blob: 3ca60583e3c8e31200f973e0e9c4536258b26439 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
165 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
449
danielk197792d4d7a2007-05-04 12:05:56 +0000450#ifndef SQLITE_OMIT_INCRBLOB
451/*
452** Invalidate the overflow page-list cache for cursor pCur, if any.
453*/
454static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000455 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000456 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000457 pCur->aOverflow = 0;
458}
459
460/*
461** Invalidate the overflow page-list cache for all cursors opened
462** on the shared btree structure pBt.
463*/
464static void invalidateAllOverflowCache(BtShared *pBt){
465 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000466 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000467 for(p=pBt->pCursor; p; p=p->pNext){
468 invalidateOverflowCache(p);
469 }
470}
danielk197796d48e92009-06-29 06:00:37 +0000471
472/*
473** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000474** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000475** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000476**
477** If argument isClearTable is true, then the entire contents of the
478** table is about to be deleted. In this case invalidate all incrblob
479** cursors open on any row within the table with root-page pgnoRoot.
480**
481** Otherwise, if argument isClearTable is false, then the row with
482** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000483** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000484*/
485static void invalidateIncrblobCursors(
486 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000487 i64 iRow, /* The rowid that might be changing */
488 int isClearTable /* True if all rows are being deleted */
489){
490 BtCursor *p;
491 BtShared *pBt = pBtree->pBt;
492 assert( sqlite3BtreeHoldsMutex(pBtree) );
493 for(p=pBt->pCursor; p; p=p->pNext){
494 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
495 p->eState = CURSOR_INVALID;
496 }
497 }
498}
499
danielk197792d4d7a2007-05-04 12:05:56 +0000500#else
drh0ee3dbe2009-10-16 15:05:18 +0000501 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000502 #define invalidateOverflowCache(x)
503 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000504 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000505#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000506
drh980b1a72006-08-16 16:42:48 +0000507/*
danielk1977bea2a942009-01-20 17:06:27 +0000508** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509** when a page that previously contained data becomes a free-list leaf
510** page.
511**
512** The BtShared.pHasContent bitvec exists to work around an obscure
513** bug caused by the interaction of two useful IO optimizations surrounding
514** free-list leaf pages:
515**
516** 1) When all data is deleted from a page and the page becomes
517** a free-list leaf page, the page is not written to the database
518** (as free-list leaf pages contain no meaningful data). Sometimes
519** such a page is not even journalled (as it will not be modified,
520** why bother journalling it?).
521**
522** 2) When a free-list leaf page is reused, its content is not read
523** from the database or written to the journal file (why should it
524** be, if it is not at all meaningful?).
525**
526** By themselves, these optimizations work fine and provide a handy
527** performance boost to bulk delete or insert operations. However, if
528** a page is moved to the free-list and then reused within the same
529** transaction, a problem comes up. If the page is not journalled when
530** it is moved to the free-list and it is also not journalled when it
531** is extracted from the free-list and reused, then the original data
532** may be lost. In the event of a rollback, it may not be possible
533** to restore the database to its original configuration.
534**
535** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536** moved to become a free-list leaf page, the corresponding bit is
537** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000538** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000539** set in BtShared.pHasContent. The contents of the bitvec are cleared
540** at the end of every transaction.
541*/
542static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
543 int rc = SQLITE_OK;
544 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000545 assert( pgno<=pBt->nPage );
546 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000547 if( !pBt->pHasContent ){
548 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000549 }
550 }
551 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
552 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
553 }
554 return rc;
555}
556
557/*
558** Query the BtShared.pHasContent vector.
559**
560** This function is called when a free-list leaf page is removed from the
561** free-list for reuse. It returns false if it is safe to retrieve the
562** page from the pager layer with the 'no-content' flag set. True otherwise.
563*/
564static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
565 Bitvec *p = pBt->pHasContent;
566 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
567}
568
569/*
570** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571** invoked at the conclusion of each write-transaction.
572*/
573static void btreeClearHasContent(BtShared *pBt){
574 sqlite3BitvecDestroy(pBt->pHasContent);
575 pBt->pHasContent = 0;
576}
577
578/*
drh138eeeb2013-03-27 03:15:23 +0000579** Release all of the apPage[] pages for a cursor.
580*/
581static void btreeReleaseAllCursorPages(BtCursor *pCur){
582 int i;
583 for(i=0; i<=pCur->iPage; i++){
584 releasePage(pCur->apPage[i]);
585 pCur->apPage[i] = 0;
586 }
587 pCur->iPage = -1;
588}
589
590
591/*
drh980b1a72006-08-16 16:42:48 +0000592** Save the current cursor position in the variables BtCursor.nKey
593** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000594**
595** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000597*/
598static int saveCursorPosition(BtCursor *pCur){
599 int rc;
600
601 assert( CURSOR_VALID==pCur->eState );
602 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000603 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000604
605 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000606 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000607
608 /* If this is an intKey table, then the above call to BtreeKeySize()
609 ** stores the integer key in pCur->nKey. In this case this value is
610 ** all that is required. Otherwise, if pCur is not open on an intKey
611 ** table, then malloc space for and store the pCur->nKey bytes of key
612 ** data.
613 */
drh4c301aa2009-07-15 17:25:45 +0000614 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000615 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000616 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000617 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000618 if( rc==SQLITE_OK ){
619 pCur->pKey = pKey;
620 }else{
drh17435752007-08-16 04:30:38 +0000621 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000622 }
623 }else{
624 rc = SQLITE_NOMEM;
625 }
626 }
danielk197771d5d2c2008-09-29 11:49:47 +0000627 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000628
629 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000630 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 pCur->eState = CURSOR_REQUIRESEEK;
632 }
633
danielk197792d4d7a2007-05-04 12:05:56 +0000634 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000635 return rc;
636}
637
638/*
drh0ee3dbe2009-10-16 15:05:18 +0000639** Save the positions of all cursors (except pExcept) that are open on
640** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000641** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
642*/
643static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
644 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000645 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000646 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000647 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000648 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
649 if( p->eState==CURSOR_VALID ){
650 int rc = saveCursorPosition(p);
651 if( SQLITE_OK!=rc ){
652 return rc;
653 }
654 }else{
655 testcase( p->iPage>0 );
656 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000657 }
658 }
659 }
660 return SQLITE_OK;
661}
662
663/*
drhbf700f32007-03-31 02:36:44 +0000664** Clear the current cursor position.
665*/
danielk1977be51a652008-10-08 17:58:48 +0000666void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000667 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000668 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000669 pCur->pKey = 0;
670 pCur->eState = CURSOR_INVALID;
671}
672
673/*
danielk19773509a652009-07-06 18:56:13 +0000674** In this version of BtreeMoveto, pKey is a packed index record
675** such as is generated by the OP_MakeRecord opcode. Unpack the
676** record and then call BtreeMovetoUnpacked() to do the work.
677*/
678static int btreeMoveto(
679 BtCursor *pCur, /* Cursor open on the btree to be searched */
680 const void *pKey, /* Packed key if the btree is an index */
681 i64 nKey, /* Integer key for tables. Size of pKey for indices */
682 int bias, /* Bias search to the high end */
683 int *pRes /* Write search results here */
684){
685 int rc; /* Status code */
686 UnpackedRecord *pIdxKey; /* Unpacked index key */
687 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000688 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000689
690 if( pKey ){
691 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000692 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
693 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
694 );
danielk19773509a652009-07-06 18:56:13 +0000695 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000696 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000697 }else{
698 pIdxKey = 0;
699 }
700 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000701 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000702 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000703 }
704 return rc;
705}
706
707/*
drh980b1a72006-08-16 16:42:48 +0000708** Restore the cursor to the position it was in (or as close to as possible)
709** when saveCursorPosition() was called. Note that this call deletes the
710** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000711** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000712** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000713*/
danielk197730548662009-07-09 05:07:37 +0000714static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000715 int rc;
drh1fee73e2007-08-29 04:00:57 +0000716 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000717 assert( pCur->eState>=CURSOR_REQUIRESEEK );
718 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000719 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000720 }
drh980b1a72006-08-16 16:42:48 +0000721 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000722 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000723 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000724 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000725 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000726 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000727 }
728 return rc;
729}
730
drha3460582008-07-11 21:02:53 +0000731#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000732 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000733 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000734 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000735
drha3460582008-07-11 21:02:53 +0000736/*
737** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000738** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000739** at is deleted out from under them.
740**
741** This routine returns an error code if something goes wrong. The
742** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
743*/
744int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
745 int rc;
746
747 rc = restoreCursorPosition(pCur);
748 if( rc ){
749 *pHasMoved = 1;
750 return rc;
751 }
drh4c301aa2009-07-15 17:25:45 +0000752 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000753 *pHasMoved = 1;
754 }else{
755 *pHasMoved = 0;
756 }
757 return SQLITE_OK;
758}
759
danielk1977599fcba2004-11-08 07:13:13 +0000760#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000761/*
drha3152892007-05-05 11:48:52 +0000762** Given a page number of a regular database page, return the page
763** number for the pointer-map page that contains the entry for the
764** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000765**
766** Return 0 (not a valid page) for pgno==1 since there is
767** no pointer map associated with page 1. The integrity_check logic
768** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000769*/
danielk1977266664d2006-02-10 08:24:21 +0000770static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000771 int nPagesPerMapPage;
772 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000773 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000774 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000775 nPagesPerMapPage = (pBt->usableSize/5)+1;
776 iPtrMap = (pgno-2)/nPagesPerMapPage;
777 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000778 if( ret==PENDING_BYTE_PAGE(pBt) ){
779 ret++;
780 }
781 return ret;
782}
danielk1977a19df672004-11-03 11:37:07 +0000783
danielk1977afcdd022004-10-31 16:25:42 +0000784/*
danielk1977afcdd022004-10-31 16:25:42 +0000785** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000786**
787** This routine updates the pointer map entry for page number 'key'
788** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000789**
790** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
791** a no-op. If an error occurs, the appropriate error code is written
792** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000793*/
drh98add2e2009-07-20 17:11:49 +0000794static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000795 DbPage *pDbPage; /* The pointer map page */
796 u8 *pPtrmap; /* The pointer map data */
797 Pgno iPtrmap; /* The pointer map page number */
798 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000799 int rc; /* Return code from subfunctions */
800
801 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000802
drh1fee73e2007-08-29 04:00:57 +0000803 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000804 /* The master-journal page number must never be used as a pointer map page */
805 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
806
danielk1977ac11ee62005-01-15 12:45:51 +0000807 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000808 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000809 *pRC = SQLITE_CORRUPT_BKPT;
810 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000811 }
danielk1977266664d2006-02-10 08:24:21 +0000812 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000813 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000814 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000815 *pRC = rc;
816 return;
danielk1977afcdd022004-10-31 16:25:42 +0000817 }
danielk19778c666b12008-07-18 09:34:57 +0000818 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000819 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000820 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000821 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000822 }
drhfc243732011-05-17 15:21:56 +0000823 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000824 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000825
drh615ae552005-01-16 23:21:00 +0000826 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
827 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000828 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000829 if( rc==SQLITE_OK ){
830 pPtrmap[offset] = eType;
831 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000832 }
danielk1977afcdd022004-10-31 16:25:42 +0000833 }
834
drh4925a552009-07-07 11:39:58 +0000835ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000836 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000837}
838
839/*
840** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000841**
842** This routine retrieves the pointer map entry for page 'key', writing
843** the type and parent page number to *pEType and *pPgno respectively.
844** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000845*/
danielk1977aef0bf62005-12-30 16:28:01 +0000846static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000847 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000848 int iPtrmap; /* Pointer map page index */
849 u8 *pPtrmap; /* Pointer map page data */
850 int offset; /* Offset of entry in pointer map */
851 int rc;
852
drh1fee73e2007-08-29 04:00:57 +0000853 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000854
danielk1977266664d2006-02-10 08:24:21 +0000855 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000856 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000857 if( rc!=0 ){
858 return rc;
859 }
danielk19773b8a05f2007-03-19 17:44:26 +0000860 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000861
danielk19778c666b12008-07-18 09:34:57 +0000862 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000863 if( offset<0 ){
864 sqlite3PagerUnref(pDbPage);
865 return SQLITE_CORRUPT_BKPT;
866 }
867 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000868 assert( pEType!=0 );
869 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000870 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000871
danielk19773b8a05f2007-03-19 17:44:26 +0000872 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000873 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000874 return SQLITE_OK;
875}
876
danielk197785d90ca2008-07-19 14:25:15 +0000877#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000878 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000879 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000880 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000881#endif
danielk1977afcdd022004-10-31 16:25:42 +0000882
drh0d316a42002-08-11 20:10:47 +0000883/*
drh271efa52004-05-30 19:19:05 +0000884** Given a btree page and a cell index (0 means the first cell on
885** the page, 1 means the second cell, and so forth) return a pointer
886** to the cell content.
887**
888** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000889*/
drh1688c862008-07-18 02:44:17 +0000890#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000891 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000892#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
893
drh43605152004-05-29 21:46:49 +0000894
895/*
drh93a960a2008-07-10 00:32:42 +0000896** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000897** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000898*/
899static u8 *findOverflowCell(MemPage *pPage, int iCell){
900 int i;
drh1fee73e2007-08-29 04:00:57 +0000901 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000902 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000903 int k;
drh2cbd78b2012-02-02 19:37:18 +0000904 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000905 if( k<=iCell ){
906 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000907 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000908 }
909 iCell--;
910 }
911 }
danielk19771cc5ed82007-05-16 17:28:43 +0000912 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000913}
914
915/*
916** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000917** are two versions of this function. btreeParseCell() takes a
918** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000919** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000920**
921** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000922** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000923*/
danielk197730548662009-07-09 05:07:37 +0000924static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000925 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000926 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000927 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000928){
drhf49661a2008-12-10 16:45:50 +0000929 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000930 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000931
drh1fee73e2007-08-29 04:00:57 +0000932 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000933
drh43605152004-05-29 21:46:49 +0000934 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000935 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000936 n = pPage->childPtrSize;
937 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000938 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000939 if( pPage->hasData ){
940 n += getVarint32(&pCell[n], nPayload);
941 }else{
942 nPayload = 0;
943 }
drh1bd10f82008-12-10 21:19:56 +0000944 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000945 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000946 }else{
drh79df1f42008-07-18 00:57:33 +0000947 pInfo->nData = 0;
948 n += getVarint32(&pCell[n], nPayload);
949 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000950 }
drh72365832007-03-06 15:53:44 +0000951 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000952 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000953 testcase( nPayload==pPage->maxLocal );
954 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000955 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000956 /* This is the (easy) common case where the entire payload fits
957 ** on the local page. No overflow is required.
958 */
drh41692e92011-01-25 04:34:51 +0000959 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000960 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000961 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000962 }else{
drh271efa52004-05-30 19:19:05 +0000963 /* If the payload will not fit completely on the local page, we have
964 ** to decide how much to store locally and how much to spill onto
965 ** overflow pages. The strategy is to minimize the amount of unused
966 ** space on overflow pages while keeping the amount of local storage
967 ** in between minLocal and maxLocal.
968 **
969 ** Warning: changing the way overflow payload is distributed in any
970 ** way will result in an incompatible file format.
971 */
972 int minLocal; /* Minimum amount of payload held locally */
973 int maxLocal; /* Maximum amount of payload held locally */
974 int surplus; /* Overflow payload available for local storage */
975
976 minLocal = pPage->minLocal;
977 maxLocal = pPage->maxLocal;
978 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000979 testcase( surplus==maxLocal );
980 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000981 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000982 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000983 }else{
drhf49661a2008-12-10 16:45:50 +0000984 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000985 }
drhf49661a2008-12-10 16:45:50 +0000986 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000987 pInfo->nSize = pInfo->iOverflow + 4;
988 }
drh3aac2dd2004-04-26 14:10:20 +0000989}
danielk19771cc5ed82007-05-16 17:28:43 +0000990#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000991 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
992static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000993 MemPage *pPage, /* Page containing the cell */
994 int iCell, /* The cell index. First cell is 0 */
995 CellInfo *pInfo /* Fill in this structure */
996){
danielk19771cc5ed82007-05-16 17:28:43 +0000997 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000998}
drh3aac2dd2004-04-26 14:10:20 +0000999
1000/*
drh43605152004-05-29 21:46:49 +00001001** Compute the total number of bytes that a Cell needs in the cell
1002** data area of the btree-page. The return number includes the cell
1003** data header and the local payload, but not any overflow page or
1004** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001005*/
danielk1977ae5558b2009-04-29 11:31:47 +00001006static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1007 u8 *pIter = &pCell[pPage->childPtrSize];
1008 u32 nSize;
1009
1010#ifdef SQLITE_DEBUG
1011 /* The value returned by this function should always be the same as
1012 ** the (CellInfo.nSize) value found by doing a full parse of the
1013 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1014 ** this function verifies that this invariant is not violated. */
1015 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001016 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001017#endif
1018
1019 if( pPage->intKey ){
1020 u8 *pEnd;
1021 if( pPage->hasData ){
1022 pIter += getVarint32(pIter, nSize);
1023 }else{
1024 nSize = 0;
1025 }
1026
1027 /* pIter now points at the 64-bit integer key value, a variable length
1028 ** integer. The following block moves pIter to point at the first byte
1029 ** past the end of the key value. */
1030 pEnd = &pIter[9];
1031 while( (*pIter++)&0x80 && pIter<pEnd );
1032 }else{
1033 pIter += getVarint32(pIter, nSize);
1034 }
1035
drh0a45c272009-07-08 01:49:11 +00001036 testcase( nSize==pPage->maxLocal );
1037 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001038 if( nSize>pPage->maxLocal ){
1039 int minLocal = pPage->minLocal;
1040 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001041 testcase( nSize==pPage->maxLocal );
1042 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001043 if( nSize>pPage->maxLocal ){
1044 nSize = minLocal;
1045 }
1046 nSize += 4;
1047 }
shane75ac1de2009-06-09 18:58:52 +00001048 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001049
1050 /* The minimum size of any cell is 4 bytes. */
1051 if( nSize<4 ){
1052 nSize = 4;
1053 }
1054
1055 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001056 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001057}
drh0ee3dbe2009-10-16 15:05:18 +00001058
1059#ifdef SQLITE_DEBUG
1060/* This variation on cellSizePtr() is used inside of assert() statements
1061** only. */
drha9121e42008-02-19 14:59:35 +00001062static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001063 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001064}
danielk1977bc6ada42004-06-30 08:20:16 +00001065#endif
drh3b7511c2001-05-26 13:15:44 +00001066
danielk197779a40da2005-01-16 08:00:01 +00001067#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001068/*
danielk197726836652005-01-17 01:33:13 +00001069** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001070** to an overflow page, insert an entry into the pointer-map
1071** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001072*/
drh98add2e2009-07-20 17:11:49 +00001073static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001074 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001075 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001076 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001077 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001078 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001079 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001080 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001081 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001082 }
danielk1977ac11ee62005-01-15 12:45:51 +00001083}
danielk197779a40da2005-01-16 08:00:01 +00001084#endif
1085
danielk1977ac11ee62005-01-15 12:45:51 +00001086
drhda200cc2004-05-09 11:51:38 +00001087/*
drh72f82862001-05-24 21:06:34 +00001088** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001089** end of the page and all free space is collected into one
1090** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001091** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001092*/
shane0af3f892008-11-12 04:55:34 +00001093static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001094 int i; /* Loop counter */
1095 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001096 int hdr; /* Offset to the page header */
1097 int size; /* Size of a cell */
1098 int usableSize; /* Number of usable bytes on a page */
1099 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001100 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001101 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001102 unsigned char *data; /* The page data */
1103 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001104 int iCellFirst; /* First allowable cell index */
1105 int iCellLast; /* Last possible cell index */
1106
drh2af926b2001-05-15 00:39:25 +00001107
danielk19773b8a05f2007-03-19 17:44:26 +00001108 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001109 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001110 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001111 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001112 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001113 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001114 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001115 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001116 cellOffset = pPage->cellOffset;
1117 nCell = pPage->nCell;
1118 assert( nCell==get2byte(&data[hdr+3]) );
1119 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001120 cbrk = get2byte(&data[hdr+5]);
1121 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1122 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001123 iCellFirst = cellOffset + 2*nCell;
1124 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001125 for(i=0; i<nCell; i++){
1126 u8 *pAddr; /* The i-th cell pointer */
1127 pAddr = &data[cellOffset + i*2];
1128 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001129 testcase( pc==iCellFirst );
1130 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001131#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001132 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001133 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1134 */
1135 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001136 return SQLITE_CORRUPT_BKPT;
1137 }
drh17146622009-07-07 17:38:38 +00001138#endif
1139 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001140 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001141 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001142#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1143 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001144 return SQLITE_CORRUPT_BKPT;
1145 }
drh17146622009-07-07 17:38:38 +00001146#else
1147 if( cbrk<iCellFirst || pc+size>usableSize ){
1148 return SQLITE_CORRUPT_BKPT;
1149 }
1150#endif
drh7157e1d2009-07-09 13:25:32 +00001151 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001152 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001153 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001154 memcpy(&data[cbrk], &temp[pc], size);
1155 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001156 }
drh17146622009-07-07 17:38:38 +00001157 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001158 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001159 data[hdr+1] = 0;
1160 data[hdr+2] = 0;
1161 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001162 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001163 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001164 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001165 return SQLITE_CORRUPT_BKPT;
1166 }
shane0af3f892008-11-12 04:55:34 +00001167 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001168}
1169
drha059ad02001-04-17 20:09:11 +00001170/*
danielk19776011a752009-04-01 16:25:32 +00001171** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001172** as the first argument. Write into *pIdx the index into pPage->aData[]
1173** of the first byte of allocated space. Return either SQLITE_OK or
1174** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001175**
drh0a45c272009-07-08 01:49:11 +00001176** The caller guarantees that there is sufficient space to make the
1177** allocation. This routine might need to defragment in order to bring
1178** all the space together, however. This routine will avoid using
1179** the first two bytes past the cell pointer area since presumably this
1180** allocation is being made in order to insert a new cell, so we will
1181** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001182*/
drh0a45c272009-07-08 01:49:11 +00001183static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001184 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1185 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1186 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001187 int top; /* First byte of cell content area */
1188 int gap; /* First byte of gap between cell pointers and cell content */
1189 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001190 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001191
danielk19773b8a05f2007-03-19 17:44:26 +00001192 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001193 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001194 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001195 assert( nByte>=0 ); /* Minimum cell size is 4 */
1196 assert( pPage->nFree>=nByte );
1197 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001198 usableSize = pPage->pBt->usableSize;
1199 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001200
1201 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001202 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1203 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001204 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001205 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001206 testcase( gap+2==top );
1207 testcase( gap+1==top );
1208 testcase( gap==top );
1209
danielk19776011a752009-04-01 16:25:32 +00001210 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001211 /* Always defragment highly fragmented pages */
1212 rc = defragmentPage(pPage);
1213 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001214 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001215 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001216 /* Search the freelist looking for a free slot big enough to satisfy
1217 ** the request. The allocation is made from the first free slot in
1218 ** the list that is large enough to accomadate it.
1219 */
1220 int pc, addr;
1221 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001222 int size; /* Size of the free slot */
1223 if( pc>usableSize-4 || pc<addr+4 ){
1224 return SQLITE_CORRUPT_BKPT;
1225 }
1226 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001227 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001228 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001229 testcase( x==4 );
1230 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001231 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001232 /* Remove the slot from the free-list. Update the number of
1233 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001234 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001235 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001236 }else if( size+pc > usableSize ){
1237 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001238 }else{
danielk1977fad91942009-04-29 17:49:59 +00001239 /* The slot remains on the free-list. Reduce its size to account
1240 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001241 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001242 }
drh0a45c272009-07-08 01:49:11 +00001243 *pIdx = pc + x;
1244 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001245 }
drh9e572e62004-04-23 23:43:10 +00001246 }
1247 }
drh43605152004-05-29 21:46:49 +00001248
drh0a45c272009-07-08 01:49:11 +00001249 /* Check to make sure there is enough space in the gap to satisfy
1250 ** the allocation. If not, defragment.
1251 */
1252 testcase( gap+2+nByte==top );
1253 if( gap+2+nByte>top ){
1254 rc = defragmentPage(pPage);
1255 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001256 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001257 assert( gap+nByte<=top );
1258 }
1259
1260
drh43605152004-05-29 21:46:49 +00001261 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001262 ** and the cell content area. The btreeInitPage() call has already
1263 ** validated the freelist. Given that the freelist is valid, there
1264 ** is no way that the allocation can extend off the end of the page.
1265 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001266 */
drh0a45c272009-07-08 01:49:11 +00001267 top -= nByte;
drh43605152004-05-29 21:46:49 +00001268 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001269 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001270 *pIdx = top;
1271 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001272}
1273
1274/*
drh9e572e62004-04-23 23:43:10 +00001275** Return a section of the pPage->aData to the freelist.
1276** The first byte of the new free block is pPage->aDisk[start]
1277** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001278**
1279** Most of the effort here is involved in coalesing adjacent
1280** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001281*/
shanedcc50b72008-11-13 18:29:50 +00001282static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001283 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001284 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001285 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001286
drh9e572e62004-04-23 23:43:10 +00001287 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001288 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001289 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001290 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001291 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001292 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001293
drhc9166342012-01-05 23:32:06 +00001294 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001295 /* Overwrite deleted information with zeros when the secure_delete
1296 ** option is enabled */
1297 memset(&data[start], 0, size);
1298 }
drhfcce93f2006-02-22 03:08:32 +00001299
drh0a45c272009-07-08 01:49:11 +00001300 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001301 ** even though the freeblock list was checked by btreeInitPage(),
1302 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001303 ** freeblocks that overlapped cells. Nor does it detect when the
1304 ** cell content area exceeds the value in the page header. If these
1305 ** situations arise, then subsequent insert operations might corrupt
1306 ** the freelist. So we do need to check for corruption while scanning
1307 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001308 */
drh43605152004-05-29 21:46:49 +00001309 hdr = pPage->hdrOffset;
1310 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001311 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001312 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001313 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001314 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001315 return SQLITE_CORRUPT_BKPT;
1316 }
drh3aac2dd2004-04-26 14:10:20 +00001317 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001318 }
drh0a45c272009-07-08 01:49:11 +00001319 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001320 return SQLITE_CORRUPT_BKPT;
1321 }
drh3aac2dd2004-04-26 14:10:20 +00001322 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001323 put2byte(&data[addr], start);
1324 put2byte(&data[start], pbegin);
1325 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001326 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001327
1328 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001329 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001330 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001331 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001332 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001333 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001334 pnext = get2byte(&data[pbegin]);
1335 psize = get2byte(&data[pbegin+2]);
1336 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1337 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001338 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001339 return SQLITE_CORRUPT_BKPT;
1340 }
drh0a45c272009-07-08 01:49:11 +00001341 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001342 x = get2byte(&data[pnext]);
1343 put2byte(&data[pbegin], x);
1344 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1345 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001346 }else{
drh3aac2dd2004-04-26 14:10:20 +00001347 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001348 }
1349 }
drh7e3b0a02001-04-28 16:52:40 +00001350
drh43605152004-05-29 21:46:49 +00001351 /* If the cell content area begins with a freeblock, remove it. */
1352 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1353 int top;
1354 pbegin = get2byte(&data[hdr+1]);
1355 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001356 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1357 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001358 }
drhc5053fb2008-11-27 02:22:10 +00001359 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001360 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001361}
1362
1363/*
drh271efa52004-05-30 19:19:05 +00001364** Decode the flags byte (the first byte of the header) for a page
1365** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001366**
1367** Only the following combinations are supported. Anything different
1368** indicates a corrupt database files:
1369**
1370** PTF_ZERODATA
1371** PTF_ZERODATA | PTF_LEAF
1372** PTF_LEAFDATA | PTF_INTKEY
1373** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001374*/
drh44845222008-07-17 18:39:57 +00001375static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001376 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001377
1378 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001379 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001380 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001381 flagByte &= ~PTF_LEAF;
1382 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001383 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001384 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1385 pPage->intKey = 1;
1386 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001387 pPage->maxLocal = pBt->maxLeaf;
1388 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001389 }else if( flagByte==PTF_ZERODATA ){
1390 pPage->intKey = 0;
1391 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001392 pPage->maxLocal = pBt->maxLocal;
1393 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001394 }else{
1395 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001396 }
drhc9166342012-01-05 23:32:06 +00001397 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001398 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001399}
1400
1401/*
drh7e3b0a02001-04-28 16:52:40 +00001402** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001403**
1404** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001405** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001406** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1407** guarantee that the page is well-formed. It only shows that
1408** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001409*/
danielk197730548662009-07-09 05:07:37 +00001410static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001411
danielk197771d5d2c2008-09-29 11:49:47 +00001412 assert( pPage->pBt!=0 );
1413 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001414 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001415 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1416 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001417
1418 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001419 u16 pc; /* Address of a freeblock within pPage->aData[] */
1420 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001421 u8 *data; /* Equal to pPage->aData */
1422 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001423 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001424 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001425 int nFree; /* Number of unused bytes on the page */
1426 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001427 int iCellFirst; /* First allowable cell or freeblock offset */
1428 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001429
1430 pBt = pPage->pBt;
1431
danielk1977eaa06f62008-09-18 17:34:44 +00001432 hdr = pPage->hdrOffset;
1433 data = pPage->aData;
1434 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001435 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1436 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001437 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001438 usableSize = pBt->usableSize;
1439 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001440 pPage->aDataEnd = &data[usableSize];
1441 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001442 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001443 pPage->nCell = get2byte(&data[hdr+3]);
1444 if( pPage->nCell>MX_CELL(pBt) ){
1445 /* To many cells for a single page. The page must be corrupt */
1446 return SQLITE_CORRUPT_BKPT;
1447 }
drhb908d762009-07-08 16:54:40 +00001448 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001449
shane5eff7cf2009-08-10 03:57:58 +00001450 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001451 ** of page when parsing a cell.
1452 **
1453 ** The following block of code checks early to see if a cell extends
1454 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1455 ** returned if it does.
1456 */
drh0a45c272009-07-08 01:49:11 +00001457 iCellFirst = cellOffset + 2*pPage->nCell;
1458 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001459#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001460 {
drh69e931e2009-06-03 21:04:35 +00001461 int i; /* Index into the cell pointer array */
1462 int sz; /* Size of a cell */
1463
drh69e931e2009-06-03 21:04:35 +00001464 if( !pPage->leaf ) iCellLast--;
1465 for(i=0; i<pPage->nCell; i++){
1466 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001467 testcase( pc==iCellFirst );
1468 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001469 if( pc<iCellFirst || pc>iCellLast ){
1470 return SQLITE_CORRUPT_BKPT;
1471 }
1472 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001473 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001474 if( pc+sz>usableSize ){
1475 return SQLITE_CORRUPT_BKPT;
1476 }
1477 }
drh0a45c272009-07-08 01:49:11 +00001478 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001479 }
1480#endif
1481
danielk1977eaa06f62008-09-18 17:34:44 +00001482 /* Compute the total free space on the page */
1483 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001484 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001485 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001486 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001487 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001488 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001489 return SQLITE_CORRUPT_BKPT;
1490 }
1491 next = get2byte(&data[pc]);
1492 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001493 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1494 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001495 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001496 return SQLITE_CORRUPT_BKPT;
1497 }
shane85095702009-06-15 16:27:08 +00001498 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001499 pc = next;
1500 }
danielk197793c829c2009-06-03 17:26:17 +00001501
1502 /* At this point, nFree contains the sum of the offset to the start
1503 ** of the cell-content area plus the number of free bytes within
1504 ** the cell-content area. If this is greater than the usable-size
1505 ** of the page, then the page must be corrupted. This check also
1506 ** serves to verify that the offset to the start of the cell-content
1507 ** area, according to the page header, lies within the page.
1508 */
1509 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001510 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001511 }
shane5eff7cf2009-08-10 03:57:58 +00001512 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001513 pPage->isInit = 1;
1514 }
drh9e572e62004-04-23 23:43:10 +00001515 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001516}
1517
1518/*
drh8b2f49b2001-06-08 00:21:52 +00001519** Set up a raw page so that it looks like a database page holding
1520** no entries.
drhbd03cae2001-06-02 02:40:57 +00001521*/
drh9e572e62004-04-23 23:43:10 +00001522static void zeroPage(MemPage *pPage, int flags){
1523 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001524 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001525 u8 hdr = pPage->hdrOffset;
1526 u16 first;
drh9e572e62004-04-23 23:43:10 +00001527
danielk19773b8a05f2007-03-19 17:44:26 +00001528 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001529 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1530 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001531 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001532 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001533 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001534 memset(&data[hdr], 0, pBt->usableSize - hdr);
1535 }
drh1bd10f82008-12-10 21:19:56 +00001536 data[hdr] = (char)flags;
1537 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001538 memset(&data[hdr+1], 0, 4);
1539 data[hdr+7] = 0;
1540 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001541 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001542 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001543 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001544 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001545 pPage->aDataEnd = &data[pBt->usableSize];
1546 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001547 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001548 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1549 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001550 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001551 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001552}
1553
drh897a8202008-09-18 01:08:15 +00001554
1555/*
1556** Convert a DbPage obtained from the pager into a MemPage used by
1557** the btree layer.
1558*/
1559static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1560 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1561 pPage->aData = sqlite3PagerGetData(pDbPage);
1562 pPage->pDbPage = pDbPage;
1563 pPage->pBt = pBt;
1564 pPage->pgno = pgno;
1565 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1566 return pPage;
1567}
1568
drhbd03cae2001-06-02 02:40:57 +00001569/*
drh3aac2dd2004-04-26 14:10:20 +00001570** Get a page from the pager. Initialize the MemPage.pBt and
1571** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001572**
1573** If the noContent flag is set, it means that we do not care about
1574** the content of the page at this time. So do not go to the disk
1575** to fetch the content. Just fill in the content with zeros for now.
1576** If in the future we call sqlite3PagerWrite() on this page, that
1577** means we have started to be concerned about content and the disk
1578** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001579*/
danielk197730548662009-07-09 05:07:37 +00001580static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001581 BtShared *pBt, /* The btree */
1582 Pgno pgno, /* Number of the page to fetch */
1583 MemPage **ppPage, /* Return the page in this parameter */
dan11dcd112013-03-15 18:29:18 +00001584 int noContent, /* Do not load page content if true */
1585 int bReadonly /* True if a read-only (mmap) page is ok */
drh16a9b832007-05-05 18:39:25 +00001586){
drh3aac2dd2004-04-26 14:10:20 +00001587 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001588 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00001589 int flags = (noContent ? PAGER_ACQUIRE_NOCONTENT : 0)
1590 | (bReadonly ? PAGER_ACQUIRE_READONLY : 0);
danielk19773b8a05f2007-03-19 17:44:26 +00001591
dan11dcd112013-03-15 18:29:18 +00001592 assert( noContent==0 || bReadonly==0 );
drh1fee73e2007-08-29 04:00:57 +00001593 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001594 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001595 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001596 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001597 return SQLITE_OK;
1598}
1599
1600/*
danielk1977bea2a942009-01-20 17:06:27 +00001601** Retrieve a page from the pager cache. If the requested page is not
1602** already in the pager cache return NULL. Initialize the MemPage.pBt and
1603** MemPage.aData elements if needed.
1604*/
1605static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1606 DbPage *pDbPage;
1607 assert( sqlite3_mutex_held(pBt->mutex) );
1608 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1609 if( pDbPage ){
1610 return btreePageFromDbPage(pDbPage, pgno, pBt);
1611 }
1612 return 0;
1613}
1614
1615/*
danielk197789d40042008-11-17 14:20:56 +00001616** Return the size of the database file in pages. If there is any kind of
1617** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001618*/
drhb1299152010-03-30 22:58:33 +00001619static Pgno btreePagecount(BtShared *pBt){
1620 return pBt->nPage;
1621}
1622u32 sqlite3BtreeLastPage(Btree *p){
1623 assert( sqlite3BtreeHoldsMutex(p) );
1624 assert( ((p->pBt->nPage)&0x8000000)==0 );
1625 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001626}
1627
1628/*
danielk197789bc4bc2009-07-21 19:25:24 +00001629** Get a page from the pager and initialize it. This routine is just a
1630** convenience wrapper around separate calls to btreeGetPage() and
1631** btreeInitPage().
1632**
1633** If an error occurs, then the value *ppPage is set to is undefined. It
1634** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001635*/
1636static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001637 BtShared *pBt, /* The database file */
1638 Pgno pgno, /* Number of the page to get */
1639 MemPage **ppPage, /* Write the page pointer here */
1640 int bReadonly /* True if a read-only (mmap) page is ok */
drhde647132004-05-07 17:57:49 +00001641){
1642 int rc;
drh1fee73e2007-08-29 04:00:57 +00001643 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001644
danba3cbf32010-06-30 04:29:03 +00001645 if( pgno>btreePagecount(pBt) ){
1646 rc = SQLITE_CORRUPT_BKPT;
1647 }else{
dan11dcd112013-03-15 18:29:18 +00001648 rc = btreeGetPage(pBt, pgno, ppPage, 0, bReadonly);
danba3cbf32010-06-30 04:29:03 +00001649 if( rc==SQLITE_OK ){
1650 rc = btreeInitPage(*ppPage);
1651 if( rc!=SQLITE_OK ){
1652 releasePage(*ppPage);
1653 }
danielk197789bc4bc2009-07-21 19:25:24 +00001654 }
drhee696e22004-08-30 16:52:17 +00001655 }
danba3cbf32010-06-30 04:29:03 +00001656
1657 testcase( pgno==0 );
1658 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001659 return rc;
1660}
1661
1662/*
drh3aac2dd2004-04-26 14:10:20 +00001663** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001664** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001665*/
drh4b70f112004-05-02 21:12:19 +00001666static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001667 if( pPage ){
1668 assert( pPage->aData );
1669 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001670 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1671 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001672 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001673 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001674 }
1675}
1676
1677/*
drha6abd042004-06-09 17:37:22 +00001678** During a rollback, when the pager reloads information into the cache
1679** so that the cache is restored to its original state at the start of
1680** the transaction, for each page restored this routine is called.
1681**
1682** This routine needs to reset the extra data section at the end of the
1683** page to agree with the restored data.
1684*/
danielk1977eaa06f62008-09-18 17:34:44 +00001685static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001686 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001687 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001688 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001689 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001690 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001691 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001692 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001693 /* pPage might not be a btree page; it might be an overflow page
1694 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001695 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001696 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001697 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001698 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001699 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001700 }
drha6abd042004-06-09 17:37:22 +00001701 }
1702}
1703
1704/*
drhe5fe6902007-12-07 18:55:28 +00001705** Invoke the busy handler for a btree.
1706*/
danielk19771ceedd32008-11-19 10:22:33 +00001707static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001708 BtShared *pBt = (BtShared*)pArg;
1709 assert( pBt->db );
1710 assert( sqlite3_mutex_held(pBt->db->mutex) );
1711 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1712}
1713
1714/*
drhad3e0102004-09-03 23:32:18 +00001715** Open a database file.
1716**
drh382c0242001-10-06 16:33:02 +00001717** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001718** then an ephemeral database is created. The ephemeral database might
1719** be exclusively in memory, or it might use a disk-based memory cache.
1720** Either way, the ephemeral database will be automatically deleted
1721** when sqlite3BtreeClose() is called.
1722**
drhe53831d2007-08-17 01:14:38 +00001723** If zFilename is ":memory:" then an in-memory database is created
1724** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001725**
drh33f111d2012-01-17 15:29:14 +00001726** The "flags" parameter is a bitmask that might contain bits like
1727** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001728**
drhc47fd8e2009-04-30 13:30:32 +00001729** If the database is already opened in the same database connection
1730** and we are in shared cache mode, then the open will fail with an
1731** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1732** objects in the same database connection since doing so will lead
1733** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001734*/
drh23e11ca2004-05-04 17:27:28 +00001735int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001736 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001737 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001738 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001739 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001740 int flags, /* Options */
1741 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001742){
drh7555d8e2009-03-20 13:15:30 +00001743 BtShared *pBt = 0; /* Shared part of btree structure */
1744 Btree *p; /* Handle to return */
1745 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1746 int rc = SQLITE_OK; /* Result code from this function */
1747 u8 nReserve; /* Byte of unused space on each page */
1748 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001749
drh75c014c2010-08-30 15:02:28 +00001750 /* True if opening an ephemeral, temporary database */
1751 const int isTempDb = zFilename==0 || zFilename[0]==0;
1752
danielk1977aef0bf62005-12-30 16:28:01 +00001753 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001754 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001755 */
drhb0a7c9c2010-12-06 21:09:59 +00001756#ifdef SQLITE_OMIT_MEMORYDB
1757 const int isMemdb = 0;
1758#else
1759 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001760 || (isTempDb && sqlite3TempInMemory(db))
1761 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001762#endif
1763
drhe5fe6902007-12-07 18:55:28 +00001764 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001765 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001766 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001767 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1768
1769 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1770 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1771
1772 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1773 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001774
drh75c014c2010-08-30 15:02:28 +00001775 if( isMemdb ){
1776 flags |= BTREE_MEMORY;
1777 }
1778 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1779 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1780 }
drh17435752007-08-16 04:30:38 +00001781 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001782 if( !p ){
1783 return SQLITE_NOMEM;
1784 }
1785 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001786 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001787#ifndef SQLITE_OMIT_SHARED_CACHE
1788 p->lock.pBtree = p;
1789 p->lock.iTable = 1;
1790#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001791
drh198bf392006-01-06 21:52:49 +00001792#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001793 /*
1794 ** If this Btree is a candidate for shared cache, try to find an
1795 ** existing BtShared object that we can share with
1796 */
drh4ab9d252012-05-26 20:08:49 +00001797 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001798 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001799 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001800 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001801 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001802 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001803 if( !zFullPathname ){
1804 sqlite3_free(p);
1805 return SQLITE_NOMEM;
1806 }
drhafc8b7f2012-05-26 18:06:38 +00001807 if( isMemdb ){
1808 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1809 }else{
1810 rc = sqlite3OsFullPathname(pVfs, zFilename,
1811 nFullPathname, zFullPathname);
1812 if( rc ){
1813 sqlite3_free(zFullPathname);
1814 sqlite3_free(p);
1815 return rc;
1816 }
drh070ad6b2011-11-17 11:43:19 +00001817 }
drh30ddce62011-10-15 00:16:30 +00001818#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001819 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1820 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001821 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001822 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001823#endif
drh78f82d12008-09-02 00:52:52 +00001824 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001825 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001826 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001827 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001828 int iDb;
1829 for(iDb=db->nDb-1; iDb>=0; iDb--){
1830 Btree *pExisting = db->aDb[iDb].pBt;
1831 if( pExisting && pExisting->pBt==pBt ){
1832 sqlite3_mutex_leave(mutexShared);
1833 sqlite3_mutex_leave(mutexOpen);
1834 sqlite3_free(zFullPathname);
1835 sqlite3_free(p);
1836 return SQLITE_CONSTRAINT;
1837 }
1838 }
drhff0587c2007-08-29 17:43:19 +00001839 p->pBt = pBt;
1840 pBt->nRef++;
1841 break;
1842 }
1843 }
1844 sqlite3_mutex_leave(mutexShared);
1845 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001846 }
drhff0587c2007-08-29 17:43:19 +00001847#ifdef SQLITE_DEBUG
1848 else{
1849 /* In debug mode, we mark all persistent databases as sharable
1850 ** even when they are not. This exercises the locking code and
1851 ** gives more opportunity for asserts(sqlite3_mutex_held())
1852 ** statements to find locking problems.
1853 */
1854 p->sharable = 1;
1855 }
1856#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001857 }
1858#endif
drha059ad02001-04-17 20:09:11 +00001859 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001860 /*
1861 ** The following asserts make sure that structures used by the btree are
1862 ** the right size. This is to guard against size changes that result
1863 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001864 */
drhe53831d2007-08-17 01:14:38 +00001865 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1866 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1867 assert( sizeof(u32)==4 );
1868 assert( sizeof(u16)==2 );
1869 assert( sizeof(Pgno)==4 );
1870
1871 pBt = sqlite3MallocZero( sizeof(*pBt) );
1872 if( pBt==0 ){
1873 rc = SQLITE_NOMEM;
1874 goto btree_open_out;
1875 }
danielk197771d5d2c2008-09-29 11:49:47 +00001876 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001877 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001878 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001879 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001880 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1881 }
1882 if( rc!=SQLITE_OK ){
1883 goto btree_open_out;
1884 }
shanehbd2aaf92010-09-01 02:38:21 +00001885 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001886 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001887 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001888 p->pBt = pBt;
1889
drhe53831d2007-08-17 01:14:38 +00001890 pBt->pCursor = 0;
1891 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001892 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001893#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001894 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001895#endif
drhb2eced52010-08-12 02:41:12 +00001896 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001897 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1898 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001899 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001900#ifndef SQLITE_OMIT_AUTOVACUUM
1901 /* If the magic name ":memory:" will create an in-memory database, then
1902 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1903 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1904 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1905 ** regular file-name. In this case the auto-vacuum applies as per normal.
1906 */
1907 if( zFilename && !isMemdb ){
1908 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1909 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1910 }
1911#endif
1912 nReserve = 0;
1913 }else{
1914 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001915 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001916#ifndef SQLITE_OMIT_AUTOVACUUM
1917 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1918 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1919#endif
1920 }
drhfa9601a2009-06-18 17:22:39 +00001921 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001922 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001923 pBt->usableSize = pBt->pageSize - nReserve;
1924 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001925
1926#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1927 /* Add the new BtShared object to the linked list sharable BtShareds.
1928 */
1929 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001930 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001931 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001932 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001933 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001934 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001935 if( pBt->mutex==0 ){
1936 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001937 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001938 goto btree_open_out;
1939 }
drhff0587c2007-08-29 17:43:19 +00001940 }
drhe53831d2007-08-17 01:14:38 +00001941 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001942 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1943 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001944 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001945 }
drheee46cf2004-11-06 00:02:48 +00001946#endif
drh90f5ecb2004-07-22 01:19:35 +00001947 }
danielk1977aef0bf62005-12-30 16:28:01 +00001948
drhcfed7bc2006-03-13 14:28:05 +00001949#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001950 /* If the new Btree uses a sharable pBtShared, then link the new
1951 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001952 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001953 */
drhe53831d2007-08-17 01:14:38 +00001954 if( p->sharable ){
1955 int i;
1956 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001957 for(i=0; i<db->nDb; i++){
1958 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001959 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1960 if( p->pBt<pSib->pBt ){
1961 p->pNext = pSib;
1962 p->pPrev = 0;
1963 pSib->pPrev = p;
1964 }else{
drhabddb0c2007-08-20 13:14:28 +00001965 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001966 pSib = pSib->pNext;
1967 }
1968 p->pNext = pSib->pNext;
1969 p->pPrev = pSib;
1970 if( p->pNext ){
1971 p->pNext->pPrev = p;
1972 }
1973 pSib->pNext = p;
1974 }
1975 break;
1976 }
1977 }
danielk1977aef0bf62005-12-30 16:28:01 +00001978 }
danielk1977aef0bf62005-12-30 16:28:01 +00001979#endif
1980 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001981
1982btree_open_out:
1983 if( rc!=SQLITE_OK ){
1984 if( pBt && pBt->pPager ){
1985 sqlite3PagerClose(pBt->pPager);
1986 }
drh17435752007-08-16 04:30:38 +00001987 sqlite3_free(pBt);
1988 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001989 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001990 }else{
1991 /* If the B-Tree was successfully opened, set the pager-cache size to the
1992 ** default value. Except, when opening on an existing shared pager-cache,
1993 ** do not change the pager-cache size.
1994 */
1995 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1996 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1997 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001998 }
drh7555d8e2009-03-20 13:15:30 +00001999 if( mutexOpen ){
2000 assert( sqlite3_mutex_held(mutexOpen) );
2001 sqlite3_mutex_leave(mutexOpen);
2002 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002003 return rc;
drha059ad02001-04-17 20:09:11 +00002004}
2005
2006/*
drhe53831d2007-08-17 01:14:38 +00002007** Decrement the BtShared.nRef counter. When it reaches zero,
2008** remove the BtShared structure from the sharing list. Return
2009** true if the BtShared.nRef counter reaches zero and return
2010** false if it is still positive.
2011*/
2012static int removeFromSharingList(BtShared *pBt){
2013#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002014 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002015 BtShared *pList;
2016 int removed = 0;
2017
drhd677b3d2007-08-20 22:48:41 +00002018 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002019 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002020 sqlite3_mutex_enter(pMaster);
2021 pBt->nRef--;
2022 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002023 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2024 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002025 }else{
drh78f82d12008-09-02 00:52:52 +00002026 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002027 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002028 pList=pList->pNext;
2029 }
drh34004ce2008-07-11 16:15:17 +00002030 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002031 pList->pNext = pBt->pNext;
2032 }
2033 }
drh3285db22007-09-03 22:00:39 +00002034 if( SQLITE_THREADSAFE ){
2035 sqlite3_mutex_free(pBt->mutex);
2036 }
drhe53831d2007-08-17 01:14:38 +00002037 removed = 1;
2038 }
2039 sqlite3_mutex_leave(pMaster);
2040 return removed;
2041#else
2042 return 1;
2043#endif
2044}
2045
2046/*
drhf7141992008-06-19 00:16:08 +00002047** Make sure pBt->pTmpSpace points to an allocation of
2048** MX_CELL_SIZE(pBt) bytes.
2049*/
2050static void allocateTempSpace(BtShared *pBt){
2051 if( !pBt->pTmpSpace ){
2052 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2053 }
2054}
2055
2056/*
2057** Free the pBt->pTmpSpace allocation
2058*/
2059static void freeTempSpace(BtShared *pBt){
2060 sqlite3PageFree( pBt->pTmpSpace);
2061 pBt->pTmpSpace = 0;
2062}
2063
2064/*
drha059ad02001-04-17 20:09:11 +00002065** Close an open database and invalidate all cursors.
2066*/
danielk1977aef0bf62005-12-30 16:28:01 +00002067int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002068 BtShared *pBt = p->pBt;
2069 BtCursor *pCur;
2070
danielk1977aef0bf62005-12-30 16:28:01 +00002071 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002072 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002073 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002074 pCur = pBt->pCursor;
2075 while( pCur ){
2076 BtCursor *pTmp = pCur;
2077 pCur = pCur->pNext;
2078 if( pTmp->pBtree==p ){
2079 sqlite3BtreeCloseCursor(pTmp);
2080 }
drha059ad02001-04-17 20:09:11 +00002081 }
danielk1977aef0bf62005-12-30 16:28:01 +00002082
danielk19778d34dfd2006-01-24 16:37:57 +00002083 /* Rollback any active transaction and free the handle structure.
2084 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2085 ** this handle.
2086 */
drh0f198a72012-02-13 16:43:16 +00002087 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002088 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002089
danielk1977aef0bf62005-12-30 16:28:01 +00002090 /* If there are still other outstanding references to the shared-btree
2091 ** structure, return now. The remainder of this procedure cleans
2092 ** up the shared-btree.
2093 */
drhe53831d2007-08-17 01:14:38 +00002094 assert( p->wantToLock==0 && p->locked==0 );
2095 if( !p->sharable || removeFromSharingList(pBt) ){
2096 /* The pBt is no longer on the sharing list, so we can access
2097 ** it without having to hold the mutex.
2098 **
2099 ** Clean out and delete the BtShared object.
2100 */
2101 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002102 sqlite3PagerClose(pBt->pPager);
2103 if( pBt->xFreeSchema && pBt->pSchema ){
2104 pBt->xFreeSchema(pBt->pSchema);
2105 }
drhb9755982010-07-24 16:34:37 +00002106 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002107 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002108 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002109 }
2110
drhe53831d2007-08-17 01:14:38 +00002111#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002112 assert( p->wantToLock==0 );
2113 assert( p->locked==0 );
2114 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2115 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002116#endif
2117
drhe53831d2007-08-17 01:14:38 +00002118 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002119 return SQLITE_OK;
2120}
2121
2122/*
drhda47d772002-12-02 04:25:19 +00002123** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002124**
2125** The maximum number of cache pages is set to the absolute
2126** value of mxPage. If mxPage is negative, the pager will
2127** operate asynchronously - it will not stop to do fsync()s
2128** to insure data is written to the disk surface before
2129** continuing. Transactions still work if synchronous is off,
2130** and the database cannot be corrupted if this program
2131** crashes. But if the operating system crashes or there is
2132** an abrupt power failure when synchronous is off, the database
2133** could be left in an inconsistent and unrecoverable state.
2134** Synchronous is on by default so database corruption is not
2135** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002136*/
danielk1977aef0bf62005-12-30 16:28:01 +00002137int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2138 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002139 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002140 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002141 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002142 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002143 return SQLITE_OK;
2144}
2145
2146/*
dan5d8a1372013-03-19 19:28:06 +00002147** Change the limit on the amount of the database file that may be
2148** memory mapped.
2149*/
drh9b4c59f2013-04-15 17:03:42 +00002150int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002151 BtShared *pBt = p->pBt;
2152 assert( sqlite3_mutex_held(p->db->mutex) );
2153 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002154 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002155 sqlite3BtreeLeave(p);
2156 return SQLITE_OK;
2157}
2158
2159/*
drh973b6e32003-02-12 14:09:42 +00002160** Change the way data is synced to disk in order to increase or decrease
2161** how well the database resists damage due to OS crashes and power
2162** failures. Level 1 is the same as asynchronous (no syncs() occur and
2163** there is a high probability of damage) Level 2 is the default. There
2164** is a very low but non-zero probability of damage. Level 3 reduces the
2165** probability of damage to near zero but with a write performance reduction.
2166*/
danielk197793758c82005-01-21 08:13:14 +00002167#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002168int sqlite3BtreeSetSafetyLevel(
2169 Btree *p, /* The btree to set the safety level on */
2170 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2171 int fullSync, /* PRAGMA fullfsync. */
2172 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2173){
danielk1977aef0bf62005-12-30 16:28:01 +00002174 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002175 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002176 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002177 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002178 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002179 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002180 return SQLITE_OK;
2181}
danielk197793758c82005-01-21 08:13:14 +00002182#endif
drh973b6e32003-02-12 14:09:42 +00002183
drh2c8997b2005-08-27 16:36:48 +00002184/*
2185** Return TRUE if the given btree is set to safety level 1. In other
2186** words, return TRUE if no sync() occurs on the disk files.
2187*/
danielk1977aef0bf62005-12-30 16:28:01 +00002188int sqlite3BtreeSyncDisabled(Btree *p){
2189 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002190 int rc;
drhe5fe6902007-12-07 18:55:28 +00002191 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002192 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002193 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002194 rc = sqlite3PagerNosync(pBt->pPager);
2195 sqlite3BtreeLeave(p);
2196 return rc;
drh2c8997b2005-08-27 16:36:48 +00002197}
2198
drh973b6e32003-02-12 14:09:42 +00002199/*
drh90f5ecb2004-07-22 01:19:35 +00002200** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002201** Or, if the page size has already been fixed, return SQLITE_READONLY
2202** without changing anything.
drh06f50212004-11-02 14:24:33 +00002203**
2204** The page size must be a power of 2 between 512 and 65536. If the page
2205** size supplied does not meet this constraint then the page size is not
2206** changed.
2207**
2208** Page sizes are constrained to be a power of two so that the region
2209** of the database file used for locking (beginning at PENDING_BYTE,
2210** the first byte past the 1GB boundary, 0x40000000) needs to occur
2211** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002212**
2213** If parameter nReserve is less than zero, then the number of reserved
2214** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002215**
drhc9166342012-01-05 23:32:06 +00002216** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002217** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002218*/
drhce4869f2009-04-02 20:16:58 +00002219int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002220 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002221 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002222 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002223 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002224 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002225 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002226 return SQLITE_READONLY;
2227 }
2228 if( nReserve<0 ){
2229 nReserve = pBt->pageSize - pBt->usableSize;
2230 }
drhf49661a2008-12-10 16:45:50 +00002231 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002232 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2233 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002234 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002235 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002236 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002237 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002238 }
drhfa9601a2009-06-18 17:22:39 +00002239 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002240 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002241 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002242 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002243 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002244}
2245
2246/*
2247** Return the currently defined page size
2248*/
danielk1977aef0bf62005-12-30 16:28:01 +00002249int sqlite3BtreeGetPageSize(Btree *p){
2250 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002251}
drh7f751222009-03-17 22:33:00 +00002252
drha1f38532012-10-01 12:44:26 +00002253#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002254/*
2255** This function is similar to sqlite3BtreeGetReserve(), except that it
2256** may only be called if it is guaranteed that the b-tree mutex is already
2257** held.
2258**
2259** This is useful in one special case in the backup API code where it is
2260** known that the shared b-tree mutex is held, but the mutex on the
2261** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2262** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002263** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002264*/
2265int sqlite3BtreeGetReserveNoMutex(Btree *p){
2266 assert( sqlite3_mutex_held(p->pBt->mutex) );
2267 return p->pBt->pageSize - p->pBt->usableSize;
2268}
drha1f38532012-10-01 12:44:26 +00002269#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002270
danbb2b4412011-04-06 17:54:31 +00002271#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002272/*
2273** Return the number of bytes of space at the end of every page that
2274** are intentually left unused. This is the "reserved" space that is
2275** sometimes used by extensions.
2276*/
danielk1977aef0bf62005-12-30 16:28:01 +00002277int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002278 int n;
2279 sqlite3BtreeEnter(p);
2280 n = p->pBt->pageSize - p->pBt->usableSize;
2281 sqlite3BtreeLeave(p);
2282 return n;
drh2011d5f2004-07-22 02:40:37 +00002283}
drhf8e632b2007-05-08 14:51:36 +00002284
2285/*
2286** Set the maximum page count for a database if mxPage is positive.
2287** No changes are made if mxPage is 0 or negative.
2288** Regardless of the value of mxPage, return the maximum page count.
2289*/
2290int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002291 int n;
2292 sqlite3BtreeEnter(p);
2293 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2294 sqlite3BtreeLeave(p);
2295 return n;
drhf8e632b2007-05-08 14:51:36 +00002296}
drh5b47efa2010-02-12 18:18:39 +00002297
2298/*
drhc9166342012-01-05 23:32:06 +00002299** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2300** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002301** setting after the change.
2302*/
2303int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2304 int b;
drhaf034ed2010-02-12 19:46:26 +00002305 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002306 sqlite3BtreeEnter(p);
2307 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002308 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2309 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002310 }
drhc9166342012-01-05 23:32:06 +00002311 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002312 sqlite3BtreeLeave(p);
2313 return b;
2314}
danielk1977576ec6b2005-01-21 11:55:25 +00002315#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002316
2317/*
danielk1977951af802004-11-05 15:45:09 +00002318** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2319** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2320** is disabled. The default value for the auto-vacuum property is
2321** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2322*/
danielk1977aef0bf62005-12-30 16:28:01 +00002323int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002324#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002325 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002326#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002327 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002328 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002329 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002330
2331 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002332 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002333 rc = SQLITE_READONLY;
2334 }else{
drh076d4662009-02-18 20:31:18 +00002335 pBt->autoVacuum = av ?1:0;
2336 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002337 }
drhd677b3d2007-08-20 22:48:41 +00002338 sqlite3BtreeLeave(p);
2339 return rc;
danielk1977951af802004-11-05 15:45:09 +00002340#endif
2341}
2342
2343/*
2344** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2345** enabled 1 is returned. Otherwise 0.
2346*/
danielk1977aef0bf62005-12-30 16:28:01 +00002347int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002348#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002349 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002350#else
drhd677b3d2007-08-20 22:48:41 +00002351 int rc;
2352 sqlite3BtreeEnter(p);
2353 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002354 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2355 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2356 BTREE_AUTOVACUUM_INCR
2357 );
drhd677b3d2007-08-20 22:48:41 +00002358 sqlite3BtreeLeave(p);
2359 return rc;
danielk1977951af802004-11-05 15:45:09 +00002360#endif
2361}
2362
2363
2364/*
drha34b6762004-05-07 13:30:42 +00002365** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002366** also acquire a readlock on that file.
2367**
2368** SQLITE_OK is returned on success. If the file is not a
2369** well-formed database file, then SQLITE_CORRUPT is returned.
2370** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002371** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002372*/
danielk1977aef0bf62005-12-30 16:28:01 +00002373static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002374 int rc; /* Result code from subfunctions */
2375 MemPage *pPage1; /* Page 1 of the database file */
2376 int nPage; /* Number of pages in the database */
2377 int nPageFile = 0; /* Number of pages in the database file */
2378 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002379
drh1fee73e2007-08-29 04:00:57 +00002380 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002381 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002382 rc = sqlite3PagerSharedLock(pBt->pPager);
2383 if( rc!=SQLITE_OK ) return rc;
dan11dcd112013-03-15 18:29:18 +00002384 rc = btreeGetPage(pBt, 1, &pPage1, 0, 0);
drh306dc212001-05-21 13:45:10 +00002385 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002386
2387 /* Do some checking to help insure the file we opened really is
2388 ** a valid database file.
2389 */
drhc2a4bab2010-04-02 12:46:45 +00002390 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002391 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002392 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002393 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002394 }
2395 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002396 u32 pageSize;
2397 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002398 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002399 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002400 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002401 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002402 }
dan5cf53532010-05-01 16:40:20 +00002403
2404#ifdef SQLITE_OMIT_WAL
2405 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002406 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002407 }
2408 if( page1[19]>1 ){
2409 goto page1_init_failed;
2410 }
2411#else
dane04dc882010-04-20 18:53:15 +00002412 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002413 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002414 }
dane04dc882010-04-20 18:53:15 +00002415 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002416 goto page1_init_failed;
2417 }
drhe5ae5732008-06-15 02:51:47 +00002418
dana470aeb2010-04-21 11:43:38 +00002419 /* If the write version is set to 2, this database should be accessed
2420 ** in WAL mode. If the log is not already open, open it now. Then
2421 ** return SQLITE_OK and return without populating BtShared.pPage1.
2422 ** The caller detects this and calls this function again. This is
2423 ** required as the version of page 1 currently in the page1 buffer
2424 ** may not be the latest version - there may be a newer one in the log
2425 ** file.
2426 */
drhc9166342012-01-05 23:32:06 +00002427 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002428 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002429 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002430 if( rc!=SQLITE_OK ){
2431 goto page1_init_failed;
2432 }else if( isOpen==0 ){
2433 releasePage(pPage1);
2434 return SQLITE_OK;
2435 }
dan8b5444b2010-04-27 14:37:47 +00002436 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002437 }
dan5cf53532010-05-01 16:40:20 +00002438#endif
dane04dc882010-04-20 18:53:15 +00002439
drhe5ae5732008-06-15 02:51:47 +00002440 /* The maximum embedded fraction must be exactly 25%. And the minimum
2441 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2442 ** The original design allowed these amounts to vary, but as of
2443 ** version 3.6.0, we require them to be fixed.
2444 */
2445 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2446 goto page1_init_failed;
2447 }
drhb2eced52010-08-12 02:41:12 +00002448 pageSize = (page1[16]<<8) | (page1[17]<<16);
2449 if( ((pageSize-1)&pageSize)!=0
2450 || pageSize>SQLITE_MAX_PAGE_SIZE
2451 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002452 ){
drh07d183d2005-05-01 22:52:42 +00002453 goto page1_init_failed;
2454 }
2455 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002456 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002457 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002458 /* After reading the first page of the database assuming a page size
2459 ** of BtShared.pageSize, we have discovered that the page-size is
2460 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2461 ** zero and return SQLITE_OK. The caller will call this function
2462 ** again with the correct page-size.
2463 */
2464 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002465 pBt->usableSize = usableSize;
2466 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002467 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002468 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2469 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002470 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002471 }
danecac6702011-02-09 18:19:20 +00002472 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002473 rc = SQLITE_CORRUPT_BKPT;
2474 goto page1_init_failed;
2475 }
drhb33e1b92009-06-18 11:29:20 +00002476 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002477 goto page1_init_failed;
2478 }
drh43b18e12010-08-17 19:40:08 +00002479 pBt->pageSize = pageSize;
2480 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002481#ifndef SQLITE_OMIT_AUTOVACUUM
2482 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002483 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002484#endif
drh306dc212001-05-21 13:45:10 +00002485 }
drhb6f41482004-05-14 01:58:11 +00002486
2487 /* maxLocal is the maximum amount of payload to store locally for
2488 ** a cell. Make sure it is small enough so that at least minFanout
2489 ** cells can will fit on one page. We assume a 10-byte page header.
2490 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002491 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002492 ** 4-byte child pointer
2493 ** 9-byte nKey value
2494 ** 4-byte nData value
2495 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002496 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002497 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2498 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002499 */
shaneh1df2db72010-08-18 02:28:48 +00002500 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2501 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2502 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2503 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002504 if( pBt->maxLocal>127 ){
2505 pBt->max1bytePayload = 127;
2506 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002507 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002508 }
drh2e38c322004-09-03 18:38:44 +00002509 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002510 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002511 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002512 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002513
drh72f82862001-05-24 21:06:34 +00002514page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002515 releasePage(pPage1);
2516 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002517 return rc;
drh306dc212001-05-21 13:45:10 +00002518}
2519
drh85ec3b62013-05-14 23:12:06 +00002520#ifndef NDEBUG
2521/*
2522** Return the number of cursors open on pBt. This is for use
2523** in assert() expressions, so it is only compiled if NDEBUG is not
2524** defined.
2525**
2526** Only write cursors are counted if wrOnly is true. If wrOnly is
2527** false then all cursors are counted.
2528**
2529** For the purposes of this routine, a cursor is any cursor that
2530** is capable of reading or writing to the databse. Cursors that
2531** have been tripped into the CURSOR_FAULT state are not counted.
2532*/
2533static int countValidCursors(BtShared *pBt, int wrOnly){
2534 BtCursor *pCur;
2535 int r = 0;
2536 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2537 if( (wrOnly==0 || pCur->wrFlag) && pCur->eState!=CURSOR_FAULT ) r++;
2538 }
2539 return r;
2540}
2541#endif
2542
drh306dc212001-05-21 13:45:10 +00002543/*
drhb8ca3072001-12-05 00:21:20 +00002544** If there are no outstanding cursors and we are not in the middle
2545** of a transaction but there is a read lock on the database, then
2546** this routine unrefs the first page of the database file which
2547** has the effect of releasing the read lock.
2548**
drhb8ca3072001-12-05 00:21:20 +00002549** If there is a transaction in progress, this routine is a no-op.
2550*/
danielk1977aef0bf62005-12-30 16:28:01 +00002551static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002552 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002553 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002554 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002555 assert( pBt->pPage1->aData );
2556 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2557 assert( pBt->pPage1->aData );
2558 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002559 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002560 }
2561}
2562
2563/*
drhe39f2f92009-07-23 01:43:59 +00002564** If pBt points to an empty file then convert that empty file
2565** into a new empty database by initializing the first page of
2566** the database.
drh8b2f49b2001-06-08 00:21:52 +00002567*/
danielk1977aef0bf62005-12-30 16:28:01 +00002568static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002569 MemPage *pP1;
2570 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002571 int rc;
drhd677b3d2007-08-20 22:48:41 +00002572
drh1fee73e2007-08-29 04:00:57 +00002573 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002574 if( pBt->nPage>0 ){
2575 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002576 }
drh3aac2dd2004-04-26 14:10:20 +00002577 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002578 assert( pP1!=0 );
2579 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002580 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002581 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002582 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2583 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002584 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2585 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002586 data[18] = 1;
2587 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002588 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2589 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002590 data[21] = 64;
2591 data[22] = 32;
2592 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002593 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002594 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002595 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002596#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002597 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002598 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002599 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002600 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002601#endif
drhdd3cd972010-03-27 17:12:36 +00002602 pBt->nPage = 1;
2603 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002604 return SQLITE_OK;
2605}
2606
2607/*
danb483eba2012-10-13 19:58:11 +00002608** Initialize the first page of the database file (creating a database
2609** consisting of a single page and no schema objects). Return SQLITE_OK
2610** if successful, or an SQLite error code otherwise.
2611*/
2612int sqlite3BtreeNewDb(Btree *p){
2613 int rc;
2614 sqlite3BtreeEnter(p);
2615 p->pBt->nPage = 0;
2616 rc = newDatabase(p->pBt);
2617 sqlite3BtreeLeave(p);
2618 return rc;
2619}
2620
2621/*
danielk1977ee5741e2004-05-31 10:01:34 +00002622** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002623** is started if the second argument is nonzero, otherwise a read-
2624** transaction. If the second argument is 2 or more and exclusive
2625** transaction is started, meaning that no other process is allowed
2626** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002627** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002628** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002629**
danielk1977ee5741e2004-05-31 10:01:34 +00002630** A write-transaction must be started before attempting any
2631** changes to the database. None of the following routines
2632** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002633**
drh23e11ca2004-05-04 17:27:28 +00002634** sqlite3BtreeCreateTable()
2635** sqlite3BtreeCreateIndex()
2636** sqlite3BtreeClearTable()
2637** sqlite3BtreeDropTable()
2638** sqlite3BtreeInsert()
2639** sqlite3BtreeDelete()
2640** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002641**
drhb8ef32c2005-03-14 02:01:49 +00002642** If an initial attempt to acquire the lock fails because of lock contention
2643** and the database was previously unlocked, then invoke the busy handler
2644** if there is one. But if there was previously a read-lock, do not
2645** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2646** returned when there is already a read-lock in order to avoid a deadlock.
2647**
2648** Suppose there are two processes A and B. A has a read lock and B has
2649** a reserved lock. B tries to promote to exclusive but is blocked because
2650** of A's read lock. A tries to promote to reserved but is blocked by B.
2651** One or the other of the two processes must give way or there can be
2652** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2653** when A already has a read lock, we encourage A to give up and let B
2654** proceed.
drha059ad02001-04-17 20:09:11 +00002655*/
danielk1977aef0bf62005-12-30 16:28:01 +00002656int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002657 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002658 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002659 int rc = SQLITE_OK;
2660
drhd677b3d2007-08-20 22:48:41 +00002661 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002662 btreeIntegrity(p);
2663
danielk1977ee5741e2004-05-31 10:01:34 +00002664 /* If the btree is already in a write-transaction, or it
2665 ** is already in a read-transaction and a read-transaction
2666 ** is requested, this is a no-op.
2667 */
danielk1977aef0bf62005-12-30 16:28:01 +00002668 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002669 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002670 }
dan09ff9e12013-03-11 11:49:03 +00002671 assert( IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002672
2673 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002674 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002675 rc = SQLITE_READONLY;
2676 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002677 }
2678
danielk1977404ca072009-03-16 13:19:36 +00002679#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002680 /* If another database handle has already opened a write transaction
2681 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002682 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002683 */
drhc9166342012-01-05 23:32:06 +00002684 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2685 || (pBt->btsFlags & BTS_PENDING)!=0
2686 ){
danielk1977404ca072009-03-16 13:19:36 +00002687 pBlock = pBt->pWriter->db;
2688 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002689 BtLock *pIter;
2690 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2691 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002692 pBlock = pIter->pBtree->db;
2693 break;
danielk1977641b0f42007-12-21 04:47:25 +00002694 }
2695 }
2696 }
danielk1977404ca072009-03-16 13:19:36 +00002697 if( pBlock ){
2698 sqlite3ConnectionBlocked(p->db, pBlock);
2699 rc = SQLITE_LOCKED_SHAREDCACHE;
2700 goto trans_begun;
2701 }
danielk1977641b0f42007-12-21 04:47:25 +00002702#endif
2703
danielk1977602b4662009-07-02 07:47:33 +00002704 /* Any read-only or read-write transaction implies a read-lock on
2705 ** page 1. So if some other shared-cache client already has a write-lock
2706 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002707 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2708 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002709
drhc9166342012-01-05 23:32:06 +00002710 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2711 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002712 do {
danielk1977295dc102009-04-01 19:07:03 +00002713 /* Call lockBtree() until either pBt->pPage1 is populated or
2714 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2715 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2716 ** reading page 1 it discovers that the page-size of the database
2717 ** file is not pBt->pageSize. In this case lockBtree() will update
2718 ** pBt->pageSize to the page-size of the file on disk.
2719 */
2720 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002721
drhb8ef32c2005-03-14 02:01:49 +00002722 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002723 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002724 rc = SQLITE_READONLY;
2725 }else{
danielk1977d8293352009-04-30 09:10:37 +00002726 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002727 if( rc==SQLITE_OK ){
2728 rc = newDatabase(pBt);
2729 }
drhb8ef32c2005-03-14 02:01:49 +00002730 }
2731 }
2732
danielk1977bd434552009-03-18 10:33:00 +00002733 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002734 unlockBtreeIfUnused(pBt);
2735 }
danf9b76712010-06-01 14:12:45 +00002736 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002737 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002738
2739 if( rc==SQLITE_OK ){
2740 if( p->inTrans==TRANS_NONE ){
2741 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002742#ifndef SQLITE_OMIT_SHARED_CACHE
2743 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002744 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002745 p->lock.eLock = READ_LOCK;
2746 p->lock.pNext = pBt->pLock;
2747 pBt->pLock = &p->lock;
2748 }
2749#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002750 }
2751 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2752 if( p->inTrans>pBt->inTransaction ){
2753 pBt->inTransaction = p->inTrans;
2754 }
danielk1977404ca072009-03-16 13:19:36 +00002755 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002756 MemPage *pPage1 = pBt->pPage1;
2757#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002758 assert( !pBt->pWriter );
2759 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002760 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2761 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002762#endif
dan59257dc2010-08-04 11:34:31 +00002763
2764 /* If the db-size header field is incorrect (as it may be if an old
2765 ** client has been writing the database file), update it now. Doing
2766 ** this sooner rather than later means the database size can safely
2767 ** re-read the database size from page 1 if a savepoint or transaction
2768 ** rollback occurs within the transaction.
2769 */
2770 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2771 rc = sqlite3PagerWrite(pPage1->pDbPage);
2772 if( rc==SQLITE_OK ){
2773 put4byte(&pPage1->aData[28], pBt->nPage);
2774 }
2775 }
2776 }
danielk1977aef0bf62005-12-30 16:28:01 +00002777 }
2778
drhd677b3d2007-08-20 22:48:41 +00002779
2780trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002781 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002782 /* This call makes sure that the pager has the correct number of
2783 ** open savepoints. If the second parameter is greater than 0 and
2784 ** the sub-journal is not already open, then it will be opened here.
2785 */
danielk1977fd7f0452008-12-17 17:30:26 +00002786 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2787 }
danielk197712dd5492008-12-18 15:45:07 +00002788
danielk1977aef0bf62005-12-30 16:28:01 +00002789 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002790 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002791 return rc;
drha059ad02001-04-17 20:09:11 +00002792}
2793
danielk1977687566d2004-11-02 12:56:41 +00002794#ifndef SQLITE_OMIT_AUTOVACUUM
2795
2796/*
2797** Set the pointer-map entries for all children of page pPage. Also, if
2798** pPage contains cells that point to overflow pages, set the pointer
2799** map entries for the overflow pages as well.
2800*/
2801static int setChildPtrmaps(MemPage *pPage){
2802 int i; /* Counter variable */
2803 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002804 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002805 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002806 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002807 Pgno pgno = pPage->pgno;
2808
drh1fee73e2007-08-29 04:00:57 +00002809 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002810 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002811 if( rc!=SQLITE_OK ){
2812 goto set_child_ptrmaps_out;
2813 }
danielk1977687566d2004-11-02 12:56:41 +00002814 nCell = pPage->nCell;
2815
2816 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002817 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002818
drh98add2e2009-07-20 17:11:49 +00002819 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002820
danielk1977687566d2004-11-02 12:56:41 +00002821 if( !pPage->leaf ){
2822 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002823 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002824 }
2825 }
2826
2827 if( !pPage->leaf ){
2828 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002829 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002830 }
2831
2832set_child_ptrmaps_out:
2833 pPage->isInit = isInitOrig;
2834 return rc;
2835}
2836
2837/*
drhf3aed592009-07-08 18:12:49 +00002838** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2839** that it points to iTo. Parameter eType describes the type of pointer to
2840** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002841**
2842** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2843** page of pPage.
2844**
2845** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2846** page pointed to by one of the cells on pPage.
2847**
2848** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2849** overflow page in the list.
2850*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002851static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002852 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002853 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002854 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002855 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002856 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002857 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002858 }
danielk1977f78fc082004-11-02 14:40:32 +00002859 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002860 }else{
drhf49661a2008-12-10 16:45:50 +00002861 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002862 int i;
2863 int nCell;
2864
danielk197730548662009-07-09 05:07:37 +00002865 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002866 nCell = pPage->nCell;
2867
danielk1977687566d2004-11-02 12:56:41 +00002868 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002869 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002870 if( eType==PTRMAP_OVERFLOW1 ){
2871 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002872 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002873 if( info.iOverflow
2874 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2875 && iFrom==get4byte(&pCell[info.iOverflow])
2876 ){
2877 put4byte(&pCell[info.iOverflow], iTo);
2878 break;
danielk1977687566d2004-11-02 12:56:41 +00002879 }
2880 }else{
2881 if( get4byte(pCell)==iFrom ){
2882 put4byte(pCell, iTo);
2883 break;
2884 }
2885 }
2886 }
2887
2888 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002889 if( eType!=PTRMAP_BTREE ||
2890 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002891 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002892 }
danielk1977687566d2004-11-02 12:56:41 +00002893 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2894 }
2895
2896 pPage->isInit = isInitOrig;
2897 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002898 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002899}
2900
danielk1977003ba062004-11-04 02:57:33 +00002901
danielk19777701e812005-01-10 12:59:51 +00002902/*
2903** Move the open database page pDbPage to location iFreePage in the
2904** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002905**
2906** The isCommit flag indicates that there is no need to remember that
2907** the journal needs to be sync()ed before database page pDbPage->pgno
2908** can be written to. The caller has already promised not to write to that
2909** page.
danielk19777701e812005-01-10 12:59:51 +00002910*/
danielk1977003ba062004-11-04 02:57:33 +00002911static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002912 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002913 MemPage *pDbPage, /* Open page to move */
2914 u8 eType, /* Pointer map 'type' entry for pDbPage */
2915 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002916 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002917 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002918){
2919 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2920 Pgno iDbPage = pDbPage->pgno;
2921 Pager *pPager = pBt->pPager;
2922 int rc;
2923
danielk1977a0bf2652004-11-04 14:30:04 +00002924 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2925 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002926 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002927 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002928
drh85b623f2007-12-13 21:54:09 +00002929 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002930 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2931 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002932 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002933 if( rc!=SQLITE_OK ){
2934 return rc;
2935 }
2936 pDbPage->pgno = iFreePage;
2937
2938 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2939 ** that point to overflow pages. The pointer map entries for all these
2940 ** pages need to be changed.
2941 **
2942 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2943 ** pointer to a subsequent overflow page. If this is the case, then
2944 ** the pointer map needs to be updated for the subsequent overflow page.
2945 */
danielk1977a0bf2652004-11-04 14:30:04 +00002946 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002947 rc = setChildPtrmaps(pDbPage);
2948 if( rc!=SQLITE_OK ){
2949 return rc;
2950 }
2951 }else{
2952 Pgno nextOvfl = get4byte(pDbPage->aData);
2953 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002954 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002955 if( rc!=SQLITE_OK ){
2956 return rc;
2957 }
2958 }
2959 }
2960
2961 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2962 ** that it points at iFreePage. Also fix the pointer map entry for
2963 ** iPtrPage.
2964 */
danielk1977a0bf2652004-11-04 14:30:04 +00002965 if( eType!=PTRMAP_ROOTPAGE ){
dan11dcd112013-03-15 18:29:18 +00002966 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002967 if( rc!=SQLITE_OK ){
2968 return rc;
2969 }
danielk19773b8a05f2007-03-19 17:44:26 +00002970 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002971 if( rc!=SQLITE_OK ){
2972 releasePage(pPtrPage);
2973 return rc;
2974 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002975 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002976 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002977 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002978 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002979 }
danielk1977003ba062004-11-04 02:57:33 +00002980 }
danielk1977003ba062004-11-04 02:57:33 +00002981 return rc;
2982}
2983
danielk1977dddbcdc2007-04-26 14:42:34 +00002984/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002985static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002986
2987/*
dan51f0b6d2013-02-22 20:16:34 +00002988** Perform a single step of an incremental-vacuum. If successful, return
2989** SQLITE_OK. If there is no work to do (and therefore no point in
2990** calling this function again), return SQLITE_DONE. Or, if an error
2991** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00002992**
dan51f0b6d2013-02-22 20:16:34 +00002993** More specificly, this function attempts to re-organize the database so
2994** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00002995**
dan51f0b6d2013-02-22 20:16:34 +00002996** Parameter nFin is the number of pages that this database would contain
2997** were this function called until it returns SQLITE_DONE.
2998**
2999** If the bCommit parameter is non-zero, this function assumes that the
3000** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3001** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3002** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003003*/
dan51f0b6d2013-02-22 20:16:34 +00003004static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003005 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003006 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003007
drh1fee73e2007-08-29 04:00:57 +00003008 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003009 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003010
3011 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003012 u8 eType;
3013 Pgno iPtrPage;
3014
3015 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003016 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003017 return SQLITE_DONE;
3018 }
3019
3020 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3021 if( rc!=SQLITE_OK ){
3022 return rc;
3023 }
3024 if( eType==PTRMAP_ROOTPAGE ){
3025 return SQLITE_CORRUPT_BKPT;
3026 }
3027
3028 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003029 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003030 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003031 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003032 ** truncated to zero after this function returns, so it doesn't
3033 ** matter if it still contains some garbage entries.
3034 */
3035 Pgno iFreePg;
3036 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003037 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003038 if( rc!=SQLITE_OK ){
3039 return rc;
3040 }
3041 assert( iFreePg==iLastPg );
3042 releasePage(pFreePg);
3043 }
3044 } else {
3045 Pgno iFreePg; /* Index of free page to move pLastPg to */
3046 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003047 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3048 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003049
dan11dcd112013-03-15 18:29:18 +00003050 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003051 if( rc!=SQLITE_OK ){
3052 return rc;
3053 }
3054
dan51f0b6d2013-02-22 20:16:34 +00003055 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003056 ** is swapped with the first free page pulled off the free list.
3057 **
dan51f0b6d2013-02-22 20:16:34 +00003058 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003059 ** looping until a free-page located within the first nFin pages
3060 ** of the file is found.
3061 */
dan51f0b6d2013-02-22 20:16:34 +00003062 if( bCommit==0 ){
3063 eMode = BTALLOC_LE;
3064 iNear = nFin;
3065 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003066 do {
3067 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003068 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003069 if( rc!=SQLITE_OK ){
3070 releasePage(pLastPg);
3071 return rc;
3072 }
3073 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003074 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003075 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003076
dane1df4e32013-03-05 11:27:04 +00003077 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003078 releasePage(pLastPg);
3079 if( rc!=SQLITE_OK ){
3080 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003081 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003082 }
3083 }
3084
dan51f0b6d2013-02-22 20:16:34 +00003085 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003086 do {
danielk19773460d192008-12-27 15:23:13 +00003087 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003088 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3089 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003090 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003091 }
3092 return SQLITE_OK;
3093}
3094
3095/*
dan51f0b6d2013-02-22 20:16:34 +00003096** The database opened by the first argument is an auto-vacuum database
3097** nOrig pages in size containing nFree free pages. Return the expected
3098** size of the database in pages following an auto-vacuum operation.
3099*/
3100static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3101 int nEntry; /* Number of entries on one ptrmap page */
3102 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3103 Pgno nFin; /* Return value */
3104
3105 nEntry = pBt->usableSize/5;
3106 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3107 nFin = nOrig - nFree - nPtrmap;
3108 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3109 nFin--;
3110 }
3111 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3112 nFin--;
3113 }
dan51f0b6d2013-02-22 20:16:34 +00003114
3115 return nFin;
3116}
3117
3118/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003119** A write-transaction must be opened before calling this function.
3120** It performs a single unit of work towards an incremental vacuum.
3121**
3122** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003123** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003124** SQLITE_OK is returned. Otherwise an SQLite error code.
3125*/
3126int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003127 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003128 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003129
3130 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003131 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3132 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003133 rc = SQLITE_DONE;
3134 }else{
dan51f0b6d2013-02-22 20:16:34 +00003135 Pgno nOrig = btreePagecount(pBt);
3136 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3137 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3138
dan91384712013-02-24 11:50:43 +00003139 if( nOrig<nFin ){
3140 rc = SQLITE_CORRUPT_BKPT;
3141 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003142 rc = saveAllCursors(pBt, 0, 0);
3143 if( rc==SQLITE_OK ){
3144 invalidateAllOverflowCache(pBt);
3145 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3146 }
dan51f0b6d2013-02-22 20:16:34 +00003147 if( rc==SQLITE_OK ){
3148 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3149 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3150 }
3151 }else{
3152 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003153 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003154 }
drhd677b3d2007-08-20 22:48:41 +00003155 sqlite3BtreeLeave(p);
3156 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003157}
3158
3159/*
danielk19773b8a05f2007-03-19 17:44:26 +00003160** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003161** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003162**
3163** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3164** the database file should be truncated to during the commit process.
3165** i.e. the database has been reorganized so that only the first *pnTrunc
3166** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003167*/
danielk19773460d192008-12-27 15:23:13 +00003168static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003169 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003170 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003171 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003172
drh1fee73e2007-08-29 04:00:57 +00003173 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003174 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003175 assert(pBt->autoVacuum);
3176 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003177 Pgno nFin; /* Number of pages in database after autovacuuming */
3178 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003179 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003180 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003181
drhb1299152010-03-30 22:58:33 +00003182 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003183 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3184 /* It is not possible to create a database for which the final page
3185 ** is either a pointer-map page or the pending-byte page. If one
3186 ** is encountered, this indicates corruption.
3187 */
danielk19773460d192008-12-27 15:23:13 +00003188 return SQLITE_CORRUPT_BKPT;
3189 }
danielk1977ef165ce2009-04-06 17:50:03 +00003190
danielk19773460d192008-12-27 15:23:13 +00003191 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003192 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003193 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003194 if( nFin<nOrig ){
3195 rc = saveAllCursors(pBt, 0, 0);
3196 }
danielk19773460d192008-12-27 15:23:13 +00003197 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003198 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003199 }
danielk19773460d192008-12-27 15:23:13 +00003200 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003201 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3202 put4byte(&pBt->pPage1->aData[32], 0);
3203 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003204 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003205 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003206 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003207 }
3208 if( rc!=SQLITE_OK ){
3209 sqlite3PagerRollback(pPager);
3210 }
danielk1977687566d2004-11-02 12:56:41 +00003211 }
3212
dan0aed84d2013-03-26 14:16:20 +00003213 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003214 return rc;
3215}
danielk1977dddbcdc2007-04-26 14:42:34 +00003216
danielk1977a50d9aa2009-06-08 14:49:45 +00003217#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3218# define setChildPtrmaps(x) SQLITE_OK
3219#endif
danielk1977687566d2004-11-02 12:56:41 +00003220
3221/*
drh80e35f42007-03-30 14:06:34 +00003222** This routine does the first phase of a two-phase commit. This routine
3223** causes a rollback journal to be created (if it does not already exist)
3224** and populated with enough information so that if a power loss occurs
3225** the database can be restored to its original state by playing back
3226** the journal. Then the contents of the journal are flushed out to
3227** the disk. After the journal is safely on oxide, the changes to the
3228** database are written into the database file and flushed to oxide.
3229** At the end of this call, the rollback journal still exists on the
3230** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003231** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003232** commit process.
3233**
3234** This call is a no-op if no write-transaction is currently active on pBt.
3235**
3236** Otherwise, sync the database file for the btree pBt. zMaster points to
3237** the name of a master journal file that should be written into the
3238** individual journal file, or is NULL, indicating no master journal file
3239** (single database transaction).
3240**
3241** When this is called, the master journal should already have been
3242** created, populated with this journal pointer and synced to disk.
3243**
3244** Once this is routine has returned, the only thing required to commit
3245** the write-transaction for this database file is to delete the journal.
3246*/
3247int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3248 int rc = SQLITE_OK;
3249 if( p->inTrans==TRANS_WRITE ){
3250 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003251 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003252#ifndef SQLITE_OMIT_AUTOVACUUM
3253 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003254 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003255 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003256 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003257 return rc;
3258 }
3259 }
danbc1a3c62013-02-23 16:40:46 +00003260 if( pBt->bDoTruncate ){
3261 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3262 }
drh80e35f42007-03-30 14:06:34 +00003263#endif
drh49b9d332009-01-02 18:10:42 +00003264 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003265 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003266 }
3267 return rc;
3268}
3269
3270/*
danielk197794b30732009-07-02 17:21:57 +00003271** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3272** at the conclusion of a transaction.
3273*/
3274static void btreeEndTransaction(Btree *p){
3275 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003276 assert( sqlite3BtreeHoldsMutex(p) );
3277
danbc1a3c62013-02-23 16:40:46 +00003278#ifndef SQLITE_OMIT_AUTOVACUUM
3279 pBt->bDoTruncate = 0;
3280#endif
danfa401de2009-10-16 14:55:03 +00003281 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3282 /* If there are other active statements that belong to this database
3283 ** handle, downgrade to a read-only transaction. The other statements
3284 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003285 downgradeAllSharedCacheTableLocks(p);
3286 p->inTrans = TRANS_READ;
3287 }else{
3288 /* If the handle had any kind of transaction open, decrement the
3289 ** transaction count of the shared btree. If the transaction count
3290 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3291 ** call below will unlock the pager. */
3292 if( p->inTrans!=TRANS_NONE ){
3293 clearAllSharedCacheTableLocks(p);
3294 pBt->nTransaction--;
3295 if( 0==pBt->nTransaction ){
3296 pBt->inTransaction = TRANS_NONE;
3297 }
3298 }
3299
3300 /* Set the current transaction state to TRANS_NONE and unlock the
3301 ** pager if this call closed the only read or write transaction. */
3302 p->inTrans = TRANS_NONE;
3303 unlockBtreeIfUnused(pBt);
3304 }
3305
3306 btreeIntegrity(p);
3307}
3308
3309/*
drh2aa679f2001-06-25 02:11:07 +00003310** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003311**
drh6e345992007-03-30 11:12:08 +00003312** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003313** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3314** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3315** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003316** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003317** routine has to do is delete or truncate or zero the header in the
3318** the rollback journal (which causes the transaction to commit) and
3319** drop locks.
drh6e345992007-03-30 11:12:08 +00003320**
dan60939d02011-03-29 15:40:55 +00003321** Normally, if an error occurs while the pager layer is attempting to
3322** finalize the underlying journal file, this function returns an error and
3323** the upper layer will attempt a rollback. However, if the second argument
3324** is non-zero then this b-tree transaction is part of a multi-file
3325** transaction. In this case, the transaction has already been committed
3326** (by deleting a master journal file) and the caller will ignore this
3327** functions return code. So, even if an error occurs in the pager layer,
3328** reset the b-tree objects internal state to indicate that the write
3329** transaction has been closed. This is quite safe, as the pager will have
3330** transitioned to the error state.
3331**
drh5e00f6c2001-09-13 13:46:56 +00003332** This will release the write lock on the database file. If there
3333** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003334*/
dan60939d02011-03-29 15:40:55 +00003335int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003336
drh075ed302010-10-14 01:17:30 +00003337 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003338 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003339 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003340
3341 /* If the handle has a write-transaction open, commit the shared-btrees
3342 ** transaction and set the shared state to TRANS_READ.
3343 */
3344 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003345 int rc;
drh075ed302010-10-14 01:17:30 +00003346 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003347 assert( pBt->inTransaction==TRANS_WRITE );
3348 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003349 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003350 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003351 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003352 return rc;
3353 }
danielk1977aef0bf62005-12-30 16:28:01 +00003354 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003355 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003356 }
danielk1977aef0bf62005-12-30 16:28:01 +00003357
danielk197794b30732009-07-02 17:21:57 +00003358 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003359 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003360 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003361}
3362
drh80e35f42007-03-30 14:06:34 +00003363/*
3364** Do both phases of a commit.
3365*/
3366int sqlite3BtreeCommit(Btree *p){
3367 int rc;
drhd677b3d2007-08-20 22:48:41 +00003368 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003369 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3370 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003371 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003372 }
drhd677b3d2007-08-20 22:48:41 +00003373 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003374 return rc;
3375}
3376
drhc39e0002004-05-07 23:50:57 +00003377/*
drhfb982642007-08-30 01:19:59 +00003378** This routine sets the state to CURSOR_FAULT and the error
3379** code to errCode for every cursor on BtShared that pBtree
3380** references.
3381**
3382** Every cursor is tripped, including cursors that belong
3383** to other database connections that happen to be sharing
3384** the cache with pBtree.
3385**
3386** This routine gets called when a rollback occurs.
3387** All cursors using the same cache must be tripped
3388** to prevent them from trying to use the btree after
3389** the rollback. The rollback may have deleted tables
3390** or moved root pages, so it is not sufficient to
3391** save the state of the cursor. The cursor must be
3392** invalidated.
3393*/
3394void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3395 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003396 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003397 sqlite3BtreeEnter(pBtree);
3398 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003399 int i;
danielk1977be51a652008-10-08 17:58:48 +00003400 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003401 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003402 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003403 for(i=0; i<=p->iPage; i++){
3404 releasePage(p->apPage[i]);
3405 p->apPage[i] = 0;
3406 }
drhfb982642007-08-30 01:19:59 +00003407 }
3408 sqlite3BtreeLeave(pBtree);
3409}
3410
3411/*
drhecdc7532001-09-23 02:35:53 +00003412** Rollback the transaction in progress. All cursors will be
3413** invalided by this operation. Any attempt to use a cursor
3414** that was open at the beginning of this operation will result
3415** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003416**
3417** This will release the write lock on the database file. If there
3418** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003419*/
drh0f198a72012-02-13 16:43:16 +00003420int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003421 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003422 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003423 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003424
drhd677b3d2007-08-20 22:48:41 +00003425 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003426 if( tripCode==SQLITE_OK ){
3427 rc = tripCode = saveAllCursors(pBt, 0, 0);
3428 }else{
3429 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003430 }
drh0f198a72012-02-13 16:43:16 +00003431 if( tripCode ){
3432 sqlite3BtreeTripAllCursors(p, tripCode);
3433 }
danielk1977aef0bf62005-12-30 16:28:01 +00003434 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003435
3436 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003437 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003438
danielk19778d34dfd2006-01-24 16:37:57 +00003439 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003440 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003441 if( rc2!=SQLITE_OK ){
3442 rc = rc2;
3443 }
3444
drh24cd67e2004-05-10 16:18:47 +00003445 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003446 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003447 ** sure pPage1->aData is set correctly. */
dan11dcd112013-03-15 18:29:18 +00003448 if( btreeGetPage(pBt, 1, &pPage1, 0, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003449 int nPage = get4byte(28+(u8*)pPage1->aData);
3450 testcase( nPage==0 );
3451 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3452 testcase( pBt->nPage!=nPage );
3453 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003454 releasePage(pPage1);
3455 }
drh85ec3b62013-05-14 23:12:06 +00003456 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003457 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003458 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003459 }
danielk1977aef0bf62005-12-30 16:28:01 +00003460
danielk197794b30732009-07-02 17:21:57 +00003461 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003462 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003463 return rc;
3464}
3465
3466/*
danielk1977bd434552009-03-18 10:33:00 +00003467** Start a statement subtransaction. The subtransaction can can be rolled
3468** back independently of the main transaction. You must start a transaction
3469** before starting a subtransaction. The subtransaction is ended automatically
3470** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003471**
3472** Statement subtransactions are used around individual SQL statements
3473** that are contained within a BEGIN...COMMIT block. If a constraint
3474** error occurs within the statement, the effect of that one statement
3475** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003476**
3477** A statement sub-transaction is implemented as an anonymous savepoint. The
3478** value passed as the second parameter is the total number of savepoints,
3479** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3480** are no active savepoints and no other statement-transactions open,
3481** iStatement is 1. This anonymous savepoint can be released or rolled back
3482** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003483*/
danielk1977bd434552009-03-18 10:33:00 +00003484int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003485 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003486 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003487 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003488 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003489 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003490 assert( iStatement>0 );
3491 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003492 assert( pBt->inTransaction==TRANS_WRITE );
3493 /* At the pager level, a statement transaction is a savepoint with
3494 ** an index greater than all savepoints created explicitly using
3495 ** SQL statements. It is illegal to open, release or rollback any
3496 ** such savepoints while the statement transaction savepoint is active.
3497 */
3498 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003499 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003500 return rc;
3501}
3502
3503/*
danielk1977fd7f0452008-12-17 17:30:26 +00003504** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3505** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003506** savepoint identified by parameter iSavepoint, depending on the value
3507** of op.
3508**
3509** Normally, iSavepoint is greater than or equal to zero. However, if op is
3510** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3511** contents of the entire transaction are rolled back. This is different
3512** from a normal transaction rollback, as no locks are released and the
3513** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003514*/
3515int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3516 int rc = SQLITE_OK;
3517 if( p && p->inTrans==TRANS_WRITE ){
3518 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003519 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3520 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3521 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003522 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003523 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003524 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3525 pBt->nPage = 0;
3526 }
drh9f0bbf92009-01-02 21:08:09 +00003527 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003528 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003529
3530 /* The database size was written into the offset 28 of the header
3531 ** when the transaction started, so we know that the value at offset
3532 ** 28 is nonzero. */
3533 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003534 }
danielk1977fd7f0452008-12-17 17:30:26 +00003535 sqlite3BtreeLeave(p);
3536 }
3537 return rc;
3538}
3539
3540/*
drh8b2f49b2001-06-08 00:21:52 +00003541** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003542** iTable. If a read-only cursor is requested, it is assumed that
3543** the caller already has at least a read-only transaction open
3544** on the database already. If a write-cursor is requested, then
3545** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003546**
3547** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003548** If wrFlag==1, then the cursor can be used for reading or for
3549** writing if other conditions for writing are also met. These
3550** are the conditions that must be met in order for writing to
3551** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003552**
drhf74b8d92002-09-01 23:20:45 +00003553** 1: The cursor must have been opened with wrFlag==1
3554**
drhfe5d71d2007-03-19 11:54:10 +00003555** 2: Other database connections that share the same pager cache
3556** but which are not in the READ_UNCOMMITTED state may not have
3557** cursors open with wrFlag==0 on the same table. Otherwise
3558** the changes made by this write cursor would be visible to
3559** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003560**
3561** 3: The database must be writable (not on read-only media)
3562**
3563** 4: There must be an active transaction.
3564**
drh6446c4d2001-12-15 14:22:18 +00003565** No checking is done to make sure that page iTable really is the
3566** root page of a b-tree. If it is not, then the cursor acquired
3567** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003568**
drhf25a5072009-11-18 23:01:25 +00003569** It is assumed that the sqlite3BtreeCursorZero() has been called
3570** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003571*/
drhd677b3d2007-08-20 22:48:41 +00003572static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003573 Btree *p, /* The btree */
3574 int iTable, /* Root page of table to open */
3575 int wrFlag, /* 1 to write. 0 read-only */
3576 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3577 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003578){
danielk19773e8add92009-07-04 17:16:00 +00003579 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003580
drh1fee73e2007-08-29 04:00:57 +00003581 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003582 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003583
danielk1977602b4662009-07-02 07:47:33 +00003584 /* The following assert statements verify that if this is a sharable
3585 ** b-tree database, the connection is holding the required table locks,
3586 ** and that no other connection has any open cursor that conflicts with
3587 ** this lock. */
3588 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003589 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3590
danielk19773e8add92009-07-04 17:16:00 +00003591 /* Assert that the caller has opened the required transaction. */
3592 assert( p->inTrans>TRANS_NONE );
3593 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3594 assert( pBt->pPage1 && pBt->pPage1->aData );
3595
drhc9166342012-01-05 23:32:06 +00003596 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003597 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003598 }
drhb1299152010-03-30 22:58:33 +00003599 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003600 assert( wrFlag==0 );
3601 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003602 }
danielk1977aef0bf62005-12-30 16:28:01 +00003603
danielk1977aef0bf62005-12-30 16:28:01 +00003604 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003605 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003606 pCur->pgnoRoot = (Pgno)iTable;
3607 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003608 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003609 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003610 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003611 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003612 pCur->pNext = pBt->pCursor;
3613 if( pCur->pNext ){
3614 pCur->pNext->pPrev = pCur;
3615 }
3616 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003617 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003618 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003619 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003620}
drhd677b3d2007-08-20 22:48:41 +00003621int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003622 Btree *p, /* The btree */
3623 int iTable, /* Root page of table to open */
3624 int wrFlag, /* 1 to write. 0 read-only */
3625 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3626 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003627){
3628 int rc;
3629 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003630 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003631 sqlite3BtreeLeave(p);
3632 return rc;
3633}
drh7f751222009-03-17 22:33:00 +00003634
3635/*
3636** Return the size of a BtCursor object in bytes.
3637**
3638** This interfaces is needed so that users of cursors can preallocate
3639** sufficient storage to hold a cursor. The BtCursor object is opaque
3640** to users so they cannot do the sizeof() themselves - they must call
3641** this routine.
3642*/
3643int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003644 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003645}
3646
drh7f751222009-03-17 22:33:00 +00003647/*
drhf25a5072009-11-18 23:01:25 +00003648** Initialize memory that will be converted into a BtCursor object.
3649**
3650** The simple approach here would be to memset() the entire object
3651** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3652** do not need to be zeroed and they are large, so we can save a lot
3653** of run-time by skipping the initialization of those elements.
3654*/
3655void sqlite3BtreeCursorZero(BtCursor *p){
3656 memset(p, 0, offsetof(BtCursor, iPage));
3657}
3658
3659/*
drh7f751222009-03-17 22:33:00 +00003660** Set the cached rowid value of every cursor in the same database file
3661** as pCur and having the same root page number as pCur. The value is
3662** set to iRowid.
3663**
3664** Only positive rowid values are considered valid for this cache.
3665** The cache is initialized to zero, indicating an invalid cache.
3666** A btree will work fine with zero or negative rowids. We just cannot
3667** cache zero or negative rowids, which means tables that use zero or
3668** negative rowids might run a little slower. But in practice, zero
3669** or negative rowids are very uncommon so this should not be a problem.
3670*/
3671void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3672 BtCursor *p;
3673 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3674 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3675 }
3676 assert( pCur->cachedRowid==iRowid );
3677}
drhd677b3d2007-08-20 22:48:41 +00003678
drh7f751222009-03-17 22:33:00 +00003679/*
3680** Return the cached rowid for the given cursor. A negative or zero
3681** return value indicates that the rowid cache is invalid and should be
3682** ignored. If the rowid cache has never before been set, then a
3683** zero is returned.
3684*/
3685sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3686 return pCur->cachedRowid;
3687}
drha059ad02001-04-17 20:09:11 +00003688
3689/*
drh5e00f6c2001-09-13 13:46:56 +00003690** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003691** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003692*/
drh3aac2dd2004-04-26 14:10:20 +00003693int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003694 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003695 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003696 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003697 BtShared *pBt = pCur->pBt;
3698 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003699 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003700 if( pCur->pPrev ){
3701 pCur->pPrev->pNext = pCur->pNext;
3702 }else{
3703 pBt->pCursor = pCur->pNext;
3704 }
3705 if( pCur->pNext ){
3706 pCur->pNext->pPrev = pCur->pPrev;
3707 }
danielk197771d5d2c2008-09-29 11:49:47 +00003708 for(i=0; i<=pCur->iPage; i++){
3709 releasePage(pCur->apPage[i]);
3710 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003711 unlockBtreeIfUnused(pBt);
3712 invalidateOverflowCache(pCur);
3713 /* sqlite3_free(pCur); */
3714 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003715 }
drh8c42ca92001-06-22 19:15:00 +00003716 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003717}
3718
drh5e2f8b92001-05-28 00:41:15 +00003719/*
drh86057612007-06-26 01:04:48 +00003720** Make sure the BtCursor* given in the argument has a valid
3721** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003722** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003723**
3724** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003725** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003726**
3727** 2007-06-25: There is a bug in some versions of MSVC that cause the
3728** compiler to crash when getCellInfo() is implemented as a macro.
3729** But there is a measureable speed advantage to using the macro on gcc
3730** (when less compiler optimizations like -Os or -O0 are used and the
3731** compiler is not doing agressive inlining.) So we use a real function
3732** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003733*/
drh9188b382004-05-14 21:12:22 +00003734#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003735 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003736 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003737 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003738 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003739 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003740 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003741 }
danielk19771cc5ed82007-05-16 17:28:43 +00003742#else
3743 #define assertCellInfo(x)
3744#endif
drh86057612007-06-26 01:04:48 +00003745#ifdef _MSC_VER
3746 /* Use a real function in MSVC to work around bugs in that compiler. */
3747 static void getCellInfo(BtCursor *pCur){
3748 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003749 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003750 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003751 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003752 }else{
3753 assertCellInfo(pCur);
3754 }
3755 }
3756#else /* if not _MSC_VER */
3757 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003758#define getCellInfo(pCur) \
3759 if( pCur->info.nSize==0 ){ \
3760 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003761 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003762 pCur->validNKey = 1; \
3763 }else{ \
3764 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003765 }
3766#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003767
drhea8ffdf2009-07-22 00:35:23 +00003768#ifndef NDEBUG /* The next routine used only within assert() statements */
3769/*
3770** Return true if the given BtCursor is valid. A valid cursor is one
3771** that is currently pointing to a row in a (non-empty) table.
3772** This is a verification routine is used only within assert() statements.
3773*/
3774int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3775 return pCur && pCur->eState==CURSOR_VALID;
3776}
3777#endif /* NDEBUG */
3778
drh9188b382004-05-14 21:12:22 +00003779/*
drh3aac2dd2004-04-26 14:10:20 +00003780** Set *pSize to the size of the buffer needed to hold the value of
3781** the key for the current entry. If the cursor is not pointing
3782** to a valid entry, *pSize is set to 0.
3783**
drh4b70f112004-05-02 21:12:19 +00003784** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003785** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003786**
3787** The caller must position the cursor prior to invoking this routine.
3788**
3789** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003790*/
drh4a1c3802004-05-12 15:15:47 +00003791int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003792 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003793 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3794 if( pCur->eState!=CURSOR_VALID ){
3795 *pSize = 0;
3796 }else{
3797 getCellInfo(pCur);
3798 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003799 }
drhea8ffdf2009-07-22 00:35:23 +00003800 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003801}
drh2af926b2001-05-15 00:39:25 +00003802
drh72f82862001-05-24 21:06:34 +00003803/*
drh0e1c19e2004-05-11 00:58:56 +00003804** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003805** cursor currently points to.
3806**
3807** The caller must guarantee that the cursor is pointing to a non-NULL
3808** valid entry. In other words, the calling procedure must guarantee
3809** that the cursor has Cursor.eState==CURSOR_VALID.
3810**
3811** Failure is not possible. This function always returns SQLITE_OK.
3812** It might just as well be a procedure (returning void) but we continue
3813** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003814*/
3815int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003816 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003817 assert( pCur->eState==CURSOR_VALID );
3818 getCellInfo(pCur);
3819 *pSize = pCur->info.nData;
3820 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003821}
3822
3823/*
danielk1977d04417962007-05-02 13:16:30 +00003824** Given the page number of an overflow page in the database (parameter
3825** ovfl), this function finds the page number of the next page in the
3826** linked list of overflow pages. If possible, it uses the auto-vacuum
3827** pointer-map data instead of reading the content of page ovfl to do so.
3828**
3829** If an error occurs an SQLite error code is returned. Otherwise:
3830**
danielk1977bea2a942009-01-20 17:06:27 +00003831** The page number of the next overflow page in the linked list is
3832** written to *pPgnoNext. If page ovfl is the last page in its linked
3833** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003834**
danielk1977bea2a942009-01-20 17:06:27 +00003835** If ppPage is not NULL, and a reference to the MemPage object corresponding
3836** to page number pOvfl was obtained, then *ppPage is set to point to that
3837** reference. It is the responsibility of the caller to call releasePage()
3838** on *ppPage to free the reference. In no reference was obtained (because
3839** the pointer-map was used to obtain the value for *pPgnoNext), then
3840** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003841*/
3842static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003843 BtShared *pBt, /* The database file */
3844 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003845 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003846 Pgno *pPgnoNext /* OUT: Next overflow page number */
3847){
3848 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003849 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003850 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003851
drh1fee73e2007-08-29 04:00:57 +00003852 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003853 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003854
3855#ifndef SQLITE_OMIT_AUTOVACUUM
3856 /* Try to find the next page in the overflow list using the
3857 ** autovacuum pointer-map pages. Guess that the next page in
3858 ** the overflow list is page number (ovfl+1). If that guess turns
3859 ** out to be wrong, fall back to loading the data of page
3860 ** number ovfl to determine the next page number.
3861 */
3862 if( pBt->autoVacuum ){
3863 Pgno pgno;
3864 Pgno iGuess = ovfl+1;
3865 u8 eType;
3866
3867 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3868 iGuess++;
3869 }
3870
drhb1299152010-03-30 22:58:33 +00003871 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003872 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003873 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003874 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003875 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003876 }
3877 }
3878 }
3879#endif
3880
danielk1977d8a3f3d2009-07-11 11:45:23 +00003881 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003882 if( rc==SQLITE_OK ){
dan11dcd112013-03-15 18:29:18 +00003883 rc = btreeGetPage(pBt, ovfl, &pPage, 0, (ppPage==0));
danielk1977d8a3f3d2009-07-11 11:45:23 +00003884 assert( rc==SQLITE_OK || pPage==0 );
3885 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003886 next = get4byte(pPage->aData);
3887 }
danielk1977443c0592009-01-16 15:21:05 +00003888 }
danielk197745d68822009-01-16 16:23:38 +00003889
danielk1977bea2a942009-01-20 17:06:27 +00003890 *pPgnoNext = next;
3891 if( ppPage ){
3892 *ppPage = pPage;
3893 }else{
3894 releasePage(pPage);
3895 }
3896 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003897}
3898
danielk1977da107192007-05-04 08:32:13 +00003899/*
3900** Copy data from a buffer to a page, or from a page to a buffer.
3901**
3902** pPayload is a pointer to data stored on database page pDbPage.
3903** If argument eOp is false, then nByte bytes of data are copied
3904** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3905** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3906** of data are copied from the buffer pBuf to pPayload.
3907**
3908** SQLITE_OK is returned on success, otherwise an error code.
3909*/
3910static int copyPayload(
3911 void *pPayload, /* Pointer to page data */
3912 void *pBuf, /* Pointer to buffer */
3913 int nByte, /* Number of bytes to copy */
3914 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3915 DbPage *pDbPage /* Page containing pPayload */
3916){
3917 if( eOp ){
3918 /* Copy data from buffer to page (a write operation) */
3919 int rc = sqlite3PagerWrite(pDbPage);
3920 if( rc!=SQLITE_OK ){
3921 return rc;
3922 }
3923 memcpy(pPayload, pBuf, nByte);
3924 }else{
3925 /* Copy data from page to buffer (a read operation) */
3926 memcpy(pBuf, pPayload, nByte);
3927 }
3928 return SQLITE_OK;
3929}
danielk1977d04417962007-05-02 13:16:30 +00003930
3931/*
danielk19779f8d6402007-05-02 17:48:45 +00003932** This function is used to read or overwrite payload information
3933** for the entry that the pCur cursor is pointing to. If the eOp
3934** parameter is 0, this is a read operation (data copied into
3935** buffer pBuf). If it is non-zero, a write (data copied from
3936** buffer pBuf).
3937**
3938** A total of "amt" bytes are read or written beginning at "offset".
3939** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003940**
drh3bcdfd22009-07-12 02:32:21 +00003941** The content being read or written might appear on the main page
3942** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003943**
danielk1977dcbb5d32007-05-04 18:36:44 +00003944** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003945** cursor entry uses one or more overflow pages, this function
3946** allocates space for and lazily popluates the overflow page-list
3947** cache array (BtCursor.aOverflow). Subsequent calls use this
3948** cache to make seeking to the supplied offset more efficient.
3949**
3950** Once an overflow page-list cache has been allocated, it may be
3951** invalidated if some other cursor writes to the same table, or if
3952** the cursor is moved to a different row. Additionally, in auto-vacuum
3953** mode, the following events may invalidate an overflow page-list cache.
3954**
3955** * An incremental vacuum,
3956** * A commit in auto_vacuum="full" mode,
3957** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003958*/
danielk19779f8d6402007-05-02 17:48:45 +00003959static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003960 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003961 u32 offset, /* Begin reading this far into payload */
3962 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003963 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003964 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003965){
3966 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003967 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003968 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003969 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003970 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003971 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003972
danielk1977da107192007-05-04 08:32:13 +00003973 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003974 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003975 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003976 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003977
drh86057612007-06-26 01:04:48 +00003978 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003979 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003980 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003981
drh3bcdfd22009-07-12 02:32:21 +00003982 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003983 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3984 ){
danielk1977da107192007-05-04 08:32:13 +00003985 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003986 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003987 }
danielk1977da107192007-05-04 08:32:13 +00003988
3989 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003990 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003991 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003992 if( a+offset>pCur->info.nLocal ){
3993 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003994 }
danielk1977da107192007-05-04 08:32:13 +00003995 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003996 offset = 0;
drha34b6762004-05-07 13:30:42 +00003997 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003998 amt -= a;
drhdd793422001-06-28 01:54:48 +00003999 }else{
drhfa1a98a2004-05-14 19:08:17 +00004000 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004001 }
danielk1977da107192007-05-04 08:32:13 +00004002
4003 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004004 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004005 Pgno nextPage;
4006
drhfa1a98a2004-05-14 19:08:17 +00004007 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004008
danielk19772dec9702007-05-02 16:48:37 +00004009#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00004010 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00004011 ** has not been allocated, allocate it now. The array is sized at
4012 ** one entry for each overflow page in the overflow chain. The
4013 ** page number of the first overflow page is stored in aOverflow[0],
4014 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
4015 ** (the cache is lazily populated).
4016 */
danielk1977dcbb5d32007-05-04 18:36:44 +00004017 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00004018 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00004019 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00004020 /* nOvfl is always positive. If it were zero, fetchPayload would have
4021 ** been used instead of this routine. */
4022 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00004023 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00004024 }
4025 }
danielk1977da107192007-05-04 08:32:13 +00004026
4027 /* If the overflow page-list cache has been allocated and the
4028 ** entry for the first required overflow page is valid, skip
4029 ** directly to it.
4030 */
danielk19772dec9702007-05-02 16:48:37 +00004031 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
4032 iIdx = (offset/ovflSize);
4033 nextPage = pCur->aOverflow[iIdx];
4034 offset = (offset%ovflSize);
4035 }
4036#endif
danielk1977da107192007-05-04 08:32:13 +00004037
4038 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4039
4040#ifndef SQLITE_OMIT_INCRBLOB
4041 /* If required, populate the overflow page-list cache. */
4042 if( pCur->aOverflow ){
4043 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4044 pCur->aOverflow[iIdx] = nextPage;
4045 }
4046#endif
4047
danielk1977d04417962007-05-02 13:16:30 +00004048 if( offset>=ovflSize ){
4049 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004050 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004051 ** data is not required. So first try to lookup the overflow
4052 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004053 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004054 */
danielk19772dec9702007-05-02 16:48:37 +00004055#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00004056 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4057 nextPage = pCur->aOverflow[iIdx+1];
4058 } else
danielk19772dec9702007-05-02 16:48:37 +00004059#endif
danielk1977da107192007-05-04 08:32:13 +00004060 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00004061 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004062 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004063 /* Need to read this page properly. It contains some of the
4064 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004065 */
danf4ba1092011-10-08 14:57:07 +00004066#ifdef SQLITE_DIRECT_OVERFLOW_READ
4067 sqlite3_file *fd;
4068#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004069 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004070 if( a + offset > ovflSize ){
4071 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004072 }
danf4ba1092011-10-08 14:57:07 +00004073
4074#ifdef SQLITE_DIRECT_OVERFLOW_READ
4075 /* If all the following are true:
4076 **
4077 ** 1) this is a read operation, and
4078 ** 2) data is required from the start of this overflow page, and
4079 ** 3) the database is file-backed, and
4080 ** 4) there is no open write-transaction, and
4081 ** 5) the database is not a WAL database,
4082 **
4083 ** then data can be read directly from the database file into the
4084 ** output buffer, bypassing the page-cache altogether. This speeds
4085 ** up loading large records that span many overflow pages.
4086 */
4087 if( eOp==0 /* (1) */
4088 && offset==0 /* (2) */
4089 && pBt->inTransaction==TRANS_READ /* (4) */
4090 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4091 && pBt->pPage1->aData[19]==0x01 /* (5) */
4092 ){
4093 u8 aSave[4];
4094 u8 *aWrite = &pBuf[-4];
4095 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004096 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004097 nextPage = get4byte(aWrite);
4098 memcpy(aWrite, aSave, 4);
4099 }else
4100#endif
4101
4102 {
4103 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004104 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
4105 (eOp==0 ? PAGER_ACQUIRE_READONLY : 0)
4106 );
danf4ba1092011-10-08 14:57:07 +00004107 if( rc==SQLITE_OK ){
4108 aPayload = sqlite3PagerGetData(pDbPage);
4109 nextPage = get4byte(aPayload);
4110 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4111 sqlite3PagerUnref(pDbPage);
4112 offset = 0;
4113 }
4114 }
4115 amt -= a;
4116 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004117 }
drh2af926b2001-05-15 00:39:25 +00004118 }
drh2af926b2001-05-15 00:39:25 +00004119 }
danielk1977cfe9a692004-06-16 12:00:29 +00004120
danielk1977da107192007-05-04 08:32:13 +00004121 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004122 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004123 }
danielk1977da107192007-05-04 08:32:13 +00004124 return rc;
drh2af926b2001-05-15 00:39:25 +00004125}
4126
drh72f82862001-05-24 21:06:34 +00004127/*
drh3aac2dd2004-04-26 14:10:20 +00004128** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004129** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004130** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004131**
drh5d1a8722009-07-22 18:07:40 +00004132** The caller must ensure that pCur is pointing to a valid row
4133** in the table.
4134**
drh3aac2dd2004-04-26 14:10:20 +00004135** Return SQLITE_OK on success or an error code if anything goes
4136** wrong. An error is returned if "offset+amt" is larger than
4137** the available payload.
drh72f82862001-05-24 21:06:34 +00004138*/
drha34b6762004-05-07 13:30:42 +00004139int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004140 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004141 assert( pCur->eState==CURSOR_VALID );
4142 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4143 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4144 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004145}
4146
4147/*
drh3aac2dd2004-04-26 14:10:20 +00004148** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004149** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004150** begins at "offset".
4151**
4152** Return SQLITE_OK on success or an error code if anything goes
4153** wrong. An error is returned if "offset+amt" is larger than
4154** the available payload.
drh72f82862001-05-24 21:06:34 +00004155*/
drh3aac2dd2004-04-26 14:10:20 +00004156int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004157 int rc;
4158
danielk19773588ceb2008-06-10 17:30:26 +00004159#ifndef SQLITE_OMIT_INCRBLOB
4160 if ( pCur->eState==CURSOR_INVALID ){
4161 return SQLITE_ABORT;
4162 }
4163#endif
4164
drh1fee73e2007-08-29 04:00:57 +00004165 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004166 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004167 if( rc==SQLITE_OK ){
4168 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004169 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4170 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004171 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004172 }
4173 return rc;
drh2af926b2001-05-15 00:39:25 +00004174}
4175
drh72f82862001-05-24 21:06:34 +00004176/*
drh0e1c19e2004-05-11 00:58:56 +00004177** Return a pointer to payload information from the entry that the
4178** pCur cursor is pointing to. The pointer is to the beginning of
4179** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004180** skipKey==1. The number of bytes of available key/data is written
4181** into *pAmt. If *pAmt==0, then the value returned will not be
4182** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004183**
4184** This routine is an optimization. It is common for the entire key
4185** and data to fit on the local page and for there to be no overflow
4186** pages. When that is so, this routine can be used to access the
4187** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004188** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004189** the key/data and copy it into a preallocated buffer.
4190**
4191** The pointer returned by this routine looks directly into the cached
4192** page of the database. The data might change or move the next time
4193** any btree routine is called.
4194*/
4195static const unsigned char *fetchPayload(
4196 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004197 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004198 int skipKey /* read beginning at data if this is true */
4199){
4200 unsigned char *aPayload;
4201 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004202 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004203 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004204
danielk197771d5d2c2008-09-29 11:49:47 +00004205 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004206 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004207 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004208 pPage = pCur->apPage[pCur->iPage];
4209 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004210 if( NEVER(pCur->info.nSize==0) ){
4211 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4212 &pCur->info);
4213 }
drh43605152004-05-29 21:46:49 +00004214 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004215 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004216 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004217 nKey = 0;
4218 }else{
drhf49661a2008-12-10 16:45:50 +00004219 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004220 }
drh0e1c19e2004-05-11 00:58:56 +00004221 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004222 aPayload += nKey;
4223 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004224 }else{
drhfa1a98a2004-05-14 19:08:17 +00004225 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004226 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004227 }
drhe51c44f2004-05-30 20:46:09 +00004228 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004229 return aPayload;
4230}
4231
4232
4233/*
drhe51c44f2004-05-30 20:46:09 +00004234** For the entry that cursor pCur is point to, return as
4235** many bytes of the key or data as are available on the local
4236** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004237**
4238** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004239** or be destroyed on the next call to any Btree routine,
4240** including calls from other threads against the same cache.
4241** Hence, a mutex on the BtShared should be held prior to calling
4242** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004243**
4244** These routines is used to get quick access to key and data
4245** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004246*/
drhe51c44f2004-05-30 20:46:09 +00004247const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004248 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004249 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004250 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004251 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4252 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004253 }
drhfe3313f2009-07-21 19:02:20 +00004254 return p;
drh0e1c19e2004-05-11 00:58:56 +00004255}
drhe51c44f2004-05-30 20:46:09 +00004256const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004257 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004258 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004259 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004260 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4261 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004262 }
drhfe3313f2009-07-21 19:02:20 +00004263 return p;
drh0e1c19e2004-05-11 00:58:56 +00004264}
4265
4266
4267/*
drh8178a752003-01-05 21:41:40 +00004268** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004269** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004270**
4271** This function returns SQLITE_CORRUPT if the page-header flags field of
4272** the new child page does not match the flags field of the parent (i.e.
4273** if an intkey page appears to be the parent of a non-intkey page, or
4274** vice-versa).
drh72f82862001-05-24 21:06:34 +00004275*/
drh3aac2dd2004-04-26 14:10:20 +00004276static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004277 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004278 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004279 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004280 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004281
drh1fee73e2007-08-29 04:00:57 +00004282 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004283 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004284 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004285 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004286 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4287 return SQLITE_CORRUPT_BKPT;
4288 }
dan11dcd112013-03-15 18:29:18 +00004289 rc = getAndInitPage(pBt, newPgno, &pNewPage, (pCur->wrFlag==0));
drh6019e162001-07-02 17:51:45 +00004290 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004291 pCur->apPage[i+1] = pNewPage;
4292 pCur->aiIdx[i+1] = 0;
4293 pCur->iPage++;
4294
drh271efa52004-05-30 19:19:05 +00004295 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004296 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004297 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004298 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004299 }
drh72f82862001-05-24 21:06:34 +00004300 return SQLITE_OK;
4301}
4302
danbb246c42012-01-12 14:25:55 +00004303#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004304/*
4305** Page pParent is an internal (non-leaf) tree page. This function
4306** asserts that page number iChild is the left-child if the iIdx'th
4307** cell in page pParent. Or, if iIdx is equal to the total number of
4308** cells in pParent, that page number iChild is the right-child of
4309** the page.
4310*/
4311static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4312 assert( iIdx<=pParent->nCell );
4313 if( iIdx==pParent->nCell ){
4314 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4315 }else{
4316 assert( get4byte(findCell(pParent, iIdx))==iChild );
4317 }
4318}
4319#else
4320# define assertParentIndex(x,y,z)
4321#endif
4322
drh72f82862001-05-24 21:06:34 +00004323/*
drh5e2f8b92001-05-28 00:41:15 +00004324** Move the cursor up to the parent page.
4325**
4326** pCur->idx is set to the cell index that contains the pointer
4327** to the page we are coming from. If we are coming from the
4328** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004329** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004330*/
danielk197730548662009-07-09 05:07:37 +00004331static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004332 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004333 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004334 assert( pCur->iPage>0 );
4335 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004336
4337 /* UPDATE: It is actually possible for the condition tested by the assert
4338 ** below to be untrue if the database file is corrupt. This can occur if
4339 ** one cursor has modified page pParent while a reference to it is held
4340 ** by a second cursor. Which can only happen if a single page is linked
4341 ** into more than one b-tree structure in a corrupt database. */
4342#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004343 assertParentIndex(
4344 pCur->apPage[pCur->iPage-1],
4345 pCur->aiIdx[pCur->iPage-1],
4346 pCur->apPage[pCur->iPage]->pgno
4347 );
danbb246c42012-01-12 14:25:55 +00004348#endif
dan6c2688c2012-01-12 15:05:03 +00004349 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004350
danielk197771d5d2c2008-09-29 11:49:47 +00004351 releasePage(pCur->apPage[pCur->iPage]);
4352 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004353 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004354 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004355}
4356
4357/*
danielk19778f880a82009-07-13 09:41:45 +00004358** Move the cursor to point to the root page of its b-tree structure.
4359**
4360** If the table has a virtual root page, then the cursor is moved to point
4361** to the virtual root page instead of the actual root page. A table has a
4362** virtual root page when the actual root page contains no cells and a
4363** single child page. This can only happen with the table rooted at page 1.
4364**
4365** If the b-tree structure is empty, the cursor state is set to
4366** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4367** cell located on the root (or virtual root) page and the cursor state
4368** is set to CURSOR_VALID.
4369**
4370** If this function returns successfully, it may be assumed that the
4371** page-header flags indicate that the [virtual] root-page is the expected
4372** kind of b-tree page (i.e. if when opening the cursor the caller did not
4373** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4374** indicating a table b-tree, or if the caller did specify a KeyInfo
4375** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4376** b-tree).
drh72f82862001-05-24 21:06:34 +00004377*/
drh5e2f8b92001-05-28 00:41:15 +00004378static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004379 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004380 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004381 Btree *p = pCur->pBtree;
4382 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004383
drh1fee73e2007-08-29 04:00:57 +00004384 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004385 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4386 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4387 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4388 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4389 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004390 assert( pCur->skipNext!=SQLITE_OK );
4391 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004392 }
danielk1977be51a652008-10-08 17:58:48 +00004393 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004394 }
danielk197771d5d2c2008-09-29 11:49:47 +00004395
4396 if( pCur->iPage>=0 ){
4397 int i;
4398 for(i=1; i<=pCur->iPage; i++){
4399 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004400 }
danielk1977172114a2009-07-07 15:47:12 +00004401 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004402 }else if( pCur->pgnoRoot==0 ){
4403 pCur->eState = CURSOR_INVALID;
4404 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004405 }else{
dan6c969462013-04-03 11:52:16 +00004406 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0], pCur->wrFlag==0);
drh4c301aa2009-07-15 17:25:45 +00004407 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004408 pCur->eState = CURSOR_INVALID;
4409 return rc;
4410 }
danielk1977172114a2009-07-07 15:47:12 +00004411 pCur->iPage = 0;
4412
4413 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4414 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4415 ** NULL, the caller expects a table b-tree. If this is not the case,
4416 ** return an SQLITE_CORRUPT error. */
4417 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4418 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4419 return SQLITE_CORRUPT_BKPT;
4420 }
drhc39e0002004-05-07 23:50:57 +00004421 }
danielk197771d5d2c2008-09-29 11:49:47 +00004422
danielk19778f880a82009-07-13 09:41:45 +00004423 /* Assert that the root page is of the correct type. This must be the
4424 ** case as the call to this function that loaded the root-page (either
4425 ** this call or a previous invocation) would have detected corruption
4426 ** if the assumption were not true, and it is not possible for the flags
4427 ** byte to have been modified while this cursor is holding a reference
4428 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004429 pRoot = pCur->apPage[0];
4430 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004431 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4432
danielk197771d5d2c2008-09-29 11:49:47 +00004433 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004434 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004435 pCur->atLast = 0;
4436 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004437
drh8856d6a2004-04-29 14:42:46 +00004438 if( pRoot->nCell==0 && !pRoot->leaf ){
4439 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004440 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004441 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004442 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004443 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004444 }else{
4445 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004446 }
4447 return rc;
drh72f82862001-05-24 21:06:34 +00004448}
drh2af926b2001-05-15 00:39:25 +00004449
drh5e2f8b92001-05-28 00:41:15 +00004450/*
4451** Move the cursor down to the left-most leaf entry beneath the
4452** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004453**
4454** The left-most leaf is the one with the smallest key - the first
4455** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004456*/
4457static int moveToLeftmost(BtCursor *pCur){
4458 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004459 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004460 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004461
drh1fee73e2007-08-29 04:00:57 +00004462 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004463 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004464 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4465 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4466 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004467 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004468 }
drhd677b3d2007-08-20 22:48:41 +00004469 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004470}
4471
drh2dcc9aa2002-12-04 13:40:25 +00004472/*
4473** Move the cursor down to the right-most leaf entry beneath the
4474** page to which it is currently pointing. Notice the difference
4475** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4476** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4477** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004478**
4479** The right-most entry is the one with the largest key - the last
4480** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004481*/
4482static int moveToRightmost(BtCursor *pCur){
4483 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004484 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004485 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004486
drh1fee73e2007-08-29 04:00:57 +00004487 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004488 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004489 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004490 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004491 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004492 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004493 }
drhd677b3d2007-08-20 22:48:41 +00004494 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004495 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004496 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004497 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004498 }
danielk1977518002e2008-09-05 05:02:46 +00004499 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004500}
4501
drh5e00f6c2001-09-13 13:46:56 +00004502/* Move the cursor to the first entry in the table. Return SQLITE_OK
4503** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004504** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004505*/
drh3aac2dd2004-04-26 14:10:20 +00004506int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004507 int rc;
drhd677b3d2007-08-20 22:48:41 +00004508
drh1fee73e2007-08-29 04:00:57 +00004509 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004510 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004511 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004512 if( rc==SQLITE_OK ){
4513 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004514 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004515 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004516 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004517 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004518 *pRes = 0;
4519 rc = moveToLeftmost(pCur);
4520 }
drh5e00f6c2001-09-13 13:46:56 +00004521 }
drh5e00f6c2001-09-13 13:46:56 +00004522 return rc;
4523}
drh5e2f8b92001-05-28 00:41:15 +00004524
drh9562b552002-02-19 15:00:07 +00004525/* Move the cursor to the last entry in the table. Return SQLITE_OK
4526** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004527** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004528*/
drh3aac2dd2004-04-26 14:10:20 +00004529int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004530 int rc;
drhd677b3d2007-08-20 22:48:41 +00004531
drh1fee73e2007-08-29 04:00:57 +00004532 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004533 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004534
4535 /* If the cursor already points to the last entry, this is a no-op. */
4536 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4537#ifdef SQLITE_DEBUG
4538 /* This block serves to assert() that the cursor really does point
4539 ** to the last entry in the b-tree. */
4540 int ii;
4541 for(ii=0; ii<pCur->iPage; ii++){
4542 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4543 }
4544 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4545 assert( pCur->apPage[pCur->iPage]->leaf );
4546#endif
4547 return SQLITE_OK;
4548 }
4549
drh9562b552002-02-19 15:00:07 +00004550 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004551 if( rc==SQLITE_OK ){
4552 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004553 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004554 *pRes = 1;
4555 }else{
4556 assert( pCur->eState==CURSOR_VALID );
4557 *pRes = 0;
4558 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004559 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004560 }
drh9562b552002-02-19 15:00:07 +00004561 }
drh9562b552002-02-19 15:00:07 +00004562 return rc;
4563}
4564
drhe14006d2008-03-25 17:23:32 +00004565/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004566** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004567**
drhe63d9992008-08-13 19:11:48 +00004568** For INTKEY tables, the intKey parameter is used. pIdxKey
4569** must be NULL. For index tables, pIdxKey is used and intKey
4570** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004571**
drh5e2f8b92001-05-28 00:41:15 +00004572** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004573** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004574** were present. The cursor might point to an entry that comes
4575** before or after the key.
4576**
drh64022502009-01-09 14:11:04 +00004577** An integer is written into *pRes which is the result of
4578** comparing the key with the entry to which the cursor is
4579** pointing. The meaning of the integer written into
4580** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004581**
4582** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004583** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004584** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004585**
4586** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004587** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004588**
4589** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004590** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004591**
drha059ad02001-04-17 20:09:11 +00004592*/
drhe63d9992008-08-13 19:11:48 +00004593int sqlite3BtreeMovetoUnpacked(
4594 BtCursor *pCur, /* The cursor to be moved */
4595 UnpackedRecord *pIdxKey, /* Unpacked index key */
4596 i64 intKey, /* The table key */
4597 int biasRight, /* If true, bias the search to the high end */
4598 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004599){
drh72f82862001-05-24 21:06:34 +00004600 int rc;
drhd677b3d2007-08-20 22:48:41 +00004601
drh1fee73e2007-08-29 04:00:57 +00004602 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004603 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004604 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004605 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004606
4607 /* If the cursor is already positioned at the point we are trying
4608 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004609 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4610 && pCur->apPage[0]->intKey
4611 ){
drhe63d9992008-08-13 19:11:48 +00004612 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004613 *pRes = 0;
4614 return SQLITE_OK;
4615 }
drhe63d9992008-08-13 19:11:48 +00004616 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004617 *pRes = -1;
4618 return SQLITE_OK;
4619 }
4620 }
4621
drh5e2f8b92001-05-28 00:41:15 +00004622 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004623 if( rc ){
4624 return rc;
4625 }
dana205a482011-08-27 18:48:57 +00004626 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4627 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4628 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004629 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004630 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004631 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004632 return SQLITE_OK;
4633 }
danielk197771d5d2c2008-09-29 11:49:47 +00004634 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004635 for(;;){
drhafb98172011-06-04 01:43:53 +00004636 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004637 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004638 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004639 int c;
4640
4641 /* pPage->nCell must be greater than zero. If this is the root-page
4642 ** the cursor would have been INVALID above and this for(;;) loop
4643 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004644 ** would have already detected db corruption. Similarly, pPage must
4645 ** be the right kind (index or table) of b-tree page. Otherwise
4646 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004647 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004648 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004649 lwr = 0;
4650 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004651 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004652 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004653 }else{
drhafb98172011-06-04 01:43:53 +00004654 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004655 }
drh64022502009-01-09 14:11:04 +00004656 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004657 u8 *pCell; /* Pointer to current cell in pPage */
4658
drhafb98172011-06-04 01:43:53 +00004659 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004660 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004661 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004662 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004663 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004664 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004665 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004666 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004667 }
drha2c20e42008-03-29 16:01:04 +00004668 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004669 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004670 c = 0;
drhe63d9992008-08-13 19:11:48 +00004671 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004672 c = -1;
4673 }else{
drhe63d9992008-08-13 19:11:48 +00004674 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004675 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004676 }
danielk197711c327a2009-05-04 19:01:26 +00004677 pCur->validNKey = 1;
4678 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004679 }else{
drhb2eced52010-08-12 02:41:12 +00004680 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004681 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004682 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004683 ** varint. This information is used to attempt to avoid parsing
4684 ** the entire cell by checking for the cases where the record is
4685 ** stored entirely within the b-tree page by inspecting the first
4686 ** 2 bytes of the cell.
4687 */
4688 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004689 if( nCell<=pPage->max1bytePayload
4690 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004691 ){
danielk197711c327a2009-05-04 19:01:26 +00004692 /* This branch runs if the record-size field of the cell is a
4693 ** single byte varint and the record fits entirely on the main
4694 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004695 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004696 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4697 }else if( !(pCell[1] & 0x80)
4698 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004699 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004700 ){
4701 /* The record-size field is a 2 byte varint and the record
4702 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004703 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004704 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004705 }else{
danielk197711c327a2009-05-04 19:01:26 +00004706 /* The record flows over onto one or more overflow pages. In
4707 ** this case the whole cell needs to be parsed, a buffer allocated
4708 ** and accessPayload() used to retrieve the record into the
4709 ** buffer before VdbeRecordCompare() can be called. */
4710 void *pCellKey;
4711 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004712 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004713 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004714 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004715 if( pCellKey==0 ){
4716 rc = SQLITE_NOMEM;
4717 goto moveto_finish;
4718 }
drhfb192682009-07-11 18:26:28 +00004719 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004720 if( rc ){
4721 sqlite3_free(pCellKey);
4722 goto moveto_finish;
4723 }
danielk197711c327a2009-05-04 19:01:26 +00004724 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004725 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004726 }
drh3aac2dd2004-04-26 14:10:20 +00004727 }
drh72f82862001-05-24 21:06:34 +00004728 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004729 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004730 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004731 break;
4732 }else{
drh64022502009-01-09 14:11:04 +00004733 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004734 rc = SQLITE_OK;
4735 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004736 }
drh72f82862001-05-24 21:06:34 +00004737 }
4738 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004739 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004740 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004741 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004742 }
drhf1d68b32007-03-29 04:43:26 +00004743 if( lwr>upr ){
4744 break;
4745 }
drhafb98172011-06-04 01:43:53 +00004746 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004747 }
drhb07028f2011-10-14 21:49:18 +00004748 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004749 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004750 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004751 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004752 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004753 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004754 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004755 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004756 }
4757 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004758 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004759 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004760 rc = SQLITE_OK;
4761 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004762 }
drhf49661a2008-12-10 16:45:50 +00004763 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004764 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004765 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004766 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004767 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004768 }
drh1e968a02008-03-25 00:22:21 +00004769moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004770 return rc;
4771}
4772
drhd677b3d2007-08-20 22:48:41 +00004773
drh72f82862001-05-24 21:06:34 +00004774/*
drhc39e0002004-05-07 23:50:57 +00004775** Return TRUE if the cursor is not pointing at an entry of the table.
4776**
4777** TRUE will be returned after a call to sqlite3BtreeNext() moves
4778** past the last entry in the table or sqlite3BtreePrev() moves past
4779** the first entry. TRUE is also returned if the table is empty.
4780*/
4781int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004782 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4783 ** have been deleted? This API will need to change to return an error code
4784 ** as well as the boolean result value.
4785 */
4786 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004787}
4788
4789/*
drhbd03cae2001-06-02 02:40:57 +00004790** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004791** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004792** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004793** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004794*/
drhd094db12008-04-03 21:46:57 +00004795int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004796 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004797 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004798 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004799
drh1fee73e2007-08-29 04:00:57 +00004800 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004801 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004802 if( rc!=SQLITE_OK ){
4803 return rc;
4804 }
drh8c4d3a62007-04-06 01:03:32 +00004805 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004806 if( CURSOR_INVALID==pCur->eState ){
4807 *pRes = 1;
4808 return SQLITE_OK;
4809 }
drh4c301aa2009-07-15 17:25:45 +00004810 if( pCur->skipNext>0 ){
4811 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004812 *pRes = 0;
4813 return SQLITE_OK;
4814 }
drh4c301aa2009-07-15 17:25:45 +00004815 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004816
danielk197771d5d2c2008-09-29 11:49:47 +00004817 pPage = pCur->apPage[pCur->iPage];
4818 idx = ++pCur->aiIdx[pCur->iPage];
4819 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004820
4821 /* If the database file is corrupt, it is possible for the value of idx
4822 ** to be invalid here. This can only occur if a second cursor modifies
4823 ** the page while cursor pCur is holding a reference to it. Which can
4824 ** only happen if the database is corrupt in such a way as to link the
4825 ** page into more than one b-tree structure. */
4826 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004827
drh271efa52004-05-30 19:19:05 +00004828 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004829 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004830 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004831 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004832 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004833 if( rc ) return rc;
4834 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004835 *pRes = 0;
4836 return rc;
drh72f82862001-05-24 21:06:34 +00004837 }
drh5e2f8b92001-05-28 00:41:15 +00004838 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004839 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004840 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004841 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004842 return SQLITE_OK;
4843 }
danielk197730548662009-07-09 05:07:37 +00004844 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004845 pPage = pCur->apPage[pCur->iPage];
4846 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004847 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004848 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004849 rc = sqlite3BtreeNext(pCur, pRes);
4850 }else{
4851 rc = SQLITE_OK;
4852 }
4853 return rc;
drh8178a752003-01-05 21:41:40 +00004854 }
4855 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004856 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004857 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004858 }
drh5e2f8b92001-05-28 00:41:15 +00004859 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004860 return rc;
drh72f82862001-05-24 21:06:34 +00004861}
drhd677b3d2007-08-20 22:48:41 +00004862
drh72f82862001-05-24 21:06:34 +00004863
drh3b7511c2001-05-26 13:15:44 +00004864/*
drh2dcc9aa2002-12-04 13:40:25 +00004865** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004866** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004867** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004868** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004869*/
drhd094db12008-04-03 21:46:57 +00004870int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004871 int rc;
drh8178a752003-01-05 21:41:40 +00004872 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004873
drh1fee73e2007-08-29 04:00:57 +00004874 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004875 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004876 if( rc!=SQLITE_OK ){
4877 return rc;
4878 }
drha2c20e42008-03-29 16:01:04 +00004879 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004880 if( CURSOR_INVALID==pCur->eState ){
4881 *pRes = 1;
4882 return SQLITE_OK;
4883 }
drh4c301aa2009-07-15 17:25:45 +00004884 if( pCur->skipNext<0 ){
4885 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004886 *pRes = 0;
4887 return SQLITE_OK;
4888 }
drh4c301aa2009-07-15 17:25:45 +00004889 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004890
danielk197771d5d2c2008-09-29 11:49:47 +00004891 pPage = pCur->apPage[pCur->iPage];
4892 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004893 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004894 int idx = pCur->aiIdx[pCur->iPage];
4895 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004896 if( rc ){
4897 return rc;
4898 }
drh2dcc9aa2002-12-04 13:40:25 +00004899 rc = moveToRightmost(pCur);
4900 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004901 while( pCur->aiIdx[pCur->iPage]==0 ){
4902 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004903 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004904 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004905 return SQLITE_OK;
4906 }
danielk197730548662009-07-09 05:07:37 +00004907 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004908 }
drh271efa52004-05-30 19:19:05 +00004909 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004910 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004911
4912 pCur->aiIdx[pCur->iPage]--;
4913 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004914 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004915 rc = sqlite3BtreePrevious(pCur, pRes);
4916 }else{
4917 rc = SQLITE_OK;
4918 }
drh2dcc9aa2002-12-04 13:40:25 +00004919 }
drh8178a752003-01-05 21:41:40 +00004920 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004921 return rc;
4922}
4923
4924/*
drh3b7511c2001-05-26 13:15:44 +00004925** Allocate a new page from the database file.
4926**
danielk19773b8a05f2007-03-19 17:44:26 +00004927** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004928** has already been called on the new page.) The new page has also
4929** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004930** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004931**
4932** SQLITE_OK is returned on success. Any other return value indicates
4933** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004934** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004935**
drh82e647d2013-03-02 03:25:55 +00004936** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004937** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004938** attempt to keep related pages close to each other in the database file,
4939** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004940**
drh82e647d2013-03-02 03:25:55 +00004941** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4942** anywhere on the free-list, then it is guaranteed to be returned. If
4943** eMode is BTALLOC_LT then the page returned will be less than or equal
4944** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4945** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004946*/
drh4f0c5872007-03-26 22:05:01 +00004947static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00004948 BtShared *pBt, /* The btree */
4949 MemPage **ppPage, /* Store pointer to the allocated page here */
4950 Pgno *pPgno, /* Store the page number here */
4951 Pgno nearby, /* Search for a page near this one */
4952 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004953){
drh3aac2dd2004-04-26 14:10:20 +00004954 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004955 int rc;
drh35cd6432009-06-05 14:17:21 +00004956 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004957 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004958 MemPage *pTrunk = 0;
4959 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004960 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004961
drh1fee73e2007-08-29 04:00:57 +00004962 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00004963 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00004964 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004965 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004966 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004967 testcase( n==mxPage-1 );
4968 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004969 return SQLITE_CORRUPT_BKPT;
4970 }
drh3aac2dd2004-04-26 14:10:20 +00004971 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004972 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004973 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004974 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4975
drh82e647d2013-03-02 03:25:55 +00004976 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004977 ** shows that the page 'nearby' is somewhere on the free-list, then
4978 ** the entire-list will be searched for that page.
4979 */
4980#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00004981 if( eMode==BTALLOC_EXACT ){
4982 if( nearby<=mxPage ){
4983 u8 eType;
4984 assert( nearby>0 );
4985 assert( pBt->autoVacuum );
4986 rc = ptrmapGet(pBt, nearby, &eType, 0);
4987 if( rc ) return rc;
4988 if( eType==PTRMAP_FREEPAGE ){
4989 searchList = 1;
4990 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004991 }
dan51f0b6d2013-02-22 20:16:34 +00004992 }else if( eMode==BTALLOC_LE ){
4993 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004994 }
4995#endif
4996
4997 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4998 ** first free-list trunk page. iPrevTrunk is initially 1.
4999 */
danielk19773b8a05f2007-03-19 17:44:26 +00005000 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005001 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005002 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005003
5004 /* The code within this loop is run only once if the 'searchList' variable
5005 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005006 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5007 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005008 */
5009 do {
5010 pPrevTrunk = pTrunk;
5011 if( pPrevTrunk ){
5012 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005013 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005014 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005015 }
drhdf35a082009-07-09 02:24:35 +00005016 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005017 if( iTrunk>mxPage ){
5018 rc = SQLITE_CORRUPT_BKPT;
5019 }else{
dan11dcd112013-03-15 18:29:18 +00005020 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0, 0);
drh1662b5a2009-06-04 19:06:09 +00005021 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005022 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005023 pTrunk = 0;
5024 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005025 }
drhb07028f2011-10-14 21:49:18 +00005026 assert( pTrunk!=0 );
5027 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005028
drh93b4fc72011-04-07 14:47:01 +00005029 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005030 if( k==0 && !searchList ){
5031 /* The trunk has no leaves and the list is not being searched.
5032 ** So extract the trunk page itself and use it as the newly
5033 ** allocated page */
5034 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005035 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005036 if( rc ){
5037 goto end_allocate_page;
5038 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005039 *pPgno = iTrunk;
5040 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5041 *ppPage = pTrunk;
5042 pTrunk = 0;
5043 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005044 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005045 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005046 rc = SQLITE_CORRUPT_BKPT;
5047 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005048#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005049 }else if( searchList
5050 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5051 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005052 /* The list is being searched and this trunk page is the page
5053 ** to allocate, regardless of whether it has leaves.
5054 */
dan51f0b6d2013-02-22 20:16:34 +00005055 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005056 *ppPage = pTrunk;
5057 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005058 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005059 if( rc ){
5060 goto end_allocate_page;
5061 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005062 if( k==0 ){
5063 if( !pPrevTrunk ){
5064 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5065 }else{
danf48c3552010-08-23 15:41:24 +00005066 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5067 if( rc!=SQLITE_OK ){
5068 goto end_allocate_page;
5069 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005070 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5071 }
5072 }else{
5073 /* The trunk page is required by the caller but it contains
5074 ** pointers to free-list leaves. The first leaf becomes a trunk
5075 ** page in this case.
5076 */
5077 MemPage *pNewTrunk;
5078 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005079 if( iNewTrunk>mxPage ){
5080 rc = SQLITE_CORRUPT_BKPT;
5081 goto end_allocate_page;
5082 }
drhdf35a082009-07-09 02:24:35 +00005083 testcase( iNewTrunk==mxPage );
dan11dcd112013-03-15 18:29:18 +00005084 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005085 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005086 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005087 }
danielk19773b8a05f2007-03-19 17:44:26 +00005088 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005089 if( rc!=SQLITE_OK ){
5090 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005091 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005092 }
5093 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5094 put4byte(&pNewTrunk->aData[4], k-1);
5095 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005096 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005097 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005098 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005099 put4byte(&pPage1->aData[32], iNewTrunk);
5100 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005101 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005102 if( rc ){
5103 goto end_allocate_page;
5104 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005105 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5106 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005107 }
5108 pTrunk = 0;
5109 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5110#endif
danielk1977e5765212009-06-17 11:13:28 +00005111 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005112 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005113 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005114 Pgno iPage;
5115 unsigned char *aData = pTrunk->aData;
5116 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005117 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005118 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005119 if( eMode==BTALLOC_LE ){
5120 for(i=0; i<k; i++){
5121 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005122 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005123 closest = i;
5124 break;
5125 }
5126 }
5127 }else{
5128 int dist;
5129 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5130 for(i=1; i<k; i++){
5131 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5132 if( d2<dist ){
5133 closest = i;
5134 dist = d2;
5135 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005136 }
5137 }
5138 }else{
5139 closest = 0;
5140 }
5141
5142 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005143 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005144 if( iPage>mxPage ){
5145 rc = SQLITE_CORRUPT_BKPT;
5146 goto end_allocate_page;
5147 }
drhdf35a082009-07-09 02:24:35 +00005148 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005149 if( !searchList
5150 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5151 ){
danielk1977bea2a942009-01-20 17:06:27 +00005152 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005153 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005154 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5155 ": %d more free pages\n",
5156 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005157 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5158 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005159 if( closest<k-1 ){
5160 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5161 }
5162 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005163 noContent = !btreeGetHasContent(pBt, *pPgno);
dan11dcd112013-03-15 18:29:18 +00005164 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005165 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005166 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005167 if( rc!=SQLITE_OK ){
5168 releasePage(*ppPage);
5169 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005170 }
5171 searchList = 0;
5172 }
drhee696e22004-08-30 16:52:17 +00005173 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005174 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005175 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005176 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005177 }else{
danbc1a3c62013-02-23 16:40:46 +00005178 /* There are no pages on the freelist, so append a new page to the
5179 ** database image.
5180 **
5181 ** Normally, new pages allocated by this block can be requested from the
5182 ** pager layer with the 'no-content' flag set. This prevents the pager
5183 ** from trying to read the pages content from disk. However, if the
5184 ** current transaction has already run one or more incremental-vacuum
5185 ** steps, then the page we are about to allocate may contain content
5186 ** that is required in the event of a rollback. In this case, do
5187 ** not set the no-content flag. This causes the pager to load and journal
5188 ** the current page content before overwriting it.
5189 **
5190 ** Note that the pager will not actually attempt to load or journal
5191 ** content for any page that really does lie past the end of the database
5192 ** file on disk. So the effects of disabling the no-content optimization
5193 ** here are confined to those pages that lie between the end of the
5194 ** database image and the end of the database file.
5195 */
dan09ff9e12013-03-11 11:49:03 +00005196 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate));
danbc1a3c62013-02-23 16:40:46 +00005197
drhdd3cd972010-03-27 17:12:36 +00005198 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5199 if( rc ) return rc;
5200 pBt->nPage++;
5201 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005202
danielk1977afcdd022004-10-31 16:25:42 +00005203#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005204 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005205 /* If *pPgno refers to a pointer-map page, allocate two new pages
5206 ** at the end of the file instead of one. The first allocated page
5207 ** becomes a new pointer-map page, the second is used by the caller.
5208 */
danielk1977ac861692009-03-28 10:54:22 +00005209 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005210 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5211 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
dan11dcd112013-03-15 18:29:18 +00005212 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent, 0);
danielk1977ac861692009-03-28 10:54:22 +00005213 if( rc==SQLITE_OK ){
5214 rc = sqlite3PagerWrite(pPg->pDbPage);
5215 releasePage(pPg);
5216 }
5217 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005218 pBt->nPage++;
5219 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005220 }
5221#endif
drhdd3cd972010-03-27 17:12:36 +00005222 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5223 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005224
danielk1977599fcba2004-11-08 07:13:13 +00005225 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
dan11dcd112013-03-15 18:29:18 +00005226 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent, 0);
drh3b7511c2001-05-26 13:15:44 +00005227 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005228 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005229 if( rc!=SQLITE_OK ){
5230 releasePage(*ppPage);
5231 }
drh3a4c1412004-05-09 20:40:11 +00005232 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005233 }
danielk1977599fcba2004-11-08 07:13:13 +00005234
5235 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005236
5237end_allocate_page:
5238 releasePage(pTrunk);
5239 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005240 if( rc==SQLITE_OK ){
5241 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5242 releasePage(*ppPage);
5243 return SQLITE_CORRUPT_BKPT;
5244 }
5245 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005246 }else{
5247 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005248 }
drh93b4fc72011-04-07 14:47:01 +00005249 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005250 return rc;
5251}
5252
5253/*
danielk1977bea2a942009-01-20 17:06:27 +00005254** This function is used to add page iPage to the database file free-list.
5255** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005256**
danielk1977bea2a942009-01-20 17:06:27 +00005257** The value passed as the second argument to this function is optional.
5258** If the caller happens to have a pointer to the MemPage object
5259** corresponding to page iPage handy, it may pass it as the second value.
5260** Otherwise, it may pass NULL.
5261**
5262** If a pointer to a MemPage object is passed as the second argument,
5263** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005264*/
danielk1977bea2a942009-01-20 17:06:27 +00005265static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5266 MemPage *pTrunk = 0; /* Free-list trunk page */
5267 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5268 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5269 MemPage *pPage; /* Page being freed. May be NULL. */
5270 int rc; /* Return Code */
5271 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005272
danielk1977bea2a942009-01-20 17:06:27 +00005273 assert( sqlite3_mutex_held(pBt->mutex) );
5274 assert( iPage>1 );
5275 assert( !pMemPage || pMemPage->pgno==iPage );
5276
5277 if( pMemPage ){
5278 pPage = pMemPage;
5279 sqlite3PagerRef(pPage->pDbPage);
5280 }else{
5281 pPage = btreePageLookup(pBt, iPage);
5282 }
drh3aac2dd2004-04-26 14:10:20 +00005283
drha34b6762004-05-07 13:30:42 +00005284 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005285 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005286 if( rc ) goto freepage_out;
5287 nFree = get4byte(&pPage1->aData[36]);
5288 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005289
drhc9166342012-01-05 23:32:06 +00005290 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005291 /* If the secure_delete option is enabled, then
5292 ** always fully overwrite deleted information with zeros.
5293 */
dan11dcd112013-03-15 18:29:18 +00005294 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005295 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005296 ){
5297 goto freepage_out;
5298 }
5299 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005300 }
drhfcce93f2006-02-22 03:08:32 +00005301
danielk1977687566d2004-11-02 12:56:41 +00005302 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005303 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005304 */
danielk197785d90ca2008-07-19 14:25:15 +00005305 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005306 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005307 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005308 }
danielk1977687566d2004-11-02 12:56:41 +00005309
danielk1977bea2a942009-01-20 17:06:27 +00005310 /* Now manipulate the actual database free-list structure. There are two
5311 ** possibilities. If the free-list is currently empty, or if the first
5312 ** trunk page in the free-list is full, then this page will become a
5313 ** new free-list trunk page. Otherwise, it will become a leaf of the
5314 ** first trunk page in the current free-list. This block tests if it
5315 ** is possible to add the page as a new free-list leaf.
5316 */
5317 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005318 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005319
5320 iTrunk = get4byte(&pPage1->aData[32]);
dan11dcd112013-03-15 18:29:18 +00005321 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005322 if( rc!=SQLITE_OK ){
5323 goto freepage_out;
5324 }
5325
5326 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005327 assert( pBt->usableSize>32 );
5328 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005329 rc = SQLITE_CORRUPT_BKPT;
5330 goto freepage_out;
5331 }
drheeb844a2009-08-08 18:01:07 +00005332 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005333 /* In this case there is room on the trunk page to insert the page
5334 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005335 **
5336 ** Note that the trunk page is not really full until it contains
5337 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5338 ** coded. But due to a coding error in versions of SQLite prior to
5339 ** 3.6.0, databases with freelist trunk pages holding more than
5340 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5341 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005342 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005343 ** for now. At some point in the future (once everyone has upgraded
5344 ** to 3.6.0 or later) we should consider fixing the conditional above
5345 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5346 */
danielk19773b8a05f2007-03-19 17:44:26 +00005347 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005348 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005349 put4byte(&pTrunk->aData[4], nLeaf+1);
5350 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005351 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005352 sqlite3PagerDontWrite(pPage->pDbPage);
5353 }
danielk1977bea2a942009-01-20 17:06:27 +00005354 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005355 }
drh3a4c1412004-05-09 20:40:11 +00005356 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005357 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005358 }
drh3b7511c2001-05-26 13:15:44 +00005359 }
danielk1977bea2a942009-01-20 17:06:27 +00005360
5361 /* If control flows to this point, then it was not possible to add the
5362 ** the page being freed as a leaf page of the first trunk in the free-list.
5363 ** Possibly because the free-list is empty, or possibly because the
5364 ** first trunk in the free-list is full. Either way, the page being freed
5365 ** will become the new first trunk page in the free-list.
5366 */
dan11dcd112013-03-15 18:29:18 +00005367 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005368 goto freepage_out;
5369 }
5370 rc = sqlite3PagerWrite(pPage->pDbPage);
5371 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005372 goto freepage_out;
5373 }
5374 put4byte(pPage->aData, iTrunk);
5375 put4byte(&pPage->aData[4], 0);
5376 put4byte(&pPage1->aData[32], iPage);
5377 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5378
5379freepage_out:
5380 if( pPage ){
5381 pPage->isInit = 0;
5382 }
5383 releasePage(pPage);
5384 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005385 return rc;
5386}
drhc314dc72009-07-21 11:52:34 +00005387static void freePage(MemPage *pPage, int *pRC){
5388 if( (*pRC)==SQLITE_OK ){
5389 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5390 }
danielk1977bea2a942009-01-20 17:06:27 +00005391}
drh3b7511c2001-05-26 13:15:44 +00005392
5393/*
drh3aac2dd2004-04-26 14:10:20 +00005394** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005395*/
drh3aac2dd2004-04-26 14:10:20 +00005396static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005397 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005398 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005399 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005400 int rc;
drh94440812007-03-06 11:42:19 +00005401 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005402 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005403
drh1fee73e2007-08-29 04:00:57 +00005404 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005405 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005406 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005407 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005408 }
drhe42a9b42011-08-31 13:27:19 +00005409 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005410 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005411 }
drh6f11bef2004-05-13 01:12:56 +00005412 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005413 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005414 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005415 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5416 assert( ovflPgno==0 || nOvfl>0 );
5417 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005418 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005419 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005420 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005421 /* 0 is not a legal page number and page 1 cannot be an
5422 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5423 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005424 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005425 }
danielk1977bea2a942009-01-20 17:06:27 +00005426 if( nOvfl ){
5427 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5428 if( rc ) return rc;
5429 }
dan887d4b22010-02-25 12:09:16 +00005430
shaneh1da207e2010-03-09 14:41:12 +00005431 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005432 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5433 ){
5434 /* There is no reason any cursor should have an outstanding reference
5435 ** to an overflow page belonging to a cell that is being deleted/updated.
5436 ** So if there exists more than one reference to this page, then it
5437 ** must not really be an overflow page and the database must be corrupt.
5438 ** It is helpful to detect this before calling freePage2(), as
5439 ** freePage2() may zero the page contents if secure-delete mode is
5440 ** enabled. If this 'overflow' page happens to be a page that the
5441 ** caller is iterating through or using in some other way, this
5442 ** can be problematic.
5443 */
5444 rc = SQLITE_CORRUPT_BKPT;
5445 }else{
5446 rc = freePage2(pBt, pOvfl, ovflPgno);
5447 }
5448
danielk1977bea2a942009-01-20 17:06:27 +00005449 if( pOvfl ){
5450 sqlite3PagerUnref(pOvfl->pDbPage);
5451 }
drh3b7511c2001-05-26 13:15:44 +00005452 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005453 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005454 }
drh5e2f8b92001-05-28 00:41:15 +00005455 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005456}
5457
5458/*
drh91025292004-05-03 19:49:32 +00005459** Create the byte sequence used to represent a cell on page pPage
5460** and write that byte sequence into pCell[]. Overflow pages are
5461** allocated and filled in as necessary. The calling procedure
5462** is responsible for making sure sufficient space has been allocated
5463** for pCell[].
5464**
5465** Note that pCell does not necessary need to point to the pPage->aData
5466** area. pCell might point to some temporary storage. The cell will
5467** be constructed in this temporary area then copied into pPage->aData
5468** later.
drh3b7511c2001-05-26 13:15:44 +00005469*/
5470static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005471 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005472 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005473 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005474 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005475 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005476 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005477){
drh3b7511c2001-05-26 13:15:44 +00005478 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005479 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005480 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005481 int spaceLeft;
5482 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005483 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005484 unsigned char *pPrior;
5485 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005486 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005487 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005488 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005489 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005490
drh1fee73e2007-08-29 04:00:57 +00005491 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005492
drhc5053fb2008-11-27 02:22:10 +00005493 /* pPage is not necessarily writeable since pCell might be auxiliary
5494 ** buffer space that is separate from the pPage buffer area */
5495 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5496 || sqlite3PagerIswriteable(pPage->pDbPage) );
5497
drh91025292004-05-03 19:49:32 +00005498 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005499 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005500 if( !pPage->leaf ){
5501 nHeader += 4;
5502 }
drh8b18dd42004-05-12 19:18:15 +00005503 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005504 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005505 }else{
drhb026e052007-05-02 01:34:31 +00005506 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005507 }
drh6f11bef2004-05-13 01:12:56 +00005508 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005509 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005510 assert( info.nHeader==nHeader );
5511 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005512 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005513
5514 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005515 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005516 if( pPage->intKey ){
5517 pSrc = pData;
5518 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005519 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005520 }else{
danielk197731d31b82009-07-13 13:18:07 +00005521 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5522 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005523 }
drhf49661a2008-12-10 16:45:50 +00005524 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005525 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005526 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005527 }
drh6f11bef2004-05-13 01:12:56 +00005528 *pnSize = info.nSize;
5529 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005530 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005531 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005532
drh3b7511c2001-05-26 13:15:44 +00005533 while( nPayload>0 ){
5534 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005535#ifndef SQLITE_OMIT_AUTOVACUUM
5536 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005537 if( pBt->autoVacuum ){
5538 do{
5539 pgnoOvfl++;
5540 } while(
5541 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5542 );
danielk1977b39f70b2007-05-17 18:28:11 +00005543 }
danielk1977afcdd022004-10-31 16:25:42 +00005544#endif
drhf49661a2008-12-10 16:45:50 +00005545 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005546#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005547 /* If the database supports auto-vacuum, and the second or subsequent
5548 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005549 ** for that page now.
5550 **
5551 ** If this is the first overflow page, then write a partial entry
5552 ** to the pointer-map. If we write nothing to this pointer-map slot,
5553 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005554 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005555 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005556 */
danielk19774ef24492007-05-23 09:52:41 +00005557 if( pBt->autoVacuum && rc==SQLITE_OK ){
5558 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005559 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005560 if( rc ){
5561 releasePage(pOvfl);
5562 }
danielk1977afcdd022004-10-31 16:25:42 +00005563 }
5564#endif
drh3b7511c2001-05-26 13:15:44 +00005565 if( rc ){
drh9b171272004-05-08 02:03:22 +00005566 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005567 return rc;
5568 }
drhc5053fb2008-11-27 02:22:10 +00005569
5570 /* If pToRelease is not zero than pPrior points into the data area
5571 ** of pToRelease. Make sure pToRelease is still writeable. */
5572 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5573
5574 /* If pPrior is part of the data area of pPage, then make sure pPage
5575 ** is still writeable */
5576 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5577 || sqlite3PagerIswriteable(pPage->pDbPage) );
5578
drh3aac2dd2004-04-26 14:10:20 +00005579 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005580 releasePage(pToRelease);
5581 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005582 pPrior = pOvfl->aData;
5583 put4byte(pPrior, 0);
5584 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005585 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005586 }
5587 n = nPayload;
5588 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005589
5590 /* If pToRelease is not zero than pPayload points into the data area
5591 ** of pToRelease. Make sure pToRelease is still writeable. */
5592 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5593
5594 /* If pPayload is part of the data area of pPage, then make sure pPage
5595 ** is still writeable */
5596 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5597 || sqlite3PagerIswriteable(pPage->pDbPage) );
5598
drhb026e052007-05-02 01:34:31 +00005599 if( nSrc>0 ){
5600 if( n>nSrc ) n = nSrc;
5601 assert( pSrc );
5602 memcpy(pPayload, pSrc, n);
5603 }else{
5604 memset(pPayload, 0, n);
5605 }
drh3b7511c2001-05-26 13:15:44 +00005606 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005607 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005608 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005609 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005610 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005611 if( nSrc==0 ){
5612 nSrc = nData;
5613 pSrc = pData;
5614 }
drhdd793422001-06-28 01:54:48 +00005615 }
drh9b171272004-05-08 02:03:22 +00005616 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005617 return SQLITE_OK;
5618}
5619
drh14acc042001-06-10 19:56:58 +00005620/*
5621** Remove the i-th cell from pPage. This routine effects pPage only.
5622** The cell content is not freed or deallocated. It is assumed that
5623** the cell content has been copied someplace else. This routine just
5624** removes the reference to the cell from pPage.
5625**
5626** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005627*/
drh98add2e2009-07-20 17:11:49 +00005628static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005629 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005630 u8 *data; /* pPage->aData */
5631 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005632 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005633 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005634 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005635
drh98add2e2009-07-20 17:11:49 +00005636 if( *pRC ) return;
5637
drh8c42ca92001-06-22 19:15:00 +00005638 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005639 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005640 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005641 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005642 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005643 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005644 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005645 hdr = pPage->hdrOffset;
5646 testcase( pc==get2byte(&data[hdr+5]) );
5647 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005648 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005649 *pRC = SQLITE_CORRUPT_BKPT;
5650 return;
shane0af3f892008-11-12 04:55:34 +00005651 }
shanedcc50b72008-11-13 18:29:50 +00005652 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005653 if( rc ){
5654 *pRC = rc;
5655 return;
shanedcc50b72008-11-13 18:29:50 +00005656 }
drh3def2352011-11-11 00:27:15 +00005657 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005658 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005659 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005660 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005661 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005662 }
5663 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005664 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005665 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005666}
5667
5668/*
5669** Insert a new cell on pPage at cell index "i". pCell points to the
5670** content of the cell.
5671**
5672** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005673** will not fit, then make a copy of the cell content into pTemp if
5674** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005675** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005676** in pTemp or the original pCell) and also record its index.
5677** Allocating a new entry in pPage->aCell[] implies that
5678** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005679**
5680** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5681** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005682** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005683** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005684*/
drh98add2e2009-07-20 17:11:49 +00005685static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005686 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005687 int i, /* New cell becomes the i-th cell of the page */
5688 u8 *pCell, /* Content of the new cell */
5689 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005690 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005691 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5692 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005693){
drh383d30f2010-02-26 13:07:37 +00005694 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005695 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005696 int end; /* First byte past the last cell pointer in data[] */
5697 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005698 int cellOffset; /* Address of first cell pointer in data[] */
5699 u8 *data; /* The content of the whole page */
5700 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005701 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005702
danielk19774dbaa892009-06-16 16:50:22 +00005703 int nSkip = (iChild ? 4 : 0);
5704
drh98add2e2009-07-20 17:11:49 +00005705 if( *pRC ) return;
5706
drh43605152004-05-29 21:46:49 +00005707 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005708 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005709 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5710 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005711 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005712 /* The cell should normally be sized correctly. However, when moving a
5713 ** malformed cell from a leaf page to an interior page, if the cell size
5714 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5715 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5716 ** the term after the || in the following assert(). */
5717 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005718 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005719 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005720 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005721 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005722 }
danielk19774dbaa892009-06-16 16:50:22 +00005723 if( iChild ){
5724 put4byte(pCell, iChild);
5725 }
drh43605152004-05-29 21:46:49 +00005726 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005727 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5728 pPage->apOvfl[j] = pCell;
5729 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005730 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005731 int rc = sqlite3PagerWrite(pPage->pDbPage);
5732 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005733 *pRC = rc;
5734 return;
danielk19776e465eb2007-08-21 13:11:00 +00005735 }
5736 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005737 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005738 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005739 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005740 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005741 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005742 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005743 /* The allocateSpace() routine guarantees the following two properties
5744 ** if it returns success */
5745 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005746 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005747 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005748 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005749 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005750 if( iChild ){
5751 put4byte(&data[idx], iChild);
5752 }
drh61d2fe92011-06-03 23:28:33 +00005753 ptr = &data[end];
5754 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005755 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005756 while( ptr>endPtr ){
5757 *(u16*)ptr = *(u16*)&ptr[-2];
5758 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005759 }
drh43605152004-05-29 21:46:49 +00005760 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005761 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005762#ifndef SQLITE_OMIT_AUTOVACUUM
5763 if( pPage->pBt->autoVacuum ){
5764 /* The cell may contain a pointer to an overflow page. If so, write
5765 ** the entry for the overflow page into the pointer map.
5766 */
drh98add2e2009-07-20 17:11:49 +00005767 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005768 }
5769#endif
drh14acc042001-06-10 19:56:58 +00005770 }
5771}
5772
5773/*
drhfa1a98a2004-05-14 19:08:17 +00005774** Add a list of cells to a page. The page should be initially empty.
5775** The cells are guaranteed to fit on the page.
5776*/
5777static void assemblePage(
5778 MemPage *pPage, /* The page to be assemblied */
5779 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005780 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005781 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005782){
5783 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005784 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005785 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005786 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5787 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5788 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005789
drh43605152004-05-29 21:46:49 +00005790 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005791 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005792 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5793 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005794 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005795
5796 /* Check that the page has just been zeroed by zeroPage() */
5797 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005798 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005799
drh3def2352011-11-11 00:27:15 +00005800 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005801 cellbody = nUsable;
5802 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005803 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005804 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005805 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005806 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005807 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005808 }
danielk1977fad91942009-04-29 17:49:59 +00005809 put2byte(&data[hdr+3], nCell);
5810 put2byte(&data[hdr+5], cellbody);
5811 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005812 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005813}
5814
drh14acc042001-06-10 19:56:58 +00005815/*
drhc3b70572003-01-04 19:44:07 +00005816** The following parameters determine how many adjacent pages get involved
5817** in a balancing operation. NN is the number of neighbors on either side
5818** of the page that participate in the balancing operation. NB is the
5819** total number of pages that participate, including the target page and
5820** NN neighbors on either side.
5821**
5822** The minimum value of NN is 1 (of course). Increasing NN above 1
5823** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5824** in exchange for a larger degradation in INSERT and UPDATE performance.
5825** The value of NN appears to give the best results overall.
5826*/
5827#define NN 1 /* Number of neighbors on either side of pPage */
5828#define NB (NN*2+1) /* Total pages involved in the balance */
5829
danielk1977ac245ec2005-01-14 13:50:11 +00005830
drh615ae552005-01-16 23:21:00 +00005831#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005832/*
5833** This version of balance() handles the common special case where
5834** a new entry is being inserted on the extreme right-end of the
5835** tree, in other words, when the new entry will become the largest
5836** entry in the tree.
5837**
drhc314dc72009-07-21 11:52:34 +00005838** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005839** a new page to the right-hand side and put the one new entry in
5840** that page. This leaves the right side of the tree somewhat
5841** unbalanced. But odds are that we will be inserting new entries
5842** at the end soon afterwards so the nearly empty page will quickly
5843** fill up. On average.
5844**
5845** pPage is the leaf page which is the right-most page in the tree.
5846** pParent is its parent. pPage must have a single overflow entry
5847** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005848**
5849** The pSpace buffer is used to store a temporary copy of the divider
5850** cell that will be inserted into pParent. Such a cell consists of a 4
5851** byte page number followed by a variable length integer. In other
5852** words, at most 13 bytes. Hence the pSpace buffer must be at
5853** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005854*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005855static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5856 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005857 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005858 int rc; /* Return Code */
5859 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005860
drh1fee73e2007-08-29 04:00:57 +00005861 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005862 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005863 assert( pPage->nOverflow==1 );
5864
drh5d433ce2010-08-14 16:02:52 +00005865 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005866 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005867
danielk1977a50d9aa2009-06-08 14:49:45 +00005868 /* Allocate a new page. This page will become the right-sibling of
5869 ** pPage. Make the parent page writable, so that the new divider cell
5870 ** may be inserted. If both these operations are successful, proceed.
5871 */
drh4f0c5872007-03-26 22:05:01 +00005872 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005873
danielk1977eaa06f62008-09-18 17:34:44 +00005874 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005875
5876 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005877 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005878 u16 szCell = cellSizePtr(pPage, pCell);
5879 u8 *pStop;
5880
drhc5053fb2008-11-27 02:22:10 +00005881 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005882 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5883 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005884 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005885
5886 /* If this is an auto-vacuum database, update the pointer map
5887 ** with entries for the new page, and any pointer from the
5888 ** cell on the page to an overflow page. If either of these
5889 ** operations fails, the return code is set, but the contents
5890 ** of the parent page are still manipulated by thh code below.
5891 ** That is Ok, at this point the parent page is guaranteed to
5892 ** be marked as dirty. Returning an error code will cause a
5893 ** rollback, undoing any changes made to the parent page.
5894 */
5895 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005896 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5897 if( szCell>pNew->minLocal ){
5898 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005899 }
5900 }
danielk1977eaa06f62008-09-18 17:34:44 +00005901
danielk19776f235cc2009-06-04 14:46:08 +00005902 /* Create a divider cell to insert into pParent. The divider cell
5903 ** consists of a 4-byte page number (the page number of pPage) and
5904 ** a variable length key value (which must be the same value as the
5905 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005906 **
danielk19776f235cc2009-06-04 14:46:08 +00005907 ** To find the largest key value on pPage, first find the right-most
5908 ** cell on pPage. The first two fields of this cell are the
5909 ** record-length (a variable length integer at most 32-bits in size)
5910 ** and the key value (a variable length integer, may have any value).
5911 ** The first of the while(...) loops below skips over the record-length
5912 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005913 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005914 */
danielk1977eaa06f62008-09-18 17:34:44 +00005915 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005916 pStop = &pCell[9];
5917 while( (*(pCell++)&0x80) && pCell<pStop );
5918 pStop = &pCell[9];
5919 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5920
danielk19774dbaa892009-06-16 16:50:22 +00005921 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005922 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5923 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005924
5925 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005926 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5927
danielk1977e08a3c42008-09-18 18:17:03 +00005928 /* Release the reference to the new page. */
5929 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005930 }
5931
danielk1977eaa06f62008-09-18 17:34:44 +00005932 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005933}
drh615ae552005-01-16 23:21:00 +00005934#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005935
danielk19774dbaa892009-06-16 16:50:22 +00005936#if 0
drhc3b70572003-01-04 19:44:07 +00005937/*
danielk19774dbaa892009-06-16 16:50:22 +00005938** This function does not contribute anything to the operation of SQLite.
5939** it is sometimes activated temporarily while debugging code responsible
5940** for setting pointer-map entries.
5941*/
5942static int ptrmapCheckPages(MemPage **apPage, int nPage){
5943 int i, j;
5944 for(i=0; i<nPage; i++){
5945 Pgno n;
5946 u8 e;
5947 MemPage *pPage = apPage[i];
5948 BtShared *pBt = pPage->pBt;
5949 assert( pPage->isInit );
5950
5951 for(j=0; j<pPage->nCell; j++){
5952 CellInfo info;
5953 u8 *z;
5954
5955 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005956 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005957 if( info.iOverflow ){
5958 Pgno ovfl = get4byte(&z[info.iOverflow]);
5959 ptrmapGet(pBt, ovfl, &e, &n);
5960 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5961 }
5962 if( !pPage->leaf ){
5963 Pgno child = get4byte(z);
5964 ptrmapGet(pBt, child, &e, &n);
5965 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5966 }
5967 }
5968 if( !pPage->leaf ){
5969 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5970 ptrmapGet(pBt, child, &e, &n);
5971 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5972 }
5973 }
5974 return 1;
5975}
5976#endif
5977
danielk1977cd581a72009-06-23 15:43:39 +00005978/*
5979** This function is used to copy the contents of the b-tree node stored
5980** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5981** the pointer-map entries for each child page are updated so that the
5982** parent page stored in the pointer map is page pTo. If pFrom contained
5983** any cells with overflow page pointers, then the corresponding pointer
5984** map entries are also updated so that the parent page is page pTo.
5985**
5986** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00005987** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00005988**
danielk197730548662009-07-09 05:07:37 +00005989** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005990**
5991** The performance of this function is not critical. It is only used by
5992** the balance_shallower() and balance_deeper() procedures, neither of
5993** which are called often under normal circumstances.
5994*/
drhc314dc72009-07-21 11:52:34 +00005995static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5996 if( (*pRC)==SQLITE_OK ){
5997 BtShared * const pBt = pFrom->pBt;
5998 u8 * const aFrom = pFrom->aData;
5999 u8 * const aTo = pTo->aData;
6000 int const iFromHdr = pFrom->hdrOffset;
6001 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006002 int rc;
drhc314dc72009-07-21 11:52:34 +00006003 int iData;
6004
6005
6006 assert( pFrom->isInit );
6007 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006008 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006009
6010 /* Copy the b-tree node content from page pFrom to page pTo. */
6011 iData = get2byte(&aFrom[iFromHdr+5]);
6012 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6013 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6014
6015 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006016 ** match the new data. The initialization of pTo can actually fail under
6017 ** fairly obscure circumstances, even though it is a copy of initialized
6018 ** page pFrom.
6019 */
drhc314dc72009-07-21 11:52:34 +00006020 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006021 rc = btreeInitPage(pTo);
6022 if( rc!=SQLITE_OK ){
6023 *pRC = rc;
6024 return;
6025 }
drhc314dc72009-07-21 11:52:34 +00006026
6027 /* If this is an auto-vacuum database, update the pointer-map entries
6028 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6029 */
6030 if( ISAUTOVACUUM ){
6031 *pRC = setChildPtrmaps(pTo);
6032 }
danielk1977cd581a72009-06-23 15:43:39 +00006033 }
danielk1977cd581a72009-06-23 15:43:39 +00006034}
6035
6036/*
danielk19774dbaa892009-06-16 16:50:22 +00006037** This routine redistributes cells on the iParentIdx'th child of pParent
6038** (hereafter "the page") and up to 2 siblings so that all pages have about the
6039** same amount of free space. Usually a single sibling on either side of the
6040** page are used in the balancing, though both siblings might come from one
6041** side if the page is the first or last child of its parent. If the page
6042** has fewer than 2 siblings (something which can only happen if the page
6043** is a root page or a child of a root page) then all available siblings
6044** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006045**
danielk19774dbaa892009-06-16 16:50:22 +00006046** The number of siblings of the page might be increased or decreased by
6047** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006048**
danielk19774dbaa892009-06-16 16:50:22 +00006049** Note that when this routine is called, some of the cells on the page
6050** might not actually be stored in MemPage.aData[]. This can happen
6051** if the page is overfull. This routine ensures that all cells allocated
6052** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006053**
danielk19774dbaa892009-06-16 16:50:22 +00006054** In the course of balancing the page and its siblings, cells may be
6055** inserted into or removed from the parent page (pParent). Doing so
6056** may cause the parent page to become overfull or underfull. If this
6057** happens, it is the responsibility of the caller to invoke the correct
6058** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006059**
drh5e00f6c2001-09-13 13:46:56 +00006060** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006061** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006062** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006063**
6064** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006065** buffer big enough to hold one page. If while inserting cells into the parent
6066** page (pParent) the parent page becomes overfull, this buffer is
6067** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006068** a maximum of four divider cells into the parent page, and the maximum
6069** size of a cell stored within an internal node is always less than 1/4
6070** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6071** enough for all overflow cells.
6072**
6073** If aOvflSpace is set to a null pointer, this function returns
6074** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006075*/
mistachkine7c54162012-10-02 22:54:27 +00006076#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6077#pragma optimize("", off)
6078#endif
danielk19774dbaa892009-06-16 16:50:22 +00006079static int balance_nonroot(
6080 MemPage *pParent, /* Parent page of siblings being balanced */
6081 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006082 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006083 int isRoot, /* True if pParent is a root-page */
6084 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006085){
drh16a9b832007-05-05 18:39:25 +00006086 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006087 int nCell = 0; /* Number of cells in apCell[] */
6088 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006089 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006090 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006091 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006092 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006093 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006094 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006095 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006096 int usableSpace; /* Bytes in pPage beyond the header */
6097 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006098 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006099 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006100 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006101 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006102 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006103 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006104 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006105 u8 *pRight; /* Location in parent of right-sibling pointer */
6106 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006107 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6108 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006109 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006110 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006111 u8 *aSpace1; /* Space for copies of dividers cells */
6112 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006113
danielk1977a50d9aa2009-06-08 14:49:45 +00006114 pBt = pParent->pBt;
6115 assert( sqlite3_mutex_held(pBt->mutex) );
6116 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006117
danielk1977e5765212009-06-17 11:13:28 +00006118#if 0
drh43605152004-05-29 21:46:49 +00006119 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006120#endif
drh2e38c322004-09-03 18:38:44 +00006121
danielk19774dbaa892009-06-16 16:50:22 +00006122 /* At this point pParent may have at most one overflow cell. And if
6123 ** this overflow cell is present, it must be the cell with
6124 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006125 ** is called (indirectly) from sqlite3BtreeDelete().
6126 */
danielk19774dbaa892009-06-16 16:50:22 +00006127 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006128 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006129
danielk197711a8a862009-06-17 11:49:52 +00006130 if( !aOvflSpace ){
6131 return SQLITE_NOMEM;
6132 }
6133
danielk1977a50d9aa2009-06-08 14:49:45 +00006134 /* Find the sibling pages to balance. Also locate the cells in pParent
6135 ** that divide the siblings. An attempt is made to find NN siblings on
6136 ** either side of pPage. More siblings are taken from one side, however,
6137 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006138 ** has NB or fewer children then all children of pParent are taken.
6139 **
6140 ** This loop also drops the divider cells from the parent page. This
6141 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006142 ** overflow cells in the parent page, since if any existed they will
6143 ** have already been removed.
6144 */
danielk19774dbaa892009-06-16 16:50:22 +00006145 i = pParent->nOverflow + pParent->nCell;
6146 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006147 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006148 }else{
dan7d6885a2012-08-08 14:04:56 +00006149 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006150 if( iParentIdx==0 ){
6151 nxDiv = 0;
6152 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006153 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006154 }else{
dan7d6885a2012-08-08 14:04:56 +00006155 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006156 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006157 }
dan7d6885a2012-08-08 14:04:56 +00006158 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006159 }
dan7d6885a2012-08-08 14:04:56 +00006160 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006161 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6162 pRight = &pParent->aData[pParent->hdrOffset+8];
6163 }else{
6164 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6165 }
6166 pgno = get4byte(pRight);
6167 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006168 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006169 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006170 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006171 goto balance_cleanup;
6172 }
danielk1977634f2982005-03-28 08:44:07 +00006173 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006174 if( (i--)==0 ) break;
6175
drh2cbd78b2012-02-02 19:37:18 +00006176 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6177 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006178 pgno = get4byte(apDiv[i]);
6179 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6180 pParent->nOverflow = 0;
6181 }else{
6182 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6183 pgno = get4byte(apDiv[i]);
6184 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6185
6186 /* Drop the cell from the parent page. apDiv[i] still points to
6187 ** the cell within the parent, even though it has been dropped.
6188 ** This is safe because dropping a cell only overwrites the first
6189 ** four bytes of it, and this function does not need the first
6190 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006191 ** later on.
6192 **
drh8a575d92011-10-12 17:00:28 +00006193 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006194 ** the dropCell() routine will overwrite the entire cell with zeroes.
6195 ** In this case, temporarily copy the cell into the aOvflSpace[]
6196 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6197 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006198 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006199 int iOff;
6200
6201 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006202 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006203 rc = SQLITE_CORRUPT_BKPT;
6204 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6205 goto balance_cleanup;
6206 }else{
6207 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6208 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6209 }
drh5b47efa2010-02-12 18:18:39 +00006210 }
drh98add2e2009-07-20 17:11:49 +00006211 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006212 }
drh8b2f49b2001-06-08 00:21:52 +00006213 }
6214
drha9121e42008-02-19 14:59:35 +00006215 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006216 ** alignment */
drha9121e42008-02-19 14:59:35 +00006217 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006218
drh8b2f49b2001-06-08 00:21:52 +00006219 /*
danielk1977634f2982005-03-28 08:44:07 +00006220 ** Allocate space for memory structures
6221 */
danielk19774dbaa892009-06-16 16:50:22 +00006222 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006223 szScratch =
drha9121e42008-02-19 14:59:35 +00006224 nMaxCells*sizeof(u8*) /* apCell */
6225 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006226 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006227 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006228 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006229 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006230 rc = SQLITE_NOMEM;
6231 goto balance_cleanup;
6232 }
drha9121e42008-02-19 14:59:35 +00006233 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006234 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006235 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006236
6237 /*
6238 ** Load pointers to all cells on sibling pages and the divider cells
6239 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006240 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006241 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006242 **
6243 ** If the siblings are on leaf pages, then the child pointers of the
6244 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006245 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006246 ** child pointers. If siblings are not leaves, then all cell in
6247 ** apCell[] include child pointers. Either way, all cells in apCell[]
6248 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006249 **
6250 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6251 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006252 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006253 leafCorrection = apOld[0]->leaf*4;
6254 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006255 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006256 int limit;
6257
6258 /* Before doing anything else, take a copy of the i'th original sibling
6259 ** The rest of this function will use data from the copies rather
6260 ** that the original pages since the original pages will be in the
6261 ** process of being overwritten. */
6262 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6263 memcpy(pOld, apOld[i], sizeof(MemPage));
6264 pOld->aData = (void*)&pOld[1];
6265 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6266
6267 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006268 if( pOld->nOverflow>0 ){
6269 for(j=0; j<limit; j++){
6270 assert( nCell<nMaxCells );
6271 apCell[nCell] = findOverflowCell(pOld, j);
6272 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6273 nCell++;
6274 }
6275 }else{
6276 u8 *aData = pOld->aData;
6277 u16 maskPage = pOld->maskPage;
6278 u16 cellOffset = pOld->cellOffset;
6279 for(j=0; j<limit; j++){
6280 assert( nCell<nMaxCells );
6281 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6282 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6283 nCell++;
6284 }
6285 }
danielk19774dbaa892009-06-16 16:50:22 +00006286 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006287 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006288 u8 *pTemp;
6289 assert( nCell<nMaxCells );
6290 szCell[nCell] = sz;
6291 pTemp = &aSpace1[iSpace1];
6292 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006293 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006294 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006295 memcpy(pTemp, apDiv[i], sz);
6296 apCell[nCell] = pTemp+leafCorrection;
6297 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006298 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006299 if( !pOld->leaf ){
6300 assert( leafCorrection==0 );
6301 assert( pOld->hdrOffset==0 );
6302 /* The right pointer of the child page pOld becomes the left
6303 ** pointer of the divider cell */
6304 memcpy(apCell[nCell], &pOld->aData[8], 4);
6305 }else{
6306 assert( leafCorrection==4 );
6307 if( szCell[nCell]<4 ){
6308 /* Do not allow any cells smaller than 4 bytes. */
6309 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006310 }
6311 }
drh14acc042001-06-10 19:56:58 +00006312 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006313 }
drh8b2f49b2001-06-08 00:21:52 +00006314 }
6315
6316 /*
drh6019e162001-07-02 17:51:45 +00006317 ** Figure out the number of pages needed to hold all nCell cells.
6318 ** Store this number in "k". Also compute szNew[] which is the total
6319 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006320 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006321 ** cntNew[k] should equal nCell.
6322 **
drh96f5b762004-05-16 16:24:36 +00006323 ** Values computed by this block:
6324 **
6325 ** k: The total number of sibling pages
6326 ** szNew[i]: Spaced used on the i-th sibling page.
6327 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6328 ** the right of the i-th sibling page.
6329 ** usableSpace: Number of bytes of space available on each sibling.
6330 **
drh8b2f49b2001-06-08 00:21:52 +00006331 */
drh43605152004-05-29 21:46:49 +00006332 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006333 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006334 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006335 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006336 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006337 szNew[k] = subtotal - szCell[i];
6338 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006339 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006340 subtotal = 0;
6341 k++;
drh9978c972010-02-23 17:36:32 +00006342 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006343 }
6344 }
6345 szNew[k] = subtotal;
6346 cntNew[k] = nCell;
6347 k++;
drh96f5b762004-05-16 16:24:36 +00006348
6349 /*
6350 ** The packing computed by the previous block is biased toward the siblings
6351 ** on the left side. The left siblings are always nearly full, while the
6352 ** right-most sibling might be nearly empty. This block of code attempts
6353 ** to adjust the packing of siblings to get a better balance.
6354 **
6355 ** This adjustment is more than an optimization. The packing above might
6356 ** be so out of balance as to be illegal. For example, the right-most
6357 ** sibling might be completely empty. This adjustment is not optional.
6358 */
drh6019e162001-07-02 17:51:45 +00006359 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006360 int szRight = szNew[i]; /* Size of sibling on the right */
6361 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6362 int r; /* Index of right-most cell in left sibling */
6363 int d; /* Index of first cell to the left of right sibling */
6364
6365 r = cntNew[i-1] - 1;
6366 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006367 assert( d<nMaxCells );
6368 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006369 while( szRight==0
6370 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6371 ){
drh43605152004-05-29 21:46:49 +00006372 szRight += szCell[d] + 2;
6373 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006374 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006375 r = cntNew[i-1] - 1;
6376 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006377 }
drh96f5b762004-05-16 16:24:36 +00006378 szNew[i] = szRight;
6379 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006380 }
drh09d0deb2005-08-02 17:13:09 +00006381
danielk19776f235cc2009-06-04 14:46:08 +00006382 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006383 ** a virtual root page. A virtual root page is when the real root
6384 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006385 **
6386 ** UPDATE: The assert() below is not necessarily true if the database
6387 ** file is corrupt. The corruption will be detected and reported later
6388 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006389 */
drh2f32fba2012-01-02 16:38:57 +00006390#if 0
drh09d0deb2005-08-02 17:13:09 +00006391 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006392#endif
drh8b2f49b2001-06-08 00:21:52 +00006393
danielk1977e5765212009-06-17 11:13:28 +00006394 TRACE(("BALANCE: old: %d %d %d ",
6395 apOld[0]->pgno,
6396 nOld>=2 ? apOld[1]->pgno : 0,
6397 nOld>=3 ? apOld[2]->pgno : 0
6398 ));
6399
drh8b2f49b2001-06-08 00:21:52 +00006400 /*
drh6b308672002-07-08 02:16:37 +00006401 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006402 */
drheac74422009-06-14 12:47:11 +00006403 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006404 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006405 goto balance_cleanup;
6406 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006407 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006408 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006409 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006410 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006411 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006412 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006413 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006414 nNew++;
danielk197728129562005-01-11 10:25:06 +00006415 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006416 }else{
drh7aa8f852006-03-28 00:24:44 +00006417 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006418 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006419 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006420 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006421 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006422
6423 /* Set the pointer-map entry for the new sibling page. */
6424 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006425 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006426 if( rc!=SQLITE_OK ){
6427 goto balance_cleanup;
6428 }
6429 }
drh6b308672002-07-08 02:16:37 +00006430 }
drh8b2f49b2001-06-08 00:21:52 +00006431 }
6432
danielk1977299b1872004-11-22 10:02:10 +00006433 /* Free any old pages that were not reused as new pages.
6434 */
6435 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006436 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006437 if( rc ) goto balance_cleanup;
6438 releasePage(apOld[i]);
6439 apOld[i] = 0;
6440 i++;
6441 }
6442
drh8b2f49b2001-06-08 00:21:52 +00006443 /*
drhf9ffac92002-03-02 19:00:31 +00006444 ** Put the new pages in accending order. This helps to
6445 ** keep entries in the disk file in order so that a scan
6446 ** of the table is a linear scan through the file. That
6447 ** in turn helps the operating system to deliver pages
6448 ** from the disk more rapidly.
6449 **
6450 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006451 ** n is never more than NB (a small constant), that should
6452 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006453 **
drhc3b70572003-01-04 19:44:07 +00006454 ** When NB==3, this one optimization makes the database
6455 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006456 */
6457 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006458 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006459 int minI = i;
6460 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006461 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006462 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006463 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006464 }
6465 }
6466 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006467 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006468 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006469 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006470 apNew[minI] = pT;
6471 }
6472 }
danielk1977e5765212009-06-17 11:13:28 +00006473 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006474 apNew[0]->pgno, szNew[0],
6475 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6476 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6477 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6478 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6479
6480 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6481 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006482
drhf9ffac92002-03-02 19:00:31 +00006483 /*
drh14acc042001-06-10 19:56:58 +00006484 ** Evenly distribute the data in apCell[] across the new pages.
6485 ** Insert divider cells into pParent as necessary.
6486 */
6487 j = 0;
6488 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006489 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006490 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006491 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006492 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006493 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006494 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006495 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006496
danielk1977ac11ee62005-01-15 12:45:51 +00006497 j = cntNew[i];
6498
6499 /* If the sibling page assembled above was not the right-most sibling,
6500 ** insert a divider cell into the parent page.
6501 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006502 assert( i<nNew-1 || j==nCell );
6503 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006504 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006505 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006506 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006507
6508 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006509 pCell = apCell[j];
6510 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006511 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006512 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006513 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006514 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006515 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006516 ** then there is no divider cell in apCell[]. Instead, the divider
6517 ** cell consists of the integer key for the right-most cell of
6518 ** the sibling-page assembled above only.
6519 */
drh6f11bef2004-05-13 01:12:56 +00006520 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006521 j--;
danielk197730548662009-07-09 05:07:37 +00006522 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006523 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006524 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006525 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006526 }else{
6527 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006528 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006529 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006530 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006531 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006532 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006533 ** insertCell(), so reparse the cell now.
6534 **
6535 ** Note that this can never happen in an SQLite data file, as all
6536 ** cells are at least 4 bytes. It only happens in b-trees used
6537 ** to evaluate "IN (SELECT ...)" and similar clauses.
6538 */
6539 if( szCell[j]==4 ){
6540 assert(leafCorrection==4);
6541 sz = cellSizePtr(pParent, pCell);
6542 }
drh4b70f112004-05-02 21:12:19 +00006543 }
danielk19776067a9b2009-06-09 09:41:00 +00006544 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006545 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006546 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006547 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006548 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006549 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006550
drh14acc042001-06-10 19:56:58 +00006551 j++;
6552 nxDiv++;
6553 }
6554 }
drh6019e162001-07-02 17:51:45 +00006555 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006556 assert( nOld>0 );
6557 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006558 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006559 u8 *zChild = &apCopy[nOld-1]->aData[8];
6560 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006561 }
6562
danielk197713bd99f2009-06-24 05:40:34 +00006563 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6564 /* The root page of the b-tree now contains no cells. The only sibling
6565 ** page is the right-child of the parent. Copy the contents of the
6566 ** child page into the parent, decreasing the overall height of the
6567 ** b-tree structure by one. This is described as the "balance-shallower"
6568 ** sub-algorithm in some documentation.
6569 **
6570 ** If this is an auto-vacuum database, the call to copyNodeContent()
6571 ** sets all pointer-map entries corresponding to database image pages
6572 ** for which the pointer is stored within the content being copied.
6573 **
6574 ** The second assert below verifies that the child page is defragmented
6575 ** (it must be, as it was just reconstructed using assemblePage()). This
6576 ** is important if the parent page happens to be page 1 of the database
6577 ** image. */
6578 assert( nNew==1 );
6579 assert( apNew[0]->nFree ==
6580 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6581 );
drhc314dc72009-07-21 11:52:34 +00006582 copyNodeContent(apNew[0], pParent, &rc);
6583 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006584 }else if( ISAUTOVACUUM ){
6585 /* Fix the pointer-map entries for all the cells that were shifted around.
6586 ** There are several different types of pointer-map entries that need to
6587 ** be dealt with by this routine. Some of these have been set already, but
6588 ** many have not. The following is a summary:
6589 **
6590 ** 1) The entries associated with new sibling pages that were not
6591 ** siblings when this function was called. These have already
6592 ** been set. We don't need to worry about old siblings that were
6593 ** moved to the free-list - the freePage() code has taken care
6594 ** of those.
6595 **
6596 ** 2) The pointer-map entries associated with the first overflow
6597 ** page in any overflow chains used by new divider cells. These
6598 ** have also already been taken care of by the insertCell() code.
6599 **
6600 ** 3) If the sibling pages are not leaves, then the child pages of
6601 ** cells stored on the sibling pages may need to be updated.
6602 **
6603 ** 4) If the sibling pages are not internal intkey nodes, then any
6604 ** overflow pages used by these cells may need to be updated
6605 ** (internal intkey nodes never contain pointers to overflow pages).
6606 **
6607 ** 5) If the sibling pages are not leaves, then the pointer-map
6608 ** entries for the right-child pages of each sibling may need
6609 ** to be updated.
6610 **
6611 ** Cases 1 and 2 are dealt with above by other code. The next
6612 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6613 ** setting a pointer map entry is a relatively expensive operation, this
6614 ** code only sets pointer map entries for child or overflow pages that have
6615 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006616 MemPage *pNew = apNew[0];
6617 MemPage *pOld = apCopy[0];
6618 int nOverflow = pOld->nOverflow;
6619 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006620 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006621 j = 0; /* Current 'old' sibling page */
6622 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006623 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006624 int isDivider = 0;
6625 while( i==iNextOld ){
6626 /* Cell i is the cell immediately following the last cell on old
6627 ** sibling page j. If the siblings are not leaf pages of an
6628 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006629 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006630 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006631 pOld = apCopy[++j];
6632 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6633 if( pOld->nOverflow ){
6634 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006635 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006636 }
6637 isDivider = !leafData;
6638 }
6639
6640 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006641 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6642 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006643 if( i==iOverflow ){
6644 isDivider = 1;
6645 if( (--nOverflow)>0 ){
6646 iOverflow++;
6647 }
6648 }
6649
6650 if( i==cntNew[k] ){
6651 /* Cell i is the cell immediately following the last cell on new
6652 ** sibling page k. If the siblings are not leaf pages of an
6653 ** intkey b-tree, then cell i is a divider cell. */
6654 pNew = apNew[++k];
6655 if( !leafData ) continue;
6656 }
danielk19774dbaa892009-06-16 16:50:22 +00006657 assert( j<nOld );
6658 assert( k<nNew );
6659
6660 /* If the cell was originally divider cell (and is not now) or
6661 ** an overflow cell, or if the cell was located on a different sibling
6662 ** page before the balancing, then the pointer map entries associated
6663 ** with any child or overflow pages need to be updated. */
6664 if( isDivider || pOld->pgno!=pNew->pgno ){
6665 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006666 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006667 }
drh98add2e2009-07-20 17:11:49 +00006668 if( szCell[i]>pNew->minLocal ){
6669 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006670 }
6671 }
6672 }
6673
6674 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006675 for(i=0; i<nNew; i++){
6676 u32 key = get4byte(&apNew[i]->aData[8]);
6677 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006678 }
6679 }
6680
6681#if 0
6682 /* The ptrmapCheckPages() contains assert() statements that verify that
6683 ** all pointer map pages are set correctly. This is helpful while
6684 ** debugging. This is usually disabled because a corrupt database may
6685 ** cause an assert() statement to fail. */
6686 ptrmapCheckPages(apNew, nNew);
6687 ptrmapCheckPages(&pParent, 1);
6688#endif
6689 }
6690
danielk197771d5d2c2008-09-29 11:49:47 +00006691 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006692 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6693 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006694
drh8b2f49b2001-06-08 00:21:52 +00006695 /*
drh14acc042001-06-10 19:56:58 +00006696 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006697 */
drh14acc042001-06-10 19:56:58 +00006698balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006699 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006700 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006701 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006702 }
drh14acc042001-06-10 19:56:58 +00006703 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006704 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006705 }
danielk1977eaa06f62008-09-18 17:34:44 +00006706
drh8b2f49b2001-06-08 00:21:52 +00006707 return rc;
6708}
mistachkine7c54162012-10-02 22:54:27 +00006709#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6710#pragma optimize("", on)
6711#endif
drh8b2f49b2001-06-08 00:21:52 +00006712
drh43605152004-05-29 21:46:49 +00006713
6714/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006715** This function is called when the root page of a b-tree structure is
6716** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006717**
danielk1977a50d9aa2009-06-08 14:49:45 +00006718** A new child page is allocated and the contents of the current root
6719** page, including overflow cells, are copied into the child. The root
6720** page is then overwritten to make it an empty page with the right-child
6721** pointer pointing to the new page.
6722**
6723** Before returning, all pointer-map entries corresponding to pages
6724** that the new child-page now contains pointers to are updated. The
6725** entry corresponding to the new right-child pointer of the root
6726** page is also updated.
6727**
6728** If successful, *ppChild is set to contain a reference to the child
6729** page and SQLITE_OK is returned. In this case the caller is required
6730** to call releasePage() on *ppChild exactly once. If an error occurs,
6731** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006732*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006733static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6734 int rc; /* Return value from subprocedures */
6735 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006736 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006737 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006738
danielk1977a50d9aa2009-06-08 14:49:45 +00006739 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006740 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006741
danielk1977a50d9aa2009-06-08 14:49:45 +00006742 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6743 ** page that will become the new right-child of pPage. Copy the contents
6744 ** of the node stored on pRoot into the new child page.
6745 */
drh98add2e2009-07-20 17:11:49 +00006746 rc = sqlite3PagerWrite(pRoot->pDbPage);
6747 if( rc==SQLITE_OK ){
6748 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006749 copyNodeContent(pRoot, pChild, &rc);
6750 if( ISAUTOVACUUM ){
6751 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006752 }
6753 }
6754 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006755 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006756 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006757 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006758 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006759 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6760 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6761 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006762
danielk1977a50d9aa2009-06-08 14:49:45 +00006763 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6764
6765 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006766 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6767 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6768 memcpy(pChild->apOvfl, pRoot->apOvfl,
6769 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006770 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006771
6772 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6773 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6774 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6775
6776 *ppChild = pChild;
6777 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006778}
6779
6780/*
danielk197771d5d2c2008-09-29 11:49:47 +00006781** The page that pCur currently points to has just been modified in
6782** some way. This function figures out if this modification means the
6783** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006784** routine. Balancing routines are:
6785**
6786** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006787** balance_deeper()
6788** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006789*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006790static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006791 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006792 const int nMin = pCur->pBt->usableSize * 2 / 3;
6793 u8 aBalanceQuickSpace[13];
6794 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006795
shane75ac1de2009-06-09 18:58:52 +00006796 TESTONLY( int balance_quick_called = 0 );
6797 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006798
6799 do {
6800 int iPage = pCur->iPage;
6801 MemPage *pPage = pCur->apPage[iPage];
6802
6803 if( iPage==0 ){
6804 if( pPage->nOverflow ){
6805 /* The root page of the b-tree is overfull. In this case call the
6806 ** balance_deeper() function to create a new child for the root-page
6807 ** and copy the current contents of the root-page to it. The
6808 ** next iteration of the do-loop will balance the child page.
6809 */
6810 assert( (balance_deeper_called++)==0 );
6811 rc = balance_deeper(pPage, &pCur->apPage[1]);
6812 if( rc==SQLITE_OK ){
6813 pCur->iPage = 1;
6814 pCur->aiIdx[0] = 0;
6815 pCur->aiIdx[1] = 0;
6816 assert( pCur->apPage[1]->nOverflow );
6817 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006818 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006819 break;
6820 }
6821 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6822 break;
6823 }else{
6824 MemPage * const pParent = pCur->apPage[iPage-1];
6825 int const iIdx = pCur->aiIdx[iPage-1];
6826
6827 rc = sqlite3PagerWrite(pParent->pDbPage);
6828 if( rc==SQLITE_OK ){
6829#ifndef SQLITE_OMIT_QUICKBALANCE
6830 if( pPage->hasData
6831 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006832 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006833 && pParent->pgno!=1
6834 && pParent->nCell==iIdx
6835 ){
6836 /* Call balance_quick() to create a new sibling of pPage on which
6837 ** to store the overflow cell. balance_quick() inserts a new cell
6838 ** into pParent, which may cause pParent overflow. If this
6839 ** happens, the next interation of the do-loop will balance pParent
6840 ** use either balance_nonroot() or balance_deeper(). Until this
6841 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6842 ** buffer.
6843 **
6844 ** The purpose of the following assert() is to check that only a
6845 ** single call to balance_quick() is made for each call to this
6846 ** function. If this were not verified, a subtle bug involving reuse
6847 ** of the aBalanceQuickSpace[] might sneak in.
6848 */
6849 assert( (balance_quick_called++)==0 );
6850 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6851 }else
6852#endif
6853 {
6854 /* In this case, call balance_nonroot() to redistribute cells
6855 ** between pPage and up to 2 of its sibling pages. This involves
6856 ** modifying the contents of pParent, which may cause pParent to
6857 ** become overfull or underfull. The next iteration of the do-loop
6858 ** will balance the parent page to correct this.
6859 **
6860 ** If the parent page becomes overfull, the overflow cell or cells
6861 ** are stored in the pSpace buffer allocated immediately below.
6862 ** A subsequent iteration of the do-loop will deal with this by
6863 ** calling balance_nonroot() (balance_deeper() may be called first,
6864 ** but it doesn't deal with overflow cells - just moves them to a
6865 ** different page). Once this subsequent call to balance_nonroot()
6866 ** has completed, it is safe to release the pSpace buffer used by
6867 ** the previous call, as the overflow cell data will have been
6868 ** copied either into the body of a database page or into the new
6869 ** pSpace buffer passed to the latter call to balance_nonroot().
6870 */
6871 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006872 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006873 if( pFree ){
6874 /* If pFree is not NULL, it points to the pSpace buffer used
6875 ** by a previous call to balance_nonroot(). Its contents are
6876 ** now stored either on real database pages or within the
6877 ** new pSpace buffer, so it may be safely freed here. */
6878 sqlite3PageFree(pFree);
6879 }
6880
danielk19774dbaa892009-06-16 16:50:22 +00006881 /* The pSpace buffer will be freed after the next call to
6882 ** balance_nonroot(), or just before this function returns, whichever
6883 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006884 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006885 }
6886 }
6887
6888 pPage->nOverflow = 0;
6889
6890 /* The next iteration of the do-loop balances the parent page. */
6891 releasePage(pPage);
6892 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006893 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006894 }while( rc==SQLITE_OK );
6895
6896 if( pFree ){
6897 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006898 }
6899 return rc;
6900}
6901
drhf74b8d92002-09-01 23:20:45 +00006902
6903/*
drh3b7511c2001-05-26 13:15:44 +00006904** Insert a new record into the BTree. The key is given by (pKey,nKey)
6905** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006906** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006907** is left pointing at a random location.
6908**
6909** For an INTKEY table, only the nKey value of the key is used. pKey is
6910** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006911**
6912** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006913** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006914** been performed. seekResult is the search result returned (a negative
6915** number if pCur points at an entry that is smaller than (pKey, nKey), or
6916** a positive value if pCur points at an etry that is larger than
6917** (pKey, nKey)).
6918**
drh3e9ca092009-09-08 01:14:48 +00006919** If the seekResult parameter is non-zero, then the caller guarantees that
6920** cursor pCur is pointing at the existing copy of a row that is to be
6921** overwritten. If the seekResult parameter is 0, then cursor pCur may
6922** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006923** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006924*/
drh3aac2dd2004-04-26 14:10:20 +00006925int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006926 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006927 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006928 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006929 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006930 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006931 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006932){
drh3b7511c2001-05-26 13:15:44 +00006933 int rc;
drh3e9ca092009-09-08 01:14:48 +00006934 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006935 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006936 int idx;
drh3b7511c2001-05-26 13:15:44 +00006937 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006938 Btree *p = pCur->pBtree;
6939 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006940 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006941 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006942
drh98add2e2009-07-20 17:11:49 +00006943 if( pCur->eState==CURSOR_FAULT ){
6944 assert( pCur->skipNext!=SQLITE_OK );
6945 return pCur->skipNext;
6946 }
6947
drh1fee73e2007-08-29 04:00:57 +00006948 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006949 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6950 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006951 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6952
danielk197731d31b82009-07-13 13:18:07 +00006953 /* Assert that the caller has been consistent. If this cursor was opened
6954 ** expecting an index b-tree, then the caller should be inserting blob
6955 ** keys with no associated data. If the cursor was opened expecting an
6956 ** intkey table, the caller should be inserting integer keys with a
6957 ** blob of associated data. */
6958 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6959
danielk19779c3acf32009-05-02 07:36:49 +00006960 /* Save the positions of any other cursors open on this table.
6961 **
danielk19773509a652009-07-06 18:56:13 +00006962 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006963 ** example, when inserting data into a table with auto-generated integer
6964 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6965 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006966 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006967 ** that the cursor is already where it needs to be and returns without
6968 ** doing any work. To avoid thwarting these optimizations, it is important
6969 ** not to clear the cursor here.
6970 */
drh4c301aa2009-07-15 17:25:45 +00006971 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6972 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006973
6974 /* If this is an insert into a table b-tree, invalidate any incrblob
6975 ** cursors open on the row being replaced (assuming this is a replace
6976 ** operation - if it is not, the following is a no-op). */
6977 if( pCur->pKeyInfo==0 ){
6978 invalidateIncrblobCursors(p, nKey, 0);
6979 }
6980
drh4c301aa2009-07-15 17:25:45 +00006981 if( !loc ){
6982 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6983 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006984 }
danielk1977b980d2212009-06-22 18:03:51 +00006985 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006986
danielk197771d5d2c2008-09-29 11:49:47 +00006987 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006988 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006989 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006990
drh3a4c1412004-05-09 20:40:11 +00006991 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6992 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6993 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006994 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006995 allocateTempSpace(pBt);
6996 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006997 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006998 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006999 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007000 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007001 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007002 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007003 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007004 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007005 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007006 rc = sqlite3PagerWrite(pPage->pDbPage);
7007 if( rc ){
7008 goto end_insert;
7009 }
danielk197771d5d2c2008-09-29 11:49:47 +00007010 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007011 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007012 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007013 }
drh43605152004-05-29 21:46:49 +00007014 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007015 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007016 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007017 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007018 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007019 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007020 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007021 }else{
drh4b70f112004-05-02 21:12:19 +00007022 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007023 }
drh98add2e2009-07-20 17:11:49 +00007024 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007025 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007026
mistachkin48864df2013-03-21 21:20:32 +00007027 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007028 ** to redistribute the cells within the tree. Since balance() may move
7029 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7030 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007031 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007032 ** Previous versions of SQLite called moveToRoot() to move the cursor
7033 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007034 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7035 ** set the cursor state to "invalid". This makes common insert operations
7036 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007037 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007038 ** There is a subtle but important optimization here too. When inserting
7039 ** multiple records into an intkey b-tree using a single cursor (as can
7040 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7041 ** is advantageous to leave the cursor pointing to the last entry in
7042 ** the b-tree if possible. If the cursor is left pointing to the last
7043 ** entry in the table, and the next row inserted has an integer key
7044 ** larger than the largest existing key, it is possible to insert the
7045 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007046 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007047 pCur->info.nSize = 0;
7048 pCur->validNKey = 0;
7049 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007050 rc = balance(pCur);
7051
7052 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007053 ** fails. Internal data structure corruption will result otherwise.
7054 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7055 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007056 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007057 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007058 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007059 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007060
drh2e38c322004-09-03 18:38:44 +00007061end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007062 return rc;
7063}
7064
7065/*
drh4b70f112004-05-02 21:12:19 +00007066** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007067** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007068*/
drh3aac2dd2004-04-26 14:10:20 +00007069int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007070 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007071 BtShared *pBt = p->pBt;
7072 int rc; /* Return code */
7073 MemPage *pPage; /* Page to delete cell from */
7074 unsigned char *pCell; /* Pointer to cell to delete */
7075 int iCellIdx; /* Index of cell to delete */
7076 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007077
drh1fee73e2007-08-29 04:00:57 +00007078 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007079 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007080 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00007081 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007082 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7083 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7084
danielk19774dbaa892009-06-16 16:50:22 +00007085 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7086 || NEVER(pCur->eState!=CURSOR_VALID)
7087 ){
7088 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007089 }
danielk1977da184232006-01-05 11:34:32 +00007090
danielk19774dbaa892009-06-16 16:50:22 +00007091 iCellDepth = pCur->iPage;
7092 iCellIdx = pCur->aiIdx[iCellDepth];
7093 pPage = pCur->apPage[iCellDepth];
7094 pCell = findCell(pPage, iCellIdx);
7095
7096 /* If the page containing the entry to delete is not a leaf page, move
7097 ** the cursor to the largest entry in the tree that is smaller than
7098 ** the entry being deleted. This cell will replace the cell being deleted
7099 ** from the internal node. The 'previous' entry is used for this instead
7100 ** of the 'next' entry, as the previous entry is always a part of the
7101 ** sub-tree headed by the child page of the cell being deleted. This makes
7102 ** balancing the tree following the delete operation easier. */
7103 if( !pPage->leaf ){
7104 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00007105 rc = sqlite3BtreePrevious(pCur, &notUsed);
7106 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007107 }
7108
7109 /* Save the positions of any other cursors open on this table before
7110 ** making any modifications. Make the page containing the entry to be
7111 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007112 ** entry and finally remove the cell itself from within the page.
7113 */
7114 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7115 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007116
7117 /* If this is a delete operation to remove a row from a table b-tree,
7118 ** invalidate any incrblob cursors open on the row being deleted. */
7119 if( pCur->pKeyInfo==0 ){
7120 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7121 }
7122
drha4ec1d42009-07-11 13:13:11 +00007123 rc = sqlite3PagerWrite(pPage->pDbPage);
7124 if( rc ) return rc;
7125 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007126 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007127 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007128
danielk19774dbaa892009-06-16 16:50:22 +00007129 /* If the cell deleted was not located on a leaf page, then the cursor
7130 ** is currently pointing to the largest entry in the sub-tree headed
7131 ** by the child-page of the cell that was just deleted from an internal
7132 ** node. The cell from the leaf node needs to be moved to the internal
7133 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007134 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007135 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7136 int nCell;
7137 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7138 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007139
danielk19774dbaa892009-06-16 16:50:22 +00007140 pCell = findCell(pLeaf, pLeaf->nCell-1);
7141 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007142 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007143
danielk19774dbaa892009-06-16 16:50:22 +00007144 allocateTempSpace(pBt);
7145 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007146
drha4ec1d42009-07-11 13:13:11 +00007147 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007148 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7149 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007150 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007151 }
danielk19774dbaa892009-06-16 16:50:22 +00007152
7153 /* Balance the tree. If the entry deleted was located on a leaf page,
7154 ** then the cursor still points to that page. In this case the first
7155 ** call to balance() repairs the tree, and the if(...) condition is
7156 ** never true.
7157 **
7158 ** Otherwise, if the entry deleted was on an internal node page, then
7159 ** pCur is pointing to the leaf page from which a cell was removed to
7160 ** replace the cell deleted from the internal node. This is slightly
7161 ** tricky as the leaf node may be underfull, and the internal node may
7162 ** be either under or overfull. In this case run the balancing algorithm
7163 ** on the leaf node first. If the balance proceeds far enough up the
7164 ** tree that we can be sure that any problem in the internal node has
7165 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7166 ** walk the cursor up the tree to the internal node and balance it as
7167 ** well. */
7168 rc = balance(pCur);
7169 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7170 while( pCur->iPage>iCellDepth ){
7171 releasePage(pCur->apPage[pCur->iPage--]);
7172 }
7173 rc = balance(pCur);
7174 }
7175
danielk19776b456a22005-03-21 04:04:02 +00007176 if( rc==SQLITE_OK ){
7177 moveToRoot(pCur);
7178 }
drh5e2f8b92001-05-28 00:41:15 +00007179 return rc;
drh3b7511c2001-05-26 13:15:44 +00007180}
drh8b2f49b2001-06-08 00:21:52 +00007181
7182/*
drhc6b52df2002-01-04 03:09:29 +00007183** Create a new BTree table. Write into *piTable the page
7184** number for the root page of the new table.
7185**
drhab01f612004-05-22 02:55:23 +00007186** The type of type is determined by the flags parameter. Only the
7187** following values of flags are currently in use. Other values for
7188** flags might not work:
7189**
7190** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7191** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007192*/
drhd4187c72010-08-30 22:15:45 +00007193static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007194 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007195 MemPage *pRoot;
7196 Pgno pgnoRoot;
7197 int rc;
drhd4187c72010-08-30 22:15:45 +00007198 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007199
drh1fee73e2007-08-29 04:00:57 +00007200 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007201 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007202 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007203
danielk1977003ba062004-11-04 02:57:33 +00007204#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007205 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007206 if( rc ){
7207 return rc;
7208 }
danielk1977003ba062004-11-04 02:57:33 +00007209#else
danielk1977687566d2004-11-02 12:56:41 +00007210 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007211 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7212 MemPage *pPageMove; /* The page to move to. */
7213
danielk197720713f32007-05-03 11:43:33 +00007214 /* Creating a new table may probably require moving an existing database
7215 ** to make room for the new tables root page. In case this page turns
7216 ** out to be an overflow page, delete all overflow page-map caches
7217 ** held by open cursors.
7218 */
danielk197792d4d7a2007-05-04 12:05:56 +00007219 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007220
danielk1977003ba062004-11-04 02:57:33 +00007221 /* Read the value of meta[3] from the database to determine where the
7222 ** root page of the new table should go. meta[3] is the largest root-page
7223 ** created so far, so the new root-page is (meta[3]+1).
7224 */
danielk1977602b4662009-07-02 07:47:33 +00007225 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007226 pgnoRoot++;
7227
danielk1977599fcba2004-11-08 07:13:13 +00007228 /* The new root-page may not be allocated on a pointer-map page, or the
7229 ** PENDING_BYTE page.
7230 */
drh72190432008-01-31 14:54:43 +00007231 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007232 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007233 pgnoRoot++;
7234 }
7235 assert( pgnoRoot>=3 );
7236
7237 /* Allocate a page. The page that currently resides at pgnoRoot will
7238 ** be moved to the allocated page (unless the allocated page happens
7239 ** to reside at pgnoRoot).
7240 */
dan51f0b6d2013-02-22 20:16:34 +00007241 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007242 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007243 return rc;
7244 }
danielk1977003ba062004-11-04 02:57:33 +00007245
7246 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007247 /* pgnoRoot is the page that will be used for the root-page of
7248 ** the new table (assuming an error did not occur). But we were
7249 ** allocated pgnoMove. If required (i.e. if it was not allocated
7250 ** by extending the file), the current page at position pgnoMove
7251 ** is already journaled.
7252 */
drheeb844a2009-08-08 18:01:07 +00007253 u8 eType = 0;
7254 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007255
danf7679ad2013-04-03 11:38:36 +00007256 /* Save the positions of any open cursors. This is required in
7257 ** case they are holding a reference to an xFetch reference
7258 ** corresponding to page pgnoRoot. */
7259 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007260 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007261 if( rc!=SQLITE_OK ){
7262 return rc;
7263 }
danielk1977f35843b2007-04-07 15:03:17 +00007264
7265 /* Move the page currently at pgnoRoot to pgnoMove. */
dan11dcd112013-03-15 18:29:18 +00007266 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007267 if( rc!=SQLITE_OK ){
7268 return rc;
7269 }
7270 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007271 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7272 rc = SQLITE_CORRUPT_BKPT;
7273 }
7274 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007275 releasePage(pRoot);
7276 return rc;
7277 }
drhccae6022005-02-26 17:31:26 +00007278 assert( eType!=PTRMAP_ROOTPAGE );
7279 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007280 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007281 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007282
7283 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007284 if( rc!=SQLITE_OK ){
7285 return rc;
7286 }
dan11dcd112013-03-15 18:29:18 +00007287 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007288 if( rc!=SQLITE_OK ){
7289 return rc;
7290 }
danielk19773b8a05f2007-03-19 17:44:26 +00007291 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007292 if( rc!=SQLITE_OK ){
7293 releasePage(pRoot);
7294 return rc;
7295 }
7296 }else{
7297 pRoot = pPageMove;
7298 }
7299
danielk197742741be2005-01-08 12:42:39 +00007300 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007301 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007302 if( rc ){
7303 releasePage(pRoot);
7304 return rc;
7305 }
drhbf592832010-03-30 15:51:12 +00007306
7307 /* When the new root page was allocated, page 1 was made writable in
7308 ** order either to increase the database filesize, or to decrement the
7309 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7310 */
7311 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007312 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007313 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007314 releasePage(pRoot);
7315 return rc;
7316 }
danielk197742741be2005-01-08 12:42:39 +00007317
danielk1977003ba062004-11-04 02:57:33 +00007318 }else{
drh4f0c5872007-03-26 22:05:01 +00007319 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007320 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007321 }
7322#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007323 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007324 if( createTabFlags & BTREE_INTKEY ){
7325 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7326 }else{
7327 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7328 }
7329 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007330 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007331 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007332 *piTable = (int)pgnoRoot;
7333 return SQLITE_OK;
7334}
drhd677b3d2007-08-20 22:48:41 +00007335int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7336 int rc;
7337 sqlite3BtreeEnter(p);
7338 rc = btreeCreateTable(p, piTable, flags);
7339 sqlite3BtreeLeave(p);
7340 return rc;
7341}
drh8b2f49b2001-06-08 00:21:52 +00007342
7343/*
7344** Erase the given database page and all its children. Return
7345** the page to the freelist.
7346*/
drh4b70f112004-05-02 21:12:19 +00007347static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007348 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007349 Pgno pgno, /* Page number to clear */
7350 int freePageFlag, /* Deallocate page if true */
7351 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007352){
danielk1977146ba992009-07-22 14:08:13 +00007353 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007354 int rc;
drh4b70f112004-05-02 21:12:19 +00007355 unsigned char *pCell;
7356 int i;
drh8b2f49b2001-06-08 00:21:52 +00007357
drh1fee73e2007-08-29 04:00:57 +00007358 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007359 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007360 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007361 }
7362
dan11dcd112013-03-15 18:29:18 +00007363 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007364 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007365 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007366 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007367 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007368 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007369 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007370 }
drh4b70f112004-05-02 21:12:19 +00007371 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007372 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007373 }
drha34b6762004-05-07 13:30:42 +00007374 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007375 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007376 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007377 }else if( pnChange ){
7378 assert( pPage->intKey );
7379 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007380 }
7381 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007382 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007383 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007384 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007385 }
danielk19776b456a22005-03-21 04:04:02 +00007386
7387cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007388 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007389 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007390}
7391
7392/*
drhab01f612004-05-22 02:55:23 +00007393** Delete all information from a single table in the database. iTable is
7394** the page number of the root of the table. After this routine returns,
7395** the root page is empty, but still exists.
7396**
7397** This routine will fail with SQLITE_LOCKED if there are any open
7398** read cursors on the table. Open write cursors are moved to the
7399** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007400**
7401** If pnChange is not NULL, then table iTable must be an intkey table. The
7402** integer value pointed to by pnChange is incremented by the number of
7403** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007404*/
danielk1977c7af4842008-10-27 13:59:33 +00007405int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007406 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007407 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007408 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007409 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007410
drhc046e3e2009-07-15 11:26:44 +00007411 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007412
drhc046e3e2009-07-15 11:26:44 +00007413 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007414 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7415 ** is the root of a table b-tree - if it is not, the following call is
7416 ** a no-op). */
7417 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007418 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007419 }
drhd677b3d2007-08-20 22:48:41 +00007420 sqlite3BtreeLeave(p);
7421 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007422}
7423
7424/*
7425** Erase all information in a table and add the root of the table to
7426** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007427** page 1) is never added to the freelist.
7428**
7429** This routine will fail with SQLITE_LOCKED if there are any open
7430** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007431**
7432** If AUTOVACUUM is enabled and the page at iTable is not the last
7433** root page in the database file, then the last root page
7434** in the database file is moved into the slot formerly occupied by
7435** iTable and that last slot formerly occupied by the last root page
7436** is added to the freelist instead of iTable. In this say, all
7437** root pages are kept at the beginning of the database file, which
7438** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7439** page number that used to be the last root page in the file before
7440** the move. If no page gets moved, *piMoved is set to 0.
7441** The last root page is recorded in meta[3] and the value of
7442** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007443*/
danielk197789d40042008-11-17 14:20:56 +00007444static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007445 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007446 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007447 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007448
drh1fee73e2007-08-29 04:00:57 +00007449 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007450 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007451
danielk1977e6efa742004-11-10 11:55:10 +00007452 /* It is illegal to drop a table if any cursors are open on the
7453 ** database. This is because in auto-vacuum mode the backend may
7454 ** need to move another root-page to fill a gap left by the deleted
7455 ** root page. If an open cursor was using this page a problem would
7456 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007457 **
7458 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007459 */
drhc046e3e2009-07-15 11:26:44 +00007460 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007461 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7462 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007463 }
danielk1977a0bf2652004-11-04 14:30:04 +00007464
dan11dcd112013-03-15 18:29:18 +00007465 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0, 0);
drh2aa679f2001-06-25 02:11:07 +00007466 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007467 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007468 if( rc ){
7469 releasePage(pPage);
7470 return rc;
7471 }
danielk1977a0bf2652004-11-04 14:30:04 +00007472
drh205f48e2004-11-05 00:43:11 +00007473 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007474
drh4b70f112004-05-02 21:12:19 +00007475 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007476#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007477 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007478 releasePage(pPage);
7479#else
7480 if( pBt->autoVacuum ){
7481 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007482 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007483
7484 if( iTable==maxRootPgno ){
7485 /* If the table being dropped is the table with the largest root-page
7486 ** number in the database, put the root page on the free list.
7487 */
drhc314dc72009-07-21 11:52:34 +00007488 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007489 releasePage(pPage);
7490 if( rc!=SQLITE_OK ){
7491 return rc;
7492 }
7493 }else{
7494 /* The table being dropped does not have the largest root-page
7495 ** number in the database. So move the page that does into the
7496 ** gap left by the deleted root-page.
7497 */
7498 MemPage *pMove;
7499 releasePage(pPage);
dan11dcd112013-03-15 18:29:18 +00007500 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007501 if( rc!=SQLITE_OK ){
7502 return rc;
7503 }
danielk19774c999992008-07-16 18:17:55 +00007504 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007505 releasePage(pMove);
7506 if( rc!=SQLITE_OK ){
7507 return rc;
7508 }
drhfe3313f2009-07-21 19:02:20 +00007509 pMove = 0;
dan11dcd112013-03-15 18:29:18 +00007510 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0, 0);
drhc314dc72009-07-21 11:52:34 +00007511 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007512 releasePage(pMove);
7513 if( rc!=SQLITE_OK ){
7514 return rc;
7515 }
7516 *piMoved = maxRootPgno;
7517 }
7518
danielk1977599fcba2004-11-08 07:13:13 +00007519 /* Set the new 'max-root-page' value in the database header. This
7520 ** is the old value less one, less one more if that happens to
7521 ** be a root-page number, less one again if that is the
7522 ** PENDING_BYTE_PAGE.
7523 */
danielk197787a6e732004-11-05 12:58:25 +00007524 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007525 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7526 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007527 maxRootPgno--;
7528 }
danielk1977599fcba2004-11-08 07:13:13 +00007529 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7530
danielk1977aef0bf62005-12-30 16:28:01 +00007531 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007532 }else{
drhc314dc72009-07-21 11:52:34 +00007533 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007534 releasePage(pPage);
7535 }
7536#endif
drh2aa679f2001-06-25 02:11:07 +00007537 }else{
drhc046e3e2009-07-15 11:26:44 +00007538 /* If sqlite3BtreeDropTable was called on page 1.
7539 ** This really never should happen except in a corrupt
7540 ** database.
7541 */
drha34b6762004-05-07 13:30:42 +00007542 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007543 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007544 }
drh8b2f49b2001-06-08 00:21:52 +00007545 return rc;
7546}
drhd677b3d2007-08-20 22:48:41 +00007547int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7548 int rc;
7549 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007550 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007551 sqlite3BtreeLeave(p);
7552 return rc;
7553}
drh8b2f49b2001-06-08 00:21:52 +00007554
drh001bbcb2003-03-19 03:14:00 +00007555
drh8b2f49b2001-06-08 00:21:52 +00007556/*
danielk1977602b4662009-07-02 07:47:33 +00007557** This function may only be called if the b-tree connection already
7558** has a read or write transaction open on the database.
7559**
drh23e11ca2004-05-04 17:27:28 +00007560** Read the meta-information out of a database file. Meta[0]
7561** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007562** through meta[15] are available for use by higher layers. Meta[0]
7563** is read-only, the others are read/write.
7564**
7565** The schema layer numbers meta values differently. At the schema
7566** layer (and the SetCookie and ReadCookie opcodes) the number of
7567** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007568*/
danielk1977602b4662009-07-02 07:47:33 +00007569void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007570 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007571
drhd677b3d2007-08-20 22:48:41 +00007572 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007573 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007574 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007575 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007576 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007577
danielk1977602b4662009-07-02 07:47:33 +00007578 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007579
danielk1977602b4662009-07-02 07:47:33 +00007580 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7581 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007582#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007583 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7584 pBt->btsFlags |= BTS_READ_ONLY;
7585 }
danielk1977003ba062004-11-04 02:57:33 +00007586#endif
drhae157872004-08-14 19:20:09 +00007587
drhd677b3d2007-08-20 22:48:41 +00007588 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007589}
7590
7591/*
drh23e11ca2004-05-04 17:27:28 +00007592** Write meta-information back into the database. Meta[0] is
7593** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007594*/
danielk1977aef0bf62005-12-30 16:28:01 +00007595int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7596 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007597 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007598 int rc;
drh23e11ca2004-05-04 17:27:28 +00007599 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007600 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007601 assert( p->inTrans==TRANS_WRITE );
7602 assert( pBt->pPage1!=0 );
7603 pP1 = pBt->pPage1->aData;
7604 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7605 if( rc==SQLITE_OK ){
7606 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007607#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007608 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007609 assert( pBt->autoVacuum || iMeta==0 );
7610 assert( iMeta==0 || iMeta==1 );
7611 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007612 }
drh64022502009-01-09 14:11:04 +00007613#endif
drh5df72a52002-06-06 23:16:05 +00007614 }
drhd677b3d2007-08-20 22:48:41 +00007615 sqlite3BtreeLeave(p);
7616 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007617}
drh8c42ca92001-06-22 19:15:00 +00007618
danielk1977a5533162009-02-24 10:01:51 +00007619#ifndef SQLITE_OMIT_BTREECOUNT
7620/*
7621** The first argument, pCur, is a cursor opened on some b-tree. Count the
7622** number of entries in the b-tree and write the result to *pnEntry.
7623**
7624** SQLITE_OK is returned if the operation is successfully executed.
7625** Otherwise, if an error is encountered (i.e. an IO error or database
7626** corruption) an SQLite error code is returned.
7627*/
7628int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7629 i64 nEntry = 0; /* Value to return in *pnEntry */
7630 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007631
7632 if( pCur->pgnoRoot==0 ){
7633 *pnEntry = 0;
7634 return SQLITE_OK;
7635 }
danielk1977a5533162009-02-24 10:01:51 +00007636 rc = moveToRoot(pCur);
7637
7638 /* Unless an error occurs, the following loop runs one iteration for each
7639 ** page in the B-Tree structure (not including overflow pages).
7640 */
7641 while( rc==SQLITE_OK ){
7642 int iIdx; /* Index of child node in parent */
7643 MemPage *pPage; /* Current page of the b-tree */
7644
7645 /* If this is a leaf page or the tree is not an int-key tree, then
7646 ** this page contains countable entries. Increment the entry counter
7647 ** accordingly.
7648 */
7649 pPage = pCur->apPage[pCur->iPage];
7650 if( pPage->leaf || !pPage->intKey ){
7651 nEntry += pPage->nCell;
7652 }
7653
7654 /* pPage is a leaf node. This loop navigates the cursor so that it
7655 ** points to the first interior cell that it points to the parent of
7656 ** the next page in the tree that has not yet been visited. The
7657 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7658 ** of the page, or to the number of cells in the page if the next page
7659 ** to visit is the right-child of its parent.
7660 **
7661 ** If all pages in the tree have been visited, return SQLITE_OK to the
7662 ** caller.
7663 */
7664 if( pPage->leaf ){
7665 do {
7666 if( pCur->iPage==0 ){
7667 /* All pages of the b-tree have been visited. Return successfully. */
7668 *pnEntry = nEntry;
7669 return SQLITE_OK;
7670 }
danielk197730548662009-07-09 05:07:37 +00007671 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007672 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7673
7674 pCur->aiIdx[pCur->iPage]++;
7675 pPage = pCur->apPage[pCur->iPage];
7676 }
7677
7678 /* Descend to the child node of the cell that the cursor currently
7679 ** points at. This is the right-child if (iIdx==pPage->nCell).
7680 */
7681 iIdx = pCur->aiIdx[pCur->iPage];
7682 if( iIdx==pPage->nCell ){
7683 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7684 }else{
7685 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7686 }
7687 }
7688
shanebe217792009-03-05 04:20:31 +00007689 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007690 return rc;
7691}
7692#endif
drhdd793422001-06-28 01:54:48 +00007693
drhdd793422001-06-28 01:54:48 +00007694/*
drh5eddca62001-06-30 21:53:53 +00007695** Return the pager associated with a BTree. This routine is used for
7696** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007697*/
danielk1977aef0bf62005-12-30 16:28:01 +00007698Pager *sqlite3BtreePager(Btree *p){
7699 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007700}
drh5eddca62001-06-30 21:53:53 +00007701
drhb7f91642004-10-31 02:22:47 +00007702#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007703/*
7704** Append a message to the error message string.
7705*/
drh2e38c322004-09-03 18:38:44 +00007706static void checkAppendMsg(
7707 IntegrityCk *pCheck,
7708 char *zMsg1,
7709 const char *zFormat,
7710 ...
7711){
7712 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007713 if( !pCheck->mxErr ) return;
7714 pCheck->mxErr--;
7715 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007716 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007717 if( pCheck->errMsg.nChar ){
7718 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007719 }
drhf089aa42008-07-08 19:34:06 +00007720 if( zMsg1 ){
7721 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7722 }
7723 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7724 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007725 if( pCheck->errMsg.mallocFailed ){
7726 pCheck->mallocFailed = 1;
7727 }
drh5eddca62001-06-30 21:53:53 +00007728}
drhb7f91642004-10-31 02:22:47 +00007729#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007730
drhb7f91642004-10-31 02:22:47 +00007731#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007732
7733/*
7734** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7735** corresponds to page iPg is already set.
7736*/
7737static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7738 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7739 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7740}
7741
7742/*
7743** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7744*/
7745static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7746 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7747 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7748}
7749
7750
drh5eddca62001-06-30 21:53:53 +00007751/*
7752** Add 1 to the reference count for page iPage. If this is the second
7753** reference to the page, add an error message to pCheck->zErrMsg.
7754** Return 1 if there are 2 ore more references to the page and 0 if
7755** if this is the first reference to the page.
7756**
7757** Also check that the page number is in bounds.
7758*/
danielk197789d40042008-11-17 14:20:56 +00007759static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007760 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007761 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007762 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007763 return 1;
7764 }
dan1235bb12012-04-03 17:43:28 +00007765 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007766 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007767 return 1;
7768 }
dan1235bb12012-04-03 17:43:28 +00007769 setPageReferenced(pCheck, iPage);
7770 return 0;
drh5eddca62001-06-30 21:53:53 +00007771}
7772
danielk1977afcdd022004-10-31 16:25:42 +00007773#ifndef SQLITE_OMIT_AUTOVACUUM
7774/*
7775** Check that the entry in the pointer-map for page iChild maps to
7776** page iParent, pointer type ptrType. If not, append an error message
7777** to pCheck.
7778*/
7779static void checkPtrmap(
7780 IntegrityCk *pCheck, /* Integrity check context */
7781 Pgno iChild, /* Child page number */
7782 u8 eType, /* Expected pointer map type */
7783 Pgno iParent, /* Expected pointer map parent page number */
7784 char *zContext /* Context description (used for error msg) */
7785){
7786 int rc;
7787 u8 ePtrmapType;
7788 Pgno iPtrmapParent;
7789
7790 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7791 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007792 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007793 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7794 return;
7795 }
7796
7797 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7798 checkAppendMsg(pCheck, zContext,
7799 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7800 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7801 }
7802}
7803#endif
7804
drh5eddca62001-06-30 21:53:53 +00007805/*
7806** Check the integrity of the freelist or of an overflow page list.
7807** Verify that the number of pages on the list is N.
7808*/
drh30e58752002-03-02 20:41:57 +00007809static void checkList(
7810 IntegrityCk *pCheck, /* Integrity checking context */
7811 int isFreeList, /* True for a freelist. False for overflow page list */
7812 int iPage, /* Page number for first page in the list */
7813 int N, /* Expected number of pages in the list */
7814 char *zContext /* Context for error messages */
7815){
7816 int i;
drh3a4c1412004-05-09 20:40:11 +00007817 int expected = N;
7818 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007819 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007820 DbPage *pOvflPage;
7821 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007822 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007823 checkAppendMsg(pCheck, zContext,
7824 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007825 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007826 break;
7827 }
7828 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007829 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007830 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007831 break;
7832 }
danielk19773b8a05f2007-03-19 17:44:26 +00007833 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007834 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007835 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007836#ifndef SQLITE_OMIT_AUTOVACUUM
7837 if( pCheck->pBt->autoVacuum ){
7838 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7839 }
7840#endif
drh43b18e12010-08-17 19:40:08 +00007841 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007842 checkAppendMsg(pCheck, zContext,
7843 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007844 N--;
7845 }else{
7846 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007847 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007848#ifndef SQLITE_OMIT_AUTOVACUUM
7849 if( pCheck->pBt->autoVacuum ){
7850 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7851 }
7852#endif
7853 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007854 }
7855 N -= n;
drh30e58752002-03-02 20:41:57 +00007856 }
drh30e58752002-03-02 20:41:57 +00007857 }
danielk1977afcdd022004-10-31 16:25:42 +00007858#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007859 else{
7860 /* If this database supports auto-vacuum and iPage is not the last
7861 ** page in this overflow list, check that the pointer-map entry for
7862 ** the following page matches iPage.
7863 */
7864 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007865 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007866 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7867 }
danielk1977afcdd022004-10-31 16:25:42 +00007868 }
7869#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007870 iPage = get4byte(pOvflData);
7871 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007872 }
7873}
drhb7f91642004-10-31 02:22:47 +00007874#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007875
drhb7f91642004-10-31 02:22:47 +00007876#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007877/*
7878** Do various sanity checks on a single page of a tree. Return
7879** the tree depth. Root pages return 0. Parents of root pages
7880** return 1, and so forth.
7881**
7882** These checks are done:
7883**
7884** 1. Make sure that cells and freeblocks do not overlap
7885** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007886** NO 2. Make sure cell keys are in order.
7887** NO 3. Make sure no key is less than or equal to zLowerBound.
7888** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007889** 5. Check the integrity of overflow pages.
7890** 6. Recursively call checkTreePage on all children.
7891** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007892** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007893** the root of the tree.
7894*/
7895static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007896 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007897 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007898 char *zParentContext, /* Parent context */
7899 i64 *pnParentMinKey,
7900 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007901){
7902 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007903 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007904 int hdr, cellStart;
7905 int nCell;
drhda200cc2004-05-09 11:51:38 +00007906 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007907 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007908 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007909 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007910 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007911 i64 nMinKey = 0;
7912 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007913
drh5bb3eb92007-05-04 13:15:55 +00007914 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007915
drh5eddca62001-06-30 21:53:53 +00007916 /* Check that the page exists
7917 */
drhd9cb6ac2005-10-20 07:28:17 +00007918 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007919 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007920 if( iPage==0 ) return 0;
7921 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
dan11dcd112013-03-15 18:29:18 +00007922 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007923 checkAppendMsg(pCheck, zContext,
7924 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007925 return 0;
7926 }
danielk197793caf5a2009-07-11 06:55:33 +00007927
7928 /* Clear MemPage.isInit to make sure the corruption detection code in
7929 ** btreeInitPage() is executed. */
7930 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007931 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007932 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007933 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007934 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007935 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007936 return 0;
7937 }
7938
7939 /* Check out all the cells.
7940 */
7941 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007942 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007943 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007944 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007945 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007946
7947 /* Check payload overflow pages
7948 */
drh5bb3eb92007-05-04 13:15:55 +00007949 sqlite3_snprintf(sizeof(zContext), zContext,
7950 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007951 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007952 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007953 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007954 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007955 /* For intKey pages, check that the keys are in order.
7956 */
7957 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7958 else{
7959 if( info.nKey <= nMaxKey ){
7960 checkAppendMsg(pCheck, zContext,
7961 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7962 }
7963 nMaxKey = info.nKey;
7964 }
drh72365832007-03-06 15:53:44 +00007965 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007966 if( (sz>info.nLocal)
7967 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7968 ){
drhb6f41482004-05-14 01:58:11 +00007969 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007970 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7971#ifndef SQLITE_OMIT_AUTOVACUUM
7972 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007973 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007974 }
7975#endif
7976 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007977 }
7978
7979 /* Check sanity of left child page.
7980 */
drhda200cc2004-05-09 11:51:38 +00007981 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007982 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007983#ifndef SQLITE_OMIT_AUTOVACUUM
7984 if( pBt->autoVacuum ){
7985 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7986 }
7987#endif
shaneh195475d2010-02-19 04:28:08 +00007988 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007989 if( i>0 && d2!=depth ){
7990 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7991 }
7992 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007993 }
drh5eddca62001-06-30 21:53:53 +00007994 }
shaneh195475d2010-02-19 04:28:08 +00007995
drhda200cc2004-05-09 11:51:38 +00007996 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007997 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007998 sqlite3_snprintf(sizeof(zContext), zContext,
7999 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008000#ifndef SQLITE_OMIT_AUTOVACUUM
8001 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008002 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008003 }
8004#endif
shaneh195475d2010-02-19 04:28:08 +00008005 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008006 }
drh5eddca62001-06-30 21:53:53 +00008007
shaneh195475d2010-02-19 04:28:08 +00008008 /* For intKey leaf pages, check that the min/max keys are in order
8009 ** with any left/parent/right pages.
8010 */
8011 if( pPage->leaf && pPage->intKey ){
8012 /* if we are a left child page */
8013 if( pnParentMinKey ){
8014 /* if we are the left most child page */
8015 if( !pnParentMaxKey ){
8016 if( nMaxKey > *pnParentMinKey ){
8017 checkAppendMsg(pCheck, zContext,
8018 "Rowid %lld out of order (max larger than parent min of %lld)",
8019 nMaxKey, *pnParentMinKey);
8020 }
8021 }else{
8022 if( nMinKey <= *pnParentMinKey ){
8023 checkAppendMsg(pCheck, zContext,
8024 "Rowid %lld out of order (min less than parent min of %lld)",
8025 nMinKey, *pnParentMinKey);
8026 }
8027 if( nMaxKey > *pnParentMaxKey ){
8028 checkAppendMsg(pCheck, zContext,
8029 "Rowid %lld out of order (max larger than parent max of %lld)",
8030 nMaxKey, *pnParentMaxKey);
8031 }
8032 *pnParentMinKey = nMaxKey;
8033 }
8034 /* else if we're a right child page */
8035 } else if( pnParentMaxKey ){
8036 if( nMinKey <= *pnParentMaxKey ){
8037 checkAppendMsg(pCheck, zContext,
8038 "Rowid %lld out of order (min less than parent max of %lld)",
8039 nMinKey, *pnParentMaxKey);
8040 }
8041 }
8042 }
8043
drh5eddca62001-06-30 21:53:53 +00008044 /* Check for complete coverage of the page
8045 */
drhda200cc2004-05-09 11:51:38 +00008046 data = pPage->aData;
8047 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008048 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008049 if( hit==0 ){
8050 pCheck->mallocFailed = 1;
8051 }else{
drh5d433ce2010-08-14 16:02:52 +00008052 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008053 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008054 memset(hit+contentOffset, 0, usableSize-contentOffset);
8055 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008056 nCell = get2byte(&data[hdr+3]);
8057 cellStart = hdr + 12 - 4*pPage->leaf;
8058 for(i=0; i<nCell; i++){
8059 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008060 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008061 int j;
drh8c2bbb62009-07-10 02:52:20 +00008062 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008063 size = cellSizePtr(pPage, &data[pc]);
8064 }
drh43b18e12010-08-17 19:40:08 +00008065 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008066 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008067 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008068 }else{
8069 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8070 }
drh2e38c322004-09-03 18:38:44 +00008071 }
drh8c2bbb62009-07-10 02:52:20 +00008072 i = get2byte(&data[hdr+1]);
8073 while( i>0 ){
8074 int size, j;
8075 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8076 size = get2byte(&data[i+2]);
8077 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8078 for(j=i+size-1; j>=i; j--) hit[j]++;
8079 j = get2byte(&data[i]);
8080 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8081 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8082 i = j;
drh2e38c322004-09-03 18:38:44 +00008083 }
8084 for(i=cnt=0; i<usableSize; i++){
8085 if( hit[i]==0 ){
8086 cnt++;
8087 }else if( hit[i]>1 ){
8088 checkAppendMsg(pCheck, 0,
8089 "Multiple uses for byte %d of page %d", i, iPage);
8090 break;
8091 }
8092 }
8093 if( cnt!=data[hdr+7] ){
8094 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008095 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008096 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008097 }
8098 }
drh8c2bbb62009-07-10 02:52:20 +00008099 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008100 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008101 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008102}
drhb7f91642004-10-31 02:22:47 +00008103#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008104
drhb7f91642004-10-31 02:22:47 +00008105#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008106/*
8107** This routine does a complete check of the given BTree file. aRoot[] is
8108** an array of pages numbers were each page number is the root page of
8109** a table. nRoot is the number of entries in aRoot.
8110**
danielk19773509a652009-07-06 18:56:13 +00008111** A read-only or read-write transaction must be opened before calling
8112** this function.
8113**
drhc890fec2008-08-01 20:10:08 +00008114** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008115** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008116** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008117** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008118*/
drh1dcdbc02007-01-27 02:24:54 +00008119char *sqlite3BtreeIntegrityCheck(
8120 Btree *p, /* The btree to be checked */
8121 int *aRoot, /* An array of root pages numbers for individual trees */
8122 int nRoot, /* Number of entries in aRoot[] */
8123 int mxErr, /* Stop reporting errors after this many */
8124 int *pnErr /* Write number of errors seen to this variable */
8125){
danielk197789d40042008-11-17 14:20:56 +00008126 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008127 int nRef;
drhaaab5722002-02-19 13:39:21 +00008128 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008129 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008130 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008131
drhd677b3d2007-08-20 22:48:41 +00008132 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008133 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008134 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008135 sCheck.pBt = pBt;
8136 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008137 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008138 sCheck.mxErr = mxErr;
8139 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008140 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008141 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008142 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008143 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008144 return 0;
8145 }
dan1235bb12012-04-03 17:43:28 +00008146
8147 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8148 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008149 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008150 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008151 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008152 }
drh42cac6d2004-11-20 20:31:11 +00008153 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008154 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008155 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008156 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008157
8158 /* Check the integrity of the freelist
8159 */
drha34b6762004-05-07 13:30:42 +00008160 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8161 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008162
8163 /* Check all the tables.
8164 */
danielk197789d40042008-11-17 14:20:56 +00008165 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008166 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008167#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008168 if( pBt->autoVacuum && aRoot[i]>1 ){
8169 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8170 }
8171#endif
shaneh195475d2010-02-19 04:28:08 +00008172 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008173 }
8174
8175 /* Make sure every page in the file is referenced
8176 */
drh1dcdbc02007-01-27 02:24:54 +00008177 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008178#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008179 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008180 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008181 }
danielk1977afcdd022004-10-31 16:25:42 +00008182#else
8183 /* If the database supports auto-vacuum, make sure no tables contain
8184 ** references to pointer-map pages.
8185 */
dan1235bb12012-04-03 17:43:28 +00008186 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008187 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008188 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8189 }
dan1235bb12012-04-03 17:43:28 +00008190 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008191 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008192 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8193 }
8194#endif
drh5eddca62001-06-30 21:53:53 +00008195 }
8196
drh64022502009-01-09 14:11:04 +00008197 /* Make sure this analysis did not leave any unref() pages.
8198 ** This is an internal consistency check; an integrity check
8199 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008200 */
drh64022502009-01-09 14:11:04 +00008201 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008202 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008203 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008204 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008205 );
drh5eddca62001-06-30 21:53:53 +00008206 }
8207
8208 /* Clean up and report errors.
8209 */
drhd677b3d2007-08-20 22:48:41 +00008210 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008211 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008212 if( sCheck.mallocFailed ){
8213 sqlite3StrAccumReset(&sCheck.errMsg);
8214 *pnErr = sCheck.nErr+1;
8215 return 0;
8216 }
drh1dcdbc02007-01-27 02:24:54 +00008217 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008218 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8219 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008220}
drhb7f91642004-10-31 02:22:47 +00008221#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008222
drh73509ee2003-04-06 20:44:45 +00008223/*
drhd4e0bb02012-05-27 01:19:04 +00008224** Return the full pathname of the underlying database file. Return
8225** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008226**
8227** The pager filename is invariant as long as the pager is
8228** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008229*/
danielk1977aef0bf62005-12-30 16:28:01 +00008230const char *sqlite3BtreeGetFilename(Btree *p){
8231 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008232 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008233}
8234
8235/*
danielk19775865e3d2004-06-14 06:03:57 +00008236** Return the pathname of the journal file for this database. The return
8237** value of this routine is the same regardless of whether the journal file
8238** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008239**
8240** The pager journal filename is invariant as long as the pager is
8241** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008242*/
danielk1977aef0bf62005-12-30 16:28:01 +00008243const char *sqlite3BtreeGetJournalname(Btree *p){
8244 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008245 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008246}
8247
danielk19771d850a72004-05-31 08:26:49 +00008248/*
8249** Return non-zero if a transaction is active.
8250*/
danielk1977aef0bf62005-12-30 16:28:01 +00008251int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008252 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008253 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008254}
8255
dana550f2d2010-08-02 10:47:05 +00008256#ifndef SQLITE_OMIT_WAL
8257/*
8258** Run a checkpoint on the Btree passed as the first argument.
8259**
8260** Return SQLITE_LOCKED if this or any other connection has an open
8261** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008262**
dancdc1f042010-11-18 12:11:05 +00008263** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008264*/
dancdc1f042010-11-18 12:11:05 +00008265int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008266 int rc = SQLITE_OK;
8267 if( p ){
8268 BtShared *pBt = p->pBt;
8269 sqlite3BtreeEnter(p);
8270 if( pBt->inTransaction!=TRANS_NONE ){
8271 rc = SQLITE_LOCKED;
8272 }else{
dancdc1f042010-11-18 12:11:05 +00008273 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008274 }
8275 sqlite3BtreeLeave(p);
8276 }
8277 return rc;
8278}
8279#endif
8280
danielk19771d850a72004-05-31 08:26:49 +00008281/*
danielk19772372c2b2006-06-27 16:34:56 +00008282** Return non-zero if a read (or write) transaction is active.
8283*/
8284int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008285 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008286 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008287 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008288}
8289
danielk197704103022009-02-03 16:51:24 +00008290int sqlite3BtreeIsInBackup(Btree *p){
8291 assert( p );
8292 assert( sqlite3_mutex_held(p->db->mutex) );
8293 return p->nBackup!=0;
8294}
8295
danielk19772372c2b2006-06-27 16:34:56 +00008296/*
danielk1977da184232006-01-05 11:34:32 +00008297** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008298** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008299** purposes (for example, to store a high-level schema associated with
8300** the shared-btree). The btree layer manages reference counting issues.
8301**
8302** The first time this is called on a shared-btree, nBytes bytes of memory
8303** are allocated, zeroed, and returned to the caller. For each subsequent
8304** call the nBytes parameter is ignored and a pointer to the same blob
8305** of memory returned.
8306**
danielk1977171bfed2008-06-23 09:50:50 +00008307** If the nBytes parameter is 0 and the blob of memory has not yet been
8308** allocated, a null pointer is returned. If the blob has already been
8309** allocated, it is returned as normal.
8310**
danielk1977da184232006-01-05 11:34:32 +00008311** Just before the shared-btree is closed, the function passed as the
8312** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008313** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008314** on the memory, the btree layer does that.
8315*/
8316void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8317 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008318 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008319 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008320 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008321 pBt->xFreeSchema = xFree;
8322 }
drh27641702007-08-22 02:56:42 +00008323 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008324 return pBt->pSchema;
8325}
8326
danielk1977c87d34d2006-01-06 13:00:28 +00008327/*
danielk1977404ca072009-03-16 13:19:36 +00008328** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8329** btree as the argument handle holds an exclusive lock on the
8330** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008331*/
8332int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008333 int rc;
drhe5fe6902007-12-07 18:55:28 +00008334 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008335 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008336 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8337 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008338 sqlite3BtreeLeave(p);
8339 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008340}
8341
drha154dcd2006-03-22 22:10:07 +00008342
8343#ifndef SQLITE_OMIT_SHARED_CACHE
8344/*
8345** Obtain a lock on the table whose root page is iTab. The
8346** lock is a write lock if isWritelock is true or a read lock
8347** if it is false.
8348*/
danielk1977c00da102006-01-07 13:21:04 +00008349int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008350 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008351 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008352 if( p->sharable ){
8353 u8 lockType = READ_LOCK + isWriteLock;
8354 assert( READ_LOCK+1==WRITE_LOCK );
8355 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008356
drh6a9ad3d2008-04-02 16:29:30 +00008357 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008358 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008359 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008360 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008361 }
8362 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008363 }
8364 return rc;
8365}
drha154dcd2006-03-22 22:10:07 +00008366#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008367
danielk1977b4e9af92007-05-01 17:49:49 +00008368#ifndef SQLITE_OMIT_INCRBLOB
8369/*
8370** Argument pCsr must be a cursor opened for writing on an
8371** INTKEY table currently pointing at a valid table entry.
8372** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008373**
8374** Only the data content may only be modified, it is not possible to
8375** change the length of the data stored. If this function is called with
8376** parameters that attempt to write past the end of the existing data,
8377** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008378*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008379int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008380 int rc;
drh1fee73e2007-08-29 04:00:57 +00008381 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008382 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008383 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008384
danielk1977c9000e62009-07-08 13:55:28 +00008385 rc = restoreCursorPosition(pCsr);
8386 if( rc!=SQLITE_OK ){
8387 return rc;
8388 }
danielk19773588ceb2008-06-10 17:30:26 +00008389 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8390 if( pCsr->eState!=CURSOR_VALID ){
8391 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008392 }
8393
dan227a1c42013-04-03 11:17:39 +00008394 /* Save the positions of all other cursors open on this table. This is
8395 ** required in case any of them are holding references to an xFetch
8396 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008397 **
8398 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8399 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8400 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008401 */
drh370c9f42013-04-03 20:04:04 +00008402 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8403 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008404
danielk1977c9000e62009-07-08 13:55:28 +00008405 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008406 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008407 ** (b) there is a read/write transaction open,
8408 ** (c) the connection holds a write-lock on the table (if required),
8409 ** (d) there are no conflicting read-locks, and
8410 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008411 */
danielk19774f029602009-07-08 18:45:37 +00008412 if( !pCsr->wrFlag ){
8413 return SQLITE_READONLY;
8414 }
drhc9166342012-01-05 23:32:06 +00008415 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8416 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008417 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8418 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008419 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008420
drhfb192682009-07-11 18:26:28 +00008421 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008422}
danielk19772dec9702007-05-02 16:48:37 +00008423
8424/*
8425** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008426** overflow list for the current row. This is used by cursors opened
8427** for incremental blob IO only.
8428**
8429** This function sets a flag only. The actual page location cache
8430** (stored in BtCursor.aOverflow[]) is allocated and used by function
8431** accessPayload() (the worker function for sqlite3BtreeData() and
8432** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008433*/
8434void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008435 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008436 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008437 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008438 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008439}
danielk1977b4e9af92007-05-01 17:49:49 +00008440#endif
dane04dc882010-04-20 18:53:15 +00008441
8442/*
8443** Set both the "read version" (single byte at byte offset 18) and
8444** "write version" (single byte at byte offset 19) fields in the database
8445** header to iVersion.
8446*/
8447int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8448 BtShared *pBt = pBtree->pBt;
8449 int rc; /* Return code */
8450
dane04dc882010-04-20 18:53:15 +00008451 assert( iVersion==1 || iVersion==2 );
8452
danb9780022010-04-21 18:37:57 +00008453 /* If setting the version fields to 1, do not automatically open the
8454 ** WAL connection, even if the version fields are currently set to 2.
8455 */
drhc9166342012-01-05 23:32:06 +00008456 pBt->btsFlags &= ~BTS_NO_WAL;
8457 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008458
8459 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008460 if( rc==SQLITE_OK ){
8461 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008462 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008463 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008464 if( rc==SQLITE_OK ){
8465 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8466 if( rc==SQLITE_OK ){
8467 aData[18] = (u8)iVersion;
8468 aData[19] = (u8)iVersion;
8469 }
8470 }
8471 }
dane04dc882010-04-20 18:53:15 +00008472 }
8473
drhc9166342012-01-05 23:32:06 +00008474 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008475 return rc;
8476}
dan428c2182012-08-06 18:50:11 +00008477
8478/*
8479** set the mask of hint flags for cursor pCsr. Currently the only valid
8480** values are 0 and BTREE_BULKLOAD.
8481*/
8482void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8483 assert( mask==BTREE_BULKLOAD || mask==0 );
8484 pCsr->hints = mask;
8485}