->opcode==OP_OpenWrite ){
3282 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003283 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003284 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3285 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003286 }
3287 }else{
3288 wrFlag = 0;
3289 }
dan428c2182012-08-06 18:50:11 +00003290 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003291 assert( p2>0 );
dan3bc9f742013-08-15 16:18:39 +00003292 assert( p2<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003293 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003294 assert( memIsValid(pIn2) );
3295 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003296 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003297 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003298 /* The p2 value always comes from a prior OP_CreateTable opcode and
3299 ** that opcode will always set the p2 value to 2 or more or else fail.
3300 ** If there were a failure, the prepared statement would have halted
3301 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003302 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003303 rc = SQLITE_CORRUPT_BKPT;
3304 goto abort_due_to_error;
3305 }
drh5edc3122001-09-13 21:53:09 +00003306 }
danielk1977d336e222009-02-20 10:58:41 +00003307 if( pOp->p4type==P4_KEYINFO ){
3308 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003309 assert( pKeyInfo->enc==ENC(db) );
3310 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003311 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003312 }else if( pOp->p4type==P4_INT32 ){
3313 nField = pOp->p4.i;
3314 }
drh653b82a2009-06-22 11:10:47 +00003315 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003316 assert( nField>=0 );
3317 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drh653b82a2009-06-22 11:10:47 +00003318 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003319 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003320 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003321 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003322 pCur->pgnoRoot = p2;
danielk1977d336e222009-02-20 10:58:41 +00003323 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3324 pCur->pKeyInfo = pKeyInfo;
dan428c2182012-08-06 18:50:11 +00003325 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3326 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
danielk1977d336e222009-02-20 10:58:41 +00003327
drh14da87f2013-11-20 21:51:33 +00003328 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003329 ** SQLite used to check if the root-page flags were sane at this point
3330 ** and report database corruption if they were not, but this check has
3331 ** since moved into the btree layer. */
3332 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drh5e00f6c2001-09-13 13:46:56 +00003333 break;
3334}
3335
drh2a5d9902011-08-26 00:34:45 +00003336/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003337** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003338**
drhb9bb7c12006-06-11 23:41:55 +00003339** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003340** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003341** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003342** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003343**
drh25d3adb2010-04-05 15:11:08 +00003344** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003345** The cursor points to a BTree table if P4==0 and to a BTree index
3346** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003347** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003348**
drh2a5d9902011-08-26 00:34:45 +00003349** The P5 parameter can be a mask of the BTREE_* flags defined
3350** in btree.h. These flags control aspects of the operation of
3351** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3352** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003353*/
drha21a64d2010-04-06 22:33:55 +00003354/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003355** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003356**
3357** This opcode works the same as OP_OpenEphemeral. It has a
3358** different name to distinguish its use. Tables created using
3359** by this opcode will be used for automatically created transient
3360** indices in joins.
3361*/
3362case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003363case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003364 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003365 KeyInfo *pKeyInfo;
3366
drhd4187c72010-08-30 22:15:45 +00003367 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003368 SQLITE_OPEN_READWRITE |
3369 SQLITE_OPEN_CREATE |
3370 SQLITE_OPEN_EXCLUSIVE |
3371 SQLITE_OPEN_DELETEONCLOSE |
3372 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003373 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003374 assert( pOp->p2>=0 );
drh653b82a2009-06-22 11:10:47 +00003375 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003376 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003377 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003378 pCx->isEphemeral = 1;
dan689ab892011-08-12 15:02:00 +00003379 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3380 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003381 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003382 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003383 }
3384 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003385 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003386 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003387 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003388 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003389 */
drh41e13e12013-11-07 14:09:39 +00003390 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003391 int pgno;
drh66a51672008-01-03 00:01:23 +00003392 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003393 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003394 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003395 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003396 assert( pKeyInfo->db==db );
3397 assert( pKeyInfo->enc==ENC(db) );
3398 pCx->pKeyInfo = pKeyInfo;
3399 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
drhc6b52df2002-01-04 03:09:29 +00003400 }
drhf0863fe2005-06-12 21:35:51 +00003401 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003402 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003403 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003404 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003405 }
drh5e00f6c2001-09-13 13:46:56 +00003406 }
drhd4187c72010-08-30 22:15:45 +00003407 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003408 break;
3409}
3410
danfad9f9a2014-04-01 18:41:51 +00003411/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003412**
3413** This opcode works like OP_OpenEphemeral except that it opens
3414** a transient index that is specifically designed to sort large
3415** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003416**
3417** If argument P3 is non-zero, then it indicates that the sorter may
3418** assume that a stable sort considering the first P3 fields of each
3419** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003420*/
drhca892a72011-09-03 00:17:51 +00003421case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003422 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003423
drh399af1d2013-11-20 17:25:55 +00003424 assert( pOp->p1>=0 );
3425 assert( pOp->p2>=0 );
dan5134d132011-09-02 10:31:11 +00003426 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3427 if( pCx==0 ) goto no_mem;
3428 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003429 assert( pCx->pKeyInfo->db==db );
3430 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003431 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003432 break;
3433}
3434
dan78d58432014-03-25 15:04:07 +00003435/* Opcode: SequenceTest P1 P2 * * *
3436** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3437**
3438** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3439** to P2. Regardless of whether or not the jump is taken, increment the
3440** the sequence value.
3441*/
3442case OP_SequenceTest: {
3443 VdbeCursor *pC;
3444 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3445 pC = p->apCsr[pOp->p1];
3446 assert( pC->pSorter );
3447 if( (pC->seqCount++)==0 ){
3448 pc = pOp->p2 - 1;
3449 }
3450 break;
3451}
3452
drh5f612292014-02-08 23:20:32 +00003453/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003454** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003455**
3456** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003457** row of data. The content of that one row is the content of memory
3458** register P2. In other words, cursor P1 becomes an alias for the
3459** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003460**
drh2d8d7ce2010-02-15 15:17:05 +00003461** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003462** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003463** individual columns using the OP_Column opcode. The OP_Column opcode
3464** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003465**
3466** P3 is the number of fields in the records that will be stored by
3467** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003468*/
drh9cbf3422008-01-17 16:22:13 +00003469case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003470 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003471
drh653b82a2009-06-22 11:10:47 +00003472 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003473 assert( pOp->p3>=0 );
drh653b82a2009-06-22 11:10:47 +00003474 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003475 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003476 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003477 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003478 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003479 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003480 break;
3481}
3482
drh98757152008-01-09 23:04:12 +00003483/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003484**
3485** Close a cursor previously opened as P1. If P1 is not
3486** currently open, this instruction is a no-op.
3487*/
drh9cbf3422008-01-17 16:22:13 +00003488case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003489 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3490 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3491 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003492 break;
3493}
3494
drh8af3f772014-07-25 18:01:06 +00003495/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003496** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003497**
danielk1977b790c6c2008-04-18 10:25:24 +00003498** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003499** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003500** to an SQL index, then P3 is the first in an array of P4 registers
3501** that are used as an unpacked index key.
3502**
3503** Reposition cursor P1 so that it points to the smallest entry that
3504** is greater than or equal to the key value. If there are no records
3505** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003506**
drh8af3f772014-07-25 18:01:06 +00003507** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003508** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003509** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003510**
drh935850e2014-05-24 17:15:15 +00003511** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003512*/
drh8af3f772014-07-25 18:01:06 +00003513/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003514** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003515**
danielk1977b790c6c2008-04-18 10:25:24 +00003516** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003517** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003518** to an SQL index, then P3 is the first in an array of P4 registers
3519** that are used as an unpacked index key.
3520**
3521** Reposition cursor P1 so that it points to the smallest entry that
3522** is greater than the key value. If there are no records greater than
3523** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003524**
drh8af3f772014-07-25 18:01:06 +00003525** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003526** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003527** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003528**
drh935850e2014-05-24 17:15:15 +00003529** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003530*/
drh8af3f772014-07-25 18:01:06 +00003531/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003532** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003533**
danielk1977b790c6c2008-04-18 10:25:24 +00003534** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003535** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003536** to an SQL index, then P3 is the first in an array of P4 registers
3537** that are used as an unpacked index key.
3538**
3539** Reposition cursor P1 so that it points to the largest entry that
3540** is less than the key value. If there are no records less than
3541** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003542**
drh8af3f772014-07-25 18:01:06 +00003543** This opcode leaves the cursor configured to move in reverse order,
3544** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003545** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003546**
drh935850e2014-05-24 17:15:15 +00003547** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003548*/
drh8af3f772014-07-25 18:01:06 +00003549/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003550** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003551**
danielk1977b790c6c2008-04-18 10:25:24 +00003552** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003553** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003554** to an SQL index, then P3 is the first in an array of P4 registers
3555** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003556**
danielk1977b790c6c2008-04-18 10:25:24 +00003557** Reposition cursor P1 so that it points to the largest entry that
3558** is less than or equal to the key value. If there are no records
3559** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003560**
drh8af3f772014-07-25 18:01:06 +00003561** This opcode leaves the cursor configured to move in reverse order,
3562** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003563** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003564**
drh935850e2014-05-24 17:15:15 +00003565** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003566*/
drh4a1d3652014-02-14 15:13:36 +00003567case OP_SeekLT: /* jump, in3 */
3568case OP_SeekLE: /* jump, in3 */
3569case OP_SeekGE: /* jump, in3 */
3570case OP_SeekGT: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003571 int res;
3572 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003573 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003574 UnpackedRecord r;
3575 int nField;
3576 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003577
drh653b82a2009-06-22 11:10:47 +00003578 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003579 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003580 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003581 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003582 assert( pC->pseudoTableReg==0 );
drh4a1d3652014-02-14 15:13:36 +00003583 assert( OP_SeekLE == OP_SeekLT+1 );
3584 assert( OP_SeekGE == OP_SeekLT+2 );
3585 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003586 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00003587 assert( pC->pCursor!=0 );
3588 oc = pOp->opcode;
3589 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003590#ifdef SQLITE_DEBUG
3591 pC->seekOp = pOp->opcode;
3592#endif
drh3da046d2013-11-11 03:24:11 +00003593 if( pC->isTable ){
3594 /* The input value in P3 might be of any type: integer, real, string,
3595 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003596 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003597 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003598 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003599 applyNumericAffinity(pIn3, 0);
3600 }
drh3da046d2013-11-11 03:24:11 +00003601 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003602
drh3da046d2013-11-11 03:24:11 +00003603 /* If the P3 value could not be converted into an integer without
3604 ** loss of information, then special processing is required... */
3605 if( (pIn3->flags & MEM_Int)==0 ){
3606 if( (pIn3->flags & MEM_Real)==0 ){
3607 /* If the P3 value cannot be converted into any kind of a number,
3608 ** then the seek is not possible, so jump to P2 */
drh688852a2014-02-17 22:40:43 +00003609 pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
drh3da046d2013-11-11 03:24:11 +00003610 break;
3611 }
drh959403f2008-12-12 17:56:16 +00003612
danaa1776f2013-11-26 18:22:59 +00003613 /* If the approximation iKey is larger than the actual real search
3614 ** term, substitute >= for > and < for <=. e.g. if the search term
3615 ** is 4.9 and the integer approximation 5:
3616 **
3617 ** (x > 4.9) -> (x >= 5)
3618 ** (x <= 4.9) -> (x < 5)
3619 */
drh74eaba42014-09-18 17:52:15 +00003620 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003621 assert( OP_SeekGE==(OP_SeekGT-1) );
3622 assert( OP_SeekLT==(OP_SeekLE-1) );
3623 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3624 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003625 }
3626
3627 /* If the approximation iKey is smaller than the actual real search
3628 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003629 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003630 assert( OP_SeekLE==(OP_SeekLT+1) );
3631 assert( OP_SeekGT==(OP_SeekGE+1) );
3632 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3633 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003634 }
drh3da046d2013-11-11 03:24:11 +00003635 }
3636 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003637 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003638 if( rc!=SQLITE_OK ){
3639 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003640 }
drhaa736092009-06-22 00:55:30 +00003641 }else{
drh3da046d2013-11-11 03:24:11 +00003642 nField = pOp->p4.i;
3643 assert( pOp->p4type==P4_INT32 );
3644 assert( nField>0 );
3645 r.pKeyInfo = pC->pKeyInfo;
3646 r.nField = (u16)nField;
3647
3648 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003649 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003650 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003651 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003652 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003653 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003654 */
dan1fed5da2014-02-25 21:01:25 +00003655 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3656 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3657 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3658 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3659 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003660
3661 r.aMem = &aMem[pOp->p3];
3662#ifdef SQLITE_DEBUG
3663 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3664#endif
3665 ExpandBlob(r.aMem);
3666 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3667 if( rc!=SQLITE_OK ){
3668 goto abort_due_to_error;
3669 }
drh3da046d2013-11-11 03:24:11 +00003670 }
3671 pC->deferredMoveto = 0;
3672 pC->cacheStatus = CACHE_STALE;
3673#ifdef SQLITE_TEST
3674 sqlite3_search_count++;
3675#endif
drh4a1d3652014-02-14 15:13:36 +00003676 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3677 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003678 res = 0;
drh3da046d2013-11-11 03:24:11 +00003679 rc = sqlite3BtreeNext(pC->pCursor, &res);
3680 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003681 }else{
3682 res = 0;
3683 }
3684 }else{
drh4a1d3652014-02-14 15:13:36 +00003685 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3686 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003687 res = 0;
drh3da046d2013-11-11 03:24:11 +00003688 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3689 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003690 }else{
3691 /* res might be negative because the table is empty. Check to
3692 ** see if this is the case.
3693 */
3694 res = sqlite3BtreeEof(pC->pCursor);
3695 }
3696 }
3697 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003698 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003699 if( res ){
danielk1977f7b9d662008-06-23 18:49:43 +00003700 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003701 }
drh5e00f6c2001-09-13 13:46:56 +00003702 break;
3703}
3704
drh959403f2008-12-12 17:56:16 +00003705/* Opcode: Seek P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003706** Synopsis: intkey=r[P2]
drh959403f2008-12-12 17:56:16 +00003707**
3708** P1 is an open table cursor and P2 is a rowid integer. Arrange
3709** for P1 to move so that it points to the rowid given by P2.
3710**
3711** This is actually a deferred seek. Nothing actually happens until
3712** the cursor is used to read a record. That way, if no reads
3713** occur, no unnecessary I/O happens.
3714*/
3715case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003716 VdbeCursor *pC;
3717
drh653b82a2009-06-22 11:10:47 +00003718 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3719 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003720 assert( pC!=0 );
drh3da046d2013-11-11 03:24:11 +00003721 assert( pC->pCursor!=0 );
3722 assert( pC->isTable );
3723 pC->nullRow = 0;
3724 pIn2 = &aMem[pOp->p2];
3725 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
drh3da046d2013-11-11 03:24:11 +00003726 pC->deferredMoveto = 1;
drh959403f2008-12-12 17:56:16 +00003727 break;
3728}
3729
3730
drh8cff69d2009-11-12 19:59:44 +00003731/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003732** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003733**
drh8cff69d2009-11-12 19:59:44 +00003734** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3735** P4>0 then register P3 is the first of P4 registers that form an unpacked
3736** record.
3737**
3738** Cursor P1 is on an index btree. If the record identified by P3 and P4
3739** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003740** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003741**
drhcefc87f2014-08-01 01:40:33 +00003742** This operation leaves the cursor in a state where it can be
3743** advanced in the forward direction. The Next instruction will work,
3744** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003745**
drh6f225d02013-10-26 13:36:51 +00003746** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003747*/
drh8cff69d2009-11-12 19:59:44 +00003748/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003749** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003750**
drh8cff69d2009-11-12 19:59:44 +00003751** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3752** P4>0 then register P3 is the first of P4 registers that form an unpacked
3753** record.
3754**
3755** Cursor P1 is on an index btree. If the record identified by P3 and P4
3756** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3757** does contain an entry whose prefix matches the P3/P4 record then control
3758** falls through to the next instruction and P1 is left pointing at the
3759** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003760**
drh8af3f772014-07-25 18:01:06 +00003761** This operation leaves the cursor in a state where it cannot be
3762** advanced in either direction. In other words, the Next and Prev
3763** opcodes do not work after this operation.
3764**
drh6f225d02013-10-26 13:36:51 +00003765** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003766*/
drh6f225d02013-10-26 13:36:51 +00003767/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003768** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003769**
3770** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3771** P4>0 then register P3 is the first of P4 registers that form an unpacked
3772** record.
3773**
3774** Cursor P1 is on an index btree. If the record identified by P3 and P4
3775** contains any NULL value, jump immediately to P2. If all terms of the
3776** record are not-NULL then a check is done to determine if any row in the
3777** P1 index btree has a matching key prefix. If there are no matches, jump
3778** immediately to P2. If there is a match, fall through and leave the P1
3779** cursor pointing to the matching row.
3780**
3781** This opcode is similar to OP_NotFound with the exceptions that the
3782** branch is always taken if any part of the search key input is NULL.
3783**
drh8af3f772014-07-25 18:01:06 +00003784** This operation leaves the cursor in a state where it cannot be
3785** advanced in either direction. In other words, the Next and Prev
3786** opcodes do not work after this operation.
3787**
drh6f225d02013-10-26 13:36:51 +00003788** See also: NotFound, Found, NotExists
3789*/
3790case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003791case OP_NotFound: /* jump, in3 */
3792case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003793 int alreadyExists;
drh6f225d02013-10-26 13:36:51 +00003794 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003795 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003796 int res;
dan03e9cfc2011-09-05 14:20:27 +00003797 char *pFree;
drh856c1032009-06-02 15:21:42 +00003798 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003799 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003800 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003801
dan0ff297e2009-09-25 17:03:14 +00003802#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003803 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003804#endif
3805
drhaa736092009-06-22 00:55:30 +00003806 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003807 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003808 pC = p->apCsr[pOp->p1];
3809 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003810#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003811 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003812#endif
drh3c657212009-11-17 23:59:58 +00003813 pIn3 = &aMem[pOp->p3];
drh3da046d2013-11-11 03:24:11 +00003814 assert( pC->pCursor!=0 );
3815 assert( pC->isTable==0 );
drha9ab4812013-12-11 11:00:44 +00003816 pFree = 0; /* Not needed. Only used to suppress a compiler warning. */
drh3da046d2013-11-11 03:24:11 +00003817 if( pOp->p4.i>0 ){
3818 r.pKeyInfo = pC->pKeyInfo;
3819 r.nField = (u16)pOp->p4.i;
3820 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003821 for(ii=0; ii<r.nField; ii++){
3822 assert( memIsValid(&r.aMem[ii]) );
3823 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003824#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003825 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003826#endif
drh826af372014-02-08 19:12:21 +00003827 }
drh3da046d2013-11-11 03:24:11 +00003828 pIdxKey = &r;
3829 }else{
3830 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3831 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00003832 );
drh3da046d2013-11-11 03:24:11 +00003833 if( pIdxKey==0 ) goto no_mem;
3834 assert( pIn3->flags & MEM_Blob );
danb391b942014-11-07 14:41:11 +00003835 ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00003836 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh3da046d2013-11-11 03:24:11 +00003837 }
dan1fed5da2014-02-25 21:01:25 +00003838 pIdxKey->default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00003839 if( pOp->opcode==OP_NoConflict ){
3840 /* For the OP_NoConflict opcode, take the jump if any of the
3841 ** input fields are NULL, since any key with a NULL will not
3842 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00003843 for(ii=0; ii<pIdxKey->nField; ii++){
3844 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drh688852a2014-02-17 22:40:43 +00003845 pc = pOp->p2 - 1; VdbeBranchTaken(1,2);
drh3da046d2013-11-11 03:24:11 +00003846 break;
drh6f225d02013-10-26 13:36:51 +00003847 }
3848 }
drh5e00f6c2001-09-13 13:46:56 +00003849 }
drh3da046d2013-11-11 03:24:11 +00003850 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3851 if( pOp->p4.i==0 ){
3852 sqlite3DbFree(db, pFree);
3853 }
3854 if( rc!=SQLITE_OK ){
3855 break;
3856 }
drh1fd522f2013-11-21 00:10:35 +00003857 pC->seekResult = res;
drh3da046d2013-11-11 03:24:11 +00003858 alreadyExists = (res==0);
3859 pC->nullRow = 1-alreadyExists;
3860 pC->deferredMoveto = 0;
3861 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003862 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00003863 VdbeBranchTaken(alreadyExists!=0,2);
drh5e00f6c2001-09-13 13:46:56 +00003864 if( alreadyExists ) pc = pOp->p2 - 1;
3865 }else{
drh688852a2014-02-17 22:40:43 +00003866 VdbeBranchTaken(alreadyExists==0,2);
drh5e00f6c2001-09-13 13:46:56 +00003867 if( !alreadyExists ) pc = pOp->p2 - 1;
3868 }
drh5e00f6c2001-09-13 13:46:56 +00003869 break;
3870}
3871
drh9cbf3422008-01-17 16:22:13 +00003872/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003873** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00003874**
drh261c02d2013-10-25 14:46:15 +00003875** P1 is the index of a cursor open on an SQL table btree (with integer
3876** keys). P3 is an integer rowid. If P1 does not contain a record with
3877** rowid P3 then jump immediately to P2. If P1 does contain a record
3878** with rowid P3 then leave the cursor pointing at that record and fall
3879** through to the next instruction.
drh6b125452002-01-28 15:53:03 +00003880**
drh261c02d2013-10-25 14:46:15 +00003881** The OP_NotFound opcode performs the same operation on index btrees
3882** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00003883**
drh8af3f772014-07-25 18:01:06 +00003884** This opcode leaves the cursor in a state where it cannot be advanced
3885** in either direction. In other words, the Next and Prev opcodes will
3886** not work following this opcode.
3887**
drh11e85272013-10-26 15:40:48 +00003888** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00003889*/
drh9cbf3422008-01-17 16:22:13 +00003890case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003891 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003892 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003893 int res;
3894 u64 iKey;
3895
drh3c657212009-11-17 23:59:58 +00003896 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003897 assert( pIn3->flags & MEM_Int );
3898 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3899 pC = p->apCsr[pOp->p1];
3900 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003901#ifdef SQLITE_DEBUG
3902 pC->seekOp = 0;
3903#endif
drhaa736092009-06-22 00:55:30 +00003904 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003905 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003906 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00003907 assert( pCrsr!=0 );
3908 res = 0;
3909 iKey = pIn3->u.i;
3910 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003911 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003912 pC->nullRow = 0;
3913 pC->cacheStatus = CACHE_STALE;
3914 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00003915 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003916 if( res!=0 ){
danielk1977f7b9d662008-06-23 18:49:43 +00003917 pc = pOp->p2 - 1;
drh6b125452002-01-28 15:53:03 +00003918 }
drh1fd522f2013-11-21 00:10:35 +00003919 pC->seekResult = res;
drh6b125452002-01-28 15:53:03 +00003920 break;
3921}
3922
drh4c583122008-01-04 22:01:03 +00003923/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00003924** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00003925**
drh4c583122008-01-04 22:01:03 +00003926** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003927** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003928** The sequence number on the cursor is incremented after this
3929** instruction.
drh4db38a72005-09-01 12:16:28 +00003930*/
drh4c583122008-01-04 22:01:03 +00003931case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003932 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3933 assert( p->apCsr[pOp->p1]!=0 );
3934 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003935 break;
3936}
3937
3938
drh98757152008-01-09 23:04:12 +00003939/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003940** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00003941**
drhf0863fe2005-06-12 21:35:51 +00003942** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003943** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003944** table that cursor P1 points to. The new record number is written
3945** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003946**
dan76d462e2009-08-30 11:42:51 +00003947** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3948** the largest previously generated record number. No new record numbers are
3949** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003950** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003951** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003952** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003953*/
drh4c583122008-01-04 22:01:03 +00003954case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003955 i64 v; /* The new rowid */
3956 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3957 int res; /* Result of an sqlite3BtreeLast() */
3958 int cnt; /* Counter to limit the number of searches */
3959 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003960 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003961
drh856c1032009-06-02 15:21:42 +00003962 v = 0;
3963 res = 0;
drhaa736092009-06-22 00:55:30 +00003964 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3965 pC = p->apCsr[pOp->p1];
3966 assert( pC!=0 );
3967 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003968 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003969 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003970 /* The next rowid or record number (different terms for the same
3971 ** thing) is obtained in a two-step algorithm.
3972 **
3973 ** First we attempt to find the largest existing rowid and add one
3974 ** to that. But if the largest existing rowid is already the maximum
3975 ** positive integer, we have to fall through to the second
3976 ** probabilistic algorithm
3977 **
3978 ** The second algorithm is to select a rowid at random and see if
3979 ** it already exists in the table. If it does not exist, we have
3980 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003981 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003982 */
drhaa736092009-06-22 00:55:30 +00003983 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003984
drh75f86a42005-02-17 00:03:06 +00003985#ifdef SQLITE_32BIT_ROWID
3986# define MAX_ROWID 0x7fffffff
3987#else
drhfe2093d2005-01-20 22:48:47 +00003988 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3989 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3990 ** to provide the constant while making all compilers happy.
3991 */
danielk197764202cf2008-11-17 15:31:47 +00003992# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003993#endif
drhfe2093d2005-01-20 22:48:47 +00003994
drh5cf8e8c2002-02-19 22:42:05 +00003995 if( !pC->useRandomRowid ){
drhe0670b62014-02-12 21:31:12 +00003996 rc = sqlite3BtreeLast(pC->pCursor, &res);
3997 if( rc!=SQLITE_OK ){
3998 goto abort_due_to_error;
3999 }
4000 if( res ){
4001 v = 1; /* IMP: R-61914-48074 */
4002 }else{
4003 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
4004 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4005 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4006 if( v>=MAX_ROWID ){
4007 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004008 }else{
drhe0670b62014-02-12 21:31:12 +00004009 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004010 }
drh3fc190c2001-09-14 03:24:23 +00004011 }
drhe0670b62014-02-12 21:31:12 +00004012 }
drh205f48e2004-11-05 00:43:11 +00004013
4014#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004015 if( pOp->p3 ){
4016 /* Assert that P3 is a valid memory cell. */
4017 assert( pOp->p3>0 );
4018 if( p->pFrame ){
4019 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004020 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004021 assert( pOp->p3<=pFrame->nMem );
4022 pMem = &pFrame->aMem[pOp->p3];
4023 }else{
4024 /* Assert that P3 is a valid memory cell. */
4025 assert( pOp->p3<=(p->nMem-p->nCursor) );
4026 pMem = &aMem[pOp->p3];
4027 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004028 }
drhe0670b62014-02-12 21:31:12 +00004029 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004030
drhe0670b62014-02-12 21:31:12 +00004031 REGISTER_TRACE(pOp->p3, pMem);
4032 sqlite3VdbeMemIntegerify(pMem);
4033 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4034 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4035 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4036 goto abort_due_to_error;
4037 }
4038 if( v<pMem->u.i+1 ){
4039 v = pMem->u.i + 1;
4040 }
4041 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004042 }
drhe0670b62014-02-12 21:31:12 +00004043#endif
drh5cf8e8c2002-02-19 22:42:05 +00004044 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004045 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004046 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004047 ** engine starts picking positive candidate ROWIDs at random until
4048 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004049 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4050 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004051 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004052 do{
4053 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004054 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drh2c4dc632014-09-25 12:31:28 +00004055 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004056 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004057 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004058 && (++cnt<100));
drhaa736092009-06-22 00:55:30 +00004059 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00004060 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004061 goto abort_due_to_error;
4062 }
drh748a52c2010-09-01 11:50:08 +00004063 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004064 }
drha11846b2004-01-07 18:52:56 +00004065 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004066 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004067 }
drh4c583122008-01-04 22:01:03 +00004068 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004069 break;
4070}
4071
danielk19771f4aa332008-01-03 09:51:55 +00004072/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004073** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004074**
jplyon5a564222003-06-02 06:15:58 +00004075** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004076** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004077** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004078** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004079** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004080**
danielk19771f4aa332008-01-03 09:51:55 +00004081** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4082** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004083** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004084** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004085**
drh3e9ca092009-09-08 01:14:48 +00004086** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4087** the last seek operation (OP_NotExists) was a success, then this
4088** operation will not attempt to find the appropriate row before doing
4089** the insert but will instead overwrite the row that the cursor is
4090** currently pointing to. Presumably, the prior OP_NotExists opcode
4091** has already positioned the cursor correctly. This is an optimization
4092** that boosts performance by avoiding redundant seeks.
4093**
4094** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4095** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4096** is part of an INSERT operation. The difference is only important to
4097** the update hook.
4098**
drh66a51672008-01-03 00:01:23 +00004099** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004100** may be NULL. If it is not NULL, then the update-hook
4101** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4102**
drh93aed5a2008-01-16 17:46:38 +00004103** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4104** allocated, then ownership of P2 is transferred to the pseudo-cursor
4105** and register P2 becomes ephemeral. If the cursor is changed, the
4106** value of register P2 will then change. Make sure this does not
4107** cause any problems.)
4108**
drhf0863fe2005-06-12 21:35:51 +00004109** This instruction only works on tables. The equivalent instruction
4110** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004111*/
drhe05c9292009-10-29 13:48:10 +00004112/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004113** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004114**
4115** This works exactly like OP_Insert except that the key is the
4116** integer value P3, not the value of the integer stored in register P3.
4117*/
4118case OP_Insert:
4119case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004120 Mem *pData; /* MEM cell holding data for the record to be inserted */
4121 Mem *pKey; /* MEM cell holding key for the record */
4122 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4123 VdbeCursor *pC; /* Cursor to table into which insert is written */
4124 int nZero; /* Number of zero-bytes to append */
drh1fd522f2013-11-21 00:10:35 +00004125 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
drh3e9ca092009-09-08 01:14:48 +00004126 const char *zDb; /* database name - used by the update hook */
4127 const char *zTbl; /* Table name - used by the opdate hook */
4128 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004129
drha6c2ed92009-11-14 23:22:23 +00004130 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004131 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004132 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004133 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004134 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004135 assert( pC->pCursor!=0 );
4136 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004137 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004138 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004139
drhe05c9292009-10-29 13:48:10 +00004140 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004141 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004142 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004143 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004144 REGISTER_TRACE(pOp->p3, pKey);
4145 iKey = pKey->u.i;
4146 }else{
4147 assert( pOp->opcode==OP_InsertInt );
4148 iKey = pOp->p3;
4149 }
4150
drha05a7222008-01-19 03:35:58 +00004151 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004152 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004153 if( pData->flags & MEM_Null ){
4154 pData->z = 0;
4155 pData->n = 0;
4156 }else{
4157 assert( pData->flags & (MEM_Blob|MEM_Str) );
4158 }
drh3e9ca092009-09-08 01:14:48 +00004159 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4160 if( pData->flags & MEM_Zero ){
4161 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004162 }else{
drh3e9ca092009-09-08 01:14:48 +00004163 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004164 }
drh3e9ca092009-09-08 01:14:48 +00004165 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4166 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004167 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004168 );
drha05a7222008-01-19 03:35:58 +00004169 pC->deferredMoveto = 0;
4170 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004171
drha05a7222008-01-19 03:35:58 +00004172 /* Invoke the update-hook if required. */
4173 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004174 zDb = db->aDb[pC->iDb].zName;
4175 zTbl = pOp->p4.z;
4176 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004177 assert( pC->isTable );
4178 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4179 assert( pC->iDb>=0 );
4180 }
drh5e00f6c2001-09-13 13:46:56 +00004181 break;
4182}
4183
drh98757152008-01-09 23:04:12 +00004184/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004185**
drh5edc3122001-09-13 21:53:09 +00004186** Delete the record at which the P1 cursor is currently pointing.
4187**
4188** The cursor will be left pointing at either the next or the previous
4189** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004190** the next Next instruction will be a no-op. Hence it is OK to delete
drhbc5cf382014-08-06 01:08:07 +00004191** a record from within a Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004192**
rdcb0c374f2004-02-20 22:53:38 +00004193** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004194** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004195**
drh91fd4d42008-01-19 20:11:25 +00004196** P1 must not be pseudo-table. It has to be a real table with
4197** multiple rows.
4198**
4199** If P4 is not NULL, then it is the name of the table that P1 is
4200** pointing to. The update hook will be invoked, if it exists.
4201** If P4 is not NULL then the P1 cursor must have been positioned
4202** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004203*/
drh9cbf3422008-01-17 16:22:13 +00004204case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004205 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004206
drh653b82a2009-06-22 11:10:47 +00004207 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4208 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004209 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004210 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
drh9a65f2c2009-06-22 19:05:40 +00004211 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004212
drhb53a5a92014-10-12 22:37:22 +00004213#ifdef SQLITE_DEBUG
4214 /* The seek operation that positioned the cursor prior to OP_Delete will
4215 ** have also set the pC->movetoTarget field to the rowid of the row that
4216 ** is being deleted */
4217 if( pOp->p4.z && pC->isTable ){
4218 i64 iKey = 0;
4219 sqlite3BtreeKeySize(pC->pCursor, &iKey);
4220 assert( pC->movetoTarget==iKey );
4221 }
4222#endif
4223
drh91fd4d42008-01-19 20:11:25 +00004224 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004225 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004226
drh91fd4d42008-01-19 20:11:25 +00004227 /* Invoke the update-hook if required. */
drhbbbb0e82013-11-26 23:27:07 +00004228 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
drh2c77be02013-11-27 21:07:03 +00004229 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
drhb53a5a92014-10-12 22:37:22 +00004230 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
drh91fd4d42008-01-19 20:11:25 +00004231 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004232 }
danielk1977b28af712004-06-21 06:50:26 +00004233 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004234 break;
4235}
drhb7f1d9a2009-09-08 02:27:58 +00004236/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004237**
drhb7f1d9a2009-09-08 02:27:58 +00004238** The value of the change counter is copied to the database handle
4239** change counter (returned by subsequent calls to sqlite3_changes()).
4240** Then the VMs internal change counter resets to 0.
4241** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004242*/
drh9cbf3422008-01-17 16:22:13 +00004243case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004244 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004245 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004246 break;
4247}
4248
drh1153c7b2013-11-01 22:02:56 +00004249/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004250** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004251**
drh1153c7b2013-11-01 22:02:56 +00004252** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004253** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004254** the sorter cursor currently points to. Only the first P4 fields
4255** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004256**
4257** If either P3 or the sorter contains a NULL in one of their significant
4258** fields (not counting the P4 fields at the end which are ignored) then
4259** the comparison is assumed to be equal.
4260**
4261** Fall through to next instruction if the two records compare equal to
4262** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004263*/
4264case OP_SorterCompare: {
4265 VdbeCursor *pC;
4266 int res;
drhac502322014-07-30 13:56:48 +00004267 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004268
4269 pC = p->apCsr[pOp->p1];
4270 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004271 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004272 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004273 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004274 res = 0;
drhac502322014-07-30 13:56:48 +00004275 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004276 VdbeBranchTaken(res!=0,2);
dan5134d132011-09-02 10:31:11 +00004277 if( res ){
4278 pc = pOp->p2-1;
4279 }
4280 break;
4281};
4282
drh6cf4a7d2014-10-13 13:00:58 +00004283/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004284** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004285**
4286** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004287** Then clear the column header cache on cursor P3.
4288**
4289** This opcode is normally use to move a record out of the sorter and into
4290** a register that is the source for a pseudo-table cursor created using
4291** OpenPseudo. That pseudo-table cursor is the one that is identified by
4292** parameter P3. Clearing the P3 column cache as part of this opcode saves
4293** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004294*/
4295case OP_SorterData: {
4296 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004297
dan5134d132011-09-02 10:31:11 +00004298 pOut = &aMem[pOp->p2];
4299 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004300 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004301 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004302 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004303 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4304 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004305 break;
4306}
4307
drh98757152008-01-09 23:04:12 +00004308/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004309** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004310**
drh98757152008-01-09 23:04:12 +00004311** Write into register P2 the complete row data for cursor P1.
4312** There is no interpretation of the data.
4313** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004314** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004315**
drhde4fcfd2008-01-19 23:50:26 +00004316** If the P1 cursor must be pointing to a valid row (not a NULL row)
4317** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004318*/
drh98757152008-01-09 23:04:12 +00004319/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004320** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004321**
drh98757152008-01-09 23:04:12 +00004322** Write into register P2 the complete row key for cursor P1.
4323** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004324** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004325** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004326**
drhde4fcfd2008-01-19 23:50:26 +00004327** If the P1 cursor must be pointing to a valid row (not a NULL row)
4328** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004329*/
danielk1977a7a8e142008-02-13 18:25:27 +00004330case OP_RowKey:
4331case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004332 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004333 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004334 u32 n;
drh856c1032009-06-02 15:21:42 +00004335 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004336
drha6c2ed92009-11-14 23:22:23 +00004337 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004338 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004339
drhf0863fe2005-06-12 21:35:51 +00004340 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004341 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4342 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004343 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004344 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004345 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004346 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004347 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004348 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004349 assert( pC->pCursor!=0 );
4350 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004351
4352 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4353 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004354 ** the cursor. If this where not the case, on of the following assert()s
4355 ** would fail. Should this ever change (because of changes in the code
4356 ** generator) then the fix would be to insert a call to
4357 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004358 */
4359 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004360 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4361#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004362 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004363 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4364#endif
drh9a65f2c2009-06-22 19:05:40 +00004365
drh14da87f2013-11-20 21:51:33 +00004366 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004367 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004368 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004369 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004370 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004371 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004372 }
drhbfb19dc2009-06-05 16:46:53 +00004373 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004374 }else{
drhb07028f2011-10-14 21:49:18 +00004375 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004376 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004377 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004378 goto too_big;
4379 }
drhde4fcfd2008-01-19 23:50:26 +00004380 }
drh722246e2014-10-07 23:02:24 +00004381 testcase( n==0 );
4382 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004383 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004384 }
danielk1977a7a8e142008-02-13 18:25:27 +00004385 pOut->n = n;
4386 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004387 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004388 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4389 }else{
4390 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004391 }
danielk197796cb76f2008-01-04 13:24:28 +00004392 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004393 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004394 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004395 break;
4396}
4397
drh2133d822008-01-03 18:44:59 +00004398/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004399** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004400**
drh2133d822008-01-03 18:44:59 +00004401** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004402** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004403**
4404** P1 can be either an ordinary table or a virtual table. There used to
4405** be a separate OP_VRowid opcode for use with virtual tables, but this
4406** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004407*/
drh4c583122008-01-04 22:01:03 +00004408case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004409 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004410 i64 v;
drh856c1032009-06-02 15:21:42 +00004411 sqlite3_vtab *pVtab;
4412 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004413
drh653b82a2009-06-22 11:10:47 +00004414 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4415 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004416 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004417 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004418 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004419 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004420 break;
4421 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004422 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004423#ifndef SQLITE_OMIT_VIRTUALTABLE
4424 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004425 pVtab = pC->pVtabCursor->pVtab;
4426 pModule = pVtab->pModule;
4427 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004428 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004429 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004430#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004431 }else{
drh6be240e2009-07-14 02:33:02 +00004432 assert( pC->pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004433 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004434 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004435 if( pC->nullRow ){
4436 pOut->flags = MEM_Null;
4437 break;
4438 }
drhb53a5a92014-10-12 22:37:22 +00004439 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004440 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004441 }
drh4c583122008-01-04 22:01:03 +00004442 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004443 break;
4444}
4445
drh9cbf3422008-01-17 16:22:13 +00004446/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004447**
4448** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004449** that occur while the cursor is on the null row will always
4450** write a NULL.
drh17f71932002-02-21 12:01:27 +00004451*/
drh9cbf3422008-01-17 16:22:13 +00004452case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004453 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004454
drh653b82a2009-06-22 11:10:47 +00004455 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4456 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004457 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004458 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004459 pC->cacheStatus = CACHE_STALE;
danielk1977be51a652008-10-08 17:58:48 +00004460 if( pC->pCursor ){
4461 sqlite3BtreeClearCursor(pC->pCursor);
4462 }
drh17f71932002-02-21 12:01:27 +00004463 break;
4464}
4465
drh9cbf3422008-01-17 16:22:13 +00004466/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004467**
drh8af3f772014-07-25 18:01:06 +00004468** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004469** will refer to the last entry in the database table or index.
4470** If the table or index is empty and P2>0, then jump immediately to P2.
4471** If P2 is 0 or if the table or index is not empty, fall through
4472** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004473**
4474** This opcode leaves the cursor configured to move in reverse order,
4475** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004476** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004477*/
drh9cbf3422008-01-17 16:22:13 +00004478case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004479 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004480 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004481 int res;
drh9562b552002-02-19 15:00:07 +00004482
drh653b82a2009-06-22 11:10:47 +00004483 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4484 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004485 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004486 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004487 res = 0;
drh3da046d2013-11-11 03:24:11 +00004488 assert( pCrsr!=0 );
4489 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004490 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004491 pC->deferredMoveto = 0;
4492 pC->cacheStatus = CACHE_STALE;
drh8af3f772014-07-25 18:01:06 +00004493#ifdef SQLITE_DEBUG
4494 pC->seekOp = OP_Last;
4495#endif
drh688852a2014-02-17 22:40:43 +00004496 if( pOp->p2>0 ){
4497 VdbeBranchTaken(res!=0,2);
4498 if( res ) pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004499 }
4500 break;
4501}
4502
drh0342b1f2005-09-01 03:07:44 +00004503
drh9cbf3422008-01-17 16:22:13 +00004504/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004505**
4506** This opcode does exactly the same thing as OP_Rewind except that
4507** it increments an undocumented global variable used for testing.
4508**
4509** Sorting is accomplished by writing records into a sorting index,
4510** then rewinding that index and playing it back from beginning to
4511** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4512** rewinding so that the global variable will be incremented and
4513** regression tests can determine whether or not the optimizer is
4514** correctly optimizing out sorts.
4515*/
drhc6aff302011-09-01 15:32:47 +00004516case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004517case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004518#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004519 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004520 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004521#endif
drh9b47ee32013-08-20 03:13:51 +00004522 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004523 /* Fall through into OP_Rewind */
4524}
drh9cbf3422008-01-17 16:22:13 +00004525/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004526**
drhf0863fe2005-06-12 21:35:51 +00004527** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004528** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004529** If the table or index is empty, jump immediately to P2.
4530** If the table or index is not empty, fall through to the following
4531** instruction.
drh8af3f772014-07-25 18:01:06 +00004532**
4533** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004534** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004535** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004536*/
drh9cbf3422008-01-17 16:22:13 +00004537case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004538 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004539 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004540 int res;
drh5e00f6c2001-09-13 13:46:56 +00004541
drh653b82a2009-06-22 11:10:47 +00004542 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4543 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004544 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004545 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004546 res = 1;
drh8af3f772014-07-25 18:01:06 +00004547#ifdef SQLITE_DEBUG
4548 pC->seekOp = OP_Rewind;
4549#endif
dan689ab892011-08-12 15:02:00 +00004550 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004551 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004552 }else{
4553 pCrsr = pC->pCursor;
4554 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004555 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004556 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004557 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004558 }
drh9c1905f2008-12-10 22:32:56 +00004559 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004560 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004561 VdbeBranchTaken(res!=0,2);
drha05a7222008-01-19 03:35:58 +00004562 if( res ){
drhf4dada72004-05-11 09:57:35 +00004563 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004564 }
4565 break;
4566}
4567
drh0fd61352014-02-07 02:29:45 +00004568/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004569**
4570** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004571** table or index. If there are no more key/value pairs then fall through
4572** to the following instruction. But if the cursor advance was successful,
4573** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004574**
drh5dad9a32014-07-25 18:37:42 +00004575** The Next opcode is only valid following an SeekGT, SeekGE, or
4576** OP_Rewind opcode used to position the cursor. Next is not allowed
4577** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004578**
drhf93cd942013-11-21 03:12:25 +00004579** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4580** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004581**
drhe39a7322014-02-03 14:04:11 +00004582** The P3 value is a hint to the btree implementation. If P3==1, that
4583** means P1 is an SQL index and that this instruction could have been
4584** omitted if that index had been unique. P3 is usually 0. P3 is
4585** always either 0 or 1.
4586**
dana205a482011-08-27 18:48:57 +00004587** P4 is always of type P4_ADVANCE. The function pointer points to
4588** sqlite3BtreeNext().
4589**
drhafc266a2010-03-31 17:47:44 +00004590** If P5 is positive and the jump is taken, then event counter
4591** number P5-1 in the prepared statement is incremented.
4592**
drhf93cd942013-11-21 03:12:25 +00004593** See also: Prev, NextIfOpen
4594*/
drh0fd61352014-02-07 02:29:45 +00004595/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004596**
drh5dad9a32014-07-25 18:37:42 +00004597** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004598** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004599*/
drh0fd61352014-02-07 02:29:45 +00004600/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004601**
4602** Back up cursor P1 so that it points to the previous key/data pair in its
4603** table or index. If there is no previous key/value pairs then fall through
4604** to the following instruction. But if the cursor backup was successful,
4605** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004606**
drh8af3f772014-07-25 18:01:06 +00004607**
drh5dad9a32014-07-25 18:37:42 +00004608** The Prev opcode is only valid following an SeekLT, SeekLE, or
4609** OP_Last opcode used to position the cursor. Prev is not allowed
4610** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004611**
drhf93cd942013-11-21 03:12:25 +00004612** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4613** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004614**
drhe39a7322014-02-03 14:04:11 +00004615** The P3 value is a hint to the btree implementation. If P3==1, that
4616** means P1 is an SQL index and that this instruction could have been
4617** omitted if that index had been unique. P3 is usually 0. P3 is
4618** always either 0 or 1.
4619**
dana205a482011-08-27 18:48:57 +00004620** P4 is always of type P4_ADVANCE. The function pointer points to
4621** sqlite3BtreePrevious().
4622**
drhafc266a2010-03-31 17:47:44 +00004623** If P5 is positive and the jump is taken, then event counter
4624** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004625*/
drh0fd61352014-02-07 02:29:45 +00004626/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004627**
drh5dad9a32014-07-25 18:37:42 +00004628** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004629** open it behaves a no-op.
4630*/
4631case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004632 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004633 int res;
drh8721ce42001-11-07 14:22:00 +00004634
drhf93cd942013-11-21 03:12:25 +00004635 pC = p->apCsr[pOp->p1];
4636 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004637 res = 0;
drhf93cd942013-11-21 03:12:25 +00004638 rc = sqlite3VdbeSorterNext(db, pC, &res);
4639 goto next_tail;
4640case OP_PrevIfOpen: /* jump */
4641case OP_NextIfOpen: /* jump */
4642 if( p->apCsr[pOp->p1]==0 ) break;
4643 /* Fall through */
4644case OP_Prev: /* jump */
4645case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004646 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004647 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004648 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004649 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004650 assert( pC!=0 );
4651 assert( pC->deferredMoveto==0 );
4652 assert( pC->pCursor );
drhe39a7322014-02-03 14:04:11 +00004653 assert( res==0 || (res==1 && pC->isTable==0) );
4654 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004655 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4656 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4657 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4658 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004659
4660 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4661 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4662 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4663 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004664 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004665 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4666 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4667 || pC->seekOp==OP_Last );
4668
drhf93cd942013-11-21 03:12:25 +00004669 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4670next_tail:
drha3460582008-07-11 21:02:53 +00004671 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004672 VdbeBranchTaken(res==0,2);
drha3460582008-07-11 21:02:53 +00004673 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004674 pC->nullRow = 0;
drha3460582008-07-11 21:02:53 +00004675 pc = pOp->p2 - 1;
drh9b47ee32013-08-20 03:13:51 +00004676 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004677#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004678 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004679#endif
drhf93cd942013-11-21 03:12:25 +00004680 }else{
4681 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004682 }
drh49afe3a2013-07-10 03:05:14 +00004683 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004684}
4685
danielk1977de630352009-05-04 11:42:29 +00004686/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004687** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004688**
drhef8662b2011-06-20 21:47:58 +00004689** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004690** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004691** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004692**
drhaa9b8962008-01-08 02:57:55 +00004693** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004694** insert is likely to be an append.
4695**
mistachkin21a919f2014-02-07 03:28:02 +00004696** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4697** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4698** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004699**
mistachkin21a919f2014-02-07 03:28:02 +00004700** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4701** just done a seek to the spot where the new entry is to be inserted.
4702** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004703**
drhf0863fe2005-06-12 21:35:51 +00004704** This instruction only works for indices. The equivalent instruction
4705** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004706*/
drhca892a72011-09-03 00:17:51 +00004707case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004708case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004709 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004710 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004711 int nKey;
4712 const char *zKey;
4713
drh653b82a2009-06-22 11:10:47 +00004714 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4715 pC = p->apCsr[pOp->p1];
4716 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004717 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004718 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004719 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004720 pCrsr = pC->pCursor;
drh6546af12013-11-04 15:23:25 +00004721 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh3da046d2013-11-11 03:24:11 +00004722 assert( pCrsr!=0 );
4723 assert( pC->isTable==0 );
4724 rc = ExpandBlob(pIn2);
4725 if( rc==SQLITE_OK ){
4726 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004727 rc = sqlite3VdbeSorterWrite(pC, pIn2);
drh3da046d2013-11-11 03:24:11 +00004728 }else{
4729 nKey = pIn2->n;
4730 zKey = pIn2->z;
4731 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4732 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4733 );
4734 assert( pC->deferredMoveto==0 );
4735 pC->cacheStatus = CACHE_STALE;
danielk1977d908f5a2007-05-11 07:08:28 +00004736 }
drh5e00f6c2001-09-13 13:46:56 +00004737 }
drh5e00f6c2001-09-13 13:46:56 +00004738 break;
4739}
4740
drh4308e342013-11-11 16:55:52 +00004741/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00004742** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00004743**
drhe14006d2008-03-25 17:23:32 +00004744** The content of P3 registers starting at register P2 form
4745** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004746** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004747*/
drhe14006d2008-03-25 17:23:32 +00004748case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004749 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004750 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004751 int res;
4752 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004753
drhe14006d2008-03-25 17:23:32 +00004754 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +00004755 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00004756 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4757 pC = p->apCsr[pOp->p1];
4758 assert( pC!=0 );
4759 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004760 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00004761 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00004762 r.pKeyInfo = pC->pKeyInfo;
4763 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00004764 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004765 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004766#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004767 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004768#endif
drh3da046d2013-11-11 03:24:11 +00004769 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4770 if( rc==SQLITE_OK && res==0 ){
4771 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004772 }
drh3da046d2013-11-11 03:24:11 +00004773 assert( pC->deferredMoveto==0 );
4774 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004775 break;
4776}
4777
drh2133d822008-01-03 18:44:59 +00004778/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004779** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00004780**
drh2133d822008-01-03 18:44:59 +00004781** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004782** the end of the index key pointed to by cursor P1. This integer should be
4783** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004784**
drh9437bd22009-02-01 00:29:56 +00004785** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004786*/
drh4c583122008-01-04 22:01:03 +00004787case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004788 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004789 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004790 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004791
drh653b82a2009-06-22 11:10:47 +00004792 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4793 pC = p->apCsr[pOp->p1];
4794 assert( pC!=0 );
4795 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004796 assert( pCrsr!=0 );
drh3c657212009-11-17 23:59:58 +00004797 pOut->flags = MEM_Null;
drh3da046d2013-11-11 03:24:11 +00004798 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00004799 assert( pC->deferredMoveto==0 );
4800
4801 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4802 ** out from under the cursor. That will never happend for an IdxRowid
4803 ** opcode, hence the NEVER() arround the check of the return value.
4804 */
4805 rc = sqlite3VdbeCursorRestore(pC);
4806 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4807
drh3da046d2013-11-11 03:24:11 +00004808 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00004809 rowid = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004810 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
drh3da046d2013-11-11 03:24:11 +00004811 if( rc!=SQLITE_OK ){
4812 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00004813 }
drh3da046d2013-11-11 03:24:11 +00004814 pOut->u.i = rowid;
4815 pOut->flags = MEM_Int;
drh8721ce42001-11-07 14:22:00 +00004816 }
4817 break;
4818}
4819
danielk197761dd5832008-04-18 11:31:12 +00004820/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004821** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00004822**
danielk197761dd5832008-04-18 11:31:12 +00004823** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004824** key that omits the PRIMARY KEY. Compare this key value against the index
4825** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4826** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00004827**
danielk197761dd5832008-04-18 11:31:12 +00004828** If the P1 index entry is greater than or equal to the key value
4829** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00004830*/
4831/* Opcode: IdxGT P1 P2 P3 P4 P5
4832** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00004833**
drh4a1d3652014-02-14 15:13:36 +00004834** The P4 register values beginning with P3 form an unpacked index
4835** key that omits the PRIMARY KEY. Compare this key value against the index
4836** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4837** fields at the end.
4838**
4839** If the P1 index entry is greater than the key value
4840** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00004841*/
drh3bb9b932010-08-06 02:10:00 +00004842/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004843** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004844**
danielk197761dd5832008-04-18 11:31:12 +00004845** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004846** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4847** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4848** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004849**
danielk197761dd5832008-04-18 11:31:12 +00004850** If the P1 index entry is less than the key value then jump to P2.
4851** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00004852*/
drh4a1d3652014-02-14 15:13:36 +00004853/* Opcode: IdxLE P1 P2 P3 P4 P5
4854** Synopsis: key=r[P3@P4]
4855**
4856** The P4 register values beginning with P3 form an unpacked index
4857** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4858** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4859** ROWID on the P1 index.
4860**
4861** If the P1 index entry is less than or equal to the key value then jump
4862** to P2. Otherwise fall through to the next instruction.
4863*/
4864case OP_IdxLE: /* jump */
4865case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00004866case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00004867case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004868 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004869 int res;
4870 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004871
drh653b82a2009-06-22 11:10:47 +00004872 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4873 pC = p->apCsr[pOp->p1];
4874 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004875 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00004876 assert( pC->pCursor!=0);
4877 assert( pC->deferredMoveto==0 );
4878 assert( pOp->p5==0 || pOp->p5==1 );
4879 assert( pOp->p4type==P4_INT32 );
4880 r.pKeyInfo = pC->pKeyInfo;
4881 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00004882 if( pOp->opcode<OP_IdxLT ){
4883 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00004884 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00004885 }else{
drh4a1d3652014-02-14 15:13:36 +00004886 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00004887 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004888 }
4889 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004890#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004891 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004892#endif
drh2dc06482013-12-11 00:59:10 +00004893 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004894 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00004895 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4896 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4897 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00004898 res = -res;
4899 }else{
drh4a1d3652014-02-14 15:13:36 +00004900 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00004901 res++;
4902 }
drh688852a2014-02-17 22:40:43 +00004903 VdbeBranchTaken(res>0,2);
drh3da046d2013-11-11 03:24:11 +00004904 if( res>0 ){
4905 pc = pOp->p2 - 1 ;
drh8721ce42001-11-07 14:22:00 +00004906 }
4907 break;
4908}
4909
drh98757152008-01-09 23:04:12 +00004910/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004911**
4912** Delete an entire database table or index whose root page in the database
4913** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004914**
drh98757152008-01-09 23:04:12 +00004915** The table being destroyed is in the main database file if P3==0. If
4916** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004917** that is used to store tables create using CREATE TEMPORARY TABLE.
4918**
drh205f48e2004-11-05 00:43:11 +00004919** If AUTOVACUUM is enabled then it is possible that another root page
4920** might be moved into the newly deleted root page in order to keep all
4921** root pages contiguous at the beginning of the database. The former
4922** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004923** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004924** movement was required (because the table being dropped was already
4925** the last one in the database) then a zero is stored in register P2.
4926** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004927**
drhb19a2bc2001-09-16 00:13:26 +00004928** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004929*/
drh98757152008-01-09 23:04:12 +00004930case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004931 int iMoved;
drh3765df42006-06-28 18:18:09 +00004932 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004933 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004934 int iDb;
drh3a949872012-09-18 13:20:13 +00004935
drh9e92a472013-06-27 17:40:30 +00004936 assert( p->readOnly==0 );
drh856c1032009-06-02 15:21:42 +00004937#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004938 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004939 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danc0537fe2013-06-28 19:41:43 +00004940 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader
4941 && pVdbe->inVtabMethod<2 && pVdbe->pc>=0
4942 ){
danielk1977212b2182006-06-23 14:32:08 +00004943 iCnt++;
4944 }
4945 }
drh3765df42006-06-28 18:18:09 +00004946#else
danc0537fe2013-06-28 19:41:43 +00004947 iCnt = db->nVdbeRead;
danielk1977212b2182006-06-23 14:32:08 +00004948#endif
drh3c657212009-11-17 23:59:58 +00004949 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004950 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004951 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004952 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004953 }else{
drh856c1032009-06-02 15:21:42 +00004954 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004955 assert( iCnt==1 );
drha7ab6d82014-07-21 15:44:39 +00004956 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00004957 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00004958 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004959 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004960 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004961#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004962 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004963 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4964 /* All OP_Destroy operations occur on the same btree */
4965 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4966 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004967 }
drh3765df42006-06-28 18:18:09 +00004968#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004969 }
drh5e00f6c2001-09-13 13:46:56 +00004970 break;
4971}
4972
danielk1977c7af4842008-10-27 13:59:33 +00004973/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004974**
4975** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004976** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004977** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004978**
drhf57b3392001-10-08 13:22:32 +00004979** The table being clear is in the main database file if P2==0. If
4980** P2==1 then the table to be clear is in the auxiliary database file
4981** that is used to store tables create using CREATE TEMPORARY TABLE.
4982**
shanebe217792009-03-05 04:20:31 +00004983** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004984** intkey table (an SQL table, not an index). In this case the row change
4985** count is incremented by the number of rows in the table being cleared.
4986** If P3 is greater than zero, then the value stored in register P3 is
4987** also incremented by the number of rows in the table being cleared.
4988**
drhb19a2bc2001-09-16 00:13:26 +00004989** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004990*/
drh9cbf3422008-01-17 16:22:13 +00004991case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004992 int nChange;
4993
4994 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00004995 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00004996 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00004997 rc = sqlite3BtreeClearTable(
4998 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4999 );
5000 if( pOp->p3 ){
5001 p->nChange += nChange;
5002 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005003 assert( memIsValid(&aMem[pOp->p3]) );
5004 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005005 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005006 }
5007 }
drh5edc3122001-09-13 21:53:09 +00005008 break;
5009}
5010
drh65ea12c2014-03-19 17:41:36 +00005011/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005012**
drh65ea12c2014-03-19 17:41:36 +00005013** Delete all contents from the ephemeral table or sorter
5014** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005015**
drh65ea12c2014-03-19 17:41:36 +00005016** This opcode only works for cursors used for sorting and
5017** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005018*/
drh65ea12c2014-03-19 17:41:36 +00005019case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005020 VdbeCursor *pC;
5021
5022 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5023 pC = p->apCsr[pOp->p1];
5024 assert( pC!=0 );
drh65ea12c2014-03-19 17:41:36 +00005025 if( pC->pSorter ){
5026 sqlite3VdbeSorterReset(db, pC->pSorter);
5027 }else{
5028 assert( pC->isEphemeral );
5029 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5030 }
drh079a3072014-03-19 14:10:55 +00005031 break;
5032}
5033
drh4c583122008-01-04 22:01:03 +00005034/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005035** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005036**
drh4c583122008-01-04 22:01:03 +00005037** Allocate a new table in the main database file if P1==0 or in the
5038** auxiliary database file if P1==1 or in an attached database if
5039** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005040** register P2
drh5b2fd562001-09-13 15:21:31 +00005041**
drhc6b52df2002-01-04 03:09:29 +00005042** The difference between a table and an index is this: A table must
5043** have a 4-byte integer key and can have arbitrary data. An index
5044** has an arbitrary key but no data.
5045**
drhb19a2bc2001-09-16 00:13:26 +00005046** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005047*/
drh4c583122008-01-04 22:01:03 +00005048/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005049** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005050**
drh4c583122008-01-04 22:01:03 +00005051** Allocate a new index in the main database file if P1==0 or in the
5052** auxiliary database file if P1==1 or in an attached database if
5053** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005054** register P2.
drhf57b3392001-10-08 13:22:32 +00005055**
drhc6b52df2002-01-04 03:09:29 +00005056** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005057*/
drh4c583122008-01-04 22:01:03 +00005058case OP_CreateIndex: /* out2-prerelease */
5059case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00005060 int pgno;
drhf328bc82004-05-10 23:29:49 +00005061 int flags;
drh234c39d2004-07-24 03:30:47 +00005062 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005063
5064 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005065 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005066 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005067 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005068 pDb = &db->aDb[pOp->p1];
5069 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005070 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005071 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005072 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005073 }else{
drhd4187c72010-08-30 22:15:45 +00005074 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005075 }
drh234c39d2004-07-24 03:30:47 +00005076 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00005077 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005078 break;
5079}
5080
drh22645842011-03-24 01:34:03 +00005081/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005082**
5083** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005084** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005085**
5086** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005087** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005088*/
drh9cbf3422008-01-17 16:22:13 +00005089case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005090 int iDb;
5091 const char *zMaster;
5092 char *zSql;
5093 InitData initData;
5094
drhbdaec522011-04-04 00:14:43 +00005095 /* Any prepared statement that invokes this opcode will hold mutexes
5096 ** on every btree. This is a prerequisite for invoking
5097 ** sqlite3InitCallback().
5098 */
5099#ifdef SQLITE_DEBUG
5100 for(iDb=0; iDb<db->nDb; iDb++){
5101 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5102 }
5103#endif
drhbdaec522011-04-04 00:14:43 +00005104
drh856c1032009-06-02 15:21:42 +00005105 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005106 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005107 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005108 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005109 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005110 initData.db = db;
5111 initData.iDb = pOp->p1;
5112 initData.pzErrMsg = &p->zErrMsg;
5113 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005114 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005115 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5116 if( zSql==0 ){
5117 rc = SQLITE_NOMEM;
5118 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005119 assert( db->init.busy==0 );
5120 db->init.busy = 1;
5121 initData.rc = SQLITE_OK;
5122 assert( !db->mallocFailed );
5123 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5124 if( rc==SQLITE_OK ) rc = initData.rc;
5125 sqlite3DbFree(db, zSql);
5126 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005127 }
drh3c23a882007-01-09 14:01:13 +00005128 }
drh81028a42012-05-15 18:28:27 +00005129 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00005130 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00005131 goto no_mem;
5132 }
drh234c39d2004-07-24 03:30:47 +00005133 break;
5134}
5135
drh8bfdf722009-06-19 14:06:03 +00005136#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005137/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005138**
5139** Read the sqlite_stat1 table for database P1 and load the content
5140** of that table into the internal index hash table. This will cause
5141** the analysis to be used when preparing all subsequent queries.
5142*/
drh9cbf3422008-01-17 16:22:13 +00005143case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005144 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5145 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00005146 break;
5147}
drh8bfdf722009-06-19 14:06:03 +00005148#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005149
drh98757152008-01-09 23:04:12 +00005150/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005151**
5152** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005153** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005154** is dropped from disk (using the Destroy opcode) in order to keep
5155** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005156** schema consistent with what is on disk.
5157*/
drh9cbf3422008-01-17 16:22:13 +00005158case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005159 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005160 break;
5161}
5162
drh98757152008-01-09 23:04:12 +00005163/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005164**
5165** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005166** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005167** is dropped from disk (using the Destroy opcode)
5168** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005169** schema consistent with what is on disk.
5170*/
drh9cbf3422008-01-17 16:22:13 +00005171case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005172 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005173 break;
5174}
5175
drh98757152008-01-09 23:04:12 +00005176/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005177**
5178** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005179** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005180** is dropped from disk (using the Destroy opcode) in order to keep
5181** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005182** schema consistent with what is on disk.
5183*/
drh9cbf3422008-01-17 16:22:13 +00005184case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005185 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005186 break;
5187}
5188
drh234c39d2004-07-24 03:30:47 +00005189
drhb7f91642004-10-31 02:22:47 +00005190#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00005191/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00005192**
drh98757152008-01-09 23:04:12 +00005193** Do an analysis of the currently open database. Store in
5194** register P1 the text of an error message describing any problems.
5195** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005196**
drh98757152008-01-09 23:04:12 +00005197** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005198** At most reg(P3) errors will be reported.
5199** In other words, the analysis stops as soon as reg(P1) errors are
5200** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005201**
drh79069752004-05-22 21:30:40 +00005202** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00005203** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00005204** total.
drh21504322002-06-25 13:16:02 +00005205**
drh98757152008-01-09 23:04:12 +00005206** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005207** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005208**
drh1dcdbc02007-01-27 02:24:54 +00005209** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005210*/
drhaaab5722002-02-19 13:39:21 +00005211case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005212 int nRoot; /* Number of tables to check. (Number of root pages.) */
5213 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5214 int j; /* Loop counter */
5215 int nErr; /* Number of errors reported */
5216 char *z; /* Text of the error report */
5217 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005218
drh1713afb2013-06-28 01:24:57 +00005219 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005220 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005221 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005222 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005223 if( aRoot==0 ) goto no_mem;
dan3bc9f742013-08-15 16:18:39 +00005224 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005225 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005226 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005227 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005228 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005229 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005230 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005231 }
5232 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005233 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005234 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005235 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005236 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005237 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005238 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005239 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005240 if( nErr==0 ){
5241 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005242 }else if( z==0 ){
5243 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005244 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005245 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005246 }
drhb7654112008-01-12 12:48:07 +00005247 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005248 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005249 break;
5250}
drhb7f91642004-10-31 02:22:47 +00005251#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005252
drh3d4501e2008-12-04 20:40:10 +00005253/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005254** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005255**
drh3d4501e2008-12-04 20:40:10 +00005256** Insert the integer value held by register P2 into a boolean index
5257** held in register P1.
5258**
5259** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005260*/
drh93952eb2009-11-13 19:43:43 +00005261case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005262 pIn1 = &aMem[pOp->p1];
5263 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005264 assert( (pIn2->flags & MEM_Int)!=0 );
5265 if( (pIn1->flags & MEM_RowSet)==0 ){
5266 sqlite3VdbeMemSetRowSet(pIn1);
5267 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005268 }
drh93952eb2009-11-13 19:43:43 +00005269 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005270 break;
5271}
5272
5273/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005274** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005275**
5276** Extract the smallest value from boolean index P1 and put that value into
5277** register P3. Or, if boolean index P1 is initially empty, leave P3
5278** unchanged and jump to instruction P2.
5279*/
drh93952eb2009-11-13 19:43:43 +00005280case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005281 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005282
drh3c657212009-11-17 23:59:58 +00005283 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005284 if( (pIn1->flags & MEM_RowSet)==0
5285 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005286 ){
5287 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005288 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005289 pc = pOp->p2 - 1;
drh688852a2014-02-17 22:40:43 +00005290 VdbeBranchTaken(1,2);
drh3d4501e2008-12-04 20:40:10 +00005291 }else{
5292 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005293 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh688852a2014-02-17 22:40:43 +00005294 VdbeBranchTaken(0,2);
drh17435752007-08-16 04:30:38 +00005295 }
drh49afe3a2013-07-10 03:05:14 +00005296 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005297}
5298
drh1b26c7c2009-04-22 02:15:47 +00005299/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005300** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005301**
drhade97602009-04-21 15:05:18 +00005302** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005303** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005304** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005305** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005306** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005307**
drh1b26c7c2009-04-22 02:15:47 +00005308** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005309** of integers, where each set contains no duplicates. Each set
5310** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005311** must have P4==0, the final set P4=-1. P4 must be either -1 or
5312** non-negative. For non-negative values of P4 only the lower 4
5313** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005314**
5315** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005316** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005317** (b) when P4==-1 there is no need to insert the value, as it will
5318** never be tested for, and (c) when a value that is part of set X is
5319** inserted, there is no need to search to see if the same value was
5320** previously inserted as part of set X (only if it was previously
5321** inserted as part of some other set).
5322*/
drh1b26c7c2009-04-22 02:15:47 +00005323case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005324 int iSet;
5325 int exists;
5326
drh3c657212009-11-17 23:59:58 +00005327 pIn1 = &aMem[pOp->p1];
5328 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005329 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005330 assert( pIn3->flags&MEM_Int );
5331
drh1b26c7c2009-04-22 02:15:47 +00005332 /* If there is anything other than a rowset object in memory cell P1,
5333 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005334 */
drh733bf1b2009-04-22 00:47:00 +00005335 if( (pIn1->flags & MEM_RowSet)==0 ){
5336 sqlite3VdbeMemSetRowSet(pIn1);
5337 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005338 }
5339
5340 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005341 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005342 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005343 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005344 VdbeBranchTaken(exists!=0,2);
danielk19771d461462009-04-21 09:02:45 +00005345 if( exists ){
5346 pc = pOp->p2 - 1;
5347 break;
5348 }
5349 }
5350 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005351 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005352 }
5353 break;
5354}
5355
drh5e00f6c2001-09-13 13:46:56 +00005356
danielk197793758c82005-01-21 08:13:14 +00005357#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005358
drh0fd61352014-02-07 02:29:45 +00005359/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005360**
dan76d462e2009-08-30 11:42:51 +00005361** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005362**
dan76d462e2009-08-30 11:42:51 +00005363** P1 contains the address of the memory cell that contains the first memory
5364** cell in an array of values used as arguments to the sub-program. P2
5365** contains the address to jump to if the sub-program throws an IGNORE
5366** exception using the RAISE() function. Register P3 contains the address
5367** of a memory cell in this (the parent) VM that is used to allocate the
5368** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005369**
5370** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005371**
5372** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005373*/
dan76d462e2009-08-30 11:42:51 +00005374case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005375 int nMem; /* Number of memory registers for sub-program */
5376 int nByte; /* Bytes of runtime space required for sub-program */
5377 Mem *pRt; /* Register to allocate runtime space */
5378 Mem *pMem; /* Used to iterate through memory cells */
5379 Mem *pEnd; /* Last memory cell in new array */
5380 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5381 SubProgram *pProgram; /* Sub-program to execute */
5382 void *t; /* Token identifying trigger */
5383
5384 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005385 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005386 assert( pProgram->nOp>0 );
5387
dan1da40a32009-09-19 17:00:31 +00005388 /* If the p5 flag is clear, then recursive invocation of triggers is
5389 ** disabled for backwards compatibility (p5 is set if this sub-program
5390 ** is really a trigger, not a foreign key action, and the flag set
5391 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005392 **
5393 ** It is recursive invocation of triggers, at the SQL level, that is
5394 ** disabled. In some cases a single trigger may generate more than one
5395 ** SubProgram (if the trigger may be executed with more than one different
5396 ** ON CONFLICT algorithm). SubProgram structures associated with a
5397 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005398 ** variable. */
5399 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005400 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005401 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5402 if( pFrame ) break;
5403 }
5404
danf5894502009-10-07 18:41:19 +00005405 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005406 rc = SQLITE_ERROR;
5407 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5408 break;
5409 }
5410
5411 /* Register pRt is used to store the memory required to save the state
5412 ** of the current program, and the memory required at runtime to execute
5413 ** the trigger program. If this trigger has been fired before, then pRt
5414 ** is already allocated. Otherwise, it must be initialized. */
5415 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005416 /* SubProgram.nMem is set to the number of memory cells used by the
5417 ** program stored in SubProgram.aOp. As well as these, one memory
5418 ** cell is required for each cursor used by the program. Set local
5419 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5420 */
dan65a7cd12009-09-01 12:16:01 +00005421 nMem = pProgram->nMem + pProgram->nCsr;
5422 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005423 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005424 + pProgram->nCsr * sizeof(VdbeCursor *)
5425 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005426 pFrame = sqlite3DbMallocZero(db, nByte);
5427 if( !pFrame ){
5428 goto no_mem;
5429 }
5430 sqlite3VdbeMemRelease(pRt);
5431 pRt->flags = MEM_Frame;
5432 pRt->u.pFrame = pFrame;
5433
5434 pFrame->v = p;
5435 pFrame->nChildMem = nMem;
5436 pFrame->nChildCsr = pProgram->nCsr;
5437 pFrame->pc = pc;
5438 pFrame->aMem = p->aMem;
5439 pFrame->nMem = p->nMem;
5440 pFrame->apCsr = p->apCsr;
5441 pFrame->nCursor = p->nCursor;
5442 pFrame->aOp = p->aOp;
5443 pFrame->nOp = p->nOp;
5444 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005445 pFrame->aOnceFlag = p->aOnceFlag;
5446 pFrame->nOnceFlag = p->nOnceFlag;
dane2f771b2014-11-03 15:33:17 +00005447#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005448 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005449#endif
dan165921a2009-08-28 18:53:45 +00005450
5451 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5452 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005453 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005454 pMem->db = db;
5455 }
5456 }else{
5457 pFrame = pRt->u.pFrame;
5458 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5459 assert( pProgram->nCsr==pFrame->nChildCsr );
5460 assert( pc==pFrame->pc );
5461 }
5462
5463 p->nFrame++;
5464 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005465 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005466 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005467 pFrame->nDbChange = p->db->nChange;
dan2832ad42009-08-31 15:27:27 +00005468 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005469 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005470 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005471 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005472 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005473 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005474 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005475 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005476 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5477 p->nOnceFlag = pProgram->nOnce;
dane2f771b2014-11-03 15:33:17 +00005478#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005479 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005480#endif
dan165921a2009-08-28 18:53:45 +00005481 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005482 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005483
5484 break;
5485}
5486
dan76d462e2009-08-30 11:42:51 +00005487/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005488**
dan76d462e2009-08-30 11:42:51 +00005489** This opcode is only ever present in sub-programs called via the
5490** OP_Program instruction. Copy a value currently stored in a memory
5491** cell of the calling (parent) frame to cell P2 in the current frames
5492** address space. This is used by trigger programs to access the new.*
5493** and old.* values.
dan165921a2009-08-28 18:53:45 +00005494**
dan76d462e2009-08-30 11:42:51 +00005495** The address of the cell in the parent frame is determined by adding
5496** the value of the P1 argument to the value of the P1 argument to the
5497** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005498*/
dan76d462e2009-08-30 11:42:51 +00005499case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005500 VdbeFrame *pFrame;
5501 Mem *pIn;
5502 pFrame = p->pFrame;
5503 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005504 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5505 break;
5506}
5507
danielk197793758c82005-01-21 08:13:14 +00005508#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005509
dan1da40a32009-09-19 17:00:31 +00005510#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005511/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005512** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005513**
dan0ff297e2009-09-25 17:03:14 +00005514** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5515** If P1 is non-zero, the database constraint counter is incremented
5516** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005517** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005518*/
dan32b09f22009-09-23 17:29:59 +00005519case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005520 if( db->flags & SQLITE_DeferFKs ){
5521 db->nDeferredImmCons += pOp->p2;
5522 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005523 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005524 }else{
dan0ff297e2009-09-25 17:03:14 +00005525 p->nFkConstraint += pOp->p2;
5526 }
5527 break;
5528}
5529
5530/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005531** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005532**
5533** This opcode tests if a foreign key constraint-counter is currently zero.
5534** If so, jump to instruction P2. Otherwise, fall through to the next
5535** instruction.
5536**
5537** If P1 is non-zero, then the jump is taken if the database constraint-counter
5538** is zero (the one that counts deferred constraint violations). If P1 is
5539** zero, the jump is taken if the statement constraint-counter is zero
5540** (immediate foreign key constraint violations).
5541*/
5542case OP_FkIfZero: { /* jump */
5543 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005544 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drh648e2642013-07-11 15:03:32 +00005545 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan0ff297e2009-09-25 17:03:14 +00005546 }else{
drh688852a2014-02-17 22:40:43 +00005547 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drh648e2642013-07-11 15:03:32 +00005548 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005549 }
dan1da40a32009-09-19 17:00:31 +00005550 break;
5551}
5552#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5553
drh205f48e2004-11-05 00:43:11 +00005554#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005555/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005556** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005557**
dan76d462e2009-08-30 11:42:51 +00005558** P1 is a register in the root frame of this VM (the root frame is
5559** different from the current frame if this instruction is being executed
5560** within a sub-program). Set the value of register P1 to the maximum of
5561** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005562**
5563** This instruction throws an error if the memory cell is not initially
5564** an integer.
5565*/
dan76d462e2009-08-30 11:42:51 +00005566case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005567 VdbeFrame *pFrame;
5568 if( p->pFrame ){
5569 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5570 pIn1 = &pFrame->aMem[pOp->p1];
5571 }else{
drha6c2ed92009-11-14 23:22:23 +00005572 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005573 }
drhec86c722011-12-09 17:27:51 +00005574 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005575 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005576 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005577 sqlite3VdbeMemIntegerify(pIn2);
5578 if( pIn1->u.i<pIn2->u.i){
5579 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005580 }
5581 break;
5582}
5583#endif /* SQLITE_OMIT_AUTOINCREMENT */
5584
drh98757152008-01-09 23:04:12 +00005585/* Opcode: IfPos P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005586** Synopsis: if r[P1]>0 goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005587**
drh16897072015-03-07 00:57:37 +00005588** Register P1 must contain an integer.
5589** If the value of register P1 is 1 or greater, jump to P2 and
5590** add the literal value P3 to register P1.
drh6f58f702006-01-08 05:26:41 +00005591**
drh16897072015-03-07 00:57:37 +00005592** If the initial value of register P1 is less than 1, then the
5593** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005594*/
drh9cbf3422008-01-17 16:22:13 +00005595case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005596 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005597 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005598 VdbeBranchTaken( pIn1->u.i>0, 2);
drh3c84ddf2008-01-09 02:15:38 +00005599 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005600 pc = pOp->p2 - 1;
5601 }
5602 break;
5603}
5604
drh4336b0e2014-08-05 00:53:51 +00005605/* Opcode: IfNeg P1 P2 P3 * *
5606** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
drh15007a92006-01-08 18:10:17 +00005607**
drhbc5cf382014-08-06 01:08:07 +00005608** Register P1 must contain an integer. Add literal P3 to the value in
drh4336b0e2014-08-05 00:53:51 +00005609** register P1 then if the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005610*/
drh9cbf3422008-01-17 16:22:13 +00005611case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005612 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005613 assert( pIn1->flags&MEM_Int );
drh4336b0e2014-08-05 00:53:51 +00005614 pIn1->u.i += pOp->p3;
drh688852a2014-02-17 22:40:43 +00005615 VdbeBranchTaken(pIn1->u.i<0, 2);
drh3c84ddf2008-01-09 02:15:38 +00005616 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005617 pc = pOp->p2 - 1;
5618 }
5619 break;
5620}
5621
drh16897072015-03-07 00:57:37 +00005622/* Opcode: IfNotZero P1 P2 P3 * *
5623** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00005624**
drh16897072015-03-07 00:57:37 +00005625** Register P1 must contain an integer. If the content of register P1 is
5626** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is
5627** initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00005628*/
drh16897072015-03-07 00:57:37 +00005629case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005630 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005631 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00005632 VdbeBranchTaken(pIn1->u.i<0, 2);
5633 if( pIn1->u.i ){
5634 pIn1->u.i += pOp->p3;
5635 pc = pOp->p2 - 1;
5636 }
5637 break;
5638}
5639
5640/* Opcode: DecrJumpZero P1 P2 * * *
5641** Synopsis: if (--r[P1])==0 goto P2
5642**
5643** Register P1 must hold an integer. Decrement the value in register P1
5644** then jump to P2 if the new value is exactly zero.
5645*/
5646case OP_DecrJumpZero: { /* jump, in1 */
5647 pIn1 = &aMem[pOp->p1];
5648 assert( pIn1->flags&MEM_Int );
5649 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00005650 VdbeBranchTaken(pIn1->u.i==0, 2);
drh3c84ddf2008-01-09 02:15:38 +00005651 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005652 pc = pOp->p2 - 1;
5653 }
5654 break;
5655}
5656
drh16897072015-03-07 00:57:37 +00005657
5658/* Opcode: JumpZeroIncr P1 P2 * * *
5659** Synopsis: if (r[P1]++)==0 ) goto P2
5660**
5661** The register P1 must contain an integer. If register P1 is initially
5662** zero, then jump to P2. Increment register P1 regardless of whether or
5663** not the jump is taken.
5664*/
5665case OP_JumpZeroIncr: { /* jump, in1 */
5666 pIn1 = &aMem[pOp->p1];
5667 assert( pIn1->flags&MEM_Int );
5668 VdbeBranchTaken(pIn1->u.i==0, 2);
5669 if( (pIn1->u.i++)==0 ){
5670 pc = pOp->p2 - 1;
5671 }
5672 break;
5673}
5674
drh98757152008-01-09 23:04:12 +00005675/* Opcode: AggStep * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005676** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005677**
drh0bce8352002-02-28 00:41:10 +00005678** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005679** function has P5 arguments. P4 is a pointer to the FuncDef
5680** structure that specifies the function. Use register
5681** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005682**
drh98757152008-01-09 23:04:12 +00005683** The P5 arguments are taken from register P2 and its
5684** successors.
drhe5095352002-02-24 03:25:14 +00005685*/
drh9cbf3422008-01-17 16:22:13 +00005686case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005687 int n;
drhe5095352002-02-24 03:25:14 +00005688 int i;
drhc54a6172009-06-02 16:06:03 +00005689 Mem *pMem;
5690 Mem *pRec;
drh9bd038f2014-08-27 14:14:06 +00005691 Mem t;
danielk197722322fd2004-05-25 23:35:17 +00005692 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005693 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005694
drh856c1032009-06-02 15:21:42 +00005695 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005696 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005697 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005698 apVal = p->apArg;
5699 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005700 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005701 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005702 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005703 memAboutToChange(p, pRec);
drhe5095352002-02-24 03:25:14 +00005704 }
danielk19772dca4ac2008-01-03 11:50:29 +00005705 ctx.pFunc = pOp->p4.pFunc;
dan3bc9f742013-08-15 16:18:39 +00005706 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005707 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005708 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00005709 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9bd038f2014-08-27 14:14:06 +00005710 ctx.pOut = &t;
drh1350b032002-02-27 19:00:20 +00005711 ctx.isError = 0;
drha15cc472014-09-25 13:17:30 +00005712 ctx.pVdbe = p;
5713 ctx.iOp = pc;
drh7a957892012-02-02 17:35:43 +00005714 ctx.skipFlag = 0;
drhee9ff672010-09-03 18:50:48 +00005715 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005716 if( ctx.isError ){
drh9bd038f2014-08-27 14:14:06 +00005717 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&t));
drh69544ec2008-02-06 14:11:34 +00005718 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005719 }
drh7a957892012-02-02 17:35:43 +00005720 if( ctx.skipFlag ){
5721 assert( pOp[-1].opcode==OP_CollSeq );
5722 i = pOp[-1].p1;
5723 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5724 }
drh9bd038f2014-08-27 14:14:06 +00005725 sqlite3VdbeMemRelease(&t);
drh5e00f6c2001-09-13 13:46:56 +00005726 break;
5727}
5728
drh98757152008-01-09 23:04:12 +00005729/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00005730** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00005731**
drh13449892005-09-07 21:22:45 +00005732** Execute the finalizer function for an aggregate. P1 is
5733** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005734**
5735** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005736** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005737** argument is not used by this opcode. It is only there to disambiguate
5738** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005739** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005740** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005741*/
drh9cbf3422008-01-17 16:22:13 +00005742case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005743 Mem *pMem;
dan3bc9f742013-08-15 16:18:39 +00005744 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005745 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005746 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005747 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005748 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005749 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005750 }
drh2dca8682008-03-21 17:13:13 +00005751 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005752 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005753 if( sqlite3VdbeMemTooBig(pMem) ){
5754 goto too_big;
5755 }
drh5e00f6c2001-09-13 13:46:56 +00005756 break;
5757}
5758
dan5cf53532010-05-01 16:40:20 +00005759#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005760/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005761**
5762** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00005763** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5764** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00005765** SQLITE_BUSY or not, respectively. Write the number of pages in the
5766** WAL after the checkpoint into mem[P3+1] and the number of pages
5767** in the WAL that have been checkpointed after the checkpoint
5768** completes into mem[P3+2]. However on an error, mem[P3+1] and
5769** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005770*/
5771case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005772 int i; /* Loop counter */
5773 int aRes[3]; /* Results */
5774 Mem *pMem; /* Write results here */
5775
drh9e92a472013-06-27 17:40:30 +00005776 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005777 aRes[0] = 0;
5778 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005779 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5780 || pOp->p2==SQLITE_CHECKPOINT_FULL
5781 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00005782 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00005783 );
drh30aa3b92011-02-07 23:56:01 +00005784 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005785 if( rc==SQLITE_BUSY ){
5786 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005787 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005788 }
drh30aa3b92011-02-07 23:56:01 +00005789 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5790 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5791 }
dan7c246102010-04-12 19:00:29 +00005792 break;
5793};
dan5cf53532010-05-01 16:40:20 +00005794#endif
drh5e00f6c2001-09-13 13:46:56 +00005795
drhcac29a62010-07-02 19:36:52 +00005796#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00005797/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005798**
5799** Change the journal mode of database P1 to P3. P3 must be one of the
5800** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5801** modes (delete, truncate, persist, off and memory), this is a simple
5802** operation. No IO is required.
5803**
5804** If changing into or out of WAL mode the procedure is more complicated.
5805**
5806** Write a string containing the final journal-mode to register P2.
5807*/
drhd80b2332010-05-01 00:59:37 +00005808case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005809 Btree *pBt; /* Btree to change journal mode of */
5810 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005811 int eNew; /* New journal mode */
5812 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005813#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005814 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005815#endif
dane04dc882010-04-20 18:53:15 +00005816
drhd80b2332010-05-01 00:59:37 +00005817 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005818 assert( eNew==PAGER_JOURNALMODE_DELETE
5819 || eNew==PAGER_JOURNALMODE_TRUNCATE
5820 || eNew==PAGER_JOURNALMODE_PERSIST
5821 || eNew==PAGER_JOURNALMODE_OFF
5822 || eNew==PAGER_JOURNALMODE_MEMORY
5823 || eNew==PAGER_JOURNALMODE_WAL
5824 || eNew==PAGER_JOURNALMODE_QUERY
5825 );
5826 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005827 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005828
dane04dc882010-04-20 18:53:15 +00005829 pBt = db->aDb[pOp->p1].pBt;
5830 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005831 eOld = sqlite3PagerGetJournalMode(pPager);
5832 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5833 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005834
5835#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005836 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005837
drhd80b2332010-05-01 00:59:37 +00005838 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005839 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005840 */
5841 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005842 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005843 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005844 ){
drh0b9b4302010-06-11 17:01:24 +00005845 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005846 }
5847
drh0b9b4302010-06-11 17:01:24 +00005848 if( (eNew!=eOld)
5849 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5850 ){
danc0537fe2013-06-28 19:41:43 +00005851 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005852 rc = SQLITE_ERROR;
5853 sqlite3SetString(&p->zErrMsg, db,
5854 "cannot change %s wal mode from within a transaction",
5855 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5856 );
5857 break;
5858 }else{
5859
5860 if( eOld==PAGER_JOURNALMODE_WAL ){
5861 /* If leaving WAL mode, close the log file. If successful, the call
5862 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5863 ** file. An EXCLUSIVE lock may still be held on the database file
5864 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005865 */
drh0b9b4302010-06-11 17:01:24 +00005866 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005867 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005868 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005869 }
drh242c4f72010-06-22 14:49:39 +00005870 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5871 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5872 ** as an intermediate */
5873 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005874 }
5875
5876 /* Open a transaction on the database file. Regardless of the journal
5877 ** mode, this transaction always uses a rollback journal.
5878 */
5879 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5880 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005881 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005882 }
5883 }
5884 }
dan5cf53532010-05-01 16:40:20 +00005885#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005886
dand956efe2010-06-18 16:13:45 +00005887 if( rc ){
dand956efe2010-06-18 16:13:45 +00005888 eNew = eOld;
5889 }
drh0b9b4302010-06-11 17:01:24 +00005890 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005891
dane04dc882010-04-20 18:53:15 +00005892 pOut = &aMem[pOp->p2];
5893 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005894 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005895 pOut->n = sqlite3Strlen30(pOut->z);
5896 pOut->enc = SQLITE_UTF8;
5897 sqlite3VdbeChangeEncoding(pOut, encoding);
5898 break;
drhcac29a62010-07-02 19:36:52 +00005899};
5900#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005901
drhfdbcdee2007-03-27 14:44:50 +00005902#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005903/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005904**
5905** Vacuum the entire database. This opcode will cause other virtual
5906** machines to be created and run. It may not be called from within
5907** a transaction.
5908*/
drh9cbf3422008-01-17 16:22:13 +00005909case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00005910 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00005911 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005912 break;
5913}
drh154d4b22006-09-21 11:02:16 +00005914#endif
drh6f8c91c2003-12-07 00:24:35 +00005915
danielk1977dddbcdc2007-04-26 14:42:34 +00005916#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005917/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005918**
5919** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005920** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005921** P2. Otherwise, fall through to the next instruction.
5922*/
drh9cbf3422008-01-17 16:22:13 +00005923case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005924 Btree *pBt;
5925
5926 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005927 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005928 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00005929 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005930 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00005931 VdbeBranchTaken(rc==SQLITE_DONE,2);
danielk1977dddbcdc2007-04-26 14:42:34 +00005932 if( rc==SQLITE_DONE ){
5933 pc = pOp->p2 - 1;
5934 rc = SQLITE_OK;
5935 }
5936 break;
5937}
5938#endif
5939
drh98757152008-01-09 23:04:12 +00005940/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005941**
drh25df48d2014-07-22 14:58:12 +00005942** Cause precompiled statements to expire. When an expired statement
5943** is executed using sqlite3_step() it will either automatically
5944** reprepare itself (if it was originally created using sqlite3_prepare_v2())
5945** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00005946**
5947** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00005948** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00005949*/
drh9cbf3422008-01-17 16:22:13 +00005950case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005951 if( !pOp->p1 ){
5952 sqlite3ExpirePreparedStatements(db);
5953 }else{
5954 p->expired = 1;
5955 }
5956 break;
5957}
5958
danielk1977c00da102006-01-07 13:21:04 +00005959#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005960/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00005961** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00005962**
5963** Obtain a lock on a particular table. This instruction is only used when
5964** the shared-cache feature is enabled.
5965**
danielk197796d48e92009-06-29 06:00:37 +00005966** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005967** on which the lock is acquired. A readlock is obtained if P3==0 or
5968** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005969**
5970** P2 contains the root-page of the table to lock.
5971**
drh66a51672008-01-03 00:01:23 +00005972** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005973** used to generate an error message if the lock cannot be obtained.
5974*/
drh9cbf3422008-01-17 16:22:13 +00005975case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005976 u8 isWriteLock = (u8)pOp->p3;
5977 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5978 int p1 = pOp->p1;
5979 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005980 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005981 assert( isWriteLock==0 || isWriteLock==1 );
5982 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5983 if( (rc&0xFF)==SQLITE_LOCKED ){
5984 const char *z = pOp->p4.z;
5985 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5986 }
danielk1977c00da102006-01-07 13:21:04 +00005987 }
5988 break;
5989}
drhb9bb7c12006-06-11 23:41:55 +00005990#endif /* SQLITE_OMIT_SHARED_CACHE */
5991
5992#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005993/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005994**
danielk19773e3a84d2008-08-01 17:37:40 +00005995** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5996** xBegin method for that table.
5997**
5998** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005999** within a callback to a virtual table xSync() method. If it is, the error
6000** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006001*/
drh9cbf3422008-01-17 16:22:13 +00006002case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006003 VTable *pVTab;
6004 pVTab = pOp->p4.pVtab;
6005 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006006 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00006007 break;
6008}
6009#endif /* SQLITE_OMIT_VIRTUALTABLE */
6010
6011#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006012/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00006013**
drh66a51672008-01-03 00:01:23 +00006014** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00006015** for that table.
6016*/
drh9cbf3422008-01-17 16:22:13 +00006017case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00006018 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00006019 break;
6020}
6021#endif /* SQLITE_OMIT_VIRTUALTABLE */
6022
6023#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006024/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006025**
drh66a51672008-01-03 00:01:23 +00006026** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006027** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006028*/
drh9cbf3422008-01-17 16:22:13 +00006029case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00006030 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00006031 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00006032 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00006033 break;
6034}
6035#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006036
drh9eff6162006-06-12 21:59:13 +00006037#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006038/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006039**
drh66a51672008-01-03 00:01:23 +00006040** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006041** P1 is a cursor number. This opcode opens a cursor to the virtual
6042** table and stores that cursor in P1.
6043*/
drh9cbf3422008-01-17 16:22:13 +00006044case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006045 VdbeCursor *pCur;
6046 sqlite3_vtab_cursor *pVtabCursor;
6047 sqlite3_vtab *pVtab;
6048 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006049
drh1713afb2013-06-28 01:24:57 +00006050 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006051 pCur = 0;
6052 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00006053 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00006054 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006055 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006056 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006057 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006058 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00006059 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006060 pVtabCursor->pVtab = pVtab;
6061
mistachkin48864df2013-03-21 21:20:32 +00006062 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00006063 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00006064 if( pCur ){
6065 pCur->pVtabCursor = pVtabCursor;
danielk1977b7a2f2e2006-06-23 11:34:54 +00006066 }else{
drh17435752007-08-16 04:30:38 +00006067 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00006068 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00006069 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00006070 }
drh9eff6162006-06-12 21:59:13 +00006071 break;
6072}
6073#endif /* SQLITE_OMIT_VIRTUALTABLE */
6074
6075#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006076/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006077** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006078**
6079** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6080** the filtered result set is empty.
6081**
drh66a51672008-01-03 00:01:23 +00006082** P4 is either NULL or a string that was generated by the xBestIndex
6083** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006084** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006085**
drh9eff6162006-06-12 21:59:13 +00006086** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006087** by P1. The integer query plan parameter to xFilter is stored in register
6088** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006089** xFilter method. Registers P3+2..P3+1+argc are the argc
6090** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006091** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006092**
danielk19776dbee812008-01-03 18:39:41 +00006093** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006094*/
drh9cbf3422008-01-17 16:22:13 +00006095case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006096 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006097 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006098 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006099 Mem *pQuery;
6100 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00006101 sqlite3_vtab_cursor *pVtabCursor;
6102 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006103 VdbeCursor *pCur;
6104 int res;
6105 int i;
6106 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006107
drha6c2ed92009-11-14 23:22:23 +00006108 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006109 pArgc = &pQuery[1];
6110 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006111 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006112 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006113 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00006114 pVtabCursor = pCur->pVtabCursor;
6115 pVtab = pVtabCursor->pVtab;
6116 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006117
drh9cbf3422008-01-17 16:22:13 +00006118 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006119 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006120 nArg = (int)pArgc->u.i;
6121 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006122
drh644a5292006-12-20 14:53:38 +00006123 /* Invoke the xFilter method */
6124 {
drh856c1032009-06-02 15:21:42 +00006125 res = 0;
6126 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00006127 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00006128 apArg[i] = &pArgc[i+1];
danielk19775fac9f82006-06-13 14:16:58 +00006129 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00006130
danielk1977be718892006-06-23 08:05:19 +00006131 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00006132 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00006133 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00006134 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00006135 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00006136 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00006137 }
drh688852a2014-02-17 22:40:43 +00006138 VdbeBranchTaken(res!=0,2);
danielk1977a298e902006-06-22 09:53:48 +00006139 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00006140 pc = pOp->p2 - 1;
6141 }
6142 }
drh1d454a32008-01-31 19:34:51 +00006143 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006144
drh9eff6162006-06-12 21:59:13 +00006145 break;
6146}
6147#endif /* SQLITE_OMIT_VIRTUALTABLE */
6148
6149#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006150/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006151** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006152**
drh2133d822008-01-03 18:44:59 +00006153** Store the value of the P2-th column of
6154** the row of the virtual-table that the
6155** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006156*/
6157case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006158 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006159 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006160 Mem *pDest;
6161 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006162
drhdfe88ec2008-11-03 20:55:06 +00006163 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006164 assert( pCur->pVtabCursor );
dan3bc9f742013-08-15 16:18:39 +00006165 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006166 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006167 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006168 if( pCur->nullRow ){
6169 sqlite3VdbeMemSetNull(pDest);
6170 break;
6171 }
danielk19773e3a84d2008-08-01 17:37:40 +00006172 pVtab = pCur->pVtabCursor->pVtab;
6173 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006174 assert( pModule->xColumn );
6175 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006176 sContext.pOut = pDest;
6177 MemSetTypeFlag(pDest, MEM_Null);
drhde4fcfd2008-01-19 23:50:26 +00006178 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006179 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006180 if( sContext.isError ){
6181 rc = sContext.isError;
6182 }
drh9bd038f2014-08-27 14:14:06 +00006183 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006184 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006185 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006186
drhde4fcfd2008-01-19 23:50:26 +00006187 if( sqlite3VdbeMemTooBig(pDest) ){
6188 goto too_big;
6189 }
drh9eff6162006-06-12 21:59:13 +00006190 break;
6191}
6192#endif /* SQLITE_OMIT_VIRTUALTABLE */
6193
6194#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006195/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006196**
6197** Advance virtual table P1 to the next row in its result set and
6198** jump to instruction P2. Or, if the virtual table has reached
6199** the end of its result set, then fall through to the next instruction.
6200*/
drh9cbf3422008-01-17 16:22:13 +00006201case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006202 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006203 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006204 int res;
drh856c1032009-06-02 15:21:42 +00006205 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006206
drhc54a6172009-06-02 16:06:03 +00006207 res = 0;
drh856c1032009-06-02 15:21:42 +00006208 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006209 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00006210 if( pCur->nullRow ){
6211 break;
6212 }
danielk19773e3a84d2008-08-01 17:37:40 +00006213 pVtab = pCur->pVtabCursor->pVtab;
6214 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006215 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006216
drhde4fcfd2008-01-19 23:50:26 +00006217 /* Invoke the xNext() method of the module. There is no way for the
6218 ** underlying implementation to return an error if one occurs during
6219 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6220 ** data is available) and the error code returned when xColumn or
6221 ** some other method is next invoked on the save virtual table cursor.
6222 */
drhde4fcfd2008-01-19 23:50:26 +00006223 p->inVtabMethod = 1;
6224 rc = pModule->xNext(pCur->pVtabCursor);
6225 p->inVtabMethod = 0;
dan016f7812013-08-21 17:35:48 +00006226 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00006227 if( rc==SQLITE_OK ){
6228 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006229 }
drh688852a2014-02-17 22:40:43 +00006230 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006231 if( !res ){
6232 /* If there is data, jump to P2 */
6233 pc = pOp->p2 - 1;
6234 }
drh49afe3a2013-07-10 03:05:14 +00006235 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006236}
6237#endif /* SQLITE_OMIT_VIRTUALTABLE */
6238
danielk1977182c4ba2007-06-27 15:53:34 +00006239#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006240/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006241**
drh66a51672008-01-03 00:01:23 +00006242** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006243** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006244** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006245*/
drh9cbf3422008-01-17 16:22:13 +00006246case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006247 sqlite3_vtab *pVtab;
6248 Mem *pName;
6249
danielk1977595a5232009-07-24 17:58:53 +00006250 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006251 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006252 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006253 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006254 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006255 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006256 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006257 testcase( pName->enc==SQLITE_UTF8 );
6258 testcase( pName->enc==SQLITE_UTF16BE );
6259 testcase( pName->enc==SQLITE_UTF16LE );
6260 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6261 if( rc==SQLITE_OK ){
6262 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006263 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006264 p->expired = 0;
6265 }
danielk1977182c4ba2007-06-27 15:53:34 +00006266 break;
6267}
6268#endif
drh4cbdda92006-06-14 19:00:20 +00006269
6270#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006271/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006272** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006273**
drh66a51672008-01-03 00:01:23 +00006274** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006275** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006276** are contiguous memory cells starting at P3 to pass to the xUpdate
6277** invocation. The value in register (P3+P2-1) corresponds to the
6278** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006279**
6280** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006281** The argv[0] element (which corresponds to memory cell P3)
6282** is the rowid of a row to delete. If argv[0] is NULL then no
6283** deletion occurs. The argv[1] element is the rowid of the new
6284** row. This can be NULL to have the virtual table select the new
6285** rowid for itself. The subsequent elements in the array are
6286** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006287**
6288** If P2==1 then no insert is performed. argv[0] is the rowid of
6289** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006290**
6291** P1 is a boolean flag. If it is set to true and the xUpdate call
6292** is successful, then the value returned by sqlite3_last_insert_rowid()
6293** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006294**
6295** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6296** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006297*/
drh9cbf3422008-01-17 16:22:13 +00006298case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006299 sqlite3_vtab *pVtab;
6300 sqlite3_module *pModule;
6301 int nArg;
6302 int i;
6303 sqlite_int64 rowid;
6304 Mem **apArg;
6305 Mem *pX;
6306
danb061d052011-04-25 18:49:57 +00006307 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6308 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6309 );
drh9e92a472013-06-27 17:40:30 +00006310 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006311 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00006312 pModule = (sqlite3_module *)pVtab->pModule;
6313 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006314 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006315 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006316 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006317 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006318 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006319 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006320 assert( memIsValid(pX) );
6321 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006322 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006323 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006324 }
danb061d052011-04-25 18:49:57 +00006325 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006326 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006327 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006328 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006329 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006330 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006331 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006332 }
drhd91c1a12013-02-09 13:58:25 +00006333 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006334 if( pOp->p5==OE_Ignore ){
6335 rc = SQLITE_OK;
6336 }else{
6337 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6338 }
6339 }else{
6340 p->nChange++;
6341 }
danielk1977399918f2006-06-14 13:03:23 +00006342 }
drh4cbdda92006-06-14 19:00:20 +00006343 break;
danielk1977399918f2006-06-14 13:03:23 +00006344}
6345#endif /* SQLITE_OMIT_VIRTUALTABLE */
6346
danielk197759a93792008-05-15 17:48:20 +00006347#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6348/* Opcode: Pagecount P1 P2 * * *
6349**
6350** Write the current number of pages in database P1 to memory cell P2.
6351*/
6352case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006353 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006354 break;
6355}
6356#endif
6357
drh60ac3f42010-11-23 18:59:27 +00006358
6359#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6360/* Opcode: MaxPgcnt P1 P2 P3 * *
6361**
6362** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006363** Do not let the maximum page count fall below the current page count and
6364** do not change the maximum page count value if P3==0.
6365**
drh60ac3f42010-11-23 18:59:27 +00006366** Store the maximum page count after the change in register P2.
6367*/
6368case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006369 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006370 Btree *pBt;
6371
6372 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006373 newMax = 0;
6374 if( pOp->p3 ){
6375 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006376 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006377 }
6378 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006379 break;
6380}
6381#endif
6382
6383
drhaceb31b2014-02-08 01:40:27 +00006384/* Opcode: Init * P2 * P4 *
6385** Synopsis: Start at P2
6386**
6387** Programs contain a single instance of this opcode as the very first
6388** opcode.
drh949f9cd2008-01-12 21:35:57 +00006389**
6390** If tracing is enabled (by the sqlite3_trace()) interface, then
6391** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006392** Or if P4 is blank, use the string returned by sqlite3_sql().
6393**
6394** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006395*/
drhaceb31b2014-02-08 01:40:27 +00006396case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006397 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006398 char *z;
drh856c1032009-06-02 15:21:42 +00006399
drhaceb31b2014-02-08 01:40:27 +00006400 if( pOp->p2 ){
6401 pc = pOp->p2 - 1;
6402 }
6403#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006404 if( db->xTrace
6405 && !p->doingRerun
6406 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6407 ){
drhc3f1d5f2011-05-30 23:42:16 +00006408 z = sqlite3VdbeExpandSql(p, zTrace);
6409 db->xTrace(db->pTraceArg, z);
6410 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006411 }
drh8f8b2312013-10-18 20:03:43 +00006412#ifdef SQLITE_USE_FCNTL_TRACE
6413 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6414 if( zTrace ){
6415 int i;
6416 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006417 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006418 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6419 }
6420 }
6421#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006422#ifdef SQLITE_DEBUG
6423 if( (db->flags & SQLITE_SqlTrace)!=0
6424 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6425 ){
6426 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6427 }
6428#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006429#endif /* SQLITE_OMIT_TRACE */
drh949f9cd2008-01-12 21:35:57 +00006430 break;
6431}
drh949f9cd2008-01-12 21:35:57 +00006432
drh91fd4d42008-01-19 20:11:25 +00006433
6434/* Opcode: Noop * * * * *
6435**
6436** Do nothing. This instruction is often useful as a jump
6437** destination.
drh5e00f6c2001-09-13 13:46:56 +00006438*/
drh91fd4d42008-01-19 20:11:25 +00006439/*
6440** The magic Explain opcode are only inserted when explain==2 (which
6441** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6442** This opcode records information from the optimizer. It is the
6443** the same as a no-op. This opcodesnever appears in a real VM program.
6444*/
6445default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006446 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006447 break;
6448}
6449
6450/*****************************************************************************
6451** The cases of the switch statement above this line should all be indented
6452** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6453** readability. From this point on down, the normal indentation rules are
6454** restored.
6455*****************************************************************************/
6456 }
drh6e142f52000-06-08 13:36:40 +00006457
drh7b396862003-01-01 23:06:20 +00006458#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006459 {
drha01c7c72014-04-25 12:35:31 +00006460 u64 endTime = sqlite3Hwtime();
6461 if( endTime>start ) pOp->cycles += endTime - start;
drh8178a752003-01-05 21:41:40 +00006462 pOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006463 }
drh7b396862003-01-01 23:06:20 +00006464#endif
6465
drh6e142f52000-06-08 13:36:40 +00006466 /* The following code adds nothing to the actual functionality
6467 ** of the program. It is only here for testing and debugging.
6468 ** On the other hand, it does burn CPU cycles every time through
6469 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6470 */
6471#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006472 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006473
drhcf1023c2007-05-08 20:59:49 +00006474#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006475 if( db->flags & SQLITE_VdbeTrace ){
6476 if( rc!=0 ) printf("rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006477 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
drh84e55a82013-11-13 17:58:23 +00006478 registerTrace(pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006479 }
drh3c657212009-11-17 23:59:58 +00006480 if( pOp->opflags & OPFLG_OUT3 ){
drh84e55a82013-11-13 17:58:23 +00006481 registerTrace(pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006482 }
drh75897232000-05-29 14:26:00 +00006483 }
danielk1977b5402fb2005-01-12 07:15:04 +00006484#endif /* SQLITE_DEBUG */
6485#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006486 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006487
drha05a7222008-01-19 03:35:58 +00006488 /* If we reach this point, it means that execution is finished with
6489 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006490 */
drha05a7222008-01-19 03:35:58 +00006491vdbe_error_halt:
6492 assert( rc );
6493 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006494 testcase( sqlite3GlobalConfig.xLog!=0 );
6495 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6496 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006497 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006498 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6499 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006500 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006501 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006502 }
drh900b31e2007-08-28 02:27:51 +00006503
6504 /* This is the only way out of this procedure. We have to
6505 ** release the mutexes on btrees that were acquired at the
6506 ** top. */
6507vdbe_return:
drh99a66922011-05-13 18:51:42 +00006508 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006509 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006510 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006511 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006512 return rc;
6513
drh023ae032007-05-08 12:12:16 +00006514 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6515 ** is encountered.
6516 */
6517too_big:
drhf089aa42008-07-08 19:34:06 +00006518 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006519 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006520 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006521
drh98640a32007-06-07 19:08:32 +00006522 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006523 */
6524no_mem:
drh17435752007-08-16 04:30:38 +00006525 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006526 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006527 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006528 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006529
drhb86ccfb2003-01-28 23:13:10 +00006530 /* Jump to here for any other kind of fatal error. The "rc" variable
6531 ** should hold the error number.
6532 */
6533abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006534 assert( p->zErrMsg==0 );
6535 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006536 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006537 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006538 }
drha05a7222008-01-19 03:35:58 +00006539 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006540
danielk19776f8a5032004-05-10 10:34:51 +00006541 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006542 ** flag.
6543 */
6544abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006545 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006546 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006547 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006548 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006549 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006550}