blob: f343e13d4e91784b158810c5b7d44684dfbfa2a5 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000055# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000056#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000073** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
dan689ab892011-08-12 15:02:00 +0000154/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
dan689ab892011-08-12 15:02:00 +0000155# define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000156
danielk19771cc5ed82007-05-16 17:28:43 +0000157/*
shane21e7feb2008-05-30 15:59:49 +0000158** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000159** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000160** This routine sets the pMem->type variable used by the sqlite3_value_*()
161** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000162*/
dan937d0de2009-10-15 18:35:38 +0000163void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000164 int flags = pMem->flags;
165 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000166 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000167 }
168 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000169 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000170 }
171 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000172 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000173 }
174 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000175 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000176 }else{
drh9c054832004-05-31 18:51:57 +0000177 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000178 }
179}
danielk19778a6b5412004-05-24 07:04:25 +0000180
181/*
drhdfe88ec2008-11-03 20:55:06 +0000182** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000183** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000184*/
drhdfe88ec2008-11-03 20:55:06 +0000185static VdbeCursor *allocateCursor(
186 Vdbe *p, /* The virtual machine */
187 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000188 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000189 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000190 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000191){
192 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000193 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000194 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000195 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000196 **
197 ** * Sometimes cursor numbers are used for a couple of different
198 ** purposes in a vdbe program. The different uses might require
199 ** different sized allocations. Memory cells provide growable
200 ** allocations.
201 **
202 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
203 ** be freed lazily via the sqlite3_release_memory() API. This
204 ** minimizes the number of malloc calls made by the system.
205 **
206 ** Memory cells for cursors are allocated at the top of the address
207 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
208 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
209 */
210 Mem *pMem = &p->aMem[p->nMem-iCur];
211
danielk19775f096132008-03-28 15:44:09 +0000212 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000213 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000214 nByte =
drhc54055b2009-11-13 17:05:53 +0000215 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
217 2*nField*sizeof(u32);
218
drh290c1942004-08-21 17:54:45 +0000219 assert( iCur<p->nCursor );
220 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000221 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000223 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000224 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000225 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000226 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000227 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 pCx->nField = nField;
229 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000230 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000231 }
232 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000233 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000234 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000235 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000236 }
danielk197794eb6a12005-12-15 15:22:08 +0000237 }
drh4774b132004-06-12 20:12:51 +0000238 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000239}
240
danielk19773d1bfea2004-05-14 11:00:53 +0000241/*
drh29d72102006-02-09 22:13:41 +0000242** Try to convert a value into a numeric representation if we can
243** do so without loss of information. In other words, if the string
244** looks like a number, convert it into a number. If it does not
245** look like a number, leave it alone.
246*/
drhb21c8cd2007-08-21 19:33:56 +0000247static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000248 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000249 double rValue;
250 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000251 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000252 if( (pRec->flags&MEM_Str)==0 ) return;
253 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000254 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000255 pRec->u.i = iValue;
256 pRec->flags |= MEM_Int;
257 }else{
258 pRec->r = rValue;
259 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000260 }
261 }
262}
263
264/*
drh8a512562005-11-14 22:29:05 +0000265** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000266**
drh8a512562005-11-14 22:29:05 +0000267** SQLITE_AFF_INTEGER:
268** SQLITE_AFF_REAL:
269** SQLITE_AFF_NUMERIC:
270** Try to convert pRec to an integer representation or a
271** floating-point representation if an integer representation
272** is not possible. Note that the integer representation is
273** always preferred, even if the affinity is REAL, because
274** an integer representation is more space efficient on disk.
275**
276** SQLITE_AFF_TEXT:
277** Convert pRec to a text representation.
278**
279** SQLITE_AFF_NONE:
280** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000281*/
drh17435752007-08-16 04:30:38 +0000282static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000283 Mem *pRec, /* The value to apply affinity to */
284 char affinity, /* The affinity to be applied */
285 u8 enc /* Use this text encoding */
286){
drh8a512562005-11-14 22:29:05 +0000287 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000288 /* Only attempt the conversion to TEXT if there is an integer or real
289 ** representation (blob and NULL do not get converted) but no string
290 ** representation.
291 */
292 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000293 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000294 }
295 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000296 }else if( affinity!=SQLITE_AFF_NONE ){
297 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
298 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000299 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000300 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000301 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000302 }
danielk19773d1bfea2004-05-14 11:00:53 +0000303 }
304}
305
danielk1977aee18ef2005-03-09 12:26:50 +0000306/*
drh29d72102006-02-09 22:13:41 +0000307** Try to convert the type of a function argument or a result column
308** into a numeric representation. Use either INTEGER or REAL whichever
309** is appropriate. But only do the conversion if it is possible without
310** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000311*/
312int sqlite3_value_numeric_type(sqlite3_value *pVal){
313 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000314 if( pMem->type==SQLITE_TEXT ){
315 applyNumericAffinity(pMem);
316 sqlite3VdbeMemStoreType(pMem);
317 }
drh29d72102006-02-09 22:13:41 +0000318 return pMem->type;
319}
320
321/*
danielk1977aee18ef2005-03-09 12:26:50 +0000322** Exported version of applyAffinity(). This one works on sqlite3_value*,
323** not the internal Mem* type.
324*/
danielk19771e536952007-08-16 10:09:01 +0000325void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000326 sqlite3_value *pVal,
327 u8 affinity,
328 u8 enc
329){
drhb21c8cd2007-08-21 19:33:56 +0000330 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000331}
332
danielk1977b5402fb2005-01-12 07:15:04 +0000333#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000334/*
danielk1977ca6b2912004-05-21 10:49:47 +0000335** Write a nice string representation of the contents of cell pMem
336** into buffer zBuf, length nBuf.
337*/
drh74161702006-02-24 02:53:49 +0000338void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000339 char *zCsr = zBuf;
340 int f = pMem->flags;
341
drh57196282004-10-06 15:41:16 +0000342 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000343
danielk1977ca6b2912004-05-21 10:49:47 +0000344 if( f&MEM_Blob ){
345 int i;
346 char c;
347 if( f & MEM_Dyn ){
348 c = 'z';
349 assert( (f & (MEM_Static|MEM_Ephem))==0 );
350 }else if( f & MEM_Static ){
351 c = 't';
352 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
353 }else if( f & MEM_Ephem ){
354 c = 'e';
355 assert( (f & (MEM_Static|MEM_Dyn))==0 );
356 }else{
357 c = 's';
358 }
359
drh5bb3eb92007-05-04 13:15:55 +0000360 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000361 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000362 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000363 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000364 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000365 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000366 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000367 }
368 for(i=0; i<16 && i<pMem->n; i++){
369 char z = pMem->z[i];
370 if( z<32 || z>126 ) *zCsr++ = '.';
371 else *zCsr++ = z;
372 }
373
drhe718efe2007-05-10 21:14:03 +0000374 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000375 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000376 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000377 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000378 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000379 }
danielk1977b1bc9532004-05-22 03:05:33 +0000380 *zCsr = '\0';
381 }else if( f & MEM_Str ){
382 int j, k;
383 zBuf[0] = ' ';
384 if( f & MEM_Dyn ){
385 zBuf[1] = 'z';
386 assert( (f & (MEM_Static|MEM_Ephem))==0 );
387 }else if( f & MEM_Static ){
388 zBuf[1] = 't';
389 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
390 }else if( f & MEM_Ephem ){
391 zBuf[1] = 'e';
392 assert( (f & (MEM_Static|MEM_Dyn))==0 );
393 }else{
394 zBuf[1] = 's';
395 }
396 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000397 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000398 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000399 zBuf[k++] = '[';
400 for(j=0; j<15 && j<pMem->n; j++){
401 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000402 if( c>=0x20 && c<0x7f ){
403 zBuf[k++] = c;
404 }else{
405 zBuf[k++] = '.';
406 }
407 }
408 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000409 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000410 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000411 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000412 }
danielk1977ca6b2912004-05-21 10:49:47 +0000413}
414#endif
415
drh5b6afba2008-01-05 16:29:28 +0000416#ifdef SQLITE_DEBUG
417/*
418** Print the value of a register for tracing purposes:
419*/
420static void memTracePrint(FILE *out, Mem *p){
drh953f7612012-12-07 22:18:54 +0000421 if( p->flags & MEM_Invalid ){
422 fprintf(out, " undefined");
423 }else if( p->flags & MEM_Null ){
drh5b6afba2008-01-05 16:29:28 +0000424 fprintf(out, " NULL");
425 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
426 fprintf(out, " si:%lld", p->u.i);
427 }else if( p->flags & MEM_Int ){
428 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000429#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000430 }else if( p->flags & MEM_Real ){
431 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000432#endif
drh733bf1b2009-04-22 00:47:00 +0000433 }else if( p->flags & MEM_RowSet ){
434 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000435 }else{
436 char zBuf[200];
437 sqlite3VdbeMemPrettyPrint(p, zBuf);
438 fprintf(out, " ");
439 fprintf(out, "%s", zBuf);
440 }
441}
442static void registerTrace(FILE *out, int iReg, Mem *p){
443 fprintf(out, "REG[%d] = ", iReg);
444 memTracePrint(out, p);
445 fprintf(out, "\n");
446}
447#endif
448
449#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000450# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000451#else
452# define REGISTER_TRACE(R,M)
453#endif
454
danielk197784ac9d02004-05-18 09:58:06 +0000455
drh7b396862003-01-01 23:06:20 +0000456#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000457
458/*
459** hwtime.h contains inline assembler code for implementing
460** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000461*/
shane9bcbdad2008-05-29 20:22:37 +0000462#include "hwtime.h"
463
drh7b396862003-01-01 23:06:20 +0000464#endif
465
drh8c74a8c2002-08-25 19:20:40 +0000466/*
drhcaec2f12003-01-07 02:47:47 +0000467** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000468** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000469** processing of the VDBE program is interrupted.
470**
471** This macro added to every instruction that does a jump in order to
472** implement a loop. This test used to be on every single instruction,
drhe4c88c02012-01-04 12:57:45 +0000473** but that meant we more testing than we needed. By only testing the
drhcaec2f12003-01-07 02:47:47 +0000474** flag on jump instructions, we get a (small) speed improvement.
475*/
476#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000477 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000478
479
danielk1977fd7f0452008-12-17 17:30:26 +0000480#ifndef NDEBUG
481/*
482** This function is only called from within an assert() expression. It
483** checks that the sqlite3.nTransaction variable is correctly set to
484** the number of non-transaction savepoints currently in the
485** linked list starting at sqlite3.pSavepoint.
486**
487** Usage:
488**
489** assert( checkSavepointCount(db) );
490*/
491static int checkSavepointCount(sqlite3 *db){
492 int n = 0;
493 Savepoint *p;
494 for(p=db->pSavepoint; p; p=p->pNext) n++;
495 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
496 return 1;
497}
498#endif
499
drhcaec2f12003-01-07 02:47:47 +0000500/*
drhb9755982010-07-24 16:34:37 +0000501** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
502** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
503** in memory obtained from sqlite3DbMalloc).
504*/
505static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
506 sqlite3 *db = p->db;
507 sqlite3DbFree(db, p->zErrMsg);
508 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
509 sqlite3_free(pVtab->zErrMsg);
510 pVtab->zErrMsg = 0;
511}
512
513
514/*
drhb86ccfb2003-01-28 23:13:10 +0000515** Execute as much of a VDBE program as we can then return.
516**
danielk19774adee202004-05-08 08:23:19 +0000517** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000518** close the program with a final OP_Halt and to set up the callbacks
519** and the error message pointer.
520**
521** Whenever a row or result data is available, this routine will either
522** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000523** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000524**
525** If an attempt is made to open a locked database, then this routine
526** will either invoke the busy callback (if there is one) or it will
527** return SQLITE_BUSY.
528**
529** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000530** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000531** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
532**
533** If the callback ever returns non-zero, then the program exits
534** immediately. There will be no error message but the p->rc field is
535** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
536**
drh9468c7f2003-03-07 19:50:07 +0000537** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
538** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000539**
540** Other fatal errors return SQLITE_ERROR.
541**
danielk19774adee202004-05-08 08:23:19 +0000542** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000543** used to clean up the mess that was left behind.
544*/
danielk19774adee202004-05-08 08:23:19 +0000545int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000546 Vdbe *p /* The VDBE */
547){
shaneh84f4b2f2010-02-26 01:46:54 +0000548 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000549 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000550 Op *pOp; /* Current operation */
551 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000552 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000553 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000554 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000555#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000556 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000557 int nProgressOps = 0; /* Opcodes executed since progress callback. */
558#endif
559 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000560 Mem *pIn1 = 0; /* 1st input operand */
561 Mem *pIn2 = 0; /* 2nd input operand */
562 Mem *pIn3 = 0; /* 3rd input operand */
563 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000564 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000565 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000566 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000567#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000568 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000569 int origPc; /* Program counter at start of opcode */
570#endif
drh856c1032009-06-02 15:21:42 +0000571 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000572
drhca48c902008-01-18 14:08:24 +0000573 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000574 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000575 if( p->rc==SQLITE_NOMEM ){
576 /* This happens if a malloc() inside a call to sqlite3_column_text() or
577 ** sqlite3_column_text16() failed. */
578 goto no_mem;
579 }
drh3a840692003-01-29 22:58:26 +0000580 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
581 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000582 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000583 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000584 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000585 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000586 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000587#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
588 checkProgress = db->xProgress!=0;
589#endif
drh3c23a882007-01-09 14:01:13 +0000590#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000591 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000592 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000593 int i;
594 printf("VDBE Program Listing:\n");
595 sqlite3VdbePrintSql(p);
596 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000597 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000598 }
599 }
danielk19772d1d86f2008-06-20 14:59:51 +0000600 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000601#endif
drhb86ccfb2003-01-28 23:13:10 +0000602 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000603 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000604 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000605#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000606 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000607 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000608#endif
drhbbe879d2009-11-14 18:04:35 +0000609 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000610
danielk19778b60e0f2005-01-12 09:10:39 +0000611 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000612 */
danielk19778b60e0f2005-01-12 09:10:39 +0000613#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000614 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000615 if( pc==0 ){
616 printf("VDBE Execution Trace:\n");
617 sqlite3VdbePrintSql(p);
618 }
danielk19774adee202004-05-08 08:23:19 +0000619 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000620 }
drh3f7d4e42004-07-24 14:35:58 +0000621#endif
622
drh6e142f52000-06-08 13:36:40 +0000623
drhf6038712004-02-08 18:07:34 +0000624 /* Check to see if we need to simulate an interrupt. This only happens
625 ** if we have a special test build.
626 */
627#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000628 if( sqlite3_interrupt_count>0 ){
629 sqlite3_interrupt_count--;
630 if( sqlite3_interrupt_count==0 ){
631 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000632 }
633 }
634#endif
635
danielk1977348bb5d2003-10-18 09:37:26 +0000636#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
637 /* Call the progress callback if it is configured and the required number
638 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000639 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000640 ** If the progress callback returns non-zero, exit the virtual machine with
641 ** a return code SQLITE_ABORT.
642 */
drha6c2ed92009-11-14 23:22:23 +0000643 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000644 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000645 int prc;
drh9978c972010-02-23 17:36:32 +0000646 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000647 if( prc!=0 ){
648 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000649 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000650 }
danielk19773fe11f32007-06-13 16:49:48 +0000651 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000652 }
drh3914aed2004-01-31 20:40:42 +0000653 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000654 }
danielk1977348bb5d2003-10-18 09:37:26 +0000655#endif
656
drhb5b407e2012-08-29 10:28:43 +0000657 /* On any opcode with the "out2-prerelease" tag, free any
drh3c657212009-11-17 23:59:58 +0000658 ** external allocations out of mem[p2] and set mem[p2] to be
659 ** an undefined integer. Opcodes will either fill in the integer
660 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000661 */
drha6c2ed92009-11-14 23:22:23 +0000662 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000663 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
664 assert( pOp->p2>0 );
665 assert( pOp->p2<=p->nMem );
666 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000667 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000668 VdbeMemRelease(pOut);
drh3c657212009-11-17 23:59:58 +0000669 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000670 }
drh3c657212009-11-17 23:59:58 +0000671
672 /* Sanity checking on other operands */
673#ifdef SQLITE_DEBUG
674 if( (pOp->opflags & OPFLG_IN1)!=0 ){
675 assert( pOp->p1>0 );
676 assert( pOp->p1<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000677 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000678 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
679 }
680 if( (pOp->opflags & OPFLG_IN2)!=0 ){
681 assert( pOp->p2>0 );
682 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000683 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000684 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
685 }
686 if( (pOp->opflags & OPFLG_IN3)!=0 ){
687 assert( pOp->p3>0 );
688 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000689 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000690 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
691 }
692 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
693 assert( pOp->p2>0 );
694 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000695 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000696 }
697 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
698 assert( pOp->p3>0 );
699 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000700 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000701 }
702#endif
drh93952eb2009-11-13 19:43:43 +0000703
drh75897232000-05-29 14:26:00 +0000704 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000705
drh5e00f6c2001-09-13 13:46:56 +0000706/*****************************************************************************
707** What follows is a massive switch statement where each case implements a
708** separate instruction in the virtual machine. If we follow the usual
709** indentation conventions, each case should be indented by 6 spaces. But
710** that is a lot of wasted space on the left margin. So the code within
711** the switch statement will break with convention and be flush-left. Another
712** big comment (similar to this one) will mark the point in the code where
713** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000714**
715** The formatting of each case is important. The makefile for SQLite
716** generates two C files "opcodes.h" and "opcodes.c" by scanning this
717** file looking for lines that begin with "case OP_". The opcodes.h files
718** will be filled with #defines that give unique integer values to each
719** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000720** each string is the symbolic name for the corresponding opcode. If the
721** case statement is followed by a comment of the form "/# same as ... #/"
722** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000723**
drh9cbf3422008-01-17 16:22:13 +0000724** Other keywords in the comment that follows each case are used to
725** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
726** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
727** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000728**
drhac82fcf2002-09-08 17:23:41 +0000729** Documentation about VDBE opcodes is generated by scanning this file
730** for lines of that contain "Opcode:". That line and all subsequent
731** comment lines are used in the generation of the opcode.html documentation
732** file.
733**
734** SUMMARY:
735**
736** Formatting is important to scripts that scan this file.
737** Do not deviate from the formatting style currently in use.
738**
drh5e00f6c2001-09-13 13:46:56 +0000739*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000740
drh9cbf3422008-01-17 16:22:13 +0000741/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000742**
743** An unconditional jump to address P2.
744** The next instruction executed will be
745** the one at index P2 from the beginning of
746** the program.
747*/
drh9cbf3422008-01-17 16:22:13 +0000748case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000749 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000750 pc = pOp->p2 - 1;
751 break;
752}
drh75897232000-05-29 14:26:00 +0000753
drh2eb95372008-06-06 15:04:36 +0000754/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000755**
drh2eb95372008-06-06 15:04:36 +0000756** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000757** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000758*/
drhb8475df2011-12-09 16:21:19 +0000759case OP_Gosub: { /* jump */
760 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drh3c657212009-11-17 23:59:58 +0000761 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000762 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000763 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000764 pIn1->flags = MEM_Int;
765 pIn1->u.i = pc;
766 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000767 pc = pOp->p2 - 1;
768 break;
769}
770
drh2eb95372008-06-06 15:04:36 +0000771/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000772**
drh2eb95372008-06-06 15:04:36 +0000773** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000774*/
drh2eb95372008-06-06 15:04:36 +0000775case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000776 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000777 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000778 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000779 break;
780}
781
drhe00ee6e2008-06-20 15:24:01 +0000782/* Opcode: Yield P1 * * * *
783**
784** Swap the program counter with the value in register P1.
785*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000786case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000787 int pcDest;
drh3c657212009-11-17 23:59:58 +0000788 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000789 assert( (pIn1->flags & MEM_Dyn)==0 );
790 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000791 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000792 pIn1->u.i = pc;
793 REGISTER_TRACE(pOp->p1, pIn1);
794 pc = pcDest;
795 break;
796}
797
drh5053a792009-02-20 03:02:23 +0000798/* Opcode: HaltIfNull P1 P2 P3 P4 *
799**
drhef8662b2011-06-20 21:47:58 +0000800** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000801** parameter P1, P2, and P4 as if this were a Halt instruction. If the
802** value in register P3 is not NULL, then this routine is a no-op.
803*/
804case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000805 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000806 if( (pIn3->flags & MEM_Null)==0 ) break;
807 /* Fall through into OP_Halt */
808}
drhe00ee6e2008-06-20 15:24:01 +0000809
drh9cbf3422008-01-17 16:22:13 +0000810/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000811**
drh3d4501e2008-12-04 20:40:10 +0000812** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000813** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000814**
drh92f02c32004-09-02 14:57:08 +0000815** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
816** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
817** For errors, it can be some other value. If P1!=0 then P2 will determine
818** whether or not to rollback the current transaction. Do not rollback
819** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
820** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000821** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000822**
drh66a51672008-01-03 00:01:23 +0000823** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000824**
drh9cfcf5d2002-01-29 18:41:24 +0000825** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000826** every program. So a jump past the last instruction of the program
827** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000828*/
drh9cbf3422008-01-17 16:22:13 +0000829case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000830 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000831 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000832 VdbeFrame *pFrame = p->pFrame;
833 p->pFrame = pFrame->pParent;
834 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000835 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000836 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000837 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000838 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000839 /* Instruction pc is the OP_Program that invoked the sub-program
840 ** currently being halted. If the p2 instruction of this OP_Halt
841 ** instruction is set to OE_Ignore, then the sub-program is throwing
842 ** an IGNORE exception. In this case jump to the address specified
843 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000844 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000845 }
drhbbe879d2009-11-14 18:04:35 +0000846 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000847 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000848 break;
849 }
dan2832ad42009-08-31 15:27:27 +0000850
drh92f02c32004-09-02 14:57:08 +0000851 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000852 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000853 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000854 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000855 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000856 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000857 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000858 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000859 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000860 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000861 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000862 }
drh92f02c32004-09-02 14:57:08 +0000863 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000864 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000865 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000866 p->rc = rc = SQLITE_BUSY;
867 }else{
drhd91c1a12013-02-09 13:58:25 +0000868 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dan1da40a32009-09-19 17:00:31 +0000869 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000870 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000871 }
drh900b31e2007-08-28 02:27:51 +0000872 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000873}
drhc61053b2000-06-04 12:58:36 +0000874
drh4c583122008-01-04 22:01:03 +0000875/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000876**
drh9cbf3422008-01-17 16:22:13 +0000877** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000878*/
drh4c583122008-01-04 22:01:03 +0000879case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000880 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000881 break;
882}
883
drh4c583122008-01-04 22:01:03 +0000884/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000885**
drh66a51672008-01-03 00:01:23 +0000886** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000887** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000888*/
drh4c583122008-01-04 22:01:03 +0000889case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000890 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000891 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000892 break;
893}
drh4f26d6c2004-05-26 23:25:30 +0000894
drh13573c72010-01-12 17:04:07 +0000895#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000896/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000897**
drh4c583122008-01-04 22:01:03 +0000898** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000899** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000900*/
drh4c583122008-01-04 22:01:03 +0000901case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
902 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000903 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000904 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000905 break;
906}
drh13573c72010-01-12 17:04:07 +0000907#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000908
drh3c84ddf2008-01-09 02:15:38 +0000909/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000910**
drh66a51672008-01-03 00:01:23 +0000911** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000912** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000913*/
drh4c583122008-01-04 22:01:03 +0000914case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000915 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000916 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000917 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000918
919#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000920 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000921 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
922 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000923 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000924 assert( pOut->zMalloc==pOut->z );
925 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000926 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000927 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000928 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000929 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000930 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000931 }
drh66a51672008-01-03 00:01:23 +0000932 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000933 pOp->p4.z = pOut->z;
934 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000935 }
danielk197793758c82005-01-21 08:13:14 +0000936#endif
drhbb4957f2008-03-20 14:03:29 +0000937 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000938 goto too_big;
939 }
940 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000941}
drhf4479502004-05-27 03:12:53 +0000942
drh4c583122008-01-04 22:01:03 +0000943/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000944**
drh9cbf3422008-01-17 16:22:13 +0000945** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000946*/
drh4c583122008-01-04 22:01:03 +0000947case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000948 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000949 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
950 pOut->z = pOp->p4.z;
951 pOut->n = pOp->p1;
952 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000953 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000954 break;
955}
956
drh053a1282012-09-19 21:15:46 +0000957/* Opcode: Null P1 P2 P3 * *
drhf0863fe2005-06-12 21:35:51 +0000958**
drhb8475df2011-12-09 16:21:19 +0000959** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +0000960** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +0000961** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +0000962** set to NULL.
963**
964** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
965** NULL values will not compare equal even if SQLITE_NULLEQ is set on
966** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +0000967*/
drh4c583122008-01-04 22:01:03 +0000968case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +0000969 int cnt;
drh053a1282012-09-19 21:15:46 +0000970 u16 nullFlag;
drhb8475df2011-12-09 16:21:19 +0000971 cnt = pOp->p3-pOp->p2;
972 assert( pOp->p3<=p->nMem );
drh053a1282012-09-19 21:15:46 +0000973 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +0000974 while( cnt>0 ){
975 pOut++;
976 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000977 VdbeMemRelease(pOut);
drh053a1282012-09-19 21:15:46 +0000978 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +0000979 cnt--;
980 }
drhf0863fe2005-06-12 21:35:51 +0000981 break;
982}
983
984
drh9de221d2008-01-05 06:51:30 +0000985/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000986**
drh9de221d2008-01-05 06:51:30 +0000987** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +0000988** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +0000989*/
drh4c583122008-01-04 22:01:03 +0000990case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000991 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000992 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000993 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000994 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000995 break;
996}
997
drheaf52d82010-05-12 13:50:23 +0000998/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +0000999**
drheaf52d82010-05-12 13:50:23 +00001000** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001001**
1002** If the parameter is named, then its name appears in P4 and P3==1.
1003** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001004*/
drheaf52d82010-05-12 13:50:23 +00001005case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001006 Mem *pVar; /* Value being transferred */
1007
drheaf52d82010-05-12 13:50:23 +00001008 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001009 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001010 pVar = &p->aVar[pOp->p1 - 1];
1011 if( sqlite3VdbeMemTooBig(pVar) ){
1012 goto too_big;
drh023ae032007-05-08 12:12:16 +00001013 }
drheaf52d82010-05-12 13:50:23 +00001014 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1015 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001016 break;
1017}
danielk1977295ba552004-05-19 10:34:51 +00001018
drhb21e7c72008-06-22 12:37:57 +00001019/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001020**
drhe8e4af72012-09-21 00:04:28 +00001021** Move the values in register P1..P1+P3 over into
1022** registers P2..P2+P3. Registers P1..P1+P3 are
drhb21e7c72008-06-22 12:37:57 +00001023** left holding a NULL. It is an error for register ranges
drhe8e4af72012-09-21 00:04:28 +00001024** P1..P1+P3 and P2..P2+P3 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001025*/
drhe1349cb2008-04-01 00:36:10 +00001026case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001027 char *zMalloc; /* Holding variable for allocated memory */
1028 int n; /* Number of registers left to copy */
1029 int p1; /* Register to copy from */
1030 int p2; /* Register to copy to */
1031
drhe8e4af72012-09-21 00:04:28 +00001032 n = pOp->p3 + 1;
drh856c1032009-06-02 15:21:42 +00001033 p1 = pOp->p1;
1034 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001035 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001036 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001037
drha6c2ed92009-11-14 23:22:23 +00001038 pIn1 = &aMem[p1];
1039 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001040 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001041 assert( pOut<=&aMem[p->nMem] );
1042 assert( pIn1<=&aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00001043 assert( memIsValid(pIn1) );
1044 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001045 zMalloc = pOut->zMalloc;
1046 pOut->zMalloc = 0;
1047 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001048#ifdef SQLITE_DEBUG
1049 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1050 pOut->pScopyFrom += p1 - pOp->p2;
1051 }
1052#endif
drhb21e7c72008-06-22 12:37:57 +00001053 pIn1->zMalloc = zMalloc;
1054 REGISTER_TRACE(p2++, pOut);
1055 pIn1++;
1056 pOut++;
1057 }
drhe1349cb2008-04-01 00:36:10 +00001058 break;
1059}
1060
drhe8e4af72012-09-21 00:04:28 +00001061/* Opcode: Copy P1 P2 P3 * *
drhb1fdb2a2008-01-05 04:06:03 +00001062**
drhe8e4af72012-09-21 00:04:28 +00001063** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001064**
1065** This instruction makes a deep copy of the value. A duplicate
1066** is made of any string or blob constant. See also OP_SCopy.
1067*/
drhe8e4af72012-09-21 00:04:28 +00001068case OP_Copy: {
1069 int n;
1070
1071 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001072 pIn1 = &aMem[pOp->p1];
1073 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001074 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001075 while( 1 ){
1076 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1077 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001078#ifdef SQLITE_DEBUG
1079 pOut->pScopyFrom = 0;
1080#endif
drhe8e4af72012-09-21 00:04:28 +00001081 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1082 if( (n--)==0 ) break;
1083 pOut++;
1084 pIn1++;
1085 }
drhe1349cb2008-04-01 00:36:10 +00001086 break;
1087}
1088
drhb1fdb2a2008-01-05 04:06:03 +00001089/* Opcode: SCopy P1 P2 * * *
1090**
drh9cbf3422008-01-17 16:22:13 +00001091** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001092**
1093** This instruction makes a shallow copy of the value. If the value
1094** is a string or blob, then the copy is only a pointer to the
1095** original and hence if the original changes so will the copy.
1096** Worse, if the original is deallocated, the copy becomes invalid.
1097** Thus the program must guarantee that the original will not change
1098** during the lifetime of the copy. Use OP_Copy to make a complete
1099** copy.
1100*/
drh93952eb2009-11-13 19:43:43 +00001101case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001102 pIn1 = &aMem[pOp->p1];
1103 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001104 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001105 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001106#ifdef SQLITE_DEBUG
1107 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1108#endif
drh5b6afba2008-01-05 16:29:28 +00001109 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001110 break;
1111}
drh75897232000-05-29 14:26:00 +00001112
drh9cbf3422008-01-17 16:22:13 +00001113/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001114**
shane21e7feb2008-05-30 15:59:49 +00001115** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001116** results. This opcode causes the sqlite3_step() call to terminate
1117** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1118** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001119** row.
drhd4e70eb2008-01-02 00:34:36 +00001120*/
drh9cbf3422008-01-17 16:22:13 +00001121case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001122 Mem *pMem;
1123 int i;
1124 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001125 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001126 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001127
dan32b09f22009-09-23 17:29:59 +00001128 /* If this statement has violated immediate foreign key constraints, do
1129 ** not return the number of rows modified. And do not RELEASE the statement
1130 ** transaction. It needs to be rolled back. */
1131 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1132 assert( db->flags&SQLITE_CountRows );
1133 assert( p->usesStmtJournal );
1134 break;
1135 }
1136
danielk1977bd434552009-03-18 10:33:00 +00001137 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1138 ** DML statements invoke this opcode to return the number of rows
1139 ** modified to the user. This is the only way that a VM that
1140 ** opens a statement transaction may invoke this opcode.
1141 **
1142 ** In case this is such a statement, close any statement transaction
1143 ** opened by this VM before returning control to the user. This is to
1144 ** ensure that statement-transactions are always nested, not overlapping.
1145 ** If the open statement-transaction is not closed here, then the user
1146 ** may step another VM that opens its own statement transaction. This
1147 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001148 **
1149 ** The statement transaction is never a top-level transaction. Hence
1150 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001151 */
1152 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001153 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1154 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001155 break;
1156 }
1157
drhd4e70eb2008-01-02 00:34:36 +00001158 /* Invalidate all ephemeral cursor row caches */
1159 p->cacheCtr = (p->cacheCtr + 2)|1;
1160
1161 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001162 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001163 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001164 */
drha6c2ed92009-11-14 23:22:23 +00001165 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001166 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001167 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001168 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001169 assert( (pMem[i].flags & MEM_Ephem)==0
1170 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001171 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001172 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001173 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001174 }
drh28039692008-03-17 16:54:01 +00001175 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001176
1177 /* Return SQLITE_ROW
1178 */
drhd4e70eb2008-01-02 00:34:36 +00001179 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001180 rc = SQLITE_ROW;
1181 goto vdbe_return;
1182}
1183
drh5b6afba2008-01-05 16:29:28 +00001184/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001185**
drh5b6afba2008-01-05 16:29:28 +00001186** Add the text in register P1 onto the end of the text in
1187** register P2 and store the result in register P3.
1188** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001189**
1190** P3 = P2 || P1
1191**
1192** It is illegal for P1 and P3 to be the same register. Sometimes,
1193** if P3 is the same register as P2, the implementation is able
1194** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001195*/
drh5b6afba2008-01-05 16:29:28 +00001196case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001197 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001198
drh3c657212009-11-17 23:59:58 +00001199 pIn1 = &aMem[pOp->p1];
1200 pIn2 = &aMem[pOp->p2];
1201 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001202 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001203 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001204 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001205 break;
drh5e00f6c2001-09-13 13:46:56 +00001206 }
drha0c06522009-06-17 22:50:41 +00001207 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001208 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001209 Stringify(pIn2, encoding);
1210 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001211 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001212 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001213 }
danielk1977a7a8e142008-02-13 18:25:27 +00001214 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001215 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001216 goto no_mem;
1217 }
danielk1977a7a8e142008-02-13 18:25:27 +00001218 if( pOut!=pIn2 ){
1219 memcpy(pOut->z, pIn2->z, pIn2->n);
1220 }
1221 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1222 pOut->z[nByte] = 0;
1223 pOut->z[nByte+1] = 0;
1224 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001225 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001226 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001227 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001228 break;
1229}
drh75897232000-05-29 14:26:00 +00001230
drh3c84ddf2008-01-09 02:15:38 +00001231/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001232**
drh60a713c2008-01-21 16:22:45 +00001233** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001234** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001235** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001236*/
drh3c84ddf2008-01-09 02:15:38 +00001237/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001238**
drh3c84ddf2008-01-09 02:15:38 +00001239**
shane21e7feb2008-05-30 15:59:49 +00001240** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001241** and store the result in register P3.
1242** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001243*/
drh3c84ddf2008-01-09 02:15:38 +00001244/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001245**
drh60a713c2008-01-21 16:22:45 +00001246** Subtract the value in register P1 from the value in register P2
1247** and store the result in register P3.
1248** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001249*/
drh9cbf3422008-01-17 16:22:13 +00001250/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001251**
drh60a713c2008-01-21 16:22:45 +00001252** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001253** and store the result in register P3 (P3=P2/P1). If the value in
1254** register P1 is zero, then the result is NULL. If either input is
1255** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001256*/
drh9cbf3422008-01-17 16:22:13 +00001257/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001258**
drh3c84ddf2008-01-09 02:15:38 +00001259** Compute the remainder after integer division of the value in
1260** register P1 by the value in register P2 and store the result in P3.
1261** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001262** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001263*/
drh5b6afba2008-01-05 16:29:28 +00001264case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1265case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1266case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1267case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1268case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001269 char bIntint; /* Started out as two integer operands */
drh856c1032009-06-02 15:21:42 +00001270 int flags; /* Combined MEM_* flags from both inputs */
1271 i64 iA; /* Integer value of left operand */
1272 i64 iB; /* Integer value of right operand */
1273 double rA; /* Real value of left operand */
1274 double rB; /* Real value of right operand */
1275
drh3c657212009-11-17 23:59:58 +00001276 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001277 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001278 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001279 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001280 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001281 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001282 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1283 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001284 iA = pIn1->u.i;
1285 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001286 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001287 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001288 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1289 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1290 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001291 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001292 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001293 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001294 iB /= iA;
drh75897232000-05-29 14:26:00 +00001295 break;
1296 }
drhbf4133c2001-10-13 02:59:08 +00001297 default: {
drh856c1032009-06-02 15:21:42 +00001298 if( iA==0 ) goto arithmetic_result_is_null;
1299 if( iA==-1 ) iA = 1;
1300 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001301 break;
1302 }
drh75897232000-05-29 14:26:00 +00001303 }
drh856c1032009-06-02 15:21:42 +00001304 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001305 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001306 }else{
drhbe707b32012-12-10 22:19:14 +00001307 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001308fp_math:
drh856c1032009-06-02 15:21:42 +00001309 rA = sqlite3VdbeRealValue(pIn1);
1310 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001311 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001312 case OP_Add: rB += rA; break;
1313 case OP_Subtract: rB -= rA; break;
1314 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001315 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001316 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001317 if( rA==(double)0 ) goto arithmetic_result_is_null;
1318 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001319 break;
1320 }
drhbf4133c2001-10-13 02:59:08 +00001321 default: {
shane75ac1de2009-06-09 18:58:52 +00001322 iA = (i64)rA;
1323 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001324 if( iA==0 ) goto arithmetic_result_is_null;
1325 if( iA==-1 ) iA = 1;
1326 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001327 break;
1328 }
drh5e00f6c2001-09-13 13:46:56 +00001329 }
drhc5a7b512010-01-13 16:25:42 +00001330#ifdef SQLITE_OMIT_FLOATING_POINT
1331 pOut->u.i = rB;
1332 MemSetTypeFlag(pOut, MEM_Int);
1333#else
drh856c1032009-06-02 15:21:42 +00001334 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001335 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001336 }
drh856c1032009-06-02 15:21:42 +00001337 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001338 MemSetTypeFlag(pOut, MEM_Real);
drhbe707b32012-12-10 22:19:14 +00001339 if( (flags & MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001340 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001341 }
drhc5a7b512010-01-13 16:25:42 +00001342#endif
drh5e00f6c2001-09-13 13:46:56 +00001343 }
1344 break;
1345
drha05a7222008-01-19 03:35:58 +00001346arithmetic_result_is_null:
1347 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001348 break;
1349}
1350
drh7a957892012-02-02 17:35:43 +00001351/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001352**
drh66a51672008-01-03 00:01:23 +00001353** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001354** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1355** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001356** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001357**
drh7a957892012-02-02 17:35:43 +00001358** If P1 is not zero, then it is a register that a subsequent min() or
1359** max() aggregate will set to 1 if the current row is not the minimum or
1360** maximum. The P1 register is initialized to 0 by this instruction.
1361**
danielk1977dc1bdc42004-06-11 10:51:27 +00001362** The interface used by the implementation of the aforementioned functions
1363** to retrieve the collation sequence set by this opcode is not available
1364** publicly, only to user functions defined in func.c.
1365*/
drh9cbf3422008-01-17 16:22:13 +00001366case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001367 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001368 if( pOp->p1 ){
1369 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1370 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001371 break;
1372}
1373
drh98757152008-01-09 23:04:12 +00001374/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001375**
drh66a51672008-01-03 00:01:23 +00001376** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001377** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001378** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001379** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001380**
drh13449892005-09-07 21:22:45 +00001381** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001382** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001383** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001384** whether meta data associated with a user function argument using the
1385** sqlite3_set_auxdata() API may be safely retained until the next
1386** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001387**
drh13449892005-09-07 21:22:45 +00001388** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001389*/
drh0bce8352002-02-28 00:41:10 +00001390case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001391 int i;
drh6810ce62004-01-31 19:22:56 +00001392 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001393 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001394 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001395 int n;
drh1350b032002-02-27 19:00:20 +00001396
drh856c1032009-06-02 15:21:42 +00001397 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001398 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001399 assert( apVal || n==0 );
drhebc16712010-09-28 00:25:58 +00001400 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1401 pOut = &aMem[pOp->p3];
1402 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001403
danielk19776ab3a2e2009-02-19 14:39:25 +00001404 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001405 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001406 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001407 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001408 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001409 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001410 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001411 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001412 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001413 }
danielk197751ad0ec2004-05-24 12:39:02 +00001414
drh66a51672008-01-03 00:01:23 +00001415 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1416 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001417 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001418 ctx.pVdbeFunc = 0;
1419 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001420 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001421 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1422 }
1423
drh00706be2004-01-30 14:49:16 +00001424 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001425 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001426 ctx.s.xDel = 0;
1427 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001428
1429 /* The output cell may already have a buffer allocated. Move
1430 ** the pointer to ctx.s so in case the user-function can use
1431 ** the already allocated buffer instead of allocating a new one.
1432 */
1433 sqlite3VdbeMemMove(&ctx.s, pOut);
1434 MemSetTypeFlag(&ctx.s, MEM_Null);
1435
drh8e0a2f92002-02-23 23:45:45 +00001436 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001437 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001438 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001439 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001440 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001441 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001442 }
drh99a66922011-05-13 18:51:42 +00001443 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001444 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001445 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001446
shane21e7feb2008-05-30 15:59:49 +00001447 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001448 ** immediately call the destructor for any non-static values.
1449 */
1450 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001451 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001452 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001453 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001454 }
1455
dan5f84e142011-06-14 14:18:45 +00001456 if( db->mallocFailed ){
1457 /* Even though a malloc() has failed, the implementation of the
1458 ** user function may have called an sqlite3_result_XXX() function
1459 ** to return a value. The following call releases any resources
1460 ** associated with such a value.
1461 */
1462 sqlite3VdbeMemRelease(&ctx.s);
1463 goto no_mem;
1464 }
1465
drh90669c12006-01-20 15:45:36 +00001466 /* If the function returned an error, throw an exception */
1467 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001468 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001469 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001470 }
1471
drh9cbf3422008-01-17 16:22:13 +00001472 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001473 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001474 sqlite3VdbeMemMove(pOut, &ctx.s);
1475 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001476 goto too_big;
1477 }
drh7b94e7f2011-04-04 12:29:20 +00001478
1479#if 0
1480 /* The app-defined function has done something that as caused this
1481 ** statement to expire. (Perhaps the function called sqlite3_exec()
1482 ** with a CREATE TABLE statement.)
1483 */
1484 if( p->expired ) rc = SQLITE_ABORT;
1485#endif
1486
drh2dcef112008-01-12 19:03:48 +00001487 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001488 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001489 break;
1490}
1491
drh98757152008-01-09 23:04:12 +00001492/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001493**
drh98757152008-01-09 23:04:12 +00001494** Take the bit-wise AND of the values in register P1 and P2 and
1495** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001496** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001497*/
drh98757152008-01-09 23:04:12 +00001498/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001499**
drh98757152008-01-09 23:04:12 +00001500** Take the bit-wise OR of the values in register P1 and P2 and
1501** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001502** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001503*/
drh98757152008-01-09 23:04:12 +00001504/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001505**
drh98757152008-01-09 23:04:12 +00001506** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001507** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001508** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001509** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001510*/
drh98757152008-01-09 23:04:12 +00001511/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001512**
drh98757152008-01-09 23:04:12 +00001513** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001514** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001515** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001516** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001517*/
drh5b6afba2008-01-05 16:29:28 +00001518case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1519case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1520case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1521case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001522 i64 iA;
1523 u64 uA;
1524 i64 iB;
1525 u8 op;
drh6810ce62004-01-31 19:22:56 +00001526
drh3c657212009-11-17 23:59:58 +00001527 pIn1 = &aMem[pOp->p1];
1528 pIn2 = &aMem[pOp->p2];
1529 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001530 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001531 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001532 break;
1533 }
drh158b9cb2011-03-05 20:59:46 +00001534 iA = sqlite3VdbeIntValue(pIn2);
1535 iB = sqlite3VdbeIntValue(pIn1);
1536 op = pOp->opcode;
1537 if( op==OP_BitAnd ){
1538 iA &= iB;
1539 }else if( op==OP_BitOr ){
1540 iA |= iB;
1541 }else if( iB!=0 ){
1542 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1543
1544 /* If shifting by a negative amount, shift in the other direction */
1545 if( iB<0 ){
1546 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1547 op = 2*OP_ShiftLeft + 1 - op;
1548 iB = iB>(-64) ? -iB : 64;
1549 }
1550
1551 if( iB>=64 ){
1552 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1553 }else{
1554 memcpy(&uA, &iA, sizeof(uA));
1555 if( op==OP_ShiftLeft ){
1556 uA <<= iB;
1557 }else{
1558 uA >>= iB;
1559 /* Sign-extend on a right shift of a negative number */
1560 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1561 }
1562 memcpy(&iA, &uA, sizeof(iA));
1563 }
drhbf4133c2001-10-13 02:59:08 +00001564 }
drh158b9cb2011-03-05 20:59:46 +00001565 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001566 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001567 break;
1568}
1569
drh8558cde2008-01-05 05:20:10 +00001570/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001571**
danielk19770cdc0222008-06-26 18:04:03 +00001572** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001573** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001574**
drh8558cde2008-01-05 05:20:10 +00001575** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001576*/
drh9cbf3422008-01-17 16:22:13 +00001577case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001578 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001579 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001580 sqlite3VdbeMemIntegerify(pIn1);
1581 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001582 break;
1583}
1584
drh9cbf3422008-01-17 16:22:13 +00001585/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001586**
drh9cbf3422008-01-17 16:22:13 +00001587** Force the value in register P1 to be an integer. If the value
1588** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001589** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001590** raise an SQLITE_MISMATCH exception.
1591*/
drh9cbf3422008-01-17 16:22:13 +00001592case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001593 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001594 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1595 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001596 if( pOp->p2==0 ){
1597 rc = SQLITE_MISMATCH;
1598 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001599 }else{
drh17c40292004-07-21 02:53:29 +00001600 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001601 }
drh8aff1012001-12-22 14:49:24 +00001602 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001603 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001604 }
1605 break;
1606}
1607
drh13573c72010-01-12 17:04:07 +00001608#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001609/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001610**
drh2133d822008-01-03 18:44:59 +00001611** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001612**
drh8a512562005-11-14 22:29:05 +00001613** This opcode is used when extracting information from a column that
1614** has REAL affinity. Such column values may still be stored as
1615** integers, for space efficiency, but after extraction we want them
1616** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001617*/
drh9cbf3422008-01-17 16:22:13 +00001618case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001619 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001620 if( pIn1->flags & MEM_Int ){
1621 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001622 }
drh487e2622005-06-25 18:42:14 +00001623 break;
1624}
drh13573c72010-01-12 17:04:07 +00001625#endif
drh487e2622005-06-25 18:42:14 +00001626
drh8df447f2005-11-01 15:48:24 +00001627#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001628/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001629**
drh8558cde2008-01-05 05:20:10 +00001630** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001631** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001632** equivalent of printf(). Blob values are unchanged and
1633** are afterwards simply interpreted as text.
1634**
1635** A NULL value is not changed by this routine. It remains NULL.
1636*/
drh9cbf3422008-01-17 16:22:13 +00001637case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001638 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001639 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001640 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001641 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001642 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1643 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1644 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001645 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001646 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001647 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001648 break;
1649}
1650
drh8558cde2008-01-05 05:20:10 +00001651/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001652**
drh8558cde2008-01-05 05:20:10 +00001653** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001654** If the value is numeric, convert it to a string first.
1655** Strings are simply reinterpreted as blobs with no change
1656** to the underlying data.
1657**
1658** A NULL value is not changed by this routine. It remains NULL.
1659*/
drh9cbf3422008-01-17 16:22:13 +00001660case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001661 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001662 if( pIn1->flags & MEM_Null ) break;
1663 if( (pIn1->flags & MEM_Blob)==0 ){
1664 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001665 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001666 MemSetTypeFlag(pIn1, MEM_Blob);
1667 }else{
1668 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001669 }
drhb7654112008-01-12 12:48:07 +00001670 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001671 break;
1672}
drh8a512562005-11-14 22:29:05 +00001673
drh8558cde2008-01-05 05:20:10 +00001674/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001675**
drh8558cde2008-01-05 05:20:10 +00001676** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001677** integer or a floating-point number.)
1678** If the value is text or blob, try to convert it to an using the
1679** equivalent of atoi() or atof() and store 0 if no such conversion
1680** is possible.
1681**
1682** A NULL value is not changed by this routine. It remains NULL.
1683*/
drh9cbf3422008-01-17 16:22:13 +00001684case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001685 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001686 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001687 break;
1688}
1689#endif /* SQLITE_OMIT_CAST */
1690
drh8558cde2008-01-05 05:20:10 +00001691/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001692**
drh710c4842010-08-30 01:17:20 +00001693** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001694** The value is currently a real number, drop its fractional part.
1695** If the value is text or blob, try to convert it to an integer using the
1696** equivalent of atoi() and store 0 if no such conversion is possible.
1697**
1698** A NULL value is not changed by this routine. It remains NULL.
1699*/
drh9cbf3422008-01-17 16:22:13 +00001700case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001701 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001702 if( (pIn1->flags & MEM_Null)==0 ){
1703 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001704 }
1705 break;
1706}
1707
drh13573c72010-01-12 17:04:07 +00001708#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001709/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001710**
drh8558cde2008-01-05 05:20:10 +00001711** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001712** If The value is currently an integer, convert it.
1713** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001714** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001715**
1716** A NULL value is not changed by this routine. It remains NULL.
1717*/
drh9cbf3422008-01-17 16:22:13 +00001718case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001719 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001720 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001721 if( (pIn1->flags & MEM_Null)==0 ){
1722 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001723 }
1724 break;
1725}
drh13573c72010-01-12 17:04:07 +00001726#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001727
drh35573352008-01-08 23:54:25 +00001728/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001729**
drh35573352008-01-08 23:54:25 +00001730** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1731** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001732**
drh35573352008-01-08 23:54:25 +00001733** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1734** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001735** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001736**
drh35573352008-01-08 23:54:25 +00001737** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001738** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001739** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001740** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001741** affinity is used. Note that the affinity conversions are stored
1742** back into the input registers P1 and P3. So this opcode can cause
1743** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001744**
1745** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001746** the values are compared. If both values are blobs then memcmp() is
1747** used to determine the results of the comparison. If both values
1748** are text, then the appropriate collating function specified in
1749** P4 is used to do the comparison. If P4 is not specified then
1750** memcmp() is used to compare text string. If both values are
1751** numeric, then a numeric comparison is used. If the two values
1752** are of different types, then numbers are considered less than
1753** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001754**
drh35573352008-01-08 23:54:25 +00001755** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1756** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001757**
1758** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1759** equal to one another, provided that they do not have their MEM_Cleared
1760** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001761*/
drh9cbf3422008-01-17 16:22:13 +00001762/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001763**
drh35573352008-01-08 23:54:25 +00001764** This works just like the Lt opcode except that the jump is taken if
1765** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001766** additional information.
drh6a2fe092009-09-23 02:29:36 +00001767**
1768** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1769** true or false and is never NULL. If both operands are NULL then the result
1770** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001771** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001772** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001773*/
drh9cbf3422008-01-17 16:22:13 +00001774/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001775**
drh35573352008-01-08 23:54:25 +00001776** This works just like the Lt opcode except that the jump is taken if
1777** the operands in registers P1 and P3 are equal.
1778** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001779**
1780** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1781** true or false and is never NULL. If both operands are NULL then the result
1782** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001783** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001784** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001785*/
drh9cbf3422008-01-17 16:22:13 +00001786/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001787**
drh35573352008-01-08 23:54:25 +00001788** This works just like the Lt opcode except that the jump is taken if
1789** the content of register P3 is less than or equal to the content of
1790** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001791*/
drh9cbf3422008-01-17 16:22:13 +00001792/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001793**
drh35573352008-01-08 23:54:25 +00001794** This works just like the Lt opcode except that the jump is taken if
1795** the content of register P3 is greater than the content of
1796** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001797*/
drh9cbf3422008-01-17 16:22:13 +00001798/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001799**
drh35573352008-01-08 23:54:25 +00001800** This works just like the Lt opcode except that the jump is taken if
1801** the content of register P3 is greater than or equal to the content of
1802** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001803*/
drh9cbf3422008-01-17 16:22:13 +00001804case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1805case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1806case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1807case OP_Le: /* same as TK_LE, jump, in1, in3 */
1808case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1809case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001810 int res; /* Result of the comparison of pIn1 against pIn3 */
1811 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001812 u16 flags1; /* Copy of initial value of pIn1->flags */
1813 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001814
drh3c657212009-11-17 23:59:58 +00001815 pIn1 = &aMem[pOp->p1];
1816 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001817 flags1 = pIn1->flags;
1818 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001819 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001820 /* One or both operands are NULL */
1821 if( pOp->p5 & SQLITE_NULLEQ ){
1822 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1823 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1824 ** or not both operands are null.
1825 */
1826 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001827 assert( (flags1 & MEM_Cleared)==0 );
1828 if( (flags1&MEM_Null)!=0
1829 && (flags3&MEM_Null)!=0
1830 && (flags3&MEM_Cleared)==0
1831 ){
1832 res = 0; /* Results are equal */
1833 }else{
1834 res = 1; /* Results are not equal */
1835 }
drh6a2fe092009-09-23 02:29:36 +00001836 }else{
1837 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1838 ** then the result is always NULL.
1839 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1840 */
1841 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001842 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001843 MemSetTypeFlag(pOut, MEM_Null);
1844 REGISTER_TRACE(pOp->p2, pOut);
1845 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1846 pc = pOp->p2-1;
1847 }
1848 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001849 }
drh6a2fe092009-09-23 02:29:36 +00001850 }else{
1851 /* Neither operand is NULL. Do a comparison. */
1852 affinity = pOp->p5 & SQLITE_AFF_MASK;
1853 if( affinity ){
1854 applyAffinity(pIn1, affinity, encoding);
1855 applyAffinity(pIn3, affinity, encoding);
1856 if( db->mallocFailed ) goto no_mem;
1857 }
danielk1977a37cdde2004-05-16 11:15:36 +00001858
drh6a2fe092009-09-23 02:29:36 +00001859 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1860 ExpandBlob(pIn1);
1861 ExpandBlob(pIn3);
1862 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001863 }
danielk1977a37cdde2004-05-16 11:15:36 +00001864 switch( pOp->opcode ){
1865 case OP_Eq: res = res==0; break;
1866 case OP_Ne: res = res!=0; break;
1867 case OP_Lt: res = res<0; break;
1868 case OP_Le: res = res<=0; break;
1869 case OP_Gt: res = res>0; break;
1870 default: res = res>=0; break;
1871 }
1872
drh35573352008-01-08 23:54:25 +00001873 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001874 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001875 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001876 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001877 pOut->u.i = res;
1878 REGISTER_TRACE(pOp->p2, pOut);
1879 }else if( res ){
1880 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001881 }
danb7dca7d2010-03-05 16:32:12 +00001882
1883 /* Undo any changes made by applyAffinity() to the input registers. */
1884 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1885 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001886 break;
1887}
drhc9b84a12002-06-20 11:36:48 +00001888
drh0acb7e42008-06-25 00:12:41 +00001889/* Opcode: Permutation * * * P4 *
1890**
shanebe217792009-03-05 04:20:31 +00001891** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001892** of integers in P4.
1893**
drh953f7612012-12-07 22:18:54 +00001894** The permutation is only valid until the next OP_Compare that has
1895** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1896** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00001897*/
1898case OP_Permutation: {
1899 assert( pOp->p4type==P4_INTARRAY );
1900 assert( pOp->p4.ai );
1901 aPermute = pOp->p4.ai;
1902 break;
1903}
1904
drh953f7612012-12-07 22:18:54 +00001905/* Opcode: Compare P1 P2 P3 P4 P5
drh16ee60f2008-06-20 18:13:25 +00001906**
drh710c4842010-08-30 01:17:20 +00001907** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1908** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001909** the comparison for use by the next OP_Jump instruct.
1910**
drh0ca10df2012-12-08 13:26:23 +00001911** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1912** determined by the most recent OP_Permutation operator. If the
1913** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1914** order.
1915**
drh0acb7e42008-06-25 00:12:41 +00001916** P4 is a KeyInfo structure that defines collating sequences and sort
1917** orders for the comparison. The permutation applies to registers
1918** only. The KeyInfo elements are used sequentially.
1919**
1920** The comparison is a sort comparison, so NULLs compare equal,
1921** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001922** and strings are less than blobs.
1923*/
1924case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001925 int n;
1926 int i;
1927 int p1;
1928 int p2;
1929 const KeyInfo *pKeyInfo;
1930 int idx;
1931 CollSeq *pColl; /* Collating sequence to use on this term */
1932 int bRev; /* True for DESCENDING sort order */
1933
drh953f7612012-12-07 22:18:54 +00001934 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00001935 n = pOp->p3;
1936 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001937 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001938 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001939 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001940 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001941#if SQLITE_DEBUG
1942 if( aPermute ){
1943 int k, mx = 0;
1944 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1945 assert( p1>0 && p1+mx<=p->nMem+1 );
1946 assert( p2>0 && p2+mx<=p->nMem+1 );
1947 }else{
1948 assert( p1>0 && p1+n<=p->nMem+1 );
1949 assert( p2>0 && p2+n<=p->nMem+1 );
1950 }
1951#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001952 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001953 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00001954 assert( memIsValid(&aMem[p1+idx]) );
1955 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00001956 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1957 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001958 assert( i<pKeyInfo->nField );
1959 pColl = pKeyInfo->aColl[i];
1960 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001961 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001962 if( iCompare ){
1963 if( bRev ) iCompare = -iCompare;
1964 break;
1965 }
drh16ee60f2008-06-20 18:13:25 +00001966 }
drh0acb7e42008-06-25 00:12:41 +00001967 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001968 break;
1969}
1970
1971/* Opcode: Jump P1 P2 P3 * *
1972**
1973** Jump to the instruction at address P1, P2, or P3 depending on whether
1974** in the most recent OP_Compare instruction the P1 vector was less than
1975** equal to, or greater than the P2 vector, respectively.
1976*/
drh0acb7e42008-06-25 00:12:41 +00001977case OP_Jump: { /* jump */
1978 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001979 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001980 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001981 pc = pOp->p2 - 1;
1982 }else{
1983 pc = pOp->p3 - 1;
1984 }
1985 break;
1986}
1987
drh5b6afba2008-01-05 16:29:28 +00001988/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001989**
drh5b6afba2008-01-05 16:29:28 +00001990** Take the logical AND of the values in registers P1 and P2 and
1991** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001992**
drh5b6afba2008-01-05 16:29:28 +00001993** If either P1 or P2 is 0 (false) then the result is 0 even if
1994** the other input is NULL. A NULL and true or two NULLs give
1995** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001996*/
drh5b6afba2008-01-05 16:29:28 +00001997/* Opcode: Or P1 P2 P3 * *
1998**
1999** Take the logical OR of the values in register P1 and P2 and
2000** store the answer in register P3.
2001**
2002** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2003** even if the other input is NULL. A NULL and false or two NULLs
2004** give a NULL output.
2005*/
2006case OP_And: /* same as TK_AND, in1, in2, out3 */
2007case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002008 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2009 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002010
drh3c657212009-11-17 23:59:58 +00002011 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002012 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002013 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002014 }else{
drh5b6afba2008-01-05 16:29:28 +00002015 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002016 }
drh3c657212009-11-17 23:59:58 +00002017 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002018 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002019 v2 = 2;
2020 }else{
drh5b6afba2008-01-05 16:29:28 +00002021 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002022 }
2023 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002024 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002025 v1 = and_logic[v1*3+v2];
2026 }else{
drh5b6afba2008-01-05 16:29:28 +00002027 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002028 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002029 }
drh3c657212009-11-17 23:59:58 +00002030 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002031 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002032 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002033 }else{
drh5b6afba2008-01-05 16:29:28 +00002034 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002035 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002036 }
drh5e00f6c2001-09-13 13:46:56 +00002037 break;
2038}
2039
drhe99fa2a2008-12-15 15:27:51 +00002040/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002041**
drhe99fa2a2008-12-15 15:27:51 +00002042** Interpret the value in register P1 as a boolean value. Store the
2043** boolean complement in register P2. If the value in register P1 is
2044** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002045*/
drh93952eb2009-11-13 19:43:43 +00002046case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002047 pIn1 = &aMem[pOp->p1];
2048 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002049 if( pIn1->flags & MEM_Null ){
2050 sqlite3VdbeMemSetNull(pOut);
2051 }else{
2052 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2053 }
drh5e00f6c2001-09-13 13:46:56 +00002054 break;
2055}
2056
drhe99fa2a2008-12-15 15:27:51 +00002057/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00002058**
drhe99fa2a2008-12-15 15:27:51 +00002059** Interpret the content of register P1 as an integer. Store the
2060** ones-complement of the P1 value into register P2. If P1 holds
2061** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002062*/
drh93952eb2009-11-13 19:43:43 +00002063case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002064 pIn1 = &aMem[pOp->p1];
2065 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002066 if( pIn1->flags & MEM_Null ){
2067 sqlite3VdbeMemSetNull(pOut);
2068 }else{
2069 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2070 }
drhbf4133c2001-10-13 02:59:08 +00002071 break;
2072}
2073
drh48f2d3b2011-09-16 01:34:43 +00002074/* Opcode: Once P1 P2 * * *
2075**
dan1d8cb212011-12-09 13:24:16 +00002076** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2077** set the flag and fall through to the next instruction.
drh48f2d3b2011-09-16 01:34:43 +00002078*/
dan1d8cb212011-12-09 13:24:16 +00002079case OP_Once: { /* jump */
2080 assert( pOp->p1<p->nOnceFlag );
2081 if( p->aOnceFlag[pOp->p1] ){
2082 pc = pOp->p2-1;
2083 }else{
2084 p->aOnceFlag[pOp->p1] = 1;
2085 }
2086 break;
2087}
2088
drh3c84ddf2008-01-09 02:15:38 +00002089/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002090**
drhef8662b2011-06-20 21:47:58 +00002091** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002092** is considered true if it is numeric and non-zero. If the value
drhb8475df2011-12-09 16:21:19 +00002093** in P1 is NULL then take the jump if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002094*/
drh3c84ddf2008-01-09 02:15:38 +00002095/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002096**
drhef8662b2011-06-20 21:47:58 +00002097** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002098** is considered false if it has a numeric value of zero. If the value
2099** in P1 is NULL then take the jump if P3 is zero.
drhf5905aa2002-05-26 20:54:33 +00002100*/
drh9cbf3422008-01-17 16:22:13 +00002101case OP_If: /* jump, in1 */
2102case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002103 int c;
drh3c657212009-11-17 23:59:58 +00002104 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002105 if( pIn1->flags & MEM_Null ){
2106 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002107 }else{
drhba0232a2005-06-06 17:27:19 +00002108#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002109 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002110#else
drh3c84ddf2008-01-09 02:15:38 +00002111 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002112#endif
drhf5905aa2002-05-26 20:54:33 +00002113 if( pOp->opcode==OP_IfNot ) c = !c;
2114 }
drh3c84ddf2008-01-09 02:15:38 +00002115 if( c ){
2116 pc = pOp->p2-1;
2117 }
drh5e00f6c2001-09-13 13:46:56 +00002118 break;
2119}
2120
drh830ecf92009-06-18 00:41:55 +00002121/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002122**
drh830ecf92009-06-18 00:41:55 +00002123** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002124*/
drh9cbf3422008-01-17 16:22:13 +00002125case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002126 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002127 if( (pIn1->flags & MEM_Null)!=0 ){
2128 pc = pOp->p2 - 1;
2129 }
drh477df4b2008-01-05 18:48:24 +00002130 break;
2131}
2132
drh98757152008-01-09 23:04:12 +00002133/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002134**
drh6a288a32008-01-07 19:20:24 +00002135** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002136*/
drh9cbf3422008-01-17 16:22:13 +00002137case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002138 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002139 if( (pIn1->flags & MEM_Null)==0 ){
2140 pc = pOp->p2 - 1;
2141 }
drh5e00f6c2001-09-13 13:46:56 +00002142 break;
2143}
2144
drh3e9ca092009-09-08 01:14:48 +00002145/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002146**
danielk1977cfcdaef2004-05-12 07:33:33 +00002147** Interpret the data that cursor P1 points to as a structure built using
2148** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002149** information about the format of the data.) Extract the P2-th column
2150** from this record. If there are less that (P2+1)
2151** values in the record, extract a NULL.
2152**
drh9cbf3422008-01-17 16:22:13 +00002153** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002154**
danielk19771f4aa332008-01-03 09:51:55 +00002155** If the column contains fewer than P2 fields, then extract a NULL. Or,
2156** if the P4 argument is a P4_MEM use the value of the P4 argument as
2157** the result.
drh3e9ca092009-09-08 01:14:48 +00002158**
2159** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2160** then the cache of the cursor is reset prior to extracting the column.
2161** The first OP_Column against a pseudo-table after the value of the content
2162** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002163**
drhdda5c082012-03-28 13:41:10 +00002164** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2165** the result is guaranteed to only be used as the argument of a length()
2166** or typeof() function, respectively. The loading of large blobs can be
2167** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002168*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002169case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002170 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002171 i64 payloadSize64; /* Number of bytes in the record */
2172 int p1; /* P1 value of the opcode */
2173 int p2; /* column number to retrieve */
2174 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002175 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002176 BtCursor *pCrsr; /* The BTree cursor */
2177 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2178 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002179 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002180 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002181 int i; /* Loop counter */
2182 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002183 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002184 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002185 u8 *zIdx; /* Index into header */
2186 u8 *zEndHdr; /* Pointer to first byte after the header */
2187 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002188 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002189 int szHdr; /* Size of the header size field at start of record */
2190 int avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002191 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002192 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002193
drh856c1032009-06-02 15:21:42 +00002194
2195 p1 = pOp->p1;
2196 p2 = pOp->p2;
2197 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002198 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002199 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002200 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002201 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002202 memAboutToChange(p, pDest);
shane36840fd2009-06-26 16:32:13 +00002203 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002204
drhe61cffc2004-06-12 18:12:15 +00002205 /* This block sets the variable payloadSize to be the total number of
2206 ** bytes in the record.
2207 **
2208 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002209 ** The complete record text is always available for pseudo-tables
2210 ** If the record is stored in a cursor, the complete record text
2211 ** might be available in the pC->aRow cache. Or it might not be.
2212 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002213 **
2214 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002215 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002216 */
drhb73857f2006-03-17 00:25:59 +00002217 pC = p->apCsr[p1];
drha5759672012-10-30 14:39:12 +00002218 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002219#ifndef SQLITE_OMIT_VIRTUALTABLE
2220 assert( pC->pVtabCursor==0 );
2221#endif
shane36840fd2009-06-26 16:32:13 +00002222 pCrsr = pC->pCursor;
2223 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002224 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002225 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002226 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002227 if( pC->nullRow ){
2228 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002229 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002230 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002231 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002232 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002233 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002234 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
drhc27ae612009-07-14 18:35:44 +00002235 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002236 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2237 ** payload size, so it is impossible for payloadSize64 to be
2238 ** larger than 32 bits. */
2239 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002240 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002241 }else{
drhea8ffdf2009-07-22 00:35:23 +00002242 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002243 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002244 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002245 }
drh4a6f3aa2011-08-28 00:19:26 +00002246 }else if( ALWAYS(pC->pseudoTableReg>0) ){
drha6c2ed92009-11-14 23:22:23 +00002247 pReg = &aMem[pC->pseudoTableReg];
drh21172c42012-10-30 00:29:07 +00002248 if( pC->multiPseudo ){
2249 sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
2250 Deephemeralize(pDest);
2251 goto op_column_out;
2252 }
drh3e9ca092009-09-08 01:14:48 +00002253 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002254 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002255 payloadSize = pReg->n;
2256 zRec = pReg->z;
2257 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002258 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002259 }else{
2260 /* Consider the row to be NULL */
2261 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002262 }
2263
drhe6f43fc2011-08-28 02:15:34 +00002264 /* If payloadSize is 0, then just store a NULL. This can happen because of
2265 ** nullRow or because of a corrupt database. */
danielk1977192ac1d2004-05-10 07:17:30 +00002266 if( payloadSize==0 ){
drhe6f43fc2011-08-28 02:15:34 +00002267 MemSetTypeFlag(pDest, MEM_Null);
drhd4e70eb2008-01-02 00:34:36 +00002268 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002269 }
drh35cd6432009-06-05 14:17:21 +00002270 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2271 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002272 goto too_big;
2273 }
danielk1977192ac1d2004-05-10 07:17:30 +00002274
shane36840fd2009-06-26 16:32:13 +00002275 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002276 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002277
drh9188b382004-05-14 21:12:22 +00002278 /* Read and parse the table header. Store the results of the parse
2279 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002280 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002281 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002282 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002283 aOffset = pC->aOffset;
2284 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002285 assert(aType);
drh856c1032009-06-02 15:21:42 +00002286 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002287 pC->aOffset = aOffset = &aType[nField];
2288 pC->payloadSize = payloadSize;
2289 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002290
drhd3194f52004-05-27 19:59:32 +00002291 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002292 if( zRec ){
2293 zData = zRec;
2294 }else{
drhf0863fe2005-06-12 21:35:51 +00002295 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002296 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002297 }else{
drhe51c44f2004-05-30 20:46:09 +00002298 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002299 }
drhe61cffc2004-06-12 18:12:15 +00002300 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2301 ** save the payload in the pC->aRow cache. That will save us from
2302 ** having to make additional calls to fetch the content portion of
2303 ** the record.
2304 */
drh35cd6432009-06-05 14:17:21 +00002305 assert( avail>=0 );
2306 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002307 zRec = zData;
2308 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002309 }else{
2310 pC->aRow = 0;
2311 }
drhd3194f52004-05-27 19:59:32 +00002312 }
drhdda5c082012-03-28 13:41:10 +00002313 /* The following assert is true in all cases except when
drh588f5bc2007-01-02 18:41:54 +00002314 ** the database file has been corrupted externally.
2315 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002316 szHdr = getVarint32((u8*)zData, offset);
2317
2318 /* Make sure a corrupt database has not given us an oversize header.
2319 ** Do this now to avoid an oversize memory allocation.
2320 **
2321 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2322 ** types use so much data space that there can only be 4096 and 32 of
2323 ** them, respectively. So the maximum header length results from a
2324 ** 3-byte type for each of the maximum of 32768 columns plus three
2325 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2326 */
2327 if( offset > 98307 ){
2328 rc = SQLITE_CORRUPT_BKPT;
2329 goto op_column_out;
2330 }
2331
2332 /* Compute in len the number of bytes of data we need to read in order
2333 ** to get nField type values. offset is an upper bound on this. But
2334 ** nField might be significantly less than the true number of columns
2335 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2336 ** We want to minimize len in order to limit the size of the memory
2337 ** allocation, especially if a corrupt database file has caused offset
2338 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2339 ** still exceed Robson memory allocation limits on some configurations.
2340 ** On systems that cannot tolerate large memory allocations, nField*5+3
2341 ** will likely be much smaller since nField will likely be less than
2342 ** 20 or so. This insures that Robson memory allocation limits are
2343 ** not exceeded even for corrupt database files.
2344 */
2345 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002346 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002347
2348 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2349 ** record header in most cases. But they will fail to get the complete
2350 ** record header if the record header does not fit on a single page
2351 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2352 ** acquire the complete header text.
2353 */
drh35cd6432009-06-05 14:17:21 +00002354 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002355 sMem.flags = 0;
2356 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002357 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002358 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002359 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002360 }
drhb6f54522004-05-20 02:42:16 +00002361 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002362 }
drh35cd6432009-06-05 14:17:21 +00002363 zEndHdr = (u8 *)&zData[len];
2364 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002365
drhd3194f52004-05-27 19:59:32 +00002366 /* Scan the header and use it to fill in the aType[] and aOffset[]
2367 ** arrays. aType[i] will contain the type integer for the i-th
2368 ** column and aOffset[i] will contain the offset from the beginning
2369 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002370 */
danielk1977dedf45b2006-01-13 17:12:01 +00002371 for(i=0; i<nField; i++){
2372 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002373 aOffset[i] = offset;
drh5a077b72011-08-29 02:16:18 +00002374 if( zIdx[0]<0x80 ){
2375 t = zIdx[0];
2376 zIdx++;
2377 }else{
2378 zIdx += sqlite3GetVarint32(zIdx, &t);
2379 }
2380 aType[i] = t;
2381 szField = sqlite3VdbeSerialTypeLen(t);
drh6658cd92010-02-05 14:12:53 +00002382 offset += szField;
2383 if( offset<szField ){ /* True if offset overflows */
2384 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2385 break;
2386 }
danielk1977dedf45b2006-01-13 17:12:01 +00002387 }else{
drhdda5c082012-03-28 13:41:10 +00002388 /* If i is less that nField, then there are fewer fields in this
danielk1977dedf45b2006-01-13 17:12:01 +00002389 ** record than SetNumColumns indicated there are columns in the
2390 ** table. Set the offset for any extra columns not present in
drhdda5c082012-03-28 13:41:10 +00002391 ** the record to 0. This tells code below to store the default value
2392 ** for the column instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002393 */
2394 aOffset[i] = 0;
2395 }
drh9188b382004-05-14 21:12:22 +00002396 }
danielk19775f096132008-03-28 15:44:09 +00002397 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002398 sMem.flags = MEM_Null;
2399
danielk19779792eef2006-01-13 15:58:43 +00002400 /* If we have read more header data than was contained in the header,
2401 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002402 ** record, or if the end of the last field appears to be before the end
2403 ** of the record (when all fields present), then we must be dealing
2404 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002405 */
drh6658cd92010-02-05 14:12:53 +00002406 if( (zIdx > zEndHdr) || (offset > payloadSize)
2407 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002408 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002409 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002410 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002411 }
danielk1977192ac1d2004-05-10 07:17:30 +00002412
danielk197736963fd2005-02-19 08:18:05 +00002413 /* Get the column information. If aOffset[p2] is non-zero, then
2414 ** deserialize the value from the record. If aOffset[p2] is zero,
2415 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002416 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002417 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002418 */
danielk197736963fd2005-02-19 08:18:05 +00002419 if( aOffset[p2] ){
2420 assert( rc==SQLITE_OK );
2421 if( zRec ){
drhac5e7492012-03-28 16:14:50 +00002422 /* This is the common case where the whole row fits on a single page */
drhe4c88c02012-01-04 12:57:45 +00002423 VdbeMemRelease(pDest);
danielk1977808ec7c2008-07-29 10:18:57 +00002424 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002425 }else{
drhac5e7492012-03-28 16:14:50 +00002426 /* This branch happens only when the row overflows onto multiple pages */
drhdda5c082012-03-28 13:41:10 +00002427 t = aType[p2];
drha748fdc2012-03-28 01:34:47 +00002428 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
drhdda5c082012-03-28 13:41:10 +00002429 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
drha748fdc2012-03-28 01:34:47 +00002430 ){
2431 /* Content is irrelevant for the typeof() function and for
drhdda5c082012-03-28 13:41:10 +00002432 ** the length(X) function if X is a blob. So we might as well use
drha748fdc2012-03-28 01:34:47 +00002433 ** bogus content rather than reading content from disk. NULL works
2434 ** for text and blob and whatever is in the payloadSize64 variable
2435 ** will work for everything else. */
2436 zData = t<12 ? (char*)&payloadSize64 : 0;
2437 }else{
drhac5e7492012-03-28 16:14:50 +00002438 len = sqlite3VdbeSerialTypeLen(t);
drha748fdc2012-03-28 01:34:47 +00002439 sqlite3VdbeMemMove(&sMem, pDest);
2440 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
2441 &sMem);
2442 if( rc!=SQLITE_OK ){
2443 goto op_column_out;
2444 }
2445 zData = sMem.z;
danielk197736963fd2005-02-19 08:18:05 +00002446 }
drhdda5c082012-03-28 13:41:10 +00002447 sqlite3VdbeSerialGet((u8*)zData, t, pDest);
danielk19777701e812005-01-10 12:59:51 +00002448 }
drhd4e70eb2008-01-02 00:34:36 +00002449 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002450 }else{
danielk197760585dd2008-01-03 08:08:40 +00002451 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002452 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002453 }else{
drhe6f43fc2011-08-28 02:15:34 +00002454 MemSetTypeFlag(pDest, MEM_Null);
danielk1977aee18ef2005-03-09 12:26:50 +00002455 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002456 }
drhfebe1062004-08-28 18:17:48 +00002457
2458 /* If we dynamically allocated space to hold the data (in the
2459 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002460 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002461 ** This prevents a memory copy.
2462 */
danielk19775f096132008-03-28 15:44:09 +00002463 if( sMem.zMalloc ){
2464 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002465 assert( !(pDest->flags & MEM_Dyn) );
2466 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2467 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002468 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002469 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002470 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002471 }
drhfebe1062004-08-28 18:17:48 +00002472
drhd4e70eb2008-01-02 00:34:36 +00002473 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002474
danielk19773c9cc8d2005-01-17 03:40:08 +00002475op_column_out:
drhb7654112008-01-12 12:48:07 +00002476 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002477 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002478 break;
2479}
2480
danielk1977751de562008-04-18 09:01:15 +00002481/* Opcode: Affinity P1 P2 * P4 *
2482**
2483** Apply affinities to a range of P2 registers starting with P1.
2484**
2485** P4 is a string that is P2 characters long. The nth character of the
2486** string indicates the column affinity that should be used for the nth
2487** memory cell in the range.
2488*/
2489case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002490 const char *zAffinity; /* The affinity to be applied */
2491 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002492
drh856c1032009-06-02 15:21:42 +00002493 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002494 assert( zAffinity!=0 );
2495 assert( zAffinity[pOp->p2]==0 );
2496 pIn1 = &aMem[pOp->p1];
2497 while( (cAff = *(zAffinity++))!=0 ){
2498 assert( pIn1 <= &p->aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00002499 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002500 ExpandBlob(pIn1);
2501 applyAffinity(pIn1, cAff, encoding);
2502 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002503 }
2504 break;
2505}
2506
drh1db639c2008-01-17 02:36:28 +00002507/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002508**
drh710c4842010-08-30 01:17:20 +00002509** Convert P2 registers beginning with P1 into the [record format]
2510** use as a data record in a database table or as a key
2511** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002512**
danielk1977751de562008-04-18 09:01:15 +00002513** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002514** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002515** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002516**
drh8a512562005-11-14 22:29:05 +00002517** The mapping from character to affinity is given by the SQLITE_AFF_
2518** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002519**
drh66a51672008-01-03 00:01:23 +00002520** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002521*/
drh1db639c2008-01-17 02:36:28 +00002522case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002523 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2524 Mem *pRec; /* The new record */
2525 u64 nData; /* Number of bytes of data space */
2526 int nHdr; /* Number of bytes of header space */
2527 i64 nByte; /* Data space required for this record */
2528 int nZero; /* Number of zero bytes at the end of the record */
2529 int nVarint; /* Number of bytes in a varint */
2530 u32 serial_type; /* Type field */
2531 Mem *pData0; /* First field to be combined into the record */
2532 Mem *pLast; /* Last field of the record */
2533 int nField; /* Number of fields in the record */
2534 char *zAffinity; /* The affinity string for the record */
2535 int file_format; /* File format to use for encoding */
2536 int i; /* Space used in zNewRecord[] */
2537 int len; /* Length of a field */
2538
drhf3218fe2004-05-28 08:21:02 +00002539 /* Assuming the record contains N fields, the record format looks
2540 ** like this:
2541 **
drh7a224de2004-06-02 01:22:02 +00002542 ** ------------------------------------------------------------------------
2543 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2544 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002545 **
drh9cbf3422008-01-17 16:22:13 +00002546 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2547 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002548 **
2549 ** Each type field is a varint representing the serial type of the
2550 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002551 ** hdr-size field is also a varint which is the offset from the beginning
2552 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002553 */
drh856c1032009-06-02 15:21:42 +00002554 nData = 0; /* Number of bytes of data space */
2555 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002556 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002557 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002558 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002559 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002560 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002561 nField = pOp->p2;
2562 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002563 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002564
drh2b4ded92010-09-27 21:09:31 +00002565 /* Identify the output register */
2566 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2567 pOut = &aMem[pOp->p3];
2568 memAboutToChange(p, pOut);
2569
drhf3218fe2004-05-28 08:21:02 +00002570 /* Loop through the elements that will make up the record to figure
2571 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002572 */
drha2a49dc2008-01-02 14:28:13 +00002573 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002574 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002575 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002576 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002577 }
danielk1977d908f5a2007-05-11 07:08:28 +00002578 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002579 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002580 }
drhd946db02005-12-29 19:23:06 +00002581 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002582 len = sqlite3VdbeSerialTypeLen(serial_type);
2583 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002584 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002585 if( pRec->flags & MEM_Zero ){
2586 /* Only pure zero-filled BLOBs can be input to this Opcode.
2587 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002588 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002589 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002590 nZero = 0;
2591 }
danielk19778d059842004-05-12 11:24:02 +00002592 }
danielk19773d1bfea2004-05-14 11:00:53 +00002593
drhf3218fe2004-05-28 08:21:02 +00002594 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002595 nHdr += nVarint = sqlite3VarintLen(nHdr);
2596 if( nVarint<sqlite3VarintLen(nHdr) ){
2597 nHdr++;
2598 }
drhfdf972a2007-05-02 13:30:27 +00002599 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002600 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002601 goto too_big;
2602 }
drhf3218fe2004-05-28 08:21:02 +00002603
danielk1977a7a8e142008-02-13 18:25:27 +00002604 /* Make sure the output register has a buffer large enough to store
2605 ** the new record. The output register (pOp->p3) is not allowed to
2606 ** be one of the input registers (because the following call to
2607 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2608 */
drh9c1905f2008-12-10 22:32:56 +00002609 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002610 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002611 }
danielk1977a7a8e142008-02-13 18:25:27 +00002612 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002613
2614 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002615 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002616 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002617 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002618 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002619 }
drha2a49dc2008-01-02 14:28:13 +00002620 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002621 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002622 }
drhfdf972a2007-05-02 13:30:27 +00002623 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002624
drh9cbf3422008-01-17 16:22:13 +00002625 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002626 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002627 pOut->flags = MEM_Blob | MEM_Dyn;
2628 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002629 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002630 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002631 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002632 }
drh477df4b2008-01-05 18:48:24 +00002633 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002634 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002635 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002636 break;
2637}
2638
danielk1977a5533162009-02-24 10:01:51 +00002639/* Opcode: Count P1 P2 * * *
2640**
2641** Store the number of entries (an integer value) in the table or index
2642** opened by cursor P1 in register P2
2643*/
2644#ifndef SQLITE_OMIT_BTREECOUNT
2645case OP_Count: { /* out2-prerelease */
2646 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002647 BtCursor *pCrsr;
2648
2649 pCrsr = p->apCsr[pOp->p1]->pCursor;
dana205a482011-08-27 18:48:57 +00002650 if( ALWAYS(pCrsr) ){
drh818e39a2009-04-02 20:27:28 +00002651 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2652 }else{
2653 nEntry = 0;
2654 }
danielk1977a5533162009-02-24 10:01:51 +00002655 pOut->u.i = nEntry;
2656 break;
2657}
2658#endif
2659
danielk1977fd7f0452008-12-17 17:30:26 +00002660/* Opcode: Savepoint P1 * * P4 *
2661**
2662** Open, release or rollback the savepoint named by parameter P4, depending
2663** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2664** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2665*/
2666case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002667 int p1; /* Value of P1 operand */
2668 char *zName; /* Name of savepoint */
2669 int nName;
2670 Savepoint *pNew;
2671 Savepoint *pSavepoint;
2672 Savepoint *pTmp;
2673 int iSavepoint;
2674 int ii;
2675
2676 p1 = pOp->p1;
2677 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002678
2679 /* Assert that the p1 parameter is valid. Also that if there is no open
2680 ** transaction, then there cannot be any savepoints.
2681 */
2682 assert( db->pSavepoint==0 || db->autoCommit==0 );
2683 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2684 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2685 assert( checkSavepointCount(db) );
2686
2687 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002688 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002689 /* A new savepoint cannot be created if there are active write
2690 ** statements (i.e. open read/write incremental blob handles).
2691 */
2692 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2693 "SQL statements in progress");
2694 rc = SQLITE_BUSY;
2695 }else{
drh856c1032009-06-02 15:21:42 +00002696 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002697
drhbe07ec52011-06-03 12:15:26 +00002698#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002699 /* This call is Ok even if this savepoint is actually a transaction
2700 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2701 ** If this is a transaction savepoint being opened, it is guaranteed
2702 ** that the db->aVTrans[] array is empty. */
2703 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002704 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2705 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002706 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002707#endif
dand9495cd2011-04-27 12:08:04 +00002708
danielk1977fd7f0452008-12-17 17:30:26 +00002709 /* Create a new savepoint structure. */
2710 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2711 if( pNew ){
2712 pNew->zName = (char *)&pNew[1];
2713 memcpy(pNew->zName, zName, nName+1);
2714
2715 /* If there is no open transaction, then mark this as a special
2716 ** "transaction savepoint". */
2717 if( db->autoCommit ){
2718 db->autoCommit = 0;
2719 db->isTransactionSavepoint = 1;
2720 }else{
2721 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002722 }
danielk1977fd7f0452008-12-17 17:30:26 +00002723
2724 /* Link the new savepoint into the database handle's list. */
2725 pNew->pNext = db->pSavepoint;
2726 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002727 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002728 }
2729 }
2730 }else{
drh856c1032009-06-02 15:21:42 +00002731 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002732
2733 /* Find the named savepoint. If there is no such savepoint, then an
2734 ** an error is returned to the user. */
2735 for(
drh856c1032009-06-02 15:21:42 +00002736 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002737 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002738 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002739 ){
2740 iSavepoint++;
2741 }
2742 if( !pSavepoint ){
2743 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2744 rc = SQLITE_ERROR;
drh0f198a72012-02-13 16:43:16 +00002745 }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002746 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002747 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002748 */
2749 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002750 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002751 );
2752 rc = SQLITE_BUSY;
2753 }else{
2754
2755 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002756 ** and this is a RELEASE command, then the current transaction
2757 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002758 */
2759 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2760 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002761 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002762 goto vdbe_return;
2763 }
danielk1977fd7f0452008-12-17 17:30:26 +00002764 db->autoCommit = 1;
2765 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2766 p->pc = pc;
2767 db->autoCommit = 0;
2768 p->rc = rc = SQLITE_BUSY;
2769 goto vdbe_return;
2770 }
danielk197734cf35d2008-12-18 18:31:38 +00002771 db->isTransactionSavepoint = 0;
2772 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002773 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002774 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002775 if( p1==SAVEPOINT_ROLLBACK ){
2776 for(ii=0; ii<db->nDb; ii++){
2777 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2778 }
drh0f198a72012-02-13 16:43:16 +00002779 }
2780 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002781 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2782 if( rc!=SQLITE_OK ){
2783 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002784 }
danielk1977fd7f0452008-12-17 17:30:26 +00002785 }
drh9f0bbf92009-01-02 21:08:09 +00002786 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002787 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002788 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002789 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002790 }
2791 }
2792
2793 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2794 ** savepoints nested inside of the savepoint being operated on. */
2795 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002796 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002797 db->pSavepoint = pTmp->pNext;
2798 sqlite3DbFree(db, pTmp);
2799 db->nSavepoint--;
2800 }
2801
dan1da40a32009-09-19 17:00:31 +00002802 /* If it is a RELEASE, then destroy the savepoint being operated on
2803 ** too. If it is a ROLLBACK TO, then set the number of deferred
2804 ** constraint violations present in the database to the value stored
2805 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002806 if( p1==SAVEPOINT_RELEASE ){
2807 assert( pSavepoint==db->pSavepoint );
2808 db->pSavepoint = pSavepoint->pNext;
2809 sqlite3DbFree(db, pSavepoint);
2810 if( !isTransaction ){
2811 db->nSavepoint--;
2812 }
dan1da40a32009-09-19 17:00:31 +00002813 }else{
2814 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002815 }
dand9495cd2011-04-27 12:08:04 +00002816
2817 if( !isTransaction ){
2818 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2819 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2820 }
danielk1977fd7f0452008-12-17 17:30:26 +00002821 }
2822 }
2823
2824 break;
2825}
2826
drh98757152008-01-09 23:04:12 +00002827/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002828**
2829** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002830** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002831** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2832** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002833**
2834** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002835*/
drh9cbf3422008-01-17 16:22:13 +00002836case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002837 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002838 int iRollback;
drh856c1032009-06-02 15:21:42 +00002839 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002840
drh856c1032009-06-02 15:21:42 +00002841 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002842 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002843 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002844 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002845 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002846 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002847
drh0f198a72012-02-13 16:43:16 +00002848#if 0
shane68c02732009-06-09 18:14:18 +00002849 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002850 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002851 ** still running, and a transaction is active, return an error indicating
2852 ** that the other VMs must complete first.
2853 */
drhad4a4b82008-11-05 16:37:34 +00002854 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2855 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002856 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002857 }else
2858#endif
2859 if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002860 /* If this instruction implements a COMMIT and other VMs are writing
2861 ** return an error indicating that the other VMs must complete first.
2862 */
2863 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2864 "SQL statements in progress");
2865 rc = SQLITE_BUSY;
2866 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002867 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002868 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002869 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002870 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002871 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002872 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002873 }else{
shane7d3846a2008-12-11 02:58:26 +00002874 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002875 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002876 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002877 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002878 p->rc = rc = SQLITE_BUSY;
2879 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002880 }
danielk19771d850a72004-05-31 08:26:49 +00002881 }
danielk1977bd434552009-03-18 10:33:00 +00002882 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002883 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002884 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002885 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002886 }else{
drh900b31e2007-08-28 02:27:51 +00002887 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002888 }
drh900b31e2007-08-28 02:27:51 +00002889 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002890 }else{
drhf089aa42008-07-08 19:34:06 +00002891 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002892 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002893 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002894 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002895
2896 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002897 }
2898 break;
2899}
2900
drh98757152008-01-09 23:04:12 +00002901/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002902**
2903** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002904** opcode is encountered. Depending on the ON CONFLICT setting, the
2905** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002906**
drh001bbcb2003-03-19 03:14:00 +00002907** P1 is the index of the database file on which the transaction is
2908** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002909** file used for temporary tables. Indices of 2 or more are used for
2910** attached databases.
drhcabb0812002-09-14 13:47:32 +00002911**
drh80242052004-06-09 00:48:12 +00002912** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002913** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002914** other process can start another write transaction while this transaction is
2915** underway. Starting a write transaction also creates a rollback journal. A
2916** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002917** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2918** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002919**
dane0af83a2009-09-08 19:15:01 +00002920** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2921** true (this flag is set if the Vdbe may modify more than one row and may
2922** throw an ABORT exception), a statement transaction may also be opened.
2923** More specifically, a statement transaction is opened iff the database
2924** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00002925** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00002926** VDBE to be rolled back after an error without having to roll back the
2927** entire transaction. If no error is encountered, the statement transaction
2928** will automatically commit when the VDBE halts.
2929**
danielk1977ee5741e2004-05-31 10:01:34 +00002930** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002931*/
drh9cbf3422008-01-17 16:22:13 +00002932case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002933 Btree *pBt;
2934
drh653b82a2009-06-22 11:10:47 +00002935 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002936 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh653b82a2009-06-22 11:10:47 +00002937 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002938
danielk197724162fe2004-06-04 06:22:00 +00002939 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002940 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002941 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002942 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002943 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002944 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002945 }
drh9e9f1bd2009-10-13 15:36:51 +00002946 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002947 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002948 }
dane0af83a2009-09-08 19:15:01 +00002949
2950 if( pOp->p2 && p->usesStmtJournal
2951 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2952 ){
2953 assert( sqlite3BtreeIsInTrans(pBt) );
2954 if( p->iStatement==0 ){
2955 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2956 db->nStatement++;
2957 p->iStatement = db->nSavepoint + db->nStatement;
2958 }
dana311b802011-04-26 19:21:34 +00002959
drh346506f2011-05-25 01:16:42 +00002960 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00002961 if( rc==SQLITE_OK ){
2962 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2963 }
dan1da40a32009-09-19 17:00:31 +00002964
2965 /* Store the current value of the database handles deferred constraint
2966 ** counter. If the statement transaction needs to be rolled back,
2967 ** the value of this counter needs to be restored too. */
2968 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002969 }
drhb86ccfb2003-01-28 23:13:10 +00002970 }
drh5e00f6c2001-09-13 13:46:56 +00002971 break;
2972}
2973
drhb1fdb2a2008-01-05 04:06:03 +00002974/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002975**
drh9cbf3422008-01-17 16:22:13 +00002976** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002977** P3==1 is the schema version. P3==2 is the database format.
2978** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002979** the main database file and P1==1 is the database file used to store
2980** temporary tables.
drh4a324312001-12-21 14:30:42 +00002981**
drh50e5dad2001-09-15 00:57:28 +00002982** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002983** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002984** executing this instruction.
2985*/
drh4c583122008-01-04 22:01:03 +00002986case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002987 int iMeta;
drh856c1032009-06-02 15:21:42 +00002988 int iDb;
2989 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002990
drh856c1032009-06-02 15:21:42 +00002991 iDb = pOp->p1;
2992 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002993 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002994 assert( iDb>=0 && iDb<db->nDb );
2995 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00002996 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002997
danielk1977602b4662009-07-02 07:47:33 +00002998 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002999 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003000 break;
3001}
3002
drh98757152008-01-09 23:04:12 +00003003/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003004**
drh98757152008-01-09 23:04:12 +00003005** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003006** into cookie number P2 of database P1. P2==1 is the schema version.
3007** P2==2 is the database format. P2==3 is the recommended pager cache
3008** size, and so forth. P1==0 is the main database file and P1==1 is the
3009** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003010**
3011** A transaction must be started before executing this opcode.
3012*/
drh9cbf3422008-01-17 16:22:13 +00003013case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003014 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003015 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003016 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003017 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00003018 pDb = &db->aDb[pOp->p1];
3019 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003020 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003021 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003022 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003023 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003024 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3025 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003026 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003027 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003028 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003029 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003030 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003031 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003032 }
drhfd426c62006-01-30 15:34:22 +00003033 if( pOp->p1==1 ){
3034 /* Invalidate all prepared statements whenever the TEMP database
3035 ** schema is changed. Ticket #1644 */
3036 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003037 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003038 }
drh50e5dad2001-09-15 00:57:28 +00003039 break;
3040}
3041
drhc2a75552011-03-18 21:55:46 +00003042/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003043**
drh001bbcb2003-03-19 03:14:00 +00003044** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00003045** schema version) and make sure it is equal to P2 and that the
3046** generation counter on the local schema parse equals P3.
3047**
drh001bbcb2003-03-19 03:14:00 +00003048** P1 is the database number which is 0 for the main database file
3049** and 1 for the file holding temporary tables and some higher number
3050** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00003051**
3052** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00003053** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00003054** and that the current process needs to reread the schema.
3055**
3056** Either a transaction needs to have been started or an OP_Open needs
3057** to be executed (to establish a read lock) before this opcode is
3058** invoked.
3059*/
drh9cbf3422008-01-17 16:22:13 +00003060case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00003061 int iMeta;
drhc2a75552011-03-18 21:55:46 +00003062 int iGen;
drhc275b4e2004-07-19 17:25:24 +00003063 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00003064
drh001bbcb2003-03-19 03:14:00 +00003065 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003066 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00003067 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drhc275b4e2004-07-19 17:25:24 +00003068 pBt = db->aDb[pOp->p1].pBt;
3069 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00003070 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00003071 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00003072 }else{
drhfcd71b62011-04-05 22:08:24 +00003073 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00003074 }
drhc2a75552011-03-18 21:55:46 +00003075 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00003076 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00003077 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00003078 /* If the schema-cookie from the database file matches the cookie
3079 ** stored with the in-memory representation of the schema, do
3080 ** not reload the schema from the database file.
3081 **
shane21e7feb2008-05-30 15:59:49 +00003082 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00003083 ** Often, v-tables store their data in other SQLite tables, which
3084 ** are queried from within xNext() and other v-table methods using
3085 ** prepared queries. If such a query is out-of-date, we do not want to
3086 ** discard the database schema, as the user code implementing the
3087 ** v-table would have to be ready for the sqlite3_vtab structure itself
3088 ** to be invalidated whenever sqlite3_step() is called from within
3089 ** a v-table method.
3090 */
3091 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
drh81028a42012-05-15 18:28:27 +00003092 sqlite3ResetOneSchema(db, pOp->p1);
danielk1977896e7922007-04-17 08:32:33 +00003093 }
3094
drh5b6c5452011-02-22 03:34:56 +00003095 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00003096 rc = SQLITE_SCHEMA;
3097 }
3098 break;
3099}
3100
drh98757152008-01-09 23:04:12 +00003101/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003102**
drhecdc7532001-09-23 02:35:53 +00003103** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003104** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003105** P3==0 means the main database, P3==1 means the database used for
3106** temporary tables, and P3>1 means used the corresponding attached
3107** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003108** values need not be contiguous but all P1 values should be small integers.
3109** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003110**
drh98757152008-01-09 23:04:12 +00003111** If P5!=0 then use the content of register P2 as the root page, not
3112** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003113**
drhb19a2bc2001-09-16 00:13:26 +00003114** There will be a read lock on the database whenever there is an
3115** open cursor. If the database was unlocked prior to this instruction
3116** then a read lock is acquired as part of this instruction. A read
3117** lock allows other processes to read the database but prohibits
3118** any other process from modifying the database. The read lock is
3119** released when all cursors are closed. If this instruction attempts
3120** to get a read lock but fails, the script terminates with an
3121** SQLITE_BUSY error code.
3122**
danielk1977d336e222009-02-20 10:58:41 +00003123** The P4 value may be either an integer (P4_INT32) or a pointer to
3124** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3125** structure, then said structure defines the content and collating
3126** sequence of the index being opened. Otherwise, if P4 is an integer
3127** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003128**
drh001bbcb2003-03-19 03:14:00 +00003129** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003130*/
drh98757152008-01-09 23:04:12 +00003131/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00003132**
3133** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003134** page is P2. Or if P5!=0 use the content of register P2 to find the
3135** root page.
drhecdc7532001-09-23 02:35:53 +00003136**
danielk1977d336e222009-02-20 10:58:41 +00003137** The P4 value may be either an integer (P4_INT32) or a pointer to
3138** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3139** structure, then said structure defines the content and collating
3140** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003141** value, it is set to the number of columns in the table, or to the
3142** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003143**
drh001bbcb2003-03-19 03:14:00 +00003144** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003145** in read/write mode. For a given table, there can be one or more read-only
3146** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003147**
drh001bbcb2003-03-19 03:14:00 +00003148** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003149*/
drh9cbf3422008-01-17 16:22:13 +00003150case OP_OpenRead:
3151case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003152 int nField;
3153 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003154 int p2;
3155 int iDb;
drhf57b3392001-10-08 13:22:32 +00003156 int wrFlag;
3157 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003158 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003159 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003160
dan428c2182012-08-06 18:50:11 +00003161 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3162 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
3163
danfa401de2009-10-16 14:55:03 +00003164 if( p->expired ){
3165 rc = SQLITE_ABORT;
3166 break;
3167 }
3168
drh856c1032009-06-02 15:21:42 +00003169 nField = 0;
3170 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003171 p2 = pOp->p2;
3172 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003173 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003174 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003175 pDb = &db->aDb[iDb];
3176 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003177 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003178 if( pOp->opcode==OP_OpenWrite ){
3179 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003180 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003181 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3182 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003183 }
3184 }else{
3185 wrFlag = 0;
3186 }
dan428c2182012-08-06 18:50:11 +00003187 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003188 assert( p2>0 );
3189 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003190 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003191 assert( memIsValid(pIn2) );
3192 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003193 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003194 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003195 /* The p2 value always comes from a prior OP_CreateTable opcode and
3196 ** that opcode will always set the p2 value to 2 or more or else fail.
3197 ** If there were a failure, the prepared statement would have halted
3198 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003199 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003200 rc = SQLITE_CORRUPT_BKPT;
3201 goto abort_due_to_error;
3202 }
drh5edc3122001-09-13 21:53:09 +00003203 }
danielk1977d336e222009-02-20 10:58:41 +00003204 if( pOp->p4type==P4_KEYINFO ){
3205 pKeyInfo = pOp->p4.pKeyInfo;
3206 pKeyInfo->enc = ENC(p->db);
3207 nField = pKeyInfo->nField+1;
3208 }else if( pOp->p4type==P4_INT32 ){
3209 nField = pOp->p4.i;
3210 }
drh653b82a2009-06-22 11:10:47 +00003211 assert( pOp->p1>=0 );
3212 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003213 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003214 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003215 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003216 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3217 pCur->pKeyInfo = pKeyInfo;
dan428c2182012-08-06 18:50:11 +00003218 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3219 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
danielk1977d336e222009-02-20 10:58:41 +00003220
dana205a482011-08-27 18:48:57 +00003221 /* Since it performs no memory allocation or IO, the only value that
3222 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3223 assert( rc==SQLITE_OK );
danielk1977172114a2009-07-07 15:47:12 +00003224
3225 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3226 ** SQLite used to check if the root-page flags were sane at this point
3227 ** and report database corruption if they were not, but this check has
3228 ** since moved into the btree layer. */
3229 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3230 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003231 break;
3232}
3233
drh2a5d9902011-08-26 00:34:45 +00003234/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003235**
drhb9bb7c12006-06-11 23:41:55 +00003236** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003237** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003238** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003239** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003240**
drh25d3adb2010-04-05 15:11:08 +00003241** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003242** The cursor points to a BTree table if P4==0 and to a BTree index
3243** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003244** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003245**
3246** This opcode was once called OpenTemp. But that created
3247** confusion because the term "temp table", might refer either
3248** to a TEMP table at the SQL level, or to a table opened by
3249** this opcode. Then this opcode was call OpenVirtual. But
3250** that created confusion with the whole virtual-table idea.
drh2a5d9902011-08-26 00:34:45 +00003251**
3252** The P5 parameter can be a mask of the BTREE_* flags defined
3253** in btree.h. These flags control aspects of the operation of
3254** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3255** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003256*/
drha21a64d2010-04-06 22:33:55 +00003257/* Opcode: OpenAutoindex P1 P2 * P4 *
3258**
3259** This opcode works the same as OP_OpenEphemeral. It has a
3260** different name to distinguish its use. Tables created using
3261** by this opcode will be used for automatically created transient
3262** indices in joins.
3263*/
3264case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003265case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003266 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003267 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003268 SQLITE_OPEN_READWRITE |
3269 SQLITE_OPEN_CREATE |
3270 SQLITE_OPEN_EXCLUSIVE |
3271 SQLITE_OPEN_DELETEONCLOSE |
3272 SQLITE_OPEN_TRANSIENT_DB;
3273
drh653b82a2009-06-22 11:10:47 +00003274 assert( pOp->p1>=0 );
3275 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003276 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003277 pCx->nullRow = 1;
dan689ab892011-08-12 15:02:00 +00003278 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3279 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003280 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003281 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003282 }
3283 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003284 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003285 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003286 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003287 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003288 */
danielk19772dca4ac2008-01-03 11:50:29 +00003289 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003290 int pgno;
drh66a51672008-01-03 00:01:23 +00003291 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003292 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003293 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003294 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003295 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003296 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003297 pCx->pKeyInfo = pOp->p4.pKeyInfo;
dan689ab892011-08-12 15:02:00 +00003298 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003299 }
drhf0863fe2005-06-12 21:35:51 +00003300 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003301 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003302 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003303 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003304 }
drh5e00f6c2001-09-13 13:46:56 +00003305 }
drhd4187c72010-08-30 22:15:45 +00003306 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003307 pCx->isIndex = !pCx->isTable;
dan5134d132011-09-02 10:31:11 +00003308 break;
3309}
3310
drhfc5e5462012-12-03 17:04:40 +00003311/* Opcode: SorterOpen P1 P2 * P4 *
dan5134d132011-09-02 10:31:11 +00003312**
3313** This opcode works like OP_OpenEphemeral except that it opens
3314** a transient index that is specifically designed to sort large
3315** tables using an external merge-sort algorithm.
3316*/
drhca892a72011-09-03 00:17:51 +00003317case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003318 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003319
dan5134d132011-09-02 10:31:11 +00003320 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3321 if( pCx==0 ) goto no_mem;
3322 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3323 pCx->pKeyInfo->enc = ENC(p->db);
3324 pCx->isSorter = 1;
3325 rc = sqlite3VdbeSorterInit(db, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003326 break;
3327}
3328
drh980db4b2012-10-30 14:44:14 +00003329/* Opcode: OpenPseudo P1 P2 P3 * P5
drh70ce3f02003-04-15 19:22:22 +00003330**
3331** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003332** row of data. The content of that one row in the content of memory
drh21172c42012-10-30 00:29:07 +00003333** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
3334** MEM_Blob content contained in register P2. When P5==1, then the
3335** row is represented by P3 consecutive registers beginning with P2.
drh70ce3f02003-04-15 19:22:22 +00003336**
drh2d8d7ce2010-02-15 15:17:05 +00003337** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003338** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003339** individual columns using the OP_Column opcode. The OP_Column opcode
3340** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003341**
3342** P3 is the number of fields in the records that will be stored by
3343** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003344*/
drh9cbf3422008-01-17 16:22:13 +00003345case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003346 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003347
drh653b82a2009-06-22 11:10:47 +00003348 assert( pOp->p1>=0 );
3349 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003350 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003351 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003352 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003353 pCx->isTable = 1;
3354 pCx->isIndex = 0;
drh21172c42012-10-30 00:29:07 +00003355 pCx->multiPseudo = pOp->p5;
drh70ce3f02003-04-15 19:22:22 +00003356 break;
3357}
3358
drh98757152008-01-09 23:04:12 +00003359/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003360**
3361** Close a cursor previously opened as P1. If P1 is not
3362** currently open, this instruction is a no-op.
3363*/
drh9cbf3422008-01-17 16:22:13 +00003364case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003365 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3366 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3367 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003368 break;
3369}
3370
drh959403f2008-12-12 17:56:16 +00003371/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003372**
danielk1977b790c6c2008-04-18 10:25:24 +00003373** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003374** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003375** to an SQL index, then P3 is the first in an array of P4 registers
3376** that are used as an unpacked index key.
3377**
3378** Reposition cursor P1 so that it points to the smallest entry that
3379** is greater than or equal to the key value. If there are no records
3380** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003381**
drh959403f2008-12-12 17:56:16 +00003382** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003383*/
drh959403f2008-12-12 17:56:16 +00003384/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003385**
danielk1977b790c6c2008-04-18 10:25:24 +00003386** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003387** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003388** to an SQL index, then P3 is the first in an array of P4 registers
3389** that are used as an unpacked index key.
3390**
3391** Reposition cursor P1 so that it points to the smallest entry that
3392** is greater than the key value. If there are no records greater than
3393** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003394**
drh959403f2008-12-12 17:56:16 +00003395** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003396*/
drh959403f2008-12-12 17:56:16 +00003397/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003398**
danielk1977b790c6c2008-04-18 10:25:24 +00003399** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003400** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003401** to an SQL index, then P3 is the first in an array of P4 registers
3402** that are used as an unpacked index key.
3403**
3404** Reposition cursor P1 so that it points to the largest entry that
3405** is less than the key value. If there are no records less than
3406** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003407**
drh959403f2008-12-12 17:56:16 +00003408** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003409*/
drh959403f2008-12-12 17:56:16 +00003410/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003411**
danielk1977b790c6c2008-04-18 10:25:24 +00003412** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003413** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003414** to an SQL index, then P3 is the first in an array of P4 registers
3415** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003416**
danielk1977b790c6c2008-04-18 10:25:24 +00003417** Reposition cursor P1 so that it points to the largest entry that
3418** is less than or equal to the key value. If there are no records
3419** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003420**
drh959403f2008-12-12 17:56:16 +00003421** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003422*/
drh959403f2008-12-12 17:56:16 +00003423case OP_SeekLt: /* jump, in3 */
3424case OP_SeekLe: /* jump, in3 */
3425case OP_SeekGe: /* jump, in3 */
3426case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003427 int res;
3428 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003429 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003430 UnpackedRecord r;
3431 int nField;
3432 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003433
drh653b82a2009-06-22 11:10:47 +00003434 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003435 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003436 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003437 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003438 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003439 assert( OP_SeekLe == OP_SeekLt+1 );
3440 assert( OP_SeekGe == OP_SeekLt+2 );
3441 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003442 assert( pC->isOrdered );
dana205a482011-08-27 18:48:57 +00003443 if( ALWAYS(pC->pCursor!=0) ){
drh7cf6e4d2004-05-19 14:56:55 +00003444 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003445 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003446 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003447 /* The input value in P3 might be of any type: integer, real, string,
3448 ** blob, or NULL. But it needs to be an integer before we can do
3449 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003450 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003451 applyNumericAffinity(pIn3);
3452 iKey = sqlite3VdbeIntValue(pIn3);
3453 pC->rowidIsValid = 0;
3454
3455 /* If the P3 value could not be converted into an integer without
3456 ** loss of information, then special processing is required... */
3457 if( (pIn3->flags & MEM_Int)==0 ){
3458 if( (pIn3->flags & MEM_Real)==0 ){
3459 /* If the P3 value cannot be converted into any kind of a number,
3460 ** then the seek is not possible, so jump to P2 */
3461 pc = pOp->p2 - 1;
3462 break;
3463 }
3464 /* If we reach this point, then the P3 value must be a floating
3465 ** point number. */
3466 assert( (pIn3->flags & MEM_Real)!=0 );
3467
3468 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003469 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003470 ** integer. */
3471 res = 1;
3472 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003473 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003474 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3475 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3476 }
3477 }else{
drh1f350122009-11-13 20:52:43 +00003478 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003479 rc = sqlite3BtreeLast(pC->pCursor, &res);
3480 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3481 }
3482 }
3483 if( res ){
3484 pc = pOp->p2 - 1;
3485 }
3486 break;
3487 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3488 /* Use the ceiling() function to convert real->int */
3489 if( pIn3->r > (double)iKey ) iKey++;
3490 }else{
3491 /* Use the floor() function to convert real->int */
3492 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3493 if( pIn3->r < (double)iKey ) iKey--;
3494 }
3495 }
drhe63d9992008-08-13 19:11:48 +00003496 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003497 if( rc!=SQLITE_OK ){
3498 goto abort_due_to_error;
3499 }
drh959403f2008-12-12 17:56:16 +00003500 if( res==0 ){
3501 pC->rowidIsValid = 1;
3502 pC->lastRowid = iKey;
3503 }
drh5e00f6c2001-09-13 13:46:56 +00003504 }else{
drh856c1032009-06-02 15:21:42 +00003505 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003506 assert( pOp->p4type==P4_INT32 );
3507 assert( nField>0 );
3508 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003509 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003510
3511 /* The next line of code computes as follows, only faster:
3512 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3513 ** r.flags = UNPACKED_INCRKEY;
3514 ** }else{
3515 ** r.flags = 0;
3516 ** }
3517 */
danfbfe3882013-04-08 10:38:57 +00003518 r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003519 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3520 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3521 assert( oc!=OP_SeekGe || r.flags==0 );
3522 assert( oc!=OP_SeekLt || r.flags==0 );
3523
drha6c2ed92009-11-14 23:22:23 +00003524 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003525#ifdef SQLITE_DEBUG
3526 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3527#endif
drh039fc322009-11-17 18:31:47 +00003528 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003529 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003530 if( rc!=SQLITE_OK ){
3531 goto abort_due_to_error;
3532 }
drhf0863fe2005-06-12 21:35:51 +00003533 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003534 }
drha11846b2004-01-07 18:52:56 +00003535 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003536 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003537#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003538 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003539#endif
drh1f350122009-11-13 20:52:43 +00003540 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003541 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003542 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003543 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003544 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003545 }else{
3546 res = 0;
drh8721ce42001-11-07 14:22:00 +00003547 }
drh7cf6e4d2004-05-19 14:56:55 +00003548 }else{
drh959403f2008-12-12 17:56:16 +00003549 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3550 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003551 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3552 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003553 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003554 }else{
3555 /* res might be negative because the table is empty. Check to
3556 ** see if this is the case.
3557 */
drhf328bc82004-05-10 23:29:49 +00003558 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003559 }
drh1af3fdb2004-07-18 21:33:01 +00003560 }
drh91fd4d42008-01-19 20:11:25 +00003561 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003562 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003563 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003564 }
drhaa736092009-06-22 00:55:30 +00003565 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003566 /* This happens when attempting to open the sqlite3_master table
3567 ** for read access returns SQLITE_EMPTY. In this case always
3568 ** take the jump (since there are no records in the table).
3569 */
3570 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003571 }
drh5e00f6c2001-09-13 13:46:56 +00003572 break;
3573}
3574
drh959403f2008-12-12 17:56:16 +00003575/* Opcode: Seek P1 P2 * * *
3576**
3577** P1 is an open table cursor and P2 is a rowid integer. Arrange
3578** for P1 to move so that it points to the rowid given by P2.
3579**
3580** This is actually a deferred seek. Nothing actually happens until
3581** the cursor is used to read a record. That way, if no reads
3582** occur, no unnecessary I/O happens.
3583*/
3584case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003585 VdbeCursor *pC;
3586
drh653b82a2009-06-22 11:10:47 +00003587 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3588 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003589 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003590 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003591 assert( pC->isTable );
3592 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003593 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003594 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3595 pC->rowidIsValid = 0;
3596 pC->deferredMoveto = 1;
3597 }
3598 break;
3599}
3600
3601
drh8cff69d2009-11-12 19:59:44 +00003602/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003603**
drh8cff69d2009-11-12 19:59:44 +00003604** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3605** P4>0 then register P3 is the first of P4 registers that form an unpacked
3606** record.
3607**
3608** Cursor P1 is on an index btree. If the record identified by P3 and P4
3609** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003610** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003611*/
drh8cff69d2009-11-12 19:59:44 +00003612/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003613**
drh8cff69d2009-11-12 19:59:44 +00003614** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3615** P4>0 then register P3 is the first of P4 registers that form an unpacked
3616** record.
3617**
3618** Cursor P1 is on an index btree. If the record identified by P3 and P4
3619** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3620** does contain an entry whose prefix matches the P3/P4 record then control
3621** falls through to the next instruction and P1 is left pointing at the
3622** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003623**
drhcb6d50e2008-08-21 19:28:30 +00003624** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003625*/
drh9cbf3422008-01-17 16:22:13 +00003626case OP_NotFound: /* jump, in3 */
3627case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003628 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003629 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003630 int res;
dan03e9cfc2011-09-05 14:20:27 +00003631 char *pFree;
drh856c1032009-06-02 15:21:42 +00003632 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003633 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003634 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3635
dan0ff297e2009-09-25 17:03:14 +00003636#ifdef SQLITE_TEST
3637 sqlite3_found_count++;
3638#endif
3639
drh856c1032009-06-02 15:21:42 +00003640 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003641 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003642 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003643 pC = p->apCsr[pOp->p1];
3644 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003645 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003646 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003647
drhf0863fe2005-06-12 21:35:51 +00003648 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003649 if( pOp->p4.i>0 ){
3650 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003651 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003652 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003653#ifdef SQLITE_DEBUG
3654 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3655#endif
drh8cff69d2009-11-12 19:59:44 +00003656 r.flags = UNPACKED_PREFIX_MATCH;
3657 pIdxKey = &r;
3658 }else{
dan03e9cfc2011-09-05 14:20:27 +00003659 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3660 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3661 );
3662 if( pIdxKey==0 ) goto no_mem;
drh8cff69d2009-11-12 19:59:44 +00003663 assert( pIn3->flags & MEM_Blob );
drhd81a1422010-09-28 07:11:24 +00003664 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
dan03e9cfc2011-09-05 14:20:27 +00003665 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh8cff69d2009-11-12 19:59:44 +00003666 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003667 }
drhe63d9992008-08-13 19:11:48 +00003668 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003669 if( pOp->p4.i==0 ){
dan03e9cfc2011-09-05 14:20:27 +00003670 sqlite3DbFree(db, pFree);
drh8cff69d2009-11-12 19:59:44 +00003671 }
danielk197777519402007-08-30 11:48:31 +00003672 if( rc!=SQLITE_OK ){
3673 break;
3674 }
3675 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003676 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003677 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003678 }
3679 if( pOp->opcode==OP_Found ){
3680 if( alreadyExists ) pc = pOp->p2 - 1;
3681 }else{
3682 if( !alreadyExists ) pc = pOp->p2 - 1;
3683 }
drh5e00f6c2001-09-13 13:46:56 +00003684 break;
3685}
3686
drh98757152008-01-09 23:04:12 +00003687/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003688**
drh8cff69d2009-11-12 19:59:44 +00003689** Cursor P1 is open on an index b-tree - that is to say, a btree which
3690** no data and where the key are records generated by OP_MakeRecord with
3691** the list field being the integer ROWID of the entry that the index
3692** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003693**
3694** The P3 register contains an integer record number. Call this record
3695** number R. Register P4 is the first in a set of N contiguous registers
3696** that make up an unpacked index key that can be used with cursor P1.
3697** The value of N can be inferred from the cursor. N includes the rowid
3698** value appended to the end of the index record. This rowid value may
3699** or may not be the same as R.
3700**
3701** If any of the N registers beginning with register P4 contains a NULL
3702** value, jump immediately to P2.
3703**
3704** Otherwise, this instruction checks if cursor P1 contains an entry
3705** where the first (N-1) fields match but the rowid value at the end
3706** of the index entry is not R. If there is no such entry, control jumps
3707** to instruction P2. Otherwise, the rowid of the conflicting index
3708** entry is copied to register P3 and control falls through to the next
3709** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003710**
drh9cbf3422008-01-17 16:22:13 +00003711** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003712*/
drh9cbf3422008-01-17 16:22:13 +00003713case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003714 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003715 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003716 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003717 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003718 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003719 UnpackedRecord r; /* B-Tree index search key */
3720 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003721
drh3c657212009-11-17 23:59:58 +00003722 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003723 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003724 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003725 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003726 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003727 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3728
3729 /* Find the index cursor. */
3730 pCx = p->apCsr[pOp->p1];
3731 assert( pCx->deferredMoveto==0 );
3732 pCx->seekResult = 0;
3733 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003734 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003735
3736 /* If any of the values are NULL, take the jump. */
3737 nField = pCx->pKeyInfo->nField;
3738 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003739 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003740 pc = pOp->p2 - 1;
3741 pCrsr = 0;
3742 break;
3743 }
3744 }
drha6c2ed92009-11-14 23:22:23 +00003745 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003746
drhf328bc82004-05-10 23:29:49 +00003747 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003748 /* Populate the index search key. */
3749 r.pKeyInfo = pCx->pKeyInfo;
3750 r.nField = nField + 1;
3751 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003752 r.aMem = aMx;
drh2b4ded92010-09-27 21:09:31 +00003753#ifdef SQLITE_DEBUG
3754 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3755#endif
danielk1977452c9892004-05-13 05:16:15 +00003756
danielk1977de630352009-05-04 11:42:29 +00003757 /* Extract the value of R from register P3. */
3758 sqlite3VdbeMemIntegerify(pIn3);
3759 R = pIn3->u.i;
3760
3761 /* Search the B-Tree index. If no conflicting record is found, jump
3762 ** to P2. Otherwise, copy the rowid of the conflicting record to
3763 ** register P3 and fall through to the next instruction. */
3764 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3765 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003766 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003767 }else{
3768 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003769 }
drh9cfcf5d2002-01-29 18:41:24 +00003770 }
3771 break;
3772}
3773
drh9cbf3422008-01-17 16:22:13 +00003774/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003775**
drhef8662b2011-06-20 21:47:58 +00003776** Use the content of register P3 as an integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003777** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003778** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003779** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003780**
3781** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003782** operation assumes the key is an integer and that P1 is a table whereas
3783** NotFound assumes key is a blob constructed from MakeRecord and
3784** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003785**
drhcb6d50e2008-08-21 19:28:30 +00003786** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003787*/
drh9cbf3422008-01-17 16:22:13 +00003788case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003789 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003790 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003791 int res;
3792 u64 iKey;
3793
drh3c657212009-11-17 23:59:58 +00003794 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003795 assert( pIn3->flags & MEM_Int );
3796 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3797 pC = p->apCsr[pOp->p1];
3798 assert( pC!=0 );
3799 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003800 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003801 pCrsr = pC->pCursor;
dana205a482011-08-27 18:48:57 +00003802 if( ALWAYS(pCrsr!=0) ){
drh856c1032009-06-02 15:21:42 +00003803 res = 0;
drhaa736092009-06-22 00:55:30 +00003804 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003805 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003806 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003807 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003808 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003809 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003810 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003811 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003812 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003813 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003814 }
danielk1977de630352009-05-04 11:42:29 +00003815 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003816 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003817 /* This happens when an attempt to open a read cursor on the
3818 ** sqlite_master table returns SQLITE_EMPTY.
3819 */
danielk1977f7b9d662008-06-23 18:49:43 +00003820 pc = pOp->p2 - 1;
3821 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003822 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003823 }
drh6b125452002-01-28 15:53:03 +00003824 break;
3825}
3826
drh4c583122008-01-04 22:01:03 +00003827/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003828**
drh4c583122008-01-04 22:01:03 +00003829** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003830** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003831** The sequence number on the cursor is incremented after this
3832** instruction.
drh4db38a72005-09-01 12:16:28 +00003833*/
drh4c583122008-01-04 22:01:03 +00003834case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003835 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3836 assert( p->apCsr[pOp->p1]!=0 );
3837 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003838 break;
3839}
3840
3841
drh98757152008-01-09 23:04:12 +00003842/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003843**
drhf0863fe2005-06-12 21:35:51 +00003844** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003845** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003846** table that cursor P1 points to. The new record number is written
3847** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003848**
dan76d462e2009-08-30 11:42:51 +00003849** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3850** the largest previously generated record number. No new record numbers are
3851** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003852** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003853** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003854** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003855*/
drh4c583122008-01-04 22:01:03 +00003856case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003857 i64 v; /* The new rowid */
3858 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3859 int res; /* Result of an sqlite3BtreeLast() */
3860 int cnt; /* Counter to limit the number of searches */
3861 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003862 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003863
drh856c1032009-06-02 15:21:42 +00003864 v = 0;
3865 res = 0;
drhaa736092009-06-22 00:55:30 +00003866 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3867 pC = p->apCsr[pOp->p1];
3868 assert( pC!=0 );
3869 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003870 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003871 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003872 /* The next rowid or record number (different terms for the same
3873 ** thing) is obtained in a two-step algorithm.
3874 **
3875 ** First we attempt to find the largest existing rowid and add one
3876 ** to that. But if the largest existing rowid is already the maximum
3877 ** positive integer, we have to fall through to the second
3878 ** probabilistic algorithm
3879 **
3880 ** The second algorithm is to select a rowid at random and see if
3881 ** it already exists in the table. If it does not exist, we have
3882 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003883 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003884 */
drhaa736092009-06-22 00:55:30 +00003885 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003886
drh75f86a42005-02-17 00:03:06 +00003887#ifdef SQLITE_32BIT_ROWID
3888# define MAX_ROWID 0x7fffffff
3889#else
drhfe2093d2005-01-20 22:48:47 +00003890 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3891 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3892 ** to provide the constant while making all compilers happy.
3893 */
danielk197764202cf2008-11-17 15:31:47 +00003894# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003895#endif
drhfe2093d2005-01-20 22:48:47 +00003896
drh5cf8e8c2002-02-19 22:42:05 +00003897 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003898 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3899 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003900 rc = sqlite3BtreeLast(pC->pCursor, &res);
3901 if( rc!=SQLITE_OK ){
3902 goto abort_due_to_error;
3903 }
drh32fbe342002-10-19 20:16:37 +00003904 if( res ){
drhc79c7612010-01-01 18:57:48 +00003905 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003906 }else{
drhea8ffdf2009-07-22 00:35:23 +00003907 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003908 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3909 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drha40eb7c2012-02-24 00:02:28 +00003910 if( v>=MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003911 pC->useRandomRowid = 1;
3912 }else{
drhc79c7612010-01-01 18:57:48 +00003913 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003914 }
drh5cf8e8c2002-02-19 22:42:05 +00003915 }
drh3fc190c2001-09-14 03:24:23 +00003916 }
drh205f48e2004-11-05 00:43:11 +00003917
3918#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003919 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003920 /* Assert that P3 is a valid memory cell. */
3921 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003922 if( p->pFrame ){
3923 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003924 /* Assert that P3 is a valid memory cell. */
3925 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003926 pMem = &pFrame->aMem[pOp->p3];
3927 }else{
shaneabc6b892009-09-10 19:09:03 +00003928 /* Assert that P3 is a valid memory cell. */
3929 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003930 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003931 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003932 }
drh2b4ded92010-09-27 21:09:31 +00003933 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003934
3935 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003936 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003937 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003938 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003939 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003940 goto abort_due_to_error;
3941 }
drh3c024d62007-03-30 11:23:45 +00003942 if( v<pMem->u.i+1 ){
3943 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003944 }
drh3c024d62007-03-30 11:23:45 +00003945 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003946 }
3947#endif
3948
drh7f751222009-03-17 22:33:00 +00003949 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003950 }
3951 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003952 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003953 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003954 ** engine starts picking positive candidate ROWIDs at random until
3955 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003956 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3957 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003958 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003959 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003960 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3961 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003962 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003963 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3964 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003965 && (res==0)
3966 && (++cnt<100)){
3967 /* collision - try another random rowid */
3968 sqlite3_randomness(sizeof(v), &v);
3969 if( cnt<5 ){
3970 /* try "small" random rowids for the initial attempts */
3971 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003972 }else{
shanehc4d340a2010-09-01 02:37:56 +00003973 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003974 }
shanehc4d340a2010-09-01 02:37:56 +00003975 v++; /* ensure non-zero */
3976 }
drhaa736092009-06-22 00:55:30 +00003977 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003978 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003979 goto abort_due_to_error;
3980 }
drh748a52c2010-09-01 11:50:08 +00003981 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003982 }
drhf0863fe2005-06-12 21:35:51 +00003983 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003984 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003985 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003986 }
drh4c583122008-01-04 22:01:03 +00003987 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003988 break;
3989}
3990
danielk19771f4aa332008-01-03 09:51:55 +00003991/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003992**
jplyon5a564222003-06-02 06:15:58 +00003993** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003994** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003995** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003996** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003997** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003998**
danielk19771f4aa332008-01-03 09:51:55 +00003999** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4000** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004001** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004002** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004003**
drh3e9ca092009-09-08 01:14:48 +00004004** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4005** the last seek operation (OP_NotExists) was a success, then this
4006** operation will not attempt to find the appropriate row before doing
4007** the insert but will instead overwrite the row that the cursor is
4008** currently pointing to. Presumably, the prior OP_NotExists opcode
4009** has already positioned the cursor correctly. This is an optimization
4010** that boosts performance by avoiding redundant seeks.
4011**
4012** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4013** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4014** is part of an INSERT operation. The difference is only important to
4015** the update hook.
4016**
drh66a51672008-01-03 00:01:23 +00004017** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004018** may be NULL. If it is not NULL, then the update-hook
4019** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4020**
drh93aed5a2008-01-16 17:46:38 +00004021** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4022** allocated, then ownership of P2 is transferred to the pseudo-cursor
4023** and register P2 becomes ephemeral. If the cursor is changed, the
4024** value of register P2 will then change. Make sure this does not
4025** cause any problems.)
4026**
drhf0863fe2005-06-12 21:35:51 +00004027** This instruction only works on tables. The equivalent instruction
4028** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004029*/
drhe05c9292009-10-29 13:48:10 +00004030/* Opcode: InsertInt P1 P2 P3 P4 P5
4031**
4032** This works exactly like OP_Insert except that the key is the
4033** integer value P3, not the value of the integer stored in register P3.
4034*/
4035case OP_Insert:
4036case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004037 Mem *pData; /* MEM cell holding data for the record to be inserted */
4038 Mem *pKey; /* MEM cell holding key for the record */
4039 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4040 VdbeCursor *pC; /* Cursor to table into which insert is written */
4041 int nZero; /* Number of zero-bytes to append */
4042 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4043 const char *zDb; /* database name - used by the update hook */
4044 const char *zTbl; /* Table name - used by the opdate hook */
4045 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004046
drha6c2ed92009-11-14 23:22:23 +00004047 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004048 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004049 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004050 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004051 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004052 assert( pC->pCursor!=0 );
4053 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004054 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004055 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004056
drhe05c9292009-10-29 13:48:10 +00004057 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004058 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004059 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004060 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004061 REGISTER_TRACE(pOp->p3, pKey);
4062 iKey = pKey->u.i;
4063 }else{
4064 assert( pOp->opcode==OP_InsertInt );
4065 iKey = pOp->p3;
4066 }
4067
drha05a7222008-01-19 03:35:58 +00004068 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004069 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004070 if( pData->flags & MEM_Null ){
4071 pData->z = 0;
4072 pData->n = 0;
4073 }else{
4074 assert( pData->flags & (MEM_Blob|MEM_Str) );
4075 }
drh3e9ca092009-09-08 01:14:48 +00004076 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4077 if( pData->flags & MEM_Zero ){
4078 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004079 }else{
drh3e9ca092009-09-08 01:14:48 +00004080 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004081 }
drh3e9ca092009-09-08 01:14:48 +00004082 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4083 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4084 pData->z, pData->n, nZero,
4085 pOp->p5 & OPFLAG_APPEND, seekResult
4086 );
drha05a7222008-01-19 03:35:58 +00004087 pC->rowidIsValid = 0;
4088 pC->deferredMoveto = 0;
4089 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004090
drha05a7222008-01-19 03:35:58 +00004091 /* Invoke the update-hook if required. */
4092 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004093 zDb = db->aDb[pC->iDb].zName;
4094 zTbl = pOp->p4.z;
4095 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004096 assert( pC->isTable );
4097 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4098 assert( pC->iDb>=0 );
4099 }
drh5e00f6c2001-09-13 13:46:56 +00004100 break;
4101}
4102
drh98757152008-01-09 23:04:12 +00004103/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004104**
drh5edc3122001-09-13 21:53:09 +00004105** Delete the record at which the P1 cursor is currently pointing.
4106**
4107** The cursor will be left pointing at either the next or the previous
4108** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004109** the next Next instruction will be a no-op. Hence it is OK to delete
4110** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004111**
rdcb0c374f2004-02-20 22:53:38 +00004112** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004113** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004114**
drh91fd4d42008-01-19 20:11:25 +00004115** P1 must not be pseudo-table. It has to be a real table with
4116** multiple rows.
4117**
4118** If P4 is not NULL, then it is the name of the table that P1 is
4119** pointing to. The update hook will be invoked, if it exists.
4120** If P4 is not NULL then the P1 cursor must have been positioned
4121** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004122*/
drh9cbf3422008-01-17 16:22:13 +00004123case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00004124 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00004125 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004126
drh856c1032009-06-02 15:21:42 +00004127 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00004128 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4129 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004130 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004131 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00004132
drh91fd4d42008-01-19 20:11:25 +00004133 /* If the update-hook will be invoked, set iKey to the rowid of the
4134 ** row being deleted.
4135 */
4136 if( db->xUpdateCallback && pOp->p4.z ){
4137 assert( pC->isTable );
4138 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4139 iKey = pC->lastRowid;
4140 }
danielk197794eb6a12005-12-15 15:22:08 +00004141
drh9a65f2c2009-06-22 19:05:40 +00004142 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4143 ** OP_Column on the same table without any intervening operations that
4144 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4145 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4146 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4147 ** to guard against future changes to the code generator.
4148 **/
4149 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004150 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004151 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4152
drh7f751222009-03-17 22:33:00 +00004153 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004154 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004155 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004156
drh91fd4d42008-01-19 20:11:25 +00004157 /* Invoke the update-hook if required. */
4158 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4159 const char *zDb = db->aDb[pC->iDb].zName;
4160 const char *zTbl = pOp->p4.z;
4161 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4162 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004163 }
danielk1977b28af712004-06-21 06:50:26 +00004164 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004165 break;
4166}
drhb7f1d9a2009-09-08 02:27:58 +00004167/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004168**
drhb7f1d9a2009-09-08 02:27:58 +00004169** The value of the change counter is copied to the database handle
4170** change counter (returned by subsequent calls to sqlite3_changes()).
4171** Then the VMs internal change counter resets to 0.
4172** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004173*/
drh9cbf3422008-01-17 16:22:13 +00004174case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004175 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004176 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004177 break;
4178}
4179
dan5134d132011-09-02 10:31:11 +00004180/* Opcode: SorterCompare P1 P2 P3
4181**
4182** P1 is a sorter cursor. This instruction compares the record blob in
4183** register P3 with the entry that the sorter cursor currently points to.
4184** If, excluding the rowid fields at the end, the two records are a match,
4185** fall through to the next instruction. Otherwise, jump to instruction P2.
4186*/
4187case OP_SorterCompare: {
4188 VdbeCursor *pC;
4189 int res;
4190
4191 pC = p->apCsr[pOp->p1];
4192 assert( isSorter(pC) );
4193 pIn3 = &aMem[pOp->p3];
4194 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4195 if( res ){
4196 pc = pOp->p2-1;
4197 }
4198 break;
4199};
4200
4201/* Opcode: SorterData P1 P2 * * *
4202**
4203** Write into register P2 the current sorter data for sorter cursor P1.
4204*/
4205case OP_SorterData: {
4206 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004207
dan5134d132011-09-02 10:31:11 +00004208 pOut = &aMem[pOp->p2];
4209 pC = p->apCsr[pOp->p1];
4210 assert( pC->isSorter );
4211 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4212 break;
4213}
4214
drh98757152008-01-09 23:04:12 +00004215/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00004216**
drh98757152008-01-09 23:04:12 +00004217** Write into register P2 the complete row data for cursor P1.
4218** There is no interpretation of the data.
4219** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004220** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004221**
drhde4fcfd2008-01-19 23:50:26 +00004222** If the P1 cursor must be pointing to a valid row (not a NULL row)
4223** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004224*/
drh98757152008-01-09 23:04:12 +00004225/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00004226**
drh98757152008-01-09 23:04:12 +00004227** Write into register P2 the complete row key for cursor P1.
4228** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004229** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004230** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004231**
drhde4fcfd2008-01-19 23:50:26 +00004232** If the P1 cursor must be pointing to a valid row (not a NULL row)
4233** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004234*/
danielk1977a7a8e142008-02-13 18:25:27 +00004235case OP_RowKey:
4236case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004237 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004238 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004239 u32 n;
drh856c1032009-06-02 15:21:42 +00004240 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004241
drha6c2ed92009-11-14 23:22:23 +00004242 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004243 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004244
drhf0863fe2005-06-12 21:35:51 +00004245 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004246 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4247 pC = p->apCsr[pOp->p1];
dan5134d132011-09-02 10:31:11 +00004248 assert( pC->isSorter==0 );
drhc6aff302011-09-01 15:32:47 +00004249 assert( pC->isTable || pOp->opcode!=OP_RowData );
drhf0863fe2005-06-12 21:35:51 +00004250 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004251 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004252 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004253 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004254 assert( pC->pCursor!=0 );
4255 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004256 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004257
4258 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4259 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4260 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4261 ** a no-op and can never fail. But we leave it in place as a safety.
4262 */
4263 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004264 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004265 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4266
drhde4fcfd2008-01-19 23:50:26 +00004267 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004268 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004269 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004270 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004271 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004272 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004273 }
drhbfb19dc2009-06-05 16:46:53 +00004274 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004275 }else{
drhb07028f2011-10-14 21:49:18 +00004276 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004277 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004278 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004279 goto too_big;
4280 }
drhde4fcfd2008-01-19 23:50:26 +00004281 }
danielk1977a7a8e142008-02-13 18:25:27 +00004282 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4283 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004284 }
danielk1977a7a8e142008-02-13 18:25:27 +00004285 pOut->n = n;
4286 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004287 if( pC->isIndex ){
4288 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4289 }else{
4290 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004291 }
danielk197796cb76f2008-01-04 13:24:28 +00004292 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004293 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004294 break;
4295}
4296
drh2133d822008-01-03 18:44:59 +00004297/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004298**
drh2133d822008-01-03 18:44:59 +00004299** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004300** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004301**
4302** P1 can be either an ordinary table or a virtual table. There used to
4303** be a separate OP_VRowid opcode for use with virtual tables, but this
4304** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004305*/
drh4c583122008-01-04 22:01:03 +00004306case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004307 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004308 i64 v;
drh856c1032009-06-02 15:21:42 +00004309 sqlite3_vtab *pVtab;
4310 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004311
drh653b82a2009-06-22 11:10:47 +00004312 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4313 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004314 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004315 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004316 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004317 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004318 break;
4319 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004320 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004321#ifndef SQLITE_OMIT_VIRTUALTABLE
4322 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004323 pVtab = pC->pVtabCursor->pVtab;
4324 pModule = pVtab->pModule;
4325 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004326 rc = pModule->xRowid(pC->pVtabCursor, &v);
drhb9755982010-07-24 16:34:37 +00004327 importVtabErrMsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004328#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004329 }else{
drh6be240e2009-07-14 02:33:02 +00004330 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004331 rc = sqlite3VdbeCursorMoveto(pC);
4332 if( rc ) goto abort_due_to_error;
4333 if( pC->rowidIsValid ){
4334 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004335 }else{
drhc27ae612009-07-14 18:35:44 +00004336 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4337 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004338 }
drh5e00f6c2001-09-13 13:46:56 +00004339 }
drh4c583122008-01-04 22:01:03 +00004340 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004341 break;
4342}
4343
drh9cbf3422008-01-17 16:22:13 +00004344/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004345**
4346** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004347** that occur while the cursor is on the null row will always
4348** write a NULL.
drh17f71932002-02-21 12:01:27 +00004349*/
drh9cbf3422008-01-17 16:22:13 +00004350case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004351 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004352
drh653b82a2009-06-22 11:10:47 +00004353 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4354 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004355 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004356 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004357 pC->rowidIsValid = 0;
dana205a482011-08-27 18:48:57 +00004358 assert( pC->pCursor || pC->pVtabCursor );
danielk1977be51a652008-10-08 17:58:48 +00004359 if( pC->pCursor ){
4360 sqlite3BtreeClearCursor(pC->pCursor);
4361 }
drh17f71932002-02-21 12:01:27 +00004362 break;
4363}
4364
drh9cbf3422008-01-17 16:22:13 +00004365/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004366**
drhf0863fe2005-06-12 21:35:51 +00004367** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004368** will refer to the last entry in the database table or index.
4369** If the table or index is empty and P2>0, then jump immediately to P2.
4370** If P2 is 0 or if the table or index is not empty, fall through
4371** to the following instruction.
4372*/
drh9cbf3422008-01-17 16:22:13 +00004373case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004374 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004375 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004376 int res;
drh9562b552002-02-19 15:00:07 +00004377
drh653b82a2009-06-22 11:10:47 +00004378 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4379 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004380 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004381 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004382 res = 0;
4383 if( ALWAYS(pCrsr!=0) ){
drh9a65f2c2009-06-22 19:05:40 +00004384 rc = sqlite3BtreeLast(pCrsr, &res);
4385 }
drh9c1905f2008-12-10 22:32:56 +00004386 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004387 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004388 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004389 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004390 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004391 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004392 }
4393 break;
4394}
4395
drh0342b1f2005-09-01 03:07:44 +00004396
drh9cbf3422008-01-17 16:22:13 +00004397/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004398**
4399** This opcode does exactly the same thing as OP_Rewind except that
4400** it increments an undocumented global variable used for testing.
4401**
4402** Sorting is accomplished by writing records into a sorting index,
4403** then rewinding that index and playing it back from beginning to
4404** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4405** rewinding so that the global variable will be incremented and
4406** regression tests can determine whether or not the optimizer is
4407** correctly optimizing out sorts.
4408*/
drhc6aff302011-09-01 15:32:47 +00004409case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004410case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004411#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004412 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004413 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004414#endif
drhd1d38482008-10-07 23:46:38 +00004415 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004416 /* Fall through into OP_Rewind */
4417}
drh9cbf3422008-01-17 16:22:13 +00004418/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004419**
drhf0863fe2005-06-12 21:35:51 +00004420** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004421** will refer to the first entry in the database table or index.
4422** If the table or index is empty and P2>0, then jump immediately to P2.
4423** If P2 is 0 or if the table or index is not empty, fall through
4424** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004425*/
drh9cbf3422008-01-17 16:22:13 +00004426case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004427 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004428 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004429 int res;
drh5e00f6c2001-09-13 13:46:56 +00004430
drh653b82a2009-06-22 11:10:47 +00004431 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4432 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004433 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004434 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004435 res = 1;
dan689ab892011-08-12 15:02:00 +00004436 if( isSorter(pC) ){
dana20fde62011-07-12 14:28:05 +00004437 rc = sqlite3VdbeSorterRewind(db, pC, &res);
dana205a482011-08-27 18:48:57 +00004438 }else{
4439 pCrsr = pC->pCursor;
4440 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004441 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004442 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004443 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004444 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004445 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004446 }
drh9c1905f2008-12-10 22:32:56 +00004447 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004448 assert( pOp->p2>0 && pOp->p2<p->nOp );
4449 if( res ){
drhf4dada72004-05-11 09:57:35 +00004450 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004451 }
4452 break;
4453}
4454
dana205a482011-08-27 18:48:57 +00004455/* Opcode: Next P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004456**
4457** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004458** table or index. If there are no more key/value pairs then fall through
4459** to the following instruction. But if the cursor advance was successful,
4460** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004461**
drh60a713c2008-01-21 16:22:45 +00004462** The P1 cursor must be for a real table, not a pseudo-table.
4463**
dana205a482011-08-27 18:48:57 +00004464** P4 is always of type P4_ADVANCE. The function pointer points to
4465** sqlite3BtreeNext().
4466**
drhafc266a2010-03-31 17:47:44 +00004467** If P5 is positive and the jump is taken, then event counter
4468** number P5-1 in the prepared statement is incremented.
4469**
drhc045ec52002-12-04 20:01:06 +00004470** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004471*/
drhafc266a2010-03-31 17:47:44 +00004472/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004473**
4474** Back up cursor P1 so that it points to the previous key/data pair in its
4475** table or index. If there is no previous key/value pairs then fall through
4476** to the following instruction. But if the cursor backup was successful,
4477** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004478**
4479** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004480**
dana205a482011-08-27 18:48:57 +00004481** P4 is always of type P4_ADVANCE. The function pointer points to
4482** sqlite3BtreePrevious().
4483**
drhafc266a2010-03-31 17:47:44 +00004484** If P5 is positive and the jump is taken, then event counter
4485** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004486*/
drhc6aff302011-09-01 15:32:47 +00004487case OP_SorterNext: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004488case OP_Prev: /* jump */
4489case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004490 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004491 int res;
drh8721ce42001-11-07 14:22:00 +00004492
drhcaec2f12003-01-07 02:47:47 +00004493 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004494 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004495 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004496 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004497 if( pC==0 ){
4498 break; /* See ticket #2273 */
4499 }
drhc6aff302011-09-01 15:32:47 +00004500 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
dan689ab892011-08-12 15:02:00 +00004501 if( isSorter(pC) ){
dan5134d132011-09-02 10:31:11 +00004502 assert( pOp->opcode==OP_SorterNext );
dana20fde62011-07-12 14:28:05 +00004503 rc = sqlite3VdbeSorterNext(db, pC, &res);
4504 }else{
dana20fde62011-07-12 14:28:05 +00004505 res = 1;
4506 assert( pC->deferredMoveto==0 );
dana205a482011-08-27 18:48:57 +00004507 assert( pC->pCursor );
4508 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4509 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4510 rc = pOp->p4.xAdvance(pC->pCursor, &res);
drh9a65f2c2009-06-22 19:05:40 +00004511 }
drh9c1905f2008-12-10 22:32:56 +00004512 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004513 pC->cacheStatus = CACHE_STALE;
4514 if( res==0 ){
4515 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004516 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004517#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004518 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004519#endif
drh8721ce42001-11-07 14:22:00 +00004520 }
drhf0863fe2005-06-12 21:35:51 +00004521 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004522 break;
4523}
4524
danielk1977de630352009-05-04 11:42:29 +00004525/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004526**
drhef8662b2011-06-20 21:47:58 +00004527** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004528** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004529** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004530**
drhaa9b8962008-01-08 02:57:55 +00004531** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004532** insert is likely to be an append.
4533**
drhf0863fe2005-06-12 21:35:51 +00004534** This instruction only works for indices. The equivalent instruction
4535** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004536*/
drhca892a72011-09-03 00:17:51 +00004537case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004538case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004539 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004540 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004541 int nKey;
4542 const char *zKey;
4543
drh653b82a2009-06-22 11:10:47 +00004544 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4545 pC = p->apCsr[pOp->p1];
4546 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004547 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004548 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004549 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004550 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004551 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004552 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004553 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004554 if( rc==SQLITE_OK ){
dan5134d132011-09-02 10:31:11 +00004555 if( isSorter(pC) ){
4556 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4557 }else{
4558 nKey = pIn2->n;
4559 zKey = pIn2->z;
dan1e74e602011-08-06 12:01:58 +00004560 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4561 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
dan5134d132011-09-02 10:31:11 +00004562 );
dan1e74e602011-08-06 12:01:58 +00004563 assert( pC->deferredMoveto==0 );
dan5134d132011-09-02 10:31:11 +00004564 pC->cacheStatus = CACHE_STALE;
dan1e74e602011-08-06 12:01:58 +00004565 }
danielk1977d908f5a2007-05-11 07:08:28 +00004566 }
drh5e00f6c2001-09-13 13:46:56 +00004567 }
drh5e00f6c2001-09-13 13:46:56 +00004568 break;
4569}
4570
drhd1d38482008-10-07 23:46:38 +00004571/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004572**
drhe14006d2008-03-25 17:23:32 +00004573** The content of P3 registers starting at register P2 form
4574** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004575** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004576*/
drhe14006d2008-03-25 17:23:32 +00004577case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004578 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004579 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004580 int res;
4581 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004582
drhe14006d2008-03-25 17:23:32 +00004583 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004584 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004585 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4586 pC = p->apCsr[pOp->p1];
4587 assert( pC!=0 );
4588 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004589 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004590 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004591 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004592 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004593 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004594#ifdef SQLITE_DEBUG
4595 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4596#endif
drhe63d9992008-08-13 19:11:48 +00004597 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004598 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004599 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004600 }
drh9188b382004-05-14 21:12:22 +00004601 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004602 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004603 }
drh5e00f6c2001-09-13 13:46:56 +00004604 break;
4605}
4606
drh2133d822008-01-03 18:44:59 +00004607/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004608**
drh2133d822008-01-03 18:44:59 +00004609** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004610** the end of the index key pointed to by cursor P1. This integer should be
4611** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004612**
drh9437bd22009-02-01 00:29:56 +00004613** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004614*/
drh4c583122008-01-04 22:01:03 +00004615case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004616 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004617 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004618 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004619
drh653b82a2009-06-22 11:10:47 +00004620 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4621 pC = p->apCsr[pOp->p1];
4622 assert( pC!=0 );
4623 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004624 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004625 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004626 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004627 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004628 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004629 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004630 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004631 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004632 if( rc!=SQLITE_OK ){
4633 goto abort_due_to_error;
4634 }
drh4c583122008-01-04 22:01:03 +00004635 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004636 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004637 }
drh8721ce42001-11-07 14:22:00 +00004638 }
4639 break;
4640}
4641
danielk197761dd5832008-04-18 11:31:12 +00004642/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004643**
danielk197761dd5832008-04-18 11:31:12 +00004644** The P4 register values beginning with P3 form an unpacked index
4645** key that omits the ROWID. Compare this key value against the index
4646** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004647**
danielk197761dd5832008-04-18 11:31:12 +00004648** If the P1 index entry is greater than or equal to the key value
4649** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004650**
danielk197761dd5832008-04-18 11:31:12 +00004651** If P5 is non-zero then the key value is increased by an epsilon
4652** prior to the comparison. This make the opcode work like IdxGT except
4653** that if the key from register P3 is a prefix of the key in the cursor,
4654** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004655*/
drh3bb9b932010-08-06 02:10:00 +00004656/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004657**
danielk197761dd5832008-04-18 11:31:12 +00004658** The P4 register values beginning with P3 form an unpacked index
4659** key that omits the ROWID. Compare this key value against the index
4660** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004661**
danielk197761dd5832008-04-18 11:31:12 +00004662** If the P1 index entry is less than the key value then jump to P2.
4663** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004664**
danielk197761dd5832008-04-18 11:31:12 +00004665** If P5 is non-zero then the key value is increased by an epsilon prior
4666** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004667*/
drh93952eb2009-11-13 19:43:43 +00004668case OP_IdxLT: /* jump */
4669case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004670 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004671 int res;
4672 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004673
drh653b82a2009-06-22 11:10:47 +00004674 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4675 pC = p->apCsr[pOp->p1];
4676 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004677 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004678 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004679 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004680 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004681 assert( pOp->p4type==P4_INT32 );
4682 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004683 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004684 if( pOp->p5 ){
dan0c733f62011-11-16 15:27:09 +00004685 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004686 }else{
dan0c733f62011-11-16 15:27:09 +00004687 r.flags = UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004688 }
drha6c2ed92009-11-14 23:22:23 +00004689 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004690#ifdef SQLITE_DEBUG
4691 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4692#endif
drhe63d9992008-08-13 19:11:48 +00004693 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004694 if( pOp->opcode==OP_IdxLT ){
4695 res = -res;
drha05a7222008-01-19 03:35:58 +00004696 }else{
4697 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004698 res++;
4699 }
4700 if( res>0 ){
4701 pc = pOp->p2 - 1 ;
4702 }
4703 }
4704 break;
4705}
4706
drh98757152008-01-09 23:04:12 +00004707/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004708**
4709** Delete an entire database table or index whose root page in the database
4710** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004711**
drh98757152008-01-09 23:04:12 +00004712** The table being destroyed is in the main database file if P3==0. If
4713** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004714** that is used to store tables create using CREATE TEMPORARY TABLE.
4715**
drh205f48e2004-11-05 00:43:11 +00004716** If AUTOVACUUM is enabled then it is possible that another root page
4717** might be moved into the newly deleted root page in order to keep all
4718** root pages contiguous at the beginning of the database. The former
4719** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004720** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004721** movement was required (because the table being dropped was already
4722** the last one in the database) then a zero is stored in register P2.
4723** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004724**
drhb19a2bc2001-09-16 00:13:26 +00004725** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004726*/
drh98757152008-01-09 23:04:12 +00004727case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004728 int iMoved;
drh3765df42006-06-28 18:18:09 +00004729 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004730 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004731 int iDb;
drh3a949872012-09-18 13:20:13 +00004732
drh856c1032009-06-02 15:21:42 +00004733#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004734 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004735 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004736 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4737 iCnt++;
4738 }
4739 }
drh3765df42006-06-28 18:18:09 +00004740#else
4741 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004742#endif
drh3c657212009-11-17 23:59:58 +00004743 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004744 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004745 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004746 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004747 }else{
drh856c1032009-06-02 15:21:42 +00004748 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004749 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004750 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004751 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004752 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004753 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004754#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004755 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004756 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4757 /* All OP_Destroy operations occur on the same btree */
4758 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4759 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004760 }
drh3765df42006-06-28 18:18:09 +00004761#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004762 }
drh5e00f6c2001-09-13 13:46:56 +00004763 break;
4764}
4765
danielk1977c7af4842008-10-27 13:59:33 +00004766/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004767**
4768** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004769** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004770** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004771**
drhf57b3392001-10-08 13:22:32 +00004772** The table being clear is in the main database file if P2==0. If
4773** P2==1 then the table to be clear is in the auxiliary database file
4774** that is used to store tables create using CREATE TEMPORARY TABLE.
4775**
shanebe217792009-03-05 04:20:31 +00004776** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004777** intkey table (an SQL table, not an index). In this case the row change
4778** count is incremented by the number of rows in the table being cleared.
4779** If P3 is greater than zero, then the value stored in register P3 is
4780** also incremented by the number of rows in the table being cleared.
4781**
drhb19a2bc2001-09-16 00:13:26 +00004782** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004783*/
drh9cbf3422008-01-17 16:22:13 +00004784case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004785 int nChange;
4786
4787 nChange = 0;
drhdddd7792011-04-03 18:19:25 +00004788 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004789 rc = sqlite3BtreeClearTable(
4790 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4791 );
4792 if( pOp->p3 ){
4793 p->nChange += nChange;
4794 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004795 assert( memIsValid(&aMem[pOp->p3]) );
4796 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004797 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004798 }
4799 }
drh5edc3122001-09-13 21:53:09 +00004800 break;
4801}
4802
drh4c583122008-01-04 22:01:03 +00004803/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004804**
drh4c583122008-01-04 22:01:03 +00004805** Allocate a new table in the main database file if P1==0 or in the
4806** auxiliary database file if P1==1 or in an attached database if
4807** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004808** register P2
drh5b2fd562001-09-13 15:21:31 +00004809**
drhc6b52df2002-01-04 03:09:29 +00004810** The difference between a table and an index is this: A table must
4811** have a 4-byte integer key and can have arbitrary data. An index
4812** has an arbitrary key but no data.
4813**
drhb19a2bc2001-09-16 00:13:26 +00004814** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004815*/
drh4c583122008-01-04 22:01:03 +00004816/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004817**
drh4c583122008-01-04 22:01:03 +00004818** Allocate a new index in the main database file if P1==0 or in the
4819** auxiliary database file if P1==1 or in an attached database if
4820** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004821** register P2.
drhf57b3392001-10-08 13:22:32 +00004822**
drhc6b52df2002-01-04 03:09:29 +00004823** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004824*/
drh4c583122008-01-04 22:01:03 +00004825case OP_CreateIndex: /* out2-prerelease */
4826case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004827 int pgno;
drhf328bc82004-05-10 23:29:49 +00004828 int flags;
drh234c39d2004-07-24 03:30:47 +00004829 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004830
4831 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004832 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004833 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004834 pDb = &db->aDb[pOp->p1];
4835 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004836 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004837 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004838 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004839 }else{
drhd4187c72010-08-30 22:15:45 +00004840 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004841 }
drh234c39d2004-07-24 03:30:47 +00004842 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004843 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004844 break;
4845}
4846
drh22645842011-03-24 01:34:03 +00004847/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004848**
4849** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004850** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004851**
4852** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004853** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004854*/
drh9cbf3422008-01-17 16:22:13 +00004855case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004856 int iDb;
4857 const char *zMaster;
4858 char *zSql;
4859 InitData initData;
4860
drhbdaec522011-04-04 00:14:43 +00004861 /* Any prepared statement that invokes this opcode will hold mutexes
4862 ** on every btree. This is a prerequisite for invoking
4863 ** sqlite3InitCallback().
4864 */
4865#ifdef SQLITE_DEBUG
4866 for(iDb=0; iDb<db->nDb; iDb++){
4867 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4868 }
4869#endif
drhbdaec522011-04-04 00:14:43 +00004870
drh856c1032009-06-02 15:21:42 +00004871 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004872 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004873 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004874 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004875 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004876 initData.db = db;
4877 initData.iDb = pOp->p1;
4878 initData.pzErrMsg = &p->zErrMsg;
4879 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004880 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004881 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4882 if( zSql==0 ){
4883 rc = SQLITE_NOMEM;
4884 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004885 assert( db->init.busy==0 );
4886 db->init.busy = 1;
4887 initData.rc = SQLITE_OK;
4888 assert( !db->mallocFailed );
4889 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4890 if( rc==SQLITE_OK ) rc = initData.rc;
4891 sqlite3DbFree(db, zSql);
4892 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004893 }
drh3c23a882007-01-09 14:01:13 +00004894 }
drh81028a42012-05-15 18:28:27 +00004895 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00004896 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004897 goto no_mem;
4898 }
drh234c39d2004-07-24 03:30:47 +00004899 break;
4900}
4901
drh8bfdf722009-06-19 14:06:03 +00004902#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004903/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004904**
4905** Read the sqlite_stat1 table for database P1 and load the content
4906** of that table into the internal index hash table. This will cause
4907** the analysis to be used when preparing all subsequent queries.
4908*/
drh9cbf3422008-01-17 16:22:13 +00004909case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004910 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4911 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004912 break;
4913}
drh8bfdf722009-06-19 14:06:03 +00004914#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004915
drh98757152008-01-09 23:04:12 +00004916/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004917**
4918** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004919** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004920** is dropped in order to keep the internal representation of the
4921** schema consistent with what is on disk.
4922*/
drh9cbf3422008-01-17 16:22:13 +00004923case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004924 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004925 break;
4926}
4927
drh98757152008-01-09 23:04:12 +00004928/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004929**
4930** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004931** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004932** is dropped in order to keep the internal representation of the
4933** schema consistent with what is on disk.
4934*/
drh9cbf3422008-01-17 16:22:13 +00004935case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004936 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004937 break;
4938}
4939
drh98757152008-01-09 23:04:12 +00004940/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004941**
4942** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004943** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004944** is dropped in order to keep the internal representation of the
4945** schema consistent with what is on disk.
4946*/
drh9cbf3422008-01-17 16:22:13 +00004947case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004948 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004949 break;
4950}
4951
drh234c39d2004-07-24 03:30:47 +00004952
drhb7f91642004-10-31 02:22:47 +00004953#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004954/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004955**
drh98757152008-01-09 23:04:12 +00004956** Do an analysis of the currently open database. Store in
4957** register P1 the text of an error message describing any problems.
4958** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004959**
drh98757152008-01-09 23:04:12 +00004960** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004961** At most reg(P3) errors will be reported.
4962** In other words, the analysis stops as soon as reg(P1) errors are
4963** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004964**
drh79069752004-05-22 21:30:40 +00004965** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004966** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004967** total.
drh21504322002-06-25 13:16:02 +00004968**
drh98757152008-01-09 23:04:12 +00004969** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004970** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004971**
drh1dcdbc02007-01-27 02:24:54 +00004972** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004973*/
drhaaab5722002-02-19 13:39:21 +00004974case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004975 int nRoot; /* Number of tables to check. (Number of root pages.) */
4976 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4977 int j; /* Loop counter */
4978 int nErr; /* Number of errors reported */
4979 char *z; /* Text of the error report */
4980 Mem *pnErr; /* Register keeping track of errors remaining */
4981
4982 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004983 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004984 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004985 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004986 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004987 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004988 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004989 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004990 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004991 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004992 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004993 }
4994 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004995 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004996 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00004997 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004998 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004999 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005000 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005001 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005002 if( nErr==0 ){
5003 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005004 }else if( z==0 ){
5005 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005006 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005007 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005008 }
drhb7654112008-01-12 12:48:07 +00005009 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005010 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005011 break;
5012}
drhb7f91642004-10-31 02:22:47 +00005013#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005014
drh3d4501e2008-12-04 20:40:10 +00005015/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00005016**
drh3d4501e2008-12-04 20:40:10 +00005017** Insert the integer value held by register P2 into a boolean index
5018** held in register P1.
5019**
5020** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005021*/
drh93952eb2009-11-13 19:43:43 +00005022case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005023 pIn1 = &aMem[pOp->p1];
5024 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005025 assert( (pIn2->flags & MEM_Int)!=0 );
5026 if( (pIn1->flags & MEM_RowSet)==0 ){
5027 sqlite3VdbeMemSetRowSet(pIn1);
5028 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005029 }
drh93952eb2009-11-13 19:43:43 +00005030 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005031 break;
5032}
5033
5034/* Opcode: RowSetRead P1 P2 P3 * *
5035**
5036** Extract the smallest value from boolean index P1 and put that value into
5037** register P3. Or, if boolean index P1 is initially empty, leave P3
5038** unchanged and jump to instruction P2.
5039*/
drh93952eb2009-11-13 19:43:43 +00005040case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005041 i64 val;
drh3d4501e2008-12-04 20:40:10 +00005042 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00005043 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005044 if( (pIn1->flags & MEM_RowSet)==0
5045 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005046 ){
5047 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005048 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005049 pc = pOp->p2 - 1;
5050 }else{
5051 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005052 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005053 }
drh5e00f6c2001-09-13 13:46:56 +00005054 break;
5055}
5056
drh1b26c7c2009-04-22 02:15:47 +00005057/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00005058**
drhade97602009-04-21 15:05:18 +00005059** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005060** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005061** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005062** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005063** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005064**
drh1b26c7c2009-04-22 02:15:47 +00005065** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005066** of integers, where each set contains no duplicates. Each set
5067** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005068** must have P4==0, the final set P4=-1. P4 must be either -1 or
5069** non-negative. For non-negative values of P4 only the lower 4
5070** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005071**
5072** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005073** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005074** (b) when P4==-1 there is no need to insert the value, as it will
5075** never be tested for, and (c) when a value that is part of set X is
5076** inserted, there is no need to search to see if the same value was
5077** previously inserted as part of set X (only if it was previously
5078** inserted as part of some other set).
5079*/
drh1b26c7c2009-04-22 02:15:47 +00005080case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005081 int iSet;
5082 int exists;
5083
drh3c657212009-11-17 23:59:58 +00005084 pIn1 = &aMem[pOp->p1];
5085 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005086 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005087 assert( pIn3->flags&MEM_Int );
5088
drh1b26c7c2009-04-22 02:15:47 +00005089 /* If there is anything other than a rowset object in memory cell P1,
5090 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005091 */
drh733bf1b2009-04-22 00:47:00 +00005092 if( (pIn1->flags & MEM_RowSet)==0 ){
5093 sqlite3VdbeMemSetRowSet(pIn1);
5094 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005095 }
5096
5097 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005098 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005099 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00005100 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5101 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00005102 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005103 if( exists ){
5104 pc = pOp->p2 - 1;
5105 break;
5106 }
5107 }
5108 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005109 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005110 }
5111 break;
5112}
5113
drh5e00f6c2001-09-13 13:46:56 +00005114
danielk197793758c82005-01-21 08:13:14 +00005115#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005116
5117/* Opcode: Program P1 P2 P3 P4 *
5118**
dan76d462e2009-08-30 11:42:51 +00005119** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005120**
dan76d462e2009-08-30 11:42:51 +00005121** P1 contains the address of the memory cell that contains the first memory
5122** cell in an array of values used as arguments to the sub-program. P2
5123** contains the address to jump to if the sub-program throws an IGNORE
5124** exception using the RAISE() function. Register P3 contains the address
5125** of a memory cell in this (the parent) VM that is used to allocate the
5126** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005127**
5128** P4 is a pointer to the VM containing the trigger program.
5129*/
dan76d462e2009-08-30 11:42:51 +00005130case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005131 int nMem; /* Number of memory registers for sub-program */
5132 int nByte; /* Bytes of runtime space required for sub-program */
5133 Mem *pRt; /* Register to allocate runtime space */
5134 Mem *pMem; /* Used to iterate through memory cells */
5135 Mem *pEnd; /* Last memory cell in new array */
5136 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5137 SubProgram *pProgram; /* Sub-program to execute */
5138 void *t; /* Token identifying trigger */
5139
5140 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005141 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005142 assert( pProgram->nOp>0 );
5143
dan1da40a32009-09-19 17:00:31 +00005144 /* If the p5 flag is clear, then recursive invocation of triggers is
5145 ** disabled for backwards compatibility (p5 is set if this sub-program
5146 ** is really a trigger, not a foreign key action, and the flag set
5147 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005148 **
5149 ** It is recursive invocation of triggers, at the SQL level, that is
5150 ** disabled. In some cases a single trigger may generate more than one
5151 ** SubProgram (if the trigger may be executed with more than one different
5152 ** ON CONFLICT algorithm). SubProgram structures associated with a
5153 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005154 ** variable. */
5155 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005156 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005157 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5158 if( pFrame ) break;
5159 }
5160
danf5894502009-10-07 18:41:19 +00005161 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005162 rc = SQLITE_ERROR;
5163 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5164 break;
5165 }
5166
5167 /* Register pRt is used to store the memory required to save the state
5168 ** of the current program, and the memory required at runtime to execute
5169 ** the trigger program. If this trigger has been fired before, then pRt
5170 ** is already allocated. Otherwise, it must be initialized. */
5171 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005172 /* SubProgram.nMem is set to the number of memory cells used by the
5173 ** program stored in SubProgram.aOp. As well as these, one memory
5174 ** cell is required for each cursor used by the program. Set local
5175 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5176 */
dan65a7cd12009-09-01 12:16:01 +00005177 nMem = pProgram->nMem + pProgram->nCsr;
5178 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005179 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005180 + pProgram->nCsr * sizeof(VdbeCursor *)
5181 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005182 pFrame = sqlite3DbMallocZero(db, nByte);
5183 if( !pFrame ){
5184 goto no_mem;
5185 }
5186 sqlite3VdbeMemRelease(pRt);
5187 pRt->flags = MEM_Frame;
5188 pRt->u.pFrame = pFrame;
5189
5190 pFrame->v = p;
5191 pFrame->nChildMem = nMem;
5192 pFrame->nChildCsr = pProgram->nCsr;
5193 pFrame->pc = pc;
5194 pFrame->aMem = p->aMem;
5195 pFrame->nMem = p->nMem;
5196 pFrame->apCsr = p->apCsr;
5197 pFrame->nCursor = p->nCursor;
5198 pFrame->aOp = p->aOp;
5199 pFrame->nOp = p->nOp;
5200 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005201 pFrame->aOnceFlag = p->aOnceFlag;
5202 pFrame->nOnceFlag = p->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00005203
5204 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5205 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drhec86c722011-12-09 17:27:51 +00005206 pMem->flags = MEM_Invalid;
dan165921a2009-08-28 18:53:45 +00005207 pMem->db = db;
5208 }
5209 }else{
5210 pFrame = pRt->u.pFrame;
5211 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5212 assert( pProgram->nCsr==pFrame->nChildCsr );
5213 assert( pc==pFrame->pc );
5214 }
5215
5216 p->nFrame++;
5217 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005218 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005219 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005220 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005221 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005222 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005223 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005224 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005225 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005226 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005227 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005228 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5229 p->nOnceFlag = pProgram->nOnce;
dan165921a2009-08-28 18:53:45 +00005230 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005231 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005232
5233 break;
5234}
5235
dan76d462e2009-08-30 11:42:51 +00005236/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005237**
dan76d462e2009-08-30 11:42:51 +00005238** This opcode is only ever present in sub-programs called via the
5239** OP_Program instruction. Copy a value currently stored in a memory
5240** cell of the calling (parent) frame to cell P2 in the current frames
5241** address space. This is used by trigger programs to access the new.*
5242** and old.* values.
dan165921a2009-08-28 18:53:45 +00005243**
dan76d462e2009-08-30 11:42:51 +00005244** The address of the cell in the parent frame is determined by adding
5245** the value of the P1 argument to the value of the P1 argument to the
5246** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005247*/
dan76d462e2009-08-30 11:42:51 +00005248case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005249 VdbeFrame *pFrame;
5250 Mem *pIn;
5251 pFrame = p->pFrame;
5252 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005253 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5254 break;
5255}
5256
danielk197793758c82005-01-21 08:13:14 +00005257#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005258
dan1da40a32009-09-19 17:00:31 +00005259#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005260/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00005261**
dan0ff297e2009-09-25 17:03:14 +00005262** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5263** If P1 is non-zero, the database constraint counter is incremented
5264** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005265** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005266*/
dan32b09f22009-09-23 17:29:59 +00005267case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00005268 if( pOp->p1 ){
5269 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005270 }else{
dan0ff297e2009-09-25 17:03:14 +00005271 p->nFkConstraint += pOp->p2;
5272 }
5273 break;
5274}
5275
5276/* Opcode: FkIfZero P1 P2 * * *
5277**
5278** This opcode tests if a foreign key constraint-counter is currently zero.
5279** If so, jump to instruction P2. Otherwise, fall through to the next
5280** instruction.
5281**
5282** If P1 is non-zero, then the jump is taken if the database constraint-counter
5283** is zero (the one that counts deferred constraint violations). If P1 is
5284** zero, the jump is taken if the statement constraint-counter is zero
5285** (immediate foreign key constraint violations).
5286*/
5287case OP_FkIfZero: { /* jump */
5288 if( pOp->p1 ){
5289 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5290 }else{
5291 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005292 }
dan1da40a32009-09-19 17:00:31 +00005293 break;
5294}
5295#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5296
drh205f48e2004-11-05 00:43:11 +00005297#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005298/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005299**
dan76d462e2009-08-30 11:42:51 +00005300** P1 is a register in the root frame of this VM (the root frame is
5301** different from the current frame if this instruction is being executed
5302** within a sub-program). Set the value of register P1 to the maximum of
5303** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005304**
5305** This instruction throws an error if the memory cell is not initially
5306** an integer.
5307*/
dan76d462e2009-08-30 11:42:51 +00005308case OP_MemMax: { /* in2 */
5309 Mem *pIn1;
5310 VdbeFrame *pFrame;
5311 if( p->pFrame ){
5312 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5313 pIn1 = &pFrame->aMem[pOp->p1];
5314 }else{
drha6c2ed92009-11-14 23:22:23 +00005315 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005316 }
drhec86c722011-12-09 17:27:51 +00005317 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005318 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005319 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005320 sqlite3VdbeMemIntegerify(pIn2);
5321 if( pIn1->u.i<pIn2->u.i){
5322 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005323 }
5324 break;
5325}
5326#endif /* SQLITE_OMIT_AUTOINCREMENT */
5327
drh98757152008-01-09 23:04:12 +00005328/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005329**
drh98757152008-01-09 23:04:12 +00005330** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005331**
drh98757152008-01-09 23:04:12 +00005332** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005333** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005334*/
drh9cbf3422008-01-17 16:22:13 +00005335case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005336 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005337 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005338 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005339 pc = pOp->p2 - 1;
5340 }
5341 break;
5342}
5343
drh98757152008-01-09 23:04:12 +00005344/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005345**
drh98757152008-01-09 23:04:12 +00005346** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005347**
drh98757152008-01-09 23:04:12 +00005348** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005349** not contain an integer. An assertion fault will result if you try.
5350*/
drh9cbf3422008-01-17 16:22:13 +00005351case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005352 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005353 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005354 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005355 pc = pOp->p2 - 1;
5356 }
5357 break;
5358}
5359
drh9b918ed2009-11-12 03:13:26 +00005360/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005361**
drh9b918ed2009-11-12 03:13:26 +00005362** The register P1 must contain an integer. Add literal P3 to the
5363** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005364**
drh98757152008-01-09 23:04:12 +00005365** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005366** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005367*/
drh9cbf3422008-01-17 16:22:13 +00005368case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005369 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005370 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005371 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005372 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005373 pc = pOp->p2 - 1;
5374 }
5375 break;
5376}
5377
drh98757152008-01-09 23:04:12 +00005378/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005379**
drh0bce8352002-02-28 00:41:10 +00005380** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005381** function has P5 arguments. P4 is a pointer to the FuncDef
5382** structure that specifies the function. Use register
5383** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005384**
drh98757152008-01-09 23:04:12 +00005385** The P5 arguments are taken from register P2 and its
5386** successors.
drhe5095352002-02-24 03:25:14 +00005387*/
drh9cbf3422008-01-17 16:22:13 +00005388case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005389 int n;
drhe5095352002-02-24 03:25:14 +00005390 int i;
drhc54a6172009-06-02 16:06:03 +00005391 Mem *pMem;
5392 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005393 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005394 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005395
drh856c1032009-06-02 15:21:42 +00005396 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005397 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005398 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005399 apVal = p->apArg;
5400 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005401 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005402 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005403 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005404 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005405 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005406 }
danielk19772dca4ac2008-01-03 11:50:29 +00005407 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005408 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005409 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005410 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005411 ctx.s.flags = MEM_Null;
5412 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005413 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005414 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005415 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005416 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005417 ctx.pColl = 0;
drh7a957892012-02-02 17:35:43 +00005418 ctx.skipFlag = 0;
drhe82f5d02008-10-07 19:53:14 +00005419 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005420 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005421 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005422 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005423 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005424 }
drhee9ff672010-09-03 18:50:48 +00005425 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005426 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005427 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005428 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005429 }
drh7a957892012-02-02 17:35:43 +00005430 if( ctx.skipFlag ){
5431 assert( pOp[-1].opcode==OP_CollSeq );
5432 i = pOp[-1].p1;
5433 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5434 }
drhbdaec522011-04-04 00:14:43 +00005435
drh90669c12006-01-20 15:45:36 +00005436 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005437
drh5e00f6c2001-09-13 13:46:56 +00005438 break;
5439}
5440
drh98757152008-01-09 23:04:12 +00005441/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005442**
drh13449892005-09-07 21:22:45 +00005443** Execute the finalizer function for an aggregate. P1 is
5444** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005445**
5446** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005447** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005448** argument is not used by this opcode. It is only there to disambiguate
5449** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005450** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005451** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005452*/
drh9cbf3422008-01-17 16:22:13 +00005453case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005454 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005455 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005456 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005457 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005458 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005459 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005460 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005461 }
drh2dca8682008-03-21 17:13:13 +00005462 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005463 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005464 if( sqlite3VdbeMemTooBig(pMem) ){
5465 goto too_big;
5466 }
drh5e00f6c2001-09-13 13:46:56 +00005467 break;
5468}
5469
dan5cf53532010-05-01 16:40:20 +00005470#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005471/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005472**
5473** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005474** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005475** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5476** SQLITE_BUSY or not, respectively. Write the number of pages in the
5477** WAL after the checkpoint into mem[P3+1] and the number of pages
5478** in the WAL that have been checkpointed after the checkpoint
5479** completes into mem[P3+2]. However on an error, mem[P3+1] and
5480** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005481*/
5482case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005483 int i; /* Loop counter */
5484 int aRes[3]; /* Results */
5485 Mem *pMem; /* Write results here */
5486
5487 aRes[0] = 0;
5488 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005489 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5490 || pOp->p2==SQLITE_CHECKPOINT_FULL
5491 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5492 );
drh30aa3b92011-02-07 23:56:01 +00005493 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005494 if( rc==SQLITE_BUSY ){
5495 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005496 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005497 }
drh30aa3b92011-02-07 23:56:01 +00005498 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5499 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5500 }
dan7c246102010-04-12 19:00:29 +00005501 break;
5502};
dan5cf53532010-05-01 16:40:20 +00005503#endif
drh5e00f6c2001-09-13 13:46:56 +00005504
drhcac29a62010-07-02 19:36:52 +00005505#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005506/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005507**
5508** Change the journal mode of database P1 to P3. P3 must be one of the
5509** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5510** modes (delete, truncate, persist, off and memory), this is a simple
5511** operation. No IO is required.
5512**
5513** If changing into or out of WAL mode the procedure is more complicated.
5514**
5515** Write a string containing the final journal-mode to register P2.
5516*/
drhd80b2332010-05-01 00:59:37 +00005517case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005518 Btree *pBt; /* Btree to change journal mode of */
5519 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005520 int eNew; /* New journal mode */
5521 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005522#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005523 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005524#endif
dane04dc882010-04-20 18:53:15 +00005525
drhd80b2332010-05-01 00:59:37 +00005526 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005527 assert( eNew==PAGER_JOURNALMODE_DELETE
5528 || eNew==PAGER_JOURNALMODE_TRUNCATE
5529 || eNew==PAGER_JOURNALMODE_PERSIST
5530 || eNew==PAGER_JOURNALMODE_OFF
5531 || eNew==PAGER_JOURNALMODE_MEMORY
5532 || eNew==PAGER_JOURNALMODE_WAL
5533 || eNew==PAGER_JOURNALMODE_QUERY
5534 );
5535 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh3ebaee92010-05-06 21:37:22 +00005536
dane04dc882010-04-20 18:53:15 +00005537 pBt = db->aDb[pOp->p1].pBt;
5538 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005539 eOld = sqlite3PagerGetJournalMode(pPager);
5540 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5541 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005542
5543#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005544 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005545
drhd80b2332010-05-01 00:59:37 +00005546 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005547 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005548 */
5549 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005550 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005551 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005552 ){
drh0b9b4302010-06-11 17:01:24 +00005553 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005554 }
5555
drh0b9b4302010-06-11 17:01:24 +00005556 if( (eNew!=eOld)
5557 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5558 ){
5559 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5560 rc = SQLITE_ERROR;
5561 sqlite3SetString(&p->zErrMsg, db,
5562 "cannot change %s wal mode from within a transaction",
5563 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5564 );
5565 break;
5566 }else{
5567
5568 if( eOld==PAGER_JOURNALMODE_WAL ){
5569 /* If leaving WAL mode, close the log file. If successful, the call
5570 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5571 ** file. An EXCLUSIVE lock may still be held on the database file
5572 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005573 */
drh0b9b4302010-06-11 17:01:24 +00005574 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005575 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005576 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005577 }
drh242c4f72010-06-22 14:49:39 +00005578 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5579 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5580 ** as an intermediate */
5581 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005582 }
5583
5584 /* Open a transaction on the database file. Regardless of the journal
5585 ** mode, this transaction always uses a rollback journal.
5586 */
5587 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5588 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005589 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005590 }
5591 }
5592 }
dan5cf53532010-05-01 16:40:20 +00005593#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005594
dand956efe2010-06-18 16:13:45 +00005595 if( rc ){
dand956efe2010-06-18 16:13:45 +00005596 eNew = eOld;
5597 }
drh0b9b4302010-06-11 17:01:24 +00005598 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005599
dane04dc882010-04-20 18:53:15 +00005600 pOut = &aMem[pOp->p2];
5601 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005602 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005603 pOut->n = sqlite3Strlen30(pOut->z);
5604 pOut->enc = SQLITE_UTF8;
5605 sqlite3VdbeChangeEncoding(pOut, encoding);
5606 break;
drhcac29a62010-07-02 19:36:52 +00005607};
5608#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005609
drhfdbcdee2007-03-27 14:44:50 +00005610#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005611/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005612**
5613** Vacuum the entire database. This opcode will cause other virtual
5614** machines to be created and run. It may not be called from within
5615** a transaction.
5616*/
drh9cbf3422008-01-17 16:22:13 +00005617case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005618 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005619 break;
5620}
drh154d4b22006-09-21 11:02:16 +00005621#endif
drh6f8c91c2003-12-07 00:24:35 +00005622
danielk1977dddbcdc2007-04-26 14:42:34 +00005623#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005624/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005625**
5626** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005627** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005628** P2. Otherwise, fall through to the next instruction.
5629*/
drh9cbf3422008-01-17 16:22:13 +00005630case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005631 Btree *pBt;
5632
5633 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005634 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005635 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005636 rc = sqlite3BtreeIncrVacuum(pBt);
5637 if( rc==SQLITE_DONE ){
5638 pc = pOp->p2 - 1;
5639 rc = SQLITE_OK;
5640 }
5641 break;
5642}
5643#endif
5644
drh98757152008-01-09 23:04:12 +00005645/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005646**
5647** Cause precompiled statements to become expired. An expired statement
5648** fails with an error code of SQLITE_SCHEMA if it is ever executed
5649** (via sqlite3_step()).
5650**
5651** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5652** then only the currently executing statement is affected.
5653*/
drh9cbf3422008-01-17 16:22:13 +00005654case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005655 if( !pOp->p1 ){
5656 sqlite3ExpirePreparedStatements(db);
5657 }else{
5658 p->expired = 1;
5659 }
5660 break;
5661}
5662
danielk1977c00da102006-01-07 13:21:04 +00005663#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005664/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005665**
5666** Obtain a lock on a particular table. This instruction is only used when
5667** the shared-cache feature is enabled.
5668**
danielk197796d48e92009-06-29 06:00:37 +00005669** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005670** on which the lock is acquired. A readlock is obtained if P3==0 or
5671** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005672**
5673** P2 contains the root-page of the table to lock.
5674**
drh66a51672008-01-03 00:01:23 +00005675** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005676** used to generate an error message if the lock cannot be obtained.
5677*/
drh9cbf3422008-01-17 16:22:13 +00005678case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005679 u8 isWriteLock = (u8)pOp->p3;
5680 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5681 int p1 = pOp->p1;
5682 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005683 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005684 assert( isWriteLock==0 || isWriteLock==1 );
5685 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5686 if( (rc&0xFF)==SQLITE_LOCKED ){
5687 const char *z = pOp->p4.z;
5688 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5689 }
danielk1977c00da102006-01-07 13:21:04 +00005690 }
5691 break;
5692}
drhb9bb7c12006-06-11 23:41:55 +00005693#endif /* SQLITE_OMIT_SHARED_CACHE */
5694
5695#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005696/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005697**
danielk19773e3a84d2008-08-01 17:37:40 +00005698** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5699** xBegin method for that table.
5700**
5701** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005702** within a callback to a virtual table xSync() method. If it is, the error
5703** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005704*/
drh9cbf3422008-01-17 16:22:13 +00005705case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005706 VTable *pVTab;
5707 pVTab = pOp->p4.pVtab;
5708 rc = sqlite3VtabBegin(db, pVTab);
drhb9755982010-07-24 16:34:37 +00005709 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005710 break;
5711}
5712#endif /* SQLITE_OMIT_VIRTUALTABLE */
5713
5714#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005715/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005716**
drh66a51672008-01-03 00:01:23 +00005717** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005718** for that table.
5719*/
drh9cbf3422008-01-17 16:22:13 +00005720case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005721 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005722 break;
5723}
5724#endif /* SQLITE_OMIT_VIRTUALTABLE */
5725
5726#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005727/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005728**
drh66a51672008-01-03 00:01:23 +00005729** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005730** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005731*/
drh9cbf3422008-01-17 16:22:13 +00005732case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005733 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005734 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005735 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005736 break;
5737}
5738#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005739
drh9eff6162006-06-12 21:59:13 +00005740#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005741/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005742**
drh66a51672008-01-03 00:01:23 +00005743** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005744** P1 is a cursor number. This opcode opens a cursor to the virtual
5745** table and stores that cursor in P1.
5746*/
drh9cbf3422008-01-17 16:22:13 +00005747case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005748 VdbeCursor *pCur;
5749 sqlite3_vtab_cursor *pVtabCursor;
5750 sqlite3_vtab *pVtab;
5751 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005752
drh856c1032009-06-02 15:21:42 +00005753 pCur = 0;
5754 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005755 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005756 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005757 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005758 rc = pModule->xOpen(pVtab, &pVtabCursor);
drhb9755982010-07-24 16:34:37 +00005759 importVtabErrMsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005760 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005761 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005762 pVtabCursor->pVtab = pVtab;
5763
mistachkin48864df2013-03-21 21:20:32 +00005764 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005765 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005766 if( pCur ){
5767 pCur->pVtabCursor = pVtabCursor;
5768 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005769 }else{
drh17435752007-08-16 04:30:38 +00005770 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005771 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005772 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005773 }
drh9eff6162006-06-12 21:59:13 +00005774 break;
5775}
5776#endif /* SQLITE_OMIT_VIRTUALTABLE */
5777
5778#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005779/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005780**
5781** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5782** the filtered result set is empty.
5783**
drh66a51672008-01-03 00:01:23 +00005784** P4 is either NULL or a string that was generated by the xBestIndex
5785** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005786** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005787**
drh9eff6162006-06-12 21:59:13 +00005788** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005789** by P1. The integer query plan parameter to xFilter is stored in register
5790** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005791** xFilter method. Registers P3+2..P3+1+argc are the argc
5792** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005793** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005794**
danielk19776dbee812008-01-03 18:39:41 +00005795** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005796*/
drh9cbf3422008-01-17 16:22:13 +00005797case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005798 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005799 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005800 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005801 Mem *pQuery;
5802 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005803 sqlite3_vtab_cursor *pVtabCursor;
5804 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005805 VdbeCursor *pCur;
5806 int res;
5807 int i;
5808 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005809
drha6c2ed92009-11-14 23:22:23 +00005810 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005811 pArgc = &pQuery[1];
5812 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005813 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005814 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005815 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005816 pVtabCursor = pCur->pVtabCursor;
5817 pVtab = pVtabCursor->pVtab;
5818 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005819
drh9cbf3422008-01-17 16:22:13 +00005820 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005821 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005822 nArg = (int)pArgc->u.i;
5823 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005824
drh644a5292006-12-20 14:53:38 +00005825 /* Invoke the xFilter method */
5826 {
drh856c1032009-06-02 15:21:42 +00005827 res = 0;
5828 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005829 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005830 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005831 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005832 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005833
danielk1977be718892006-06-23 08:05:19 +00005834 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005835 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005836 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005837 importVtabErrMsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005838 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005839 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005840 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005841
danielk1977a298e902006-06-22 09:53:48 +00005842 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005843 pc = pOp->p2 - 1;
5844 }
5845 }
drh1d454a32008-01-31 19:34:51 +00005846 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005847
drh9eff6162006-06-12 21:59:13 +00005848 break;
5849}
5850#endif /* SQLITE_OMIT_VIRTUALTABLE */
5851
5852#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005853/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005854**
drh2133d822008-01-03 18:44:59 +00005855** Store the value of the P2-th column of
5856** the row of the virtual-table that the
5857** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005858*/
5859case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005860 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005861 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005862 Mem *pDest;
5863 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005864
drhdfe88ec2008-11-03 20:55:06 +00005865 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005866 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005867 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005868 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005869 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005870 if( pCur->nullRow ){
5871 sqlite3VdbeMemSetNull(pDest);
5872 break;
5873 }
danielk19773e3a84d2008-08-01 17:37:40 +00005874 pVtab = pCur->pVtabCursor->pVtab;
5875 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005876 assert( pModule->xColumn );
5877 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005878
5879 /* The output cell may already have a buffer allocated. Move
5880 ** the current contents to sContext.s so in case the user-function
5881 ** can use the already allocated buffer instead of allocating a
5882 ** new one.
5883 */
5884 sqlite3VdbeMemMove(&sContext.s, pDest);
5885 MemSetTypeFlag(&sContext.s, MEM_Null);
5886
drhde4fcfd2008-01-19 23:50:26 +00005887 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
drhb9755982010-07-24 16:34:37 +00005888 importVtabErrMsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005889 if( sContext.isError ){
5890 rc = sContext.isError;
5891 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005892
drhde4fcfd2008-01-19 23:50:26 +00005893 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005894 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005895 ** dynamic allocation in sContext.s (a Mem struct) is released.
5896 */
5897 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005898 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005899 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005900 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005901
drhde4fcfd2008-01-19 23:50:26 +00005902 if( sqlite3VdbeMemTooBig(pDest) ){
5903 goto too_big;
5904 }
drh9eff6162006-06-12 21:59:13 +00005905 break;
5906}
5907#endif /* SQLITE_OMIT_VIRTUALTABLE */
5908
5909#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005910/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005911**
5912** Advance virtual table P1 to the next row in its result set and
5913** jump to instruction P2. Or, if the virtual table has reached
5914** the end of its result set, then fall through to the next instruction.
5915*/
drh9cbf3422008-01-17 16:22:13 +00005916case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005917 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005918 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005919 int res;
drh856c1032009-06-02 15:21:42 +00005920 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005921
drhc54a6172009-06-02 16:06:03 +00005922 res = 0;
drh856c1032009-06-02 15:21:42 +00005923 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005924 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005925 if( pCur->nullRow ){
5926 break;
5927 }
danielk19773e3a84d2008-08-01 17:37:40 +00005928 pVtab = pCur->pVtabCursor->pVtab;
5929 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005930 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005931
drhde4fcfd2008-01-19 23:50:26 +00005932 /* Invoke the xNext() method of the module. There is no way for the
5933 ** underlying implementation to return an error if one occurs during
5934 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5935 ** data is available) and the error code returned when xColumn or
5936 ** some other method is next invoked on the save virtual table cursor.
5937 */
drhde4fcfd2008-01-19 23:50:26 +00005938 p->inVtabMethod = 1;
5939 rc = pModule->xNext(pCur->pVtabCursor);
5940 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005941 importVtabErrMsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005942 if( rc==SQLITE_OK ){
5943 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005944 }
5945
drhde4fcfd2008-01-19 23:50:26 +00005946 if( !res ){
5947 /* If there is data, jump to P2 */
5948 pc = pOp->p2 - 1;
5949 }
drh9eff6162006-06-12 21:59:13 +00005950 break;
5951}
5952#endif /* SQLITE_OMIT_VIRTUALTABLE */
5953
danielk1977182c4ba2007-06-27 15:53:34 +00005954#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005955/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005956**
drh66a51672008-01-03 00:01:23 +00005957** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005958** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005959** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005960*/
drh9cbf3422008-01-17 16:22:13 +00005961case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005962 sqlite3_vtab *pVtab;
5963 Mem *pName;
5964
danielk1977595a5232009-07-24 17:58:53 +00005965 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005966 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005967 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00005968 assert( memIsValid(pName) );
drh5b6afba2008-01-05 16:29:28 +00005969 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005970 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00005971 testcase( pName->enc==SQLITE_UTF8 );
5972 testcase( pName->enc==SQLITE_UTF16BE );
5973 testcase( pName->enc==SQLITE_UTF16LE );
5974 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5975 if( rc==SQLITE_OK ){
5976 rc = pVtab->pModule->xRename(pVtab, pName->z);
5977 importVtabErrMsg(p, pVtab);
5978 p->expired = 0;
5979 }
danielk1977182c4ba2007-06-27 15:53:34 +00005980 break;
5981}
5982#endif
drh4cbdda92006-06-14 19:00:20 +00005983
5984#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005985/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005986**
drh66a51672008-01-03 00:01:23 +00005987** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005988** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005989** are contiguous memory cells starting at P3 to pass to the xUpdate
5990** invocation. The value in register (P3+P2-1) corresponds to the
5991** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005992**
5993** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005994** The argv[0] element (which corresponds to memory cell P3)
5995** is the rowid of a row to delete. If argv[0] is NULL then no
5996** deletion occurs. The argv[1] element is the rowid of the new
5997** row. This can be NULL to have the virtual table select the new
5998** rowid for itself. The subsequent elements in the array are
5999** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006000**
6001** If P2==1 then no insert is performed. argv[0] is the rowid of
6002** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006003**
6004** P1 is a boolean flag. If it is set to true and the xUpdate call
6005** is successful, then the value returned by sqlite3_last_insert_rowid()
6006** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00006007*/
drh9cbf3422008-01-17 16:22:13 +00006008case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006009 sqlite3_vtab *pVtab;
6010 sqlite3_module *pModule;
6011 int nArg;
6012 int i;
6013 sqlite_int64 rowid;
6014 Mem **apArg;
6015 Mem *pX;
6016
danb061d052011-04-25 18:49:57 +00006017 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6018 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6019 );
danielk1977595a5232009-07-24 17:58:53 +00006020 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00006021 pModule = (sqlite3_module *)pVtab->pModule;
6022 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006023 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006024 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006025 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006026 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006027 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006028 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006029 assert( memIsValid(pX) );
6030 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00006031 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00006032 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006033 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006034 }
danb061d052011-04-25 18:49:57 +00006035 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006036 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006037 db->vtabOnConflict = vtabOnConflict;
drhb9755982010-07-24 16:34:37 +00006038 importVtabErrMsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006039 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006040 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006041 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006042 }
drhd91c1a12013-02-09 13:58:25 +00006043 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006044 if( pOp->p5==OE_Ignore ){
6045 rc = SQLITE_OK;
6046 }else{
6047 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6048 }
6049 }else{
6050 p->nChange++;
6051 }
danielk1977399918f2006-06-14 13:03:23 +00006052 }
drh4cbdda92006-06-14 19:00:20 +00006053 break;
danielk1977399918f2006-06-14 13:03:23 +00006054}
6055#endif /* SQLITE_OMIT_VIRTUALTABLE */
6056
danielk197759a93792008-05-15 17:48:20 +00006057#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6058/* Opcode: Pagecount P1 P2 * * *
6059**
6060** Write the current number of pages in database P1 to memory cell P2.
6061*/
6062case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006063 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006064 break;
6065}
6066#endif
6067
drh60ac3f42010-11-23 18:59:27 +00006068
6069#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6070/* Opcode: MaxPgcnt P1 P2 P3 * *
6071**
6072** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006073** Do not let the maximum page count fall below the current page count and
6074** do not change the maximum page count value if P3==0.
6075**
drh60ac3f42010-11-23 18:59:27 +00006076** Store the maximum page count after the change in register P2.
6077*/
6078case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006079 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006080 Btree *pBt;
6081
6082 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006083 newMax = 0;
6084 if( pOp->p3 ){
6085 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006086 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006087 }
6088 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006089 break;
6090}
6091#endif
6092
6093
drh949f9cd2008-01-12 21:35:57 +00006094#ifndef SQLITE_OMIT_TRACE
6095/* Opcode: Trace * * * P4 *
6096**
6097** If tracing is enabled (by the sqlite3_trace()) interface, then
6098** the UTF-8 string contained in P4 is emitted on the trace callback.
6099*/
6100case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00006101 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006102 char *z;
drh856c1032009-06-02 15:21:42 +00006103
drh37f58e92012-09-04 21:34:26 +00006104 if( db->xTrace
6105 && !p->doingRerun
6106 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6107 ){
drhc3f1d5f2011-05-30 23:42:16 +00006108 z = sqlite3VdbeExpandSql(p, zTrace);
6109 db->xTrace(db->pTraceArg, z);
6110 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006111 }
drhc3f1d5f2011-05-30 23:42:16 +00006112#ifdef SQLITE_DEBUG
6113 if( (db->flags & SQLITE_SqlTrace)!=0
6114 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6115 ){
6116 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6117 }
6118#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00006119 break;
6120}
6121#endif
6122
drh91fd4d42008-01-19 20:11:25 +00006123
6124/* Opcode: Noop * * * * *
6125**
6126** Do nothing. This instruction is often useful as a jump
6127** destination.
drh5e00f6c2001-09-13 13:46:56 +00006128*/
drh91fd4d42008-01-19 20:11:25 +00006129/*
6130** The magic Explain opcode are only inserted when explain==2 (which
6131** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6132** This opcode records information from the optimizer. It is the
6133** the same as a no-op. This opcodesnever appears in a real VM program.
6134*/
6135default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006136 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006137 break;
6138}
6139
6140/*****************************************************************************
6141** The cases of the switch statement above this line should all be indented
6142** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6143** readability. From this point on down, the normal indentation rules are
6144** restored.
6145*****************************************************************************/
6146 }
drh6e142f52000-06-08 13:36:40 +00006147
drh7b396862003-01-01 23:06:20 +00006148#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006149 {
shane9bcbdad2008-05-29 20:22:37 +00006150 u64 elapsed = sqlite3Hwtime() - start;
6151 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00006152 pOp->cnt++;
6153#if 0
shane9bcbdad2008-05-29 20:22:37 +00006154 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00006155 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00006156#endif
6157 }
drh7b396862003-01-01 23:06:20 +00006158#endif
6159
drh6e142f52000-06-08 13:36:40 +00006160 /* The following code adds nothing to the actual functionality
6161 ** of the program. It is only here for testing and debugging.
6162 ** On the other hand, it does burn CPU cycles every time through
6163 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6164 */
6165#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006166 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006167
drhcf1023c2007-05-08 20:59:49 +00006168#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00006169 if( p->trace ){
6170 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006171 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6172 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006173 }
drh3c657212009-11-17 23:59:58 +00006174 if( pOp->opflags & OPFLG_OUT3 ){
6175 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006176 }
drh75897232000-05-29 14:26:00 +00006177 }
danielk1977b5402fb2005-01-12 07:15:04 +00006178#endif /* SQLITE_DEBUG */
6179#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006180 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006181
drha05a7222008-01-19 03:35:58 +00006182 /* If we reach this point, it means that execution is finished with
6183 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006184 */
drha05a7222008-01-19 03:35:58 +00006185vdbe_error_halt:
6186 assert( rc );
6187 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006188 testcase( sqlite3GlobalConfig.xLog!=0 );
6189 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6190 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006191 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006192 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6193 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006194 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006195 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006196 }
drh900b31e2007-08-28 02:27:51 +00006197
6198 /* This is the only way out of this procedure. We have to
6199 ** release the mutexes on btrees that were acquired at the
6200 ** top. */
6201vdbe_return:
drh99a66922011-05-13 18:51:42 +00006202 db->lastRowid = lastRowid;
drhbdaec522011-04-04 00:14:43 +00006203 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006204 return rc;
6205
drh023ae032007-05-08 12:12:16 +00006206 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6207 ** is encountered.
6208 */
6209too_big:
drhf089aa42008-07-08 19:34:06 +00006210 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006211 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006212 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006213
drh98640a32007-06-07 19:08:32 +00006214 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006215 */
6216no_mem:
drh17435752007-08-16 04:30:38 +00006217 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006218 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006219 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006220 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006221
drhb86ccfb2003-01-28 23:13:10 +00006222 /* Jump to here for any other kind of fatal error. The "rc" variable
6223 ** should hold the error number.
6224 */
6225abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006226 assert( p->zErrMsg==0 );
6227 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006228 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006229 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006230 }
drha05a7222008-01-19 03:35:58 +00006231 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006232
danielk19776f8a5032004-05-10 10:34:51 +00006233 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006234 ** flag.
6235 */
6236abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006237 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006238 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006239 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006240 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006241 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006242}