blob: 58a9dce1e394a77832fcb0c7c9d91b0d65cf4ae9 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
drhc9166342012-01-05 23:32:06 +0000246 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000267 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000355** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000368 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
drhc9166342012-01-05 23:32:06 +0000381 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000384 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000385 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000386 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000387 ** transaction. If there currently exists a writer, and p is not
388 ** that writer, then the number of locks held by connections other
389 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000390 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000391 **
drhc9166342012-01-05 23:32:06 +0000392 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000393 ** be zero already. So this next line is harmless in that case.
394 */
drhc9166342012-01-05 23:32:06 +0000395 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397}
danielk197794b30732009-07-02 17:21:57 +0000398
danielk1977e0d9e6f2009-07-03 16:25:06 +0000399/*
drh0ee3dbe2009-10-16 15:05:18 +0000400** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000401*/
danielk197794b30732009-07-02 17:21:57 +0000402static void downgradeAllSharedCacheTableLocks(Btree *p){
403 BtShared *pBt = p->pBt;
404 if( pBt->pWriter==p ){
405 BtLock *pLock;
406 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000407 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000408 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
409 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
410 pLock->eLock = READ_LOCK;
411 }
412 }
413}
414
danielk1977aef0bf62005-12-30 16:28:01 +0000415#endif /* SQLITE_OMIT_SHARED_CACHE */
416
drh980b1a72006-08-16 16:42:48 +0000417static void releasePage(MemPage *pPage); /* Forward reference */
418
drh1fee73e2007-08-29 04:00:57 +0000419/*
drh0ee3dbe2009-10-16 15:05:18 +0000420***** This routine is used inside of assert() only ****
421**
422** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000423*/
drh0ee3dbe2009-10-16 15:05:18 +0000424#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000425static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000426 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000427}
428#endif
429
430
danielk197792d4d7a2007-05-04 12:05:56 +0000431#ifndef SQLITE_OMIT_INCRBLOB
432/*
433** Invalidate the overflow page-list cache for cursor pCur, if any.
434*/
435static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000436 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000437 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000438 pCur->aOverflow = 0;
439}
440
441/*
442** Invalidate the overflow page-list cache for all cursors opened
443** on the shared btree structure pBt.
444*/
445static void invalidateAllOverflowCache(BtShared *pBt){
446 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000447 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000448 for(p=pBt->pCursor; p; p=p->pNext){
449 invalidateOverflowCache(p);
450 }
451}
danielk197796d48e92009-06-29 06:00:37 +0000452
453/*
454** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000455** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000456** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000457**
458** If argument isClearTable is true, then the entire contents of the
459** table is about to be deleted. In this case invalidate all incrblob
460** cursors open on any row within the table with root-page pgnoRoot.
461**
462** Otherwise, if argument isClearTable is false, then the row with
463** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000464** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000465*/
466static void invalidateIncrblobCursors(
467 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000468 i64 iRow, /* The rowid that might be changing */
469 int isClearTable /* True if all rows are being deleted */
470){
471 BtCursor *p;
472 BtShared *pBt = pBtree->pBt;
473 assert( sqlite3BtreeHoldsMutex(pBtree) );
474 for(p=pBt->pCursor; p; p=p->pNext){
475 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
476 p->eState = CURSOR_INVALID;
477 }
478 }
479}
480
danielk197792d4d7a2007-05-04 12:05:56 +0000481#else
drh0ee3dbe2009-10-16 15:05:18 +0000482 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000483 #define invalidateOverflowCache(x)
484 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000485 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000486#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000487
drh980b1a72006-08-16 16:42:48 +0000488/*
danielk1977bea2a942009-01-20 17:06:27 +0000489** Set bit pgno of the BtShared.pHasContent bitvec. This is called
490** when a page that previously contained data becomes a free-list leaf
491** page.
492**
493** The BtShared.pHasContent bitvec exists to work around an obscure
494** bug caused by the interaction of two useful IO optimizations surrounding
495** free-list leaf pages:
496**
497** 1) When all data is deleted from a page and the page becomes
498** a free-list leaf page, the page is not written to the database
499** (as free-list leaf pages contain no meaningful data). Sometimes
500** such a page is not even journalled (as it will not be modified,
501** why bother journalling it?).
502**
503** 2) When a free-list leaf page is reused, its content is not read
504** from the database or written to the journal file (why should it
505** be, if it is not at all meaningful?).
506**
507** By themselves, these optimizations work fine and provide a handy
508** performance boost to bulk delete or insert operations. However, if
509** a page is moved to the free-list and then reused within the same
510** transaction, a problem comes up. If the page is not journalled when
511** it is moved to the free-list and it is also not journalled when it
512** is extracted from the free-list and reused, then the original data
513** may be lost. In the event of a rollback, it may not be possible
514** to restore the database to its original configuration.
515**
516** The solution is the BtShared.pHasContent bitvec. Whenever a page is
517** moved to become a free-list leaf page, the corresponding bit is
518** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000519** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000520** set in BtShared.pHasContent. The contents of the bitvec are cleared
521** at the end of every transaction.
522*/
523static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
524 int rc = SQLITE_OK;
525 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000526 assert( pgno<=pBt->nPage );
527 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000528 if( !pBt->pHasContent ){
529 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000530 }
531 }
532 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
533 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
534 }
535 return rc;
536}
537
538/*
539** Query the BtShared.pHasContent vector.
540**
541** This function is called when a free-list leaf page is removed from the
542** free-list for reuse. It returns false if it is safe to retrieve the
543** page from the pager layer with the 'no-content' flag set. True otherwise.
544*/
545static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
546 Bitvec *p = pBt->pHasContent;
547 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
548}
549
550/*
551** Clear (destroy) the BtShared.pHasContent bitvec. This should be
552** invoked at the conclusion of each write-transaction.
553*/
554static void btreeClearHasContent(BtShared *pBt){
555 sqlite3BitvecDestroy(pBt->pHasContent);
556 pBt->pHasContent = 0;
557}
558
559/*
drh980b1a72006-08-16 16:42:48 +0000560** Save the current cursor position in the variables BtCursor.nKey
561** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000562**
563** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
564** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000565*/
566static int saveCursorPosition(BtCursor *pCur){
567 int rc;
568
569 assert( CURSOR_VALID==pCur->eState );
570 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000571 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000572
573 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000574 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000575
576 /* If this is an intKey table, then the above call to BtreeKeySize()
577 ** stores the integer key in pCur->nKey. In this case this value is
578 ** all that is required. Otherwise, if pCur is not open on an intKey
579 ** table, then malloc space for and store the pCur->nKey bytes of key
580 ** data.
581 */
drh4c301aa2009-07-15 17:25:45 +0000582 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000583 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000584 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000585 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000586 if( rc==SQLITE_OK ){
587 pCur->pKey = pKey;
588 }else{
drh17435752007-08-16 04:30:38 +0000589 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000590 }
591 }else{
592 rc = SQLITE_NOMEM;
593 }
594 }
danielk197771d5d2c2008-09-29 11:49:47 +0000595 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000596
597 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000598 int i;
599 for(i=0; i<=pCur->iPage; i++){
600 releasePage(pCur->apPage[i]);
601 pCur->apPage[i] = 0;
602 }
603 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000604 pCur->eState = CURSOR_REQUIRESEEK;
605 }
606
danielk197792d4d7a2007-05-04 12:05:56 +0000607 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000608 return rc;
609}
610
611/*
drh0ee3dbe2009-10-16 15:05:18 +0000612** Save the positions of all cursors (except pExcept) that are open on
613** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000614** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
615*/
616static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
617 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000618 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000619 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000620 for(p=pBt->pCursor; p; p=p->pNext){
621 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
622 p->eState==CURSOR_VALID ){
623 int rc = saveCursorPosition(p);
624 if( SQLITE_OK!=rc ){
625 return rc;
626 }
627 }
628 }
629 return SQLITE_OK;
630}
631
632/*
drhbf700f32007-03-31 02:36:44 +0000633** Clear the current cursor position.
634*/
danielk1977be51a652008-10-08 17:58:48 +0000635void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000636 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000637 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000638 pCur->pKey = 0;
639 pCur->eState = CURSOR_INVALID;
640}
641
642/*
danielk19773509a652009-07-06 18:56:13 +0000643** In this version of BtreeMoveto, pKey is a packed index record
644** such as is generated by the OP_MakeRecord opcode. Unpack the
645** record and then call BtreeMovetoUnpacked() to do the work.
646*/
647static int btreeMoveto(
648 BtCursor *pCur, /* Cursor open on the btree to be searched */
649 const void *pKey, /* Packed key if the btree is an index */
650 i64 nKey, /* Integer key for tables. Size of pKey for indices */
651 int bias, /* Bias search to the high end */
652 int *pRes /* Write search results here */
653){
654 int rc; /* Status code */
655 UnpackedRecord *pIdxKey; /* Unpacked index key */
656 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000657 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000658
659 if( pKey ){
660 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000661 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
662 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
663 );
danielk19773509a652009-07-06 18:56:13 +0000664 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000665 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000666 }else{
667 pIdxKey = 0;
668 }
669 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000670 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000671 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000672 }
673 return rc;
674}
675
676/*
drh980b1a72006-08-16 16:42:48 +0000677** Restore the cursor to the position it was in (or as close to as possible)
678** when saveCursorPosition() was called. Note that this call deletes the
679** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000680** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000681** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000682*/
danielk197730548662009-07-09 05:07:37 +0000683static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000684 int rc;
drh1fee73e2007-08-29 04:00:57 +0000685 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000686 assert( pCur->eState>=CURSOR_REQUIRESEEK );
687 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000688 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000689 }
drh980b1a72006-08-16 16:42:48 +0000690 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000691 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000692 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000693 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000694 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000695 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000696 }
697 return rc;
698}
699
drha3460582008-07-11 21:02:53 +0000700#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000701 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000702 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000703 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000704
drha3460582008-07-11 21:02:53 +0000705/*
706** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000707** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000708** at is deleted out from under them.
709**
710** This routine returns an error code if something goes wrong. The
711** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
712*/
713int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
714 int rc;
715
716 rc = restoreCursorPosition(pCur);
717 if( rc ){
718 *pHasMoved = 1;
719 return rc;
720 }
drh4c301aa2009-07-15 17:25:45 +0000721 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000722 *pHasMoved = 1;
723 }else{
724 *pHasMoved = 0;
725 }
726 return SQLITE_OK;
727}
728
danielk1977599fcba2004-11-08 07:13:13 +0000729#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000730/*
drha3152892007-05-05 11:48:52 +0000731** Given a page number of a regular database page, return the page
732** number for the pointer-map page that contains the entry for the
733** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000734**
735** Return 0 (not a valid page) for pgno==1 since there is
736** no pointer map associated with page 1. The integrity_check logic
737** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000738*/
danielk1977266664d2006-02-10 08:24:21 +0000739static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000740 int nPagesPerMapPage;
741 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000742 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000743 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000744 nPagesPerMapPage = (pBt->usableSize/5)+1;
745 iPtrMap = (pgno-2)/nPagesPerMapPage;
746 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000747 if( ret==PENDING_BYTE_PAGE(pBt) ){
748 ret++;
749 }
750 return ret;
751}
danielk1977a19df672004-11-03 11:37:07 +0000752
danielk1977afcdd022004-10-31 16:25:42 +0000753/*
danielk1977afcdd022004-10-31 16:25:42 +0000754** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000755**
756** This routine updates the pointer map entry for page number 'key'
757** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000758**
759** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
760** a no-op. If an error occurs, the appropriate error code is written
761** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000762*/
drh98add2e2009-07-20 17:11:49 +0000763static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000764 DbPage *pDbPage; /* The pointer map page */
765 u8 *pPtrmap; /* The pointer map data */
766 Pgno iPtrmap; /* The pointer map page number */
767 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000768 int rc; /* Return code from subfunctions */
769
770 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000771
drh1fee73e2007-08-29 04:00:57 +0000772 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000773 /* The master-journal page number must never be used as a pointer map page */
774 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
775
danielk1977ac11ee62005-01-15 12:45:51 +0000776 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000777 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000778 *pRC = SQLITE_CORRUPT_BKPT;
779 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000780 }
danielk1977266664d2006-02-10 08:24:21 +0000781 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000782 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000783 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000784 *pRC = rc;
785 return;
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
danielk19778c666b12008-07-18 09:34:57 +0000787 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000788 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000789 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000790 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000791 }
drhfc243732011-05-17 15:21:56 +0000792 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000793 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000794
drh615ae552005-01-16 23:21:00 +0000795 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
796 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000797 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000798 if( rc==SQLITE_OK ){
799 pPtrmap[offset] = eType;
800 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000801 }
danielk1977afcdd022004-10-31 16:25:42 +0000802 }
803
drh4925a552009-07-07 11:39:58 +0000804ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000805 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000806}
807
808/*
809** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000810**
811** This routine retrieves the pointer map entry for page 'key', writing
812** the type and parent page number to *pEType and *pPgno respectively.
813** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000814*/
danielk1977aef0bf62005-12-30 16:28:01 +0000815static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000816 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000817 int iPtrmap; /* Pointer map page index */
818 u8 *pPtrmap; /* Pointer map page data */
819 int offset; /* Offset of entry in pointer map */
820 int rc;
821
drh1fee73e2007-08-29 04:00:57 +0000822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000823
danielk1977266664d2006-02-10 08:24:21 +0000824 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000825 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000826 if( rc!=0 ){
827 return rc;
828 }
danielk19773b8a05f2007-03-19 17:44:26 +0000829 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000830
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000832 if( offset<0 ){
833 sqlite3PagerUnref(pDbPage);
834 return SQLITE_CORRUPT_BKPT;
835 }
836 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000837 assert( pEType!=0 );
838 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000839 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000840
danielk19773b8a05f2007-03-19 17:44:26 +0000841 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000842 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000843 return SQLITE_OK;
844}
845
danielk197785d90ca2008-07-19 14:25:15 +0000846#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000847 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000848 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850#endif
danielk1977afcdd022004-10-31 16:25:42 +0000851
drh0d316a42002-08-11 20:10:47 +0000852/*
drh271efa52004-05-30 19:19:05 +0000853** Given a btree page and a cell index (0 means the first cell on
854** the page, 1 means the second cell, and so forth) return a pointer
855** to the cell content.
856**
857** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000858*/
drh1688c862008-07-18 02:44:17 +0000859#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000860 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000861#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
862
drh43605152004-05-29 21:46:49 +0000863
864/*
drh93a960a2008-07-10 00:32:42 +0000865** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000866** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000867*/
868static u8 *findOverflowCell(MemPage *pPage, int iCell){
869 int i;
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000871 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000872 int k;
drh2cbd78b2012-02-02 19:37:18 +0000873 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000874 if( k<=iCell ){
875 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000876 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000877 }
878 iCell--;
879 }
880 }
danielk19771cc5ed82007-05-16 17:28:43 +0000881 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000882}
883
884/*
885** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000886** are two versions of this function. btreeParseCell() takes a
887** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000888** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000889**
890** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000891** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000892*/
danielk197730548662009-07-09 05:07:37 +0000893static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000894 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000895 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000896 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000897){
drhf49661a2008-12-10 16:45:50 +0000898 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000899 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000900
drh1fee73e2007-08-29 04:00:57 +0000901 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000902
drh43605152004-05-29 21:46:49 +0000903 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000904 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000905 n = pPage->childPtrSize;
906 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000907 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000908 if( pPage->hasData ){
909 n += getVarint32(&pCell[n], nPayload);
910 }else{
911 nPayload = 0;
912 }
drh1bd10f82008-12-10 21:19:56 +0000913 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000914 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000915 }else{
drh79df1f42008-07-18 00:57:33 +0000916 pInfo->nData = 0;
917 n += getVarint32(&pCell[n], nPayload);
918 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000919 }
drh72365832007-03-06 15:53:44 +0000920 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000921 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000922 testcase( nPayload==pPage->maxLocal );
923 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000924 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000925 /* This is the (easy) common case where the entire payload fits
926 ** on the local page. No overflow is required.
927 */
drh41692e92011-01-25 04:34:51 +0000928 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000929 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000930 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000931 }else{
drh271efa52004-05-30 19:19:05 +0000932 /* If the payload will not fit completely on the local page, we have
933 ** to decide how much to store locally and how much to spill onto
934 ** overflow pages. The strategy is to minimize the amount of unused
935 ** space on overflow pages while keeping the amount of local storage
936 ** in between minLocal and maxLocal.
937 **
938 ** Warning: changing the way overflow payload is distributed in any
939 ** way will result in an incompatible file format.
940 */
941 int minLocal; /* Minimum amount of payload held locally */
942 int maxLocal; /* Maximum amount of payload held locally */
943 int surplus; /* Overflow payload available for local storage */
944
945 minLocal = pPage->minLocal;
946 maxLocal = pPage->maxLocal;
947 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000948 testcase( surplus==maxLocal );
949 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000950 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000951 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000952 }else{
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000954 }
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000956 pInfo->nSize = pInfo->iOverflow + 4;
957 }
drh3aac2dd2004-04-26 14:10:20 +0000958}
danielk19771cc5ed82007-05-16 17:28:43 +0000959#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000960 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
961static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000962 MemPage *pPage, /* Page containing the cell */
963 int iCell, /* The cell index. First cell is 0 */
964 CellInfo *pInfo /* Fill in this structure */
965){
danielk19771cc5ed82007-05-16 17:28:43 +0000966 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000967}
drh3aac2dd2004-04-26 14:10:20 +0000968
969/*
drh43605152004-05-29 21:46:49 +0000970** Compute the total number of bytes that a Cell needs in the cell
971** data area of the btree-page. The return number includes the cell
972** data header and the local payload, but not any overflow page or
973** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000974*/
danielk1977ae5558b2009-04-29 11:31:47 +0000975static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
976 u8 *pIter = &pCell[pPage->childPtrSize];
977 u32 nSize;
978
979#ifdef SQLITE_DEBUG
980 /* The value returned by this function should always be the same as
981 ** the (CellInfo.nSize) value found by doing a full parse of the
982 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
983 ** this function verifies that this invariant is not violated. */
984 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000985 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000986#endif
987
988 if( pPage->intKey ){
989 u8 *pEnd;
990 if( pPage->hasData ){
991 pIter += getVarint32(pIter, nSize);
992 }else{
993 nSize = 0;
994 }
995
996 /* pIter now points at the 64-bit integer key value, a variable length
997 ** integer. The following block moves pIter to point at the first byte
998 ** past the end of the key value. */
999 pEnd = &pIter[9];
1000 while( (*pIter++)&0x80 && pIter<pEnd );
1001 }else{
1002 pIter += getVarint32(pIter, nSize);
1003 }
1004
drh0a45c272009-07-08 01:49:11 +00001005 testcase( nSize==pPage->maxLocal );
1006 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001007 if( nSize>pPage->maxLocal ){
1008 int minLocal = pPage->minLocal;
1009 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001010 testcase( nSize==pPage->maxLocal );
1011 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001012 if( nSize>pPage->maxLocal ){
1013 nSize = minLocal;
1014 }
1015 nSize += 4;
1016 }
shane75ac1de2009-06-09 18:58:52 +00001017 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001018
1019 /* The minimum size of any cell is 4 bytes. */
1020 if( nSize<4 ){
1021 nSize = 4;
1022 }
1023
1024 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001025 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001026}
drh0ee3dbe2009-10-16 15:05:18 +00001027
1028#ifdef SQLITE_DEBUG
1029/* This variation on cellSizePtr() is used inside of assert() statements
1030** only. */
drha9121e42008-02-19 14:59:35 +00001031static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001032 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001033}
danielk1977bc6ada42004-06-30 08:20:16 +00001034#endif
drh3b7511c2001-05-26 13:15:44 +00001035
danielk197779a40da2005-01-16 08:00:01 +00001036#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001037/*
danielk197726836652005-01-17 01:33:13 +00001038** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001039** to an overflow page, insert an entry into the pointer-map
1040** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001041*/
drh98add2e2009-07-20 17:11:49 +00001042static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001043 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001044 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001045 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001046 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001047 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001048 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001049 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001050 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001051 }
danielk1977ac11ee62005-01-15 12:45:51 +00001052}
danielk197779a40da2005-01-16 08:00:01 +00001053#endif
1054
danielk1977ac11ee62005-01-15 12:45:51 +00001055
drhda200cc2004-05-09 11:51:38 +00001056/*
drh72f82862001-05-24 21:06:34 +00001057** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001058** end of the page and all free space is collected into one
1059** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001060** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001061*/
shane0af3f892008-11-12 04:55:34 +00001062static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001063 int i; /* Loop counter */
1064 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001065 int hdr; /* Offset to the page header */
1066 int size; /* Size of a cell */
1067 int usableSize; /* Number of usable bytes on a page */
1068 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001069 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001070 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001071 unsigned char *data; /* The page data */
1072 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001073 int iCellFirst; /* First allowable cell index */
1074 int iCellLast; /* Last possible cell index */
1075
drh2af926b2001-05-15 00:39:25 +00001076
danielk19773b8a05f2007-03-19 17:44:26 +00001077 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001078 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001079 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001080 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001081 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001082 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001083 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001084 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001085 cellOffset = pPage->cellOffset;
1086 nCell = pPage->nCell;
1087 assert( nCell==get2byte(&data[hdr+3]) );
1088 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001089 cbrk = get2byte(&data[hdr+5]);
1090 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1091 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001092 iCellFirst = cellOffset + 2*nCell;
1093 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001094 for(i=0; i<nCell; i++){
1095 u8 *pAddr; /* The i-th cell pointer */
1096 pAddr = &data[cellOffset + i*2];
1097 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001098 testcase( pc==iCellFirst );
1099 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001100#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001101 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001102 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1103 */
1104 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001105 return SQLITE_CORRUPT_BKPT;
1106 }
drh17146622009-07-07 17:38:38 +00001107#endif
1108 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001109 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001110 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001111#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1112 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001113 return SQLITE_CORRUPT_BKPT;
1114 }
drh17146622009-07-07 17:38:38 +00001115#else
1116 if( cbrk<iCellFirst || pc+size>usableSize ){
1117 return SQLITE_CORRUPT_BKPT;
1118 }
1119#endif
drh7157e1d2009-07-09 13:25:32 +00001120 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001121 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001122 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001123 memcpy(&data[cbrk], &temp[pc], size);
1124 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001125 }
drh17146622009-07-07 17:38:38 +00001126 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001127 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001128 data[hdr+1] = 0;
1129 data[hdr+2] = 0;
1130 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001131 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001132 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001133 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001134 return SQLITE_CORRUPT_BKPT;
1135 }
shane0af3f892008-11-12 04:55:34 +00001136 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001137}
1138
drha059ad02001-04-17 20:09:11 +00001139/*
danielk19776011a752009-04-01 16:25:32 +00001140** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001141** as the first argument. Write into *pIdx the index into pPage->aData[]
1142** of the first byte of allocated space. Return either SQLITE_OK or
1143** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001144**
drh0a45c272009-07-08 01:49:11 +00001145** The caller guarantees that there is sufficient space to make the
1146** allocation. This routine might need to defragment in order to bring
1147** all the space together, however. This routine will avoid using
1148** the first two bytes past the cell pointer area since presumably this
1149** allocation is being made in order to insert a new cell, so we will
1150** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001151*/
drh0a45c272009-07-08 01:49:11 +00001152static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001153 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1154 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1155 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001156 int top; /* First byte of cell content area */
1157 int gap; /* First byte of gap between cell pointers and cell content */
1158 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001159 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001160
danielk19773b8a05f2007-03-19 17:44:26 +00001161 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001162 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001163 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001164 assert( nByte>=0 ); /* Minimum cell size is 4 */
1165 assert( pPage->nFree>=nByte );
1166 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001167 usableSize = pPage->pBt->usableSize;
1168 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001169
1170 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001171 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1172 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001173 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001174 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001175 testcase( gap+2==top );
1176 testcase( gap+1==top );
1177 testcase( gap==top );
1178
danielk19776011a752009-04-01 16:25:32 +00001179 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001180 /* Always defragment highly fragmented pages */
1181 rc = defragmentPage(pPage);
1182 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001183 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001184 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001185 /* Search the freelist looking for a free slot big enough to satisfy
1186 ** the request. The allocation is made from the first free slot in
1187 ** the list that is large enough to accomadate it.
1188 */
1189 int pc, addr;
1190 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001191 int size; /* Size of the free slot */
1192 if( pc>usableSize-4 || pc<addr+4 ){
1193 return SQLITE_CORRUPT_BKPT;
1194 }
1195 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001196 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001197 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001198 testcase( x==4 );
1199 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001200 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001201 /* Remove the slot from the free-list. Update the number of
1202 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001203 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001204 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001205 }else if( size+pc > usableSize ){
1206 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001207 }else{
danielk1977fad91942009-04-29 17:49:59 +00001208 /* The slot remains on the free-list. Reduce its size to account
1209 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001210 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001211 }
drh0a45c272009-07-08 01:49:11 +00001212 *pIdx = pc + x;
1213 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001214 }
drh9e572e62004-04-23 23:43:10 +00001215 }
1216 }
drh43605152004-05-29 21:46:49 +00001217
drh0a45c272009-07-08 01:49:11 +00001218 /* Check to make sure there is enough space in the gap to satisfy
1219 ** the allocation. If not, defragment.
1220 */
1221 testcase( gap+2+nByte==top );
1222 if( gap+2+nByte>top ){
1223 rc = defragmentPage(pPage);
1224 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001225 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001226 assert( gap+nByte<=top );
1227 }
1228
1229
drh43605152004-05-29 21:46:49 +00001230 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001231 ** and the cell content area. The btreeInitPage() call has already
1232 ** validated the freelist. Given that the freelist is valid, there
1233 ** is no way that the allocation can extend off the end of the page.
1234 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001235 */
drh0a45c272009-07-08 01:49:11 +00001236 top -= nByte;
drh43605152004-05-29 21:46:49 +00001237 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001238 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001239 *pIdx = top;
1240 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001241}
1242
1243/*
drh9e572e62004-04-23 23:43:10 +00001244** Return a section of the pPage->aData to the freelist.
1245** The first byte of the new free block is pPage->aDisk[start]
1246** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001247**
1248** Most of the effort here is involved in coalesing adjacent
1249** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001250*/
shanedcc50b72008-11-13 18:29:50 +00001251static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001252 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001253 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001254 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001255
drh9e572e62004-04-23 23:43:10 +00001256 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001257 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001258 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001259 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001260 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001261 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001262
drhc9166342012-01-05 23:32:06 +00001263 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001264 /* Overwrite deleted information with zeros when the secure_delete
1265 ** option is enabled */
1266 memset(&data[start], 0, size);
1267 }
drhfcce93f2006-02-22 03:08:32 +00001268
drh0a45c272009-07-08 01:49:11 +00001269 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001270 ** even though the freeblock list was checked by btreeInitPage(),
1271 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001272 ** freeblocks that overlapped cells. Nor does it detect when the
1273 ** cell content area exceeds the value in the page header. If these
1274 ** situations arise, then subsequent insert operations might corrupt
1275 ** the freelist. So we do need to check for corruption while scanning
1276 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001277 */
drh43605152004-05-29 21:46:49 +00001278 hdr = pPage->hdrOffset;
1279 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001280 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001281 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001282 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001283 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001284 return SQLITE_CORRUPT_BKPT;
1285 }
drh3aac2dd2004-04-26 14:10:20 +00001286 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001287 }
drh0a45c272009-07-08 01:49:11 +00001288 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001289 return SQLITE_CORRUPT_BKPT;
1290 }
drh3aac2dd2004-04-26 14:10:20 +00001291 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001292 put2byte(&data[addr], start);
1293 put2byte(&data[start], pbegin);
1294 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001295 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001296
1297 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001298 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001299 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001300 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001301 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001302 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001303 pnext = get2byte(&data[pbegin]);
1304 psize = get2byte(&data[pbegin+2]);
1305 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1306 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001307 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001308 return SQLITE_CORRUPT_BKPT;
1309 }
drh0a45c272009-07-08 01:49:11 +00001310 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001311 x = get2byte(&data[pnext]);
1312 put2byte(&data[pbegin], x);
1313 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1314 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001315 }else{
drh3aac2dd2004-04-26 14:10:20 +00001316 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001317 }
1318 }
drh7e3b0a02001-04-28 16:52:40 +00001319
drh43605152004-05-29 21:46:49 +00001320 /* If the cell content area begins with a freeblock, remove it. */
1321 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1322 int top;
1323 pbegin = get2byte(&data[hdr+1]);
1324 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001325 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1326 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001327 }
drhc5053fb2008-11-27 02:22:10 +00001328 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001329 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001330}
1331
1332/*
drh271efa52004-05-30 19:19:05 +00001333** Decode the flags byte (the first byte of the header) for a page
1334** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001335**
1336** Only the following combinations are supported. Anything different
1337** indicates a corrupt database files:
1338**
1339** PTF_ZERODATA
1340** PTF_ZERODATA | PTF_LEAF
1341** PTF_LEAFDATA | PTF_INTKEY
1342** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001343*/
drh44845222008-07-17 18:39:57 +00001344static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001345 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001346
1347 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001348 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001349 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001350 flagByte &= ~PTF_LEAF;
1351 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001352 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001353 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1354 pPage->intKey = 1;
1355 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001356 pPage->maxLocal = pBt->maxLeaf;
1357 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001358 }else if( flagByte==PTF_ZERODATA ){
1359 pPage->intKey = 0;
1360 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001361 pPage->maxLocal = pBt->maxLocal;
1362 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001363 }else{
1364 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001365 }
drhc9166342012-01-05 23:32:06 +00001366 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001367 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001368}
1369
1370/*
drh7e3b0a02001-04-28 16:52:40 +00001371** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001372**
1373** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001374** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001375** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1376** guarantee that the page is well-formed. It only shows that
1377** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001378*/
danielk197730548662009-07-09 05:07:37 +00001379static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001380
danielk197771d5d2c2008-09-29 11:49:47 +00001381 assert( pPage->pBt!=0 );
1382 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001383 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001384 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1385 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001386
1387 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001388 u16 pc; /* Address of a freeblock within pPage->aData[] */
1389 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001390 u8 *data; /* Equal to pPage->aData */
1391 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001392 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001393 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001394 int nFree; /* Number of unused bytes on the page */
1395 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001396 int iCellFirst; /* First allowable cell or freeblock offset */
1397 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001398
1399 pBt = pPage->pBt;
1400
danielk1977eaa06f62008-09-18 17:34:44 +00001401 hdr = pPage->hdrOffset;
1402 data = pPage->aData;
1403 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001404 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1405 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001406 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001407 usableSize = pBt->usableSize;
1408 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001409 pPage->aDataEnd = &data[usableSize];
1410 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001411 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001412 pPage->nCell = get2byte(&data[hdr+3]);
1413 if( pPage->nCell>MX_CELL(pBt) ){
1414 /* To many cells for a single page. The page must be corrupt */
1415 return SQLITE_CORRUPT_BKPT;
1416 }
drhb908d762009-07-08 16:54:40 +00001417 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001418
shane5eff7cf2009-08-10 03:57:58 +00001419 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001420 ** of page when parsing a cell.
1421 **
1422 ** The following block of code checks early to see if a cell extends
1423 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1424 ** returned if it does.
1425 */
drh0a45c272009-07-08 01:49:11 +00001426 iCellFirst = cellOffset + 2*pPage->nCell;
1427 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001428#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001429 {
drh69e931e2009-06-03 21:04:35 +00001430 int i; /* Index into the cell pointer array */
1431 int sz; /* Size of a cell */
1432
drh69e931e2009-06-03 21:04:35 +00001433 if( !pPage->leaf ) iCellLast--;
1434 for(i=0; i<pPage->nCell; i++){
1435 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001436 testcase( pc==iCellFirst );
1437 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001438 if( pc<iCellFirst || pc>iCellLast ){
1439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001442 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001443 if( pc+sz>usableSize ){
1444 return SQLITE_CORRUPT_BKPT;
1445 }
1446 }
drh0a45c272009-07-08 01:49:11 +00001447 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001448 }
1449#endif
1450
danielk1977eaa06f62008-09-18 17:34:44 +00001451 /* Compute the total free space on the page */
1452 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001453 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001454 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001455 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001456 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001457 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001458 return SQLITE_CORRUPT_BKPT;
1459 }
1460 next = get2byte(&data[pc]);
1461 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001462 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1463 /* Free blocks must be in ascending order. And the last byte of
1464 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001465 return SQLITE_CORRUPT_BKPT;
1466 }
shane85095702009-06-15 16:27:08 +00001467 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001468 pc = next;
1469 }
danielk197793c829c2009-06-03 17:26:17 +00001470
1471 /* At this point, nFree contains the sum of the offset to the start
1472 ** of the cell-content area plus the number of free bytes within
1473 ** the cell-content area. If this is greater than the usable-size
1474 ** of the page, then the page must be corrupted. This check also
1475 ** serves to verify that the offset to the start of the cell-content
1476 ** area, according to the page header, lies within the page.
1477 */
1478 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001479 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001480 }
shane5eff7cf2009-08-10 03:57:58 +00001481 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001482 pPage->isInit = 1;
1483 }
drh9e572e62004-04-23 23:43:10 +00001484 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001485}
1486
1487/*
drh8b2f49b2001-06-08 00:21:52 +00001488** Set up a raw page so that it looks like a database page holding
1489** no entries.
drhbd03cae2001-06-02 02:40:57 +00001490*/
drh9e572e62004-04-23 23:43:10 +00001491static void zeroPage(MemPage *pPage, int flags){
1492 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001493 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001494 u8 hdr = pPage->hdrOffset;
1495 u16 first;
drh9e572e62004-04-23 23:43:10 +00001496
danielk19773b8a05f2007-03-19 17:44:26 +00001497 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001498 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1499 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001500 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001501 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001502 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001503 memset(&data[hdr], 0, pBt->usableSize - hdr);
1504 }
drh1bd10f82008-12-10 21:19:56 +00001505 data[hdr] = (char)flags;
1506 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001507 memset(&data[hdr+1], 0, 4);
1508 data[hdr+7] = 0;
1509 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001510 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001511 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001512 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001513 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001514 pPage->aDataEnd = &data[pBt->usableSize];
1515 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001516 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001517 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1518 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001519 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001520 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001521}
1522
drh897a8202008-09-18 01:08:15 +00001523
1524/*
1525** Convert a DbPage obtained from the pager into a MemPage used by
1526** the btree layer.
1527*/
1528static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1529 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1530 pPage->aData = sqlite3PagerGetData(pDbPage);
1531 pPage->pDbPage = pDbPage;
1532 pPage->pBt = pBt;
1533 pPage->pgno = pgno;
1534 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1535 return pPage;
1536}
1537
drhbd03cae2001-06-02 02:40:57 +00001538/*
drh3aac2dd2004-04-26 14:10:20 +00001539** Get a page from the pager. Initialize the MemPage.pBt and
1540** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001541**
1542** If the noContent flag is set, it means that we do not care about
1543** the content of the page at this time. So do not go to the disk
1544** to fetch the content. Just fill in the content with zeros for now.
1545** If in the future we call sqlite3PagerWrite() on this page, that
1546** means we have started to be concerned about content and the disk
1547** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001548*/
danielk197730548662009-07-09 05:07:37 +00001549static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001550 BtShared *pBt, /* The btree */
1551 Pgno pgno, /* Number of the page to fetch */
1552 MemPage **ppPage, /* Return the page in this parameter */
1553 int noContent /* Do not load page content if true */
1554){
drh3aac2dd2004-04-26 14:10:20 +00001555 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001556 DbPage *pDbPage;
1557
drh1fee73e2007-08-29 04:00:57 +00001558 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001559 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001560 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001561 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001562 return SQLITE_OK;
1563}
1564
1565/*
danielk1977bea2a942009-01-20 17:06:27 +00001566** Retrieve a page from the pager cache. If the requested page is not
1567** already in the pager cache return NULL. Initialize the MemPage.pBt and
1568** MemPage.aData elements if needed.
1569*/
1570static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1571 DbPage *pDbPage;
1572 assert( sqlite3_mutex_held(pBt->mutex) );
1573 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1574 if( pDbPage ){
1575 return btreePageFromDbPage(pDbPage, pgno, pBt);
1576 }
1577 return 0;
1578}
1579
1580/*
danielk197789d40042008-11-17 14:20:56 +00001581** Return the size of the database file in pages. If there is any kind of
1582** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001583*/
drhb1299152010-03-30 22:58:33 +00001584static Pgno btreePagecount(BtShared *pBt){
1585 return pBt->nPage;
1586}
1587u32 sqlite3BtreeLastPage(Btree *p){
1588 assert( sqlite3BtreeHoldsMutex(p) );
1589 assert( ((p->pBt->nPage)&0x8000000)==0 );
1590 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001591}
1592
1593/*
danielk197789bc4bc2009-07-21 19:25:24 +00001594** Get a page from the pager and initialize it. This routine is just a
1595** convenience wrapper around separate calls to btreeGetPage() and
1596** btreeInitPage().
1597**
1598** If an error occurs, then the value *ppPage is set to is undefined. It
1599** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001600*/
1601static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001602 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001603 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001604 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001605){
1606 int rc;
drh1fee73e2007-08-29 04:00:57 +00001607 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001608
danba3cbf32010-06-30 04:29:03 +00001609 if( pgno>btreePagecount(pBt) ){
1610 rc = SQLITE_CORRUPT_BKPT;
1611 }else{
1612 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1613 if( rc==SQLITE_OK ){
1614 rc = btreeInitPage(*ppPage);
1615 if( rc!=SQLITE_OK ){
1616 releasePage(*ppPage);
1617 }
danielk197789bc4bc2009-07-21 19:25:24 +00001618 }
drhee696e22004-08-30 16:52:17 +00001619 }
danba3cbf32010-06-30 04:29:03 +00001620
1621 testcase( pgno==0 );
1622 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001623 return rc;
1624}
1625
1626/*
drh3aac2dd2004-04-26 14:10:20 +00001627** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001628** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001629*/
drh4b70f112004-05-02 21:12:19 +00001630static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001631 if( pPage ){
1632 assert( pPage->aData );
1633 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001634 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1635 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001637 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001638 }
1639}
1640
1641/*
drha6abd042004-06-09 17:37:22 +00001642** During a rollback, when the pager reloads information into the cache
1643** so that the cache is restored to its original state at the start of
1644** the transaction, for each page restored this routine is called.
1645**
1646** This routine needs to reset the extra data section at the end of the
1647** page to agree with the restored data.
1648*/
danielk1977eaa06f62008-09-18 17:34:44 +00001649static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001650 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001651 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001652 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001653 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001654 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001655 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001656 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001657 /* pPage might not be a btree page; it might be an overflow page
1658 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001659 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001660 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001661 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001662 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001663 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001664 }
drha6abd042004-06-09 17:37:22 +00001665 }
1666}
1667
1668/*
drhe5fe6902007-12-07 18:55:28 +00001669** Invoke the busy handler for a btree.
1670*/
danielk19771ceedd32008-11-19 10:22:33 +00001671static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001672 BtShared *pBt = (BtShared*)pArg;
1673 assert( pBt->db );
1674 assert( sqlite3_mutex_held(pBt->db->mutex) );
1675 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1676}
1677
1678/*
drhad3e0102004-09-03 23:32:18 +00001679** Open a database file.
1680**
drh382c0242001-10-06 16:33:02 +00001681** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001682** then an ephemeral database is created. The ephemeral database might
1683** be exclusively in memory, or it might use a disk-based memory cache.
1684** Either way, the ephemeral database will be automatically deleted
1685** when sqlite3BtreeClose() is called.
1686**
drhe53831d2007-08-17 01:14:38 +00001687** If zFilename is ":memory:" then an in-memory database is created
1688** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001689**
drh33f111d2012-01-17 15:29:14 +00001690** The "flags" parameter is a bitmask that might contain bits like
1691** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001692**
drhc47fd8e2009-04-30 13:30:32 +00001693** If the database is already opened in the same database connection
1694** and we are in shared cache mode, then the open will fail with an
1695** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1696** objects in the same database connection since doing so will lead
1697** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001698*/
drh23e11ca2004-05-04 17:27:28 +00001699int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001700 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001701 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001702 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001703 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001704 int flags, /* Options */
1705 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001706){
drh7555d8e2009-03-20 13:15:30 +00001707 BtShared *pBt = 0; /* Shared part of btree structure */
1708 Btree *p; /* Handle to return */
1709 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1710 int rc = SQLITE_OK; /* Result code from this function */
1711 u8 nReserve; /* Byte of unused space on each page */
1712 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001713
drh75c014c2010-08-30 15:02:28 +00001714 /* True if opening an ephemeral, temporary database */
1715 const int isTempDb = zFilename==0 || zFilename[0]==0;
1716
danielk1977aef0bf62005-12-30 16:28:01 +00001717 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001718 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001719 */
drhb0a7c9c2010-12-06 21:09:59 +00001720#ifdef SQLITE_OMIT_MEMORYDB
1721 const int isMemdb = 0;
1722#else
1723 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1724 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001725#endif
1726
drhe5fe6902007-12-07 18:55:28 +00001727 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001728 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001729 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001730 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1731
1732 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1733 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1734
1735 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1736 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001737
drh75c014c2010-08-30 15:02:28 +00001738 if( isMemdb ){
1739 flags |= BTREE_MEMORY;
1740 }
1741 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1742 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1743 }
drh17435752007-08-16 04:30:38 +00001744 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001745 if( !p ){
1746 return SQLITE_NOMEM;
1747 }
1748 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001749 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001750#ifndef SQLITE_OMIT_SHARED_CACHE
1751 p->lock.pBtree = p;
1752 p->lock.iTable = 1;
1753#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001754
drh198bf392006-01-06 21:52:49 +00001755#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001756 /*
1757 ** If this Btree is a candidate for shared cache, try to find an
1758 ** existing BtShared object that we can share with
1759 */
drh4ab9d252012-05-26 20:08:49 +00001760 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001761 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001762 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001763 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001764 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001765 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001766 if( !zFullPathname ){
1767 sqlite3_free(p);
1768 return SQLITE_NOMEM;
1769 }
drhafc8b7f2012-05-26 18:06:38 +00001770 if( isMemdb ){
1771 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1772 }else{
1773 rc = sqlite3OsFullPathname(pVfs, zFilename,
1774 nFullPathname, zFullPathname);
1775 if( rc ){
1776 sqlite3_free(zFullPathname);
1777 sqlite3_free(p);
1778 return rc;
1779 }
drh070ad6b2011-11-17 11:43:19 +00001780 }
drh30ddce62011-10-15 00:16:30 +00001781#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001782 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1783 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001784 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001785 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001786#endif
drh78f82d12008-09-02 00:52:52 +00001787 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001788 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001789 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001790 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001791 int iDb;
1792 for(iDb=db->nDb-1; iDb>=0; iDb--){
1793 Btree *pExisting = db->aDb[iDb].pBt;
1794 if( pExisting && pExisting->pBt==pBt ){
1795 sqlite3_mutex_leave(mutexShared);
1796 sqlite3_mutex_leave(mutexOpen);
1797 sqlite3_free(zFullPathname);
1798 sqlite3_free(p);
1799 return SQLITE_CONSTRAINT;
1800 }
1801 }
drhff0587c2007-08-29 17:43:19 +00001802 p->pBt = pBt;
1803 pBt->nRef++;
1804 break;
1805 }
1806 }
1807 sqlite3_mutex_leave(mutexShared);
1808 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001809 }
drhff0587c2007-08-29 17:43:19 +00001810#ifdef SQLITE_DEBUG
1811 else{
1812 /* In debug mode, we mark all persistent databases as sharable
1813 ** even when they are not. This exercises the locking code and
1814 ** gives more opportunity for asserts(sqlite3_mutex_held())
1815 ** statements to find locking problems.
1816 */
1817 p->sharable = 1;
1818 }
1819#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001820 }
1821#endif
drha059ad02001-04-17 20:09:11 +00001822 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001823 /*
1824 ** The following asserts make sure that structures used by the btree are
1825 ** the right size. This is to guard against size changes that result
1826 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001827 */
drhe53831d2007-08-17 01:14:38 +00001828 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1829 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1830 assert( sizeof(u32)==4 );
1831 assert( sizeof(u16)==2 );
1832 assert( sizeof(Pgno)==4 );
1833
1834 pBt = sqlite3MallocZero( sizeof(*pBt) );
1835 if( pBt==0 ){
1836 rc = SQLITE_NOMEM;
1837 goto btree_open_out;
1838 }
danielk197771d5d2c2008-09-29 11:49:47 +00001839 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001840 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001841 if( rc==SQLITE_OK ){
1842 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1843 }
1844 if( rc!=SQLITE_OK ){
1845 goto btree_open_out;
1846 }
shanehbd2aaf92010-09-01 02:38:21 +00001847 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001848 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001849 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001850 p->pBt = pBt;
1851
drhe53831d2007-08-17 01:14:38 +00001852 pBt->pCursor = 0;
1853 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001854 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001855#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001856 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001857#endif
drhb2eced52010-08-12 02:41:12 +00001858 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001859 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1860 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001861 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001862#ifndef SQLITE_OMIT_AUTOVACUUM
1863 /* If the magic name ":memory:" will create an in-memory database, then
1864 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1865 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1866 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1867 ** regular file-name. In this case the auto-vacuum applies as per normal.
1868 */
1869 if( zFilename && !isMemdb ){
1870 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1871 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1872 }
1873#endif
1874 nReserve = 0;
1875 }else{
1876 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001877 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001878#ifndef SQLITE_OMIT_AUTOVACUUM
1879 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1880 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1881#endif
1882 }
drhfa9601a2009-06-18 17:22:39 +00001883 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001884 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001885 pBt->usableSize = pBt->pageSize - nReserve;
1886 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001887
1888#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1889 /* Add the new BtShared object to the linked list sharable BtShareds.
1890 */
1891 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001892 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001893 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001894 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001895 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001896 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001897 if( pBt->mutex==0 ){
1898 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001899 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001900 goto btree_open_out;
1901 }
drhff0587c2007-08-29 17:43:19 +00001902 }
drhe53831d2007-08-17 01:14:38 +00001903 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001904 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1905 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001906 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001907 }
drheee46cf2004-11-06 00:02:48 +00001908#endif
drh90f5ecb2004-07-22 01:19:35 +00001909 }
danielk1977aef0bf62005-12-30 16:28:01 +00001910
drhcfed7bc2006-03-13 14:28:05 +00001911#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001912 /* If the new Btree uses a sharable pBtShared, then link the new
1913 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001914 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001915 */
drhe53831d2007-08-17 01:14:38 +00001916 if( p->sharable ){
1917 int i;
1918 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001919 for(i=0; i<db->nDb; i++){
1920 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001921 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1922 if( p->pBt<pSib->pBt ){
1923 p->pNext = pSib;
1924 p->pPrev = 0;
1925 pSib->pPrev = p;
1926 }else{
drhabddb0c2007-08-20 13:14:28 +00001927 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001928 pSib = pSib->pNext;
1929 }
1930 p->pNext = pSib->pNext;
1931 p->pPrev = pSib;
1932 if( p->pNext ){
1933 p->pNext->pPrev = p;
1934 }
1935 pSib->pNext = p;
1936 }
1937 break;
1938 }
1939 }
danielk1977aef0bf62005-12-30 16:28:01 +00001940 }
danielk1977aef0bf62005-12-30 16:28:01 +00001941#endif
1942 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001943
1944btree_open_out:
1945 if( rc!=SQLITE_OK ){
1946 if( pBt && pBt->pPager ){
1947 sqlite3PagerClose(pBt->pPager);
1948 }
drh17435752007-08-16 04:30:38 +00001949 sqlite3_free(pBt);
1950 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001951 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001952 }else{
1953 /* If the B-Tree was successfully opened, set the pager-cache size to the
1954 ** default value. Except, when opening on an existing shared pager-cache,
1955 ** do not change the pager-cache size.
1956 */
1957 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1958 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1959 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001960 }
drh7555d8e2009-03-20 13:15:30 +00001961 if( mutexOpen ){
1962 assert( sqlite3_mutex_held(mutexOpen) );
1963 sqlite3_mutex_leave(mutexOpen);
1964 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001965 return rc;
drha059ad02001-04-17 20:09:11 +00001966}
1967
1968/*
drhe53831d2007-08-17 01:14:38 +00001969** Decrement the BtShared.nRef counter. When it reaches zero,
1970** remove the BtShared structure from the sharing list. Return
1971** true if the BtShared.nRef counter reaches zero and return
1972** false if it is still positive.
1973*/
1974static int removeFromSharingList(BtShared *pBt){
1975#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00001976 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00001977 BtShared *pList;
1978 int removed = 0;
1979
drhd677b3d2007-08-20 22:48:41 +00001980 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00001981 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00001982 sqlite3_mutex_enter(pMaster);
1983 pBt->nRef--;
1984 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001985 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1986 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001987 }else{
drh78f82d12008-09-02 00:52:52 +00001988 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001989 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001990 pList=pList->pNext;
1991 }
drh34004ce2008-07-11 16:15:17 +00001992 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001993 pList->pNext = pBt->pNext;
1994 }
1995 }
drh3285db22007-09-03 22:00:39 +00001996 if( SQLITE_THREADSAFE ){
1997 sqlite3_mutex_free(pBt->mutex);
1998 }
drhe53831d2007-08-17 01:14:38 +00001999 removed = 1;
2000 }
2001 sqlite3_mutex_leave(pMaster);
2002 return removed;
2003#else
2004 return 1;
2005#endif
2006}
2007
2008/*
drhf7141992008-06-19 00:16:08 +00002009** Make sure pBt->pTmpSpace points to an allocation of
2010** MX_CELL_SIZE(pBt) bytes.
2011*/
2012static void allocateTempSpace(BtShared *pBt){
2013 if( !pBt->pTmpSpace ){
2014 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2015 }
2016}
2017
2018/*
2019** Free the pBt->pTmpSpace allocation
2020*/
2021static void freeTempSpace(BtShared *pBt){
2022 sqlite3PageFree( pBt->pTmpSpace);
2023 pBt->pTmpSpace = 0;
2024}
2025
2026/*
drha059ad02001-04-17 20:09:11 +00002027** Close an open database and invalidate all cursors.
2028*/
danielk1977aef0bf62005-12-30 16:28:01 +00002029int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002030 BtShared *pBt = p->pBt;
2031 BtCursor *pCur;
2032
danielk1977aef0bf62005-12-30 16:28:01 +00002033 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002034 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002035 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002036 pCur = pBt->pCursor;
2037 while( pCur ){
2038 BtCursor *pTmp = pCur;
2039 pCur = pCur->pNext;
2040 if( pTmp->pBtree==p ){
2041 sqlite3BtreeCloseCursor(pTmp);
2042 }
drha059ad02001-04-17 20:09:11 +00002043 }
danielk1977aef0bf62005-12-30 16:28:01 +00002044
danielk19778d34dfd2006-01-24 16:37:57 +00002045 /* Rollback any active transaction and free the handle structure.
2046 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2047 ** this handle.
2048 */
drh0f198a72012-02-13 16:43:16 +00002049 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002050 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002051
danielk1977aef0bf62005-12-30 16:28:01 +00002052 /* If there are still other outstanding references to the shared-btree
2053 ** structure, return now. The remainder of this procedure cleans
2054 ** up the shared-btree.
2055 */
drhe53831d2007-08-17 01:14:38 +00002056 assert( p->wantToLock==0 && p->locked==0 );
2057 if( !p->sharable || removeFromSharingList(pBt) ){
2058 /* The pBt is no longer on the sharing list, so we can access
2059 ** it without having to hold the mutex.
2060 **
2061 ** Clean out and delete the BtShared object.
2062 */
2063 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002064 sqlite3PagerClose(pBt->pPager);
2065 if( pBt->xFreeSchema && pBt->pSchema ){
2066 pBt->xFreeSchema(pBt->pSchema);
2067 }
drhb9755982010-07-24 16:34:37 +00002068 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002069 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002070 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002071 }
2072
drhe53831d2007-08-17 01:14:38 +00002073#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002074 assert( p->wantToLock==0 );
2075 assert( p->locked==0 );
2076 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2077 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002078#endif
2079
drhe53831d2007-08-17 01:14:38 +00002080 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002081 return SQLITE_OK;
2082}
2083
2084/*
drhda47d772002-12-02 04:25:19 +00002085** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002086**
2087** The maximum number of cache pages is set to the absolute
2088** value of mxPage. If mxPage is negative, the pager will
2089** operate asynchronously - it will not stop to do fsync()s
2090** to insure data is written to the disk surface before
2091** continuing. Transactions still work if synchronous is off,
2092** and the database cannot be corrupted if this program
2093** crashes. But if the operating system crashes or there is
2094** an abrupt power failure when synchronous is off, the database
2095** could be left in an inconsistent and unrecoverable state.
2096** Synchronous is on by default so database corruption is not
2097** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002098*/
danielk1977aef0bf62005-12-30 16:28:01 +00002099int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2100 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002101 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002102 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002103 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002104 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002105 return SQLITE_OK;
2106}
2107
2108/*
drh973b6e32003-02-12 14:09:42 +00002109** Change the way data is synced to disk in order to increase or decrease
2110** how well the database resists damage due to OS crashes and power
2111** failures. Level 1 is the same as asynchronous (no syncs() occur and
2112** there is a high probability of damage) Level 2 is the default. There
2113** is a very low but non-zero probability of damage. Level 3 reduces the
2114** probability of damage to near zero but with a write performance reduction.
2115*/
danielk197793758c82005-01-21 08:13:14 +00002116#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002117int sqlite3BtreeSetSafetyLevel(
2118 Btree *p, /* The btree to set the safety level on */
2119 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2120 int fullSync, /* PRAGMA fullfsync. */
2121 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2122){
danielk1977aef0bf62005-12-30 16:28:01 +00002123 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002124 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002125 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002126 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002127 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002128 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002129 return SQLITE_OK;
2130}
danielk197793758c82005-01-21 08:13:14 +00002131#endif
drh973b6e32003-02-12 14:09:42 +00002132
drh2c8997b2005-08-27 16:36:48 +00002133/*
2134** Return TRUE if the given btree is set to safety level 1. In other
2135** words, return TRUE if no sync() occurs on the disk files.
2136*/
danielk1977aef0bf62005-12-30 16:28:01 +00002137int sqlite3BtreeSyncDisabled(Btree *p){
2138 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002139 int rc;
drhe5fe6902007-12-07 18:55:28 +00002140 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002141 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002142 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002143 rc = sqlite3PagerNosync(pBt->pPager);
2144 sqlite3BtreeLeave(p);
2145 return rc;
drh2c8997b2005-08-27 16:36:48 +00002146}
2147
drh973b6e32003-02-12 14:09:42 +00002148/*
drh90f5ecb2004-07-22 01:19:35 +00002149** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002150** Or, if the page size has already been fixed, return SQLITE_READONLY
2151** without changing anything.
drh06f50212004-11-02 14:24:33 +00002152**
2153** The page size must be a power of 2 between 512 and 65536. If the page
2154** size supplied does not meet this constraint then the page size is not
2155** changed.
2156**
2157** Page sizes are constrained to be a power of two so that the region
2158** of the database file used for locking (beginning at PENDING_BYTE,
2159** the first byte past the 1GB boundary, 0x40000000) needs to occur
2160** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002161**
2162** If parameter nReserve is less than zero, then the number of reserved
2163** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002164**
drhc9166342012-01-05 23:32:06 +00002165** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002166** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002167*/
drhce4869f2009-04-02 20:16:58 +00002168int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002169 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002170 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002171 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002172 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002173 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002174 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002175 return SQLITE_READONLY;
2176 }
2177 if( nReserve<0 ){
2178 nReserve = pBt->pageSize - pBt->usableSize;
2179 }
drhf49661a2008-12-10 16:45:50 +00002180 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002181 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2182 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002183 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002184 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002185 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002186 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002187 }
drhfa9601a2009-06-18 17:22:39 +00002188 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002189 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002190 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002191 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002192 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002193}
2194
2195/*
2196** Return the currently defined page size
2197*/
danielk1977aef0bf62005-12-30 16:28:01 +00002198int sqlite3BtreeGetPageSize(Btree *p){
2199 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002200}
drh7f751222009-03-17 22:33:00 +00002201
danbb2b4412011-04-06 17:54:31 +00002202#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002203/*
2204** Return the number of bytes of space at the end of every page that
2205** are intentually left unused. This is the "reserved" space that is
2206** sometimes used by extensions.
2207*/
danielk1977aef0bf62005-12-30 16:28:01 +00002208int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002209 int n;
2210 sqlite3BtreeEnter(p);
2211 n = p->pBt->pageSize - p->pBt->usableSize;
2212 sqlite3BtreeLeave(p);
2213 return n;
drh2011d5f2004-07-22 02:40:37 +00002214}
drhf8e632b2007-05-08 14:51:36 +00002215
2216/*
2217** Set the maximum page count for a database if mxPage is positive.
2218** No changes are made if mxPage is 0 or negative.
2219** Regardless of the value of mxPage, return the maximum page count.
2220*/
2221int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002222 int n;
2223 sqlite3BtreeEnter(p);
2224 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2225 sqlite3BtreeLeave(p);
2226 return n;
drhf8e632b2007-05-08 14:51:36 +00002227}
drh5b47efa2010-02-12 18:18:39 +00002228
2229/*
drhc9166342012-01-05 23:32:06 +00002230** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2231** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002232** setting after the change.
2233*/
2234int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2235 int b;
drhaf034ed2010-02-12 19:46:26 +00002236 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002237 sqlite3BtreeEnter(p);
2238 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002239 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2240 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002241 }
drhc9166342012-01-05 23:32:06 +00002242 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002243 sqlite3BtreeLeave(p);
2244 return b;
2245}
danielk1977576ec6b2005-01-21 11:55:25 +00002246#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002247
2248/*
danielk1977951af802004-11-05 15:45:09 +00002249** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2250** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2251** is disabled. The default value for the auto-vacuum property is
2252** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2253*/
danielk1977aef0bf62005-12-30 16:28:01 +00002254int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002255#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002256 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002257#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002258 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002259 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002260 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002261
2262 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002263 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002264 rc = SQLITE_READONLY;
2265 }else{
drh076d4662009-02-18 20:31:18 +00002266 pBt->autoVacuum = av ?1:0;
2267 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002268 }
drhd677b3d2007-08-20 22:48:41 +00002269 sqlite3BtreeLeave(p);
2270 return rc;
danielk1977951af802004-11-05 15:45:09 +00002271#endif
2272}
2273
2274/*
2275** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2276** enabled 1 is returned. Otherwise 0.
2277*/
danielk1977aef0bf62005-12-30 16:28:01 +00002278int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002279#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002280 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002281#else
drhd677b3d2007-08-20 22:48:41 +00002282 int rc;
2283 sqlite3BtreeEnter(p);
2284 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002285 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2286 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2287 BTREE_AUTOVACUUM_INCR
2288 );
drhd677b3d2007-08-20 22:48:41 +00002289 sqlite3BtreeLeave(p);
2290 return rc;
danielk1977951af802004-11-05 15:45:09 +00002291#endif
2292}
2293
2294
2295/*
drha34b6762004-05-07 13:30:42 +00002296** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002297** also acquire a readlock on that file.
2298**
2299** SQLITE_OK is returned on success. If the file is not a
2300** well-formed database file, then SQLITE_CORRUPT is returned.
2301** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002302** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002303*/
danielk1977aef0bf62005-12-30 16:28:01 +00002304static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002305 int rc; /* Result code from subfunctions */
2306 MemPage *pPage1; /* Page 1 of the database file */
2307 int nPage; /* Number of pages in the database */
2308 int nPageFile = 0; /* Number of pages in the database file */
2309 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002310
drh1fee73e2007-08-29 04:00:57 +00002311 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002312 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002313 rc = sqlite3PagerSharedLock(pBt->pPager);
2314 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002315 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002316 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002317
2318 /* Do some checking to help insure the file we opened really is
2319 ** a valid database file.
2320 */
drhc2a4bab2010-04-02 12:46:45 +00002321 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002322 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002323 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002324 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002325 }
2326 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002327 u32 pageSize;
2328 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002329 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002330 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002331 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002332 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002333 }
dan5cf53532010-05-01 16:40:20 +00002334
2335#ifdef SQLITE_OMIT_WAL
2336 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002337 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002338 }
2339 if( page1[19]>1 ){
2340 goto page1_init_failed;
2341 }
2342#else
dane04dc882010-04-20 18:53:15 +00002343 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002344 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002345 }
dane04dc882010-04-20 18:53:15 +00002346 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002347 goto page1_init_failed;
2348 }
drhe5ae5732008-06-15 02:51:47 +00002349
dana470aeb2010-04-21 11:43:38 +00002350 /* If the write version is set to 2, this database should be accessed
2351 ** in WAL mode. If the log is not already open, open it now. Then
2352 ** return SQLITE_OK and return without populating BtShared.pPage1.
2353 ** The caller detects this and calls this function again. This is
2354 ** required as the version of page 1 currently in the page1 buffer
2355 ** may not be the latest version - there may be a newer one in the log
2356 ** file.
2357 */
drhc9166342012-01-05 23:32:06 +00002358 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002359 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002360 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002361 if( rc!=SQLITE_OK ){
2362 goto page1_init_failed;
2363 }else if( isOpen==0 ){
2364 releasePage(pPage1);
2365 return SQLITE_OK;
2366 }
dan8b5444b2010-04-27 14:37:47 +00002367 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002368 }
dan5cf53532010-05-01 16:40:20 +00002369#endif
dane04dc882010-04-20 18:53:15 +00002370
drhe5ae5732008-06-15 02:51:47 +00002371 /* The maximum embedded fraction must be exactly 25%. And the minimum
2372 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2373 ** The original design allowed these amounts to vary, but as of
2374 ** version 3.6.0, we require them to be fixed.
2375 */
2376 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2377 goto page1_init_failed;
2378 }
drhb2eced52010-08-12 02:41:12 +00002379 pageSize = (page1[16]<<8) | (page1[17]<<16);
2380 if( ((pageSize-1)&pageSize)!=0
2381 || pageSize>SQLITE_MAX_PAGE_SIZE
2382 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002383 ){
drh07d183d2005-05-01 22:52:42 +00002384 goto page1_init_failed;
2385 }
2386 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002387 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002388 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002389 /* After reading the first page of the database assuming a page size
2390 ** of BtShared.pageSize, we have discovered that the page-size is
2391 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2392 ** zero and return SQLITE_OK. The caller will call this function
2393 ** again with the correct page-size.
2394 */
2395 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002396 pBt->usableSize = usableSize;
2397 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002398 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002399 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2400 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002401 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002402 }
danecac6702011-02-09 18:19:20 +00002403 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002404 rc = SQLITE_CORRUPT_BKPT;
2405 goto page1_init_failed;
2406 }
drhb33e1b92009-06-18 11:29:20 +00002407 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002408 goto page1_init_failed;
2409 }
drh43b18e12010-08-17 19:40:08 +00002410 pBt->pageSize = pageSize;
2411 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002412#ifndef SQLITE_OMIT_AUTOVACUUM
2413 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002414 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002415#endif
drh306dc212001-05-21 13:45:10 +00002416 }
drhb6f41482004-05-14 01:58:11 +00002417
2418 /* maxLocal is the maximum amount of payload to store locally for
2419 ** a cell. Make sure it is small enough so that at least minFanout
2420 ** cells can will fit on one page. We assume a 10-byte page header.
2421 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002422 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002423 ** 4-byte child pointer
2424 ** 9-byte nKey value
2425 ** 4-byte nData value
2426 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002427 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002428 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2429 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002430 */
shaneh1df2db72010-08-18 02:28:48 +00002431 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2432 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2433 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2434 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002435 if( pBt->maxLocal>127 ){
2436 pBt->max1bytePayload = 127;
2437 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002438 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002439 }
drh2e38c322004-09-03 18:38:44 +00002440 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002441 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002442 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002443 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002444
drh72f82862001-05-24 21:06:34 +00002445page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002446 releasePage(pPage1);
2447 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002448 return rc;
drh306dc212001-05-21 13:45:10 +00002449}
2450
2451/*
drhb8ca3072001-12-05 00:21:20 +00002452** If there are no outstanding cursors and we are not in the middle
2453** of a transaction but there is a read lock on the database, then
2454** this routine unrefs the first page of the database file which
2455** has the effect of releasing the read lock.
2456**
drhb8ca3072001-12-05 00:21:20 +00002457** If there is a transaction in progress, this routine is a no-op.
2458*/
danielk1977aef0bf62005-12-30 16:28:01 +00002459static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002460 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002461 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2462 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002463 assert( pBt->pPage1->aData );
2464 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2465 assert( pBt->pPage1->aData );
2466 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002467 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002468 }
2469}
2470
2471/*
drhe39f2f92009-07-23 01:43:59 +00002472** If pBt points to an empty file then convert that empty file
2473** into a new empty database by initializing the first page of
2474** the database.
drh8b2f49b2001-06-08 00:21:52 +00002475*/
danielk1977aef0bf62005-12-30 16:28:01 +00002476static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002477 MemPage *pP1;
2478 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002479 int rc;
drhd677b3d2007-08-20 22:48:41 +00002480
drh1fee73e2007-08-29 04:00:57 +00002481 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002482 if( pBt->nPage>0 ){
2483 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002484 }
drh3aac2dd2004-04-26 14:10:20 +00002485 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002486 assert( pP1!=0 );
2487 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002488 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002489 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002490 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2491 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002492 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2493 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002494 data[18] = 1;
2495 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002496 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2497 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002498 data[21] = 64;
2499 data[22] = 32;
2500 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002501 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002502 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002503 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002504#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002505 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002506 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002507 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002508 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002509#endif
drhdd3cd972010-03-27 17:12:36 +00002510 pBt->nPage = 1;
2511 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002512 return SQLITE_OK;
2513}
2514
2515/*
danielk1977ee5741e2004-05-31 10:01:34 +00002516** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002517** is started if the second argument is nonzero, otherwise a read-
2518** transaction. If the second argument is 2 or more and exclusive
2519** transaction is started, meaning that no other process is allowed
2520** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002521** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002522** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002523**
danielk1977ee5741e2004-05-31 10:01:34 +00002524** A write-transaction must be started before attempting any
2525** changes to the database. None of the following routines
2526** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002527**
drh23e11ca2004-05-04 17:27:28 +00002528** sqlite3BtreeCreateTable()
2529** sqlite3BtreeCreateIndex()
2530** sqlite3BtreeClearTable()
2531** sqlite3BtreeDropTable()
2532** sqlite3BtreeInsert()
2533** sqlite3BtreeDelete()
2534** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002535**
drhb8ef32c2005-03-14 02:01:49 +00002536** If an initial attempt to acquire the lock fails because of lock contention
2537** and the database was previously unlocked, then invoke the busy handler
2538** if there is one. But if there was previously a read-lock, do not
2539** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2540** returned when there is already a read-lock in order to avoid a deadlock.
2541**
2542** Suppose there are two processes A and B. A has a read lock and B has
2543** a reserved lock. B tries to promote to exclusive but is blocked because
2544** of A's read lock. A tries to promote to reserved but is blocked by B.
2545** One or the other of the two processes must give way or there can be
2546** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2547** when A already has a read lock, we encourage A to give up and let B
2548** proceed.
drha059ad02001-04-17 20:09:11 +00002549*/
danielk1977aef0bf62005-12-30 16:28:01 +00002550int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002551 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002552 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002553 int rc = SQLITE_OK;
2554
drhd677b3d2007-08-20 22:48:41 +00002555 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002556 btreeIntegrity(p);
2557
danielk1977ee5741e2004-05-31 10:01:34 +00002558 /* If the btree is already in a write-transaction, or it
2559 ** is already in a read-transaction and a read-transaction
2560 ** is requested, this is a no-op.
2561 */
danielk1977aef0bf62005-12-30 16:28:01 +00002562 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002563 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002564 }
drhb8ef32c2005-03-14 02:01:49 +00002565
2566 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002567 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002568 rc = SQLITE_READONLY;
2569 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002570 }
2571
danielk1977404ca072009-03-16 13:19:36 +00002572#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002573 /* If another database handle has already opened a write transaction
2574 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002575 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002576 */
drhc9166342012-01-05 23:32:06 +00002577 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2578 || (pBt->btsFlags & BTS_PENDING)!=0
2579 ){
danielk1977404ca072009-03-16 13:19:36 +00002580 pBlock = pBt->pWriter->db;
2581 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002582 BtLock *pIter;
2583 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2584 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002585 pBlock = pIter->pBtree->db;
2586 break;
danielk1977641b0f42007-12-21 04:47:25 +00002587 }
2588 }
2589 }
danielk1977404ca072009-03-16 13:19:36 +00002590 if( pBlock ){
2591 sqlite3ConnectionBlocked(p->db, pBlock);
2592 rc = SQLITE_LOCKED_SHAREDCACHE;
2593 goto trans_begun;
2594 }
danielk1977641b0f42007-12-21 04:47:25 +00002595#endif
2596
danielk1977602b4662009-07-02 07:47:33 +00002597 /* Any read-only or read-write transaction implies a read-lock on
2598 ** page 1. So if some other shared-cache client already has a write-lock
2599 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002600 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2601 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002602
drhc9166342012-01-05 23:32:06 +00002603 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2604 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002605 do {
danielk1977295dc102009-04-01 19:07:03 +00002606 /* Call lockBtree() until either pBt->pPage1 is populated or
2607 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2608 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2609 ** reading page 1 it discovers that the page-size of the database
2610 ** file is not pBt->pageSize. In this case lockBtree() will update
2611 ** pBt->pageSize to the page-size of the file on disk.
2612 */
2613 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002614
drhb8ef32c2005-03-14 02:01:49 +00002615 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002616 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002617 rc = SQLITE_READONLY;
2618 }else{
danielk1977d8293352009-04-30 09:10:37 +00002619 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002620 if( rc==SQLITE_OK ){
2621 rc = newDatabase(pBt);
2622 }
drhb8ef32c2005-03-14 02:01:49 +00002623 }
2624 }
2625
danielk1977bd434552009-03-18 10:33:00 +00002626 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002627 unlockBtreeIfUnused(pBt);
2628 }
danf9b76712010-06-01 14:12:45 +00002629 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002630 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002631
2632 if( rc==SQLITE_OK ){
2633 if( p->inTrans==TRANS_NONE ){
2634 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002635#ifndef SQLITE_OMIT_SHARED_CACHE
2636 if( p->sharable ){
2637 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2638 p->lock.eLock = READ_LOCK;
2639 p->lock.pNext = pBt->pLock;
2640 pBt->pLock = &p->lock;
2641 }
2642#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002643 }
2644 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2645 if( p->inTrans>pBt->inTransaction ){
2646 pBt->inTransaction = p->inTrans;
2647 }
danielk1977404ca072009-03-16 13:19:36 +00002648 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002649 MemPage *pPage1 = pBt->pPage1;
2650#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002651 assert( !pBt->pWriter );
2652 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002653 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2654 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002655#endif
dan59257dc2010-08-04 11:34:31 +00002656
2657 /* If the db-size header field is incorrect (as it may be if an old
2658 ** client has been writing the database file), update it now. Doing
2659 ** this sooner rather than later means the database size can safely
2660 ** re-read the database size from page 1 if a savepoint or transaction
2661 ** rollback occurs within the transaction.
2662 */
2663 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2664 rc = sqlite3PagerWrite(pPage1->pDbPage);
2665 if( rc==SQLITE_OK ){
2666 put4byte(&pPage1->aData[28], pBt->nPage);
2667 }
2668 }
2669 }
danielk1977aef0bf62005-12-30 16:28:01 +00002670 }
2671
drhd677b3d2007-08-20 22:48:41 +00002672
2673trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002674 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002675 /* This call makes sure that the pager has the correct number of
2676 ** open savepoints. If the second parameter is greater than 0 and
2677 ** the sub-journal is not already open, then it will be opened here.
2678 */
danielk1977fd7f0452008-12-17 17:30:26 +00002679 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2680 }
danielk197712dd5492008-12-18 15:45:07 +00002681
danielk1977aef0bf62005-12-30 16:28:01 +00002682 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002683 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002684 return rc;
drha059ad02001-04-17 20:09:11 +00002685}
2686
danielk1977687566d2004-11-02 12:56:41 +00002687#ifndef SQLITE_OMIT_AUTOVACUUM
2688
2689/*
2690** Set the pointer-map entries for all children of page pPage. Also, if
2691** pPage contains cells that point to overflow pages, set the pointer
2692** map entries for the overflow pages as well.
2693*/
2694static int setChildPtrmaps(MemPage *pPage){
2695 int i; /* Counter variable */
2696 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002697 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002698 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002699 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002700 Pgno pgno = pPage->pgno;
2701
drh1fee73e2007-08-29 04:00:57 +00002702 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002703 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002704 if( rc!=SQLITE_OK ){
2705 goto set_child_ptrmaps_out;
2706 }
danielk1977687566d2004-11-02 12:56:41 +00002707 nCell = pPage->nCell;
2708
2709 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002710 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002711
drh98add2e2009-07-20 17:11:49 +00002712 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002713
danielk1977687566d2004-11-02 12:56:41 +00002714 if( !pPage->leaf ){
2715 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002716 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002717 }
2718 }
2719
2720 if( !pPage->leaf ){
2721 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002722 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002723 }
2724
2725set_child_ptrmaps_out:
2726 pPage->isInit = isInitOrig;
2727 return rc;
2728}
2729
2730/*
drhf3aed592009-07-08 18:12:49 +00002731** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2732** that it points to iTo. Parameter eType describes the type of pointer to
2733** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002734**
2735** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2736** page of pPage.
2737**
2738** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2739** page pointed to by one of the cells on pPage.
2740**
2741** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2742** overflow page in the list.
2743*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002744static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002745 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002746 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002747 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002748 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002749 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002750 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002751 }
danielk1977f78fc082004-11-02 14:40:32 +00002752 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002753 }else{
drhf49661a2008-12-10 16:45:50 +00002754 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002755 int i;
2756 int nCell;
2757
danielk197730548662009-07-09 05:07:37 +00002758 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002759 nCell = pPage->nCell;
2760
danielk1977687566d2004-11-02 12:56:41 +00002761 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002762 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002763 if( eType==PTRMAP_OVERFLOW1 ){
2764 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002765 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002766 if( info.iOverflow
2767 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2768 && iFrom==get4byte(&pCell[info.iOverflow])
2769 ){
2770 put4byte(&pCell[info.iOverflow], iTo);
2771 break;
danielk1977687566d2004-11-02 12:56:41 +00002772 }
2773 }else{
2774 if( get4byte(pCell)==iFrom ){
2775 put4byte(pCell, iTo);
2776 break;
2777 }
2778 }
2779 }
2780
2781 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002782 if( eType!=PTRMAP_BTREE ||
2783 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002784 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002785 }
danielk1977687566d2004-11-02 12:56:41 +00002786 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2787 }
2788
2789 pPage->isInit = isInitOrig;
2790 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002791 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002792}
2793
danielk1977003ba062004-11-04 02:57:33 +00002794
danielk19777701e812005-01-10 12:59:51 +00002795/*
2796** Move the open database page pDbPage to location iFreePage in the
2797** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002798**
2799** The isCommit flag indicates that there is no need to remember that
2800** the journal needs to be sync()ed before database page pDbPage->pgno
2801** can be written to. The caller has already promised not to write to that
2802** page.
danielk19777701e812005-01-10 12:59:51 +00002803*/
danielk1977003ba062004-11-04 02:57:33 +00002804static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002805 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002806 MemPage *pDbPage, /* Open page to move */
2807 u8 eType, /* Pointer map 'type' entry for pDbPage */
2808 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002809 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002810 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002811){
2812 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2813 Pgno iDbPage = pDbPage->pgno;
2814 Pager *pPager = pBt->pPager;
2815 int rc;
2816
danielk1977a0bf2652004-11-04 14:30:04 +00002817 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2818 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002819 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002820 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002821
drh85b623f2007-12-13 21:54:09 +00002822 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002823 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2824 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002825 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002826 if( rc!=SQLITE_OK ){
2827 return rc;
2828 }
2829 pDbPage->pgno = iFreePage;
2830
2831 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2832 ** that point to overflow pages. The pointer map entries for all these
2833 ** pages need to be changed.
2834 **
2835 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2836 ** pointer to a subsequent overflow page. If this is the case, then
2837 ** the pointer map needs to be updated for the subsequent overflow page.
2838 */
danielk1977a0bf2652004-11-04 14:30:04 +00002839 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002840 rc = setChildPtrmaps(pDbPage);
2841 if( rc!=SQLITE_OK ){
2842 return rc;
2843 }
2844 }else{
2845 Pgno nextOvfl = get4byte(pDbPage->aData);
2846 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002847 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002848 if( rc!=SQLITE_OK ){
2849 return rc;
2850 }
2851 }
2852 }
2853
2854 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2855 ** that it points at iFreePage. Also fix the pointer map entry for
2856 ** iPtrPage.
2857 */
danielk1977a0bf2652004-11-04 14:30:04 +00002858 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002859 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002860 if( rc!=SQLITE_OK ){
2861 return rc;
2862 }
danielk19773b8a05f2007-03-19 17:44:26 +00002863 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002864 if( rc!=SQLITE_OK ){
2865 releasePage(pPtrPage);
2866 return rc;
2867 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002868 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002869 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002870 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002871 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002872 }
danielk1977003ba062004-11-04 02:57:33 +00002873 }
danielk1977003ba062004-11-04 02:57:33 +00002874 return rc;
2875}
2876
danielk1977dddbcdc2007-04-26 14:42:34 +00002877/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002878static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002879
2880/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002881** Perform a single step of an incremental-vacuum. If successful,
2882** return SQLITE_OK. If there is no work to do (and therefore no
2883** point in calling this function again), return SQLITE_DONE.
2884**
2885** More specificly, this function attempts to re-organize the
2886** database so that the last page of the file currently in use
2887** is no longer in use.
2888**
drhea8ffdf2009-07-22 00:35:23 +00002889** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002890** that the caller will keep calling incrVacuumStep() until
2891** it returns SQLITE_DONE or an error, and that nFin is the
2892** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002893** process is complete. If nFin is zero, it is assumed that
2894** incrVacuumStep() will be called a finite amount of times
2895** which may or may not empty the freelist. A full autovacuum
2896** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002897*/
danielk19773460d192008-12-27 15:23:13 +00002898static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002899 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002900 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002901
drh1fee73e2007-08-29 04:00:57 +00002902 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002903 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002904
2905 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002906 u8 eType;
2907 Pgno iPtrPage;
2908
2909 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002910 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002911 return SQLITE_DONE;
2912 }
2913
2914 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2915 if( rc!=SQLITE_OK ){
2916 return rc;
2917 }
2918 if( eType==PTRMAP_ROOTPAGE ){
2919 return SQLITE_CORRUPT_BKPT;
2920 }
2921
2922 if( eType==PTRMAP_FREEPAGE ){
2923 if( nFin==0 ){
2924 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002925 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002926 ** truncated to zero after this function returns, so it doesn't
2927 ** matter if it still contains some garbage entries.
2928 */
2929 Pgno iFreePg;
2930 MemPage *pFreePg;
2931 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2932 if( rc!=SQLITE_OK ){
2933 return rc;
2934 }
2935 assert( iFreePg==iLastPg );
2936 releasePage(pFreePg);
2937 }
2938 } else {
2939 Pgno iFreePg; /* Index of free page to move pLastPg to */
2940 MemPage *pLastPg;
2941
danielk197730548662009-07-09 05:07:37 +00002942 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002943 if( rc!=SQLITE_OK ){
2944 return rc;
2945 }
2946
danielk1977b4626a32007-04-28 15:47:43 +00002947 /* If nFin is zero, this loop runs exactly once and page pLastPg
2948 ** is swapped with the first free page pulled off the free list.
2949 **
2950 ** On the other hand, if nFin is greater than zero, then keep
2951 ** looping until a free-page located within the first nFin pages
2952 ** of the file is found.
2953 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002954 do {
2955 MemPage *pFreePg;
2956 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2957 if( rc!=SQLITE_OK ){
2958 releasePage(pLastPg);
2959 return rc;
2960 }
2961 releasePage(pFreePg);
2962 }while( nFin!=0 && iFreePg>nFin );
2963 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002964
2965 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002966 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002967 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002968 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002969 releasePage(pLastPg);
2970 if( rc!=SQLITE_OK ){
2971 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002972 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002973 }
2974 }
2975
danielk19773460d192008-12-27 15:23:13 +00002976 if( nFin==0 ){
2977 iLastPg--;
2978 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002979 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2980 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002981 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002982 if( rc!=SQLITE_OK ){
2983 return rc;
2984 }
2985 rc = sqlite3PagerWrite(pPg->pDbPage);
2986 releasePage(pPg);
2987 if( rc!=SQLITE_OK ){
2988 return rc;
2989 }
2990 }
danielk19773460d192008-12-27 15:23:13 +00002991 iLastPg--;
2992 }
2993 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002994 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002995 }
2996 return SQLITE_OK;
2997}
2998
2999/*
3000** A write-transaction must be opened before calling this function.
3001** It performs a single unit of work towards an incremental vacuum.
3002**
3003** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003004** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003005** SQLITE_OK is returned. Otherwise an SQLite error code.
3006*/
3007int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003008 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003009 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003010
3011 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003012 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3013 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003014 rc = SQLITE_DONE;
3015 }else{
3016 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00003017 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00003018 if( rc==SQLITE_OK ){
3019 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3020 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3021 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003022 }
drhd677b3d2007-08-20 22:48:41 +00003023 sqlite3BtreeLeave(p);
3024 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003025}
3026
3027/*
danielk19773b8a05f2007-03-19 17:44:26 +00003028** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003029** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003030**
3031** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3032** the database file should be truncated to during the commit process.
3033** i.e. the database has been reorganized so that only the first *pnTrunc
3034** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003035*/
danielk19773460d192008-12-27 15:23:13 +00003036static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003037 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003038 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003039 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003040
drh1fee73e2007-08-29 04:00:57 +00003041 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003042 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003043 assert(pBt->autoVacuum);
3044 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003045 Pgno nFin; /* Number of pages in database after autovacuuming */
3046 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003047 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3048 Pgno iFree; /* The next page to be freed */
3049 int nEntry; /* Number of entries on one ptrmap page */
3050 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003051
drhb1299152010-03-30 22:58:33 +00003052 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003053 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3054 /* It is not possible to create a database for which the final page
3055 ** is either a pointer-map page or the pending-byte page. If one
3056 ** is encountered, this indicates corruption.
3057 */
danielk19773460d192008-12-27 15:23:13 +00003058 return SQLITE_CORRUPT_BKPT;
3059 }
danielk1977ef165ce2009-04-06 17:50:03 +00003060
danielk19773460d192008-12-27 15:23:13 +00003061 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003062 nEntry = pBt->usableSize/5;
3063 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003064 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003065 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003066 nFin--;
3067 }
3068 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3069 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003070 }
drhc5e47ac2009-06-04 00:11:56 +00003071 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003072
danielk19773460d192008-12-27 15:23:13 +00003073 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3074 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003075 }
danielk19773460d192008-12-27 15:23:13 +00003076 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003077 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3078 put4byte(&pBt->pPage1->aData[32], 0);
3079 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003080 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003081 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003082 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003083 }
3084 if( rc!=SQLITE_OK ){
3085 sqlite3PagerRollback(pPager);
3086 }
danielk1977687566d2004-11-02 12:56:41 +00003087 }
3088
danielk19773b8a05f2007-03-19 17:44:26 +00003089 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003090 return rc;
3091}
danielk1977dddbcdc2007-04-26 14:42:34 +00003092
danielk1977a50d9aa2009-06-08 14:49:45 +00003093#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3094# define setChildPtrmaps(x) SQLITE_OK
3095#endif
danielk1977687566d2004-11-02 12:56:41 +00003096
3097/*
drh80e35f42007-03-30 14:06:34 +00003098** This routine does the first phase of a two-phase commit. This routine
3099** causes a rollback journal to be created (if it does not already exist)
3100** and populated with enough information so that if a power loss occurs
3101** the database can be restored to its original state by playing back
3102** the journal. Then the contents of the journal are flushed out to
3103** the disk. After the journal is safely on oxide, the changes to the
3104** database are written into the database file and flushed to oxide.
3105** At the end of this call, the rollback journal still exists on the
3106** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003107** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003108** commit process.
3109**
3110** This call is a no-op if no write-transaction is currently active on pBt.
3111**
3112** Otherwise, sync the database file for the btree pBt. zMaster points to
3113** the name of a master journal file that should be written into the
3114** individual journal file, or is NULL, indicating no master journal file
3115** (single database transaction).
3116**
3117** When this is called, the master journal should already have been
3118** created, populated with this journal pointer and synced to disk.
3119**
3120** Once this is routine has returned, the only thing required to commit
3121** the write-transaction for this database file is to delete the journal.
3122*/
3123int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3124 int rc = SQLITE_OK;
3125 if( p->inTrans==TRANS_WRITE ){
3126 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003127 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003128#ifndef SQLITE_OMIT_AUTOVACUUM
3129 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003130 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003131 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003132 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003133 return rc;
3134 }
3135 }
3136#endif
drh49b9d332009-01-02 18:10:42 +00003137 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003138 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003139 }
3140 return rc;
3141}
3142
3143/*
danielk197794b30732009-07-02 17:21:57 +00003144** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3145** at the conclusion of a transaction.
3146*/
3147static void btreeEndTransaction(Btree *p){
3148 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003149 assert( sqlite3BtreeHoldsMutex(p) );
3150
danielk197794b30732009-07-02 17:21:57 +00003151 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003152 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3153 /* If there are other active statements that belong to this database
3154 ** handle, downgrade to a read-only transaction. The other statements
3155 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003156 downgradeAllSharedCacheTableLocks(p);
3157 p->inTrans = TRANS_READ;
3158 }else{
3159 /* If the handle had any kind of transaction open, decrement the
3160 ** transaction count of the shared btree. If the transaction count
3161 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3162 ** call below will unlock the pager. */
3163 if( p->inTrans!=TRANS_NONE ){
3164 clearAllSharedCacheTableLocks(p);
3165 pBt->nTransaction--;
3166 if( 0==pBt->nTransaction ){
3167 pBt->inTransaction = TRANS_NONE;
3168 }
3169 }
3170
3171 /* Set the current transaction state to TRANS_NONE and unlock the
3172 ** pager if this call closed the only read or write transaction. */
3173 p->inTrans = TRANS_NONE;
3174 unlockBtreeIfUnused(pBt);
3175 }
3176
3177 btreeIntegrity(p);
3178}
3179
3180/*
drh2aa679f2001-06-25 02:11:07 +00003181** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003182**
drh6e345992007-03-30 11:12:08 +00003183** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003184** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3185** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3186** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003187** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003188** routine has to do is delete or truncate or zero the header in the
3189** the rollback journal (which causes the transaction to commit) and
3190** drop locks.
drh6e345992007-03-30 11:12:08 +00003191**
dan60939d02011-03-29 15:40:55 +00003192** Normally, if an error occurs while the pager layer is attempting to
3193** finalize the underlying journal file, this function returns an error and
3194** the upper layer will attempt a rollback. However, if the second argument
3195** is non-zero then this b-tree transaction is part of a multi-file
3196** transaction. In this case, the transaction has already been committed
3197** (by deleting a master journal file) and the caller will ignore this
3198** functions return code. So, even if an error occurs in the pager layer,
3199** reset the b-tree objects internal state to indicate that the write
3200** transaction has been closed. This is quite safe, as the pager will have
3201** transitioned to the error state.
3202**
drh5e00f6c2001-09-13 13:46:56 +00003203** This will release the write lock on the database file. If there
3204** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003205*/
dan60939d02011-03-29 15:40:55 +00003206int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003207
drh075ed302010-10-14 01:17:30 +00003208 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003209 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003210 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003211
3212 /* If the handle has a write-transaction open, commit the shared-btrees
3213 ** transaction and set the shared state to TRANS_READ.
3214 */
3215 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003216 int rc;
drh075ed302010-10-14 01:17:30 +00003217 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003218 assert( pBt->inTransaction==TRANS_WRITE );
3219 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003220 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003221 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003222 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003223 return rc;
3224 }
danielk1977aef0bf62005-12-30 16:28:01 +00003225 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003226 }
danielk1977aef0bf62005-12-30 16:28:01 +00003227
danielk197794b30732009-07-02 17:21:57 +00003228 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003229 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003230 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003231}
3232
drh80e35f42007-03-30 14:06:34 +00003233/*
3234** Do both phases of a commit.
3235*/
3236int sqlite3BtreeCommit(Btree *p){
3237 int rc;
drhd677b3d2007-08-20 22:48:41 +00003238 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003239 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3240 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003241 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003242 }
drhd677b3d2007-08-20 22:48:41 +00003243 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003244 return rc;
3245}
3246
danielk1977fbcd5852004-06-15 02:44:18 +00003247#ifndef NDEBUG
3248/*
3249** Return the number of write-cursors open on this handle. This is for use
3250** in assert() expressions, so it is only compiled if NDEBUG is not
3251** defined.
drhfb982642007-08-30 01:19:59 +00003252**
3253** For the purposes of this routine, a write-cursor is any cursor that
3254** is capable of writing to the databse. That means the cursor was
3255** originally opened for writing and the cursor has not be disabled
3256** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003257*/
danielk1977aef0bf62005-12-30 16:28:01 +00003258static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003259 BtCursor *pCur;
3260 int r = 0;
3261 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003262 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003263 }
3264 return r;
3265}
3266#endif
3267
drhc39e0002004-05-07 23:50:57 +00003268/*
drhfb982642007-08-30 01:19:59 +00003269** This routine sets the state to CURSOR_FAULT and the error
3270** code to errCode for every cursor on BtShared that pBtree
3271** references.
3272**
3273** Every cursor is tripped, including cursors that belong
3274** to other database connections that happen to be sharing
3275** the cache with pBtree.
3276**
3277** This routine gets called when a rollback occurs.
3278** All cursors using the same cache must be tripped
3279** to prevent them from trying to use the btree after
3280** the rollback. The rollback may have deleted tables
3281** or moved root pages, so it is not sufficient to
3282** save the state of the cursor. The cursor must be
3283** invalidated.
3284*/
3285void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3286 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003287 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003288 sqlite3BtreeEnter(pBtree);
3289 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003290 int i;
danielk1977be51a652008-10-08 17:58:48 +00003291 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003292 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003293 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003294 for(i=0; i<=p->iPage; i++){
3295 releasePage(p->apPage[i]);
3296 p->apPage[i] = 0;
3297 }
drhfb982642007-08-30 01:19:59 +00003298 }
3299 sqlite3BtreeLeave(pBtree);
3300}
3301
3302/*
drhecdc7532001-09-23 02:35:53 +00003303** Rollback the transaction in progress. All cursors will be
3304** invalided by this operation. Any attempt to use a cursor
3305** that was open at the beginning of this operation will result
3306** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003307**
3308** This will release the write lock on the database file. If there
3309** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003310*/
drh0f198a72012-02-13 16:43:16 +00003311int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003312 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003313 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003314 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003315
drhd677b3d2007-08-20 22:48:41 +00003316 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003317 if( tripCode==SQLITE_OK ){
3318 rc = tripCode = saveAllCursors(pBt, 0, 0);
3319 }else{
3320 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003321 }
drh0f198a72012-02-13 16:43:16 +00003322 if( tripCode ){
3323 sqlite3BtreeTripAllCursors(p, tripCode);
3324 }
danielk1977aef0bf62005-12-30 16:28:01 +00003325 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003326
3327 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003328 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003329
danielk19778d34dfd2006-01-24 16:37:57 +00003330 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003331 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003332 if( rc2!=SQLITE_OK ){
3333 rc = rc2;
3334 }
3335
drh24cd67e2004-05-10 16:18:47 +00003336 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003337 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003338 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003339 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003340 int nPage = get4byte(28+(u8*)pPage1->aData);
3341 testcase( nPage==0 );
3342 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3343 testcase( pBt->nPage!=nPage );
3344 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003345 releasePage(pPage1);
3346 }
danielk1977fbcd5852004-06-15 02:44:18 +00003347 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003348 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003349 }
danielk1977aef0bf62005-12-30 16:28:01 +00003350
danielk197794b30732009-07-02 17:21:57 +00003351 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003352 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003353 return rc;
3354}
3355
3356/*
danielk1977bd434552009-03-18 10:33:00 +00003357** Start a statement subtransaction. The subtransaction can can be rolled
3358** back independently of the main transaction. You must start a transaction
3359** before starting a subtransaction. The subtransaction is ended automatically
3360** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003361**
3362** Statement subtransactions are used around individual SQL statements
3363** that are contained within a BEGIN...COMMIT block. If a constraint
3364** error occurs within the statement, the effect of that one statement
3365** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003366**
3367** A statement sub-transaction is implemented as an anonymous savepoint. The
3368** value passed as the second parameter is the total number of savepoints,
3369** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3370** are no active savepoints and no other statement-transactions open,
3371** iStatement is 1. This anonymous savepoint can be released or rolled back
3372** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003373*/
danielk1977bd434552009-03-18 10:33:00 +00003374int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003375 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003376 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003377 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003378 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003379 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003380 assert( iStatement>0 );
3381 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003382 assert( pBt->inTransaction==TRANS_WRITE );
3383 /* At the pager level, a statement transaction is a savepoint with
3384 ** an index greater than all savepoints created explicitly using
3385 ** SQL statements. It is illegal to open, release or rollback any
3386 ** such savepoints while the statement transaction savepoint is active.
3387 */
3388 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003389 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003390 return rc;
3391}
3392
3393/*
danielk1977fd7f0452008-12-17 17:30:26 +00003394** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3395** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003396** savepoint identified by parameter iSavepoint, depending on the value
3397** of op.
3398**
3399** Normally, iSavepoint is greater than or equal to zero. However, if op is
3400** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3401** contents of the entire transaction are rolled back. This is different
3402** from a normal transaction rollback, as no locks are released and the
3403** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003404*/
3405int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3406 int rc = SQLITE_OK;
3407 if( p && p->inTrans==TRANS_WRITE ){
3408 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003409 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3410 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3411 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003412 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003413 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003414 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3415 pBt->nPage = 0;
3416 }
drh9f0bbf92009-01-02 21:08:09 +00003417 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003418 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003419
3420 /* The database size was written into the offset 28 of the header
3421 ** when the transaction started, so we know that the value at offset
3422 ** 28 is nonzero. */
3423 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003424 }
danielk1977fd7f0452008-12-17 17:30:26 +00003425 sqlite3BtreeLeave(p);
3426 }
3427 return rc;
3428}
3429
3430/*
drh8b2f49b2001-06-08 00:21:52 +00003431** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003432** iTable. If a read-only cursor is requested, it is assumed that
3433** the caller already has at least a read-only transaction open
3434** on the database already. If a write-cursor is requested, then
3435** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003436**
3437** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003438** If wrFlag==1, then the cursor can be used for reading or for
3439** writing if other conditions for writing are also met. These
3440** are the conditions that must be met in order for writing to
3441** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003442**
drhf74b8d92002-09-01 23:20:45 +00003443** 1: The cursor must have been opened with wrFlag==1
3444**
drhfe5d71d2007-03-19 11:54:10 +00003445** 2: Other database connections that share the same pager cache
3446** but which are not in the READ_UNCOMMITTED state may not have
3447** cursors open with wrFlag==0 on the same table. Otherwise
3448** the changes made by this write cursor would be visible to
3449** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003450**
3451** 3: The database must be writable (not on read-only media)
3452**
3453** 4: There must be an active transaction.
3454**
drh6446c4d2001-12-15 14:22:18 +00003455** No checking is done to make sure that page iTable really is the
3456** root page of a b-tree. If it is not, then the cursor acquired
3457** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003458**
drhf25a5072009-11-18 23:01:25 +00003459** It is assumed that the sqlite3BtreeCursorZero() has been called
3460** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003461*/
drhd677b3d2007-08-20 22:48:41 +00003462static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003463 Btree *p, /* The btree */
3464 int iTable, /* Root page of table to open */
3465 int wrFlag, /* 1 to write. 0 read-only */
3466 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3467 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003468){
danielk19773e8add92009-07-04 17:16:00 +00003469 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003470
drh1fee73e2007-08-29 04:00:57 +00003471 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003472 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003473
danielk1977602b4662009-07-02 07:47:33 +00003474 /* The following assert statements verify that if this is a sharable
3475 ** b-tree database, the connection is holding the required table locks,
3476 ** and that no other connection has any open cursor that conflicts with
3477 ** this lock. */
3478 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003479 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3480
danielk19773e8add92009-07-04 17:16:00 +00003481 /* Assert that the caller has opened the required transaction. */
3482 assert( p->inTrans>TRANS_NONE );
3483 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3484 assert( pBt->pPage1 && pBt->pPage1->aData );
3485
drhc9166342012-01-05 23:32:06 +00003486 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003487 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003488 }
drhb1299152010-03-30 22:58:33 +00003489 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003490 assert( wrFlag==0 );
3491 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003492 }
danielk1977aef0bf62005-12-30 16:28:01 +00003493
danielk1977aef0bf62005-12-30 16:28:01 +00003494 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003495 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003496 pCur->pgnoRoot = (Pgno)iTable;
3497 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003498 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003499 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003500 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003501 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003502 pCur->pNext = pBt->pCursor;
3503 if( pCur->pNext ){
3504 pCur->pNext->pPrev = pCur;
3505 }
3506 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003507 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003508 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003509 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003510}
drhd677b3d2007-08-20 22:48:41 +00003511int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003512 Btree *p, /* The btree */
3513 int iTable, /* Root page of table to open */
3514 int wrFlag, /* 1 to write. 0 read-only */
3515 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3516 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003517){
3518 int rc;
3519 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003520 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003521 sqlite3BtreeLeave(p);
3522 return rc;
3523}
drh7f751222009-03-17 22:33:00 +00003524
3525/*
3526** Return the size of a BtCursor object in bytes.
3527**
3528** This interfaces is needed so that users of cursors can preallocate
3529** sufficient storage to hold a cursor. The BtCursor object is opaque
3530** to users so they cannot do the sizeof() themselves - they must call
3531** this routine.
3532*/
3533int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003534 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003535}
3536
drh7f751222009-03-17 22:33:00 +00003537/*
drhf25a5072009-11-18 23:01:25 +00003538** Initialize memory that will be converted into a BtCursor object.
3539**
3540** The simple approach here would be to memset() the entire object
3541** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3542** do not need to be zeroed and they are large, so we can save a lot
3543** of run-time by skipping the initialization of those elements.
3544*/
3545void sqlite3BtreeCursorZero(BtCursor *p){
3546 memset(p, 0, offsetof(BtCursor, iPage));
3547}
3548
3549/*
drh7f751222009-03-17 22:33:00 +00003550** Set the cached rowid value of every cursor in the same database file
3551** as pCur and having the same root page number as pCur. The value is
3552** set to iRowid.
3553**
3554** Only positive rowid values are considered valid for this cache.
3555** The cache is initialized to zero, indicating an invalid cache.
3556** A btree will work fine with zero or negative rowids. We just cannot
3557** cache zero or negative rowids, which means tables that use zero or
3558** negative rowids might run a little slower. But in practice, zero
3559** or negative rowids are very uncommon so this should not be a problem.
3560*/
3561void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3562 BtCursor *p;
3563 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3564 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3565 }
3566 assert( pCur->cachedRowid==iRowid );
3567}
drhd677b3d2007-08-20 22:48:41 +00003568
drh7f751222009-03-17 22:33:00 +00003569/*
3570** Return the cached rowid for the given cursor. A negative or zero
3571** return value indicates that the rowid cache is invalid and should be
3572** ignored. If the rowid cache has never before been set, then a
3573** zero is returned.
3574*/
3575sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3576 return pCur->cachedRowid;
3577}
drha059ad02001-04-17 20:09:11 +00003578
3579/*
drh5e00f6c2001-09-13 13:46:56 +00003580** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003581** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003582*/
drh3aac2dd2004-04-26 14:10:20 +00003583int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003584 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003585 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003586 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003587 BtShared *pBt = pCur->pBt;
3588 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003589 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003590 if( pCur->pPrev ){
3591 pCur->pPrev->pNext = pCur->pNext;
3592 }else{
3593 pBt->pCursor = pCur->pNext;
3594 }
3595 if( pCur->pNext ){
3596 pCur->pNext->pPrev = pCur->pPrev;
3597 }
danielk197771d5d2c2008-09-29 11:49:47 +00003598 for(i=0; i<=pCur->iPage; i++){
3599 releasePage(pCur->apPage[i]);
3600 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003601 unlockBtreeIfUnused(pBt);
3602 invalidateOverflowCache(pCur);
3603 /* sqlite3_free(pCur); */
3604 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003605 }
drh8c42ca92001-06-22 19:15:00 +00003606 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003607}
3608
drh5e2f8b92001-05-28 00:41:15 +00003609/*
drh86057612007-06-26 01:04:48 +00003610** Make sure the BtCursor* given in the argument has a valid
3611** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003612** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003613**
3614** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003615** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003616**
3617** 2007-06-25: There is a bug in some versions of MSVC that cause the
3618** compiler to crash when getCellInfo() is implemented as a macro.
3619** But there is a measureable speed advantage to using the macro on gcc
3620** (when less compiler optimizations like -Os or -O0 are used and the
3621** compiler is not doing agressive inlining.) So we use a real function
3622** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003623*/
drh9188b382004-05-14 21:12:22 +00003624#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003625 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003626 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003627 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003628 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003629 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003630 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003631 }
danielk19771cc5ed82007-05-16 17:28:43 +00003632#else
3633 #define assertCellInfo(x)
3634#endif
drh86057612007-06-26 01:04:48 +00003635#ifdef _MSC_VER
3636 /* Use a real function in MSVC to work around bugs in that compiler. */
3637 static void getCellInfo(BtCursor *pCur){
3638 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003639 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003640 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003641 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003642 }else{
3643 assertCellInfo(pCur);
3644 }
3645 }
3646#else /* if not _MSC_VER */
3647 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003648#define getCellInfo(pCur) \
3649 if( pCur->info.nSize==0 ){ \
3650 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003651 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003652 pCur->validNKey = 1; \
3653 }else{ \
3654 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003655 }
3656#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003657
drhea8ffdf2009-07-22 00:35:23 +00003658#ifndef NDEBUG /* The next routine used only within assert() statements */
3659/*
3660** Return true if the given BtCursor is valid. A valid cursor is one
3661** that is currently pointing to a row in a (non-empty) table.
3662** This is a verification routine is used only within assert() statements.
3663*/
3664int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3665 return pCur && pCur->eState==CURSOR_VALID;
3666}
3667#endif /* NDEBUG */
3668
drh9188b382004-05-14 21:12:22 +00003669/*
drh3aac2dd2004-04-26 14:10:20 +00003670** Set *pSize to the size of the buffer needed to hold the value of
3671** the key for the current entry. If the cursor is not pointing
3672** to a valid entry, *pSize is set to 0.
3673**
drh4b70f112004-05-02 21:12:19 +00003674** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003675** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003676**
3677** The caller must position the cursor prior to invoking this routine.
3678**
3679** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003680*/
drh4a1c3802004-05-12 15:15:47 +00003681int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003682 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003683 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3684 if( pCur->eState!=CURSOR_VALID ){
3685 *pSize = 0;
3686 }else{
3687 getCellInfo(pCur);
3688 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003689 }
drhea8ffdf2009-07-22 00:35:23 +00003690 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003691}
drh2af926b2001-05-15 00:39:25 +00003692
drh72f82862001-05-24 21:06:34 +00003693/*
drh0e1c19e2004-05-11 00:58:56 +00003694** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003695** cursor currently points to.
3696**
3697** The caller must guarantee that the cursor is pointing to a non-NULL
3698** valid entry. In other words, the calling procedure must guarantee
3699** that the cursor has Cursor.eState==CURSOR_VALID.
3700**
3701** Failure is not possible. This function always returns SQLITE_OK.
3702** It might just as well be a procedure (returning void) but we continue
3703** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003704*/
3705int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003706 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003707 assert( pCur->eState==CURSOR_VALID );
3708 getCellInfo(pCur);
3709 *pSize = pCur->info.nData;
3710 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003711}
3712
3713/*
danielk1977d04417962007-05-02 13:16:30 +00003714** Given the page number of an overflow page in the database (parameter
3715** ovfl), this function finds the page number of the next page in the
3716** linked list of overflow pages. If possible, it uses the auto-vacuum
3717** pointer-map data instead of reading the content of page ovfl to do so.
3718**
3719** If an error occurs an SQLite error code is returned. Otherwise:
3720**
danielk1977bea2a942009-01-20 17:06:27 +00003721** The page number of the next overflow page in the linked list is
3722** written to *pPgnoNext. If page ovfl is the last page in its linked
3723** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003724**
danielk1977bea2a942009-01-20 17:06:27 +00003725** If ppPage is not NULL, and a reference to the MemPage object corresponding
3726** to page number pOvfl was obtained, then *ppPage is set to point to that
3727** reference. It is the responsibility of the caller to call releasePage()
3728** on *ppPage to free the reference. In no reference was obtained (because
3729** the pointer-map was used to obtain the value for *pPgnoNext), then
3730** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003731*/
3732static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003733 BtShared *pBt, /* The database file */
3734 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003735 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003736 Pgno *pPgnoNext /* OUT: Next overflow page number */
3737){
3738 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003739 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003740 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003741
drh1fee73e2007-08-29 04:00:57 +00003742 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003743 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003744
3745#ifndef SQLITE_OMIT_AUTOVACUUM
3746 /* Try to find the next page in the overflow list using the
3747 ** autovacuum pointer-map pages. Guess that the next page in
3748 ** the overflow list is page number (ovfl+1). If that guess turns
3749 ** out to be wrong, fall back to loading the data of page
3750 ** number ovfl to determine the next page number.
3751 */
3752 if( pBt->autoVacuum ){
3753 Pgno pgno;
3754 Pgno iGuess = ovfl+1;
3755 u8 eType;
3756
3757 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3758 iGuess++;
3759 }
3760
drhb1299152010-03-30 22:58:33 +00003761 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003762 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003763 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003764 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003765 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003766 }
3767 }
3768 }
3769#endif
3770
danielk1977d8a3f3d2009-07-11 11:45:23 +00003771 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003772 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003773 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003774 assert( rc==SQLITE_OK || pPage==0 );
3775 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003776 next = get4byte(pPage->aData);
3777 }
danielk1977443c0592009-01-16 15:21:05 +00003778 }
danielk197745d68822009-01-16 16:23:38 +00003779
danielk1977bea2a942009-01-20 17:06:27 +00003780 *pPgnoNext = next;
3781 if( ppPage ){
3782 *ppPage = pPage;
3783 }else{
3784 releasePage(pPage);
3785 }
3786 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003787}
3788
danielk1977da107192007-05-04 08:32:13 +00003789/*
3790** Copy data from a buffer to a page, or from a page to a buffer.
3791**
3792** pPayload is a pointer to data stored on database page pDbPage.
3793** If argument eOp is false, then nByte bytes of data are copied
3794** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3795** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3796** of data are copied from the buffer pBuf to pPayload.
3797**
3798** SQLITE_OK is returned on success, otherwise an error code.
3799*/
3800static int copyPayload(
3801 void *pPayload, /* Pointer to page data */
3802 void *pBuf, /* Pointer to buffer */
3803 int nByte, /* Number of bytes to copy */
3804 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3805 DbPage *pDbPage /* Page containing pPayload */
3806){
3807 if( eOp ){
3808 /* Copy data from buffer to page (a write operation) */
3809 int rc = sqlite3PagerWrite(pDbPage);
3810 if( rc!=SQLITE_OK ){
3811 return rc;
3812 }
3813 memcpy(pPayload, pBuf, nByte);
3814 }else{
3815 /* Copy data from page to buffer (a read operation) */
3816 memcpy(pBuf, pPayload, nByte);
3817 }
3818 return SQLITE_OK;
3819}
danielk1977d04417962007-05-02 13:16:30 +00003820
3821/*
danielk19779f8d6402007-05-02 17:48:45 +00003822** This function is used to read or overwrite payload information
3823** for the entry that the pCur cursor is pointing to. If the eOp
3824** parameter is 0, this is a read operation (data copied into
3825** buffer pBuf). If it is non-zero, a write (data copied from
3826** buffer pBuf).
3827**
3828** A total of "amt" bytes are read or written beginning at "offset".
3829** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003830**
drh3bcdfd22009-07-12 02:32:21 +00003831** The content being read or written might appear on the main page
3832** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003833**
danielk1977dcbb5d32007-05-04 18:36:44 +00003834** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003835** cursor entry uses one or more overflow pages, this function
3836** allocates space for and lazily popluates the overflow page-list
3837** cache array (BtCursor.aOverflow). Subsequent calls use this
3838** cache to make seeking to the supplied offset more efficient.
3839**
3840** Once an overflow page-list cache has been allocated, it may be
3841** invalidated if some other cursor writes to the same table, or if
3842** the cursor is moved to a different row. Additionally, in auto-vacuum
3843** mode, the following events may invalidate an overflow page-list cache.
3844**
3845** * An incremental vacuum,
3846** * A commit in auto_vacuum="full" mode,
3847** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003848*/
danielk19779f8d6402007-05-02 17:48:45 +00003849static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003850 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003851 u32 offset, /* Begin reading this far into payload */
3852 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003853 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003854 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003855){
3856 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003857 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003858 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003859 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003860 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003861 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003862
danielk1977da107192007-05-04 08:32:13 +00003863 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003864 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003865 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003866 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003867
drh86057612007-06-26 01:04:48 +00003868 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003869 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003870 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003871
drh3bcdfd22009-07-12 02:32:21 +00003872 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003873 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3874 ){
danielk1977da107192007-05-04 08:32:13 +00003875 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003876 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003877 }
danielk1977da107192007-05-04 08:32:13 +00003878
3879 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003880 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003881 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003882 if( a+offset>pCur->info.nLocal ){
3883 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003884 }
danielk1977da107192007-05-04 08:32:13 +00003885 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003886 offset = 0;
drha34b6762004-05-07 13:30:42 +00003887 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003888 amt -= a;
drhdd793422001-06-28 01:54:48 +00003889 }else{
drhfa1a98a2004-05-14 19:08:17 +00003890 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003891 }
danielk1977da107192007-05-04 08:32:13 +00003892
3893 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003894 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003895 Pgno nextPage;
3896
drhfa1a98a2004-05-14 19:08:17 +00003897 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003898
danielk19772dec9702007-05-02 16:48:37 +00003899#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003900 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003901 ** has not been allocated, allocate it now. The array is sized at
3902 ** one entry for each overflow page in the overflow chain. The
3903 ** page number of the first overflow page is stored in aOverflow[0],
3904 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3905 ** (the cache is lazily populated).
3906 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003907 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003908 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003909 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003910 /* nOvfl is always positive. If it were zero, fetchPayload would have
3911 ** been used instead of this routine. */
3912 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003913 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003914 }
3915 }
danielk1977da107192007-05-04 08:32:13 +00003916
3917 /* If the overflow page-list cache has been allocated and the
3918 ** entry for the first required overflow page is valid, skip
3919 ** directly to it.
3920 */
danielk19772dec9702007-05-02 16:48:37 +00003921 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3922 iIdx = (offset/ovflSize);
3923 nextPage = pCur->aOverflow[iIdx];
3924 offset = (offset%ovflSize);
3925 }
3926#endif
danielk1977da107192007-05-04 08:32:13 +00003927
3928 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3929
3930#ifndef SQLITE_OMIT_INCRBLOB
3931 /* If required, populate the overflow page-list cache. */
3932 if( pCur->aOverflow ){
3933 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3934 pCur->aOverflow[iIdx] = nextPage;
3935 }
3936#endif
3937
danielk1977d04417962007-05-02 13:16:30 +00003938 if( offset>=ovflSize ){
3939 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003940 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003941 ** data is not required. So first try to lookup the overflow
3942 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003943 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003944 */
danielk19772dec9702007-05-02 16:48:37 +00003945#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003946 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3947 nextPage = pCur->aOverflow[iIdx+1];
3948 } else
danielk19772dec9702007-05-02 16:48:37 +00003949#endif
danielk1977da107192007-05-04 08:32:13 +00003950 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003951 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003952 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003953 /* Need to read this page properly. It contains some of the
3954 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003955 */
danf4ba1092011-10-08 14:57:07 +00003956#ifdef SQLITE_DIRECT_OVERFLOW_READ
3957 sqlite3_file *fd;
3958#endif
danielk1977cfe9a692004-06-16 12:00:29 +00003959 int a = amt;
danf4ba1092011-10-08 14:57:07 +00003960 if( a + offset > ovflSize ){
3961 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003962 }
danf4ba1092011-10-08 14:57:07 +00003963
3964#ifdef SQLITE_DIRECT_OVERFLOW_READ
3965 /* If all the following are true:
3966 **
3967 ** 1) this is a read operation, and
3968 ** 2) data is required from the start of this overflow page, and
3969 ** 3) the database is file-backed, and
3970 ** 4) there is no open write-transaction, and
3971 ** 5) the database is not a WAL database,
3972 **
3973 ** then data can be read directly from the database file into the
3974 ** output buffer, bypassing the page-cache altogether. This speeds
3975 ** up loading large records that span many overflow pages.
3976 */
3977 if( eOp==0 /* (1) */
3978 && offset==0 /* (2) */
3979 && pBt->inTransaction==TRANS_READ /* (4) */
3980 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
3981 && pBt->pPage1->aData[19]==0x01 /* (5) */
3982 ){
3983 u8 aSave[4];
3984 u8 *aWrite = &pBuf[-4];
3985 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00003986 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00003987 nextPage = get4byte(aWrite);
3988 memcpy(aWrite, aSave, 4);
3989 }else
3990#endif
3991
3992 {
3993 DbPage *pDbPage;
3994 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
3995 if( rc==SQLITE_OK ){
3996 aPayload = sqlite3PagerGetData(pDbPage);
3997 nextPage = get4byte(aPayload);
3998 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3999 sqlite3PagerUnref(pDbPage);
4000 offset = 0;
4001 }
4002 }
4003 amt -= a;
4004 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004005 }
drh2af926b2001-05-15 00:39:25 +00004006 }
drh2af926b2001-05-15 00:39:25 +00004007 }
danielk1977cfe9a692004-06-16 12:00:29 +00004008
danielk1977da107192007-05-04 08:32:13 +00004009 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004010 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004011 }
danielk1977da107192007-05-04 08:32:13 +00004012 return rc;
drh2af926b2001-05-15 00:39:25 +00004013}
4014
drh72f82862001-05-24 21:06:34 +00004015/*
drh3aac2dd2004-04-26 14:10:20 +00004016** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004017** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004018** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004019**
drh5d1a8722009-07-22 18:07:40 +00004020** The caller must ensure that pCur is pointing to a valid row
4021** in the table.
4022**
drh3aac2dd2004-04-26 14:10:20 +00004023** Return SQLITE_OK on success or an error code if anything goes
4024** wrong. An error is returned if "offset+amt" is larger than
4025** the available payload.
drh72f82862001-05-24 21:06:34 +00004026*/
drha34b6762004-05-07 13:30:42 +00004027int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004028 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004029 assert( pCur->eState==CURSOR_VALID );
4030 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4031 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4032 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004033}
4034
4035/*
drh3aac2dd2004-04-26 14:10:20 +00004036** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004037** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004038** begins at "offset".
4039**
4040** Return SQLITE_OK on success or an error code if anything goes
4041** wrong. An error is returned if "offset+amt" is larger than
4042** the available payload.
drh72f82862001-05-24 21:06:34 +00004043*/
drh3aac2dd2004-04-26 14:10:20 +00004044int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004045 int rc;
4046
danielk19773588ceb2008-06-10 17:30:26 +00004047#ifndef SQLITE_OMIT_INCRBLOB
4048 if ( pCur->eState==CURSOR_INVALID ){
4049 return SQLITE_ABORT;
4050 }
4051#endif
4052
drh1fee73e2007-08-29 04:00:57 +00004053 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004054 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004055 if( rc==SQLITE_OK ){
4056 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004057 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4058 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004059 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004060 }
4061 return rc;
drh2af926b2001-05-15 00:39:25 +00004062}
4063
drh72f82862001-05-24 21:06:34 +00004064/*
drh0e1c19e2004-05-11 00:58:56 +00004065** Return a pointer to payload information from the entry that the
4066** pCur cursor is pointing to. The pointer is to the beginning of
4067** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004068** skipKey==1. The number of bytes of available key/data is written
4069** into *pAmt. If *pAmt==0, then the value returned will not be
4070** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004071**
4072** This routine is an optimization. It is common for the entire key
4073** and data to fit on the local page and for there to be no overflow
4074** pages. When that is so, this routine can be used to access the
4075** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004076** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004077** the key/data and copy it into a preallocated buffer.
4078**
4079** The pointer returned by this routine looks directly into the cached
4080** page of the database. The data might change or move the next time
4081** any btree routine is called.
4082*/
4083static const unsigned char *fetchPayload(
4084 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004085 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004086 int skipKey /* read beginning at data if this is true */
4087){
4088 unsigned char *aPayload;
4089 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004090 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004091 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004092
danielk197771d5d2c2008-09-29 11:49:47 +00004093 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004094 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004095 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004096 pPage = pCur->apPage[pCur->iPage];
4097 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004098 if( NEVER(pCur->info.nSize==0) ){
4099 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4100 &pCur->info);
4101 }
drh43605152004-05-29 21:46:49 +00004102 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004103 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004104 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004105 nKey = 0;
4106 }else{
drhf49661a2008-12-10 16:45:50 +00004107 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004108 }
drh0e1c19e2004-05-11 00:58:56 +00004109 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004110 aPayload += nKey;
4111 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004112 }else{
drhfa1a98a2004-05-14 19:08:17 +00004113 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004114 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004115 }
drhe51c44f2004-05-30 20:46:09 +00004116 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004117 return aPayload;
4118}
4119
4120
4121/*
drhe51c44f2004-05-30 20:46:09 +00004122** For the entry that cursor pCur is point to, return as
4123** many bytes of the key or data as are available on the local
4124** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004125**
4126** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004127** or be destroyed on the next call to any Btree routine,
4128** including calls from other threads against the same cache.
4129** Hence, a mutex on the BtShared should be held prior to calling
4130** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004131**
4132** These routines is used to get quick access to key and data
4133** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004134*/
drhe51c44f2004-05-30 20:46:09 +00004135const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004136 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004137 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004138 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004139 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4140 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004141 }
drhfe3313f2009-07-21 19:02:20 +00004142 return p;
drh0e1c19e2004-05-11 00:58:56 +00004143}
drhe51c44f2004-05-30 20:46:09 +00004144const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004145 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004146 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004147 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004148 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4149 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004150 }
drhfe3313f2009-07-21 19:02:20 +00004151 return p;
drh0e1c19e2004-05-11 00:58:56 +00004152}
4153
4154
4155/*
drh8178a752003-01-05 21:41:40 +00004156** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004157** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004158**
4159** This function returns SQLITE_CORRUPT if the page-header flags field of
4160** the new child page does not match the flags field of the parent (i.e.
4161** if an intkey page appears to be the parent of a non-intkey page, or
4162** vice-versa).
drh72f82862001-05-24 21:06:34 +00004163*/
drh3aac2dd2004-04-26 14:10:20 +00004164static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004165 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004166 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004167 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004168 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004169
drh1fee73e2007-08-29 04:00:57 +00004170 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004171 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004172 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4173 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4174 return SQLITE_CORRUPT_BKPT;
4175 }
4176 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004177 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004178 pCur->apPage[i+1] = pNewPage;
4179 pCur->aiIdx[i+1] = 0;
4180 pCur->iPage++;
4181
drh271efa52004-05-30 19:19:05 +00004182 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004183 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004184 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004185 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004186 }
drh72f82862001-05-24 21:06:34 +00004187 return SQLITE_OK;
4188}
4189
danbb246c42012-01-12 14:25:55 +00004190#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004191/*
4192** Page pParent is an internal (non-leaf) tree page. This function
4193** asserts that page number iChild is the left-child if the iIdx'th
4194** cell in page pParent. Or, if iIdx is equal to the total number of
4195** cells in pParent, that page number iChild is the right-child of
4196** the page.
4197*/
4198static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4199 assert( iIdx<=pParent->nCell );
4200 if( iIdx==pParent->nCell ){
4201 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4202 }else{
4203 assert( get4byte(findCell(pParent, iIdx))==iChild );
4204 }
4205}
4206#else
4207# define assertParentIndex(x,y,z)
4208#endif
4209
drh72f82862001-05-24 21:06:34 +00004210/*
drh5e2f8b92001-05-28 00:41:15 +00004211** Move the cursor up to the parent page.
4212**
4213** pCur->idx is set to the cell index that contains the pointer
4214** to the page we are coming from. If we are coming from the
4215** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004216** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004217*/
danielk197730548662009-07-09 05:07:37 +00004218static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004219 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004220 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004221 assert( pCur->iPage>0 );
4222 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004223
4224 /* UPDATE: It is actually possible for the condition tested by the assert
4225 ** below to be untrue if the database file is corrupt. This can occur if
4226 ** one cursor has modified page pParent while a reference to it is held
4227 ** by a second cursor. Which can only happen if a single page is linked
4228 ** into more than one b-tree structure in a corrupt database. */
4229#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004230 assertParentIndex(
4231 pCur->apPage[pCur->iPage-1],
4232 pCur->aiIdx[pCur->iPage-1],
4233 pCur->apPage[pCur->iPage]->pgno
4234 );
danbb246c42012-01-12 14:25:55 +00004235#endif
dan6c2688c2012-01-12 15:05:03 +00004236 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004237
danielk197771d5d2c2008-09-29 11:49:47 +00004238 releasePage(pCur->apPage[pCur->iPage]);
4239 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004240 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004241 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004242}
4243
4244/*
danielk19778f880a82009-07-13 09:41:45 +00004245** Move the cursor to point to the root page of its b-tree structure.
4246**
4247** If the table has a virtual root page, then the cursor is moved to point
4248** to the virtual root page instead of the actual root page. A table has a
4249** virtual root page when the actual root page contains no cells and a
4250** single child page. This can only happen with the table rooted at page 1.
4251**
4252** If the b-tree structure is empty, the cursor state is set to
4253** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4254** cell located on the root (or virtual root) page and the cursor state
4255** is set to CURSOR_VALID.
4256**
4257** If this function returns successfully, it may be assumed that the
4258** page-header flags indicate that the [virtual] root-page is the expected
4259** kind of b-tree page (i.e. if when opening the cursor the caller did not
4260** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4261** indicating a table b-tree, or if the caller did specify a KeyInfo
4262** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4263** b-tree).
drh72f82862001-05-24 21:06:34 +00004264*/
drh5e2f8b92001-05-28 00:41:15 +00004265static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004266 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004267 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004268 Btree *p = pCur->pBtree;
4269 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004270
drh1fee73e2007-08-29 04:00:57 +00004271 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004272 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4273 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4274 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4275 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4276 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004277 assert( pCur->skipNext!=SQLITE_OK );
4278 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004279 }
danielk1977be51a652008-10-08 17:58:48 +00004280 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004281 }
danielk197771d5d2c2008-09-29 11:49:47 +00004282
4283 if( pCur->iPage>=0 ){
4284 int i;
4285 for(i=1; i<=pCur->iPage; i++){
4286 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004287 }
danielk1977172114a2009-07-07 15:47:12 +00004288 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004289 }else if( pCur->pgnoRoot==0 ){
4290 pCur->eState = CURSOR_INVALID;
4291 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004292 }else{
drh4c301aa2009-07-15 17:25:45 +00004293 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4294 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004295 pCur->eState = CURSOR_INVALID;
4296 return rc;
4297 }
danielk1977172114a2009-07-07 15:47:12 +00004298 pCur->iPage = 0;
4299
4300 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4301 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4302 ** NULL, the caller expects a table b-tree. If this is not the case,
4303 ** return an SQLITE_CORRUPT error. */
4304 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4305 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4306 return SQLITE_CORRUPT_BKPT;
4307 }
drhc39e0002004-05-07 23:50:57 +00004308 }
danielk197771d5d2c2008-09-29 11:49:47 +00004309
danielk19778f880a82009-07-13 09:41:45 +00004310 /* Assert that the root page is of the correct type. This must be the
4311 ** case as the call to this function that loaded the root-page (either
4312 ** this call or a previous invocation) would have detected corruption
4313 ** if the assumption were not true, and it is not possible for the flags
4314 ** byte to have been modified while this cursor is holding a reference
4315 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004316 pRoot = pCur->apPage[0];
4317 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004318 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4319
danielk197771d5d2c2008-09-29 11:49:47 +00004320 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004321 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004322 pCur->atLast = 0;
4323 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004324
drh8856d6a2004-04-29 14:42:46 +00004325 if( pRoot->nCell==0 && !pRoot->leaf ){
4326 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004327 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004328 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004329 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004330 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004331 }else{
4332 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004333 }
4334 return rc;
drh72f82862001-05-24 21:06:34 +00004335}
drh2af926b2001-05-15 00:39:25 +00004336
drh5e2f8b92001-05-28 00:41:15 +00004337/*
4338** Move the cursor down to the left-most leaf entry beneath the
4339** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004340**
4341** The left-most leaf is the one with the smallest key - the first
4342** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004343*/
4344static int moveToLeftmost(BtCursor *pCur){
4345 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004346 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004347 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004348
drh1fee73e2007-08-29 04:00:57 +00004349 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004350 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004351 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4352 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4353 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004354 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004355 }
drhd677b3d2007-08-20 22:48:41 +00004356 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004357}
4358
drh2dcc9aa2002-12-04 13:40:25 +00004359/*
4360** Move the cursor down to the right-most leaf entry beneath the
4361** page to which it is currently pointing. Notice the difference
4362** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4363** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4364** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004365**
4366** The right-most entry is the one with the largest key - the last
4367** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004368*/
4369static int moveToRightmost(BtCursor *pCur){
4370 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004371 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004372 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004373
drh1fee73e2007-08-29 04:00:57 +00004374 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004375 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004376 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004377 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004378 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004379 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004380 }
drhd677b3d2007-08-20 22:48:41 +00004381 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004382 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004383 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004384 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004385 }
danielk1977518002e2008-09-05 05:02:46 +00004386 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004387}
4388
drh5e00f6c2001-09-13 13:46:56 +00004389/* Move the cursor to the first entry in the table. Return SQLITE_OK
4390** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004391** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004392*/
drh3aac2dd2004-04-26 14:10:20 +00004393int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004394 int rc;
drhd677b3d2007-08-20 22:48:41 +00004395
drh1fee73e2007-08-29 04:00:57 +00004396 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004397 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004398 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004399 if( rc==SQLITE_OK ){
4400 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004401 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004402 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004403 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004404 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004405 *pRes = 0;
4406 rc = moveToLeftmost(pCur);
4407 }
drh5e00f6c2001-09-13 13:46:56 +00004408 }
drh5e00f6c2001-09-13 13:46:56 +00004409 return rc;
4410}
drh5e2f8b92001-05-28 00:41:15 +00004411
drh9562b552002-02-19 15:00:07 +00004412/* Move the cursor to the last entry in the table. Return SQLITE_OK
4413** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004414** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004415*/
drh3aac2dd2004-04-26 14:10:20 +00004416int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004417 int rc;
drhd677b3d2007-08-20 22:48:41 +00004418
drh1fee73e2007-08-29 04:00:57 +00004419 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004420 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004421
4422 /* If the cursor already points to the last entry, this is a no-op. */
4423 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4424#ifdef SQLITE_DEBUG
4425 /* This block serves to assert() that the cursor really does point
4426 ** to the last entry in the b-tree. */
4427 int ii;
4428 for(ii=0; ii<pCur->iPage; ii++){
4429 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4430 }
4431 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4432 assert( pCur->apPage[pCur->iPage]->leaf );
4433#endif
4434 return SQLITE_OK;
4435 }
4436
drh9562b552002-02-19 15:00:07 +00004437 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004438 if( rc==SQLITE_OK ){
4439 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004440 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004441 *pRes = 1;
4442 }else{
4443 assert( pCur->eState==CURSOR_VALID );
4444 *pRes = 0;
4445 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004446 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004447 }
drh9562b552002-02-19 15:00:07 +00004448 }
drh9562b552002-02-19 15:00:07 +00004449 return rc;
4450}
4451
drhe14006d2008-03-25 17:23:32 +00004452/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004453** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004454**
drhe63d9992008-08-13 19:11:48 +00004455** For INTKEY tables, the intKey parameter is used. pIdxKey
4456** must be NULL. For index tables, pIdxKey is used and intKey
4457** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004458**
drh5e2f8b92001-05-28 00:41:15 +00004459** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004460** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004461** were present. The cursor might point to an entry that comes
4462** before or after the key.
4463**
drh64022502009-01-09 14:11:04 +00004464** An integer is written into *pRes which is the result of
4465** comparing the key with the entry to which the cursor is
4466** pointing. The meaning of the integer written into
4467** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004468**
4469** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004470** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004471** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004472**
4473** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004474** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004475**
4476** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004477** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004478**
drha059ad02001-04-17 20:09:11 +00004479*/
drhe63d9992008-08-13 19:11:48 +00004480int sqlite3BtreeMovetoUnpacked(
4481 BtCursor *pCur, /* The cursor to be moved */
4482 UnpackedRecord *pIdxKey, /* Unpacked index key */
4483 i64 intKey, /* The table key */
4484 int biasRight, /* If true, bias the search to the high end */
4485 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004486){
drh72f82862001-05-24 21:06:34 +00004487 int rc;
drhd677b3d2007-08-20 22:48:41 +00004488
drh1fee73e2007-08-29 04:00:57 +00004489 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004490 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004491 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004492 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004493
4494 /* If the cursor is already positioned at the point we are trying
4495 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004496 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4497 && pCur->apPage[0]->intKey
4498 ){
drhe63d9992008-08-13 19:11:48 +00004499 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004500 *pRes = 0;
4501 return SQLITE_OK;
4502 }
drhe63d9992008-08-13 19:11:48 +00004503 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004504 *pRes = -1;
4505 return SQLITE_OK;
4506 }
4507 }
4508
drh5e2f8b92001-05-28 00:41:15 +00004509 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004510 if( rc ){
4511 return rc;
4512 }
dana205a482011-08-27 18:48:57 +00004513 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4514 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4515 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004516 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004517 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004518 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004519 return SQLITE_OK;
4520 }
danielk197771d5d2c2008-09-29 11:49:47 +00004521 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004522 for(;;){
drhafb98172011-06-04 01:43:53 +00004523 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004524 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004525 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004526 int c;
4527
4528 /* pPage->nCell must be greater than zero. If this is the root-page
4529 ** the cursor would have been INVALID above and this for(;;) loop
4530 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004531 ** would have already detected db corruption. Similarly, pPage must
4532 ** be the right kind (index or table) of b-tree page. Otherwise
4533 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004534 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004535 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004536 lwr = 0;
4537 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004538 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004539 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004540 }else{
drhafb98172011-06-04 01:43:53 +00004541 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004542 }
drh64022502009-01-09 14:11:04 +00004543 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004544 u8 *pCell; /* Pointer to current cell in pPage */
4545
drhafb98172011-06-04 01:43:53 +00004546 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004547 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004548 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004549 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004550 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004551 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004552 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004553 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004554 }
drha2c20e42008-03-29 16:01:04 +00004555 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004556 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004557 c = 0;
drhe63d9992008-08-13 19:11:48 +00004558 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004559 c = -1;
4560 }else{
drhe63d9992008-08-13 19:11:48 +00004561 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004562 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004563 }
danielk197711c327a2009-05-04 19:01:26 +00004564 pCur->validNKey = 1;
4565 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004566 }else{
drhb2eced52010-08-12 02:41:12 +00004567 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004568 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004569 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004570 ** varint. This information is used to attempt to avoid parsing
4571 ** the entire cell by checking for the cases where the record is
4572 ** stored entirely within the b-tree page by inspecting the first
4573 ** 2 bytes of the cell.
4574 */
4575 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004576 if( nCell<=pPage->max1bytePayload
4577 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004578 ){
danielk197711c327a2009-05-04 19:01:26 +00004579 /* This branch runs if the record-size field of the cell is a
4580 ** single byte varint and the record fits entirely on the main
4581 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004582 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004583 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4584 }else if( !(pCell[1] & 0x80)
4585 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004586 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004587 ){
4588 /* The record-size field is a 2 byte varint and the record
4589 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004590 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004591 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004592 }else{
danielk197711c327a2009-05-04 19:01:26 +00004593 /* The record flows over onto one or more overflow pages. In
4594 ** this case the whole cell needs to be parsed, a buffer allocated
4595 ** and accessPayload() used to retrieve the record into the
4596 ** buffer before VdbeRecordCompare() can be called. */
4597 void *pCellKey;
4598 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004599 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004600 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004601 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004602 if( pCellKey==0 ){
4603 rc = SQLITE_NOMEM;
4604 goto moveto_finish;
4605 }
drhfb192682009-07-11 18:26:28 +00004606 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004607 if( rc ){
4608 sqlite3_free(pCellKey);
4609 goto moveto_finish;
4610 }
danielk197711c327a2009-05-04 19:01:26 +00004611 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004612 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004613 }
drh3aac2dd2004-04-26 14:10:20 +00004614 }
drh72f82862001-05-24 21:06:34 +00004615 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004616 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004617 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004618 break;
4619 }else{
drh64022502009-01-09 14:11:04 +00004620 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004621 rc = SQLITE_OK;
4622 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004623 }
drh72f82862001-05-24 21:06:34 +00004624 }
4625 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004626 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004627 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004628 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004629 }
drhf1d68b32007-03-29 04:43:26 +00004630 if( lwr>upr ){
4631 break;
4632 }
drhafb98172011-06-04 01:43:53 +00004633 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004634 }
drhb07028f2011-10-14 21:49:18 +00004635 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004636 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004637 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004638 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004639 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004640 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004641 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004642 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004643 }
4644 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004645 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004646 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004647 rc = SQLITE_OK;
4648 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004649 }
drhf49661a2008-12-10 16:45:50 +00004650 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004651 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004652 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004653 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004654 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004655 }
drh1e968a02008-03-25 00:22:21 +00004656moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004657 return rc;
4658}
4659
drhd677b3d2007-08-20 22:48:41 +00004660
drh72f82862001-05-24 21:06:34 +00004661/*
drhc39e0002004-05-07 23:50:57 +00004662** Return TRUE if the cursor is not pointing at an entry of the table.
4663**
4664** TRUE will be returned after a call to sqlite3BtreeNext() moves
4665** past the last entry in the table or sqlite3BtreePrev() moves past
4666** the first entry. TRUE is also returned if the table is empty.
4667*/
4668int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004669 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4670 ** have been deleted? This API will need to change to return an error code
4671 ** as well as the boolean result value.
4672 */
4673 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004674}
4675
4676/*
drhbd03cae2001-06-02 02:40:57 +00004677** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004678** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004679** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004680** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004681*/
drhd094db12008-04-03 21:46:57 +00004682int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004683 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004684 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004685 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004686
drh1fee73e2007-08-29 04:00:57 +00004687 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004688 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004689 if( rc!=SQLITE_OK ){
4690 return rc;
4691 }
drh8c4d3a62007-04-06 01:03:32 +00004692 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004693 if( CURSOR_INVALID==pCur->eState ){
4694 *pRes = 1;
4695 return SQLITE_OK;
4696 }
drh4c301aa2009-07-15 17:25:45 +00004697 if( pCur->skipNext>0 ){
4698 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004699 *pRes = 0;
4700 return SQLITE_OK;
4701 }
drh4c301aa2009-07-15 17:25:45 +00004702 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004703
danielk197771d5d2c2008-09-29 11:49:47 +00004704 pPage = pCur->apPage[pCur->iPage];
4705 idx = ++pCur->aiIdx[pCur->iPage];
4706 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004707
4708 /* If the database file is corrupt, it is possible for the value of idx
4709 ** to be invalid here. This can only occur if a second cursor modifies
4710 ** the page while cursor pCur is holding a reference to it. Which can
4711 ** only happen if the database is corrupt in such a way as to link the
4712 ** page into more than one b-tree structure. */
4713 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004714
drh271efa52004-05-30 19:19:05 +00004715 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004716 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004717 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004718 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004719 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004720 if( rc ) return rc;
4721 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004722 *pRes = 0;
4723 return rc;
drh72f82862001-05-24 21:06:34 +00004724 }
drh5e2f8b92001-05-28 00:41:15 +00004725 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004726 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004727 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004728 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004729 return SQLITE_OK;
4730 }
danielk197730548662009-07-09 05:07:37 +00004731 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004732 pPage = pCur->apPage[pCur->iPage];
4733 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004734 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004735 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004736 rc = sqlite3BtreeNext(pCur, pRes);
4737 }else{
4738 rc = SQLITE_OK;
4739 }
4740 return rc;
drh8178a752003-01-05 21:41:40 +00004741 }
4742 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004743 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004744 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004745 }
drh5e2f8b92001-05-28 00:41:15 +00004746 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004747 return rc;
drh72f82862001-05-24 21:06:34 +00004748}
drhd677b3d2007-08-20 22:48:41 +00004749
drh72f82862001-05-24 21:06:34 +00004750
drh3b7511c2001-05-26 13:15:44 +00004751/*
drh2dcc9aa2002-12-04 13:40:25 +00004752** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004753** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004754** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004755** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004756*/
drhd094db12008-04-03 21:46:57 +00004757int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004758 int rc;
drh8178a752003-01-05 21:41:40 +00004759 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004760
drh1fee73e2007-08-29 04:00:57 +00004761 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004762 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004763 if( rc!=SQLITE_OK ){
4764 return rc;
4765 }
drha2c20e42008-03-29 16:01:04 +00004766 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004767 if( CURSOR_INVALID==pCur->eState ){
4768 *pRes = 1;
4769 return SQLITE_OK;
4770 }
drh4c301aa2009-07-15 17:25:45 +00004771 if( pCur->skipNext<0 ){
4772 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004773 *pRes = 0;
4774 return SQLITE_OK;
4775 }
drh4c301aa2009-07-15 17:25:45 +00004776 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004777
danielk197771d5d2c2008-09-29 11:49:47 +00004778 pPage = pCur->apPage[pCur->iPage];
4779 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004780 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004781 int idx = pCur->aiIdx[pCur->iPage];
4782 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004783 if( rc ){
4784 return rc;
4785 }
drh2dcc9aa2002-12-04 13:40:25 +00004786 rc = moveToRightmost(pCur);
4787 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004788 while( pCur->aiIdx[pCur->iPage]==0 ){
4789 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004790 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004791 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004792 return SQLITE_OK;
4793 }
danielk197730548662009-07-09 05:07:37 +00004794 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004795 }
drh271efa52004-05-30 19:19:05 +00004796 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004797 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004798
4799 pCur->aiIdx[pCur->iPage]--;
4800 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004801 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004802 rc = sqlite3BtreePrevious(pCur, pRes);
4803 }else{
4804 rc = SQLITE_OK;
4805 }
drh2dcc9aa2002-12-04 13:40:25 +00004806 }
drh8178a752003-01-05 21:41:40 +00004807 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004808 return rc;
4809}
4810
4811/*
drh3b7511c2001-05-26 13:15:44 +00004812** Allocate a new page from the database file.
4813**
danielk19773b8a05f2007-03-19 17:44:26 +00004814** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004815** has already been called on the new page.) The new page has also
4816** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004817** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004818**
4819** SQLITE_OK is returned on success. Any other return value indicates
4820** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004821** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004822**
drh199e3cf2002-07-18 11:01:47 +00004823** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4824** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004825** attempt to keep related pages close to each other in the database file,
4826** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004827**
4828** If the "exact" parameter is not 0, and the page-number nearby exists
4829** anywhere on the free-list, then it is guarenteed to be returned. This
4830** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004831*/
drh4f0c5872007-03-26 22:05:01 +00004832static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004833 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004834 MemPage **ppPage,
4835 Pgno *pPgno,
4836 Pgno nearby,
4837 u8 exact
4838){
drh3aac2dd2004-04-26 14:10:20 +00004839 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004840 int rc;
drh35cd6432009-06-05 14:17:21 +00004841 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004842 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004843 MemPage *pTrunk = 0;
4844 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004845 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004846
drh1fee73e2007-08-29 04:00:57 +00004847 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004848 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004849 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004850 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004851 testcase( n==mxPage-1 );
4852 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004853 return SQLITE_CORRUPT_BKPT;
4854 }
drh3aac2dd2004-04-26 14:10:20 +00004855 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004856 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004857 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004858 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4859
4860 /* If the 'exact' parameter was true and a query of the pointer-map
4861 ** shows that the page 'nearby' is somewhere on the free-list, then
4862 ** the entire-list will be searched for that page.
4863 */
4864#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004865 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004866 u8 eType;
4867 assert( nearby>0 );
4868 assert( pBt->autoVacuum );
4869 rc = ptrmapGet(pBt, nearby, &eType, 0);
4870 if( rc ) return rc;
4871 if( eType==PTRMAP_FREEPAGE ){
4872 searchList = 1;
4873 }
4874 *pPgno = nearby;
4875 }
4876#endif
4877
4878 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4879 ** first free-list trunk page. iPrevTrunk is initially 1.
4880 */
danielk19773b8a05f2007-03-19 17:44:26 +00004881 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004882 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004883 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004884
4885 /* The code within this loop is run only once if the 'searchList' variable
4886 ** is not true. Otherwise, it runs once for each trunk-page on the
4887 ** free-list until the page 'nearby' is located.
4888 */
4889 do {
4890 pPrevTrunk = pTrunk;
4891 if( pPrevTrunk ){
4892 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004893 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004894 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004895 }
drhdf35a082009-07-09 02:24:35 +00004896 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004897 if( iTrunk>mxPage ){
4898 rc = SQLITE_CORRUPT_BKPT;
4899 }else{
danielk197730548662009-07-09 05:07:37 +00004900 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004901 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004902 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004903 pTrunk = 0;
4904 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004905 }
drhb07028f2011-10-14 21:49:18 +00004906 assert( pTrunk!=0 );
4907 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004908
drh93b4fc72011-04-07 14:47:01 +00004909 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004910 if( k==0 && !searchList ){
4911 /* The trunk has no leaves and the list is not being searched.
4912 ** So extract the trunk page itself and use it as the newly
4913 ** allocated page */
4914 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004915 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004916 if( rc ){
4917 goto end_allocate_page;
4918 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004919 *pPgno = iTrunk;
4920 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4921 *ppPage = pTrunk;
4922 pTrunk = 0;
4923 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004924 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004925 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004926 rc = SQLITE_CORRUPT_BKPT;
4927 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004928#ifndef SQLITE_OMIT_AUTOVACUUM
4929 }else if( searchList && nearby==iTrunk ){
4930 /* The list is being searched and this trunk page is the page
4931 ** to allocate, regardless of whether it has leaves.
4932 */
4933 assert( *pPgno==iTrunk );
4934 *ppPage = pTrunk;
4935 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004936 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004937 if( rc ){
4938 goto end_allocate_page;
4939 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004940 if( k==0 ){
4941 if( !pPrevTrunk ){
4942 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4943 }else{
danf48c3552010-08-23 15:41:24 +00004944 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4945 if( rc!=SQLITE_OK ){
4946 goto end_allocate_page;
4947 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004948 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4949 }
4950 }else{
4951 /* The trunk page is required by the caller but it contains
4952 ** pointers to free-list leaves. The first leaf becomes a trunk
4953 ** page in this case.
4954 */
4955 MemPage *pNewTrunk;
4956 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004957 if( iNewTrunk>mxPage ){
4958 rc = SQLITE_CORRUPT_BKPT;
4959 goto end_allocate_page;
4960 }
drhdf35a082009-07-09 02:24:35 +00004961 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004962 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004963 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004964 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004965 }
danielk19773b8a05f2007-03-19 17:44:26 +00004966 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004967 if( rc!=SQLITE_OK ){
4968 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004969 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004970 }
4971 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4972 put4byte(&pNewTrunk->aData[4], k-1);
4973 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004974 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004975 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004976 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004977 put4byte(&pPage1->aData[32], iNewTrunk);
4978 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004979 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004980 if( rc ){
4981 goto end_allocate_page;
4982 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004983 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4984 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004985 }
4986 pTrunk = 0;
4987 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4988#endif
danielk1977e5765212009-06-17 11:13:28 +00004989 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004990 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004991 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004992 Pgno iPage;
4993 unsigned char *aData = pTrunk->aData;
4994 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004995 u32 i;
4996 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004997 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00004998 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004999 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00005000 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005001 if( d2<dist ){
5002 closest = i;
5003 dist = d2;
5004 }
5005 }
5006 }else{
5007 closest = 0;
5008 }
5009
5010 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005011 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005012 if( iPage>mxPage ){
5013 rc = SQLITE_CORRUPT_BKPT;
5014 goto end_allocate_page;
5015 }
drhdf35a082009-07-09 02:24:35 +00005016 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005017 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00005018 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005019 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005020 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5021 ": %d more free pages\n",
5022 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005023 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5024 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005025 if( closest<k-1 ){
5026 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5027 }
5028 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005029 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005030 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005031 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005032 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005033 if( rc!=SQLITE_OK ){
5034 releasePage(*ppPage);
5035 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005036 }
5037 searchList = 0;
5038 }
drhee696e22004-08-30 16:52:17 +00005039 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005040 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005041 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005042 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005043 }else{
drh3aac2dd2004-04-26 14:10:20 +00005044 /* There are no pages on the freelist, so create a new page at the
5045 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005046 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5047 if( rc ) return rc;
5048 pBt->nPage++;
5049 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005050
danielk1977afcdd022004-10-31 16:25:42 +00005051#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005052 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005053 /* If *pPgno refers to a pointer-map page, allocate two new pages
5054 ** at the end of the file instead of one. The first allocated page
5055 ** becomes a new pointer-map page, the second is used by the caller.
5056 */
danielk1977ac861692009-03-28 10:54:22 +00005057 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005058 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5059 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005060 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005061 if( rc==SQLITE_OK ){
5062 rc = sqlite3PagerWrite(pPg->pDbPage);
5063 releasePage(pPg);
5064 }
5065 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005066 pBt->nPage++;
5067 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005068 }
5069#endif
drhdd3cd972010-03-27 17:12:36 +00005070 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5071 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005072
danielk1977599fcba2004-11-08 07:13:13 +00005073 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005074 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005075 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005076 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005077 if( rc!=SQLITE_OK ){
5078 releasePage(*ppPage);
5079 }
drh3a4c1412004-05-09 20:40:11 +00005080 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005081 }
danielk1977599fcba2004-11-08 07:13:13 +00005082
5083 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005084
5085end_allocate_page:
5086 releasePage(pTrunk);
5087 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005088 if( rc==SQLITE_OK ){
5089 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5090 releasePage(*ppPage);
5091 return SQLITE_CORRUPT_BKPT;
5092 }
5093 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005094 }else{
5095 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005096 }
drh93b4fc72011-04-07 14:47:01 +00005097 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005098 return rc;
5099}
5100
5101/*
danielk1977bea2a942009-01-20 17:06:27 +00005102** This function is used to add page iPage to the database file free-list.
5103** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005104**
danielk1977bea2a942009-01-20 17:06:27 +00005105** The value passed as the second argument to this function is optional.
5106** If the caller happens to have a pointer to the MemPage object
5107** corresponding to page iPage handy, it may pass it as the second value.
5108** Otherwise, it may pass NULL.
5109**
5110** If a pointer to a MemPage object is passed as the second argument,
5111** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005112*/
danielk1977bea2a942009-01-20 17:06:27 +00005113static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5114 MemPage *pTrunk = 0; /* Free-list trunk page */
5115 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5116 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5117 MemPage *pPage; /* Page being freed. May be NULL. */
5118 int rc; /* Return Code */
5119 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005120
danielk1977bea2a942009-01-20 17:06:27 +00005121 assert( sqlite3_mutex_held(pBt->mutex) );
5122 assert( iPage>1 );
5123 assert( !pMemPage || pMemPage->pgno==iPage );
5124
5125 if( pMemPage ){
5126 pPage = pMemPage;
5127 sqlite3PagerRef(pPage->pDbPage);
5128 }else{
5129 pPage = btreePageLookup(pBt, iPage);
5130 }
drh3aac2dd2004-04-26 14:10:20 +00005131
drha34b6762004-05-07 13:30:42 +00005132 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005133 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005134 if( rc ) goto freepage_out;
5135 nFree = get4byte(&pPage1->aData[36]);
5136 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005137
drhc9166342012-01-05 23:32:06 +00005138 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005139 /* If the secure_delete option is enabled, then
5140 ** always fully overwrite deleted information with zeros.
5141 */
shaneh84f4b2f2010-02-26 01:46:54 +00005142 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5143 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005144 ){
5145 goto freepage_out;
5146 }
5147 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005148 }
drhfcce93f2006-02-22 03:08:32 +00005149
danielk1977687566d2004-11-02 12:56:41 +00005150 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005151 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005152 */
danielk197785d90ca2008-07-19 14:25:15 +00005153 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005154 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005155 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005156 }
danielk1977687566d2004-11-02 12:56:41 +00005157
danielk1977bea2a942009-01-20 17:06:27 +00005158 /* Now manipulate the actual database free-list structure. There are two
5159 ** possibilities. If the free-list is currently empty, or if the first
5160 ** trunk page in the free-list is full, then this page will become a
5161 ** new free-list trunk page. Otherwise, it will become a leaf of the
5162 ** first trunk page in the current free-list. This block tests if it
5163 ** is possible to add the page as a new free-list leaf.
5164 */
5165 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005166 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005167
5168 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005169 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005170 if( rc!=SQLITE_OK ){
5171 goto freepage_out;
5172 }
5173
5174 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005175 assert( pBt->usableSize>32 );
5176 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005177 rc = SQLITE_CORRUPT_BKPT;
5178 goto freepage_out;
5179 }
drheeb844a2009-08-08 18:01:07 +00005180 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005181 /* In this case there is room on the trunk page to insert the page
5182 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005183 **
5184 ** Note that the trunk page is not really full until it contains
5185 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5186 ** coded. But due to a coding error in versions of SQLite prior to
5187 ** 3.6.0, databases with freelist trunk pages holding more than
5188 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5189 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005190 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005191 ** for now. At some point in the future (once everyone has upgraded
5192 ** to 3.6.0 or later) we should consider fixing the conditional above
5193 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5194 */
danielk19773b8a05f2007-03-19 17:44:26 +00005195 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005196 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005197 put4byte(&pTrunk->aData[4], nLeaf+1);
5198 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005199 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005200 sqlite3PagerDontWrite(pPage->pDbPage);
5201 }
danielk1977bea2a942009-01-20 17:06:27 +00005202 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005203 }
drh3a4c1412004-05-09 20:40:11 +00005204 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005205 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005206 }
drh3b7511c2001-05-26 13:15:44 +00005207 }
danielk1977bea2a942009-01-20 17:06:27 +00005208
5209 /* If control flows to this point, then it was not possible to add the
5210 ** the page being freed as a leaf page of the first trunk in the free-list.
5211 ** Possibly because the free-list is empty, or possibly because the
5212 ** first trunk in the free-list is full. Either way, the page being freed
5213 ** will become the new first trunk page in the free-list.
5214 */
drhc046e3e2009-07-15 11:26:44 +00005215 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5216 goto freepage_out;
5217 }
5218 rc = sqlite3PagerWrite(pPage->pDbPage);
5219 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005220 goto freepage_out;
5221 }
5222 put4byte(pPage->aData, iTrunk);
5223 put4byte(&pPage->aData[4], 0);
5224 put4byte(&pPage1->aData[32], iPage);
5225 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5226
5227freepage_out:
5228 if( pPage ){
5229 pPage->isInit = 0;
5230 }
5231 releasePage(pPage);
5232 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005233 return rc;
5234}
drhc314dc72009-07-21 11:52:34 +00005235static void freePage(MemPage *pPage, int *pRC){
5236 if( (*pRC)==SQLITE_OK ){
5237 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5238 }
danielk1977bea2a942009-01-20 17:06:27 +00005239}
drh3b7511c2001-05-26 13:15:44 +00005240
5241/*
drh3aac2dd2004-04-26 14:10:20 +00005242** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005243*/
drh3aac2dd2004-04-26 14:10:20 +00005244static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005245 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005246 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005247 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005248 int rc;
drh94440812007-03-06 11:42:19 +00005249 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005250 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005251
drh1fee73e2007-08-29 04:00:57 +00005252 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005253 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005254 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005255 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005256 }
drhe42a9b42011-08-31 13:27:19 +00005257 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5258 return SQLITE_CORRUPT; /* Cell extends past end of page */
5259 }
drh6f11bef2004-05-13 01:12:56 +00005260 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005261 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005262 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005263 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5264 assert( ovflPgno==0 || nOvfl>0 );
5265 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005266 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005267 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005268 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005269 /* 0 is not a legal page number and page 1 cannot be an
5270 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5271 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005272 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005273 }
danielk1977bea2a942009-01-20 17:06:27 +00005274 if( nOvfl ){
5275 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5276 if( rc ) return rc;
5277 }
dan887d4b22010-02-25 12:09:16 +00005278
shaneh1da207e2010-03-09 14:41:12 +00005279 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005280 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5281 ){
5282 /* There is no reason any cursor should have an outstanding reference
5283 ** to an overflow page belonging to a cell that is being deleted/updated.
5284 ** So if there exists more than one reference to this page, then it
5285 ** must not really be an overflow page and the database must be corrupt.
5286 ** It is helpful to detect this before calling freePage2(), as
5287 ** freePage2() may zero the page contents if secure-delete mode is
5288 ** enabled. If this 'overflow' page happens to be a page that the
5289 ** caller is iterating through or using in some other way, this
5290 ** can be problematic.
5291 */
5292 rc = SQLITE_CORRUPT_BKPT;
5293 }else{
5294 rc = freePage2(pBt, pOvfl, ovflPgno);
5295 }
5296
danielk1977bea2a942009-01-20 17:06:27 +00005297 if( pOvfl ){
5298 sqlite3PagerUnref(pOvfl->pDbPage);
5299 }
drh3b7511c2001-05-26 13:15:44 +00005300 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005301 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005302 }
drh5e2f8b92001-05-28 00:41:15 +00005303 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005304}
5305
5306/*
drh91025292004-05-03 19:49:32 +00005307** Create the byte sequence used to represent a cell on page pPage
5308** and write that byte sequence into pCell[]. Overflow pages are
5309** allocated and filled in as necessary. The calling procedure
5310** is responsible for making sure sufficient space has been allocated
5311** for pCell[].
5312**
5313** Note that pCell does not necessary need to point to the pPage->aData
5314** area. pCell might point to some temporary storage. The cell will
5315** be constructed in this temporary area then copied into pPage->aData
5316** later.
drh3b7511c2001-05-26 13:15:44 +00005317*/
5318static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005319 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005320 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005321 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005322 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005323 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005324 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005325){
drh3b7511c2001-05-26 13:15:44 +00005326 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005327 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005328 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005329 int spaceLeft;
5330 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005331 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005332 unsigned char *pPrior;
5333 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005334 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005335 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005336 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005337 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005338
drh1fee73e2007-08-29 04:00:57 +00005339 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005340
drhc5053fb2008-11-27 02:22:10 +00005341 /* pPage is not necessarily writeable since pCell might be auxiliary
5342 ** buffer space that is separate from the pPage buffer area */
5343 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5344 || sqlite3PagerIswriteable(pPage->pDbPage) );
5345
drh91025292004-05-03 19:49:32 +00005346 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005347 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005348 if( !pPage->leaf ){
5349 nHeader += 4;
5350 }
drh8b18dd42004-05-12 19:18:15 +00005351 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005352 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005353 }else{
drhb026e052007-05-02 01:34:31 +00005354 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005355 }
drh6f11bef2004-05-13 01:12:56 +00005356 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005357 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005358 assert( info.nHeader==nHeader );
5359 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005360 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005361
5362 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005363 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005364 if( pPage->intKey ){
5365 pSrc = pData;
5366 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005367 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005368 }else{
danielk197731d31b82009-07-13 13:18:07 +00005369 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5370 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005371 }
drhf49661a2008-12-10 16:45:50 +00005372 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005373 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005374 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005375 }
drh6f11bef2004-05-13 01:12:56 +00005376 *pnSize = info.nSize;
5377 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005378 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005379 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005380
drh3b7511c2001-05-26 13:15:44 +00005381 while( nPayload>0 ){
5382 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005383#ifndef SQLITE_OMIT_AUTOVACUUM
5384 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005385 if( pBt->autoVacuum ){
5386 do{
5387 pgnoOvfl++;
5388 } while(
5389 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5390 );
danielk1977b39f70b2007-05-17 18:28:11 +00005391 }
danielk1977afcdd022004-10-31 16:25:42 +00005392#endif
drhf49661a2008-12-10 16:45:50 +00005393 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005394#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005395 /* If the database supports auto-vacuum, and the second or subsequent
5396 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005397 ** for that page now.
5398 **
5399 ** If this is the first overflow page, then write a partial entry
5400 ** to the pointer-map. If we write nothing to this pointer-map slot,
5401 ** then the optimistic overflow chain processing in clearCell()
5402 ** may misinterpret the uninitialised values and delete the
5403 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005404 */
danielk19774ef24492007-05-23 09:52:41 +00005405 if( pBt->autoVacuum && rc==SQLITE_OK ){
5406 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005407 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005408 if( rc ){
5409 releasePage(pOvfl);
5410 }
danielk1977afcdd022004-10-31 16:25:42 +00005411 }
5412#endif
drh3b7511c2001-05-26 13:15:44 +00005413 if( rc ){
drh9b171272004-05-08 02:03:22 +00005414 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005415 return rc;
5416 }
drhc5053fb2008-11-27 02:22:10 +00005417
5418 /* If pToRelease is not zero than pPrior points into the data area
5419 ** of pToRelease. Make sure pToRelease is still writeable. */
5420 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5421
5422 /* If pPrior is part of the data area of pPage, then make sure pPage
5423 ** is still writeable */
5424 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5425 || sqlite3PagerIswriteable(pPage->pDbPage) );
5426
drh3aac2dd2004-04-26 14:10:20 +00005427 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005428 releasePage(pToRelease);
5429 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005430 pPrior = pOvfl->aData;
5431 put4byte(pPrior, 0);
5432 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005433 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005434 }
5435 n = nPayload;
5436 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005437
5438 /* If pToRelease is not zero than pPayload points into the data area
5439 ** of pToRelease. Make sure pToRelease is still writeable. */
5440 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5441
5442 /* If pPayload is part of the data area of pPage, then make sure pPage
5443 ** is still writeable */
5444 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5445 || sqlite3PagerIswriteable(pPage->pDbPage) );
5446
drhb026e052007-05-02 01:34:31 +00005447 if( nSrc>0 ){
5448 if( n>nSrc ) n = nSrc;
5449 assert( pSrc );
5450 memcpy(pPayload, pSrc, n);
5451 }else{
5452 memset(pPayload, 0, n);
5453 }
drh3b7511c2001-05-26 13:15:44 +00005454 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005455 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005456 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005457 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005458 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005459 if( nSrc==0 ){
5460 nSrc = nData;
5461 pSrc = pData;
5462 }
drhdd793422001-06-28 01:54:48 +00005463 }
drh9b171272004-05-08 02:03:22 +00005464 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005465 return SQLITE_OK;
5466}
5467
drh14acc042001-06-10 19:56:58 +00005468/*
5469** Remove the i-th cell from pPage. This routine effects pPage only.
5470** The cell content is not freed or deallocated. It is assumed that
5471** the cell content has been copied someplace else. This routine just
5472** removes the reference to the cell from pPage.
5473**
5474** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005475*/
drh98add2e2009-07-20 17:11:49 +00005476static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005477 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005478 u8 *data; /* pPage->aData */
5479 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005480 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005481 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005482 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005483
drh98add2e2009-07-20 17:11:49 +00005484 if( *pRC ) return;
5485
drh8c42ca92001-06-22 19:15:00 +00005486 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005487 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005488 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005489 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005490 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005491 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005492 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005493 hdr = pPage->hdrOffset;
5494 testcase( pc==get2byte(&data[hdr+5]) );
5495 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005496 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005497 *pRC = SQLITE_CORRUPT_BKPT;
5498 return;
shane0af3f892008-11-12 04:55:34 +00005499 }
shanedcc50b72008-11-13 18:29:50 +00005500 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005501 if( rc ){
5502 *pRC = rc;
5503 return;
shanedcc50b72008-11-13 18:29:50 +00005504 }
drh3def2352011-11-11 00:27:15 +00005505 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005506 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005507 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005508 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005509 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005510 }
5511 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005512 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005513 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005514}
5515
5516/*
5517** Insert a new cell on pPage at cell index "i". pCell points to the
5518** content of the cell.
5519**
5520** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005521** will not fit, then make a copy of the cell content into pTemp if
5522** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005523** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005524** in pTemp or the original pCell) and also record its index.
5525** Allocating a new entry in pPage->aCell[] implies that
5526** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005527**
5528** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5529** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005530** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005531** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005532*/
drh98add2e2009-07-20 17:11:49 +00005533static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005534 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005535 int i, /* New cell becomes the i-th cell of the page */
5536 u8 *pCell, /* Content of the new cell */
5537 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005538 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005539 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5540 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005541){
drh383d30f2010-02-26 13:07:37 +00005542 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005543 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005544 int end; /* First byte past the last cell pointer in data[] */
5545 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005546 int cellOffset; /* Address of first cell pointer in data[] */
5547 u8 *data; /* The content of the whole page */
5548 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005549 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005550
danielk19774dbaa892009-06-16 16:50:22 +00005551 int nSkip = (iChild ? 4 : 0);
5552
drh98add2e2009-07-20 17:11:49 +00005553 if( *pRC ) return;
5554
drh43605152004-05-29 21:46:49 +00005555 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005556 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005557 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5558 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005559 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005560 /* The cell should normally be sized correctly. However, when moving a
5561 ** malformed cell from a leaf page to an interior page, if the cell size
5562 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5563 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5564 ** the term after the || in the following assert(). */
5565 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005566 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005567 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005568 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005569 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005570 }
danielk19774dbaa892009-06-16 16:50:22 +00005571 if( iChild ){
5572 put4byte(pCell, iChild);
5573 }
drh43605152004-05-29 21:46:49 +00005574 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005575 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5576 pPage->apOvfl[j] = pCell;
5577 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005578 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005579 int rc = sqlite3PagerWrite(pPage->pDbPage);
5580 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005581 *pRC = rc;
5582 return;
danielk19776e465eb2007-08-21 13:11:00 +00005583 }
5584 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005585 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005586 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005587 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005588 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005589 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005590 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005591 /* The allocateSpace() routine guarantees the following two properties
5592 ** if it returns success */
5593 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005594 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005595 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005596 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005597 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005598 if( iChild ){
5599 put4byte(&data[idx], iChild);
5600 }
drh61d2fe92011-06-03 23:28:33 +00005601 ptr = &data[end];
5602 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005603 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005604 while( ptr>endPtr ){
5605 *(u16*)ptr = *(u16*)&ptr[-2];
5606 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005607 }
drh43605152004-05-29 21:46:49 +00005608 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005609 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005610#ifndef SQLITE_OMIT_AUTOVACUUM
5611 if( pPage->pBt->autoVacuum ){
5612 /* The cell may contain a pointer to an overflow page. If so, write
5613 ** the entry for the overflow page into the pointer map.
5614 */
drh98add2e2009-07-20 17:11:49 +00005615 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005616 }
5617#endif
drh14acc042001-06-10 19:56:58 +00005618 }
5619}
5620
5621/*
drhfa1a98a2004-05-14 19:08:17 +00005622** Add a list of cells to a page. The page should be initially empty.
5623** The cells are guaranteed to fit on the page.
5624*/
5625static void assemblePage(
5626 MemPage *pPage, /* The page to be assemblied */
5627 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005628 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005629 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005630){
5631 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005632 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005633 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005634 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5635 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5636 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005637
drh43605152004-05-29 21:46:49 +00005638 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005639 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005640 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5641 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005642 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005643
5644 /* Check that the page has just been zeroed by zeroPage() */
5645 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005646 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005647
drh3def2352011-11-11 00:27:15 +00005648 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005649 cellbody = nUsable;
5650 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005651 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005652 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005653 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005654 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005655 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005656 }
danielk1977fad91942009-04-29 17:49:59 +00005657 put2byte(&data[hdr+3], nCell);
5658 put2byte(&data[hdr+5], cellbody);
5659 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005660 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005661}
5662
drh14acc042001-06-10 19:56:58 +00005663/*
drhc3b70572003-01-04 19:44:07 +00005664** The following parameters determine how many adjacent pages get involved
5665** in a balancing operation. NN is the number of neighbors on either side
5666** of the page that participate in the balancing operation. NB is the
5667** total number of pages that participate, including the target page and
5668** NN neighbors on either side.
5669**
5670** The minimum value of NN is 1 (of course). Increasing NN above 1
5671** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5672** in exchange for a larger degradation in INSERT and UPDATE performance.
5673** The value of NN appears to give the best results overall.
5674*/
5675#define NN 1 /* Number of neighbors on either side of pPage */
5676#define NB (NN*2+1) /* Total pages involved in the balance */
5677
danielk1977ac245ec2005-01-14 13:50:11 +00005678
drh615ae552005-01-16 23:21:00 +00005679#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005680/*
5681** This version of balance() handles the common special case where
5682** a new entry is being inserted on the extreme right-end of the
5683** tree, in other words, when the new entry will become the largest
5684** entry in the tree.
5685**
drhc314dc72009-07-21 11:52:34 +00005686** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005687** a new page to the right-hand side and put the one new entry in
5688** that page. This leaves the right side of the tree somewhat
5689** unbalanced. But odds are that we will be inserting new entries
5690** at the end soon afterwards so the nearly empty page will quickly
5691** fill up. On average.
5692**
5693** pPage is the leaf page which is the right-most page in the tree.
5694** pParent is its parent. pPage must have a single overflow entry
5695** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005696**
5697** The pSpace buffer is used to store a temporary copy of the divider
5698** cell that will be inserted into pParent. Such a cell consists of a 4
5699** byte page number followed by a variable length integer. In other
5700** words, at most 13 bytes. Hence the pSpace buffer must be at
5701** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005702*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005703static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5704 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005705 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005706 int rc; /* Return Code */
5707 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005708
drh1fee73e2007-08-29 04:00:57 +00005709 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005710 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005711 assert( pPage->nOverflow==1 );
5712
drh5d433ce2010-08-14 16:02:52 +00005713 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005714 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005715
danielk1977a50d9aa2009-06-08 14:49:45 +00005716 /* Allocate a new page. This page will become the right-sibling of
5717 ** pPage. Make the parent page writable, so that the new divider cell
5718 ** may be inserted. If both these operations are successful, proceed.
5719 */
drh4f0c5872007-03-26 22:05:01 +00005720 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005721
danielk1977eaa06f62008-09-18 17:34:44 +00005722 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005723
5724 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005725 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005726 u16 szCell = cellSizePtr(pPage, pCell);
5727 u8 *pStop;
5728
drhc5053fb2008-11-27 02:22:10 +00005729 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005730 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5731 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005732 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005733
5734 /* If this is an auto-vacuum database, update the pointer map
5735 ** with entries for the new page, and any pointer from the
5736 ** cell on the page to an overflow page. If either of these
5737 ** operations fails, the return code is set, but the contents
5738 ** of the parent page are still manipulated by thh code below.
5739 ** That is Ok, at this point the parent page is guaranteed to
5740 ** be marked as dirty. Returning an error code will cause a
5741 ** rollback, undoing any changes made to the parent page.
5742 */
5743 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005744 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5745 if( szCell>pNew->minLocal ){
5746 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005747 }
5748 }
danielk1977eaa06f62008-09-18 17:34:44 +00005749
danielk19776f235cc2009-06-04 14:46:08 +00005750 /* Create a divider cell to insert into pParent. The divider cell
5751 ** consists of a 4-byte page number (the page number of pPage) and
5752 ** a variable length key value (which must be the same value as the
5753 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005754 **
danielk19776f235cc2009-06-04 14:46:08 +00005755 ** To find the largest key value on pPage, first find the right-most
5756 ** cell on pPage. The first two fields of this cell are the
5757 ** record-length (a variable length integer at most 32-bits in size)
5758 ** and the key value (a variable length integer, may have any value).
5759 ** The first of the while(...) loops below skips over the record-length
5760 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005761 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005762 */
danielk1977eaa06f62008-09-18 17:34:44 +00005763 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005764 pStop = &pCell[9];
5765 while( (*(pCell++)&0x80) && pCell<pStop );
5766 pStop = &pCell[9];
5767 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5768
danielk19774dbaa892009-06-16 16:50:22 +00005769 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005770 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5771 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005772
5773 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005774 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5775
danielk1977e08a3c42008-09-18 18:17:03 +00005776 /* Release the reference to the new page. */
5777 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005778 }
5779
danielk1977eaa06f62008-09-18 17:34:44 +00005780 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005781}
drh615ae552005-01-16 23:21:00 +00005782#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005783
danielk19774dbaa892009-06-16 16:50:22 +00005784#if 0
drhc3b70572003-01-04 19:44:07 +00005785/*
danielk19774dbaa892009-06-16 16:50:22 +00005786** This function does not contribute anything to the operation of SQLite.
5787** it is sometimes activated temporarily while debugging code responsible
5788** for setting pointer-map entries.
5789*/
5790static int ptrmapCheckPages(MemPage **apPage, int nPage){
5791 int i, j;
5792 for(i=0; i<nPage; i++){
5793 Pgno n;
5794 u8 e;
5795 MemPage *pPage = apPage[i];
5796 BtShared *pBt = pPage->pBt;
5797 assert( pPage->isInit );
5798
5799 for(j=0; j<pPage->nCell; j++){
5800 CellInfo info;
5801 u8 *z;
5802
5803 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005804 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005805 if( info.iOverflow ){
5806 Pgno ovfl = get4byte(&z[info.iOverflow]);
5807 ptrmapGet(pBt, ovfl, &e, &n);
5808 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5809 }
5810 if( !pPage->leaf ){
5811 Pgno child = get4byte(z);
5812 ptrmapGet(pBt, child, &e, &n);
5813 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5814 }
5815 }
5816 if( !pPage->leaf ){
5817 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5818 ptrmapGet(pBt, child, &e, &n);
5819 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5820 }
5821 }
5822 return 1;
5823}
5824#endif
5825
danielk1977cd581a72009-06-23 15:43:39 +00005826/*
5827** This function is used to copy the contents of the b-tree node stored
5828** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5829** the pointer-map entries for each child page are updated so that the
5830** parent page stored in the pointer map is page pTo. If pFrom contained
5831** any cells with overflow page pointers, then the corresponding pointer
5832** map entries are also updated so that the parent page is page pTo.
5833**
5834** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00005835** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00005836**
danielk197730548662009-07-09 05:07:37 +00005837** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005838**
5839** The performance of this function is not critical. It is only used by
5840** the balance_shallower() and balance_deeper() procedures, neither of
5841** which are called often under normal circumstances.
5842*/
drhc314dc72009-07-21 11:52:34 +00005843static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5844 if( (*pRC)==SQLITE_OK ){
5845 BtShared * const pBt = pFrom->pBt;
5846 u8 * const aFrom = pFrom->aData;
5847 u8 * const aTo = pTo->aData;
5848 int const iFromHdr = pFrom->hdrOffset;
5849 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005850 int rc;
drhc314dc72009-07-21 11:52:34 +00005851 int iData;
5852
5853
5854 assert( pFrom->isInit );
5855 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005856 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005857
5858 /* Copy the b-tree node content from page pFrom to page pTo. */
5859 iData = get2byte(&aFrom[iFromHdr+5]);
5860 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5861 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5862
5863 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005864 ** match the new data. The initialization of pTo can actually fail under
5865 ** fairly obscure circumstances, even though it is a copy of initialized
5866 ** page pFrom.
5867 */
drhc314dc72009-07-21 11:52:34 +00005868 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005869 rc = btreeInitPage(pTo);
5870 if( rc!=SQLITE_OK ){
5871 *pRC = rc;
5872 return;
5873 }
drhc314dc72009-07-21 11:52:34 +00005874
5875 /* If this is an auto-vacuum database, update the pointer-map entries
5876 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5877 */
5878 if( ISAUTOVACUUM ){
5879 *pRC = setChildPtrmaps(pTo);
5880 }
danielk1977cd581a72009-06-23 15:43:39 +00005881 }
danielk1977cd581a72009-06-23 15:43:39 +00005882}
5883
5884/*
danielk19774dbaa892009-06-16 16:50:22 +00005885** This routine redistributes cells on the iParentIdx'th child of pParent
5886** (hereafter "the page") and up to 2 siblings so that all pages have about the
5887** same amount of free space. Usually a single sibling on either side of the
5888** page are used in the balancing, though both siblings might come from one
5889** side if the page is the first or last child of its parent. If the page
5890** has fewer than 2 siblings (something which can only happen if the page
5891** is a root page or a child of a root page) then all available siblings
5892** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005893**
danielk19774dbaa892009-06-16 16:50:22 +00005894** The number of siblings of the page might be increased or decreased by
5895** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005896**
danielk19774dbaa892009-06-16 16:50:22 +00005897** Note that when this routine is called, some of the cells on the page
5898** might not actually be stored in MemPage.aData[]. This can happen
5899** if the page is overfull. This routine ensures that all cells allocated
5900** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005901**
danielk19774dbaa892009-06-16 16:50:22 +00005902** In the course of balancing the page and its siblings, cells may be
5903** inserted into or removed from the parent page (pParent). Doing so
5904** may cause the parent page to become overfull or underfull. If this
5905** happens, it is the responsibility of the caller to invoke the correct
5906** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005907**
drh5e00f6c2001-09-13 13:46:56 +00005908** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005909** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005910** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005911**
5912** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005913** buffer big enough to hold one page. If while inserting cells into the parent
5914** page (pParent) the parent page becomes overfull, this buffer is
5915** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005916** a maximum of four divider cells into the parent page, and the maximum
5917** size of a cell stored within an internal node is always less than 1/4
5918** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5919** enough for all overflow cells.
5920**
5921** If aOvflSpace is set to a null pointer, this function returns
5922** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005923*/
danielk19774dbaa892009-06-16 16:50:22 +00005924static int balance_nonroot(
5925 MemPage *pParent, /* Parent page of siblings being balanced */
5926 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005927 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5928 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005929){
drh16a9b832007-05-05 18:39:25 +00005930 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005931 int nCell = 0; /* Number of cells in apCell[] */
5932 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005933 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005934 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005935 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005936 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005937 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005938 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005939 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005940 int usableSpace; /* Bytes in pPage beyond the header */
5941 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005942 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005943 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005944 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005945 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005946 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005947 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005948 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005949 u8 *pRight; /* Location in parent of right-sibling pointer */
5950 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005951 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5952 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005953 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005954 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005955 u8 *aSpace1; /* Space for copies of dividers cells */
5956 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005957
danielk1977a50d9aa2009-06-08 14:49:45 +00005958 pBt = pParent->pBt;
5959 assert( sqlite3_mutex_held(pBt->mutex) );
5960 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005961
danielk1977e5765212009-06-17 11:13:28 +00005962#if 0
drh43605152004-05-29 21:46:49 +00005963 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005964#endif
drh2e38c322004-09-03 18:38:44 +00005965
danielk19774dbaa892009-06-16 16:50:22 +00005966 /* At this point pParent may have at most one overflow cell. And if
5967 ** this overflow cell is present, it must be the cell with
5968 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005969 ** is called (indirectly) from sqlite3BtreeDelete().
5970 */
danielk19774dbaa892009-06-16 16:50:22 +00005971 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00005972 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00005973
danielk197711a8a862009-06-17 11:49:52 +00005974 if( !aOvflSpace ){
5975 return SQLITE_NOMEM;
5976 }
5977
danielk1977a50d9aa2009-06-08 14:49:45 +00005978 /* Find the sibling pages to balance. Also locate the cells in pParent
5979 ** that divide the siblings. An attempt is made to find NN siblings on
5980 ** either side of pPage. More siblings are taken from one side, however,
5981 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005982 ** has NB or fewer children then all children of pParent are taken.
5983 **
5984 ** This loop also drops the divider cells from the parent page. This
5985 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005986 ** overflow cells in the parent page, since if any existed they will
5987 ** have already been removed.
5988 */
danielk19774dbaa892009-06-16 16:50:22 +00005989 i = pParent->nOverflow + pParent->nCell;
5990 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005991 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005992 nOld = i+1;
5993 }else{
5994 nOld = 3;
5995 if( iParentIdx==0 ){
5996 nxDiv = 0;
5997 }else if( iParentIdx==i ){
5998 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005999 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006000 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006001 }
danielk19774dbaa892009-06-16 16:50:22 +00006002 i = 2;
6003 }
6004 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6005 pRight = &pParent->aData[pParent->hdrOffset+8];
6006 }else{
6007 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6008 }
6009 pgno = get4byte(pRight);
6010 while( 1 ){
6011 rc = getAndInitPage(pBt, pgno, &apOld[i]);
6012 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006013 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006014 goto balance_cleanup;
6015 }
danielk1977634f2982005-03-28 08:44:07 +00006016 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006017 if( (i--)==0 ) break;
6018
drh2cbd78b2012-02-02 19:37:18 +00006019 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6020 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006021 pgno = get4byte(apDiv[i]);
6022 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6023 pParent->nOverflow = 0;
6024 }else{
6025 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6026 pgno = get4byte(apDiv[i]);
6027 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6028
6029 /* Drop the cell from the parent page. apDiv[i] still points to
6030 ** the cell within the parent, even though it has been dropped.
6031 ** This is safe because dropping a cell only overwrites the first
6032 ** four bytes of it, and this function does not need the first
6033 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006034 ** later on.
6035 **
drh8a575d92011-10-12 17:00:28 +00006036 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006037 ** the dropCell() routine will overwrite the entire cell with zeroes.
6038 ** In this case, temporarily copy the cell into the aOvflSpace[]
6039 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6040 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006041 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006042 int iOff;
6043
6044 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006045 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006046 rc = SQLITE_CORRUPT_BKPT;
6047 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6048 goto balance_cleanup;
6049 }else{
6050 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6051 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6052 }
drh5b47efa2010-02-12 18:18:39 +00006053 }
drh98add2e2009-07-20 17:11:49 +00006054 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006055 }
drh8b2f49b2001-06-08 00:21:52 +00006056 }
6057
drha9121e42008-02-19 14:59:35 +00006058 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006059 ** alignment */
drha9121e42008-02-19 14:59:35 +00006060 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006061
drh8b2f49b2001-06-08 00:21:52 +00006062 /*
danielk1977634f2982005-03-28 08:44:07 +00006063 ** Allocate space for memory structures
6064 */
danielk19774dbaa892009-06-16 16:50:22 +00006065 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006066 szScratch =
drha9121e42008-02-19 14:59:35 +00006067 nMaxCells*sizeof(u8*) /* apCell */
6068 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006069 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006070 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006071 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006072 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006073 rc = SQLITE_NOMEM;
6074 goto balance_cleanup;
6075 }
drha9121e42008-02-19 14:59:35 +00006076 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006077 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006078 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006079
6080 /*
6081 ** Load pointers to all cells on sibling pages and the divider cells
6082 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00006083 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00006084 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006085 **
6086 ** If the siblings are on leaf pages, then the child pointers of the
6087 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006088 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006089 ** child pointers. If siblings are not leaves, then all cell in
6090 ** apCell[] include child pointers. Either way, all cells in apCell[]
6091 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006092 **
6093 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6094 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006095 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006096 leafCorrection = apOld[0]->leaf*4;
6097 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006098 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006099 int limit;
6100
6101 /* Before doing anything else, take a copy of the i'th original sibling
6102 ** The rest of this function will use data from the copies rather
6103 ** that the original pages since the original pages will be in the
6104 ** process of being overwritten. */
6105 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6106 memcpy(pOld, apOld[i], sizeof(MemPage));
6107 pOld->aData = (void*)&pOld[1];
6108 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6109
6110 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006111 if( pOld->nOverflow>0 ){
6112 for(j=0; j<limit; j++){
6113 assert( nCell<nMaxCells );
6114 apCell[nCell] = findOverflowCell(pOld, j);
6115 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6116 nCell++;
6117 }
6118 }else{
6119 u8 *aData = pOld->aData;
6120 u16 maskPage = pOld->maskPage;
6121 u16 cellOffset = pOld->cellOffset;
6122 for(j=0; j<limit; j++){
6123 assert( nCell<nMaxCells );
6124 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6125 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6126 nCell++;
6127 }
6128 }
danielk19774dbaa892009-06-16 16:50:22 +00006129 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006130 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006131 u8 *pTemp;
6132 assert( nCell<nMaxCells );
6133 szCell[nCell] = sz;
6134 pTemp = &aSpace1[iSpace1];
6135 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006136 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006137 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006138 memcpy(pTemp, apDiv[i], sz);
6139 apCell[nCell] = pTemp+leafCorrection;
6140 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006141 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006142 if( !pOld->leaf ){
6143 assert( leafCorrection==0 );
6144 assert( pOld->hdrOffset==0 );
6145 /* The right pointer of the child page pOld becomes the left
6146 ** pointer of the divider cell */
6147 memcpy(apCell[nCell], &pOld->aData[8], 4);
6148 }else{
6149 assert( leafCorrection==4 );
6150 if( szCell[nCell]<4 ){
6151 /* Do not allow any cells smaller than 4 bytes. */
6152 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006153 }
6154 }
drh14acc042001-06-10 19:56:58 +00006155 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006156 }
drh8b2f49b2001-06-08 00:21:52 +00006157 }
6158
6159 /*
drh6019e162001-07-02 17:51:45 +00006160 ** Figure out the number of pages needed to hold all nCell cells.
6161 ** Store this number in "k". Also compute szNew[] which is the total
6162 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006163 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006164 ** cntNew[k] should equal nCell.
6165 **
drh96f5b762004-05-16 16:24:36 +00006166 ** Values computed by this block:
6167 **
6168 ** k: The total number of sibling pages
6169 ** szNew[i]: Spaced used on the i-th sibling page.
6170 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6171 ** the right of the i-th sibling page.
6172 ** usableSpace: Number of bytes of space available on each sibling.
6173 **
drh8b2f49b2001-06-08 00:21:52 +00006174 */
drh43605152004-05-29 21:46:49 +00006175 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006176 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006177 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006178 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006179 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006180 szNew[k] = subtotal - szCell[i];
6181 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006182 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006183 subtotal = 0;
6184 k++;
drh9978c972010-02-23 17:36:32 +00006185 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006186 }
6187 }
6188 szNew[k] = subtotal;
6189 cntNew[k] = nCell;
6190 k++;
drh96f5b762004-05-16 16:24:36 +00006191
6192 /*
6193 ** The packing computed by the previous block is biased toward the siblings
6194 ** on the left side. The left siblings are always nearly full, while the
6195 ** right-most sibling might be nearly empty. This block of code attempts
6196 ** to adjust the packing of siblings to get a better balance.
6197 **
6198 ** This adjustment is more than an optimization. The packing above might
6199 ** be so out of balance as to be illegal. For example, the right-most
6200 ** sibling might be completely empty. This adjustment is not optional.
6201 */
drh6019e162001-07-02 17:51:45 +00006202 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006203 int szRight = szNew[i]; /* Size of sibling on the right */
6204 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6205 int r; /* Index of right-most cell in left sibling */
6206 int d; /* Index of first cell to the left of right sibling */
6207
6208 r = cntNew[i-1] - 1;
6209 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006210 assert( d<nMaxCells );
6211 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006212 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6213 szRight += szCell[d] + 2;
6214 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006215 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006216 r = cntNew[i-1] - 1;
6217 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006218 }
drh96f5b762004-05-16 16:24:36 +00006219 szNew[i] = szRight;
6220 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006221 }
drh09d0deb2005-08-02 17:13:09 +00006222
danielk19776f235cc2009-06-04 14:46:08 +00006223 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006224 ** a virtual root page. A virtual root page is when the real root
6225 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006226 **
6227 ** UPDATE: The assert() below is not necessarily true if the database
6228 ** file is corrupt. The corruption will be detected and reported later
6229 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006230 */
drh2f32fba2012-01-02 16:38:57 +00006231#if 0
drh09d0deb2005-08-02 17:13:09 +00006232 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006233#endif
drh8b2f49b2001-06-08 00:21:52 +00006234
danielk1977e5765212009-06-17 11:13:28 +00006235 TRACE(("BALANCE: old: %d %d %d ",
6236 apOld[0]->pgno,
6237 nOld>=2 ? apOld[1]->pgno : 0,
6238 nOld>=3 ? apOld[2]->pgno : 0
6239 ));
6240
drh8b2f49b2001-06-08 00:21:52 +00006241 /*
drh6b308672002-07-08 02:16:37 +00006242 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006243 */
drheac74422009-06-14 12:47:11 +00006244 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006245 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006246 goto balance_cleanup;
6247 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006248 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006249 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006250 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006251 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006252 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006253 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006254 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006255 nNew++;
danielk197728129562005-01-11 10:25:06 +00006256 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006257 }else{
drh7aa8f852006-03-28 00:24:44 +00006258 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006259 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006260 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006261 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006262 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006263
6264 /* Set the pointer-map entry for the new sibling page. */
6265 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006266 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006267 if( rc!=SQLITE_OK ){
6268 goto balance_cleanup;
6269 }
6270 }
drh6b308672002-07-08 02:16:37 +00006271 }
drh8b2f49b2001-06-08 00:21:52 +00006272 }
6273
danielk1977299b1872004-11-22 10:02:10 +00006274 /* Free any old pages that were not reused as new pages.
6275 */
6276 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006277 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006278 if( rc ) goto balance_cleanup;
6279 releasePage(apOld[i]);
6280 apOld[i] = 0;
6281 i++;
6282 }
6283
drh8b2f49b2001-06-08 00:21:52 +00006284 /*
drhf9ffac92002-03-02 19:00:31 +00006285 ** Put the new pages in accending order. This helps to
6286 ** keep entries in the disk file in order so that a scan
6287 ** of the table is a linear scan through the file. That
6288 ** in turn helps the operating system to deliver pages
6289 ** from the disk more rapidly.
6290 **
6291 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006292 ** n is never more than NB (a small constant), that should
6293 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006294 **
drhc3b70572003-01-04 19:44:07 +00006295 ** When NB==3, this one optimization makes the database
6296 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006297 */
6298 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006299 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006300 int minI = i;
6301 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006302 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006303 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006304 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006305 }
6306 }
6307 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006308 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006309 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006310 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006311 apNew[minI] = pT;
6312 }
6313 }
danielk1977e5765212009-06-17 11:13:28 +00006314 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006315 apNew[0]->pgno, szNew[0],
6316 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6317 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6318 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6319 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6320
6321 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6322 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006323
drhf9ffac92002-03-02 19:00:31 +00006324 /*
drh14acc042001-06-10 19:56:58 +00006325 ** Evenly distribute the data in apCell[] across the new pages.
6326 ** Insert divider cells into pParent as necessary.
6327 */
6328 j = 0;
6329 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006330 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006331 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006332 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006333 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006334 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006335 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006336 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006337
danielk1977ac11ee62005-01-15 12:45:51 +00006338 j = cntNew[i];
6339
6340 /* If the sibling page assembled above was not the right-most sibling,
6341 ** insert a divider cell into the parent page.
6342 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006343 assert( i<nNew-1 || j==nCell );
6344 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006345 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006346 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006347 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006348
6349 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006350 pCell = apCell[j];
6351 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006352 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006353 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006354 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006355 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006356 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006357 ** then there is no divider cell in apCell[]. Instead, the divider
6358 ** cell consists of the integer key for the right-most cell of
6359 ** the sibling-page assembled above only.
6360 */
drh6f11bef2004-05-13 01:12:56 +00006361 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006362 j--;
danielk197730548662009-07-09 05:07:37 +00006363 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006364 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006365 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006366 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006367 }else{
6368 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006369 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006370 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006371 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006372 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006373 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006374 ** insertCell(), so reparse the cell now.
6375 **
6376 ** Note that this can never happen in an SQLite data file, as all
6377 ** cells are at least 4 bytes. It only happens in b-trees used
6378 ** to evaluate "IN (SELECT ...)" and similar clauses.
6379 */
6380 if( szCell[j]==4 ){
6381 assert(leafCorrection==4);
6382 sz = cellSizePtr(pParent, pCell);
6383 }
drh4b70f112004-05-02 21:12:19 +00006384 }
danielk19776067a9b2009-06-09 09:41:00 +00006385 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006386 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006387 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006388 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006389 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006390 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006391
drh14acc042001-06-10 19:56:58 +00006392 j++;
6393 nxDiv++;
6394 }
6395 }
drh6019e162001-07-02 17:51:45 +00006396 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006397 assert( nOld>0 );
6398 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006399 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006400 u8 *zChild = &apCopy[nOld-1]->aData[8];
6401 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006402 }
6403
danielk197713bd99f2009-06-24 05:40:34 +00006404 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6405 /* The root page of the b-tree now contains no cells. The only sibling
6406 ** page is the right-child of the parent. Copy the contents of the
6407 ** child page into the parent, decreasing the overall height of the
6408 ** b-tree structure by one. This is described as the "balance-shallower"
6409 ** sub-algorithm in some documentation.
6410 **
6411 ** If this is an auto-vacuum database, the call to copyNodeContent()
6412 ** sets all pointer-map entries corresponding to database image pages
6413 ** for which the pointer is stored within the content being copied.
6414 **
6415 ** The second assert below verifies that the child page is defragmented
6416 ** (it must be, as it was just reconstructed using assemblePage()). This
6417 ** is important if the parent page happens to be page 1 of the database
6418 ** image. */
6419 assert( nNew==1 );
6420 assert( apNew[0]->nFree ==
6421 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6422 );
drhc314dc72009-07-21 11:52:34 +00006423 copyNodeContent(apNew[0], pParent, &rc);
6424 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006425 }else if( ISAUTOVACUUM ){
6426 /* Fix the pointer-map entries for all the cells that were shifted around.
6427 ** There are several different types of pointer-map entries that need to
6428 ** be dealt with by this routine. Some of these have been set already, but
6429 ** many have not. The following is a summary:
6430 **
6431 ** 1) The entries associated with new sibling pages that were not
6432 ** siblings when this function was called. These have already
6433 ** been set. We don't need to worry about old siblings that were
6434 ** moved to the free-list - the freePage() code has taken care
6435 ** of those.
6436 **
6437 ** 2) The pointer-map entries associated with the first overflow
6438 ** page in any overflow chains used by new divider cells. These
6439 ** have also already been taken care of by the insertCell() code.
6440 **
6441 ** 3) If the sibling pages are not leaves, then the child pages of
6442 ** cells stored on the sibling pages may need to be updated.
6443 **
6444 ** 4) If the sibling pages are not internal intkey nodes, then any
6445 ** overflow pages used by these cells may need to be updated
6446 ** (internal intkey nodes never contain pointers to overflow pages).
6447 **
6448 ** 5) If the sibling pages are not leaves, then the pointer-map
6449 ** entries for the right-child pages of each sibling may need
6450 ** to be updated.
6451 **
6452 ** Cases 1 and 2 are dealt with above by other code. The next
6453 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6454 ** setting a pointer map entry is a relatively expensive operation, this
6455 ** code only sets pointer map entries for child or overflow pages that have
6456 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006457 MemPage *pNew = apNew[0];
6458 MemPage *pOld = apCopy[0];
6459 int nOverflow = pOld->nOverflow;
6460 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006461 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006462 j = 0; /* Current 'old' sibling page */
6463 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006464 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006465 int isDivider = 0;
6466 while( i==iNextOld ){
6467 /* Cell i is the cell immediately following the last cell on old
6468 ** sibling page j. If the siblings are not leaf pages of an
6469 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006470 assert( j+1 < ArraySize(apCopy) );
danielk19774dbaa892009-06-16 16:50:22 +00006471 pOld = apCopy[++j];
6472 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6473 if( pOld->nOverflow ){
6474 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006475 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006476 }
6477 isDivider = !leafData;
6478 }
6479
6480 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006481 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6482 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006483 if( i==iOverflow ){
6484 isDivider = 1;
6485 if( (--nOverflow)>0 ){
6486 iOverflow++;
6487 }
6488 }
6489
6490 if( i==cntNew[k] ){
6491 /* Cell i is the cell immediately following the last cell on new
6492 ** sibling page k. If the siblings are not leaf pages of an
6493 ** intkey b-tree, then cell i is a divider cell. */
6494 pNew = apNew[++k];
6495 if( !leafData ) continue;
6496 }
danielk19774dbaa892009-06-16 16:50:22 +00006497 assert( j<nOld );
6498 assert( k<nNew );
6499
6500 /* If the cell was originally divider cell (and is not now) or
6501 ** an overflow cell, or if the cell was located on a different sibling
6502 ** page before the balancing, then the pointer map entries associated
6503 ** with any child or overflow pages need to be updated. */
6504 if( isDivider || pOld->pgno!=pNew->pgno ){
6505 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006506 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006507 }
drh98add2e2009-07-20 17:11:49 +00006508 if( szCell[i]>pNew->minLocal ){
6509 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006510 }
6511 }
6512 }
6513
6514 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006515 for(i=0; i<nNew; i++){
6516 u32 key = get4byte(&apNew[i]->aData[8]);
6517 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006518 }
6519 }
6520
6521#if 0
6522 /* The ptrmapCheckPages() contains assert() statements that verify that
6523 ** all pointer map pages are set correctly. This is helpful while
6524 ** debugging. This is usually disabled because a corrupt database may
6525 ** cause an assert() statement to fail. */
6526 ptrmapCheckPages(apNew, nNew);
6527 ptrmapCheckPages(&pParent, 1);
6528#endif
6529 }
6530
danielk197771d5d2c2008-09-29 11:49:47 +00006531 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006532 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6533 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006534
drh8b2f49b2001-06-08 00:21:52 +00006535 /*
drh14acc042001-06-10 19:56:58 +00006536 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006537 */
drh14acc042001-06-10 19:56:58 +00006538balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006539 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006540 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006541 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006542 }
drh14acc042001-06-10 19:56:58 +00006543 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006544 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006545 }
danielk1977eaa06f62008-09-18 17:34:44 +00006546
drh8b2f49b2001-06-08 00:21:52 +00006547 return rc;
6548}
6549
drh43605152004-05-29 21:46:49 +00006550
6551/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006552** This function is called when the root page of a b-tree structure is
6553** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006554**
danielk1977a50d9aa2009-06-08 14:49:45 +00006555** A new child page is allocated and the contents of the current root
6556** page, including overflow cells, are copied into the child. The root
6557** page is then overwritten to make it an empty page with the right-child
6558** pointer pointing to the new page.
6559**
6560** Before returning, all pointer-map entries corresponding to pages
6561** that the new child-page now contains pointers to are updated. The
6562** entry corresponding to the new right-child pointer of the root
6563** page is also updated.
6564**
6565** If successful, *ppChild is set to contain a reference to the child
6566** page and SQLITE_OK is returned. In this case the caller is required
6567** to call releasePage() on *ppChild exactly once. If an error occurs,
6568** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006569*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006570static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6571 int rc; /* Return value from subprocedures */
6572 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006573 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006574 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006575
danielk1977a50d9aa2009-06-08 14:49:45 +00006576 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006577 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006578
danielk1977a50d9aa2009-06-08 14:49:45 +00006579 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6580 ** page that will become the new right-child of pPage. Copy the contents
6581 ** of the node stored on pRoot into the new child page.
6582 */
drh98add2e2009-07-20 17:11:49 +00006583 rc = sqlite3PagerWrite(pRoot->pDbPage);
6584 if( rc==SQLITE_OK ){
6585 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006586 copyNodeContent(pRoot, pChild, &rc);
6587 if( ISAUTOVACUUM ){
6588 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006589 }
6590 }
6591 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006592 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006593 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006594 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006595 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006596 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6597 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6598 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006599
danielk1977a50d9aa2009-06-08 14:49:45 +00006600 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6601
6602 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006603 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6604 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6605 memcpy(pChild->apOvfl, pRoot->apOvfl,
6606 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006607 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006608
6609 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6610 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6611 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6612
6613 *ppChild = pChild;
6614 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006615}
6616
6617/*
danielk197771d5d2c2008-09-29 11:49:47 +00006618** The page that pCur currently points to has just been modified in
6619** some way. This function figures out if this modification means the
6620** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006621** routine. Balancing routines are:
6622**
6623** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006624** balance_deeper()
6625** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006626*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006627static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006628 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006629 const int nMin = pCur->pBt->usableSize * 2 / 3;
6630 u8 aBalanceQuickSpace[13];
6631 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006632
shane75ac1de2009-06-09 18:58:52 +00006633 TESTONLY( int balance_quick_called = 0 );
6634 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006635
6636 do {
6637 int iPage = pCur->iPage;
6638 MemPage *pPage = pCur->apPage[iPage];
6639
6640 if( iPage==0 ){
6641 if( pPage->nOverflow ){
6642 /* The root page of the b-tree is overfull. In this case call the
6643 ** balance_deeper() function to create a new child for the root-page
6644 ** and copy the current contents of the root-page to it. The
6645 ** next iteration of the do-loop will balance the child page.
6646 */
6647 assert( (balance_deeper_called++)==0 );
6648 rc = balance_deeper(pPage, &pCur->apPage[1]);
6649 if( rc==SQLITE_OK ){
6650 pCur->iPage = 1;
6651 pCur->aiIdx[0] = 0;
6652 pCur->aiIdx[1] = 0;
6653 assert( pCur->apPage[1]->nOverflow );
6654 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006655 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006656 break;
6657 }
6658 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6659 break;
6660 }else{
6661 MemPage * const pParent = pCur->apPage[iPage-1];
6662 int const iIdx = pCur->aiIdx[iPage-1];
6663
6664 rc = sqlite3PagerWrite(pParent->pDbPage);
6665 if( rc==SQLITE_OK ){
6666#ifndef SQLITE_OMIT_QUICKBALANCE
6667 if( pPage->hasData
6668 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006669 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006670 && pParent->pgno!=1
6671 && pParent->nCell==iIdx
6672 ){
6673 /* Call balance_quick() to create a new sibling of pPage on which
6674 ** to store the overflow cell. balance_quick() inserts a new cell
6675 ** into pParent, which may cause pParent overflow. If this
6676 ** happens, the next interation of the do-loop will balance pParent
6677 ** use either balance_nonroot() or balance_deeper(). Until this
6678 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6679 ** buffer.
6680 **
6681 ** The purpose of the following assert() is to check that only a
6682 ** single call to balance_quick() is made for each call to this
6683 ** function. If this were not verified, a subtle bug involving reuse
6684 ** of the aBalanceQuickSpace[] might sneak in.
6685 */
6686 assert( (balance_quick_called++)==0 );
6687 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6688 }else
6689#endif
6690 {
6691 /* In this case, call balance_nonroot() to redistribute cells
6692 ** between pPage and up to 2 of its sibling pages. This involves
6693 ** modifying the contents of pParent, which may cause pParent to
6694 ** become overfull or underfull. The next iteration of the do-loop
6695 ** will balance the parent page to correct this.
6696 **
6697 ** If the parent page becomes overfull, the overflow cell or cells
6698 ** are stored in the pSpace buffer allocated immediately below.
6699 ** A subsequent iteration of the do-loop will deal with this by
6700 ** calling balance_nonroot() (balance_deeper() may be called first,
6701 ** but it doesn't deal with overflow cells - just moves them to a
6702 ** different page). Once this subsequent call to balance_nonroot()
6703 ** has completed, it is safe to release the pSpace buffer used by
6704 ** the previous call, as the overflow cell data will have been
6705 ** copied either into the body of a database page or into the new
6706 ** pSpace buffer passed to the latter call to balance_nonroot().
6707 */
6708 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006709 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006710 if( pFree ){
6711 /* If pFree is not NULL, it points to the pSpace buffer used
6712 ** by a previous call to balance_nonroot(). Its contents are
6713 ** now stored either on real database pages or within the
6714 ** new pSpace buffer, so it may be safely freed here. */
6715 sqlite3PageFree(pFree);
6716 }
6717
danielk19774dbaa892009-06-16 16:50:22 +00006718 /* The pSpace buffer will be freed after the next call to
6719 ** balance_nonroot(), or just before this function returns, whichever
6720 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006721 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006722 }
6723 }
6724
6725 pPage->nOverflow = 0;
6726
6727 /* The next iteration of the do-loop balances the parent page. */
6728 releasePage(pPage);
6729 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006730 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006731 }while( rc==SQLITE_OK );
6732
6733 if( pFree ){
6734 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006735 }
6736 return rc;
6737}
6738
drhf74b8d92002-09-01 23:20:45 +00006739
6740/*
drh3b7511c2001-05-26 13:15:44 +00006741** Insert a new record into the BTree. The key is given by (pKey,nKey)
6742** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006743** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006744** is left pointing at a random location.
6745**
6746** For an INTKEY table, only the nKey value of the key is used. pKey is
6747** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006748**
6749** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006750** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006751** been performed. seekResult is the search result returned (a negative
6752** number if pCur points at an entry that is smaller than (pKey, nKey), or
6753** a positive value if pCur points at an etry that is larger than
6754** (pKey, nKey)).
6755**
drh3e9ca092009-09-08 01:14:48 +00006756** If the seekResult parameter is non-zero, then the caller guarantees that
6757** cursor pCur is pointing at the existing copy of a row that is to be
6758** overwritten. If the seekResult parameter is 0, then cursor pCur may
6759** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006760** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006761*/
drh3aac2dd2004-04-26 14:10:20 +00006762int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006763 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006764 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006765 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006766 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006767 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006768 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006769){
drh3b7511c2001-05-26 13:15:44 +00006770 int rc;
drh3e9ca092009-09-08 01:14:48 +00006771 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006772 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006773 int idx;
drh3b7511c2001-05-26 13:15:44 +00006774 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006775 Btree *p = pCur->pBtree;
6776 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006777 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006778 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006779
drh98add2e2009-07-20 17:11:49 +00006780 if( pCur->eState==CURSOR_FAULT ){
6781 assert( pCur->skipNext!=SQLITE_OK );
6782 return pCur->skipNext;
6783 }
6784
drh1fee73e2007-08-29 04:00:57 +00006785 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006786 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6787 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006788 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6789
danielk197731d31b82009-07-13 13:18:07 +00006790 /* Assert that the caller has been consistent. If this cursor was opened
6791 ** expecting an index b-tree, then the caller should be inserting blob
6792 ** keys with no associated data. If the cursor was opened expecting an
6793 ** intkey table, the caller should be inserting integer keys with a
6794 ** blob of associated data. */
6795 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6796
danielk19779c3acf32009-05-02 07:36:49 +00006797 /* Save the positions of any other cursors open on this table.
6798 **
danielk19773509a652009-07-06 18:56:13 +00006799 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006800 ** example, when inserting data into a table with auto-generated integer
6801 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6802 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006803 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006804 ** that the cursor is already where it needs to be and returns without
6805 ** doing any work. To avoid thwarting these optimizations, it is important
6806 ** not to clear the cursor here.
6807 */
drh4c301aa2009-07-15 17:25:45 +00006808 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6809 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006810
6811 /* If this is an insert into a table b-tree, invalidate any incrblob
6812 ** cursors open on the row being replaced (assuming this is a replace
6813 ** operation - if it is not, the following is a no-op). */
6814 if( pCur->pKeyInfo==0 ){
6815 invalidateIncrblobCursors(p, nKey, 0);
6816 }
6817
drh4c301aa2009-07-15 17:25:45 +00006818 if( !loc ){
6819 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6820 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006821 }
danielk1977b980d2212009-06-22 18:03:51 +00006822 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006823
danielk197771d5d2c2008-09-29 11:49:47 +00006824 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006825 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006826 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006827
drh3a4c1412004-05-09 20:40:11 +00006828 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6829 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6830 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006831 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006832 allocateTempSpace(pBt);
6833 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006834 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006835 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006836 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006837 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006838 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006839 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006840 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006841 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006842 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006843 rc = sqlite3PagerWrite(pPage->pDbPage);
6844 if( rc ){
6845 goto end_insert;
6846 }
danielk197771d5d2c2008-09-29 11:49:47 +00006847 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006848 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006849 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006850 }
drh43605152004-05-29 21:46:49 +00006851 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006852 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006853 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006854 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006855 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006856 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006857 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006858 }else{
drh4b70f112004-05-02 21:12:19 +00006859 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006860 }
drh98add2e2009-07-20 17:11:49 +00006861 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006862 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006863
danielk1977a50d9aa2009-06-08 14:49:45 +00006864 /* If no error has occured and pPage has an overflow cell, call balance()
6865 ** to redistribute the cells within the tree. Since balance() may move
6866 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6867 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006868 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006869 ** Previous versions of SQLite called moveToRoot() to move the cursor
6870 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006871 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6872 ** set the cursor state to "invalid". This makes common insert operations
6873 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006874 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006875 ** There is a subtle but important optimization here too. When inserting
6876 ** multiple records into an intkey b-tree using a single cursor (as can
6877 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6878 ** is advantageous to leave the cursor pointing to the last entry in
6879 ** the b-tree if possible. If the cursor is left pointing to the last
6880 ** entry in the table, and the next row inserted has an integer key
6881 ** larger than the largest existing key, it is possible to insert the
6882 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006883 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006884 pCur->info.nSize = 0;
6885 pCur->validNKey = 0;
6886 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006887 rc = balance(pCur);
6888
6889 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006890 ** fails. Internal data structure corruption will result otherwise.
6891 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6892 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006893 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006894 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006895 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006896 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006897
drh2e38c322004-09-03 18:38:44 +00006898end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006899 return rc;
6900}
6901
6902/*
drh4b70f112004-05-02 21:12:19 +00006903** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006904** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006905*/
drh3aac2dd2004-04-26 14:10:20 +00006906int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006907 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006908 BtShared *pBt = p->pBt;
6909 int rc; /* Return code */
6910 MemPage *pPage; /* Page to delete cell from */
6911 unsigned char *pCell; /* Pointer to cell to delete */
6912 int iCellIdx; /* Index of cell to delete */
6913 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006914
drh1fee73e2007-08-29 04:00:57 +00006915 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006916 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00006917 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00006918 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006919 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6920 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6921
danielk19774dbaa892009-06-16 16:50:22 +00006922 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6923 || NEVER(pCur->eState!=CURSOR_VALID)
6924 ){
6925 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006926 }
danielk1977da184232006-01-05 11:34:32 +00006927
danielk19774dbaa892009-06-16 16:50:22 +00006928 iCellDepth = pCur->iPage;
6929 iCellIdx = pCur->aiIdx[iCellDepth];
6930 pPage = pCur->apPage[iCellDepth];
6931 pCell = findCell(pPage, iCellIdx);
6932
6933 /* If the page containing the entry to delete is not a leaf page, move
6934 ** the cursor to the largest entry in the tree that is smaller than
6935 ** the entry being deleted. This cell will replace the cell being deleted
6936 ** from the internal node. The 'previous' entry is used for this instead
6937 ** of the 'next' entry, as the previous entry is always a part of the
6938 ** sub-tree headed by the child page of the cell being deleted. This makes
6939 ** balancing the tree following the delete operation easier. */
6940 if( !pPage->leaf ){
6941 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006942 rc = sqlite3BtreePrevious(pCur, &notUsed);
6943 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006944 }
6945
6946 /* Save the positions of any other cursors open on this table before
6947 ** making any modifications. Make the page containing the entry to be
6948 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006949 ** entry and finally remove the cell itself from within the page.
6950 */
6951 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6952 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006953
6954 /* If this is a delete operation to remove a row from a table b-tree,
6955 ** invalidate any incrblob cursors open on the row being deleted. */
6956 if( pCur->pKeyInfo==0 ){
6957 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
6958 }
6959
drha4ec1d42009-07-11 13:13:11 +00006960 rc = sqlite3PagerWrite(pPage->pDbPage);
6961 if( rc ) return rc;
6962 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006963 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006964 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006965
danielk19774dbaa892009-06-16 16:50:22 +00006966 /* If the cell deleted was not located on a leaf page, then the cursor
6967 ** is currently pointing to the largest entry in the sub-tree headed
6968 ** by the child-page of the cell that was just deleted from an internal
6969 ** node. The cell from the leaf node needs to be moved to the internal
6970 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006971 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006972 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6973 int nCell;
6974 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6975 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006976
danielk19774dbaa892009-06-16 16:50:22 +00006977 pCell = findCell(pLeaf, pLeaf->nCell-1);
6978 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00006979 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006980
danielk19774dbaa892009-06-16 16:50:22 +00006981 allocateTempSpace(pBt);
6982 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006983
drha4ec1d42009-07-11 13:13:11 +00006984 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006985 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6986 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006987 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006988 }
danielk19774dbaa892009-06-16 16:50:22 +00006989
6990 /* Balance the tree. If the entry deleted was located on a leaf page,
6991 ** then the cursor still points to that page. In this case the first
6992 ** call to balance() repairs the tree, and the if(...) condition is
6993 ** never true.
6994 **
6995 ** Otherwise, if the entry deleted was on an internal node page, then
6996 ** pCur is pointing to the leaf page from which a cell was removed to
6997 ** replace the cell deleted from the internal node. This is slightly
6998 ** tricky as the leaf node may be underfull, and the internal node may
6999 ** be either under or overfull. In this case run the balancing algorithm
7000 ** on the leaf node first. If the balance proceeds far enough up the
7001 ** tree that we can be sure that any problem in the internal node has
7002 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7003 ** walk the cursor up the tree to the internal node and balance it as
7004 ** well. */
7005 rc = balance(pCur);
7006 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7007 while( pCur->iPage>iCellDepth ){
7008 releasePage(pCur->apPage[pCur->iPage--]);
7009 }
7010 rc = balance(pCur);
7011 }
7012
danielk19776b456a22005-03-21 04:04:02 +00007013 if( rc==SQLITE_OK ){
7014 moveToRoot(pCur);
7015 }
drh5e2f8b92001-05-28 00:41:15 +00007016 return rc;
drh3b7511c2001-05-26 13:15:44 +00007017}
drh8b2f49b2001-06-08 00:21:52 +00007018
7019/*
drhc6b52df2002-01-04 03:09:29 +00007020** Create a new BTree table. Write into *piTable the page
7021** number for the root page of the new table.
7022**
drhab01f612004-05-22 02:55:23 +00007023** The type of type is determined by the flags parameter. Only the
7024** following values of flags are currently in use. Other values for
7025** flags might not work:
7026**
7027** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7028** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007029*/
drhd4187c72010-08-30 22:15:45 +00007030static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007031 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007032 MemPage *pRoot;
7033 Pgno pgnoRoot;
7034 int rc;
drhd4187c72010-08-30 22:15:45 +00007035 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007036
drh1fee73e2007-08-29 04:00:57 +00007037 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007038 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007039 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007040
danielk1977003ba062004-11-04 02:57:33 +00007041#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007042 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007043 if( rc ){
7044 return rc;
7045 }
danielk1977003ba062004-11-04 02:57:33 +00007046#else
danielk1977687566d2004-11-02 12:56:41 +00007047 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007048 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7049 MemPage *pPageMove; /* The page to move to. */
7050
danielk197720713f32007-05-03 11:43:33 +00007051 /* Creating a new table may probably require moving an existing database
7052 ** to make room for the new tables root page. In case this page turns
7053 ** out to be an overflow page, delete all overflow page-map caches
7054 ** held by open cursors.
7055 */
danielk197792d4d7a2007-05-04 12:05:56 +00007056 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007057
danielk1977003ba062004-11-04 02:57:33 +00007058 /* Read the value of meta[3] from the database to determine where the
7059 ** root page of the new table should go. meta[3] is the largest root-page
7060 ** created so far, so the new root-page is (meta[3]+1).
7061 */
danielk1977602b4662009-07-02 07:47:33 +00007062 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007063 pgnoRoot++;
7064
danielk1977599fcba2004-11-08 07:13:13 +00007065 /* The new root-page may not be allocated on a pointer-map page, or the
7066 ** PENDING_BYTE page.
7067 */
drh72190432008-01-31 14:54:43 +00007068 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007069 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007070 pgnoRoot++;
7071 }
7072 assert( pgnoRoot>=3 );
7073
7074 /* Allocate a page. The page that currently resides at pgnoRoot will
7075 ** be moved to the allocated page (unless the allocated page happens
7076 ** to reside at pgnoRoot).
7077 */
drh4f0c5872007-03-26 22:05:01 +00007078 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00007079 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007080 return rc;
7081 }
danielk1977003ba062004-11-04 02:57:33 +00007082
7083 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007084 /* pgnoRoot is the page that will be used for the root-page of
7085 ** the new table (assuming an error did not occur). But we were
7086 ** allocated pgnoMove. If required (i.e. if it was not allocated
7087 ** by extending the file), the current page at position pgnoMove
7088 ** is already journaled.
7089 */
drheeb844a2009-08-08 18:01:07 +00007090 u8 eType = 0;
7091 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007092
7093 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007094
7095 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007096 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007097 if( rc!=SQLITE_OK ){
7098 return rc;
7099 }
7100 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007101 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7102 rc = SQLITE_CORRUPT_BKPT;
7103 }
7104 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007105 releasePage(pRoot);
7106 return rc;
7107 }
drhccae6022005-02-26 17:31:26 +00007108 assert( eType!=PTRMAP_ROOTPAGE );
7109 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007110 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007111 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007112
7113 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007114 if( rc!=SQLITE_OK ){
7115 return rc;
7116 }
danielk197730548662009-07-09 05:07:37 +00007117 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007118 if( rc!=SQLITE_OK ){
7119 return rc;
7120 }
danielk19773b8a05f2007-03-19 17:44:26 +00007121 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007122 if( rc!=SQLITE_OK ){
7123 releasePage(pRoot);
7124 return rc;
7125 }
7126 }else{
7127 pRoot = pPageMove;
7128 }
7129
danielk197742741be2005-01-08 12:42:39 +00007130 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007131 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007132 if( rc ){
7133 releasePage(pRoot);
7134 return rc;
7135 }
drhbf592832010-03-30 15:51:12 +00007136
7137 /* When the new root page was allocated, page 1 was made writable in
7138 ** order either to increase the database filesize, or to decrement the
7139 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7140 */
7141 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007142 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007143 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007144 releasePage(pRoot);
7145 return rc;
7146 }
danielk197742741be2005-01-08 12:42:39 +00007147
danielk1977003ba062004-11-04 02:57:33 +00007148 }else{
drh4f0c5872007-03-26 22:05:01 +00007149 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007150 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007151 }
7152#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007153 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007154 if( createTabFlags & BTREE_INTKEY ){
7155 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7156 }else{
7157 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7158 }
7159 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007160 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007161 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007162 *piTable = (int)pgnoRoot;
7163 return SQLITE_OK;
7164}
drhd677b3d2007-08-20 22:48:41 +00007165int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7166 int rc;
7167 sqlite3BtreeEnter(p);
7168 rc = btreeCreateTable(p, piTable, flags);
7169 sqlite3BtreeLeave(p);
7170 return rc;
7171}
drh8b2f49b2001-06-08 00:21:52 +00007172
7173/*
7174** Erase the given database page and all its children. Return
7175** the page to the freelist.
7176*/
drh4b70f112004-05-02 21:12:19 +00007177static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007178 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007179 Pgno pgno, /* Page number to clear */
7180 int freePageFlag, /* Deallocate page if true */
7181 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007182){
danielk1977146ba992009-07-22 14:08:13 +00007183 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007184 int rc;
drh4b70f112004-05-02 21:12:19 +00007185 unsigned char *pCell;
7186 int i;
drh8b2f49b2001-06-08 00:21:52 +00007187
drh1fee73e2007-08-29 04:00:57 +00007188 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007189 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007190 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007191 }
7192
danielk197771d5d2c2008-09-29 11:49:47 +00007193 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007194 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007195 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007196 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007197 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007198 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007199 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007200 }
drh4b70f112004-05-02 21:12:19 +00007201 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007202 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007203 }
drha34b6762004-05-07 13:30:42 +00007204 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007205 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007206 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007207 }else if( pnChange ){
7208 assert( pPage->intKey );
7209 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007210 }
7211 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007212 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007213 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007214 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007215 }
danielk19776b456a22005-03-21 04:04:02 +00007216
7217cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007218 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007219 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007220}
7221
7222/*
drhab01f612004-05-22 02:55:23 +00007223** Delete all information from a single table in the database. iTable is
7224** the page number of the root of the table. After this routine returns,
7225** the root page is empty, but still exists.
7226**
7227** This routine will fail with SQLITE_LOCKED if there are any open
7228** read cursors on the table. Open write cursors are moved to the
7229** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007230**
7231** If pnChange is not NULL, then table iTable must be an intkey table. The
7232** integer value pointed to by pnChange is incremented by the number of
7233** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007234*/
danielk1977c7af4842008-10-27 13:59:33 +00007235int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007236 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007237 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007238 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007239 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007240
drhc046e3e2009-07-15 11:26:44 +00007241 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007242
drhc046e3e2009-07-15 11:26:44 +00007243 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007244 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7245 ** is the root of a table b-tree - if it is not, the following call is
7246 ** a no-op). */
7247 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007248 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007249 }
drhd677b3d2007-08-20 22:48:41 +00007250 sqlite3BtreeLeave(p);
7251 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007252}
7253
7254/*
7255** Erase all information in a table and add the root of the table to
7256** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007257** page 1) is never added to the freelist.
7258**
7259** This routine will fail with SQLITE_LOCKED if there are any open
7260** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007261**
7262** If AUTOVACUUM is enabled and the page at iTable is not the last
7263** root page in the database file, then the last root page
7264** in the database file is moved into the slot formerly occupied by
7265** iTable and that last slot formerly occupied by the last root page
7266** is added to the freelist instead of iTable. In this say, all
7267** root pages are kept at the beginning of the database file, which
7268** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7269** page number that used to be the last root page in the file before
7270** the move. If no page gets moved, *piMoved is set to 0.
7271** The last root page is recorded in meta[3] and the value of
7272** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007273*/
danielk197789d40042008-11-17 14:20:56 +00007274static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007275 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007276 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007277 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007278
drh1fee73e2007-08-29 04:00:57 +00007279 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007280 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007281
danielk1977e6efa742004-11-10 11:55:10 +00007282 /* It is illegal to drop a table if any cursors are open on the
7283 ** database. This is because in auto-vacuum mode the backend may
7284 ** need to move another root-page to fill a gap left by the deleted
7285 ** root page. If an open cursor was using this page a problem would
7286 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007287 **
7288 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007289 */
drhc046e3e2009-07-15 11:26:44 +00007290 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007291 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7292 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007293 }
danielk1977a0bf2652004-11-04 14:30:04 +00007294
danielk197730548662009-07-09 05:07:37 +00007295 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007296 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007297 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007298 if( rc ){
7299 releasePage(pPage);
7300 return rc;
7301 }
danielk1977a0bf2652004-11-04 14:30:04 +00007302
drh205f48e2004-11-05 00:43:11 +00007303 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007304
drh4b70f112004-05-02 21:12:19 +00007305 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007306#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007307 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007308 releasePage(pPage);
7309#else
7310 if( pBt->autoVacuum ){
7311 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007312 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007313
7314 if( iTable==maxRootPgno ){
7315 /* If the table being dropped is the table with the largest root-page
7316 ** number in the database, put the root page on the free list.
7317 */
drhc314dc72009-07-21 11:52:34 +00007318 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007319 releasePage(pPage);
7320 if( rc!=SQLITE_OK ){
7321 return rc;
7322 }
7323 }else{
7324 /* The table being dropped does not have the largest root-page
7325 ** number in the database. So move the page that does into the
7326 ** gap left by the deleted root-page.
7327 */
7328 MemPage *pMove;
7329 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007330 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007331 if( rc!=SQLITE_OK ){
7332 return rc;
7333 }
danielk19774c999992008-07-16 18:17:55 +00007334 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007335 releasePage(pMove);
7336 if( rc!=SQLITE_OK ){
7337 return rc;
7338 }
drhfe3313f2009-07-21 19:02:20 +00007339 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007340 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007341 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007342 releasePage(pMove);
7343 if( rc!=SQLITE_OK ){
7344 return rc;
7345 }
7346 *piMoved = maxRootPgno;
7347 }
7348
danielk1977599fcba2004-11-08 07:13:13 +00007349 /* Set the new 'max-root-page' value in the database header. This
7350 ** is the old value less one, less one more if that happens to
7351 ** be a root-page number, less one again if that is the
7352 ** PENDING_BYTE_PAGE.
7353 */
danielk197787a6e732004-11-05 12:58:25 +00007354 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007355 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7356 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007357 maxRootPgno--;
7358 }
danielk1977599fcba2004-11-08 07:13:13 +00007359 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7360
danielk1977aef0bf62005-12-30 16:28:01 +00007361 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007362 }else{
drhc314dc72009-07-21 11:52:34 +00007363 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007364 releasePage(pPage);
7365 }
7366#endif
drh2aa679f2001-06-25 02:11:07 +00007367 }else{
drhc046e3e2009-07-15 11:26:44 +00007368 /* If sqlite3BtreeDropTable was called on page 1.
7369 ** This really never should happen except in a corrupt
7370 ** database.
7371 */
drha34b6762004-05-07 13:30:42 +00007372 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007373 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007374 }
drh8b2f49b2001-06-08 00:21:52 +00007375 return rc;
7376}
drhd677b3d2007-08-20 22:48:41 +00007377int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7378 int rc;
7379 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007380 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007381 sqlite3BtreeLeave(p);
7382 return rc;
7383}
drh8b2f49b2001-06-08 00:21:52 +00007384
drh001bbcb2003-03-19 03:14:00 +00007385
drh8b2f49b2001-06-08 00:21:52 +00007386/*
danielk1977602b4662009-07-02 07:47:33 +00007387** This function may only be called if the b-tree connection already
7388** has a read or write transaction open on the database.
7389**
drh23e11ca2004-05-04 17:27:28 +00007390** Read the meta-information out of a database file. Meta[0]
7391** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007392** through meta[15] are available for use by higher layers. Meta[0]
7393** is read-only, the others are read/write.
7394**
7395** The schema layer numbers meta values differently. At the schema
7396** layer (and the SetCookie and ReadCookie opcodes) the number of
7397** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007398*/
danielk1977602b4662009-07-02 07:47:33 +00007399void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007400 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007401
drhd677b3d2007-08-20 22:48:41 +00007402 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007403 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007404 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007405 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007406 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007407
danielk1977602b4662009-07-02 07:47:33 +00007408 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007409
danielk1977602b4662009-07-02 07:47:33 +00007410 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7411 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007412#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007413 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7414 pBt->btsFlags |= BTS_READ_ONLY;
7415 }
danielk1977003ba062004-11-04 02:57:33 +00007416#endif
drhae157872004-08-14 19:20:09 +00007417
drhd677b3d2007-08-20 22:48:41 +00007418 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007419}
7420
7421/*
drh23e11ca2004-05-04 17:27:28 +00007422** Write meta-information back into the database. Meta[0] is
7423** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007424*/
danielk1977aef0bf62005-12-30 16:28:01 +00007425int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7426 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007427 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007428 int rc;
drh23e11ca2004-05-04 17:27:28 +00007429 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007430 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007431 assert( p->inTrans==TRANS_WRITE );
7432 assert( pBt->pPage1!=0 );
7433 pP1 = pBt->pPage1->aData;
7434 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7435 if( rc==SQLITE_OK ){
7436 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007437#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007438 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007439 assert( pBt->autoVacuum || iMeta==0 );
7440 assert( iMeta==0 || iMeta==1 );
7441 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007442 }
drh64022502009-01-09 14:11:04 +00007443#endif
drh5df72a52002-06-06 23:16:05 +00007444 }
drhd677b3d2007-08-20 22:48:41 +00007445 sqlite3BtreeLeave(p);
7446 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007447}
drh8c42ca92001-06-22 19:15:00 +00007448
danielk1977a5533162009-02-24 10:01:51 +00007449#ifndef SQLITE_OMIT_BTREECOUNT
7450/*
7451** The first argument, pCur, is a cursor opened on some b-tree. Count the
7452** number of entries in the b-tree and write the result to *pnEntry.
7453**
7454** SQLITE_OK is returned if the operation is successfully executed.
7455** Otherwise, if an error is encountered (i.e. an IO error or database
7456** corruption) an SQLite error code is returned.
7457*/
7458int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7459 i64 nEntry = 0; /* Value to return in *pnEntry */
7460 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007461
7462 if( pCur->pgnoRoot==0 ){
7463 *pnEntry = 0;
7464 return SQLITE_OK;
7465 }
danielk1977a5533162009-02-24 10:01:51 +00007466 rc = moveToRoot(pCur);
7467
7468 /* Unless an error occurs, the following loop runs one iteration for each
7469 ** page in the B-Tree structure (not including overflow pages).
7470 */
7471 while( rc==SQLITE_OK ){
7472 int iIdx; /* Index of child node in parent */
7473 MemPage *pPage; /* Current page of the b-tree */
7474
7475 /* If this is a leaf page or the tree is not an int-key tree, then
7476 ** this page contains countable entries. Increment the entry counter
7477 ** accordingly.
7478 */
7479 pPage = pCur->apPage[pCur->iPage];
7480 if( pPage->leaf || !pPage->intKey ){
7481 nEntry += pPage->nCell;
7482 }
7483
7484 /* pPage is a leaf node. This loop navigates the cursor so that it
7485 ** points to the first interior cell that it points to the parent of
7486 ** the next page in the tree that has not yet been visited. The
7487 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7488 ** of the page, or to the number of cells in the page if the next page
7489 ** to visit is the right-child of its parent.
7490 **
7491 ** If all pages in the tree have been visited, return SQLITE_OK to the
7492 ** caller.
7493 */
7494 if( pPage->leaf ){
7495 do {
7496 if( pCur->iPage==0 ){
7497 /* All pages of the b-tree have been visited. Return successfully. */
7498 *pnEntry = nEntry;
7499 return SQLITE_OK;
7500 }
danielk197730548662009-07-09 05:07:37 +00007501 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007502 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7503
7504 pCur->aiIdx[pCur->iPage]++;
7505 pPage = pCur->apPage[pCur->iPage];
7506 }
7507
7508 /* Descend to the child node of the cell that the cursor currently
7509 ** points at. This is the right-child if (iIdx==pPage->nCell).
7510 */
7511 iIdx = pCur->aiIdx[pCur->iPage];
7512 if( iIdx==pPage->nCell ){
7513 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7514 }else{
7515 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7516 }
7517 }
7518
shanebe217792009-03-05 04:20:31 +00007519 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007520 return rc;
7521}
7522#endif
drhdd793422001-06-28 01:54:48 +00007523
drhdd793422001-06-28 01:54:48 +00007524/*
drh5eddca62001-06-30 21:53:53 +00007525** Return the pager associated with a BTree. This routine is used for
7526** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007527*/
danielk1977aef0bf62005-12-30 16:28:01 +00007528Pager *sqlite3BtreePager(Btree *p){
7529 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007530}
drh5eddca62001-06-30 21:53:53 +00007531
drhb7f91642004-10-31 02:22:47 +00007532#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007533/*
7534** Append a message to the error message string.
7535*/
drh2e38c322004-09-03 18:38:44 +00007536static void checkAppendMsg(
7537 IntegrityCk *pCheck,
7538 char *zMsg1,
7539 const char *zFormat,
7540 ...
7541){
7542 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007543 if( !pCheck->mxErr ) return;
7544 pCheck->mxErr--;
7545 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007546 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007547 if( pCheck->errMsg.nChar ){
7548 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007549 }
drhf089aa42008-07-08 19:34:06 +00007550 if( zMsg1 ){
7551 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7552 }
7553 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7554 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007555 if( pCheck->errMsg.mallocFailed ){
7556 pCheck->mallocFailed = 1;
7557 }
drh5eddca62001-06-30 21:53:53 +00007558}
drhb7f91642004-10-31 02:22:47 +00007559#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007560
drhb7f91642004-10-31 02:22:47 +00007561#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007562
7563/*
7564** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7565** corresponds to page iPg is already set.
7566*/
7567static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7568 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7569 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7570}
7571
7572/*
7573** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7574*/
7575static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7576 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7577 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7578}
7579
7580
drh5eddca62001-06-30 21:53:53 +00007581/*
7582** Add 1 to the reference count for page iPage. If this is the second
7583** reference to the page, add an error message to pCheck->zErrMsg.
7584** Return 1 if there are 2 ore more references to the page and 0 if
7585** if this is the first reference to the page.
7586**
7587** Also check that the page number is in bounds.
7588*/
danielk197789d40042008-11-17 14:20:56 +00007589static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007590 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007591 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007592 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007593 return 1;
7594 }
dan1235bb12012-04-03 17:43:28 +00007595 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007596 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007597 return 1;
7598 }
dan1235bb12012-04-03 17:43:28 +00007599 setPageReferenced(pCheck, iPage);
7600 return 0;
drh5eddca62001-06-30 21:53:53 +00007601}
7602
danielk1977afcdd022004-10-31 16:25:42 +00007603#ifndef SQLITE_OMIT_AUTOVACUUM
7604/*
7605** Check that the entry in the pointer-map for page iChild maps to
7606** page iParent, pointer type ptrType. If not, append an error message
7607** to pCheck.
7608*/
7609static void checkPtrmap(
7610 IntegrityCk *pCheck, /* Integrity check context */
7611 Pgno iChild, /* Child page number */
7612 u8 eType, /* Expected pointer map type */
7613 Pgno iParent, /* Expected pointer map parent page number */
7614 char *zContext /* Context description (used for error msg) */
7615){
7616 int rc;
7617 u8 ePtrmapType;
7618 Pgno iPtrmapParent;
7619
7620 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7621 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007622 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007623 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7624 return;
7625 }
7626
7627 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7628 checkAppendMsg(pCheck, zContext,
7629 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7630 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7631 }
7632}
7633#endif
7634
drh5eddca62001-06-30 21:53:53 +00007635/*
7636** Check the integrity of the freelist or of an overflow page list.
7637** Verify that the number of pages on the list is N.
7638*/
drh30e58752002-03-02 20:41:57 +00007639static void checkList(
7640 IntegrityCk *pCheck, /* Integrity checking context */
7641 int isFreeList, /* True for a freelist. False for overflow page list */
7642 int iPage, /* Page number for first page in the list */
7643 int N, /* Expected number of pages in the list */
7644 char *zContext /* Context for error messages */
7645){
7646 int i;
drh3a4c1412004-05-09 20:40:11 +00007647 int expected = N;
7648 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007649 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007650 DbPage *pOvflPage;
7651 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007652 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007653 checkAppendMsg(pCheck, zContext,
7654 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007655 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007656 break;
7657 }
7658 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007659 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007660 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007661 break;
7662 }
danielk19773b8a05f2007-03-19 17:44:26 +00007663 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007664 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007665 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007666#ifndef SQLITE_OMIT_AUTOVACUUM
7667 if( pCheck->pBt->autoVacuum ){
7668 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7669 }
7670#endif
drh43b18e12010-08-17 19:40:08 +00007671 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007672 checkAppendMsg(pCheck, zContext,
7673 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007674 N--;
7675 }else{
7676 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007677 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007678#ifndef SQLITE_OMIT_AUTOVACUUM
7679 if( pCheck->pBt->autoVacuum ){
7680 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7681 }
7682#endif
7683 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007684 }
7685 N -= n;
drh30e58752002-03-02 20:41:57 +00007686 }
drh30e58752002-03-02 20:41:57 +00007687 }
danielk1977afcdd022004-10-31 16:25:42 +00007688#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007689 else{
7690 /* If this database supports auto-vacuum and iPage is not the last
7691 ** page in this overflow list, check that the pointer-map entry for
7692 ** the following page matches iPage.
7693 */
7694 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007695 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007696 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7697 }
danielk1977afcdd022004-10-31 16:25:42 +00007698 }
7699#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007700 iPage = get4byte(pOvflData);
7701 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007702 }
7703}
drhb7f91642004-10-31 02:22:47 +00007704#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007705
drhb7f91642004-10-31 02:22:47 +00007706#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007707/*
7708** Do various sanity checks on a single page of a tree. Return
7709** the tree depth. Root pages return 0. Parents of root pages
7710** return 1, and so forth.
7711**
7712** These checks are done:
7713**
7714** 1. Make sure that cells and freeblocks do not overlap
7715** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007716** NO 2. Make sure cell keys are in order.
7717** NO 3. Make sure no key is less than or equal to zLowerBound.
7718** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007719** 5. Check the integrity of overflow pages.
7720** 6. Recursively call checkTreePage on all children.
7721** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007722** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007723** the root of the tree.
7724*/
7725static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007726 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007727 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007728 char *zParentContext, /* Parent context */
7729 i64 *pnParentMinKey,
7730 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007731){
7732 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007733 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007734 int hdr, cellStart;
7735 int nCell;
drhda200cc2004-05-09 11:51:38 +00007736 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007737 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007738 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007739 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007740 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007741 i64 nMinKey = 0;
7742 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007743
drh5bb3eb92007-05-04 13:15:55 +00007744 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007745
drh5eddca62001-06-30 21:53:53 +00007746 /* Check that the page exists
7747 */
drhd9cb6ac2005-10-20 07:28:17 +00007748 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007749 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007750 if( iPage==0 ) return 0;
7751 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007752 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007753 checkAppendMsg(pCheck, zContext,
7754 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007755 return 0;
7756 }
danielk197793caf5a2009-07-11 06:55:33 +00007757
7758 /* Clear MemPage.isInit to make sure the corruption detection code in
7759 ** btreeInitPage() is executed. */
7760 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007761 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007762 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007763 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007764 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007765 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007766 return 0;
7767 }
7768
7769 /* Check out all the cells.
7770 */
7771 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007772 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007773 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007774 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007775 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007776
7777 /* Check payload overflow pages
7778 */
drh5bb3eb92007-05-04 13:15:55 +00007779 sqlite3_snprintf(sizeof(zContext), zContext,
7780 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007781 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007782 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007783 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007784 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007785 /* For intKey pages, check that the keys are in order.
7786 */
7787 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7788 else{
7789 if( info.nKey <= nMaxKey ){
7790 checkAppendMsg(pCheck, zContext,
7791 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7792 }
7793 nMaxKey = info.nKey;
7794 }
drh72365832007-03-06 15:53:44 +00007795 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007796 if( (sz>info.nLocal)
7797 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7798 ){
drhb6f41482004-05-14 01:58:11 +00007799 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007800 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7801#ifndef SQLITE_OMIT_AUTOVACUUM
7802 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007803 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007804 }
7805#endif
7806 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007807 }
7808
7809 /* Check sanity of left child page.
7810 */
drhda200cc2004-05-09 11:51:38 +00007811 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007812 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007813#ifndef SQLITE_OMIT_AUTOVACUUM
7814 if( pBt->autoVacuum ){
7815 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7816 }
7817#endif
shaneh195475d2010-02-19 04:28:08 +00007818 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007819 if( i>0 && d2!=depth ){
7820 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7821 }
7822 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007823 }
drh5eddca62001-06-30 21:53:53 +00007824 }
shaneh195475d2010-02-19 04:28:08 +00007825
drhda200cc2004-05-09 11:51:38 +00007826 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007827 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007828 sqlite3_snprintf(sizeof(zContext), zContext,
7829 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007830#ifndef SQLITE_OMIT_AUTOVACUUM
7831 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007832 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007833 }
7834#endif
shaneh195475d2010-02-19 04:28:08 +00007835 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007836 }
drh5eddca62001-06-30 21:53:53 +00007837
shaneh195475d2010-02-19 04:28:08 +00007838 /* For intKey leaf pages, check that the min/max keys are in order
7839 ** with any left/parent/right pages.
7840 */
7841 if( pPage->leaf && pPage->intKey ){
7842 /* if we are a left child page */
7843 if( pnParentMinKey ){
7844 /* if we are the left most child page */
7845 if( !pnParentMaxKey ){
7846 if( nMaxKey > *pnParentMinKey ){
7847 checkAppendMsg(pCheck, zContext,
7848 "Rowid %lld out of order (max larger than parent min of %lld)",
7849 nMaxKey, *pnParentMinKey);
7850 }
7851 }else{
7852 if( nMinKey <= *pnParentMinKey ){
7853 checkAppendMsg(pCheck, zContext,
7854 "Rowid %lld out of order (min less than parent min of %lld)",
7855 nMinKey, *pnParentMinKey);
7856 }
7857 if( nMaxKey > *pnParentMaxKey ){
7858 checkAppendMsg(pCheck, zContext,
7859 "Rowid %lld out of order (max larger than parent max of %lld)",
7860 nMaxKey, *pnParentMaxKey);
7861 }
7862 *pnParentMinKey = nMaxKey;
7863 }
7864 /* else if we're a right child page */
7865 } else if( pnParentMaxKey ){
7866 if( nMinKey <= *pnParentMaxKey ){
7867 checkAppendMsg(pCheck, zContext,
7868 "Rowid %lld out of order (min less than parent max of %lld)",
7869 nMinKey, *pnParentMaxKey);
7870 }
7871 }
7872 }
7873
drh5eddca62001-06-30 21:53:53 +00007874 /* Check for complete coverage of the page
7875 */
drhda200cc2004-05-09 11:51:38 +00007876 data = pPage->aData;
7877 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007878 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007879 if( hit==0 ){
7880 pCheck->mallocFailed = 1;
7881 }else{
drh5d433ce2010-08-14 16:02:52 +00007882 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007883 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007884 memset(hit+contentOffset, 0, usableSize-contentOffset);
7885 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007886 nCell = get2byte(&data[hdr+3]);
7887 cellStart = hdr + 12 - 4*pPage->leaf;
7888 for(i=0; i<nCell; i++){
7889 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007890 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007891 int j;
drh8c2bbb62009-07-10 02:52:20 +00007892 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007893 size = cellSizePtr(pPage, &data[pc]);
7894 }
drh43b18e12010-08-17 19:40:08 +00007895 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007896 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007897 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007898 }else{
7899 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7900 }
drh2e38c322004-09-03 18:38:44 +00007901 }
drh8c2bbb62009-07-10 02:52:20 +00007902 i = get2byte(&data[hdr+1]);
7903 while( i>0 ){
7904 int size, j;
7905 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7906 size = get2byte(&data[i+2]);
7907 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7908 for(j=i+size-1; j>=i; j--) hit[j]++;
7909 j = get2byte(&data[i]);
7910 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7911 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7912 i = j;
drh2e38c322004-09-03 18:38:44 +00007913 }
7914 for(i=cnt=0; i<usableSize; i++){
7915 if( hit[i]==0 ){
7916 cnt++;
7917 }else if( hit[i]>1 ){
7918 checkAppendMsg(pCheck, 0,
7919 "Multiple uses for byte %d of page %d", i, iPage);
7920 break;
7921 }
7922 }
7923 if( cnt!=data[hdr+7] ){
7924 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007925 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007926 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007927 }
7928 }
drh8c2bbb62009-07-10 02:52:20 +00007929 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007930 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007931 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007932}
drhb7f91642004-10-31 02:22:47 +00007933#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007934
drhb7f91642004-10-31 02:22:47 +00007935#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007936/*
7937** This routine does a complete check of the given BTree file. aRoot[] is
7938** an array of pages numbers were each page number is the root page of
7939** a table. nRoot is the number of entries in aRoot.
7940**
danielk19773509a652009-07-06 18:56:13 +00007941** A read-only or read-write transaction must be opened before calling
7942** this function.
7943**
drhc890fec2008-08-01 20:10:08 +00007944** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007945** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007946** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007947** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007948*/
drh1dcdbc02007-01-27 02:24:54 +00007949char *sqlite3BtreeIntegrityCheck(
7950 Btree *p, /* The btree to be checked */
7951 int *aRoot, /* An array of root pages numbers for individual trees */
7952 int nRoot, /* Number of entries in aRoot[] */
7953 int mxErr, /* Stop reporting errors after this many */
7954 int *pnErr /* Write number of errors seen to this variable */
7955){
danielk197789d40042008-11-17 14:20:56 +00007956 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007957 int nRef;
drhaaab5722002-02-19 13:39:21 +00007958 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007959 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007960 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007961
drhd677b3d2007-08-20 22:48:41 +00007962 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007963 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007964 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007965 sCheck.pBt = pBt;
7966 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007967 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007968 sCheck.mxErr = mxErr;
7969 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007970 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007971 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007972 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007973 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007974 return 0;
7975 }
dan1235bb12012-04-03 17:43:28 +00007976
7977 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
7978 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00007979 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007980 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007981 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007982 }
drh42cac6d2004-11-20 20:31:11 +00007983 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00007984 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drhf089aa42008-07-08 19:34:06 +00007985 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007986 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007987
7988 /* Check the integrity of the freelist
7989 */
drha34b6762004-05-07 13:30:42 +00007990 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7991 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007992
7993 /* Check all the tables.
7994 */
danielk197789d40042008-11-17 14:20:56 +00007995 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007996 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007997#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007998 if( pBt->autoVacuum && aRoot[i]>1 ){
7999 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8000 }
8001#endif
shaneh195475d2010-02-19 04:28:08 +00008002 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008003 }
8004
8005 /* Make sure every page in the file is referenced
8006 */
drh1dcdbc02007-01-27 02:24:54 +00008007 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008008#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008009 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008010 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008011 }
danielk1977afcdd022004-10-31 16:25:42 +00008012#else
8013 /* If the database supports auto-vacuum, make sure no tables contain
8014 ** references to pointer-map pages.
8015 */
dan1235bb12012-04-03 17:43:28 +00008016 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008017 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008018 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8019 }
dan1235bb12012-04-03 17:43:28 +00008020 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008021 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008022 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8023 }
8024#endif
drh5eddca62001-06-30 21:53:53 +00008025 }
8026
drh64022502009-01-09 14:11:04 +00008027 /* Make sure this analysis did not leave any unref() pages.
8028 ** This is an internal consistency check; an integrity check
8029 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008030 */
drh64022502009-01-09 14:11:04 +00008031 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008032 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008033 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008034 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008035 );
drh5eddca62001-06-30 21:53:53 +00008036 }
8037
8038 /* Clean up and report errors.
8039 */
drhd677b3d2007-08-20 22:48:41 +00008040 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008041 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008042 if( sCheck.mallocFailed ){
8043 sqlite3StrAccumReset(&sCheck.errMsg);
8044 *pnErr = sCheck.nErr+1;
8045 return 0;
8046 }
drh1dcdbc02007-01-27 02:24:54 +00008047 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008048 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8049 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008050}
drhb7f91642004-10-31 02:22:47 +00008051#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008052
drh73509ee2003-04-06 20:44:45 +00008053/*
drhd4e0bb02012-05-27 01:19:04 +00008054** Return the full pathname of the underlying database file. Return
8055** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008056**
8057** The pager filename is invariant as long as the pager is
8058** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008059*/
danielk1977aef0bf62005-12-30 16:28:01 +00008060const char *sqlite3BtreeGetFilename(Btree *p){
8061 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008062 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008063}
8064
8065/*
danielk19775865e3d2004-06-14 06:03:57 +00008066** Return the pathname of the journal file for this database. The return
8067** value of this routine is the same regardless of whether the journal file
8068** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008069**
8070** The pager journal filename is invariant as long as the pager is
8071** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008072*/
danielk1977aef0bf62005-12-30 16:28:01 +00008073const char *sqlite3BtreeGetJournalname(Btree *p){
8074 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008075 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008076}
8077
danielk19771d850a72004-05-31 08:26:49 +00008078/*
8079** Return non-zero if a transaction is active.
8080*/
danielk1977aef0bf62005-12-30 16:28:01 +00008081int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008082 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008083 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008084}
8085
dana550f2d2010-08-02 10:47:05 +00008086#ifndef SQLITE_OMIT_WAL
8087/*
8088** Run a checkpoint on the Btree passed as the first argument.
8089**
8090** Return SQLITE_LOCKED if this or any other connection has an open
8091** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008092**
dancdc1f042010-11-18 12:11:05 +00008093** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008094*/
dancdc1f042010-11-18 12:11:05 +00008095int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008096 int rc = SQLITE_OK;
8097 if( p ){
8098 BtShared *pBt = p->pBt;
8099 sqlite3BtreeEnter(p);
8100 if( pBt->inTransaction!=TRANS_NONE ){
8101 rc = SQLITE_LOCKED;
8102 }else{
dancdc1f042010-11-18 12:11:05 +00008103 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008104 }
8105 sqlite3BtreeLeave(p);
8106 }
8107 return rc;
8108}
8109#endif
8110
danielk19771d850a72004-05-31 08:26:49 +00008111/*
danielk19772372c2b2006-06-27 16:34:56 +00008112** Return non-zero if a read (or write) transaction is active.
8113*/
8114int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008115 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008116 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008117 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008118}
8119
danielk197704103022009-02-03 16:51:24 +00008120int sqlite3BtreeIsInBackup(Btree *p){
8121 assert( p );
8122 assert( sqlite3_mutex_held(p->db->mutex) );
8123 return p->nBackup!=0;
8124}
8125
danielk19772372c2b2006-06-27 16:34:56 +00008126/*
danielk1977da184232006-01-05 11:34:32 +00008127** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008128** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008129** purposes (for example, to store a high-level schema associated with
8130** the shared-btree). The btree layer manages reference counting issues.
8131**
8132** The first time this is called on a shared-btree, nBytes bytes of memory
8133** are allocated, zeroed, and returned to the caller. For each subsequent
8134** call the nBytes parameter is ignored and a pointer to the same blob
8135** of memory returned.
8136**
danielk1977171bfed2008-06-23 09:50:50 +00008137** If the nBytes parameter is 0 and the blob of memory has not yet been
8138** allocated, a null pointer is returned. If the blob has already been
8139** allocated, it is returned as normal.
8140**
danielk1977da184232006-01-05 11:34:32 +00008141** Just before the shared-btree is closed, the function passed as the
8142** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008143** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008144** on the memory, the btree layer does that.
8145*/
8146void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8147 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008148 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008149 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008150 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008151 pBt->xFreeSchema = xFree;
8152 }
drh27641702007-08-22 02:56:42 +00008153 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008154 return pBt->pSchema;
8155}
8156
danielk1977c87d34d2006-01-06 13:00:28 +00008157/*
danielk1977404ca072009-03-16 13:19:36 +00008158** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8159** btree as the argument handle holds an exclusive lock on the
8160** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008161*/
8162int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008163 int rc;
drhe5fe6902007-12-07 18:55:28 +00008164 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008165 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008166 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8167 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008168 sqlite3BtreeLeave(p);
8169 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008170}
8171
drha154dcd2006-03-22 22:10:07 +00008172
8173#ifndef SQLITE_OMIT_SHARED_CACHE
8174/*
8175** Obtain a lock on the table whose root page is iTab. The
8176** lock is a write lock if isWritelock is true or a read lock
8177** if it is false.
8178*/
danielk1977c00da102006-01-07 13:21:04 +00008179int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008180 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008181 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008182 if( p->sharable ){
8183 u8 lockType = READ_LOCK + isWriteLock;
8184 assert( READ_LOCK+1==WRITE_LOCK );
8185 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008186
drh6a9ad3d2008-04-02 16:29:30 +00008187 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008188 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008189 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008190 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008191 }
8192 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008193 }
8194 return rc;
8195}
drha154dcd2006-03-22 22:10:07 +00008196#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008197
danielk1977b4e9af92007-05-01 17:49:49 +00008198#ifndef SQLITE_OMIT_INCRBLOB
8199/*
8200** Argument pCsr must be a cursor opened for writing on an
8201** INTKEY table currently pointing at a valid table entry.
8202** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008203**
8204** Only the data content may only be modified, it is not possible to
8205** change the length of the data stored. If this function is called with
8206** parameters that attempt to write past the end of the existing data,
8207** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008208*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008209int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008210 int rc;
drh1fee73e2007-08-29 04:00:57 +00008211 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008212 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008213 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008214
danielk1977c9000e62009-07-08 13:55:28 +00008215 rc = restoreCursorPosition(pCsr);
8216 if( rc!=SQLITE_OK ){
8217 return rc;
8218 }
danielk19773588ceb2008-06-10 17:30:26 +00008219 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8220 if( pCsr->eState!=CURSOR_VALID ){
8221 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008222 }
8223
danielk1977c9000e62009-07-08 13:55:28 +00008224 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008225 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008226 ** (b) there is a read/write transaction open,
8227 ** (c) the connection holds a write-lock on the table (if required),
8228 ** (d) there are no conflicting read-locks, and
8229 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008230 */
danielk19774f029602009-07-08 18:45:37 +00008231 if( !pCsr->wrFlag ){
8232 return SQLITE_READONLY;
8233 }
drhc9166342012-01-05 23:32:06 +00008234 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8235 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008236 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8237 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008238 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008239
drhfb192682009-07-11 18:26:28 +00008240 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008241}
danielk19772dec9702007-05-02 16:48:37 +00008242
8243/*
8244** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008245** overflow list for the current row. This is used by cursors opened
8246** for incremental blob IO only.
8247**
8248** This function sets a flag only. The actual page location cache
8249** (stored in BtCursor.aOverflow[]) is allocated and used by function
8250** accessPayload() (the worker function for sqlite3BtreeData() and
8251** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008252*/
8253void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008254 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008255 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008256 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008257 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008258}
danielk1977b4e9af92007-05-01 17:49:49 +00008259#endif
dane04dc882010-04-20 18:53:15 +00008260
8261/*
8262** Set both the "read version" (single byte at byte offset 18) and
8263** "write version" (single byte at byte offset 19) fields in the database
8264** header to iVersion.
8265*/
8266int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8267 BtShared *pBt = pBtree->pBt;
8268 int rc; /* Return code */
8269
dane04dc882010-04-20 18:53:15 +00008270 assert( iVersion==1 || iVersion==2 );
8271
danb9780022010-04-21 18:37:57 +00008272 /* If setting the version fields to 1, do not automatically open the
8273 ** WAL connection, even if the version fields are currently set to 2.
8274 */
drhc9166342012-01-05 23:32:06 +00008275 pBt->btsFlags &= ~BTS_NO_WAL;
8276 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008277
8278 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008279 if( rc==SQLITE_OK ){
8280 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008281 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008282 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008283 if( rc==SQLITE_OK ){
8284 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8285 if( rc==SQLITE_OK ){
8286 aData[18] = (u8)iVersion;
8287 aData[19] = (u8)iVersion;
8288 }
8289 }
8290 }
dane04dc882010-04-20 18:53:15 +00008291 }
8292
drhc9166342012-01-05 23:32:06 +00008293 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008294 return rc;
8295}