blob: 42fc8ceba9cd28624dc5784dc2863f34ea5daa33 [file] [log] [blame]
danielk1977bc2ca9e2008-11-13 14:28:28 +00001/*
2** 2008 November 05
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file implements the default page cache implementation (the
14** sqlite3_pcache interface). It also contains part of the implementation
15** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16** If the default page cache implementation is overriden, then neither of
17** these two features are available.
danielk1977bc2ca9e2008-11-13 14:28:28 +000018*/
19
20#include "sqliteInt.h"
21
22typedef struct PCache1 PCache1;
23typedef struct PgHdr1 PgHdr1;
24typedef struct PgFreeslot PgFreeslot;
drh9f8cf9d2011-01-17 21:32:24 +000025typedef struct PGroup PGroup;
26
27/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
28** of one or more PCaches that are able to recycle each others unpinned
29** pages when they are under memory pressure. A PGroup is an instance of
30** the following object.
31**
32** This page cache implementation works in one of two modes:
33**
34** (1) Every PCache is the sole member of its own PGroup. There is
35** one PGroup per PCache.
36**
37** (2) There is a single global PGroup that all PCaches are a member
38** of.
39**
40** Mode 1 uses more memory (since PCache instances are not able to rob
41** unused pages from other PCaches) but it also operates without a mutex,
42** and is therefore often faster. Mode 2 requires a mutex in order to be
drh45d29302012-01-08 22:18:33 +000043** threadsafe, but recycles pages more efficiently.
drh9f8cf9d2011-01-17 21:32:24 +000044**
45** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
46** PGroup which is the pcache1.grp global variable and its mutex is
47** SQLITE_MUTEX_STATIC_LRU.
48*/
49struct PGroup {
50 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
drha69085c2012-01-02 18:00:55 +000051 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
52 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
53 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
54 unsigned int nCurrentPage; /* Number of purgeable pages allocated */
drh9f8cf9d2011-01-17 21:32:24 +000055 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
56};
danielk1977bc2ca9e2008-11-13 14:28:28 +000057
drh9d13f112010-08-24 18:06:35 +000058/* Each page cache is an instance of the following object. Every
59** open database file (including each in-memory database and each
60** temporary or transient database) has a single page cache which
61** is an instance of this object.
62**
63** Pointers to structures of this type are cast and returned as
64** opaque sqlite3_pcache* handles.
danielk1977bc2ca9e2008-11-13 14:28:28 +000065*/
66struct PCache1 {
67 /* Cache configuration parameters. Page size (szPage) and the purgeable
68 ** flag (bPurgeable) are set when the cache is created. nMax may be
drh45d29302012-01-08 22:18:33 +000069 ** modified at any time by a call to the pcache1Cachesize() method.
drh9f8cf9d2011-01-17 21:32:24 +000070 ** The PGroup mutex must be held when accessing nMax.
danielk1977bc2ca9e2008-11-13 14:28:28 +000071 */
drh9f8cf9d2011-01-17 21:32:24 +000072 PGroup *pGroup; /* PGroup this cache belongs to */
danielk1977bc2ca9e2008-11-13 14:28:28 +000073 int szPage; /* Size of allocated pages in bytes */
dan22e21ff2011-11-08 20:08:44 +000074 int szExtra; /* Size of extra space in bytes */
danielk1977bc2ca9e2008-11-13 14:28:28 +000075 int bPurgeable; /* True if cache is purgeable */
danielk197744cd45c2008-11-15 11:22:45 +000076 unsigned int nMin; /* Minimum number of pages reserved */
77 unsigned int nMax; /* Configured "cache_size" value */
drh25ca5682011-01-26 00:07:03 +000078 unsigned int n90pct; /* nMax*9/10 */
drh2cbd78b2012-02-02 19:37:18 +000079 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
danielk1977bc2ca9e2008-11-13 14:28:28 +000080
81 /* Hash table of all pages. The following variables may only be accessed
drh9f8cf9d2011-01-17 21:32:24 +000082 ** when the accessor is holding the PGroup mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +000083 */
danielk197744cd45c2008-11-15 11:22:45 +000084 unsigned int nRecyclable; /* Number of pages in the LRU list */
85 unsigned int nPage; /* Total number of pages in apHash */
86 unsigned int nHash; /* Number of slots in apHash[] */
danielk1977bc2ca9e2008-11-13 14:28:28 +000087 PgHdr1 **apHash; /* Hash table for fast lookup by key */
88};
89
90/*
91** Each cache entry is represented by an instance of the following
dan22e21ff2011-11-08 20:08:44 +000092** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94** in memory.
danielk1977bc2ca9e2008-11-13 14:28:28 +000095*/
96struct PgHdr1 {
dan22e21ff2011-11-08 20:08:44 +000097 sqlite3_pcache_page page;
danielk1977bc2ca9e2008-11-13 14:28:28 +000098 unsigned int iKey; /* Key value (page number) */
99 PgHdr1 *pNext; /* Next in hash table chain */
100 PCache1 *pCache; /* Cache that currently owns this page */
101 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
102 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
103};
104
105/*
106** Free slots in the allocator used to divide up the buffer provided using
107** the SQLITE_CONFIG_PAGECACHE mechanism.
108*/
109struct PgFreeslot {
110 PgFreeslot *pNext; /* Next free slot */
111};
112
113/*
114** Global data used by this cache.
115*/
116static SQLITE_WSD struct PCacheGlobal {
drh9f8cf9d2011-01-17 21:32:24 +0000117 PGroup grp; /* The global PGroup for mode (2) */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000118
drh9f8cf9d2011-01-17 21:32:24 +0000119 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
120 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
121 ** fixed at sqlite3_initialize() time and do not require mutex protection.
122 ** The nFreeSlot and pFree values do require mutex protection.
123 */
124 int isInit; /* True if initialized */
125 int szSlot; /* Size of each free slot */
126 int nSlot; /* The number of pcache slots */
127 int nReserve; /* Try to keep nFreeSlot above this */
128 void *pStart, *pEnd; /* Bounds of pagecache malloc range */
129 /* Above requires no mutex. Use mutex below for variable that follow. */
130 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
drh9f8cf9d2011-01-17 21:32:24 +0000131 PgFreeslot *pFree; /* Free page blocks */
drh2cbd78b2012-02-02 19:37:18 +0000132 int nFreeSlot; /* Number of unused pcache slots */
drh9f8cf9d2011-01-17 21:32:24 +0000133 /* The following value requires a mutex to change. We skip the mutex on
134 ** reading because (1) most platforms read a 32-bit integer atomically and
135 ** (2) even if an incorrect value is read, no great harm is done since this
136 ** is really just an optimization. */
137 int bUnderPressure; /* True if low on PAGECACHE memory */
danielk197744cd45c2008-11-15 11:22:45 +0000138} pcache1_g;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000139
140/*
141** All code in this file should access the global structure above via the
142** alias "pcache1". This ensures that the WSD emulation is used when
143** compiling for systems that do not support real WSD.
144*/
145#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
146
147/*
drh9f8cf9d2011-01-17 21:32:24 +0000148** Macros to enter and leave the PCache LRU mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000149*/
drh9f8cf9d2011-01-17 21:32:24 +0000150#define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
151#define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
danielk1977bc2ca9e2008-11-13 14:28:28 +0000152
153/******************************************************************************/
154/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
155
156/*
157** This function is called during initialization if a static buffer is
158** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
159** verb to sqlite3_config(). Parameter pBuf points to an allocation large
160** enough to contain 'n' buffers of 'sz' bytes each.
drh9f8cf9d2011-01-17 21:32:24 +0000161**
162** This routine is called from sqlite3_initialize() and so it is guaranteed
163** to be serialized already. There is no need for further mutexing.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000164*/
165void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
drhf4622dc2009-05-22 11:10:24 +0000166 if( pcache1.isInit ){
167 PgFreeslot *p;
168 sz = ROUNDDOWN8(sz);
169 pcache1.szSlot = sz;
drh50d1b5f2010-08-27 12:21:06 +0000170 pcache1.nSlot = pcache1.nFreeSlot = n;
171 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
drhf4622dc2009-05-22 11:10:24 +0000172 pcache1.pStart = pBuf;
173 pcache1.pFree = 0;
drh9f8cf9d2011-01-17 21:32:24 +0000174 pcache1.bUnderPressure = 0;
drhf4622dc2009-05-22 11:10:24 +0000175 while( n-- ){
176 p = (PgFreeslot*)pBuf;
177 p->pNext = pcache1.pFree;
178 pcache1.pFree = p;
179 pBuf = (void*)&((char*)pBuf)[sz];
180 }
181 pcache1.pEnd = pBuf;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000182 }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000183}
184
185/*
186** Malloc function used within this file to allocate space from the buffer
187** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
188** such buffer exists or there is no space left in it, this function falls
189** back to sqlite3Malloc().
drh9f8cf9d2011-01-17 21:32:24 +0000190**
191** Multiple threads can run this routine at the same time. Global variables
192** in pcache1 need to be protected via mutex.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000193*/
194static void *pcache1Alloc(int nByte){
drh9f8cf9d2011-01-17 21:32:24 +0000195 void *p = 0;
196 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
drh29dfbe32010-07-28 17:01:24 +0000197 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
drh9f8cf9d2011-01-17 21:32:24 +0000198 if( nByte<=pcache1.szSlot ){
199 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000200 p = (PgHdr1 *)pcache1.pFree;
drh9f8cf9d2011-01-17 21:32:24 +0000201 if( p ){
202 pcache1.pFree = pcache1.pFree->pNext;
203 pcache1.nFreeSlot--;
204 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
205 assert( pcache1.nFreeSlot>=0 );
206 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
207 }
208 sqlite3_mutex_leave(pcache1.mutex);
209 }
210 if( p==0 ){
211 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
212 ** it from sqlite3Malloc instead.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000213 */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000214 p = sqlite3Malloc(nByte);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000215 if( p ){
216 int sz = sqlite3MallocSize(p);
drh9bf3da8e2011-01-26 13:24:40 +0000217 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000218 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
drh9bf3da8e2011-01-26 13:24:40 +0000219 sqlite3_mutex_leave(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000220 }
drh107b56e2010-03-12 16:32:53 +0000221 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000222 }
223 return p;
224}
225
226/*
227** Free an allocated buffer obtained from pcache1Alloc().
228*/
drh09419b42011-11-16 19:29:17 +0000229static int pcache1Free(void *p){
230 int nFreed = 0;
231 if( p==0 ) return 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000232 if( p>=pcache1.pStart && p<pcache1.pEnd ){
233 PgFreeslot *pSlot;
drh9f8cf9d2011-01-17 21:32:24 +0000234 sqlite3_mutex_enter(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000235 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
236 pSlot = (PgFreeslot*)p;
237 pSlot->pNext = pcache1.pFree;
238 pcache1.pFree = pSlot;
drh50d1b5f2010-08-27 12:21:06 +0000239 pcache1.nFreeSlot++;
drh9f8cf9d2011-01-17 21:32:24 +0000240 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
drh50d1b5f2010-08-27 12:21:06 +0000241 assert( pcache1.nFreeSlot<=pcache1.nSlot );
drh9f8cf9d2011-01-17 21:32:24 +0000242 sqlite3_mutex_leave(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000243 }else{
drh107b56e2010-03-12 16:32:53 +0000244 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
245 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
drh09419b42011-11-16 19:29:17 +0000246 nFreed = sqlite3MallocSize(p);
drh15ad92f2011-01-26 13:28:06 +0000247 sqlite3_mutex_enter(pcache1.mutex);
drh09419b42011-11-16 19:29:17 +0000248 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
drh15ad92f2011-01-26 13:28:06 +0000249 sqlite3_mutex_leave(pcache1.mutex);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000250 sqlite3_free(p);
251 }
drh09419b42011-11-16 19:29:17 +0000252 return nFreed;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000253}
254
drhc8f503a2010-08-20 09:14:13 +0000255#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
256/*
drh9d13f112010-08-24 18:06:35 +0000257** Return the size of a pcache allocation
drhc8f503a2010-08-20 09:14:13 +0000258*/
259static int pcache1MemSize(void *p){
drhc8f503a2010-08-20 09:14:13 +0000260 if( p>=pcache1.pStart && p<pcache1.pEnd ){
261 return pcache1.szSlot;
262 }else{
263 int iSize;
264 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
265 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
266 iSize = sqlite3MallocSize(p);
267 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
268 return iSize;
269 }
270}
271#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
272
dand2925702011-08-19 18:15:00 +0000273/*
danielk1977bc2ca9e2008-11-13 14:28:28 +0000274** Allocate a new page object initially associated with cache pCache.
275*/
276static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
danb5126dd2011-09-22 14:56:31 +0000277 PgHdr1 *p = 0;
278 void *pPg;
dand2925702011-08-19 18:15:00 +0000279
dand2925702011-08-19 18:15:00 +0000280 /* The group mutex must be released before pcache1Alloc() is called. This
281 ** is because it may call sqlite3_release_memory(), which assumes that
282 ** this mutex is not held. */
283 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
284 pcache1LeaveMutex(pCache->pGroup);
dan22e21ff2011-11-08 20:08:44 +0000285#ifdef SQLITE_PCACHE_SEPARATE_HEADER
286 pPg = pcache1Alloc(pCache->szPage);
287 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
288 if( !pPg || !p ){
289 pcache1Free(pPg);
290 sqlite3_free(p);
291 pPg = 0;
292 }
293#else
294 pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra);
295 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
296#endif
dand2925702011-08-19 18:15:00 +0000297 pcache1EnterMutex(pCache->pGroup);
danb5126dd2011-09-22 14:56:31 +0000298
drh69e931e2009-06-03 21:04:35 +0000299 if( pPg ){
dan22e21ff2011-11-08 20:08:44 +0000300 p->page.pBuf = pPg;
301 p->page.pExtra = &p[1];
danielk1977bc2ca9e2008-11-13 14:28:28 +0000302 if( pCache->bPurgeable ){
drh9f8cf9d2011-01-17 21:32:24 +0000303 pCache->pGroup->nCurrentPage++;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000304 }
dan22e21ff2011-11-08 20:08:44 +0000305 return p;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000306 }
dan22e21ff2011-11-08 20:08:44 +0000307 return 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000308}
309
310/*
311** Free a page object allocated by pcache1AllocPage().
drhf18a61d2009-07-17 11:44:07 +0000312**
313** The pointer is allowed to be NULL, which is prudent. But it turns out
314** that the current implementation happens to never call this routine
315** with a NULL pointer, so we mark the NULL test with ALWAYS().
danielk1977bc2ca9e2008-11-13 14:28:28 +0000316*/
317static void pcache1FreePage(PgHdr1 *p){
drhf18a61d2009-07-17 11:44:07 +0000318 if( ALWAYS(p) ){
drh9f8cf9d2011-01-17 21:32:24 +0000319 PCache1 *pCache = p->pCache;
dand2925702011-08-19 18:15:00 +0000320 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
dan22e21ff2011-11-08 20:08:44 +0000321 pcache1Free(p->page.pBuf);
322#ifdef SQLITE_PCACHE_SEPARATE_HEADER
323 sqlite3_free(p);
324#endif
drh9f8cf9d2011-01-17 21:32:24 +0000325 if( pCache->bPurgeable ){
326 pCache->pGroup->nCurrentPage--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000327 }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000328 }
329}
330
331/*
332** Malloc function used by SQLite to obtain space from the buffer configured
333** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
334** exists, this function falls back to sqlite3Malloc().
335*/
336void *sqlite3PageMalloc(int sz){
drh9f8cf9d2011-01-17 21:32:24 +0000337 return pcache1Alloc(sz);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000338}
339
340/*
341** Free an allocated buffer obtained from sqlite3PageMalloc().
342*/
343void sqlite3PageFree(void *p){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000344 pcache1Free(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000345}
346
drh50d1b5f2010-08-27 12:21:06 +0000347
348/*
349** Return true if it desirable to avoid allocating a new page cache
350** entry.
351**
352** If memory was allocated specifically to the page cache using
353** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
354** it is desirable to avoid allocating a new page cache entry because
355** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
356** for all page cache needs and we should not need to spill the
357** allocation onto the heap.
358**
drh45d29302012-01-08 22:18:33 +0000359** Or, the heap is used for all page cache memory but the heap is
drh50d1b5f2010-08-27 12:21:06 +0000360** under memory pressure, then again it is desirable to avoid
361** allocating a new page cache entry in order to avoid stressing
362** the heap even further.
363*/
364static int pcache1UnderMemoryPressure(PCache1 *pCache){
dan22e21ff2011-11-08 20:08:44 +0000365 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
drh9f8cf9d2011-01-17 21:32:24 +0000366 return pcache1.bUnderPressure;
drh50d1b5f2010-08-27 12:21:06 +0000367 }else{
368 return sqlite3HeapNearlyFull();
369 }
370}
371
danielk1977bc2ca9e2008-11-13 14:28:28 +0000372/******************************************************************************/
373/******** General Implementation Functions ************************************/
374
375/*
376** This function is used to resize the hash table used by the cache passed
377** as the first argument.
378**
drh9f8cf9d2011-01-17 21:32:24 +0000379** The PCache mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000380*/
381static int pcache1ResizeHash(PCache1 *p){
382 PgHdr1 **apNew;
danielk197744cd45c2008-11-15 11:22:45 +0000383 unsigned int nNew;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000384 unsigned int i;
385
drh9f8cf9d2011-01-17 21:32:24 +0000386 assert( sqlite3_mutex_held(p->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000387
388 nNew = p->nHash*2;
389 if( nNew<256 ){
390 nNew = 256;
391 }
392
drh9f8cf9d2011-01-17 21:32:24 +0000393 pcache1LeaveMutex(p->pGroup);
drh085bb7f2008-12-06 14:34:33 +0000394 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
danielk1977bc2ca9e2008-11-13 14:28:28 +0000395 apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
drh085bb7f2008-12-06 14:34:33 +0000396 if( p->nHash ){ sqlite3EndBenignMalloc(); }
drh9f8cf9d2011-01-17 21:32:24 +0000397 pcache1EnterMutex(p->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000398 if( apNew ){
399 memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
400 for(i=0; i<p->nHash; i++){
401 PgHdr1 *pPage;
402 PgHdr1 *pNext = p->apHash[i];
drhb27b7f52008-12-10 18:03:45 +0000403 while( (pPage = pNext)!=0 ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000404 unsigned int h = pPage->iKey % nNew;
405 pNext = pPage->pNext;
406 pPage->pNext = apNew[h];
407 apNew[h] = pPage;
408 }
409 }
410 sqlite3_free(p->apHash);
411 p->apHash = apNew;
412 p->nHash = nNew;
413 }
414
415 return (p->apHash ? SQLITE_OK : SQLITE_NOMEM);
416}
417
418/*
419** This function is used internally to remove the page pPage from the
drh9f8cf9d2011-01-17 21:32:24 +0000420** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
danielk1977bc2ca9e2008-11-13 14:28:28 +0000421** LRU list, then this function is a no-op.
422**
drh9f8cf9d2011-01-17 21:32:24 +0000423** The PGroup mutex must be held when this function is called.
424**
425** If pPage is NULL then this routine is a no-op.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000426*/
427static void pcache1PinPage(PgHdr1 *pPage){
drh9f8cf9d2011-01-17 21:32:24 +0000428 PCache1 *pCache;
429 PGroup *pGroup;
430
431 if( pPage==0 ) return;
432 pCache = pPage->pCache;
433 pGroup = pCache->pGroup;
434 assert( sqlite3_mutex_held(pGroup->mutex) );
435 if( pPage->pLruNext || pPage==pGroup->pLruTail ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000436 if( pPage->pLruPrev ){
437 pPage->pLruPrev->pLruNext = pPage->pLruNext;
438 }
439 if( pPage->pLruNext ){
440 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
441 }
drh9f8cf9d2011-01-17 21:32:24 +0000442 if( pGroup->pLruHead==pPage ){
443 pGroup->pLruHead = pPage->pLruNext;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000444 }
drh9f8cf9d2011-01-17 21:32:24 +0000445 if( pGroup->pLruTail==pPage ){
446 pGroup->pLruTail = pPage->pLruPrev;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000447 }
448 pPage->pLruNext = 0;
449 pPage->pLruPrev = 0;
450 pPage->pCache->nRecyclable--;
451 }
452}
453
454
455/*
456** Remove the page supplied as an argument from the hash table
457** (PCache1.apHash structure) that it is currently stored in.
458**
drh9f8cf9d2011-01-17 21:32:24 +0000459** The PGroup mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000460*/
461static void pcache1RemoveFromHash(PgHdr1 *pPage){
462 unsigned int h;
463 PCache1 *pCache = pPage->pCache;
464 PgHdr1 **pp;
465
drh9f8cf9d2011-01-17 21:32:24 +0000466 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000467 h = pPage->iKey % pCache->nHash;
468 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
469 *pp = (*pp)->pNext;
470
471 pCache->nPage--;
472}
473
474/*
drh9f8cf9d2011-01-17 21:32:24 +0000475** If there are currently more than nMaxPage pages allocated, try
476** to recycle pages to reduce the number allocated to nMaxPage.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000477*/
drh9f8cf9d2011-01-17 21:32:24 +0000478static void pcache1EnforceMaxPage(PGroup *pGroup){
479 assert( sqlite3_mutex_held(pGroup->mutex) );
480 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
481 PgHdr1 *p = pGroup->pLruTail;
482 assert( p->pCache->pGroup==pGroup );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000483 pcache1PinPage(p);
484 pcache1RemoveFromHash(p);
485 pcache1FreePage(p);
486 }
487}
488
489/*
490** Discard all pages from cache pCache with a page number (key value)
491** greater than or equal to iLimit. Any pinned pages that meet this
492** criteria are unpinned before they are discarded.
493**
drh9f8cf9d2011-01-17 21:32:24 +0000494** The PCache mutex must be held when this function is called.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000495*/
496static void pcache1TruncateUnsafe(
drh9f8cf9d2011-01-17 21:32:24 +0000497 PCache1 *pCache, /* The cache to truncate */
498 unsigned int iLimit /* Drop pages with this pgno or larger */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000499){
drh9f8cf9d2011-01-17 21:32:24 +0000500 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000501 unsigned int h;
drh9f8cf9d2011-01-17 21:32:24 +0000502 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000503 for(h=0; h<pCache->nHash; h++){
504 PgHdr1 **pp = &pCache->apHash[h];
505 PgHdr1 *pPage;
drhb27b7f52008-12-10 18:03:45 +0000506 while( (pPage = *pp)!=0 ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000507 if( pPage->iKey>=iLimit ){
danielk1977ea24ac42009-05-08 06:52:47 +0000508 pCache->nPage--;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000509 *pp = pPage->pNext;
danielk1977ea24ac42009-05-08 06:52:47 +0000510 pcache1PinPage(pPage);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000511 pcache1FreePage(pPage);
512 }else{
513 pp = &pPage->pNext;
danielk1977ea24ac42009-05-08 06:52:47 +0000514 TESTONLY( nPage++; )
danielk1977bc2ca9e2008-11-13 14:28:28 +0000515 }
516 }
517 }
danielk1977ea24ac42009-05-08 06:52:47 +0000518 assert( pCache->nPage==nPage );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000519}
520
521/******************************************************************************/
522/******** sqlite3_pcache Methods **********************************************/
523
524/*
525** Implementation of the sqlite3_pcache.xInit method.
526*/
danielk197762c14b32008-11-19 09:05:26 +0000527static int pcache1Init(void *NotUsed){
528 UNUSED_PARAMETER(NotUsed);
drhf4622dc2009-05-22 11:10:24 +0000529 assert( pcache1.isInit==0 );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000530 memset(&pcache1, 0, sizeof(pcache1));
531 if( sqlite3GlobalConfig.bCoreMutex ){
drh9f8cf9d2011-01-17 21:32:24 +0000532 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
drh40f98372011-01-18 15:17:57 +0000533 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000534 }
drh41692e92011-01-25 04:34:51 +0000535 pcache1.grp.mxPinned = 10;
drhf4622dc2009-05-22 11:10:24 +0000536 pcache1.isInit = 1;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000537 return SQLITE_OK;
538}
539
540/*
541** Implementation of the sqlite3_pcache.xShutdown method.
shane7c7c3112009-08-17 15:31:23 +0000542** Note that the static mutex allocated in xInit does
543** not need to be freed.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000544*/
danielk197762c14b32008-11-19 09:05:26 +0000545static void pcache1Shutdown(void *NotUsed){
546 UNUSED_PARAMETER(NotUsed);
drhf4622dc2009-05-22 11:10:24 +0000547 assert( pcache1.isInit!=0 );
drhb0937192009-05-22 10:53:29 +0000548 memset(&pcache1, 0, sizeof(pcache1));
danielk1977bc2ca9e2008-11-13 14:28:28 +0000549}
550
551/*
552** Implementation of the sqlite3_pcache.xCreate method.
553**
554** Allocate a new cache.
555*/
drhe5c40b12011-11-09 00:06:05 +0000556static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
drh9f8cf9d2011-01-17 21:32:24 +0000557 PCache1 *pCache; /* The newly created page cache */
558 PGroup *pGroup; /* The group the new page cache will belong to */
559 int sz; /* Bytes of memory required to allocate the new cache */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000560
drh9f8cf9d2011-01-17 21:32:24 +0000561 /*
562 ** The seperateCache variable is true if each PCache has its own private
563 ** PGroup. In other words, separateCache is true for mode (1) where no
564 ** mutexing is required.
565 **
566 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
567 **
568 ** * Always use a unified cache in single-threaded applications
569 **
570 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
571 ** use separate caches (mode-1)
572 */
573#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
574 const int separateCache = 0;
575#else
576 int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
577#endif
578
drhe73c9142011-11-09 16:12:24 +0000579 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
580 assert( szExtra < 300 );
581
drh9f8cf9d2011-01-17 21:32:24 +0000582 sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
583 pCache = (PCache1 *)sqlite3_malloc(sz);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000584 if( pCache ){
drh9f8cf9d2011-01-17 21:32:24 +0000585 memset(pCache, 0, sz);
586 if( separateCache ){
587 pGroup = (PGroup*)&pCache[1];
drh41692e92011-01-25 04:34:51 +0000588 pGroup->mxPinned = 10;
drh9f8cf9d2011-01-17 21:32:24 +0000589 }else{
dan9dde7cb2011-06-09 17:53:43 +0000590 pGroup = &pcache1.grp;
drh9f8cf9d2011-01-17 21:32:24 +0000591 }
592 pCache->pGroup = pGroup;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000593 pCache->szPage = szPage;
dan22e21ff2011-11-08 20:08:44 +0000594 pCache->szExtra = szExtra;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000595 pCache->bPurgeable = (bPurgeable ? 1 : 0);
596 if( bPurgeable ){
597 pCache->nMin = 10;
drh9f8cf9d2011-01-17 21:32:24 +0000598 pcache1EnterMutex(pGroup);
599 pGroup->nMinPage += pCache->nMin;
drh41692e92011-01-25 04:34:51 +0000600 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
drh9f8cf9d2011-01-17 21:32:24 +0000601 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000602 }
603 }
604 return (sqlite3_pcache *)pCache;
605}
606
607/*
608** Implementation of the sqlite3_pcache.xCachesize method.
609**
610** Configure the cache_size limit for a cache.
611*/
612static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
613 PCache1 *pCache = (PCache1 *)p;
614 if( pCache->bPurgeable ){
drh9f8cf9d2011-01-17 21:32:24 +0000615 PGroup *pGroup = pCache->pGroup;
616 pcache1EnterMutex(pGroup);
617 pGroup->nMaxPage += (nMax - pCache->nMax);
drh41692e92011-01-25 04:34:51 +0000618 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000619 pCache->nMax = nMax;
drh25ca5682011-01-26 00:07:03 +0000620 pCache->n90pct = pCache->nMax*9/10;
drh9f8cf9d2011-01-17 21:32:24 +0000621 pcache1EnforceMaxPage(pGroup);
622 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000623 }
624}
625
626/*
drh09419b42011-11-16 19:29:17 +0000627** Implementation of the sqlite3_pcache.xShrink method.
628**
629** Free up as much memory as possible.
630*/
631static void pcache1Shrink(sqlite3_pcache *p){
632 PCache1 *pCache = (PCache1*)p;
633 if( pCache->bPurgeable ){
634 PGroup *pGroup = pCache->pGroup;
635 int savedMaxPage;
636 pcache1EnterMutex(pGroup);
637 savedMaxPage = pGroup->nMaxPage;
638 pGroup->nMaxPage = 0;
639 pcache1EnforceMaxPage(pGroup);
640 pGroup->nMaxPage = savedMaxPage;
641 pcache1LeaveMutex(pGroup);
642 }
643}
644
645/*
danielk1977bc2ca9e2008-11-13 14:28:28 +0000646** Implementation of the sqlite3_pcache.xPagecount method.
647*/
648static int pcache1Pagecount(sqlite3_pcache *p){
649 int n;
drh9f8cf9d2011-01-17 21:32:24 +0000650 PCache1 *pCache = (PCache1*)p;
651 pcache1EnterMutex(pCache->pGroup);
652 n = pCache->nPage;
653 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000654 return n;
655}
656
657/*
658** Implementation of the sqlite3_pcache.xFetch method.
659**
660** Fetch a page by key value.
661**
662** Whether or not a new page may be allocated by this function depends on
drhf18a61d2009-07-17 11:44:07 +0000663** the value of the createFlag argument. 0 means do not allocate a new
664** page. 1 means allocate a new page if space is easily available. 2
665** means to try really hard to allocate a new page.
666**
667** For a non-purgeable cache (a cache used as the storage for an in-memory
668** database) there is really no difference between createFlag 1 and 2. So
669** the calling function (pcache.c) will never have a createFlag of 1 on
drh45d29302012-01-08 22:18:33 +0000670** a non-purgeable cache.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000671**
672** There are three different approaches to obtaining space for a page,
673** depending on the value of parameter createFlag (which may be 0, 1 or 2).
674**
675** 1. Regardless of the value of createFlag, the cache is searched for a
676** copy of the requested page. If one is found, it is returned.
677**
678** 2. If createFlag==0 and the page is not already in the cache, NULL is
679** returned.
680**
drh50d1b5f2010-08-27 12:21:06 +0000681** 3. If createFlag is 1, and the page is not already in the cache, then
682** return NULL (do not allocate a new page) if any of the following
683** conditions are true:
danielk1977bc2ca9e2008-11-13 14:28:28 +0000684**
685** (a) the number of pages pinned by the cache is greater than
686** PCache1.nMax, or
drh50d1b5f2010-08-27 12:21:06 +0000687**
danielk1977bc2ca9e2008-11-13 14:28:28 +0000688** (b) the number of pages pinned by the cache is greater than
689** the sum of nMax for all purgeable caches, less the sum of
drh50d1b5f2010-08-27 12:21:06 +0000690** nMin for all other purgeable caches, or
danielk1977bc2ca9e2008-11-13 14:28:28 +0000691**
692** 4. If none of the first three conditions apply and the cache is marked
693** as purgeable, and if one of the following is true:
694**
695** (a) The number of pages allocated for the cache is already
696** PCache1.nMax, or
697**
698** (b) The number of pages allocated for all purgeable caches is
699** already equal to or greater than the sum of nMax for all
700** purgeable caches,
701**
drh50d1b5f2010-08-27 12:21:06 +0000702** (c) The system is under memory pressure and wants to avoid
703** unnecessary pages cache entry allocations
704**
danielk1977bc2ca9e2008-11-13 14:28:28 +0000705** then attempt to recycle a page from the LRU list. If it is the right
706** size, return the recycled buffer. Otherwise, free the buffer and
707** proceed to step 5.
708**
709** 5. Otherwise, allocate and return a new page buffer.
710*/
dan22e21ff2011-11-08 20:08:44 +0000711static sqlite3_pcache_page *pcache1Fetch(
712 sqlite3_pcache *p,
713 unsigned int iKey,
714 int createFlag
715){
drha69085c2012-01-02 18:00:55 +0000716 unsigned int nPinned;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000717 PCache1 *pCache = (PCache1 *)p;
drh41692e92011-01-25 04:34:51 +0000718 PGroup *pGroup;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000719 PgHdr1 *pPage = 0;
720
drhf18a61d2009-07-17 11:44:07 +0000721 assert( pCache->bPurgeable || createFlag!=1 );
drh41692e92011-01-25 04:34:51 +0000722 assert( pCache->bPurgeable || pCache->nMin==0 );
723 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
724 assert( pCache->nMin==0 || pCache->bPurgeable );
725 pcache1EnterMutex(pGroup = pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000726
drh3a5676c2011-01-19 21:58:56 +0000727 /* Step 1: Search the hash table for an existing entry. */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000728 if( pCache->nHash>0 ){
729 unsigned int h = iKey % pCache->nHash;
730 for(pPage=pCache->apHash[h]; pPage&&pPage->iKey!=iKey; pPage=pPage->pNext);
731 }
732
drh3a5676c2011-01-19 21:58:56 +0000733 /* Step 2: Abort if no existing page is found and createFlag is 0 */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000734 if( pPage || createFlag==0 ){
735 pcache1PinPage(pPage);
736 goto fetch_out;
737 }
738
drh41692e92011-01-25 04:34:51 +0000739 /* The pGroup local variable will normally be initialized by the
740 ** pcache1EnterMutex() macro above. But if SQLITE_MUTEX_OMIT is defined,
741 ** then pcache1EnterMutex() is a no-op, so we have to initialize the
742 ** local variable here. Delaying the initialization of pGroup is an
743 ** optimization: The common case is to exit the module before reaching
744 ** this point.
745 */
746#ifdef SQLITE_MUTEX_OMIT
747 pGroup = pCache->pGroup;
748#endif
749
drh3a5676c2011-01-19 21:58:56 +0000750 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
drha69085c2012-01-02 18:00:55 +0000751 assert( pCache->nPage >= pCache->nRecyclable );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000752 nPinned = pCache->nPage - pCache->nRecyclable;
drh41692e92011-01-25 04:34:51 +0000753 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
drh25ca5682011-01-26 00:07:03 +0000754 assert( pCache->n90pct == pCache->nMax*9/10 );
drhf18a61d2009-07-17 11:44:07 +0000755 if( createFlag==1 && (
drh41692e92011-01-25 04:34:51 +0000756 nPinned>=pGroup->mxPinned
drha69085c2012-01-02 18:00:55 +0000757 || nPinned>=pCache->n90pct
drh50d1b5f2010-08-27 12:21:06 +0000758 || pcache1UnderMemoryPressure(pCache)
danielk1977bc2ca9e2008-11-13 14:28:28 +0000759 )){
760 goto fetch_out;
761 }
762
763 if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){
764 goto fetch_out;
765 }
766
drh3a5676c2011-01-19 21:58:56 +0000767 /* Step 4. Try to recycle a page. */
drh9f8cf9d2011-01-17 21:32:24 +0000768 if( pCache->bPurgeable && pGroup->pLruTail && (
drh50d1b5f2010-08-27 12:21:06 +0000769 (pCache->nPage+1>=pCache->nMax)
drh9f8cf9d2011-01-17 21:32:24 +0000770 || pGroup->nCurrentPage>=pGroup->nMaxPage
drh50d1b5f2010-08-27 12:21:06 +0000771 || pcache1UnderMemoryPressure(pCache)
danielk1977bc2ca9e2008-11-13 14:28:28 +0000772 )){
drhe73c9142011-11-09 16:12:24 +0000773 PCache1 *pOther;
drh9f8cf9d2011-01-17 21:32:24 +0000774 pPage = pGroup->pLruTail;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000775 pcache1RemoveFromHash(pPage);
776 pcache1PinPage(pPage);
drhe73c9142011-11-09 16:12:24 +0000777 pOther = pPage->pCache;
778
779 /* We want to verify that szPage and szExtra are the same for pOther
780 ** and pCache. Assert that we can verify this by comparing sums. */
781 assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
782 assert( pCache->szExtra<512 );
783 assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
784 assert( pOther->szExtra<512 );
785
786 if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000787 pcache1FreePage(pPage);
788 pPage = 0;
789 }else{
drhe73c9142011-11-09 16:12:24 +0000790 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000791 }
792 }
793
794 /* Step 5. If a usable page buffer has still not been found,
795 ** attempt to allocate a new one.
796 */
797 if( !pPage ){
drh41692e92011-01-25 04:34:51 +0000798 if( createFlag==1 ) sqlite3BeginBenignMalloc();
danielk1977bc2ca9e2008-11-13 14:28:28 +0000799 pPage = pcache1AllocPage(pCache);
drh41692e92011-01-25 04:34:51 +0000800 if( createFlag==1 ) sqlite3EndBenignMalloc();
danielk1977bc2ca9e2008-11-13 14:28:28 +0000801 }
802
803 if( pPage ){
804 unsigned int h = iKey % pCache->nHash;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000805 pCache->nPage++;
806 pPage->iKey = iKey;
807 pPage->pNext = pCache->apHash[h];
808 pPage->pCache = pCache;
danielk1977e1fd5082009-01-23 16:45:00 +0000809 pPage->pLruPrev = 0;
810 pPage->pLruNext = 0;
dan22e21ff2011-11-08 20:08:44 +0000811 *(void **)pPage->page.pExtra = 0;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000812 pCache->apHash[h] = pPage;
813 }
814
815fetch_out:
danielk1977f90b7262009-01-07 15:18:20 +0000816 if( pPage && iKey>pCache->iMaxKey ){
817 pCache->iMaxKey = iKey;
818 }
drh9f8cf9d2011-01-17 21:32:24 +0000819 pcache1LeaveMutex(pGroup);
dan22e21ff2011-11-08 20:08:44 +0000820 return &pPage->page;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000821}
822
823
824/*
825** Implementation of the sqlite3_pcache.xUnpin method.
826**
827** Mark a page as unpinned (eligible for asynchronous recycling).
828*/
dan22e21ff2011-11-08 20:08:44 +0000829static void pcache1Unpin(
830 sqlite3_pcache *p,
831 sqlite3_pcache_page *pPg,
832 int reuseUnlikely
833){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000834 PCache1 *pCache = (PCache1 *)p;
dan22e21ff2011-11-08 20:08:44 +0000835 PgHdr1 *pPage = (PgHdr1 *)pPg;
drh9f8cf9d2011-01-17 21:32:24 +0000836 PGroup *pGroup = pCache->pGroup;
drh69e931e2009-06-03 21:04:35 +0000837
838 assert( pPage->pCache==pCache );
drh9f8cf9d2011-01-17 21:32:24 +0000839 pcache1EnterMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000840
841 /* It is an error to call this function if the page is already
drh9f8cf9d2011-01-17 21:32:24 +0000842 ** part of the PGroup LRU list.
danielk1977bc2ca9e2008-11-13 14:28:28 +0000843 */
844 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
drh9f8cf9d2011-01-17 21:32:24 +0000845 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000846
drh9f8cf9d2011-01-17 21:32:24 +0000847 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
danielk1977bc2ca9e2008-11-13 14:28:28 +0000848 pcache1RemoveFromHash(pPage);
849 pcache1FreePage(pPage);
850 }else{
drh9f8cf9d2011-01-17 21:32:24 +0000851 /* Add the page to the PGroup LRU list. */
852 if( pGroup->pLruHead ){
853 pGroup->pLruHead->pLruPrev = pPage;
854 pPage->pLruNext = pGroup->pLruHead;
855 pGroup->pLruHead = pPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000856 }else{
drh9f8cf9d2011-01-17 21:32:24 +0000857 pGroup->pLruTail = pPage;
858 pGroup->pLruHead = pPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000859 }
860 pCache->nRecyclable++;
861 }
862
drh9f8cf9d2011-01-17 21:32:24 +0000863 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000864}
865
866/*
867** Implementation of the sqlite3_pcache.xRekey method.
868*/
869static void pcache1Rekey(
870 sqlite3_pcache *p,
dan22e21ff2011-11-08 20:08:44 +0000871 sqlite3_pcache_page *pPg,
danielk1977bc2ca9e2008-11-13 14:28:28 +0000872 unsigned int iOld,
873 unsigned int iNew
874){
875 PCache1 *pCache = (PCache1 *)p;
dan22e21ff2011-11-08 20:08:44 +0000876 PgHdr1 *pPage = (PgHdr1 *)pPg;
danielk1977bc2ca9e2008-11-13 14:28:28 +0000877 PgHdr1 **pp;
878 unsigned int h;
879 assert( pPage->iKey==iOld );
drh69e931e2009-06-03 21:04:35 +0000880 assert( pPage->pCache==pCache );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000881
drh9f8cf9d2011-01-17 21:32:24 +0000882 pcache1EnterMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000883
884 h = iOld%pCache->nHash;
885 pp = &pCache->apHash[h];
886 while( (*pp)!=pPage ){
887 pp = &(*pp)->pNext;
888 }
889 *pp = pPage->pNext;
890
891 h = iNew%pCache->nHash;
892 pPage->iKey = iNew;
893 pPage->pNext = pCache->apHash[h];
894 pCache->apHash[h] = pPage;
drh98829a62009-11-20 13:18:14 +0000895 if( iNew>pCache->iMaxKey ){
danielk1977f90b7262009-01-07 15:18:20 +0000896 pCache->iMaxKey = iNew;
897 }
898
drh9f8cf9d2011-01-17 21:32:24 +0000899 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000900}
901
902/*
903** Implementation of the sqlite3_pcache.xTruncate method.
904**
905** Discard all unpinned pages in the cache with a page number equal to
906** or greater than parameter iLimit. Any pinned pages with a page number
907** equal to or greater than iLimit are implicitly unpinned.
908*/
909static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
910 PCache1 *pCache = (PCache1 *)p;
drh9f8cf9d2011-01-17 21:32:24 +0000911 pcache1EnterMutex(pCache->pGroup);
danielk1977f90b7262009-01-07 15:18:20 +0000912 if( iLimit<=pCache->iMaxKey ){
913 pcache1TruncateUnsafe(pCache, iLimit);
914 pCache->iMaxKey = iLimit-1;
915 }
drh9f8cf9d2011-01-17 21:32:24 +0000916 pcache1LeaveMutex(pCache->pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000917}
918
919/*
920** Implementation of the sqlite3_pcache.xDestroy method.
921**
922** Destroy a cache allocated using pcache1Create().
923*/
924static void pcache1Destroy(sqlite3_pcache *p){
925 PCache1 *pCache = (PCache1 *)p;
drh9f8cf9d2011-01-17 21:32:24 +0000926 PGroup *pGroup = pCache->pGroup;
danb51d2fa2010-09-22 19:06:02 +0000927 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
drh9f8cf9d2011-01-17 21:32:24 +0000928 pcache1EnterMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000929 pcache1TruncateUnsafe(pCache, 0);
drha69085c2012-01-02 18:00:55 +0000930 assert( pGroup->nMaxPage >= pCache->nMax );
drh9f8cf9d2011-01-17 21:32:24 +0000931 pGroup->nMaxPage -= pCache->nMax;
drha69085c2012-01-02 18:00:55 +0000932 assert( pGroup->nMinPage >= pCache->nMin );
drh9f8cf9d2011-01-17 21:32:24 +0000933 pGroup->nMinPage -= pCache->nMin;
drh41692e92011-01-25 04:34:51 +0000934 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
drh9f8cf9d2011-01-17 21:32:24 +0000935 pcache1EnforceMaxPage(pGroup);
936 pcache1LeaveMutex(pGroup);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000937 sqlite3_free(pCache->apHash);
938 sqlite3_free(pCache);
939}
940
941/*
942** This function is called during initialization (sqlite3_initialize()) to
943** install the default pluggable cache module, assuming the user has not
944** already provided an alternative.
945*/
946void sqlite3PCacheSetDefault(void){
dan22e21ff2011-11-08 20:08:44 +0000947 static const sqlite3_pcache_methods2 defaultMethods = {
drh81ef0f92011-11-13 21:44:03 +0000948 1, /* iVersion */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000949 0, /* pArg */
950 pcache1Init, /* xInit */
951 pcache1Shutdown, /* xShutdown */
952 pcache1Create, /* xCreate */
953 pcache1Cachesize, /* xCachesize */
954 pcache1Pagecount, /* xPagecount */
955 pcache1Fetch, /* xFetch */
956 pcache1Unpin, /* xUnpin */
957 pcache1Rekey, /* xRekey */
958 pcache1Truncate, /* xTruncate */
drh09419b42011-11-16 19:29:17 +0000959 pcache1Destroy, /* xDestroy */
960 pcache1Shrink /* xShrink */
danielk1977bc2ca9e2008-11-13 14:28:28 +0000961 };
dan22e21ff2011-11-08 20:08:44 +0000962 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000963}
964
965#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
966/*
967** This function is called to free superfluous dynamically allocated memory
968** held by the pager system. Memory in use by any SQLite pager allocated
969** by the current thread may be sqlite3_free()ed.
970**
971** nReq is the number of bytes of memory required. Once this much has
972** been released, the function returns. The return value is the total number
973** of bytes of memory released.
974*/
975int sqlite3PcacheReleaseMemory(int nReq){
976 int nFree = 0;
drh9f8cf9d2011-01-17 21:32:24 +0000977 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
978 assert( sqlite3_mutex_notheld(pcache1.mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +0000979 if( pcache1.pStart==0 ){
980 PgHdr1 *p;
drh9f8cf9d2011-01-17 21:32:24 +0000981 pcache1EnterMutex(&pcache1.grp);
982 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
dan22e21ff2011-11-08 20:08:44 +0000983 nFree += pcache1MemSize(p->page.pBuf);
984#ifdef SQLITE_PCACHE_SEPARATE_HEADER
985 nFree += sqlite3MemSize(p);
986#endif
danielk1977bc2ca9e2008-11-13 14:28:28 +0000987 pcache1PinPage(p);
988 pcache1RemoveFromHash(p);
989 pcache1FreePage(p);
990 }
drh9f8cf9d2011-01-17 21:32:24 +0000991 pcache1LeaveMutex(&pcache1.grp);
danielk1977bc2ca9e2008-11-13 14:28:28 +0000992 }
993 return nFree;
994}
995#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
996
997#ifdef SQLITE_TEST
998/*
999** This function is used by test procedures to inspect the internal state
1000** of the global cache.
1001*/
1002void sqlite3PcacheStats(
1003 int *pnCurrent, /* OUT: Total number of pages cached */
1004 int *pnMax, /* OUT: Global maximum cache size */
1005 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1006 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1007){
1008 PgHdr1 *p;
1009 int nRecyclable = 0;
drh9f8cf9d2011-01-17 21:32:24 +00001010 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00001011 nRecyclable++;
1012 }
drh9f8cf9d2011-01-17 21:32:24 +00001013 *pnCurrent = pcache1.grp.nCurrentPage;
drha69085c2012-01-02 18:00:55 +00001014 *pnMax = (int)pcache1.grp.nMaxPage;
1015 *pnMin = (int)pcache1.grp.nMinPage;
danielk1977bc2ca9e2008-11-13 14:28:28 +00001016 *pnRecyclable = nRecyclable;
1017}
1018#endif