blob: 0bc1eeacf4a5e19ce6241b8c7ae7ed3df322ead1 [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drh0ede9eb2015-01-10 16:49:23 +000020#if HAVE_ISNAN || SQLITE_HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000021# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
35** Give a callback to the test harness that can be used to simulate faults
36** in places where it is difficult or expensive to do so purely by means
37** of inputs.
38**
39** The intent of the integer argument is to let the fault simulator know
40** which of multiple sqlite3FaultSim() calls has been hit.
41**
42** Return whatever integer value the test callback returns, or return
43** SQLITE_OK if no test callback is installed.
44*/
45#ifndef SQLITE_OMIT_BUILTIN_TEST
46int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
49}
50#endif
51
drh85c8f292010-01-13 17:39:53 +000052#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000053/*
54** Return true if the floating point value is Not a Number (NaN).
55**
56** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57** Otherwise, we have our own implementation that works on most systems.
58*/
59int sqlite3IsNaN(double x){
60 int rc; /* The value return */
drh0ede9eb2015-01-10 16:49:23 +000061#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000062 /*
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
67 **
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
71 **
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
76 **
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
80 **
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
84 */
85#ifdef __FAST_MATH__
86# error SQLite will not work correctly with the -ffast-math option of GCC.
87#endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
drh0ede9eb2015-01-10 16:49:23 +000091#else /* if HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000092 rc = isnan(x);
drh0ede9eb2015-01-10 16:49:23 +000093#endif /* HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000094 testcase( rc );
95 return rc;
96}
drh85c8f292010-01-13 17:39:53 +000097#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000098
99/*
100** Compute a string length that is limited to what can be stored in
101** lower 30 bits of a 32-bit signed integer.
102**
103** The value returned will never be negative. Nor will it ever be greater
104** than the actual length of the string. For very long strings (greater
105** than 1GiB) the value returned might be less than the true string length.
106*/
107int sqlite3Strlen30(const char *z){
108 const char *z2 = z;
109 if( z==0 ) return 0;
110 while( *z2 ){ z2++; }
111 return 0x3fffffff & (int)(z2 - z);
112}
113
114/*
drh13f40da2014-08-22 18:00:11 +0000115** Set the current error code to err_code and clear any prior error message.
116*/
117void sqlite3Error(sqlite3 *db, int err_code){
118 assert( db!=0 );
119 db->errCode = err_code;
120 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
121}
122
123/*
drhc81c11f2009-11-10 01:30:52 +0000124** Set the most recent error code and error string for the sqlite
125** handle "db". The error code is set to "err_code".
126**
127** If it is not NULL, string zFormat specifies the format of the
128** error string in the style of the printf functions: The following
129** format characters are allowed:
130**
131** %s Insert a string
132** %z A string that should be freed after use
133** %d Insert an integer
134** %T Insert a token
135** %S Insert the first element of a SrcList
136**
137** zFormat and any string tokens that follow it are assumed to be
138** encoded in UTF-8.
139**
140** To clear the most recent error for sqlite handle "db", sqlite3Error
141** should be called with err_code set to SQLITE_OK and zFormat set
142** to NULL.
143*/
drh13f40da2014-08-22 18:00:11 +0000144void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000145 assert( db!=0 );
146 db->errCode = err_code;
drh13f40da2014-08-22 18:00:11 +0000147 if( zFormat==0 ){
148 sqlite3Error(db, err_code);
149 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000150 char *z;
151 va_list ap;
152 va_start(ap, zFormat);
153 z = sqlite3VMPrintf(db, zFormat, ap);
154 va_end(ap);
155 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000156 }
157}
158
159/*
160** Add an error message to pParse->zErrMsg and increment pParse->nErr.
161** The following formatting characters are allowed:
162**
163** %s Insert a string
164** %z A string that should be freed after use
165** %d Insert an integer
166** %T Insert a token
167** %S Insert the first element of a SrcList
168**
drh13f40da2014-08-22 18:00:11 +0000169** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000170** compiling an SQL statement (i.e. within sqlite3_prepare()). The
171** last thing the sqlite3_prepare() function does is copy the error
172** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000173** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
174** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000175*/
176void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000177 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000178 va_list ap;
179 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000180 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000181 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000182 va_end(ap);
drha7564662010-02-22 19:32:31 +0000183 if( db->suppressErr ){
184 sqlite3DbFree(db, zMsg);
185 }else{
186 pParse->nErr++;
187 sqlite3DbFree(db, pParse->zErrMsg);
188 pParse->zErrMsg = zMsg;
189 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000190 }
drhc81c11f2009-11-10 01:30:52 +0000191}
192
193/*
194** Convert an SQL-style quoted string into a normal string by removing
195** the quote characters. The conversion is done in-place. If the
196** input does not begin with a quote character, then this routine
197** is a no-op.
198**
199** The input string must be zero-terminated. A new zero-terminator
200** is added to the dequoted string.
201**
202** The return value is -1 if no dequoting occurs or the length of the
203** dequoted string, exclusive of the zero terminator, if dequoting does
204** occur.
205**
206** 2002-Feb-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000207** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000208** "a-b-c".
209*/
210int sqlite3Dequote(char *z){
211 char quote;
212 int i, j;
213 if( z==0 ) return -1;
214 quote = z[0];
215 switch( quote ){
216 case '\'': break;
217 case '"': break;
218 case '`': break; /* For MySQL compatibility */
219 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
220 default: return -1;
221 }
drh9ccd8652013-09-13 16:36:46 +0000222 for(i=1, j=0;; i++){
223 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000224 if( z[i]==quote ){
225 if( z[i+1]==quote ){
226 z[j++] = quote;
227 i++;
228 }else{
229 break;
230 }
231 }else{
232 z[j++] = z[i];
233 }
234 }
235 z[j] = 0;
236 return j;
237}
238
239/* Convenient short-hand */
240#define UpperToLower sqlite3UpperToLower
241
242/*
243** Some systems have stricmp(). Others have strcasecmp(). Because
244** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000245**
drh0299b402012-03-19 17:42:46 +0000246** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
247** sqlite3_strnicmp() APIs allow applications and extensions to compare
248** the contents of two buffers containing UTF-8 strings in a
249** case-independent fashion, using the same definition of "case
250** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000251*/
drh3fa97302012-02-22 16:58:36 +0000252int sqlite3_stricmp(const char *zLeft, const char *zRight){
drhc81c11f2009-11-10 01:30:52 +0000253 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000254 if( zLeft==0 ){
255 return zRight ? -1 : 0;
256 }else if( zRight==0 ){
257 return 1;
258 }
drhc81c11f2009-11-10 01:30:52 +0000259 a = (unsigned char *)zLeft;
260 b = (unsigned char *)zRight;
261 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
262 return UpperToLower[*a] - UpperToLower[*b];
263}
264int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
265 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000266 if( zLeft==0 ){
267 return zRight ? -1 : 0;
268 }else if( zRight==0 ){
269 return 1;
270 }
drhc81c11f2009-11-10 01:30:52 +0000271 a = (unsigned char *)zLeft;
272 b = (unsigned char *)zRight;
273 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
274 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
275}
276
277/*
drh9339da12010-09-30 00:50:49 +0000278** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000279** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000280**
drh9339da12010-09-30 00:50:49 +0000281** The string z[] is length bytes in length (bytes, not characters) and
282** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000283**
drh9339da12010-09-30 00:50:49 +0000284** Return TRUE if the result is a valid real number (or integer) and FALSE
drh025586a2010-09-30 17:33:11 +0000285** if the string is empty or contains extraneous text. Valid numbers
286** are in one of these formats:
287**
288** [+-]digits[E[+-]digits]
289** [+-]digits.[digits][E[+-]digits]
290** [+-].digits[E[+-]digits]
291**
292** Leading and trailing whitespace is ignored for the purpose of determining
293** validity.
294**
295** If some prefix of the input string is a valid number, this routine
296** returns FALSE but it still converts the prefix and writes the result
297** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000298*/
drh9339da12010-09-30 00:50:49 +0000299int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000300#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000301 int incr;
drh9339da12010-09-30 00:50:49 +0000302 const char *zEnd = z + length;
drhc81c11f2009-11-10 01:30:52 +0000303 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000304 int sign = 1; /* sign of significand */
305 i64 s = 0; /* significand */
306 int d = 0; /* adjust exponent for shifting decimal point */
307 int esign = 1; /* sign of exponent */
308 int e = 0; /* exponent */
309 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000310 double result;
311 int nDigits = 0;
drh0e5fba72013-03-20 12:04:29 +0000312 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000313
drh0e5fba72013-03-20 12:04:29 +0000314 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000315 *pResult = 0.0; /* Default return value, in case of an error */
316
drh0e5fba72013-03-20 12:04:29 +0000317 if( enc==SQLITE_UTF8 ){
318 incr = 1;
319 }else{
320 int i;
321 incr = 2;
322 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
323 for(i=3-enc; i<length && z[i]==0; i+=2){}
324 nonNum = i<length;
325 zEnd = z+i+enc-3;
326 z += (enc&1);
327 }
drh9339da12010-09-30 00:50:49 +0000328
drhc81c11f2009-11-10 01:30:52 +0000329 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000330 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000331 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000332
drhc81c11f2009-11-10 01:30:52 +0000333 /* get sign of significand */
334 if( *z=='-' ){
335 sign = -1;
drh9339da12010-09-30 00:50:49 +0000336 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000337 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000338 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000339 }
drh9339da12010-09-30 00:50:49 +0000340
drhc81c11f2009-11-10 01:30:52 +0000341 /* skip leading zeroes */
drh9339da12010-09-30 00:50:49 +0000342 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000343
344 /* copy max significant digits to significand */
drh9339da12010-09-30 00:50:49 +0000345 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000346 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000347 z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000348 }
drh9339da12010-09-30 00:50:49 +0000349
drhc81c11f2009-11-10 01:30:52 +0000350 /* skip non-significant significand digits
351 ** (increase exponent by d to shift decimal left) */
drh9339da12010-09-30 00:50:49 +0000352 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
353 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000354
355 /* if decimal point is present */
356 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000357 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000358 /* copy digits from after decimal to significand
359 ** (decrease exponent by d to shift decimal right) */
drh9339da12010-09-30 00:50:49 +0000360 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000361 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000362 z+=incr, nDigits++, d--;
drhc81c11f2009-11-10 01:30:52 +0000363 }
364 /* skip non-significant digits */
drh9339da12010-09-30 00:50:49 +0000365 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000366 }
drh9339da12010-09-30 00:50:49 +0000367 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000368
369 /* if exponent is present */
370 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000371 z+=incr;
drh025586a2010-09-30 17:33:11 +0000372 eValid = 0;
drh9339da12010-09-30 00:50:49 +0000373 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000374 /* get sign of exponent */
375 if( *z=='-' ){
376 esign = -1;
drh9339da12010-09-30 00:50:49 +0000377 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000378 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000379 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000380 }
381 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000382 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000383 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000384 z+=incr;
drh025586a2010-09-30 17:33:11 +0000385 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000386 }
387 }
388
drh025586a2010-09-30 17:33:11 +0000389 /* skip trailing spaces */
390 if( nDigits && eValid ){
391 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
392 }
393
drh9339da12010-09-30 00:50:49 +0000394do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000395 /* adjust exponent by d, and update sign */
396 e = (e*esign) + d;
397 if( e<0 ) {
398 esign = -1;
399 e *= -1;
400 } else {
401 esign = 1;
402 }
403
404 /* if 0 significand */
405 if( !s ) {
406 /* In the IEEE 754 standard, zero is signed.
407 ** Add the sign if we've seen at least one digit */
408 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
409 } else {
410 /* attempt to reduce exponent */
411 if( esign>0 ){
412 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
413 }else{
414 while( !(s%10) && e>0 ) e--,s/=10;
415 }
416
417 /* adjust the sign of significand */
418 s = sign<0 ? -s : s;
419
420 /* if exponent, scale significand as appropriate
421 ** and store in result. */
422 if( e ){
drh89f15082012-06-19 00:45:16 +0000423 LONGDOUBLE_TYPE scale = 1.0;
drhc81c11f2009-11-10 01:30:52 +0000424 /* attempt to handle extremely small/large numbers better */
425 if( e>307 && e<342 ){
426 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
427 if( esign<0 ){
428 result = s / scale;
429 result /= 1.0e+308;
430 }else{
431 result = s * scale;
432 result *= 1.0e+308;
433 }
drh2458a2e2011-10-17 12:14:26 +0000434 }else if( e>=342 ){
435 if( esign<0 ){
436 result = 0.0*s;
437 }else{
438 result = 1e308*1e308*s; /* Infinity */
439 }
drhc81c11f2009-11-10 01:30:52 +0000440 }else{
441 /* 1.0e+22 is the largest power of 10 than can be
442 ** represented exactly. */
443 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
444 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
445 if( esign<0 ){
446 result = s / scale;
447 }else{
448 result = s * scale;
449 }
450 }
451 } else {
452 result = (double)s;
453 }
454 }
455
456 /* store the result */
457 *pResult = result;
458
drh025586a2010-09-30 17:33:11 +0000459 /* return true if number and no extra non-whitespace chracters after */
drh0e5fba72013-03-20 12:04:29 +0000460 return z>=zEnd && nDigits>0 && eValid && nonNum==0;
drhc81c11f2009-11-10 01:30:52 +0000461#else
shaneh5f1d6b62010-09-30 16:51:25 +0000462 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000463#endif /* SQLITE_OMIT_FLOATING_POINT */
464}
465
466/*
467** Compare the 19-character string zNum against the text representation
468** value 2^63: 9223372036854775808. Return negative, zero, or positive
469** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000470** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000471**
472** Unlike memcmp() this routine is guaranteed to return the difference
473** in the values of the last digit if the only difference is in the
474** last digit. So, for example,
475**
drh9339da12010-09-30 00:50:49 +0000476** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000477**
478** will return -8.
479*/
drh9339da12010-09-30 00:50:49 +0000480static int compare2pow63(const char *zNum, int incr){
481 int c = 0;
482 int i;
483 /* 012345678901234567 */
484 const char *pow63 = "922337203685477580";
485 for(i=0; c==0 && i<18; i++){
486 c = (zNum[i*incr]-pow63[i])*10;
487 }
drhc81c11f2009-11-10 01:30:52 +0000488 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000489 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000490 testcase( c==(-1) );
491 testcase( c==0 );
492 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000493 }
494 return c;
495}
496
drhc81c11f2009-11-10 01:30:52 +0000497/*
drh9296c182014-07-23 13:40:49 +0000498** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
499** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000500**
501** If the zNum value is representable as a 64-bit twos-complement
502** integer, then write that value into *pNum and return 0.
503**
drha256c1a2013-12-01 01:18:29 +0000504** If zNum is exactly 9223372036854775808, return 2. This special
505** case is broken out because while 9223372036854775808 cannot be a
506** signed 64-bit integer, its negative -9223372036854775808 can be.
drh158b9cb2011-03-05 20:59:46 +0000507**
508** If zNum is too big for a 64-bit integer and is not
drha256c1a2013-12-01 01:18:29 +0000509** 9223372036854775808 or if zNum contains any non-numeric text,
drh0e5fba72013-03-20 12:04:29 +0000510** then return 1.
drhc81c11f2009-11-10 01:30:52 +0000511**
drh9339da12010-09-30 00:50:49 +0000512** length is the number of bytes in the string (bytes, not characters).
513** The string is not necessarily zero-terminated. The encoding is
514** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000515*/
drh9339da12010-09-30 00:50:49 +0000516int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000517 int incr;
drh158b9cb2011-03-05 20:59:46 +0000518 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000519 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000520 int i;
521 int c = 0;
drh0e5fba72013-03-20 12:04:29 +0000522 int nonNum = 0;
drhc81c11f2009-11-10 01:30:52 +0000523 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000524 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000525 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
526 if( enc==SQLITE_UTF8 ){
527 incr = 1;
528 }else{
529 incr = 2;
530 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
531 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
532 nonNum = i<length;
533 zEnd = zNum+i+enc-3;
534 zNum += (enc&1);
535 }
drh9339da12010-09-30 00:50:49 +0000536 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000537 if( zNum<zEnd ){
538 if( *zNum=='-' ){
539 neg = 1;
540 zNum+=incr;
541 }else if( *zNum=='+' ){
542 zNum+=incr;
543 }
drhc81c11f2009-11-10 01:30:52 +0000544 }
545 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000546 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
547 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000548 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000549 }
drh158b9cb2011-03-05 20:59:46 +0000550 if( u>LARGEST_INT64 ){
drhde1a8b82013-11-26 15:45:02 +0000551 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
drh158b9cb2011-03-05 20:59:46 +0000552 }else if( neg ){
553 *pNum = -(i64)u;
554 }else{
555 *pNum = (i64)u;
556 }
drh44dbca82010-01-13 04:22:20 +0000557 testcase( i==18 );
558 testcase( i==19 );
559 testcase( i==20 );
drh12886632013-03-28 11:40:14 +0000560 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
drhc81c11f2009-11-10 01:30:52 +0000561 /* zNum is empty or contains non-numeric text or is longer
shaneh5f1d6b62010-09-30 16:51:25 +0000562 ** than 19 digits (thus guaranteeing that it is too large) */
563 return 1;
drh9339da12010-09-30 00:50:49 +0000564 }else if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000565 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000566 assert( u<=LARGEST_INT64 );
shaneh5f1d6b62010-09-30 16:51:25 +0000567 return 0;
drhc81c11f2009-11-10 01:30:52 +0000568 }else{
drh158b9cb2011-03-05 20:59:46 +0000569 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
570 c = compare2pow63(zNum, incr);
571 if( c<0 ){
572 /* zNum is less than 9223372036854775808 so it fits */
573 assert( u<=LARGEST_INT64 );
574 return 0;
575 }else if( c>0 ){
576 /* zNum is greater than 9223372036854775808 so it overflows */
577 return 1;
578 }else{
579 /* zNum is exactly 9223372036854775808. Fits if negative. The
580 ** special case 2 overflow if positive */
581 assert( u-1==LARGEST_INT64 );
drh158b9cb2011-03-05 20:59:46 +0000582 return neg ? 0 : 2;
583 }
drhc81c11f2009-11-10 01:30:52 +0000584 }
585}
586
587/*
drh9296c182014-07-23 13:40:49 +0000588** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
589** into a 64-bit signed integer. This routine accepts hexadecimal literals,
590** whereas sqlite3Atoi64() does not.
591**
592** Returns:
593**
594** 0 Successful transformation. Fits in a 64-bit signed integer.
595** 1 Integer too large for a 64-bit signed integer or is malformed
596** 2 Special case of 9223372036854775808
597*/
598int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
599#ifndef SQLITE_OMIT_HEX_INTEGER
600 if( z[0]=='0'
601 && (z[1]=='x' || z[1]=='X')
602 && sqlite3Isxdigit(z[2])
603 ){
604 u64 u = 0;
605 int i, k;
606 for(i=2; z[i]=='0'; i++){}
607 for(k=i; sqlite3Isxdigit(z[k]); k++){
608 u = u*16 + sqlite3HexToInt(z[k]);
609 }
610 memcpy(pOut, &u, 8);
611 return (z[k]==0 && k-i<=16) ? 0 : 1;
612 }else
613#endif /* SQLITE_OMIT_HEX_INTEGER */
614 {
615 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
616 }
617}
618
619/*
drhc81c11f2009-11-10 01:30:52 +0000620** If zNum represents an integer that will fit in 32-bits, then set
621** *pValue to that integer and return true. Otherwise return false.
622**
drh9296c182014-07-23 13:40:49 +0000623** This routine accepts both decimal and hexadecimal notation for integers.
624**
drhc81c11f2009-11-10 01:30:52 +0000625** Any non-numeric characters that following zNum are ignored.
626** This is different from sqlite3Atoi64() which requires the
627** input number to be zero-terminated.
628*/
629int sqlite3GetInt32(const char *zNum, int *pValue){
630 sqlite_int64 v = 0;
631 int i, c;
632 int neg = 0;
633 if( zNum[0]=='-' ){
634 neg = 1;
635 zNum++;
636 }else if( zNum[0]=='+' ){
637 zNum++;
638 }
drh28e048c2014-07-23 01:26:51 +0000639#ifndef SQLITE_OMIT_HEX_INTEGER
640 else if( zNum[0]=='0'
641 && (zNum[1]=='x' || zNum[1]=='X')
642 && sqlite3Isxdigit(zNum[2])
643 ){
644 u32 u = 0;
645 zNum += 2;
646 while( zNum[0]=='0' ) zNum++;
647 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
648 u = u*16 + sqlite3HexToInt(zNum[i]);
649 }
650 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
651 memcpy(pValue, &u, 4);
652 return 1;
653 }else{
654 return 0;
655 }
656 }
657#endif
drh935f2e72015-04-18 04:45:00 +0000658 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000659 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
660 v = v*10 + c;
661 }
662
663 /* The longest decimal representation of a 32 bit integer is 10 digits:
664 **
665 ** 1234567890
666 ** 2^31 -> 2147483648
667 */
drh44dbca82010-01-13 04:22:20 +0000668 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000669 if( i>10 ){
670 return 0;
671 }
drh44dbca82010-01-13 04:22:20 +0000672 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000673 if( v-neg>2147483647 ){
674 return 0;
675 }
676 if( neg ){
677 v = -v;
678 }
679 *pValue = (int)v;
680 return 1;
681}
682
683/*
drh60ac3f42010-11-23 18:59:27 +0000684** Return a 32-bit integer value extracted from a string. If the
685** string is not an integer, just return 0.
686*/
687int sqlite3Atoi(const char *z){
688 int x = 0;
689 if( z ) sqlite3GetInt32(z, &x);
690 return x;
691}
692
693/*
drhc81c11f2009-11-10 01:30:52 +0000694** The variable-length integer encoding is as follows:
695**
696** KEY:
697** A = 0xxxxxxx 7 bits of data and one flag bit
698** B = 1xxxxxxx 7 bits of data and one flag bit
699** C = xxxxxxxx 8 bits of data
700**
701** 7 bits - A
702** 14 bits - BA
703** 21 bits - BBA
704** 28 bits - BBBA
705** 35 bits - BBBBA
706** 42 bits - BBBBBA
707** 49 bits - BBBBBBA
708** 56 bits - BBBBBBBA
709** 64 bits - BBBBBBBBC
710*/
711
712/*
713** Write a 64-bit variable-length integer to memory starting at p[0].
714** The length of data write will be between 1 and 9 bytes. The number
715** of bytes written is returned.
716**
717** A variable-length integer consists of the lower 7 bits of each byte
718** for all bytes that have the 8th bit set and one byte with the 8th
719** bit clear. Except, if we get to the 9th byte, it stores the full
720** 8 bits and is the last byte.
721*/
drh2f2b2b82014-08-22 18:48:25 +0000722static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000723 int i, j, n;
724 u8 buf[10];
725 if( v & (((u64)0xff000000)<<32) ){
726 p[8] = (u8)v;
727 v >>= 8;
728 for(i=7; i>=0; i--){
729 p[i] = (u8)((v & 0x7f) | 0x80);
730 v >>= 7;
731 }
732 return 9;
733 }
734 n = 0;
735 do{
736 buf[n++] = (u8)((v & 0x7f) | 0x80);
737 v >>= 7;
738 }while( v!=0 );
739 buf[0] &= 0x7f;
740 assert( n<=9 );
741 for(i=0, j=n-1; j>=0; j--, i++){
742 p[i] = buf[j];
743 }
744 return n;
745}
drh2f2b2b82014-08-22 18:48:25 +0000746int sqlite3PutVarint(unsigned char *p, u64 v){
747 if( v<=0x7f ){
748 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000749 return 1;
750 }
drh2f2b2b82014-08-22 18:48:25 +0000751 if( v<=0x3fff ){
752 p[0] = ((v>>7)&0x7f)|0x80;
753 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000754 return 2;
755 }
drh2f2b2b82014-08-22 18:48:25 +0000756 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000757}
758
759/*
drh0b2864c2010-03-03 15:18:38 +0000760** Bitmasks used by sqlite3GetVarint(). These precomputed constants
761** are defined here rather than simply putting the constant expressions
762** inline in order to work around bugs in the RVT compiler.
763**
764** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
765**
766** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
767*/
768#define SLOT_2_0 0x001fc07f
769#define SLOT_4_2_0 0xf01fc07f
770
771
772/*
drhc81c11f2009-11-10 01:30:52 +0000773** Read a 64-bit variable-length integer from memory starting at p[0].
774** Return the number of bytes read. The value is stored in *v.
775*/
776u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
777 u32 a,b,s;
778
779 a = *p;
780 /* a: p0 (unmasked) */
781 if (!(a&0x80))
782 {
783 *v = a;
784 return 1;
785 }
786
787 p++;
788 b = *p;
789 /* b: p1 (unmasked) */
790 if (!(b&0x80))
791 {
792 a &= 0x7f;
793 a = a<<7;
794 a |= b;
795 *v = a;
796 return 2;
797 }
798
drh0b2864c2010-03-03 15:18:38 +0000799 /* Verify that constants are precomputed correctly */
800 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000801 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000802
drhc81c11f2009-11-10 01:30:52 +0000803 p++;
804 a = a<<14;
805 a |= *p;
806 /* a: p0<<14 | p2 (unmasked) */
807 if (!(a&0x80))
808 {
drh0b2864c2010-03-03 15:18:38 +0000809 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000810 b &= 0x7f;
811 b = b<<7;
812 a |= b;
813 *v = a;
814 return 3;
815 }
816
817 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000818 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000819 p++;
820 b = b<<14;
821 b |= *p;
822 /* b: p1<<14 | p3 (unmasked) */
823 if (!(b&0x80))
824 {
drh0b2864c2010-03-03 15:18:38 +0000825 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000826 /* moved CSE1 up */
827 /* a &= (0x7f<<14)|(0x7f); */
828 a = a<<7;
829 a |= b;
830 *v = a;
831 return 4;
832 }
833
834 /* a: p0<<14 | p2 (masked) */
835 /* b: p1<<14 | p3 (unmasked) */
836 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
837 /* moved CSE1 up */
838 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000839 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000840 s = a;
841 /* s: p0<<14 | p2 (masked) */
842
843 p++;
844 a = a<<14;
845 a |= *p;
846 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
847 if (!(a&0x80))
848 {
849 /* we can skip these cause they were (effectively) done above in calc'ing s */
850 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
851 /* b &= (0x7f<<14)|(0x7f); */
852 b = b<<7;
853 a |= b;
854 s = s>>18;
855 *v = ((u64)s)<<32 | a;
856 return 5;
857 }
858
859 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
860 s = s<<7;
861 s |= b;
862 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
863
864 p++;
865 b = b<<14;
866 b |= *p;
867 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
868 if (!(b&0x80))
869 {
870 /* we can skip this cause it was (effectively) done above in calc'ing s */
871 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000872 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000873 a = a<<7;
874 a |= b;
875 s = s>>18;
876 *v = ((u64)s)<<32 | a;
877 return 6;
878 }
879
880 p++;
881 a = a<<14;
882 a |= *p;
883 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
884 if (!(a&0x80))
885 {
drh0b2864c2010-03-03 15:18:38 +0000886 a &= SLOT_4_2_0;
887 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000888 b = b<<7;
889 a |= b;
890 s = s>>11;
891 *v = ((u64)s)<<32 | a;
892 return 7;
893 }
894
895 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +0000896 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000897 p++;
898 b = b<<14;
899 b |= *p;
900 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
901 if (!(b&0x80))
902 {
drh0b2864c2010-03-03 15:18:38 +0000903 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000904 /* moved CSE2 up */
905 /* a &= (0x7f<<14)|(0x7f); */
906 a = a<<7;
907 a |= b;
908 s = s>>4;
909 *v = ((u64)s)<<32 | a;
910 return 8;
911 }
912
913 p++;
914 a = a<<15;
915 a |= *p;
916 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
917
918 /* moved CSE2 up */
919 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +0000920 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000921 b = b<<8;
922 a |= b;
923
924 s = s<<4;
925 b = p[-4];
926 b &= 0x7f;
927 b = b>>3;
928 s |= b;
929
930 *v = ((u64)s)<<32 | a;
931
932 return 9;
933}
934
935/*
936** Read a 32-bit variable-length integer from memory starting at p[0].
937** Return the number of bytes read. The value is stored in *v.
938**
939** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
940** integer, then set *v to 0xffffffff.
941**
942** A MACRO version, getVarint32, is provided which inlines the
943** single-byte case. All code should use the MACRO version as
944** this function assumes the single-byte case has already been handled.
945*/
946u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
947 u32 a,b;
948
949 /* The 1-byte case. Overwhelmingly the most common. Handled inline
950 ** by the getVarin32() macro */
951 a = *p;
952 /* a: p0 (unmasked) */
953#ifndef getVarint32
954 if (!(a&0x80))
955 {
956 /* Values between 0 and 127 */
957 *v = a;
958 return 1;
959 }
960#endif
961
962 /* The 2-byte case */
963 p++;
964 b = *p;
965 /* b: p1 (unmasked) */
966 if (!(b&0x80))
967 {
968 /* Values between 128 and 16383 */
969 a &= 0x7f;
970 a = a<<7;
971 *v = a | b;
972 return 2;
973 }
974
975 /* The 3-byte case */
976 p++;
977 a = a<<14;
978 a |= *p;
979 /* a: p0<<14 | p2 (unmasked) */
980 if (!(a&0x80))
981 {
982 /* Values between 16384 and 2097151 */
983 a &= (0x7f<<14)|(0x7f);
984 b &= 0x7f;
985 b = b<<7;
986 *v = a | b;
987 return 3;
988 }
989
990 /* A 32-bit varint is used to store size information in btrees.
991 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
992 ** A 3-byte varint is sufficient, for example, to record the size
993 ** of a 1048569-byte BLOB or string.
994 **
995 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
996 ** rare larger cases can be handled by the slower 64-bit varint
997 ** routine.
998 */
999#if 1
1000 {
1001 u64 v64;
1002 u8 n;
1003
1004 p -= 2;
1005 n = sqlite3GetVarint(p, &v64);
1006 assert( n>3 && n<=9 );
1007 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1008 *v = 0xffffffff;
1009 }else{
1010 *v = (u32)v64;
1011 }
1012 return n;
1013 }
1014
1015#else
1016 /* For following code (kept for historical record only) shows an
1017 ** unrolling for the 3- and 4-byte varint cases. This code is
1018 ** slightly faster, but it is also larger and much harder to test.
1019 */
1020 p++;
1021 b = b<<14;
1022 b |= *p;
1023 /* b: p1<<14 | p3 (unmasked) */
1024 if (!(b&0x80))
1025 {
1026 /* Values between 2097152 and 268435455 */
1027 b &= (0x7f<<14)|(0x7f);
1028 a &= (0x7f<<14)|(0x7f);
1029 a = a<<7;
1030 *v = a | b;
1031 return 4;
1032 }
1033
1034 p++;
1035 a = a<<14;
1036 a |= *p;
1037 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1038 if (!(a&0x80))
1039 {
dan3bbe7612010-03-03 16:02:05 +00001040 /* Values between 268435456 and 34359738367 */
1041 a &= SLOT_4_2_0;
1042 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001043 b = b<<7;
1044 *v = a | b;
1045 return 5;
1046 }
1047
1048 /* We can only reach this point when reading a corrupt database
1049 ** file. In that case we are not in any hurry. Use the (relatively
1050 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1051 ** value. */
1052 {
1053 u64 v64;
1054 u8 n;
1055
1056 p -= 4;
1057 n = sqlite3GetVarint(p, &v64);
1058 assert( n>5 && n<=9 );
1059 *v = (u32)v64;
1060 return n;
1061 }
1062#endif
1063}
1064
1065/*
1066** Return the number of bytes that will be needed to store the given
1067** 64-bit integer.
1068*/
1069int sqlite3VarintLen(u64 v){
1070 int i = 0;
1071 do{
1072 i++;
1073 v >>= 7;
1074 }while( v!=0 && ALWAYS(i<9) );
1075 return i;
1076}
1077
1078
1079/*
1080** Read or write a four-byte big-endian integer value.
1081*/
1082u32 sqlite3Get4byte(const u8 *p){
drh693e6712014-01-24 22:58:00 +00001083 testcase( p[0]&0x80 );
1084 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drhc81c11f2009-11-10 01:30:52 +00001085}
1086void sqlite3Put4byte(unsigned char *p, u32 v){
1087 p[0] = (u8)(v>>24);
1088 p[1] = (u8)(v>>16);
1089 p[2] = (u8)(v>>8);
1090 p[3] = (u8)v;
1091}
1092
drh9296c182014-07-23 13:40:49 +00001093
1094
1095/*
1096** Translate a single byte of Hex into an integer.
1097** This routine only works if h really is a valid hexadecimal
1098** character: 0..9a..fA..F
1099*/
1100u8 sqlite3HexToInt(int h){
1101 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1102#ifdef SQLITE_ASCII
1103 h += 9*(1&(h>>6));
1104#endif
1105#ifdef SQLITE_EBCDIC
1106 h += 9*(1&~(h>>4));
1107#endif
1108 return (u8)(h & 0xf);
1109}
1110
drhc81c11f2009-11-10 01:30:52 +00001111#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1112/*
1113** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1114** value. Return a pointer to its binary value. Space to hold the
1115** binary value has been obtained from malloc and must be freed by
1116** the calling routine.
1117*/
1118void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1119 char *zBlob;
1120 int i;
1121
1122 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1123 n--;
1124 if( zBlob ){
1125 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001126 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001127 }
1128 zBlob[i/2] = 0;
1129 }
1130 return zBlob;
1131}
1132#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1133
drh413c3d32010-02-23 20:11:56 +00001134/*
1135** Log an error that is an API call on a connection pointer that should
1136** not have been used. The "type" of connection pointer is given as the
1137** argument. The zType is a word like "NULL" or "closed" or "invalid".
1138*/
1139static void logBadConnection(const char *zType){
1140 sqlite3_log(SQLITE_MISUSE,
1141 "API call with %s database connection pointer",
1142 zType
1143 );
1144}
drhc81c11f2009-11-10 01:30:52 +00001145
1146/*
drhc81c11f2009-11-10 01:30:52 +00001147** Check to make sure we have a valid db pointer. This test is not
1148** foolproof but it does provide some measure of protection against
1149** misuse of the interface such as passing in db pointers that are
1150** NULL or which have been previously closed. If this routine returns
1151** 1 it means that the db pointer is valid and 0 if it should not be
1152** dereferenced for any reason. The calling function should invoke
1153** SQLITE_MISUSE immediately.
1154**
1155** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1156** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1157** open properly and is not fit for general use but which can be
1158** used as an argument to sqlite3_errmsg() or sqlite3_close().
1159*/
1160int sqlite3SafetyCheckOk(sqlite3 *db){
1161 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001162 if( db==0 ){
1163 logBadConnection("NULL");
1164 return 0;
1165 }
drhc81c11f2009-11-10 01:30:52 +00001166 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001167 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001168 if( sqlite3SafetyCheckSickOrOk(db) ){
1169 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001170 logBadConnection("unopened");
1171 }
drhc81c11f2009-11-10 01:30:52 +00001172 return 0;
1173 }else{
1174 return 1;
1175 }
1176}
1177int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1178 u32 magic;
1179 magic = db->magic;
1180 if( magic!=SQLITE_MAGIC_SICK &&
1181 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001182 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001183 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001184 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001185 return 0;
1186 }else{
1187 return 1;
1188 }
drhc81c11f2009-11-10 01:30:52 +00001189}
drh158b9cb2011-03-05 20:59:46 +00001190
1191/*
1192** Attempt to add, substract, or multiply the 64-bit signed value iB against
1193** the other 64-bit signed integer at *pA and store the result in *pA.
1194** Return 0 on success. Or if the operation would have resulted in an
1195** overflow, leave *pA unchanged and return 1.
1196*/
1197int sqlite3AddInt64(i64 *pA, i64 iB){
1198 i64 iA = *pA;
1199 testcase( iA==0 ); testcase( iA==1 );
1200 testcase( iB==-1 ); testcase( iB==0 );
1201 if( iB>=0 ){
1202 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1203 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1204 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001205 }else{
1206 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1207 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1208 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001209 }
drh53a6eb32014-02-10 12:59:15 +00001210 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001211 return 0;
1212}
1213int sqlite3SubInt64(i64 *pA, i64 iB){
1214 testcase( iB==SMALLEST_INT64+1 );
1215 if( iB==SMALLEST_INT64 ){
1216 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1217 if( (*pA)>=0 ) return 1;
1218 *pA -= iB;
1219 return 0;
1220 }else{
1221 return sqlite3AddInt64(pA, -iB);
1222 }
1223}
1224#define TWOPOWER32 (((i64)1)<<32)
1225#define TWOPOWER31 (((i64)1)<<31)
1226int sqlite3MulInt64(i64 *pA, i64 iB){
1227 i64 iA = *pA;
1228 i64 iA1, iA0, iB1, iB0, r;
1229
drh158b9cb2011-03-05 20:59:46 +00001230 iA1 = iA/TWOPOWER32;
1231 iA0 = iA % TWOPOWER32;
1232 iB1 = iB/TWOPOWER32;
1233 iB0 = iB % TWOPOWER32;
drh53a6eb32014-02-10 12:59:15 +00001234 if( iA1==0 ){
1235 if( iB1==0 ){
1236 *pA *= iB;
1237 return 0;
1238 }
1239 r = iA0*iB1;
1240 }else if( iB1==0 ){
1241 r = iA1*iB0;
1242 }else{
1243 /* If both iA1 and iB1 are non-zero, overflow will result */
1244 return 1;
1245 }
drh158b9cb2011-03-05 20:59:46 +00001246 testcase( r==(-TWOPOWER31)-1 );
1247 testcase( r==(-TWOPOWER31) );
1248 testcase( r==TWOPOWER31 );
1249 testcase( r==TWOPOWER31-1 );
1250 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1251 r *= TWOPOWER32;
1252 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1253 *pA = r;
1254 return 0;
1255}
drhd50ffc42011-03-08 02:38:28 +00001256
1257/*
1258** Compute the absolute value of a 32-bit signed integer, of possible. Or
1259** if the integer has a value of -2147483648, return +2147483647
1260*/
1261int sqlite3AbsInt32(int x){
1262 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001263 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001264 return -x;
1265}
drh81cc5162011-05-17 20:36:21 +00001266
1267#ifdef SQLITE_ENABLE_8_3_NAMES
1268/*
drhb51bf432011-07-21 21:29:35 +00001269** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001270** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1271** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1272** three characters, then shorten the suffix on z[] to be the last three
1273** characters of the original suffix.
1274**
drhb51bf432011-07-21 21:29:35 +00001275** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1276** do the suffix shortening regardless of URI parameter.
1277**
drh81cc5162011-05-17 20:36:21 +00001278** Examples:
1279**
1280** test.db-journal => test.nal
1281** test.db-wal => test.wal
1282** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001283** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001284*/
1285void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001286#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001287 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001288#endif
1289 {
drh81cc5162011-05-17 20:36:21 +00001290 int i, sz;
1291 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001292 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001293 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001294 }
1295}
1296#endif
drhbf539c42013-10-05 18:16:02 +00001297
1298/*
1299** Find (an approximate) sum of two LogEst values. This computation is
1300** not a simple "+" operator because LogEst is stored as a logarithmic
1301** value.
1302**
1303*/
1304LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1305 static const unsigned char x[] = {
1306 10, 10, /* 0,1 */
1307 9, 9, /* 2,3 */
1308 8, 8, /* 4,5 */
1309 7, 7, 7, /* 6,7,8 */
1310 6, 6, 6, /* 9,10,11 */
1311 5, 5, 5, /* 12-14 */
1312 4, 4, 4, 4, /* 15-18 */
1313 3, 3, 3, 3, 3, 3, /* 19-24 */
1314 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1315 };
1316 if( a>=b ){
1317 if( a>b+49 ) return a;
1318 if( a>b+31 ) return a+1;
1319 return a+x[a-b];
1320 }else{
1321 if( b>a+49 ) return b;
1322 if( b>a+31 ) return b+1;
1323 return b+x[b-a];
1324 }
1325}
1326
1327/*
drh224155d2014-04-30 13:19:09 +00001328** Convert an integer into a LogEst. In other words, compute an
1329** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001330*/
1331LogEst sqlite3LogEst(u64 x){
1332 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1333 LogEst y = 40;
1334 if( x<8 ){
1335 if( x<2 ) return 0;
1336 while( x<8 ){ y -= 10; x <<= 1; }
1337 }else{
1338 while( x>255 ){ y += 40; x >>= 4; }
1339 while( x>15 ){ y += 10; x >>= 1; }
1340 }
1341 return a[x&7] + y - 10;
1342}
1343
1344#ifndef SQLITE_OMIT_VIRTUALTABLE
1345/*
1346** Convert a double into a LogEst
1347** In other words, compute an approximation for 10*log2(x).
1348*/
1349LogEst sqlite3LogEstFromDouble(double x){
1350 u64 a;
1351 LogEst e;
1352 assert( sizeof(x)==8 && sizeof(a)==8 );
1353 if( x<=1 ) return 0;
1354 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1355 memcpy(&a, &x, 8);
1356 e = (a>>52) - 1022;
1357 return e*10;
1358}
1359#endif /* SQLITE_OMIT_VIRTUALTABLE */
1360
1361/*
1362** Convert a LogEst into an integer.
1363*/
1364u64 sqlite3LogEstToInt(LogEst x){
1365 u64 n;
1366 if( x<10 ) return 1;
1367 n = x%10;
1368 x /= 10;
1369 if( n>=5 ) n -= 2;
1370 else if( n>=1 ) n -= 1;
drh47676fe2013-12-05 16:41:55 +00001371 if( x>=3 ){
1372 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1373 }
drhbf539c42013-10-05 18:16:02 +00001374 return (n+8)>>(3-x);
1375}