blob: c3055836c91491fd371656ef6ed7b19addb2f3ab [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
165 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
449
danielk197792d4d7a2007-05-04 12:05:56 +0000450#ifndef SQLITE_OMIT_INCRBLOB
451/*
452** Invalidate the overflow page-list cache for cursor pCur, if any.
453*/
454static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000455 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000456 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000457 pCur->aOverflow = 0;
458}
459
460/*
461** Invalidate the overflow page-list cache for all cursors opened
462** on the shared btree structure pBt.
463*/
464static void invalidateAllOverflowCache(BtShared *pBt){
465 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000466 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000467 for(p=pBt->pCursor; p; p=p->pNext){
468 invalidateOverflowCache(p);
469 }
470}
danielk197796d48e92009-06-29 06:00:37 +0000471
472/*
473** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000474** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000475** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000476**
477** If argument isClearTable is true, then the entire contents of the
478** table is about to be deleted. In this case invalidate all incrblob
479** cursors open on any row within the table with root-page pgnoRoot.
480**
481** Otherwise, if argument isClearTable is false, then the row with
482** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000483** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000484*/
485static void invalidateIncrblobCursors(
486 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000487 i64 iRow, /* The rowid that might be changing */
488 int isClearTable /* True if all rows are being deleted */
489){
490 BtCursor *p;
491 BtShared *pBt = pBtree->pBt;
492 assert( sqlite3BtreeHoldsMutex(pBtree) );
493 for(p=pBt->pCursor; p; p=p->pNext){
494 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
495 p->eState = CURSOR_INVALID;
496 }
497 }
498}
499
danielk197792d4d7a2007-05-04 12:05:56 +0000500#else
drh0ee3dbe2009-10-16 15:05:18 +0000501 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000502 #define invalidateOverflowCache(x)
503 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000504 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000505#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000506
drh980b1a72006-08-16 16:42:48 +0000507/*
danielk1977bea2a942009-01-20 17:06:27 +0000508** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509** when a page that previously contained data becomes a free-list leaf
510** page.
511**
512** The BtShared.pHasContent bitvec exists to work around an obscure
513** bug caused by the interaction of two useful IO optimizations surrounding
514** free-list leaf pages:
515**
516** 1) When all data is deleted from a page and the page becomes
517** a free-list leaf page, the page is not written to the database
518** (as free-list leaf pages contain no meaningful data). Sometimes
519** such a page is not even journalled (as it will not be modified,
520** why bother journalling it?).
521**
522** 2) When a free-list leaf page is reused, its content is not read
523** from the database or written to the journal file (why should it
524** be, if it is not at all meaningful?).
525**
526** By themselves, these optimizations work fine and provide a handy
527** performance boost to bulk delete or insert operations. However, if
528** a page is moved to the free-list and then reused within the same
529** transaction, a problem comes up. If the page is not journalled when
530** it is moved to the free-list and it is also not journalled when it
531** is extracted from the free-list and reused, then the original data
532** may be lost. In the event of a rollback, it may not be possible
533** to restore the database to its original configuration.
534**
535** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536** moved to become a free-list leaf page, the corresponding bit is
537** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000538** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000539** set in BtShared.pHasContent. The contents of the bitvec are cleared
540** at the end of every transaction.
541*/
542static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
543 int rc = SQLITE_OK;
544 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000545 assert( pgno<=pBt->nPage );
546 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000547 if( !pBt->pHasContent ){
548 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000549 }
550 }
551 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
552 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
553 }
554 return rc;
555}
556
557/*
558** Query the BtShared.pHasContent vector.
559**
560** This function is called when a free-list leaf page is removed from the
561** free-list for reuse. It returns false if it is safe to retrieve the
562** page from the pager layer with the 'no-content' flag set. True otherwise.
563*/
564static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
565 Bitvec *p = pBt->pHasContent;
566 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
567}
568
569/*
570** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571** invoked at the conclusion of each write-transaction.
572*/
573static void btreeClearHasContent(BtShared *pBt){
574 sqlite3BitvecDestroy(pBt->pHasContent);
575 pBt->pHasContent = 0;
576}
577
578/*
drh138eeeb2013-03-27 03:15:23 +0000579** Release all of the apPage[] pages for a cursor.
580*/
581static void btreeReleaseAllCursorPages(BtCursor *pCur){
582 int i;
583 for(i=0; i<=pCur->iPage; i++){
584 releasePage(pCur->apPage[i]);
585 pCur->apPage[i] = 0;
586 }
587 pCur->iPage = -1;
588}
589
590
591/*
drh980b1a72006-08-16 16:42:48 +0000592** Save the current cursor position in the variables BtCursor.nKey
593** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000594**
595** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000597*/
598static int saveCursorPosition(BtCursor *pCur){
599 int rc;
600
601 assert( CURSOR_VALID==pCur->eState );
602 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000603 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000604
605 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000606 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000607
608 /* If this is an intKey table, then the above call to BtreeKeySize()
609 ** stores the integer key in pCur->nKey. In this case this value is
610 ** all that is required. Otherwise, if pCur is not open on an intKey
611 ** table, then malloc space for and store the pCur->nKey bytes of key
612 ** data.
613 */
drh4c301aa2009-07-15 17:25:45 +0000614 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000615 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000616 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000617 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000618 if( rc==SQLITE_OK ){
619 pCur->pKey = pKey;
620 }else{
drh17435752007-08-16 04:30:38 +0000621 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000622 }
623 }else{
624 rc = SQLITE_NOMEM;
625 }
626 }
danielk197771d5d2c2008-09-29 11:49:47 +0000627 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000628
629 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000630 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 pCur->eState = CURSOR_REQUIRESEEK;
632 }
633
danielk197792d4d7a2007-05-04 12:05:56 +0000634 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000635 return rc;
636}
637
638/*
drh0ee3dbe2009-10-16 15:05:18 +0000639** Save the positions of all cursors (except pExcept) that are open on
640** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000641** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
642*/
643static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
644 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000645 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000646 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000647 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000648 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
649 if( p->eState==CURSOR_VALID ){
650 int rc = saveCursorPosition(p);
651 if( SQLITE_OK!=rc ){
652 return rc;
653 }
654 }else{
655 testcase( p->iPage>0 );
656 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000657 }
658 }
659 }
660 return SQLITE_OK;
661}
662
663/*
drhbf700f32007-03-31 02:36:44 +0000664** Clear the current cursor position.
665*/
danielk1977be51a652008-10-08 17:58:48 +0000666void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000667 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000668 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000669 pCur->pKey = 0;
670 pCur->eState = CURSOR_INVALID;
671}
672
673/*
danielk19773509a652009-07-06 18:56:13 +0000674** In this version of BtreeMoveto, pKey is a packed index record
675** such as is generated by the OP_MakeRecord opcode. Unpack the
676** record and then call BtreeMovetoUnpacked() to do the work.
677*/
678static int btreeMoveto(
679 BtCursor *pCur, /* Cursor open on the btree to be searched */
680 const void *pKey, /* Packed key if the btree is an index */
681 i64 nKey, /* Integer key for tables. Size of pKey for indices */
682 int bias, /* Bias search to the high end */
683 int *pRes /* Write search results here */
684){
685 int rc; /* Status code */
686 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000687 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000688 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000689
690 if( pKey ){
691 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000692 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
693 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
694 );
danielk19773509a652009-07-06 18:56:13 +0000695 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000696 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000697 if( pIdxKey->nField==0 ){
698 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
699 return SQLITE_CORRUPT_BKPT;
700 }
danielk19773509a652009-07-06 18:56:13 +0000701 }else{
702 pIdxKey = 0;
703 }
704 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000705 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000706 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000707 }
708 return rc;
709}
710
711/*
drh980b1a72006-08-16 16:42:48 +0000712** Restore the cursor to the position it was in (or as close to as possible)
713** when saveCursorPosition() was called. Note that this call deletes the
714** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000715** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000716** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000717*/
danielk197730548662009-07-09 05:07:37 +0000718static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000719 int rc;
drh1fee73e2007-08-29 04:00:57 +0000720 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000721 assert( pCur->eState>=CURSOR_REQUIRESEEK );
722 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000723 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000724 }
drh980b1a72006-08-16 16:42:48 +0000725 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000726 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000727 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000728 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000729 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000730 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000731 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
732 pCur->eState = CURSOR_SKIPNEXT;
733 }
drh980b1a72006-08-16 16:42:48 +0000734 }
735 return rc;
736}
737
drha3460582008-07-11 21:02:53 +0000738#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000739 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000740 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000741 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000742
drha3460582008-07-11 21:02:53 +0000743/*
744** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000745** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000746** at is deleted out from under them.
747**
748** This routine returns an error code if something goes wrong. The
drh86dd3712014-03-25 11:00:21 +0000749** integer *pHasMoved is set as follows:
750**
751** 0: The cursor is unchanged
752** 1: The cursor is still pointing at the same row, but the pointers
753** returned by sqlite3BtreeKeyFetch() or sqlite3BtreeDataFetch()
754** might now be invalid because of a balance() or other change to the
755** b-tree.
756** 2: The cursor is no longer pointing to the row. The row might have
757** been deleted out from under the cursor.
drha3460582008-07-11 21:02:53 +0000758*/
759int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
760 int rc;
761
drh86dd3712014-03-25 11:00:21 +0000762 if( pCur->eState==CURSOR_VALID ){
763 *pHasMoved = 0;
764 return SQLITE_OK;
765 }
drha3460582008-07-11 21:02:53 +0000766 rc = restoreCursorPosition(pCur);
767 if( rc ){
drh86dd3712014-03-25 11:00:21 +0000768 *pHasMoved = 2;
drha3460582008-07-11 21:02:53 +0000769 return rc;
770 }
drh9b47ee32013-08-20 03:13:51 +0000771 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drh86dd3712014-03-25 11:00:21 +0000772 *pHasMoved = 2;
drha3460582008-07-11 21:02:53 +0000773 }else{
drh86dd3712014-03-25 11:00:21 +0000774 *pHasMoved = 1;
drha3460582008-07-11 21:02:53 +0000775 }
776 return SQLITE_OK;
777}
778
danielk1977599fcba2004-11-08 07:13:13 +0000779#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000780/*
drha3152892007-05-05 11:48:52 +0000781** Given a page number of a regular database page, return the page
782** number for the pointer-map page that contains the entry for the
783** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000784**
785** Return 0 (not a valid page) for pgno==1 since there is
786** no pointer map associated with page 1. The integrity_check logic
787** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000788*/
danielk1977266664d2006-02-10 08:24:21 +0000789static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000790 int nPagesPerMapPage;
791 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000792 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000793 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000794 nPagesPerMapPage = (pBt->usableSize/5)+1;
795 iPtrMap = (pgno-2)/nPagesPerMapPage;
796 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000797 if( ret==PENDING_BYTE_PAGE(pBt) ){
798 ret++;
799 }
800 return ret;
801}
danielk1977a19df672004-11-03 11:37:07 +0000802
danielk1977afcdd022004-10-31 16:25:42 +0000803/*
danielk1977afcdd022004-10-31 16:25:42 +0000804** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000805**
806** This routine updates the pointer map entry for page number 'key'
807** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000808**
809** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
810** a no-op. If an error occurs, the appropriate error code is written
811** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000812*/
drh98add2e2009-07-20 17:11:49 +0000813static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000814 DbPage *pDbPage; /* The pointer map page */
815 u8 *pPtrmap; /* The pointer map data */
816 Pgno iPtrmap; /* The pointer map page number */
817 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000818 int rc; /* Return code from subfunctions */
819
820 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000821
drh1fee73e2007-08-29 04:00:57 +0000822 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000823 /* The master-journal page number must never be used as a pointer map page */
824 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
825
danielk1977ac11ee62005-01-15 12:45:51 +0000826 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000827 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000828 *pRC = SQLITE_CORRUPT_BKPT;
829 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000830 }
danielk1977266664d2006-02-10 08:24:21 +0000831 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000832 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000833 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000834 *pRC = rc;
835 return;
danielk1977afcdd022004-10-31 16:25:42 +0000836 }
danielk19778c666b12008-07-18 09:34:57 +0000837 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000838 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000839 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000840 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000841 }
drhfc243732011-05-17 15:21:56 +0000842 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000843 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000844
drh615ae552005-01-16 23:21:00 +0000845 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
846 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000847 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000848 if( rc==SQLITE_OK ){
849 pPtrmap[offset] = eType;
850 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000851 }
danielk1977afcdd022004-10-31 16:25:42 +0000852 }
853
drh4925a552009-07-07 11:39:58 +0000854ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000855 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000856}
857
858/*
859** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000860**
861** This routine retrieves the pointer map entry for page 'key', writing
862** the type and parent page number to *pEType and *pPgno respectively.
863** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000864*/
danielk1977aef0bf62005-12-30 16:28:01 +0000865static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000866 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000867 int iPtrmap; /* Pointer map page index */
868 u8 *pPtrmap; /* Pointer map page data */
869 int offset; /* Offset of entry in pointer map */
870 int rc;
871
drh1fee73e2007-08-29 04:00:57 +0000872 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000873
danielk1977266664d2006-02-10 08:24:21 +0000874 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000875 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000876 if( rc!=0 ){
877 return rc;
878 }
danielk19773b8a05f2007-03-19 17:44:26 +0000879 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000880
danielk19778c666b12008-07-18 09:34:57 +0000881 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000882 if( offset<0 ){
883 sqlite3PagerUnref(pDbPage);
884 return SQLITE_CORRUPT_BKPT;
885 }
886 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000887 assert( pEType!=0 );
888 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000889 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000890
danielk19773b8a05f2007-03-19 17:44:26 +0000891 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000892 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000893 return SQLITE_OK;
894}
895
danielk197785d90ca2008-07-19 14:25:15 +0000896#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000897 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000898 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000899 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000900#endif
danielk1977afcdd022004-10-31 16:25:42 +0000901
drh0d316a42002-08-11 20:10:47 +0000902/*
drh271efa52004-05-30 19:19:05 +0000903** Given a btree page and a cell index (0 means the first cell on
904** the page, 1 means the second cell, and so forth) return a pointer
905** to the cell content.
906**
907** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000908*/
drh1688c862008-07-18 02:44:17 +0000909#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000910 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000911#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
912
drh43605152004-05-29 21:46:49 +0000913
914/*
drh93a960a2008-07-10 00:32:42 +0000915** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000916** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000917*/
918static u8 *findOverflowCell(MemPage *pPage, int iCell){
919 int i;
drh1fee73e2007-08-29 04:00:57 +0000920 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000921 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000922 int k;
drh2cbd78b2012-02-02 19:37:18 +0000923 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000924 if( k<=iCell ){
925 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000926 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000927 }
928 iCell--;
929 }
930 }
danielk19771cc5ed82007-05-16 17:28:43 +0000931 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000932}
933
934/*
935** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000936** are two versions of this function. btreeParseCell() takes a
937** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000938** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000939**
940** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000941** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000942*/
danielk197730548662009-07-09 05:07:37 +0000943static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000944 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000945 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000946 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000947){
drhf49661a2008-12-10 16:45:50 +0000948 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000949 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000950
drh1fee73e2007-08-29 04:00:57 +0000951 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000952
drh43605152004-05-29 21:46:49 +0000953 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000954 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000955 n = pPage->childPtrSize;
956 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000957 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000958 if( pPage->hasData ){
drh13c77bf2013-08-21 15:52:22 +0000959 assert( n==0 );
960 n = getVarint32(pCell, nPayload);
drh79df1f42008-07-18 00:57:33 +0000961 }else{
962 nPayload = 0;
963 }
drh1bd10f82008-12-10 21:19:56 +0000964 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000965 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000966 }else{
drh79df1f42008-07-18 00:57:33 +0000967 pInfo->nData = 0;
968 n += getVarint32(&pCell[n], nPayload);
969 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000970 }
drh72365832007-03-06 15:53:44 +0000971 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000972 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000973 testcase( nPayload==pPage->maxLocal );
974 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000975 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000976 /* This is the (easy) common case where the entire payload fits
977 ** on the local page. No overflow is required.
978 */
drh41692e92011-01-25 04:34:51 +0000979 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000980 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000981 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000982 }else{
drh271efa52004-05-30 19:19:05 +0000983 /* If the payload will not fit completely on the local page, we have
984 ** to decide how much to store locally and how much to spill onto
985 ** overflow pages. The strategy is to minimize the amount of unused
986 ** space on overflow pages while keeping the amount of local storage
987 ** in between minLocal and maxLocal.
988 **
989 ** Warning: changing the way overflow payload is distributed in any
990 ** way will result in an incompatible file format.
991 */
992 int minLocal; /* Minimum amount of payload held locally */
993 int maxLocal; /* Maximum amount of payload held locally */
994 int surplus; /* Overflow payload available for local storage */
995
996 minLocal = pPage->minLocal;
997 maxLocal = pPage->maxLocal;
998 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000999 testcase( surplus==maxLocal );
1000 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +00001001 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +00001002 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +00001003 }else{
drhf49661a2008-12-10 16:45:50 +00001004 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +00001005 }
drhf49661a2008-12-10 16:45:50 +00001006 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +00001007 pInfo->nSize = pInfo->iOverflow + 4;
1008 }
drh3aac2dd2004-04-26 14:10:20 +00001009}
danielk19771cc5ed82007-05-16 17:28:43 +00001010#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +00001011 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
1012static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001013 MemPage *pPage, /* Page containing the cell */
1014 int iCell, /* The cell index. First cell is 0 */
1015 CellInfo *pInfo /* Fill in this structure */
1016){
danielk19771cc5ed82007-05-16 17:28:43 +00001017 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +00001018}
drh3aac2dd2004-04-26 14:10:20 +00001019
1020/*
drh43605152004-05-29 21:46:49 +00001021** Compute the total number of bytes that a Cell needs in the cell
1022** data area of the btree-page. The return number includes the cell
1023** data header and the local payload, but not any overflow page or
1024** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001025*/
danielk1977ae5558b2009-04-29 11:31:47 +00001026static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1027 u8 *pIter = &pCell[pPage->childPtrSize];
1028 u32 nSize;
1029
1030#ifdef SQLITE_DEBUG
1031 /* The value returned by this function should always be the same as
1032 ** the (CellInfo.nSize) value found by doing a full parse of the
1033 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1034 ** this function verifies that this invariant is not violated. */
1035 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001036 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001037#endif
1038
1039 if( pPage->intKey ){
1040 u8 *pEnd;
1041 if( pPage->hasData ){
1042 pIter += getVarint32(pIter, nSize);
1043 }else{
1044 nSize = 0;
1045 }
1046
1047 /* pIter now points at the 64-bit integer key value, a variable length
1048 ** integer. The following block moves pIter to point at the first byte
1049 ** past the end of the key value. */
1050 pEnd = &pIter[9];
1051 while( (*pIter++)&0x80 && pIter<pEnd );
1052 }else{
1053 pIter += getVarint32(pIter, nSize);
1054 }
1055
drh0a45c272009-07-08 01:49:11 +00001056 testcase( nSize==pPage->maxLocal );
1057 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001058 if( nSize>pPage->maxLocal ){
1059 int minLocal = pPage->minLocal;
1060 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001061 testcase( nSize==pPage->maxLocal );
1062 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001063 if( nSize>pPage->maxLocal ){
1064 nSize = minLocal;
1065 }
1066 nSize += 4;
1067 }
shane75ac1de2009-06-09 18:58:52 +00001068 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001069
1070 /* The minimum size of any cell is 4 bytes. */
1071 if( nSize<4 ){
1072 nSize = 4;
1073 }
1074
1075 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001076 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001077}
drh0ee3dbe2009-10-16 15:05:18 +00001078
1079#ifdef SQLITE_DEBUG
1080/* This variation on cellSizePtr() is used inside of assert() statements
1081** only. */
drha9121e42008-02-19 14:59:35 +00001082static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001083 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001084}
danielk1977bc6ada42004-06-30 08:20:16 +00001085#endif
drh3b7511c2001-05-26 13:15:44 +00001086
danielk197779a40da2005-01-16 08:00:01 +00001087#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001088/*
danielk197726836652005-01-17 01:33:13 +00001089** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001090** to an overflow page, insert an entry into the pointer-map
1091** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001092*/
drh98add2e2009-07-20 17:11:49 +00001093static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001094 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001095 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001096 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001097 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001098 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001099 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001100 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001101 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001102 }
danielk1977ac11ee62005-01-15 12:45:51 +00001103}
danielk197779a40da2005-01-16 08:00:01 +00001104#endif
1105
danielk1977ac11ee62005-01-15 12:45:51 +00001106
drhda200cc2004-05-09 11:51:38 +00001107/*
drh72f82862001-05-24 21:06:34 +00001108** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001109** end of the page and all free space is collected into one
1110** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001111** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001112*/
shane0af3f892008-11-12 04:55:34 +00001113static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001114 int i; /* Loop counter */
1115 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001116 int hdr; /* Offset to the page header */
1117 int size; /* Size of a cell */
1118 int usableSize; /* Number of usable bytes on a page */
1119 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001120 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001121 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001122 unsigned char *data; /* The page data */
1123 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001124 int iCellFirst; /* First allowable cell index */
1125 int iCellLast; /* Last possible cell index */
1126
drh2af926b2001-05-15 00:39:25 +00001127
danielk19773b8a05f2007-03-19 17:44:26 +00001128 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001129 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001130 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001131 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001132 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001133 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001134 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001135 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001136 cellOffset = pPage->cellOffset;
1137 nCell = pPage->nCell;
1138 assert( nCell==get2byte(&data[hdr+3]) );
1139 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001140 cbrk = get2byte(&data[hdr+5]);
1141 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1142 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001143 iCellFirst = cellOffset + 2*nCell;
1144 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001145 for(i=0; i<nCell; i++){
1146 u8 *pAddr; /* The i-th cell pointer */
1147 pAddr = &data[cellOffset + i*2];
1148 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001149 testcase( pc==iCellFirst );
1150 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001151#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001152 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001153 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1154 */
1155 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001156 return SQLITE_CORRUPT_BKPT;
1157 }
drh17146622009-07-07 17:38:38 +00001158#endif
1159 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001160 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001161 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001162#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1163 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001164 return SQLITE_CORRUPT_BKPT;
1165 }
drh17146622009-07-07 17:38:38 +00001166#else
1167 if( cbrk<iCellFirst || pc+size>usableSize ){
1168 return SQLITE_CORRUPT_BKPT;
1169 }
1170#endif
drh7157e1d2009-07-09 13:25:32 +00001171 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001172 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001173 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001174 memcpy(&data[cbrk], &temp[pc], size);
1175 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001176 }
drh17146622009-07-07 17:38:38 +00001177 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001178 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001179 data[hdr+1] = 0;
1180 data[hdr+2] = 0;
1181 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001182 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001183 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001184 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001185 return SQLITE_CORRUPT_BKPT;
1186 }
shane0af3f892008-11-12 04:55:34 +00001187 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001188}
1189
drha059ad02001-04-17 20:09:11 +00001190/*
danielk19776011a752009-04-01 16:25:32 +00001191** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001192** as the first argument. Write into *pIdx the index into pPage->aData[]
1193** of the first byte of allocated space. Return either SQLITE_OK or
1194** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001195**
drh0a45c272009-07-08 01:49:11 +00001196** The caller guarantees that there is sufficient space to make the
1197** allocation. This routine might need to defragment in order to bring
1198** all the space together, however. This routine will avoid using
1199** the first two bytes past the cell pointer area since presumably this
1200** allocation is being made in order to insert a new cell, so we will
1201** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001202*/
drh0a45c272009-07-08 01:49:11 +00001203static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001204 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1205 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1206 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001207 int top; /* First byte of cell content area */
1208 int gap; /* First byte of gap between cell pointers and cell content */
1209 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001210 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001211
danielk19773b8a05f2007-03-19 17:44:26 +00001212 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001213 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001214 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001215 assert( nByte>=0 ); /* Minimum cell size is 4 */
1216 assert( pPage->nFree>=nByte );
1217 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001218 usableSize = pPage->pBt->usableSize;
1219 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001220
1221 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001222 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1223 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001224 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001225 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001226 testcase( gap+2==top );
1227 testcase( gap+1==top );
1228 testcase( gap==top );
1229
danielk19776011a752009-04-01 16:25:32 +00001230 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001231 /* Always defragment highly fragmented pages */
1232 rc = defragmentPage(pPage);
1233 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001234 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001235 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001236 /* Search the freelist looking for a free slot big enough to satisfy
1237 ** the request. The allocation is made from the first free slot in
drhf7b54962013-05-28 12:11:54 +00001238 ** the list that is large enough to accommodate it.
danielk19776011a752009-04-01 16:25:32 +00001239 */
1240 int pc, addr;
1241 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001242 int size; /* Size of the free slot */
1243 if( pc>usableSize-4 || pc<addr+4 ){
1244 return SQLITE_CORRUPT_BKPT;
1245 }
1246 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001247 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001248 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001249 testcase( x==4 );
1250 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001251 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001252 /* Remove the slot from the free-list. Update the number of
1253 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001254 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001255 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001256 }else if( size+pc > usableSize ){
1257 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001258 }else{
danielk1977fad91942009-04-29 17:49:59 +00001259 /* The slot remains on the free-list. Reduce its size to account
1260 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001261 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001262 }
drh0a45c272009-07-08 01:49:11 +00001263 *pIdx = pc + x;
1264 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001265 }
drh9e572e62004-04-23 23:43:10 +00001266 }
1267 }
drh43605152004-05-29 21:46:49 +00001268
drh0a45c272009-07-08 01:49:11 +00001269 /* Check to make sure there is enough space in the gap to satisfy
1270 ** the allocation. If not, defragment.
1271 */
1272 testcase( gap+2+nByte==top );
1273 if( gap+2+nByte>top ){
1274 rc = defragmentPage(pPage);
1275 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001276 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001277 assert( gap+nByte<=top );
1278 }
1279
1280
drh43605152004-05-29 21:46:49 +00001281 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001282 ** and the cell content area. The btreeInitPage() call has already
1283 ** validated the freelist. Given that the freelist is valid, there
1284 ** is no way that the allocation can extend off the end of the page.
1285 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001286 */
drh0a45c272009-07-08 01:49:11 +00001287 top -= nByte;
drh43605152004-05-29 21:46:49 +00001288 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001289 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001290 *pIdx = top;
1291 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001292}
1293
1294/*
drh9e572e62004-04-23 23:43:10 +00001295** Return a section of the pPage->aData to the freelist.
1296** The first byte of the new free block is pPage->aDisk[start]
1297** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001298**
1299** Most of the effort here is involved in coalesing adjacent
1300** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001301*/
shanedcc50b72008-11-13 18:29:50 +00001302static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001303 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001304 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001305 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001306
drh9e572e62004-04-23 23:43:10 +00001307 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001308 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001309 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001310 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001311 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001312 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001313
drhc9166342012-01-05 23:32:06 +00001314 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001315 /* Overwrite deleted information with zeros when the secure_delete
1316 ** option is enabled */
1317 memset(&data[start], 0, size);
1318 }
drhfcce93f2006-02-22 03:08:32 +00001319
drh0a45c272009-07-08 01:49:11 +00001320 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001321 ** even though the freeblock list was checked by btreeInitPage(),
1322 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001323 ** freeblocks that overlapped cells. Nor does it detect when the
1324 ** cell content area exceeds the value in the page header. If these
1325 ** situations arise, then subsequent insert operations might corrupt
1326 ** the freelist. So we do need to check for corruption while scanning
1327 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001328 */
drh43605152004-05-29 21:46:49 +00001329 hdr = pPage->hdrOffset;
1330 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001331 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001332 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001333 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001334 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001335 return SQLITE_CORRUPT_BKPT;
1336 }
drh3aac2dd2004-04-26 14:10:20 +00001337 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001338 }
drh0a45c272009-07-08 01:49:11 +00001339 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001340 return SQLITE_CORRUPT_BKPT;
1341 }
drh3aac2dd2004-04-26 14:10:20 +00001342 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001343 put2byte(&data[addr], start);
1344 put2byte(&data[start], pbegin);
1345 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001346 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001347
1348 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001349 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001350 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001351 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001352 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001353 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001354 pnext = get2byte(&data[pbegin]);
1355 psize = get2byte(&data[pbegin+2]);
1356 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1357 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001358 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001359 return SQLITE_CORRUPT_BKPT;
1360 }
drh0a45c272009-07-08 01:49:11 +00001361 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001362 x = get2byte(&data[pnext]);
1363 put2byte(&data[pbegin], x);
1364 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1365 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001366 }else{
drh3aac2dd2004-04-26 14:10:20 +00001367 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001368 }
1369 }
drh7e3b0a02001-04-28 16:52:40 +00001370
drh43605152004-05-29 21:46:49 +00001371 /* If the cell content area begins with a freeblock, remove it. */
1372 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1373 int top;
1374 pbegin = get2byte(&data[hdr+1]);
1375 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001376 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1377 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001378 }
drhc5053fb2008-11-27 02:22:10 +00001379 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001380 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001381}
1382
1383/*
drh271efa52004-05-30 19:19:05 +00001384** Decode the flags byte (the first byte of the header) for a page
1385** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001386**
1387** Only the following combinations are supported. Anything different
1388** indicates a corrupt database files:
1389**
1390** PTF_ZERODATA
1391** PTF_ZERODATA | PTF_LEAF
1392** PTF_LEAFDATA | PTF_INTKEY
1393** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001394*/
drh44845222008-07-17 18:39:57 +00001395static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001396 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001397
1398 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001399 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001400 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001401 flagByte &= ~PTF_LEAF;
1402 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001403 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001404 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1405 pPage->intKey = 1;
1406 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001407 pPage->maxLocal = pBt->maxLeaf;
1408 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001409 }else if( flagByte==PTF_ZERODATA ){
1410 pPage->intKey = 0;
1411 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001412 pPage->maxLocal = pBt->maxLocal;
1413 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001414 }else{
1415 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001416 }
drhc9166342012-01-05 23:32:06 +00001417 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001418 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001419}
1420
1421/*
drh7e3b0a02001-04-28 16:52:40 +00001422** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001423**
1424** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001425** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001426** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1427** guarantee that the page is well-formed. It only shows that
1428** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001429*/
danielk197730548662009-07-09 05:07:37 +00001430static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001431
danielk197771d5d2c2008-09-29 11:49:47 +00001432 assert( pPage->pBt!=0 );
1433 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001434 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001435 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1436 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001437
1438 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001439 u16 pc; /* Address of a freeblock within pPage->aData[] */
1440 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001441 u8 *data; /* Equal to pPage->aData */
1442 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001443 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001444 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001445 int nFree; /* Number of unused bytes on the page */
1446 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001447 int iCellFirst; /* First allowable cell or freeblock offset */
1448 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001449
1450 pBt = pPage->pBt;
1451
danielk1977eaa06f62008-09-18 17:34:44 +00001452 hdr = pPage->hdrOffset;
1453 data = pPage->aData;
1454 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001455 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1456 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001457 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001458 usableSize = pBt->usableSize;
1459 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001460 pPage->aDataEnd = &data[usableSize];
1461 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001462 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001463 pPage->nCell = get2byte(&data[hdr+3]);
1464 if( pPage->nCell>MX_CELL(pBt) ){
1465 /* To many cells for a single page. The page must be corrupt */
1466 return SQLITE_CORRUPT_BKPT;
1467 }
drhb908d762009-07-08 16:54:40 +00001468 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001469
shane5eff7cf2009-08-10 03:57:58 +00001470 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001471 ** of page when parsing a cell.
1472 **
1473 ** The following block of code checks early to see if a cell extends
1474 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1475 ** returned if it does.
1476 */
drh0a45c272009-07-08 01:49:11 +00001477 iCellFirst = cellOffset + 2*pPage->nCell;
1478 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001479#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001480 {
drh69e931e2009-06-03 21:04:35 +00001481 int i; /* Index into the cell pointer array */
1482 int sz; /* Size of a cell */
1483
drh69e931e2009-06-03 21:04:35 +00001484 if( !pPage->leaf ) iCellLast--;
1485 for(i=0; i<pPage->nCell; i++){
1486 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001487 testcase( pc==iCellFirst );
1488 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001489 if( pc<iCellFirst || pc>iCellLast ){
1490 return SQLITE_CORRUPT_BKPT;
1491 }
1492 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001493 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001494 if( pc+sz>usableSize ){
1495 return SQLITE_CORRUPT_BKPT;
1496 }
1497 }
drh0a45c272009-07-08 01:49:11 +00001498 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001499 }
1500#endif
1501
danielk1977eaa06f62008-09-18 17:34:44 +00001502 /* Compute the total free space on the page */
1503 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001504 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001505 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001506 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001507 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001508 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001509 return SQLITE_CORRUPT_BKPT;
1510 }
1511 next = get2byte(&data[pc]);
1512 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001513 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1514 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001515 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001516 return SQLITE_CORRUPT_BKPT;
1517 }
shane85095702009-06-15 16:27:08 +00001518 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001519 pc = next;
1520 }
danielk197793c829c2009-06-03 17:26:17 +00001521
1522 /* At this point, nFree contains the sum of the offset to the start
1523 ** of the cell-content area plus the number of free bytes within
1524 ** the cell-content area. If this is greater than the usable-size
1525 ** of the page, then the page must be corrupted. This check also
1526 ** serves to verify that the offset to the start of the cell-content
1527 ** area, according to the page header, lies within the page.
1528 */
1529 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001530 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001531 }
shane5eff7cf2009-08-10 03:57:58 +00001532 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001533 pPage->isInit = 1;
1534 }
drh9e572e62004-04-23 23:43:10 +00001535 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001536}
1537
1538/*
drh8b2f49b2001-06-08 00:21:52 +00001539** Set up a raw page so that it looks like a database page holding
1540** no entries.
drhbd03cae2001-06-02 02:40:57 +00001541*/
drh9e572e62004-04-23 23:43:10 +00001542static void zeroPage(MemPage *pPage, int flags){
1543 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001544 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001545 u8 hdr = pPage->hdrOffset;
1546 u16 first;
drh9e572e62004-04-23 23:43:10 +00001547
danielk19773b8a05f2007-03-19 17:44:26 +00001548 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001549 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1550 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001551 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001552 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001553 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001554 memset(&data[hdr], 0, pBt->usableSize - hdr);
1555 }
drh1bd10f82008-12-10 21:19:56 +00001556 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001557 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001558 memset(&data[hdr+1], 0, 4);
1559 data[hdr+7] = 0;
1560 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001561 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001562 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001563 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001564 pPage->aDataEnd = &data[pBt->usableSize];
1565 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001566 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001567 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1568 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001569 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001570 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001571}
1572
drh897a8202008-09-18 01:08:15 +00001573
1574/*
1575** Convert a DbPage obtained from the pager into a MemPage used by
1576** the btree layer.
1577*/
1578static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1579 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1580 pPage->aData = sqlite3PagerGetData(pDbPage);
1581 pPage->pDbPage = pDbPage;
1582 pPage->pBt = pBt;
1583 pPage->pgno = pgno;
1584 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1585 return pPage;
1586}
1587
drhbd03cae2001-06-02 02:40:57 +00001588/*
drh3aac2dd2004-04-26 14:10:20 +00001589** Get a page from the pager. Initialize the MemPage.pBt and
1590** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001591**
1592** If the noContent flag is set, it means that we do not care about
1593** the content of the page at this time. So do not go to the disk
1594** to fetch the content. Just fill in the content with zeros for now.
1595** If in the future we call sqlite3PagerWrite() on this page, that
1596** means we have started to be concerned about content and the disk
1597** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001598*/
danielk197730548662009-07-09 05:07:37 +00001599static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001600 BtShared *pBt, /* The btree */
1601 Pgno pgno, /* Number of the page to fetch */
1602 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001603 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001604){
drh3aac2dd2004-04-26 14:10:20 +00001605 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001606 DbPage *pDbPage;
1607
drhb00fc3b2013-08-21 23:42:32 +00001608 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001609 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001610 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001611 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001612 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001613 return SQLITE_OK;
1614}
1615
1616/*
danielk1977bea2a942009-01-20 17:06:27 +00001617** Retrieve a page from the pager cache. If the requested page is not
1618** already in the pager cache return NULL. Initialize the MemPage.pBt and
1619** MemPage.aData elements if needed.
1620*/
1621static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1622 DbPage *pDbPage;
1623 assert( sqlite3_mutex_held(pBt->mutex) );
1624 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1625 if( pDbPage ){
1626 return btreePageFromDbPage(pDbPage, pgno, pBt);
1627 }
1628 return 0;
1629}
1630
1631/*
danielk197789d40042008-11-17 14:20:56 +00001632** Return the size of the database file in pages. If there is any kind of
1633** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001634*/
drhb1299152010-03-30 22:58:33 +00001635static Pgno btreePagecount(BtShared *pBt){
1636 return pBt->nPage;
1637}
1638u32 sqlite3BtreeLastPage(Btree *p){
1639 assert( sqlite3BtreeHoldsMutex(p) );
1640 assert( ((p->pBt->nPage)&0x8000000)==0 );
1641 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001642}
1643
1644/*
danielk197789bc4bc2009-07-21 19:25:24 +00001645** Get a page from the pager and initialize it. This routine is just a
1646** convenience wrapper around separate calls to btreeGetPage() and
1647** btreeInitPage().
1648**
1649** If an error occurs, then the value *ppPage is set to is undefined. It
1650** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001651*/
1652static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001653 BtShared *pBt, /* The database file */
1654 Pgno pgno, /* Number of the page to get */
1655 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001656 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001657){
1658 int rc;
drh1fee73e2007-08-29 04:00:57 +00001659 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001660 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001661
danba3cbf32010-06-30 04:29:03 +00001662 if( pgno>btreePagecount(pBt) ){
1663 rc = SQLITE_CORRUPT_BKPT;
1664 }else{
drhb00fc3b2013-08-21 23:42:32 +00001665 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001666 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001667 rc = btreeInitPage(*ppPage);
1668 if( rc!=SQLITE_OK ){
1669 releasePage(*ppPage);
1670 }
danielk197789bc4bc2009-07-21 19:25:24 +00001671 }
drhee696e22004-08-30 16:52:17 +00001672 }
danba3cbf32010-06-30 04:29:03 +00001673
1674 testcase( pgno==0 );
1675 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001676 return rc;
1677}
1678
1679/*
drh3aac2dd2004-04-26 14:10:20 +00001680** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001681** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001682*/
drh4b70f112004-05-02 21:12:19 +00001683static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001684 if( pPage ){
1685 assert( pPage->aData );
1686 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001687 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001688 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1689 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001690 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001691 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001692 }
1693}
1694
1695/*
drha6abd042004-06-09 17:37:22 +00001696** During a rollback, when the pager reloads information into the cache
1697** so that the cache is restored to its original state at the start of
1698** the transaction, for each page restored this routine is called.
1699**
1700** This routine needs to reset the extra data section at the end of the
1701** page to agree with the restored data.
1702*/
danielk1977eaa06f62008-09-18 17:34:44 +00001703static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001704 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001705 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001706 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001707 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001708 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001709 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001710 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001711 /* pPage might not be a btree page; it might be an overflow page
1712 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001713 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001714 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001715 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001716 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001717 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001718 }
drha6abd042004-06-09 17:37:22 +00001719 }
1720}
1721
1722/*
drhe5fe6902007-12-07 18:55:28 +00001723** Invoke the busy handler for a btree.
1724*/
danielk19771ceedd32008-11-19 10:22:33 +00001725static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001726 BtShared *pBt = (BtShared*)pArg;
1727 assert( pBt->db );
1728 assert( sqlite3_mutex_held(pBt->db->mutex) );
1729 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1730}
1731
1732/*
drhad3e0102004-09-03 23:32:18 +00001733** Open a database file.
1734**
drh382c0242001-10-06 16:33:02 +00001735** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001736** then an ephemeral database is created. The ephemeral database might
1737** be exclusively in memory, or it might use a disk-based memory cache.
1738** Either way, the ephemeral database will be automatically deleted
1739** when sqlite3BtreeClose() is called.
1740**
drhe53831d2007-08-17 01:14:38 +00001741** If zFilename is ":memory:" then an in-memory database is created
1742** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001743**
drh33f111d2012-01-17 15:29:14 +00001744** The "flags" parameter is a bitmask that might contain bits like
1745** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001746**
drhc47fd8e2009-04-30 13:30:32 +00001747** If the database is already opened in the same database connection
1748** and we are in shared cache mode, then the open will fail with an
1749** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1750** objects in the same database connection since doing so will lead
1751** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001752*/
drh23e11ca2004-05-04 17:27:28 +00001753int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001754 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001755 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001756 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001757 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001758 int flags, /* Options */
1759 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001760){
drh7555d8e2009-03-20 13:15:30 +00001761 BtShared *pBt = 0; /* Shared part of btree structure */
1762 Btree *p; /* Handle to return */
1763 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1764 int rc = SQLITE_OK; /* Result code from this function */
1765 u8 nReserve; /* Byte of unused space on each page */
1766 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001767
drh75c014c2010-08-30 15:02:28 +00001768 /* True if opening an ephemeral, temporary database */
1769 const int isTempDb = zFilename==0 || zFilename[0]==0;
1770
danielk1977aef0bf62005-12-30 16:28:01 +00001771 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001772 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001773 */
drhb0a7c9c2010-12-06 21:09:59 +00001774#ifdef SQLITE_OMIT_MEMORYDB
1775 const int isMemdb = 0;
1776#else
1777 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001778 || (isTempDb && sqlite3TempInMemory(db))
1779 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001780#endif
1781
drhe5fe6902007-12-07 18:55:28 +00001782 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001783 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001784 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001785 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1786
1787 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1788 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1789
1790 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1791 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001792
drh75c014c2010-08-30 15:02:28 +00001793 if( isMemdb ){
1794 flags |= BTREE_MEMORY;
1795 }
1796 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1797 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1798 }
drh17435752007-08-16 04:30:38 +00001799 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001800 if( !p ){
1801 return SQLITE_NOMEM;
1802 }
1803 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001804 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001805#ifndef SQLITE_OMIT_SHARED_CACHE
1806 p->lock.pBtree = p;
1807 p->lock.iTable = 1;
1808#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001809
drh198bf392006-01-06 21:52:49 +00001810#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001811 /*
1812 ** If this Btree is a candidate for shared cache, try to find an
1813 ** existing BtShared object that we can share with
1814 */
drh4ab9d252012-05-26 20:08:49 +00001815 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001816 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001817 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001818 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001819 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001820 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001821 if( !zFullPathname ){
1822 sqlite3_free(p);
1823 return SQLITE_NOMEM;
1824 }
drhafc8b7f2012-05-26 18:06:38 +00001825 if( isMemdb ){
1826 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1827 }else{
1828 rc = sqlite3OsFullPathname(pVfs, zFilename,
1829 nFullPathname, zFullPathname);
1830 if( rc ){
1831 sqlite3_free(zFullPathname);
1832 sqlite3_free(p);
1833 return rc;
1834 }
drh070ad6b2011-11-17 11:43:19 +00001835 }
drh30ddce62011-10-15 00:16:30 +00001836#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001837 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1838 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001839 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001840 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001841#endif
drh78f82d12008-09-02 00:52:52 +00001842 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001843 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001844 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001845 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001846 int iDb;
1847 for(iDb=db->nDb-1; iDb>=0; iDb--){
1848 Btree *pExisting = db->aDb[iDb].pBt;
1849 if( pExisting && pExisting->pBt==pBt ){
1850 sqlite3_mutex_leave(mutexShared);
1851 sqlite3_mutex_leave(mutexOpen);
1852 sqlite3_free(zFullPathname);
1853 sqlite3_free(p);
1854 return SQLITE_CONSTRAINT;
1855 }
1856 }
drhff0587c2007-08-29 17:43:19 +00001857 p->pBt = pBt;
1858 pBt->nRef++;
1859 break;
1860 }
1861 }
1862 sqlite3_mutex_leave(mutexShared);
1863 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001864 }
drhff0587c2007-08-29 17:43:19 +00001865#ifdef SQLITE_DEBUG
1866 else{
1867 /* In debug mode, we mark all persistent databases as sharable
1868 ** even when they are not. This exercises the locking code and
1869 ** gives more opportunity for asserts(sqlite3_mutex_held())
1870 ** statements to find locking problems.
1871 */
1872 p->sharable = 1;
1873 }
1874#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001875 }
1876#endif
drha059ad02001-04-17 20:09:11 +00001877 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001878 /*
1879 ** The following asserts make sure that structures used by the btree are
1880 ** the right size. This is to guard against size changes that result
1881 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001882 */
drhe53831d2007-08-17 01:14:38 +00001883 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1884 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1885 assert( sizeof(u32)==4 );
1886 assert( sizeof(u16)==2 );
1887 assert( sizeof(Pgno)==4 );
1888
1889 pBt = sqlite3MallocZero( sizeof(*pBt) );
1890 if( pBt==0 ){
1891 rc = SQLITE_NOMEM;
1892 goto btree_open_out;
1893 }
danielk197771d5d2c2008-09-29 11:49:47 +00001894 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001895 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001896 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001897 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001898 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1899 }
1900 if( rc!=SQLITE_OK ){
1901 goto btree_open_out;
1902 }
shanehbd2aaf92010-09-01 02:38:21 +00001903 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001904 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001905 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001906 p->pBt = pBt;
1907
drhe53831d2007-08-17 01:14:38 +00001908 pBt->pCursor = 0;
1909 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001910 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001911#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001912 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001913#endif
drhb2eced52010-08-12 02:41:12 +00001914 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001915 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1916 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001917 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001918#ifndef SQLITE_OMIT_AUTOVACUUM
1919 /* If the magic name ":memory:" will create an in-memory database, then
1920 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1921 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1922 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1923 ** regular file-name. In this case the auto-vacuum applies as per normal.
1924 */
1925 if( zFilename && !isMemdb ){
1926 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1927 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1928 }
1929#endif
1930 nReserve = 0;
1931 }else{
1932 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001933 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001934#ifndef SQLITE_OMIT_AUTOVACUUM
1935 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1936 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1937#endif
1938 }
drhfa9601a2009-06-18 17:22:39 +00001939 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001940 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001941 pBt->usableSize = pBt->pageSize - nReserve;
1942 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001943
1944#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1945 /* Add the new BtShared object to the linked list sharable BtShareds.
1946 */
1947 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001948 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001949 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001950 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001951 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001952 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001953 if( pBt->mutex==0 ){
1954 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001955 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001956 goto btree_open_out;
1957 }
drhff0587c2007-08-29 17:43:19 +00001958 }
drhe53831d2007-08-17 01:14:38 +00001959 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001960 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1961 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001962 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001963 }
drheee46cf2004-11-06 00:02:48 +00001964#endif
drh90f5ecb2004-07-22 01:19:35 +00001965 }
danielk1977aef0bf62005-12-30 16:28:01 +00001966
drhcfed7bc2006-03-13 14:28:05 +00001967#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001968 /* If the new Btree uses a sharable pBtShared, then link the new
1969 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001970 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001971 */
drhe53831d2007-08-17 01:14:38 +00001972 if( p->sharable ){
1973 int i;
1974 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001975 for(i=0; i<db->nDb; i++){
1976 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001977 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1978 if( p->pBt<pSib->pBt ){
1979 p->pNext = pSib;
1980 p->pPrev = 0;
1981 pSib->pPrev = p;
1982 }else{
drhabddb0c2007-08-20 13:14:28 +00001983 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001984 pSib = pSib->pNext;
1985 }
1986 p->pNext = pSib->pNext;
1987 p->pPrev = pSib;
1988 if( p->pNext ){
1989 p->pNext->pPrev = p;
1990 }
1991 pSib->pNext = p;
1992 }
1993 break;
1994 }
1995 }
danielk1977aef0bf62005-12-30 16:28:01 +00001996 }
danielk1977aef0bf62005-12-30 16:28:01 +00001997#endif
1998 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001999
2000btree_open_out:
2001 if( rc!=SQLITE_OK ){
2002 if( pBt && pBt->pPager ){
2003 sqlite3PagerClose(pBt->pPager);
2004 }
drh17435752007-08-16 04:30:38 +00002005 sqlite3_free(pBt);
2006 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002007 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002008 }else{
2009 /* If the B-Tree was successfully opened, set the pager-cache size to the
2010 ** default value. Except, when opening on an existing shared pager-cache,
2011 ** do not change the pager-cache size.
2012 */
2013 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2014 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2015 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002016 }
drh7555d8e2009-03-20 13:15:30 +00002017 if( mutexOpen ){
2018 assert( sqlite3_mutex_held(mutexOpen) );
2019 sqlite3_mutex_leave(mutexOpen);
2020 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002021 return rc;
drha059ad02001-04-17 20:09:11 +00002022}
2023
2024/*
drhe53831d2007-08-17 01:14:38 +00002025** Decrement the BtShared.nRef counter. When it reaches zero,
2026** remove the BtShared structure from the sharing list. Return
2027** true if the BtShared.nRef counter reaches zero and return
2028** false if it is still positive.
2029*/
2030static int removeFromSharingList(BtShared *pBt){
2031#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002032 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002033 BtShared *pList;
2034 int removed = 0;
2035
drhd677b3d2007-08-20 22:48:41 +00002036 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002037 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002038 sqlite3_mutex_enter(pMaster);
2039 pBt->nRef--;
2040 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002041 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2042 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002043 }else{
drh78f82d12008-09-02 00:52:52 +00002044 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002045 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002046 pList=pList->pNext;
2047 }
drh34004ce2008-07-11 16:15:17 +00002048 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002049 pList->pNext = pBt->pNext;
2050 }
2051 }
drh3285db22007-09-03 22:00:39 +00002052 if( SQLITE_THREADSAFE ){
2053 sqlite3_mutex_free(pBt->mutex);
2054 }
drhe53831d2007-08-17 01:14:38 +00002055 removed = 1;
2056 }
2057 sqlite3_mutex_leave(pMaster);
2058 return removed;
2059#else
2060 return 1;
2061#endif
2062}
2063
2064/*
drhf7141992008-06-19 00:16:08 +00002065** Make sure pBt->pTmpSpace points to an allocation of
2066** MX_CELL_SIZE(pBt) bytes.
2067*/
2068static void allocateTempSpace(BtShared *pBt){
2069 if( !pBt->pTmpSpace ){
2070 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002071
2072 /* One of the uses of pBt->pTmpSpace is to format cells before
2073 ** inserting them into a leaf page (function fillInCell()). If
2074 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2075 ** by the various routines that manipulate binary cells. Which
2076 ** can mean that fillInCell() only initializes the first 2 or 3
2077 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2078 ** it into a database page. This is not actually a problem, but it
2079 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2080 ** data is passed to system call write(). So to avoid this error,
2081 ** zero the first 4 bytes of temp space here. */
2082 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002083 }
2084}
2085
2086/*
2087** Free the pBt->pTmpSpace allocation
2088*/
2089static void freeTempSpace(BtShared *pBt){
2090 sqlite3PageFree( pBt->pTmpSpace);
2091 pBt->pTmpSpace = 0;
2092}
2093
2094/*
drha059ad02001-04-17 20:09:11 +00002095** Close an open database and invalidate all cursors.
2096*/
danielk1977aef0bf62005-12-30 16:28:01 +00002097int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002098 BtShared *pBt = p->pBt;
2099 BtCursor *pCur;
2100
danielk1977aef0bf62005-12-30 16:28:01 +00002101 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002102 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002103 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002104 pCur = pBt->pCursor;
2105 while( pCur ){
2106 BtCursor *pTmp = pCur;
2107 pCur = pCur->pNext;
2108 if( pTmp->pBtree==p ){
2109 sqlite3BtreeCloseCursor(pTmp);
2110 }
drha059ad02001-04-17 20:09:11 +00002111 }
danielk1977aef0bf62005-12-30 16:28:01 +00002112
danielk19778d34dfd2006-01-24 16:37:57 +00002113 /* Rollback any active transaction and free the handle structure.
2114 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2115 ** this handle.
2116 */
drh0f198a72012-02-13 16:43:16 +00002117 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002118 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002119
danielk1977aef0bf62005-12-30 16:28:01 +00002120 /* If there are still other outstanding references to the shared-btree
2121 ** structure, return now. The remainder of this procedure cleans
2122 ** up the shared-btree.
2123 */
drhe53831d2007-08-17 01:14:38 +00002124 assert( p->wantToLock==0 && p->locked==0 );
2125 if( !p->sharable || removeFromSharingList(pBt) ){
2126 /* The pBt is no longer on the sharing list, so we can access
2127 ** it without having to hold the mutex.
2128 **
2129 ** Clean out and delete the BtShared object.
2130 */
2131 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002132 sqlite3PagerClose(pBt->pPager);
2133 if( pBt->xFreeSchema && pBt->pSchema ){
2134 pBt->xFreeSchema(pBt->pSchema);
2135 }
drhb9755982010-07-24 16:34:37 +00002136 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002137 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002138 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002139 }
2140
drhe53831d2007-08-17 01:14:38 +00002141#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002142 assert( p->wantToLock==0 );
2143 assert( p->locked==0 );
2144 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2145 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002146#endif
2147
drhe53831d2007-08-17 01:14:38 +00002148 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002149 return SQLITE_OK;
2150}
2151
2152/*
drhda47d772002-12-02 04:25:19 +00002153** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002154**
2155** The maximum number of cache pages is set to the absolute
2156** value of mxPage. If mxPage is negative, the pager will
2157** operate asynchronously - it will not stop to do fsync()s
2158** to insure data is written to the disk surface before
2159** continuing. Transactions still work if synchronous is off,
2160** and the database cannot be corrupted if this program
2161** crashes. But if the operating system crashes or there is
2162** an abrupt power failure when synchronous is off, the database
2163** could be left in an inconsistent and unrecoverable state.
2164** Synchronous is on by default so database corruption is not
2165** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002166*/
danielk1977aef0bf62005-12-30 16:28:01 +00002167int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2168 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002169 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002170 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002171 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002172 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002173 return SQLITE_OK;
2174}
2175
drh18c7e402014-03-14 11:46:10 +00002176#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002177/*
dan5d8a1372013-03-19 19:28:06 +00002178** Change the limit on the amount of the database file that may be
2179** memory mapped.
2180*/
drh9b4c59f2013-04-15 17:03:42 +00002181int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002182 BtShared *pBt = p->pBt;
2183 assert( sqlite3_mutex_held(p->db->mutex) );
2184 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002185 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002186 sqlite3BtreeLeave(p);
2187 return SQLITE_OK;
2188}
drh18c7e402014-03-14 11:46:10 +00002189#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002190
2191/*
drh973b6e32003-02-12 14:09:42 +00002192** Change the way data is synced to disk in order to increase or decrease
2193** how well the database resists damage due to OS crashes and power
2194** failures. Level 1 is the same as asynchronous (no syncs() occur and
2195** there is a high probability of damage) Level 2 is the default. There
2196** is a very low but non-zero probability of damage. Level 3 reduces the
2197** probability of damage to near zero but with a write performance reduction.
2198*/
danielk197793758c82005-01-21 08:13:14 +00002199#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002200int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002201 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002202 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002203){
danielk1977aef0bf62005-12-30 16:28:01 +00002204 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002205 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002206 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002207 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002208 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002209 return SQLITE_OK;
2210}
danielk197793758c82005-01-21 08:13:14 +00002211#endif
drh973b6e32003-02-12 14:09:42 +00002212
drh2c8997b2005-08-27 16:36:48 +00002213/*
2214** Return TRUE if the given btree is set to safety level 1. In other
2215** words, return TRUE if no sync() occurs on the disk files.
2216*/
danielk1977aef0bf62005-12-30 16:28:01 +00002217int sqlite3BtreeSyncDisabled(Btree *p){
2218 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002219 int rc;
drhe5fe6902007-12-07 18:55:28 +00002220 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002221 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002222 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002223 rc = sqlite3PagerNosync(pBt->pPager);
2224 sqlite3BtreeLeave(p);
2225 return rc;
drh2c8997b2005-08-27 16:36:48 +00002226}
2227
drh973b6e32003-02-12 14:09:42 +00002228/*
drh90f5ecb2004-07-22 01:19:35 +00002229** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002230** Or, if the page size has already been fixed, return SQLITE_READONLY
2231** without changing anything.
drh06f50212004-11-02 14:24:33 +00002232**
2233** The page size must be a power of 2 between 512 and 65536. If the page
2234** size supplied does not meet this constraint then the page size is not
2235** changed.
2236**
2237** Page sizes are constrained to be a power of two so that the region
2238** of the database file used for locking (beginning at PENDING_BYTE,
2239** the first byte past the 1GB boundary, 0x40000000) needs to occur
2240** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002241**
2242** If parameter nReserve is less than zero, then the number of reserved
2243** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002244**
drhc9166342012-01-05 23:32:06 +00002245** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002246** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002247*/
drhce4869f2009-04-02 20:16:58 +00002248int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002249 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002250 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002251 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002252 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002253 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002254 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002255 return SQLITE_READONLY;
2256 }
2257 if( nReserve<0 ){
2258 nReserve = pBt->pageSize - pBt->usableSize;
2259 }
drhf49661a2008-12-10 16:45:50 +00002260 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002261 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2262 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002263 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002264 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002265 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002266 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002267 }
drhfa9601a2009-06-18 17:22:39 +00002268 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002269 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002270 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002271 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002272 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002273}
2274
2275/*
2276** Return the currently defined page size
2277*/
danielk1977aef0bf62005-12-30 16:28:01 +00002278int sqlite3BtreeGetPageSize(Btree *p){
2279 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002280}
drh7f751222009-03-17 22:33:00 +00002281
drha1f38532012-10-01 12:44:26 +00002282#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002283/*
2284** This function is similar to sqlite3BtreeGetReserve(), except that it
2285** may only be called if it is guaranteed that the b-tree mutex is already
2286** held.
2287**
2288** This is useful in one special case in the backup API code where it is
2289** known that the shared b-tree mutex is held, but the mutex on the
2290** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2291** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002292** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002293*/
2294int sqlite3BtreeGetReserveNoMutex(Btree *p){
2295 assert( sqlite3_mutex_held(p->pBt->mutex) );
2296 return p->pBt->pageSize - p->pBt->usableSize;
2297}
drha1f38532012-10-01 12:44:26 +00002298#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002299
danbb2b4412011-04-06 17:54:31 +00002300#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002301/*
2302** Return the number of bytes of space at the end of every page that
2303** are intentually left unused. This is the "reserved" space that is
2304** sometimes used by extensions.
2305*/
danielk1977aef0bf62005-12-30 16:28:01 +00002306int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002307 int n;
2308 sqlite3BtreeEnter(p);
2309 n = p->pBt->pageSize - p->pBt->usableSize;
2310 sqlite3BtreeLeave(p);
2311 return n;
drh2011d5f2004-07-22 02:40:37 +00002312}
drhf8e632b2007-05-08 14:51:36 +00002313
2314/*
2315** Set the maximum page count for a database if mxPage is positive.
2316** No changes are made if mxPage is 0 or negative.
2317** Regardless of the value of mxPage, return the maximum page count.
2318*/
2319int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002320 int n;
2321 sqlite3BtreeEnter(p);
2322 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2323 sqlite3BtreeLeave(p);
2324 return n;
drhf8e632b2007-05-08 14:51:36 +00002325}
drh5b47efa2010-02-12 18:18:39 +00002326
2327/*
drhc9166342012-01-05 23:32:06 +00002328** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2329** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002330** setting after the change.
2331*/
2332int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2333 int b;
drhaf034ed2010-02-12 19:46:26 +00002334 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002335 sqlite3BtreeEnter(p);
2336 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002337 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2338 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002339 }
drhc9166342012-01-05 23:32:06 +00002340 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002341 sqlite3BtreeLeave(p);
2342 return b;
2343}
danielk1977576ec6b2005-01-21 11:55:25 +00002344#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002345
2346/*
danielk1977951af802004-11-05 15:45:09 +00002347** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2348** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2349** is disabled. The default value for the auto-vacuum property is
2350** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2351*/
danielk1977aef0bf62005-12-30 16:28:01 +00002352int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002353#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002354 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002355#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002356 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002357 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002358 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002359
2360 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002361 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002362 rc = SQLITE_READONLY;
2363 }else{
drh076d4662009-02-18 20:31:18 +00002364 pBt->autoVacuum = av ?1:0;
2365 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002366 }
drhd677b3d2007-08-20 22:48:41 +00002367 sqlite3BtreeLeave(p);
2368 return rc;
danielk1977951af802004-11-05 15:45:09 +00002369#endif
2370}
2371
2372/*
2373** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2374** enabled 1 is returned. Otherwise 0.
2375*/
danielk1977aef0bf62005-12-30 16:28:01 +00002376int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002377#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002378 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002379#else
drhd677b3d2007-08-20 22:48:41 +00002380 int rc;
2381 sqlite3BtreeEnter(p);
2382 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002383 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2384 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2385 BTREE_AUTOVACUUM_INCR
2386 );
drhd677b3d2007-08-20 22:48:41 +00002387 sqlite3BtreeLeave(p);
2388 return rc;
danielk1977951af802004-11-05 15:45:09 +00002389#endif
2390}
2391
2392
2393/*
drha34b6762004-05-07 13:30:42 +00002394** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002395** also acquire a readlock on that file.
2396**
2397** SQLITE_OK is returned on success. If the file is not a
2398** well-formed database file, then SQLITE_CORRUPT is returned.
2399** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002400** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002401*/
danielk1977aef0bf62005-12-30 16:28:01 +00002402static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002403 int rc; /* Result code from subfunctions */
2404 MemPage *pPage1; /* Page 1 of the database file */
2405 int nPage; /* Number of pages in the database */
2406 int nPageFile = 0; /* Number of pages in the database file */
2407 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002408
drh1fee73e2007-08-29 04:00:57 +00002409 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002410 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002411 rc = sqlite3PagerSharedLock(pBt->pPager);
2412 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002413 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002414 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002415
2416 /* Do some checking to help insure the file we opened really is
2417 ** a valid database file.
2418 */
drhc2a4bab2010-04-02 12:46:45 +00002419 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002420 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002421 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002422 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002423 }
2424 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002425 u32 pageSize;
2426 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002427 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002428 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002429 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002430 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002431 }
dan5cf53532010-05-01 16:40:20 +00002432
2433#ifdef SQLITE_OMIT_WAL
2434 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002435 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002436 }
2437 if( page1[19]>1 ){
2438 goto page1_init_failed;
2439 }
2440#else
dane04dc882010-04-20 18:53:15 +00002441 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002442 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002443 }
dane04dc882010-04-20 18:53:15 +00002444 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002445 goto page1_init_failed;
2446 }
drhe5ae5732008-06-15 02:51:47 +00002447
dana470aeb2010-04-21 11:43:38 +00002448 /* If the write version is set to 2, this database should be accessed
2449 ** in WAL mode. If the log is not already open, open it now. Then
2450 ** return SQLITE_OK and return without populating BtShared.pPage1.
2451 ** The caller detects this and calls this function again. This is
2452 ** required as the version of page 1 currently in the page1 buffer
2453 ** may not be the latest version - there may be a newer one in the log
2454 ** file.
2455 */
drhc9166342012-01-05 23:32:06 +00002456 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002457 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002458 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002459 if( rc!=SQLITE_OK ){
2460 goto page1_init_failed;
2461 }else if( isOpen==0 ){
2462 releasePage(pPage1);
2463 return SQLITE_OK;
2464 }
dan8b5444b2010-04-27 14:37:47 +00002465 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002466 }
dan5cf53532010-05-01 16:40:20 +00002467#endif
dane04dc882010-04-20 18:53:15 +00002468
drhe5ae5732008-06-15 02:51:47 +00002469 /* The maximum embedded fraction must be exactly 25%. And the minimum
2470 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2471 ** The original design allowed these amounts to vary, but as of
2472 ** version 3.6.0, we require them to be fixed.
2473 */
2474 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2475 goto page1_init_failed;
2476 }
drhb2eced52010-08-12 02:41:12 +00002477 pageSize = (page1[16]<<8) | (page1[17]<<16);
2478 if( ((pageSize-1)&pageSize)!=0
2479 || pageSize>SQLITE_MAX_PAGE_SIZE
2480 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002481 ){
drh07d183d2005-05-01 22:52:42 +00002482 goto page1_init_failed;
2483 }
2484 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002485 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002486 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002487 /* After reading the first page of the database assuming a page size
2488 ** of BtShared.pageSize, we have discovered that the page-size is
2489 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2490 ** zero and return SQLITE_OK. The caller will call this function
2491 ** again with the correct page-size.
2492 */
2493 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002494 pBt->usableSize = usableSize;
2495 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002496 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002497 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2498 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002499 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002500 }
danecac6702011-02-09 18:19:20 +00002501 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002502 rc = SQLITE_CORRUPT_BKPT;
2503 goto page1_init_failed;
2504 }
drhb33e1b92009-06-18 11:29:20 +00002505 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002506 goto page1_init_failed;
2507 }
drh43b18e12010-08-17 19:40:08 +00002508 pBt->pageSize = pageSize;
2509 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002510#ifndef SQLITE_OMIT_AUTOVACUUM
2511 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002512 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002513#endif
drh306dc212001-05-21 13:45:10 +00002514 }
drhb6f41482004-05-14 01:58:11 +00002515
2516 /* maxLocal is the maximum amount of payload to store locally for
2517 ** a cell. Make sure it is small enough so that at least minFanout
2518 ** cells can will fit on one page. We assume a 10-byte page header.
2519 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002520 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002521 ** 4-byte child pointer
2522 ** 9-byte nKey value
2523 ** 4-byte nData value
2524 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002525 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002526 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2527 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002528 */
shaneh1df2db72010-08-18 02:28:48 +00002529 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2530 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2531 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2532 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002533 if( pBt->maxLocal>127 ){
2534 pBt->max1bytePayload = 127;
2535 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002536 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002537 }
drh2e38c322004-09-03 18:38:44 +00002538 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002539 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002540 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002541 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002542
drh72f82862001-05-24 21:06:34 +00002543page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002544 releasePage(pPage1);
2545 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002546 return rc;
drh306dc212001-05-21 13:45:10 +00002547}
2548
drh85ec3b62013-05-14 23:12:06 +00002549#ifndef NDEBUG
2550/*
2551** Return the number of cursors open on pBt. This is for use
2552** in assert() expressions, so it is only compiled if NDEBUG is not
2553** defined.
2554**
2555** Only write cursors are counted if wrOnly is true. If wrOnly is
2556** false then all cursors are counted.
2557**
2558** For the purposes of this routine, a cursor is any cursor that
2559** is capable of reading or writing to the databse. Cursors that
2560** have been tripped into the CURSOR_FAULT state are not counted.
2561*/
2562static int countValidCursors(BtShared *pBt, int wrOnly){
2563 BtCursor *pCur;
2564 int r = 0;
2565 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2566 if( (wrOnly==0 || pCur->wrFlag) && pCur->eState!=CURSOR_FAULT ) r++;
2567 }
2568 return r;
2569}
2570#endif
2571
drh306dc212001-05-21 13:45:10 +00002572/*
drhb8ca3072001-12-05 00:21:20 +00002573** If there are no outstanding cursors and we are not in the middle
2574** of a transaction but there is a read lock on the database, then
2575** this routine unrefs the first page of the database file which
2576** has the effect of releasing the read lock.
2577**
drhb8ca3072001-12-05 00:21:20 +00002578** If there is a transaction in progress, this routine is a no-op.
2579*/
danielk1977aef0bf62005-12-30 16:28:01 +00002580static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002581 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002582 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002583 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002584 assert( pBt->pPage1->aData );
2585 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2586 assert( pBt->pPage1->aData );
2587 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002588 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002589 }
2590}
2591
2592/*
drhe39f2f92009-07-23 01:43:59 +00002593** If pBt points to an empty file then convert that empty file
2594** into a new empty database by initializing the first page of
2595** the database.
drh8b2f49b2001-06-08 00:21:52 +00002596*/
danielk1977aef0bf62005-12-30 16:28:01 +00002597static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002598 MemPage *pP1;
2599 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002600 int rc;
drhd677b3d2007-08-20 22:48:41 +00002601
drh1fee73e2007-08-29 04:00:57 +00002602 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002603 if( pBt->nPage>0 ){
2604 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002605 }
drh3aac2dd2004-04-26 14:10:20 +00002606 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002607 assert( pP1!=0 );
2608 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002609 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002610 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002611 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2612 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002613 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2614 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002615 data[18] = 1;
2616 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002617 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2618 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002619 data[21] = 64;
2620 data[22] = 32;
2621 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002622 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002623 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002624 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002625#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002626 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002627 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002628 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002629 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002630#endif
drhdd3cd972010-03-27 17:12:36 +00002631 pBt->nPage = 1;
2632 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002633 return SQLITE_OK;
2634}
2635
2636/*
danb483eba2012-10-13 19:58:11 +00002637** Initialize the first page of the database file (creating a database
2638** consisting of a single page and no schema objects). Return SQLITE_OK
2639** if successful, or an SQLite error code otherwise.
2640*/
2641int sqlite3BtreeNewDb(Btree *p){
2642 int rc;
2643 sqlite3BtreeEnter(p);
2644 p->pBt->nPage = 0;
2645 rc = newDatabase(p->pBt);
2646 sqlite3BtreeLeave(p);
2647 return rc;
2648}
2649
2650/*
danielk1977ee5741e2004-05-31 10:01:34 +00002651** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002652** is started if the second argument is nonzero, otherwise a read-
2653** transaction. If the second argument is 2 or more and exclusive
2654** transaction is started, meaning that no other process is allowed
2655** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002656** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002657** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002658**
danielk1977ee5741e2004-05-31 10:01:34 +00002659** A write-transaction must be started before attempting any
2660** changes to the database. None of the following routines
2661** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002662**
drh23e11ca2004-05-04 17:27:28 +00002663** sqlite3BtreeCreateTable()
2664** sqlite3BtreeCreateIndex()
2665** sqlite3BtreeClearTable()
2666** sqlite3BtreeDropTable()
2667** sqlite3BtreeInsert()
2668** sqlite3BtreeDelete()
2669** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002670**
drhb8ef32c2005-03-14 02:01:49 +00002671** If an initial attempt to acquire the lock fails because of lock contention
2672** and the database was previously unlocked, then invoke the busy handler
2673** if there is one. But if there was previously a read-lock, do not
2674** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2675** returned when there is already a read-lock in order to avoid a deadlock.
2676**
2677** Suppose there are two processes A and B. A has a read lock and B has
2678** a reserved lock. B tries to promote to exclusive but is blocked because
2679** of A's read lock. A tries to promote to reserved but is blocked by B.
2680** One or the other of the two processes must give way or there can be
2681** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2682** when A already has a read lock, we encourage A to give up and let B
2683** proceed.
drha059ad02001-04-17 20:09:11 +00002684*/
danielk1977aef0bf62005-12-30 16:28:01 +00002685int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002686 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002687 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002688 int rc = SQLITE_OK;
2689
drhd677b3d2007-08-20 22:48:41 +00002690 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002691 btreeIntegrity(p);
2692
danielk1977ee5741e2004-05-31 10:01:34 +00002693 /* If the btree is already in a write-transaction, or it
2694 ** is already in a read-transaction and a read-transaction
2695 ** is requested, this is a no-op.
2696 */
danielk1977aef0bf62005-12-30 16:28:01 +00002697 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002698 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002699 }
dan56c517a2013-09-26 11:04:33 +00002700 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002701
2702 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002703 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002704 rc = SQLITE_READONLY;
2705 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002706 }
2707
danielk1977404ca072009-03-16 13:19:36 +00002708#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002709 /* If another database handle has already opened a write transaction
2710 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002711 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002712 */
drhc9166342012-01-05 23:32:06 +00002713 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2714 || (pBt->btsFlags & BTS_PENDING)!=0
2715 ){
danielk1977404ca072009-03-16 13:19:36 +00002716 pBlock = pBt->pWriter->db;
2717 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002718 BtLock *pIter;
2719 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2720 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002721 pBlock = pIter->pBtree->db;
2722 break;
danielk1977641b0f42007-12-21 04:47:25 +00002723 }
2724 }
2725 }
danielk1977404ca072009-03-16 13:19:36 +00002726 if( pBlock ){
2727 sqlite3ConnectionBlocked(p->db, pBlock);
2728 rc = SQLITE_LOCKED_SHAREDCACHE;
2729 goto trans_begun;
2730 }
danielk1977641b0f42007-12-21 04:47:25 +00002731#endif
2732
danielk1977602b4662009-07-02 07:47:33 +00002733 /* Any read-only or read-write transaction implies a read-lock on
2734 ** page 1. So if some other shared-cache client already has a write-lock
2735 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002736 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2737 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002738
drhc9166342012-01-05 23:32:06 +00002739 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2740 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002741 do {
danielk1977295dc102009-04-01 19:07:03 +00002742 /* Call lockBtree() until either pBt->pPage1 is populated or
2743 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2744 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2745 ** reading page 1 it discovers that the page-size of the database
2746 ** file is not pBt->pageSize. In this case lockBtree() will update
2747 ** pBt->pageSize to the page-size of the file on disk.
2748 */
2749 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002750
drhb8ef32c2005-03-14 02:01:49 +00002751 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002752 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002753 rc = SQLITE_READONLY;
2754 }else{
danielk1977d8293352009-04-30 09:10:37 +00002755 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002756 if( rc==SQLITE_OK ){
2757 rc = newDatabase(pBt);
2758 }
drhb8ef32c2005-03-14 02:01:49 +00002759 }
2760 }
2761
danielk1977bd434552009-03-18 10:33:00 +00002762 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002763 unlockBtreeIfUnused(pBt);
2764 }
danf9b76712010-06-01 14:12:45 +00002765 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002766 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002767
2768 if( rc==SQLITE_OK ){
2769 if( p->inTrans==TRANS_NONE ){
2770 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002771#ifndef SQLITE_OMIT_SHARED_CACHE
2772 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002773 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002774 p->lock.eLock = READ_LOCK;
2775 p->lock.pNext = pBt->pLock;
2776 pBt->pLock = &p->lock;
2777 }
2778#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002779 }
2780 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2781 if( p->inTrans>pBt->inTransaction ){
2782 pBt->inTransaction = p->inTrans;
2783 }
danielk1977404ca072009-03-16 13:19:36 +00002784 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002785 MemPage *pPage1 = pBt->pPage1;
2786#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002787 assert( !pBt->pWriter );
2788 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002789 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2790 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002791#endif
dan59257dc2010-08-04 11:34:31 +00002792
2793 /* If the db-size header field is incorrect (as it may be if an old
2794 ** client has been writing the database file), update it now. Doing
2795 ** this sooner rather than later means the database size can safely
2796 ** re-read the database size from page 1 if a savepoint or transaction
2797 ** rollback occurs within the transaction.
2798 */
2799 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2800 rc = sqlite3PagerWrite(pPage1->pDbPage);
2801 if( rc==SQLITE_OK ){
2802 put4byte(&pPage1->aData[28], pBt->nPage);
2803 }
2804 }
2805 }
danielk1977aef0bf62005-12-30 16:28:01 +00002806 }
2807
drhd677b3d2007-08-20 22:48:41 +00002808
2809trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002810 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002811 /* This call makes sure that the pager has the correct number of
2812 ** open savepoints. If the second parameter is greater than 0 and
2813 ** the sub-journal is not already open, then it will be opened here.
2814 */
danielk1977fd7f0452008-12-17 17:30:26 +00002815 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2816 }
danielk197712dd5492008-12-18 15:45:07 +00002817
danielk1977aef0bf62005-12-30 16:28:01 +00002818 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002819 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002820 return rc;
drha059ad02001-04-17 20:09:11 +00002821}
2822
danielk1977687566d2004-11-02 12:56:41 +00002823#ifndef SQLITE_OMIT_AUTOVACUUM
2824
2825/*
2826** Set the pointer-map entries for all children of page pPage. Also, if
2827** pPage contains cells that point to overflow pages, set the pointer
2828** map entries for the overflow pages as well.
2829*/
2830static int setChildPtrmaps(MemPage *pPage){
2831 int i; /* Counter variable */
2832 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002833 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002834 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002835 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002836 Pgno pgno = pPage->pgno;
2837
drh1fee73e2007-08-29 04:00:57 +00002838 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002839 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002840 if( rc!=SQLITE_OK ){
2841 goto set_child_ptrmaps_out;
2842 }
danielk1977687566d2004-11-02 12:56:41 +00002843 nCell = pPage->nCell;
2844
2845 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002846 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002847
drh98add2e2009-07-20 17:11:49 +00002848 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002849
danielk1977687566d2004-11-02 12:56:41 +00002850 if( !pPage->leaf ){
2851 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002852 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002853 }
2854 }
2855
2856 if( !pPage->leaf ){
2857 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002858 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002859 }
2860
2861set_child_ptrmaps_out:
2862 pPage->isInit = isInitOrig;
2863 return rc;
2864}
2865
2866/*
drhf3aed592009-07-08 18:12:49 +00002867** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2868** that it points to iTo. Parameter eType describes the type of pointer to
2869** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002870**
2871** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2872** page of pPage.
2873**
2874** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2875** page pointed to by one of the cells on pPage.
2876**
2877** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2878** overflow page in the list.
2879*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002880static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002881 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002882 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002883 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002884 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002885 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002886 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002887 }
danielk1977f78fc082004-11-02 14:40:32 +00002888 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002889 }else{
drhf49661a2008-12-10 16:45:50 +00002890 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002891 int i;
2892 int nCell;
2893
danielk197730548662009-07-09 05:07:37 +00002894 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002895 nCell = pPage->nCell;
2896
danielk1977687566d2004-11-02 12:56:41 +00002897 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002898 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002899 if( eType==PTRMAP_OVERFLOW1 ){
2900 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002901 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002902 if( info.iOverflow
2903 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2904 && iFrom==get4byte(&pCell[info.iOverflow])
2905 ){
2906 put4byte(&pCell[info.iOverflow], iTo);
2907 break;
danielk1977687566d2004-11-02 12:56:41 +00002908 }
2909 }else{
2910 if( get4byte(pCell)==iFrom ){
2911 put4byte(pCell, iTo);
2912 break;
2913 }
2914 }
2915 }
2916
2917 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002918 if( eType!=PTRMAP_BTREE ||
2919 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002920 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002921 }
danielk1977687566d2004-11-02 12:56:41 +00002922 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2923 }
2924
2925 pPage->isInit = isInitOrig;
2926 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002927 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002928}
2929
danielk1977003ba062004-11-04 02:57:33 +00002930
danielk19777701e812005-01-10 12:59:51 +00002931/*
2932** Move the open database page pDbPage to location iFreePage in the
2933** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002934**
2935** The isCommit flag indicates that there is no need to remember that
2936** the journal needs to be sync()ed before database page pDbPage->pgno
2937** can be written to. The caller has already promised not to write to that
2938** page.
danielk19777701e812005-01-10 12:59:51 +00002939*/
danielk1977003ba062004-11-04 02:57:33 +00002940static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002941 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002942 MemPage *pDbPage, /* Open page to move */
2943 u8 eType, /* Pointer map 'type' entry for pDbPage */
2944 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002945 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002946 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002947){
2948 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2949 Pgno iDbPage = pDbPage->pgno;
2950 Pager *pPager = pBt->pPager;
2951 int rc;
2952
danielk1977a0bf2652004-11-04 14:30:04 +00002953 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2954 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002955 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002956 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002957
drh85b623f2007-12-13 21:54:09 +00002958 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002959 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2960 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002961 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002962 if( rc!=SQLITE_OK ){
2963 return rc;
2964 }
2965 pDbPage->pgno = iFreePage;
2966
2967 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2968 ** that point to overflow pages. The pointer map entries for all these
2969 ** pages need to be changed.
2970 **
2971 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2972 ** pointer to a subsequent overflow page. If this is the case, then
2973 ** the pointer map needs to be updated for the subsequent overflow page.
2974 */
danielk1977a0bf2652004-11-04 14:30:04 +00002975 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002976 rc = setChildPtrmaps(pDbPage);
2977 if( rc!=SQLITE_OK ){
2978 return rc;
2979 }
2980 }else{
2981 Pgno nextOvfl = get4byte(pDbPage->aData);
2982 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002983 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002984 if( rc!=SQLITE_OK ){
2985 return rc;
2986 }
2987 }
2988 }
2989
2990 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2991 ** that it points at iFreePage. Also fix the pointer map entry for
2992 ** iPtrPage.
2993 */
danielk1977a0bf2652004-11-04 14:30:04 +00002994 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00002995 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002996 if( rc!=SQLITE_OK ){
2997 return rc;
2998 }
danielk19773b8a05f2007-03-19 17:44:26 +00002999 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003000 if( rc!=SQLITE_OK ){
3001 releasePage(pPtrPage);
3002 return rc;
3003 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003004 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003005 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003006 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003007 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003008 }
danielk1977003ba062004-11-04 02:57:33 +00003009 }
danielk1977003ba062004-11-04 02:57:33 +00003010 return rc;
3011}
3012
danielk1977dddbcdc2007-04-26 14:42:34 +00003013/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003014static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003015
3016/*
dan51f0b6d2013-02-22 20:16:34 +00003017** Perform a single step of an incremental-vacuum. If successful, return
3018** SQLITE_OK. If there is no work to do (and therefore no point in
3019** calling this function again), return SQLITE_DONE. Or, if an error
3020** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003021**
dan51f0b6d2013-02-22 20:16:34 +00003022** More specificly, this function attempts to re-organize the database so
3023** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003024**
dan51f0b6d2013-02-22 20:16:34 +00003025** Parameter nFin is the number of pages that this database would contain
3026** were this function called until it returns SQLITE_DONE.
3027**
3028** If the bCommit parameter is non-zero, this function assumes that the
3029** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3030** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3031** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003032*/
dan51f0b6d2013-02-22 20:16:34 +00003033static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003034 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003035 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003036
drh1fee73e2007-08-29 04:00:57 +00003037 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003038 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003039
3040 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003041 u8 eType;
3042 Pgno iPtrPage;
3043
3044 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003045 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003046 return SQLITE_DONE;
3047 }
3048
3049 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3050 if( rc!=SQLITE_OK ){
3051 return rc;
3052 }
3053 if( eType==PTRMAP_ROOTPAGE ){
3054 return SQLITE_CORRUPT_BKPT;
3055 }
3056
3057 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003058 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003059 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003060 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003061 ** truncated to zero after this function returns, so it doesn't
3062 ** matter if it still contains some garbage entries.
3063 */
3064 Pgno iFreePg;
3065 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003066 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003067 if( rc!=SQLITE_OK ){
3068 return rc;
3069 }
3070 assert( iFreePg==iLastPg );
3071 releasePage(pFreePg);
3072 }
3073 } else {
3074 Pgno iFreePg; /* Index of free page to move pLastPg to */
3075 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003076 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3077 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003078
drhb00fc3b2013-08-21 23:42:32 +00003079 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003080 if( rc!=SQLITE_OK ){
3081 return rc;
3082 }
3083
dan51f0b6d2013-02-22 20:16:34 +00003084 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003085 ** is swapped with the first free page pulled off the free list.
3086 **
dan51f0b6d2013-02-22 20:16:34 +00003087 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003088 ** looping until a free-page located within the first nFin pages
3089 ** of the file is found.
3090 */
dan51f0b6d2013-02-22 20:16:34 +00003091 if( bCommit==0 ){
3092 eMode = BTALLOC_LE;
3093 iNear = nFin;
3094 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003095 do {
3096 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003097 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003098 if( rc!=SQLITE_OK ){
3099 releasePage(pLastPg);
3100 return rc;
3101 }
3102 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003103 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003104 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003105
dane1df4e32013-03-05 11:27:04 +00003106 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003107 releasePage(pLastPg);
3108 if( rc!=SQLITE_OK ){
3109 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003110 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003111 }
3112 }
3113
dan51f0b6d2013-02-22 20:16:34 +00003114 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003115 do {
danielk19773460d192008-12-27 15:23:13 +00003116 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003117 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3118 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003119 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003120 }
3121 return SQLITE_OK;
3122}
3123
3124/*
dan51f0b6d2013-02-22 20:16:34 +00003125** The database opened by the first argument is an auto-vacuum database
3126** nOrig pages in size containing nFree free pages. Return the expected
3127** size of the database in pages following an auto-vacuum operation.
3128*/
3129static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3130 int nEntry; /* Number of entries on one ptrmap page */
3131 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3132 Pgno nFin; /* Return value */
3133
3134 nEntry = pBt->usableSize/5;
3135 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3136 nFin = nOrig - nFree - nPtrmap;
3137 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3138 nFin--;
3139 }
3140 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3141 nFin--;
3142 }
dan51f0b6d2013-02-22 20:16:34 +00003143
3144 return nFin;
3145}
3146
3147/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003148** A write-transaction must be opened before calling this function.
3149** It performs a single unit of work towards an incremental vacuum.
3150**
3151** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003152** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003153** SQLITE_OK is returned. Otherwise an SQLite error code.
3154*/
3155int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003156 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003157 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003158
3159 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003160 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3161 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003162 rc = SQLITE_DONE;
3163 }else{
dan51f0b6d2013-02-22 20:16:34 +00003164 Pgno nOrig = btreePagecount(pBt);
3165 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3166 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3167
dan91384712013-02-24 11:50:43 +00003168 if( nOrig<nFin ){
3169 rc = SQLITE_CORRUPT_BKPT;
3170 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003171 rc = saveAllCursors(pBt, 0, 0);
3172 if( rc==SQLITE_OK ){
3173 invalidateAllOverflowCache(pBt);
3174 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3175 }
dan51f0b6d2013-02-22 20:16:34 +00003176 if( rc==SQLITE_OK ){
3177 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3178 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3179 }
3180 }else{
3181 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003182 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003183 }
drhd677b3d2007-08-20 22:48:41 +00003184 sqlite3BtreeLeave(p);
3185 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003186}
3187
3188/*
danielk19773b8a05f2007-03-19 17:44:26 +00003189** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003190** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003191**
3192** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3193** the database file should be truncated to during the commit process.
3194** i.e. the database has been reorganized so that only the first *pnTrunc
3195** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003196*/
danielk19773460d192008-12-27 15:23:13 +00003197static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003198 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003199 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003200 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003201
drh1fee73e2007-08-29 04:00:57 +00003202 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003203 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003204 assert(pBt->autoVacuum);
3205 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003206 Pgno nFin; /* Number of pages in database after autovacuuming */
3207 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003208 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003209 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003210
drhb1299152010-03-30 22:58:33 +00003211 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003212 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3213 /* It is not possible to create a database for which the final page
3214 ** is either a pointer-map page or the pending-byte page. If one
3215 ** is encountered, this indicates corruption.
3216 */
danielk19773460d192008-12-27 15:23:13 +00003217 return SQLITE_CORRUPT_BKPT;
3218 }
danielk1977ef165ce2009-04-06 17:50:03 +00003219
danielk19773460d192008-12-27 15:23:13 +00003220 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003221 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003222 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003223 if( nFin<nOrig ){
3224 rc = saveAllCursors(pBt, 0, 0);
3225 }
danielk19773460d192008-12-27 15:23:13 +00003226 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003227 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003228 }
danielk19773460d192008-12-27 15:23:13 +00003229 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003230 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3231 put4byte(&pBt->pPage1->aData[32], 0);
3232 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003233 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003234 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003235 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003236 }
3237 if( rc!=SQLITE_OK ){
3238 sqlite3PagerRollback(pPager);
3239 }
danielk1977687566d2004-11-02 12:56:41 +00003240 }
3241
dan0aed84d2013-03-26 14:16:20 +00003242 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003243 return rc;
3244}
danielk1977dddbcdc2007-04-26 14:42:34 +00003245
danielk1977a50d9aa2009-06-08 14:49:45 +00003246#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3247# define setChildPtrmaps(x) SQLITE_OK
3248#endif
danielk1977687566d2004-11-02 12:56:41 +00003249
3250/*
drh80e35f42007-03-30 14:06:34 +00003251** This routine does the first phase of a two-phase commit. This routine
3252** causes a rollback journal to be created (if it does not already exist)
3253** and populated with enough information so that if a power loss occurs
3254** the database can be restored to its original state by playing back
3255** the journal. Then the contents of the journal are flushed out to
3256** the disk. After the journal is safely on oxide, the changes to the
3257** database are written into the database file and flushed to oxide.
3258** At the end of this call, the rollback journal still exists on the
3259** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003260** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003261** commit process.
3262**
3263** This call is a no-op if no write-transaction is currently active on pBt.
3264**
3265** Otherwise, sync the database file for the btree pBt. zMaster points to
3266** the name of a master journal file that should be written into the
3267** individual journal file, or is NULL, indicating no master journal file
3268** (single database transaction).
3269**
3270** When this is called, the master journal should already have been
3271** created, populated with this journal pointer and synced to disk.
3272**
3273** Once this is routine has returned, the only thing required to commit
3274** the write-transaction for this database file is to delete the journal.
3275*/
3276int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3277 int rc = SQLITE_OK;
3278 if( p->inTrans==TRANS_WRITE ){
3279 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003280 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003281#ifndef SQLITE_OMIT_AUTOVACUUM
3282 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003283 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003284 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003285 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003286 return rc;
3287 }
3288 }
danbc1a3c62013-02-23 16:40:46 +00003289 if( pBt->bDoTruncate ){
3290 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3291 }
drh80e35f42007-03-30 14:06:34 +00003292#endif
drh49b9d332009-01-02 18:10:42 +00003293 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003294 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003295 }
3296 return rc;
3297}
3298
3299/*
danielk197794b30732009-07-02 17:21:57 +00003300** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3301** at the conclusion of a transaction.
3302*/
3303static void btreeEndTransaction(Btree *p){
3304 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003305 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003306 assert( sqlite3BtreeHoldsMutex(p) );
3307
danbc1a3c62013-02-23 16:40:46 +00003308#ifndef SQLITE_OMIT_AUTOVACUUM
3309 pBt->bDoTruncate = 0;
3310#endif
danc0537fe2013-06-28 19:41:43 +00003311 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003312 /* If there are other active statements that belong to this database
3313 ** handle, downgrade to a read-only transaction. The other statements
3314 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003315 downgradeAllSharedCacheTableLocks(p);
3316 p->inTrans = TRANS_READ;
3317 }else{
3318 /* If the handle had any kind of transaction open, decrement the
3319 ** transaction count of the shared btree. If the transaction count
3320 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3321 ** call below will unlock the pager. */
3322 if( p->inTrans!=TRANS_NONE ){
3323 clearAllSharedCacheTableLocks(p);
3324 pBt->nTransaction--;
3325 if( 0==pBt->nTransaction ){
3326 pBt->inTransaction = TRANS_NONE;
3327 }
3328 }
3329
3330 /* Set the current transaction state to TRANS_NONE and unlock the
3331 ** pager if this call closed the only read or write transaction. */
3332 p->inTrans = TRANS_NONE;
3333 unlockBtreeIfUnused(pBt);
3334 }
3335
3336 btreeIntegrity(p);
3337}
3338
3339/*
drh2aa679f2001-06-25 02:11:07 +00003340** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003341**
drh6e345992007-03-30 11:12:08 +00003342** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003343** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3344** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3345** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003346** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003347** routine has to do is delete or truncate or zero the header in the
3348** the rollback journal (which causes the transaction to commit) and
3349** drop locks.
drh6e345992007-03-30 11:12:08 +00003350**
dan60939d02011-03-29 15:40:55 +00003351** Normally, if an error occurs while the pager layer is attempting to
3352** finalize the underlying journal file, this function returns an error and
3353** the upper layer will attempt a rollback. However, if the second argument
3354** is non-zero then this b-tree transaction is part of a multi-file
3355** transaction. In this case, the transaction has already been committed
3356** (by deleting a master journal file) and the caller will ignore this
3357** functions return code. So, even if an error occurs in the pager layer,
3358** reset the b-tree objects internal state to indicate that the write
3359** transaction has been closed. This is quite safe, as the pager will have
3360** transitioned to the error state.
3361**
drh5e00f6c2001-09-13 13:46:56 +00003362** This will release the write lock on the database file. If there
3363** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003364*/
dan60939d02011-03-29 15:40:55 +00003365int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003366
drh075ed302010-10-14 01:17:30 +00003367 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003368 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003369 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003370
3371 /* If the handle has a write-transaction open, commit the shared-btrees
3372 ** transaction and set the shared state to TRANS_READ.
3373 */
3374 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003375 int rc;
drh075ed302010-10-14 01:17:30 +00003376 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003377 assert( pBt->inTransaction==TRANS_WRITE );
3378 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003379 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003380 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003381 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003382 return rc;
3383 }
danielk1977aef0bf62005-12-30 16:28:01 +00003384 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003385 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003386 }
danielk1977aef0bf62005-12-30 16:28:01 +00003387
danielk197794b30732009-07-02 17:21:57 +00003388 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003389 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003390 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003391}
3392
drh80e35f42007-03-30 14:06:34 +00003393/*
3394** Do both phases of a commit.
3395*/
3396int sqlite3BtreeCommit(Btree *p){
3397 int rc;
drhd677b3d2007-08-20 22:48:41 +00003398 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003399 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3400 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003401 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003402 }
drhd677b3d2007-08-20 22:48:41 +00003403 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003404 return rc;
3405}
3406
drhc39e0002004-05-07 23:50:57 +00003407/*
drhfb982642007-08-30 01:19:59 +00003408** This routine sets the state to CURSOR_FAULT and the error
3409** code to errCode for every cursor on BtShared that pBtree
3410** references.
3411**
3412** Every cursor is tripped, including cursors that belong
3413** to other database connections that happen to be sharing
3414** the cache with pBtree.
3415**
3416** This routine gets called when a rollback occurs.
3417** All cursors using the same cache must be tripped
3418** to prevent them from trying to use the btree after
3419** the rollback. The rollback may have deleted tables
3420** or moved root pages, so it is not sufficient to
3421** save the state of the cursor. The cursor must be
3422** invalidated.
3423*/
3424void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3425 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003426 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003427 sqlite3BtreeEnter(pBtree);
3428 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003429 int i;
danielk1977be51a652008-10-08 17:58:48 +00003430 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003431 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003432 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003433 for(i=0; i<=p->iPage; i++){
3434 releasePage(p->apPage[i]);
3435 p->apPage[i] = 0;
3436 }
drhfb982642007-08-30 01:19:59 +00003437 }
3438 sqlite3BtreeLeave(pBtree);
3439}
3440
3441/*
drhecdc7532001-09-23 02:35:53 +00003442** Rollback the transaction in progress. All cursors will be
3443** invalided by this operation. Any attempt to use a cursor
3444** that was open at the beginning of this operation will result
3445** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003446**
3447** This will release the write lock on the database file. If there
3448** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003449*/
drh0f198a72012-02-13 16:43:16 +00003450int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003451 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003452 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003453 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003454
drhd677b3d2007-08-20 22:48:41 +00003455 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003456 if( tripCode==SQLITE_OK ){
3457 rc = tripCode = saveAllCursors(pBt, 0, 0);
3458 }else{
3459 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003460 }
drh0f198a72012-02-13 16:43:16 +00003461 if( tripCode ){
3462 sqlite3BtreeTripAllCursors(p, tripCode);
3463 }
danielk1977aef0bf62005-12-30 16:28:01 +00003464 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003465
3466 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003467 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003468
danielk19778d34dfd2006-01-24 16:37:57 +00003469 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003470 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003471 if( rc2!=SQLITE_OK ){
3472 rc = rc2;
3473 }
3474
drh24cd67e2004-05-10 16:18:47 +00003475 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003476 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003477 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003478 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003479 int nPage = get4byte(28+(u8*)pPage1->aData);
3480 testcase( nPage==0 );
3481 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3482 testcase( pBt->nPage!=nPage );
3483 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003484 releasePage(pPage1);
3485 }
drh85ec3b62013-05-14 23:12:06 +00003486 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003487 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003488 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003489 }
danielk1977aef0bf62005-12-30 16:28:01 +00003490
danielk197794b30732009-07-02 17:21:57 +00003491 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003492 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003493 return rc;
3494}
3495
3496/*
danielk1977bd434552009-03-18 10:33:00 +00003497** Start a statement subtransaction. The subtransaction can can be rolled
3498** back independently of the main transaction. You must start a transaction
3499** before starting a subtransaction. The subtransaction is ended automatically
3500** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003501**
3502** Statement subtransactions are used around individual SQL statements
3503** that are contained within a BEGIN...COMMIT block. If a constraint
3504** error occurs within the statement, the effect of that one statement
3505** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003506**
3507** A statement sub-transaction is implemented as an anonymous savepoint. The
3508** value passed as the second parameter is the total number of savepoints,
3509** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3510** are no active savepoints and no other statement-transactions open,
3511** iStatement is 1. This anonymous savepoint can be released or rolled back
3512** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003513*/
danielk1977bd434552009-03-18 10:33:00 +00003514int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003515 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003516 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003517 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003518 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003519 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003520 assert( iStatement>0 );
3521 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003522 assert( pBt->inTransaction==TRANS_WRITE );
3523 /* At the pager level, a statement transaction is a savepoint with
3524 ** an index greater than all savepoints created explicitly using
3525 ** SQL statements. It is illegal to open, release or rollback any
3526 ** such savepoints while the statement transaction savepoint is active.
3527 */
3528 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003529 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003530 return rc;
3531}
3532
3533/*
danielk1977fd7f0452008-12-17 17:30:26 +00003534** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3535** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003536** savepoint identified by parameter iSavepoint, depending on the value
3537** of op.
3538**
3539** Normally, iSavepoint is greater than or equal to zero. However, if op is
3540** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3541** contents of the entire transaction are rolled back. This is different
3542** from a normal transaction rollback, as no locks are released and the
3543** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003544*/
3545int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3546 int rc = SQLITE_OK;
3547 if( p && p->inTrans==TRANS_WRITE ){
3548 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003549 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3550 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3551 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003552 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003553 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003554 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3555 pBt->nPage = 0;
3556 }
drh9f0bbf92009-01-02 21:08:09 +00003557 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003558 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003559
3560 /* The database size was written into the offset 28 of the header
3561 ** when the transaction started, so we know that the value at offset
3562 ** 28 is nonzero. */
3563 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003564 }
danielk1977fd7f0452008-12-17 17:30:26 +00003565 sqlite3BtreeLeave(p);
3566 }
3567 return rc;
3568}
3569
3570/*
drh8b2f49b2001-06-08 00:21:52 +00003571** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003572** iTable. If a read-only cursor is requested, it is assumed that
3573** the caller already has at least a read-only transaction open
3574** on the database already. If a write-cursor is requested, then
3575** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003576**
3577** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003578** If wrFlag==1, then the cursor can be used for reading or for
3579** writing if other conditions for writing are also met. These
3580** are the conditions that must be met in order for writing to
3581** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003582**
drhf74b8d92002-09-01 23:20:45 +00003583** 1: The cursor must have been opened with wrFlag==1
3584**
drhfe5d71d2007-03-19 11:54:10 +00003585** 2: Other database connections that share the same pager cache
3586** but which are not in the READ_UNCOMMITTED state may not have
3587** cursors open with wrFlag==0 on the same table. Otherwise
3588** the changes made by this write cursor would be visible to
3589** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003590**
3591** 3: The database must be writable (not on read-only media)
3592**
3593** 4: There must be an active transaction.
3594**
drh6446c4d2001-12-15 14:22:18 +00003595** No checking is done to make sure that page iTable really is the
3596** root page of a b-tree. If it is not, then the cursor acquired
3597** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003598**
drhf25a5072009-11-18 23:01:25 +00003599** It is assumed that the sqlite3BtreeCursorZero() has been called
3600** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003601*/
drhd677b3d2007-08-20 22:48:41 +00003602static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003603 Btree *p, /* The btree */
3604 int iTable, /* Root page of table to open */
3605 int wrFlag, /* 1 to write. 0 read-only */
3606 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3607 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003608){
danielk19773e8add92009-07-04 17:16:00 +00003609 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003610
drh1fee73e2007-08-29 04:00:57 +00003611 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003612 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003613
danielk1977602b4662009-07-02 07:47:33 +00003614 /* The following assert statements verify that if this is a sharable
3615 ** b-tree database, the connection is holding the required table locks,
3616 ** and that no other connection has any open cursor that conflicts with
3617 ** this lock. */
3618 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003619 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3620
danielk19773e8add92009-07-04 17:16:00 +00003621 /* Assert that the caller has opened the required transaction. */
3622 assert( p->inTrans>TRANS_NONE );
3623 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3624 assert( pBt->pPage1 && pBt->pPage1->aData );
3625
drhc9166342012-01-05 23:32:06 +00003626 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003627 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003628 }
drhb1299152010-03-30 22:58:33 +00003629 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003630 assert( wrFlag==0 );
3631 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003632 }
danielk1977aef0bf62005-12-30 16:28:01 +00003633
danielk1977aef0bf62005-12-30 16:28:01 +00003634 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003635 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003636 pCur->pgnoRoot = (Pgno)iTable;
3637 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003638 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003639 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003640 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003641 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003642 pCur->pNext = pBt->pCursor;
3643 if( pCur->pNext ){
3644 pCur->pNext->pPrev = pCur;
3645 }
3646 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003647 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003648 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003649}
drhd677b3d2007-08-20 22:48:41 +00003650int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003651 Btree *p, /* The btree */
3652 int iTable, /* Root page of table to open */
3653 int wrFlag, /* 1 to write. 0 read-only */
3654 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3655 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003656){
3657 int rc;
3658 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003659 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003660 sqlite3BtreeLeave(p);
3661 return rc;
3662}
drh7f751222009-03-17 22:33:00 +00003663
3664/*
3665** Return the size of a BtCursor object in bytes.
3666**
3667** This interfaces is needed so that users of cursors can preallocate
3668** sufficient storage to hold a cursor. The BtCursor object is opaque
3669** to users so they cannot do the sizeof() themselves - they must call
3670** this routine.
3671*/
3672int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003673 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003674}
3675
drh7f751222009-03-17 22:33:00 +00003676/*
drhf25a5072009-11-18 23:01:25 +00003677** Initialize memory that will be converted into a BtCursor object.
3678**
3679** The simple approach here would be to memset() the entire object
3680** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3681** do not need to be zeroed and they are large, so we can save a lot
3682** of run-time by skipping the initialization of those elements.
3683*/
3684void sqlite3BtreeCursorZero(BtCursor *p){
3685 memset(p, 0, offsetof(BtCursor, iPage));
3686}
3687
3688/*
drh5e00f6c2001-09-13 13:46:56 +00003689** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003690** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003691*/
drh3aac2dd2004-04-26 14:10:20 +00003692int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003693 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003694 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003695 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003696 BtShared *pBt = pCur->pBt;
3697 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003698 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003699 if( pCur->pPrev ){
3700 pCur->pPrev->pNext = pCur->pNext;
3701 }else{
3702 pBt->pCursor = pCur->pNext;
3703 }
3704 if( pCur->pNext ){
3705 pCur->pNext->pPrev = pCur->pPrev;
3706 }
danielk197771d5d2c2008-09-29 11:49:47 +00003707 for(i=0; i<=pCur->iPage; i++){
3708 releasePage(pCur->apPage[i]);
3709 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003710 unlockBtreeIfUnused(pBt);
3711 invalidateOverflowCache(pCur);
3712 /* sqlite3_free(pCur); */
3713 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003714 }
drh8c42ca92001-06-22 19:15:00 +00003715 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003716}
3717
drh5e2f8b92001-05-28 00:41:15 +00003718/*
drh86057612007-06-26 01:04:48 +00003719** Make sure the BtCursor* given in the argument has a valid
3720** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003721** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003722**
3723** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003724** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003725**
3726** 2007-06-25: There is a bug in some versions of MSVC that cause the
3727** compiler to crash when getCellInfo() is implemented as a macro.
3728** But there is a measureable speed advantage to using the macro on gcc
3729** (when less compiler optimizations like -Os or -O0 are used and the
3730** compiler is not doing agressive inlining.) So we use a real function
3731** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003732*/
drh9188b382004-05-14 21:12:22 +00003733#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003734 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003735 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003736 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003737 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003738 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003739 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003740 }
danielk19771cc5ed82007-05-16 17:28:43 +00003741#else
3742 #define assertCellInfo(x)
3743#endif
drh86057612007-06-26 01:04:48 +00003744#ifdef _MSC_VER
3745 /* Use a real function in MSVC to work around bugs in that compiler. */
3746 static void getCellInfo(BtCursor *pCur){
3747 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003748 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003749 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003750 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003751 }else{
3752 assertCellInfo(pCur);
3753 }
3754 }
3755#else /* if not _MSC_VER */
3756 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003757#define getCellInfo(pCur) \
3758 if( pCur->info.nSize==0 ){ \
3759 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003760 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003761 pCur->validNKey = 1; \
3762 }else{ \
3763 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003764 }
3765#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003766
drhea8ffdf2009-07-22 00:35:23 +00003767#ifndef NDEBUG /* The next routine used only within assert() statements */
3768/*
3769** Return true if the given BtCursor is valid. A valid cursor is one
3770** that is currently pointing to a row in a (non-empty) table.
3771** This is a verification routine is used only within assert() statements.
3772*/
3773int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3774 return pCur && pCur->eState==CURSOR_VALID;
3775}
3776#endif /* NDEBUG */
3777
drh9188b382004-05-14 21:12:22 +00003778/*
drh3aac2dd2004-04-26 14:10:20 +00003779** Set *pSize to the size of the buffer needed to hold the value of
3780** the key for the current entry. If the cursor is not pointing
3781** to a valid entry, *pSize is set to 0.
3782**
drh4b70f112004-05-02 21:12:19 +00003783** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003784** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003785**
3786** The caller must position the cursor prior to invoking this routine.
3787**
3788** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003789*/
drh4a1c3802004-05-12 15:15:47 +00003790int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003791 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003792 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3793 if( pCur->eState!=CURSOR_VALID ){
3794 *pSize = 0;
3795 }else{
3796 getCellInfo(pCur);
3797 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003798 }
drhea8ffdf2009-07-22 00:35:23 +00003799 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003800}
drh2af926b2001-05-15 00:39:25 +00003801
drh72f82862001-05-24 21:06:34 +00003802/*
drh0e1c19e2004-05-11 00:58:56 +00003803** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003804** cursor currently points to.
3805**
3806** The caller must guarantee that the cursor is pointing to a non-NULL
3807** valid entry. In other words, the calling procedure must guarantee
3808** that the cursor has Cursor.eState==CURSOR_VALID.
3809**
3810** Failure is not possible. This function always returns SQLITE_OK.
3811** It might just as well be a procedure (returning void) but we continue
3812** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003813*/
3814int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003815 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003816 assert( pCur->eState==CURSOR_VALID );
3817 getCellInfo(pCur);
3818 *pSize = pCur->info.nData;
3819 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003820}
3821
3822/*
danielk1977d04417962007-05-02 13:16:30 +00003823** Given the page number of an overflow page in the database (parameter
3824** ovfl), this function finds the page number of the next page in the
3825** linked list of overflow pages. If possible, it uses the auto-vacuum
3826** pointer-map data instead of reading the content of page ovfl to do so.
3827**
3828** If an error occurs an SQLite error code is returned. Otherwise:
3829**
danielk1977bea2a942009-01-20 17:06:27 +00003830** The page number of the next overflow page in the linked list is
3831** written to *pPgnoNext. If page ovfl is the last page in its linked
3832** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003833**
danielk1977bea2a942009-01-20 17:06:27 +00003834** If ppPage is not NULL, and a reference to the MemPage object corresponding
3835** to page number pOvfl was obtained, then *ppPage is set to point to that
3836** reference. It is the responsibility of the caller to call releasePage()
3837** on *ppPage to free the reference. In no reference was obtained (because
3838** the pointer-map was used to obtain the value for *pPgnoNext), then
3839** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003840*/
3841static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003842 BtShared *pBt, /* The database file */
3843 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003844 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003845 Pgno *pPgnoNext /* OUT: Next overflow page number */
3846){
3847 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003848 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003849 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003850
drh1fee73e2007-08-29 04:00:57 +00003851 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003852 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003853
3854#ifndef SQLITE_OMIT_AUTOVACUUM
3855 /* Try to find the next page in the overflow list using the
3856 ** autovacuum pointer-map pages. Guess that the next page in
3857 ** the overflow list is page number (ovfl+1). If that guess turns
3858 ** out to be wrong, fall back to loading the data of page
3859 ** number ovfl to determine the next page number.
3860 */
3861 if( pBt->autoVacuum ){
3862 Pgno pgno;
3863 Pgno iGuess = ovfl+1;
3864 u8 eType;
3865
3866 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3867 iGuess++;
3868 }
3869
drhb1299152010-03-30 22:58:33 +00003870 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003871 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003872 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003873 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003874 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003875 }
3876 }
3877 }
3878#endif
3879
danielk1977d8a3f3d2009-07-11 11:45:23 +00003880 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003881 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003882 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003883 assert( rc==SQLITE_OK || pPage==0 );
3884 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003885 next = get4byte(pPage->aData);
3886 }
danielk1977443c0592009-01-16 15:21:05 +00003887 }
danielk197745d68822009-01-16 16:23:38 +00003888
danielk1977bea2a942009-01-20 17:06:27 +00003889 *pPgnoNext = next;
3890 if( ppPage ){
3891 *ppPage = pPage;
3892 }else{
3893 releasePage(pPage);
3894 }
3895 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003896}
3897
danielk1977da107192007-05-04 08:32:13 +00003898/*
3899** Copy data from a buffer to a page, or from a page to a buffer.
3900**
3901** pPayload is a pointer to data stored on database page pDbPage.
3902** If argument eOp is false, then nByte bytes of data are copied
3903** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3904** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3905** of data are copied from the buffer pBuf to pPayload.
3906**
3907** SQLITE_OK is returned on success, otherwise an error code.
3908*/
3909static int copyPayload(
3910 void *pPayload, /* Pointer to page data */
3911 void *pBuf, /* Pointer to buffer */
3912 int nByte, /* Number of bytes to copy */
3913 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3914 DbPage *pDbPage /* Page containing pPayload */
3915){
3916 if( eOp ){
3917 /* Copy data from buffer to page (a write operation) */
3918 int rc = sqlite3PagerWrite(pDbPage);
3919 if( rc!=SQLITE_OK ){
3920 return rc;
3921 }
3922 memcpy(pPayload, pBuf, nByte);
3923 }else{
3924 /* Copy data from page to buffer (a read operation) */
3925 memcpy(pBuf, pPayload, nByte);
3926 }
3927 return SQLITE_OK;
3928}
danielk1977d04417962007-05-02 13:16:30 +00003929
3930/*
danielk19779f8d6402007-05-02 17:48:45 +00003931** This function is used to read or overwrite payload information
3932** for the entry that the pCur cursor is pointing to. If the eOp
3933** parameter is 0, this is a read operation (data copied into
3934** buffer pBuf). If it is non-zero, a write (data copied from
3935** buffer pBuf).
3936**
3937** A total of "amt" bytes are read or written beginning at "offset".
3938** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003939**
drh3bcdfd22009-07-12 02:32:21 +00003940** The content being read or written might appear on the main page
3941** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003942**
danielk1977dcbb5d32007-05-04 18:36:44 +00003943** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003944** cursor entry uses one or more overflow pages, this function
3945** allocates space for and lazily popluates the overflow page-list
3946** cache array (BtCursor.aOverflow). Subsequent calls use this
3947** cache to make seeking to the supplied offset more efficient.
3948**
3949** Once an overflow page-list cache has been allocated, it may be
3950** invalidated if some other cursor writes to the same table, or if
3951** the cursor is moved to a different row. Additionally, in auto-vacuum
3952** mode, the following events may invalidate an overflow page-list cache.
3953**
3954** * An incremental vacuum,
3955** * A commit in auto_vacuum="full" mode,
3956** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003957*/
danielk19779f8d6402007-05-02 17:48:45 +00003958static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003959 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003960 u32 offset, /* Begin reading this far into payload */
3961 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003962 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003963 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003964){
3965 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003966 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003967 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003968 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003969 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003970 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003971
danielk1977da107192007-05-04 08:32:13 +00003972 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003973 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003974 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003975 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003976
drh86057612007-06-26 01:04:48 +00003977 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003978 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003979 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003980
drh3bcdfd22009-07-12 02:32:21 +00003981 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003982 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3983 ){
danielk1977da107192007-05-04 08:32:13 +00003984 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003985 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003986 }
danielk1977da107192007-05-04 08:32:13 +00003987
3988 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003989 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003990 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003991 if( a+offset>pCur->info.nLocal ){
3992 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003993 }
danielk1977da107192007-05-04 08:32:13 +00003994 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003995 offset = 0;
drha34b6762004-05-07 13:30:42 +00003996 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003997 amt -= a;
drhdd793422001-06-28 01:54:48 +00003998 }else{
drhfa1a98a2004-05-14 19:08:17 +00003999 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004000 }
danielk1977da107192007-05-04 08:32:13 +00004001
4002 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004003 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004004 Pgno nextPage;
4005
drhfa1a98a2004-05-14 19:08:17 +00004006 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004007
danielk19772dec9702007-05-02 16:48:37 +00004008#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00004009 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00004010 ** has not been allocated, allocate it now. The array is sized at
4011 ** one entry for each overflow page in the overflow chain. The
4012 ** page number of the first overflow page is stored in aOverflow[0],
4013 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
4014 ** (the cache is lazily populated).
4015 */
danielk1977dcbb5d32007-05-04 18:36:44 +00004016 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00004017 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00004018 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00004019 /* nOvfl is always positive. If it were zero, fetchPayload would have
4020 ** been used instead of this routine. */
4021 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00004022 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00004023 }
4024 }
danielk1977da107192007-05-04 08:32:13 +00004025
4026 /* If the overflow page-list cache has been allocated and the
4027 ** entry for the first required overflow page is valid, skip
4028 ** directly to it.
4029 */
danielk19772dec9702007-05-02 16:48:37 +00004030 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
4031 iIdx = (offset/ovflSize);
4032 nextPage = pCur->aOverflow[iIdx];
4033 offset = (offset%ovflSize);
4034 }
4035#endif
danielk1977da107192007-05-04 08:32:13 +00004036
4037 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4038
4039#ifndef SQLITE_OMIT_INCRBLOB
4040 /* If required, populate the overflow page-list cache. */
4041 if( pCur->aOverflow ){
4042 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4043 pCur->aOverflow[iIdx] = nextPage;
4044 }
4045#endif
4046
danielk1977d04417962007-05-02 13:16:30 +00004047 if( offset>=ovflSize ){
4048 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004049 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004050 ** data is not required. So first try to lookup the overflow
4051 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004052 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004053 */
danielk19772dec9702007-05-02 16:48:37 +00004054#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00004055 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4056 nextPage = pCur->aOverflow[iIdx+1];
4057 } else
danielk19772dec9702007-05-02 16:48:37 +00004058#endif
danielk1977da107192007-05-04 08:32:13 +00004059 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00004060 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004061 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004062 /* Need to read this page properly. It contains some of the
4063 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004064 */
danf4ba1092011-10-08 14:57:07 +00004065#ifdef SQLITE_DIRECT_OVERFLOW_READ
4066 sqlite3_file *fd;
4067#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004068 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004069 if( a + offset > ovflSize ){
4070 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004071 }
danf4ba1092011-10-08 14:57:07 +00004072
4073#ifdef SQLITE_DIRECT_OVERFLOW_READ
4074 /* If all the following are true:
4075 **
4076 ** 1) this is a read operation, and
4077 ** 2) data is required from the start of this overflow page, and
4078 ** 3) the database is file-backed, and
4079 ** 4) there is no open write-transaction, and
4080 ** 5) the database is not a WAL database,
4081 **
4082 ** then data can be read directly from the database file into the
4083 ** output buffer, bypassing the page-cache altogether. This speeds
4084 ** up loading large records that span many overflow pages.
4085 */
4086 if( eOp==0 /* (1) */
4087 && offset==0 /* (2) */
4088 && pBt->inTransaction==TRANS_READ /* (4) */
4089 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4090 && pBt->pPage1->aData[19]==0x01 /* (5) */
4091 ){
4092 u8 aSave[4];
4093 u8 *aWrite = &pBuf[-4];
4094 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004095 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004096 nextPage = get4byte(aWrite);
4097 memcpy(aWrite, aSave, 4);
4098 }else
4099#endif
4100
4101 {
4102 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004103 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
drhb00fc3b2013-08-21 23:42:32 +00004104 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004105 );
danf4ba1092011-10-08 14:57:07 +00004106 if( rc==SQLITE_OK ){
4107 aPayload = sqlite3PagerGetData(pDbPage);
4108 nextPage = get4byte(aPayload);
4109 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4110 sqlite3PagerUnref(pDbPage);
4111 offset = 0;
4112 }
4113 }
4114 amt -= a;
4115 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004116 }
drh2af926b2001-05-15 00:39:25 +00004117 }
drh2af926b2001-05-15 00:39:25 +00004118 }
danielk1977cfe9a692004-06-16 12:00:29 +00004119
danielk1977da107192007-05-04 08:32:13 +00004120 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004121 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004122 }
danielk1977da107192007-05-04 08:32:13 +00004123 return rc;
drh2af926b2001-05-15 00:39:25 +00004124}
4125
drh72f82862001-05-24 21:06:34 +00004126/*
drh3aac2dd2004-04-26 14:10:20 +00004127** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004128** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004129** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004130**
drh5d1a8722009-07-22 18:07:40 +00004131** The caller must ensure that pCur is pointing to a valid row
4132** in the table.
4133**
drh3aac2dd2004-04-26 14:10:20 +00004134** Return SQLITE_OK on success or an error code if anything goes
4135** wrong. An error is returned if "offset+amt" is larger than
4136** the available payload.
drh72f82862001-05-24 21:06:34 +00004137*/
drha34b6762004-05-07 13:30:42 +00004138int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004139 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004140 assert( pCur->eState==CURSOR_VALID );
4141 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4142 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4143 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004144}
4145
4146/*
drh3aac2dd2004-04-26 14:10:20 +00004147** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004148** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004149** begins at "offset".
4150**
4151** Return SQLITE_OK on success or an error code if anything goes
4152** wrong. An error is returned if "offset+amt" is larger than
4153** the available payload.
drh72f82862001-05-24 21:06:34 +00004154*/
drh3aac2dd2004-04-26 14:10:20 +00004155int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004156 int rc;
4157
danielk19773588ceb2008-06-10 17:30:26 +00004158#ifndef SQLITE_OMIT_INCRBLOB
4159 if ( pCur->eState==CURSOR_INVALID ){
4160 return SQLITE_ABORT;
4161 }
4162#endif
4163
drh1fee73e2007-08-29 04:00:57 +00004164 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004165 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004166 if( rc==SQLITE_OK ){
4167 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004168 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4169 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004170 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004171 }
4172 return rc;
drh2af926b2001-05-15 00:39:25 +00004173}
4174
drh72f82862001-05-24 21:06:34 +00004175/*
drh0e1c19e2004-05-11 00:58:56 +00004176** Return a pointer to payload information from the entry that the
4177** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004178** the key if index btrees (pPage->intKey==0) and is the data for
4179** table btrees (pPage->intKey==1). The number of bytes of available
4180** key/data is written into *pAmt. If *pAmt==0, then the value
4181** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004182**
4183** This routine is an optimization. It is common for the entire key
4184** and data to fit on the local page and for there to be no overflow
4185** pages. When that is so, this routine can be used to access the
4186** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004187** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004188** the key/data and copy it into a preallocated buffer.
4189**
4190** The pointer returned by this routine looks directly into the cached
4191** page of the database. The data might change or move the next time
4192** any btree routine is called.
4193*/
drh2a8d2262013-12-09 20:43:22 +00004194static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004195 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004196 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004197){
danielk197771d5d2c2008-09-29 11:49:47 +00004198 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004199 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004200 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004201 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004202 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004203 assert( pCur->info.nSize>0 );
4204#if 0
drhd16546d2013-11-25 21:41:24 +00004205 if( pCur->info.nSize==0 ){
drhfe3313f2009-07-21 19:02:20 +00004206 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4207 &pCur->info);
4208 }
drh86dd3712014-03-25 11:00:21 +00004209#endif
drh2a8d2262013-12-09 20:43:22 +00004210 *pAmt = pCur->info.nLocal;
4211 return (void*)(pCur->info.pCell + pCur->info.nHeader);
drh0e1c19e2004-05-11 00:58:56 +00004212}
4213
4214
4215/*
drhe51c44f2004-05-30 20:46:09 +00004216** For the entry that cursor pCur is point to, return as
4217** many bytes of the key or data as are available on the local
4218** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004219**
4220** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004221** or be destroyed on the next call to any Btree routine,
4222** including calls from other threads against the same cache.
4223** Hence, a mutex on the BtShared should be held prior to calling
4224** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004225**
4226** These routines is used to get quick access to key and data
4227** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004228*/
drh501932c2013-11-21 21:59:53 +00004229const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004230 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004231}
drh501932c2013-11-21 21:59:53 +00004232const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004233 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004234}
4235
4236
4237/*
drh8178a752003-01-05 21:41:40 +00004238** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004239** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004240**
4241** This function returns SQLITE_CORRUPT if the page-header flags field of
4242** the new child page does not match the flags field of the parent (i.e.
4243** if an intkey page appears to be the parent of a non-intkey page, or
4244** vice-versa).
drh72f82862001-05-24 21:06:34 +00004245*/
drh3aac2dd2004-04-26 14:10:20 +00004246static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004247 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004248 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004249 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004250 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004251
drh1fee73e2007-08-29 04:00:57 +00004252 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004253 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004254 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004255 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004256 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4257 return SQLITE_CORRUPT_BKPT;
4258 }
drhb00fc3b2013-08-21 23:42:32 +00004259 rc = getAndInitPage(pBt, newPgno, &pNewPage,
4260 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004261 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004262 pCur->apPage[i+1] = pNewPage;
4263 pCur->aiIdx[i+1] = 0;
4264 pCur->iPage++;
4265
drh271efa52004-05-30 19:19:05 +00004266 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004267 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004268 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004269 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004270 }
drh72f82862001-05-24 21:06:34 +00004271 return SQLITE_OK;
4272}
4273
danbb246c42012-01-12 14:25:55 +00004274#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004275/*
4276** Page pParent is an internal (non-leaf) tree page. This function
4277** asserts that page number iChild is the left-child if the iIdx'th
4278** cell in page pParent. Or, if iIdx is equal to the total number of
4279** cells in pParent, that page number iChild is the right-child of
4280** the page.
4281*/
4282static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4283 assert( iIdx<=pParent->nCell );
4284 if( iIdx==pParent->nCell ){
4285 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4286 }else{
4287 assert( get4byte(findCell(pParent, iIdx))==iChild );
4288 }
4289}
4290#else
4291# define assertParentIndex(x,y,z)
4292#endif
4293
drh72f82862001-05-24 21:06:34 +00004294/*
drh5e2f8b92001-05-28 00:41:15 +00004295** Move the cursor up to the parent page.
4296**
4297** pCur->idx is set to the cell index that contains the pointer
4298** to the page we are coming from. If we are coming from the
4299** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004300** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004301*/
danielk197730548662009-07-09 05:07:37 +00004302static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004303 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004304 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004305 assert( pCur->iPage>0 );
4306 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004307
4308 /* UPDATE: It is actually possible for the condition tested by the assert
4309 ** below to be untrue if the database file is corrupt. This can occur if
4310 ** one cursor has modified page pParent while a reference to it is held
4311 ** by a second cursor. Which can only happen if a single page is linked
4312 ** into more than one b-tree structure in a corrupt database. */
4313#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004314 assertParentIndex(
4315 pCur->apPage[pCur->iPage-1],
4316 pCur->aiIdx[pCur->iPage-1],
4317 pCur->apPage[pCur->iPage]->pgno
4318 );
danbb246c42012-01-12 14:25:55 +00004319#endif
dan6c2688c2012-01-12 15:05:03 +00004320 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004321
danielk197771d5d2c2008-09-29 11:49:47 +00004322 releasePage(pCur->apPage[pCur->iPage]);
4323 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004324 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004325 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004326}
4327
4328/*
danielk19778f880a82009-07-13 09:41:45 +00004329** Move the cursor to point to the root page of its b-tree structure.
4330**
4331** If the table has a virtual root page, then the cursor is moved to point
4332** to the virtual root page instead of the actual root page. A table has a
4333** virtual root page when the actual root page contains no cells and a
4334** single child page. This can only happen with the table rooted at page 1.
4335**
4336** If the b-tree structure is empty, the cursor state is set to
4337** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4338** cell located on the root (or virtual root) page and the cursor state
4339** is set to CURSOR_VALID.
4340**
4341** If this function returns successfully, it may be assumed that the
4342** page-header flags indicate that the [virtual] root-page is the expected
4343** kind of b-tree page (i.e. if when opening the cursor the caller did not
4344** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4345** indicating a table b-tree, or if the caller did specify a KeyInfo
4346** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4347** b-tree).
drh72f82862001-05-24 21:06:34 +00004348*/
drh5e2f8b92001-05-28 00:41:15 +00004349static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004350 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004351 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004352
drh1fee73e2007-08-29 04:00:57 +00004353 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004354 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4355 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4356 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4357 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4358 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004359 assert( pCur->skipNext!=SQLITE_OK );
4360 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004361 }
danielk1977be51a652008-10-08 17:58:48 +00004362 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004363 }
danielk197771d5d2c2008-09-29 11:49:47 +00004364
4365 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004366 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004367 }else if( pCur->pgnoRoot==0 ){
4368 pCur->eState = CURSOR_INVALID;
4369 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004370 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004371 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drhb00fc3b2013-08-21 23:42:32 +00004372 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004373 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004374 pCur->eState = CURSOR_INVALID;
4375 return rc;
4376 }
danielk1977172114a2009-07-07 15:47:12 +00004377 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004378 }
danielk197771d5d2c2008-09-29 11:49:47 +00004379 pRoot = pCur->apPage[0];
4380 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004381
4382 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4383 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4384 ** NULL, the caller expects a table b-tree. If this is not the case,
4385 ** return an SQLITE_CORRUPT error.
4386 **
4387 ** Earlier versions of SQLite assumed that this test could not fail
4388 ** if the root page was already loaded when this function was called (i.e.
4389 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4390 ** in such a way that page pRoot is linked into a second b-tree table
4391 ** (or the freelist). */
4392 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4393 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4394 return SQLITE_CORRUPT_BKPT;
4395 }
danielk19778f880a82009-07-13 09:41:45 +00004396
danielk197771d5d2c2008-09-29 11:49:47 +00004397 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004398 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004399 pCur->atLast = 0;
4400 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004401
drh4e8fe3f2013-12-06 23:25:27 +00004402 if( pRoot->nCell>0 ){
4403 pCur->eState = CURSOR_VALID;
4404 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004405 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004406 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004407 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004408 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004409 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004410 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004411 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004412 }
4413 return rc;
drh72f82862001-05-24 21:06:34 +00004414}
drh2af926b2001-05-15 00:39:25 +00004415
drh5e2f8b92001-05-28 00:41:15 +00004416/*
4417** Move the cursor down to the left-most leaf entry beneath the
4418** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004419**
4420** The left-most leaf is the one with the smallest key - the first
4421** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004422*/
4423static int moveToLeftmost(BtCursor *pCur){
4424 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004425 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004426 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004427
drh1fee73e2007-08-29 04:00:57 +00004428 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004429 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004430 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4431 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4432 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004433 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004434 }
drhd677b3d2007-08-20 22:48:41 +00004435 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004436}
4437
drh2dcc9aa2002-12-04 13:40:25 +00004438/*
4439** Move the cursor down to the right-most leaf entry beneath the
4440** page to which it is currently pointing. Notice the difference
4441** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4442** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4443** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004444**
4445** The right-most entry is the one with the largest key - the last
4446** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004447*/
4448static int moveToRightmost(BtCursor *pCur){
4449 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004450 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004451 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004452
drh1fee73e2007-08-29 04:00:57 +00004453 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004454 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004455 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004456 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004457 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004458 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004459 }
drhd677b3d2007-08-20 22:48:41 +00004460 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004461 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004462 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004463 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004464 }
danielk1977518002e2008-09-05 05:02:46 +00004465 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004466}
4467
drh5e00f6c2001-09-13 13:46:56 +00004468/* Move the cursor to the first entry in the table. Return SQLITE_OK
4469** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004470** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004471*/
drh3aac2dd2004-04-26 14:10:20 +00004472int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004473 int rc;
drhd677b3d2007-08-20 22:48:41 +00004474
drh1fee73e2007-08-29 04:00:57 +00004475 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004476 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004477 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004478 if( rc==SQLITE_OK ){
4479 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004480 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004481 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004482 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004483 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004484 *pRes = 0;
4485 rc = moveToLeftmost(pCur);
4486 }
drh5e00f6c2001-09-13 13:46:56 +00004487 }
drh5e00f6c2001-09-13 13:46:56 +00004488 return rc;
4489}
drh5e2f8b92001-05-28 00:41:15 +00004490
drh9562b552002-02-19 15:00:07 +00004491/* Move the cursor to the last entry in the table. Return SQLITE_OK
4492** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004493** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004494*/
drh3aac2dd2004-04-26 14:10:20 +00004495int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004496 int rc;
drhd677b3d2007-08-20 22:48:41 +00004497
drh1fee73e2007-08-29 04:00:57 +00004498 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004499 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004500
4501 /* If the cursor already points to the last entry, this is a no-op. */
4502 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4503#ifdef SQLITE_DEBUG
4504 /* This block serves to assert() that the cursor really does point
4505 ** to the last entry in the b-tree. */
4506 int ii;
4507 for(ii=0; ii<pCur->iPage; ii++){
4508 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4509 }
4510 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4511 assert( pCur->apPage[pCur->iPage]->leaf );
4512#endif
4513 return SQLITE_OK;
4514 }
4515
drh9562b552002-02-19 15:00:07 +00004516 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004517 if( rc==SQLITE_OK ){
4518 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004519 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004520 *pRes = 1;
4521 }else{
4522 assert( pCur->eState==CURSOR_VALID );
4523 *pRes = 0;
4524 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004525 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004526 }
drh9562b552002-02-19 15:00:07 +00004527 }
drh9562b552002-02-19 15:00:07 +00004528 return rc;
4529}
4530
drhe14006d2008-03-25 17:23:32 +00004531/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004532** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004533**
drhe63d9992008-08-13 19:11:48 +00004534** For INTKEY tables, the intKey parameter is used. pIdxKey
4535** must be NULL. For index tables, pIdxKey is used and intKey
4536** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004537**
drh5e2f8b92001-05-28 00:41:15 +00004538** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004539** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004540** were present. The cursor might point to an entry that comes
4541** before or after the key.
4542**
drh64022502009-01-09 14:11:04 +00004543** An integer is written into *pRes which is the result of
4544** comparing the key with the entry to which the cursor is
4545** pointing. The meaning of the integer written into
4546** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004547**
4548** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004549** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004550** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004551**
4552** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004553** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004554**
4555** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004556** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004557**
drha059ad02001-04-17 20:09:11 +00004558*/
drhe63d9992008-08-13 19:11:48 +00004559int sqlite3BtreeMovetoUnpacked(
4560 BtCursor *pCur, /* The cursor to be moved */
4561 UnpackedRecord *pIdxKey, /* Unpacked index key */
4562 i64 intKey, /* The table key */
4563 int biasRight, /* If true, bias the search to the high end */
4564 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004565){
drh72f82862001-05-24 21:06:34 +00004566 int rc;
dan3b9330f2014-02-27 20:44:18 +00004567 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004568
drh1fee73e2007-08-29 04:00:57 +00004569 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004570 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004571 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004572 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004573
4574 /* If the cursor is already positioned at the point we are trying
4575 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004576 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4577 && pCur->apPage[0]->intKey
4578 ){
drhe63d9992008-08-13 19:11:48 +00004579 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004580 *pRes = 0;
4581 return SQLITE_OK;
4582 }
drhe63d9992008-08-13 19:11:48 +00004583 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004584 *pRes = -1;
4585 return SQLITE_OK;
4586 }
4587 }
4588
dan1fed5da2014-02-25 21:01:25 +00004589 if( pIdxKey ){
4590 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
drha1f7c0a2014-03-28 03:12:48 +00004591 pIdxKey->isCorrupt = 0;
dan3b9330f2014-02-27 20:44:18 +00004592 assert( pIdxKey->default_rc==1
4593 || pIdxKey->default_rc==0
4594 || pIdxKey->default_rc==-1
4595 );
drh13a747e2014-03-03 21:46:55 +00004596 }else{
drhb6e8fd12014-03-06 01:56:33 +00004597 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004598 }
4599
drh5e2f8b92001-05-28 00:41:15 +00004600 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004601 if( rc ){
4602 return rc;
4603 }
dana205a482011-08-27 18:48:57 +00004604 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4605 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4606 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004607 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004608 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004609 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004610 return SQLITE_OK;
4611 }
danielk197771d5d2c2008-09-29 11:49:47 +00004612 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004613 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004614 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004615 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004616 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004617 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004618
4619 /* pPage->nCell must be greater than zero. If this is the root-page
4620 ** the cursor would have been INVALID above and this for(;;) loop
4621 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004622 ** would have already detected db corruption. Similarly, pPage must
4623 ** be the right kind (index or table) of b-tree page. Otherwise
4624 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004625 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004626 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004627 lwr = 0;
4628 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004629 assert( biasRight==0 || biasRight==1 );
4630 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004631 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004632 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004633 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004634 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004635 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004636 if( pPage->hasData ){
drh9b2fc612013-11-25 20:14:13 +00004637 while( 0x80 <= *(pCell++) ){
4638 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4639 }
drhd172f862006-01-12 15:01:15 +00004640 }
drha2c20e42008-03-29 16:01:04 +00004641 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004642 if( nCellKey<intKey ){
4643 lwr = idx+1;
4644 if( lwr>upr ){ c = -1; break; }
4645 }else if( nCellKey>intKey ){
4646 upr = idx-1;
4647 if( lwr>upr ){ c = +1; break; }
4648 }else{
4649 assert( nCellKey==intKey );
drhec3e6b12013-11-25 02:38:55 +00004650 pCur->validNKey = 1;
4651 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004652 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004653 if( !pPage->leaf ){
4654 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004655 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004656 }else{
4657 *pRes = 0;
4658 rc = SQLITE_OK;
4659 goto moveto_finish;
4660 }
drhd793f442013-11-25 14:10:15 +00004661 }
drhebf10b12013-11-25 17:38:26 +00004662 assert( lwr+upr>=0 );
4663 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004664 }
4665 }else{
4666 for(;;){
4667 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004668 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4669
drhb2eced52010-08-12 02:41:12 +00004670 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004671 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004672 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004673 ** varint. This information is used to attempt to avoid parsing
4674 ** the entire cell by checking for the cases where the record is
4675 ** stored entirely within the b-tree page by inspecting the first
4676 ** 2 bytes of the cell.
4677 */
drhec3e6b12013-11-25 02:38:55 +00004678 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004679 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004680 /* This branch runs if the record-size field of the cell is a
4681 ** single byte varint and the record fits entirely on the main
4682 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004683 testcase( pCell+nCell+1==pPage->aDataEnd );
dan3833e932014-03-01 19:44:56 +00004684 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
danielk197711c327a2009-05-04 19:01:26 +00004685 }else if( !(pCell[1] & 0x80)
4686 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4687 ){
4688 /* The record-size field is a 2 byte varint and the record
4689 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004690 testcase( pCell+nCell+2==pPage->aDataEnd );
dan3833e932014-03-01 19:44:56 +00004691 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
drhe51c44f2004-05-30 20:46:09 +00004692 }else{
danielk197711c327a2009-05-04 19:01:26 +00004693 /* The record flows over onto one or more overflow pages. In
4694 ** this case the whole cell needs to be parsed, a buffer allocated
4695 ** and accessPayload() used to retrieve the record into the
4696 ** buffer before VdbeRecordCompare() can be called. */
4697 void *pCellKey;
4698 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004699 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004700 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004701 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004702 if( pCellKey==0 ){
4703 rc = SQLITE_NOMEM;
4704 goto moveto_finish;
4705 }
drhd793f442013-11-25 14:10:15 +00004706 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhfb192682009-07-11 18:26:28 +00004707 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004708 if( rc ){
4709 sqlite3_free(pCellKey);
4710 goto moveto_finish;
4711 }
dan3833e932014-03-01 19:44:56 +00004712 c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
drhfacf0302008-06-17 15:12:00 +00004713 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004714 }
drha1f7c0a2014-03-28 03:12:48 +00004715 assert( pIdxKey->isCorrupt==0 || c==0 );
drhbb933ef2013-11-25 15:01:38 +00004716 if( c<0 ){
4717 lwr = idx+1;
4718 }else if( c>0 ){
4719 upr = idx-1;
4720 }else{
4721 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004722 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004723 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004724 pCur->aiIdx[pCur->iPage] = (u16)idx;
drha1f7c0a2014-03-28 03:12:48 +00004725 if( pIdxKey->isCorrupt ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004726 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004727 }
drhebf10b12013-11-25 17:38:26 +00004728 if( lwr>upr ) break;
4729 assert( lwr+upr>=0 );
4730 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004731 }
drh72f82862001-05-24 21:06:34 +00004732 }
drhb07028f2011-10-14 21:49:18 +00004733 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004734 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004735 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004736 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004737 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004738 *pRes = c;
4739 rc = SQLITE_OK;
4740 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004741 }
4742moveto_next_layer:
4743 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004744 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004745 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004746 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004747 }
drhf49661a2008-12-10 16:45:50 +00004748 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004749 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004750 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004751 }
drh1e968a02008-03-25 00:22:21 +00004752moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004753 pCur->info.nSize = 0;
4754 pCur->validNKey = 0;
drhe63d9992008-08-13 19:11:48 +00004755 return rc;
4756}
4757
drhd677b3d2007-08-20 22:48:41 +00004758
drh72f82862001-05-24 21:06:34 +00004759/*
drhc39e0002004-05-07 23:50:57 +00004760** Return TRUE if the cursor is not pointing at an entry of the table.
4761**
4762** TRUE will be returned after a call to sqlite3BtreeNext() moves
4763** past the last entry in the table or sqlite3BtreePrev() moves past
4764** the first entry. TRUE is also returned if the table is empty.
4765*/
4766int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004767 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4768 ** have been deleted? This API will need to change to return an error code
4769 ** as well as the boolean result value.
4770 */
4771 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004772}
4773
4774/*
drhbd03cae2001-06-02 02:40:57 +00004775** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004776** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004777** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004778** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004779**
4780** The calling function will set *pRes to 0 or 1. The initial *pRes value
4781** will be 1 if the cursor being stepped corresponds to an SQL index and
4782** if this routine could have been skipped if that SQL index had been
4783** a unique index. Otherwise the caller will have set *pRes to zero.
4784** Zero is the common case. The btree implementation is free to use the
4785** initial *pRes value as a hint to improve performance, but the current
4786** SQLite btree implementation does not. (Note that the comdb2 btree
4787** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00004788*/
drhd094db12008-04-03 21:46:57 +00004789int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004790 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004791 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004792 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004793
drh1fee73e2007-08-29 04:00:57 +00004794 assert( cursorHoldsMutex(pCur) );
drh8c4d3a62007-04-06 01:03:32 +00004795 assert( pRes!=0 );
drhe39a7322014-02-03 14:04:11 +00004796 assert( *pRes==0 || *pRes==1 );
drh9b47ee32013-08-20 03:13:51 +00004797 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00004798 if( pCur->eState!=CURSOR_VALID ){
4799 rc = restoreCursorPosition(pCur);
4800 if( rc!=SQLITE_OK ){
drh9b47ee32013-08-20 03:13:51 +00004801 *pRes = 0;
drhf66f26a2013-08-19 20:04:10 +00004802 return rc;
4803 }
4804 if( CURSOR_INVALID==pCur->eState ){
4805 *pRes = 1;
4806 return SQLITE_OK;
4807 }
drh9b47ee32013-08-20 03:13:51 +00004808 if( pCur->skipNext ){
4809 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4810 pCur->eState = CURSOR_VALID;
4811 if( pCur->skipNext>0 ){
4812 pCur->skipNext = 0;
4813 *pRes = 0;
4814 return SQLITE_OK;
4815 }
drhf66f26a2013-08-19 20:04:10 +00004816 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004817 }
danielk1977da184232006-01-05 11:34:32 +00004818 }
danielk1977da184232006-01-05 11:34:32 +00004819
danielk197771d5d2c2008-09-29 11:49:47 +00004820 pPage = pCur->apPage[pCur->iPage];
4821 idx = ++pCur->aiIdx[pCur->iPage];
4822 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004823
4824 /* If the database file is corrupt, it is possible for the value of idx
4825 ** to be invalid here. This can only occur if a second cursor modifies
4826 ** the page while cursor pCur is holding a reference to it. Which can
4827 ** only happen if the database is corrupt in such a way as to link the
4828 ** page into more than one b-tree structure. */
4829 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004830
drh271efa52004-05-30 19:19:05 +00004831 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004832 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004833 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004834 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004835 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh9b47ee32013-08-20 03:13:51 +00004836 if( rc ){
4837 *pRes = 0;
4838 return rc;
4839 }
drh5e2f8b92001-05-28 00:41:15 +00004840 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004841 *pRes = 0;
4842 return rc;
drh72f82862001-05-24 21:06:34 +00004843 }
drh5e2f8b92001-05-28 00:41:15 +00004844 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004845 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004846 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004847 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004848 return SQLITE_OK;
4849 }
danielk197730548662009-07-09 05:07:37 +00004850 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004851 pPage = pCur->apPage[pCur->iPage];
4852 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004853 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004854 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004855 rc = sqlite3BtreeNext(pCur, pRes);
4856 }else{
4857 rc = SQLITE_OK;
4858 }
4859 return rc;
drh8178a752003-01-05 21:41:40 +00004860 }
4861 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004862 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004863 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004864 }
drh5e2f8b92001-05-28 00:41:15 +00004865 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004866 return rc;
drh72f82862001-05-24 21:06:34 +00004867}
drhd677b3d2007-08-20 22:48:41 +00004868
drh72f82862001-05-24 21:06:34 +00004869
drh3b7511c2001-05-26 13:15:44 +00004870/*
drh2dcc9aa2002-12-04 13:40:25 +00004871** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004872** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004873** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004874** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004875**
4876** The calling function will set *pRes to 0 or 1. The initial *pRes value
4877** will be 1 if the cursor being stepped corresponds to an SQL index and
4878** if this routine could have been skipped if that SQL index had been
4879** a unique index. Otherwise the caller will have set *pRes to zero.
4880** Zero is the common case. The btree implementation is free to use the
4881** initial *pRes value as a hint to improve performance, but the current
4882** SQLite btree implementation does not. (Note that the comdb2 btree
4883** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00004884*/
drhd094db12008-04-03 21:46:57 +00004885int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004886 int rc;
drh8178a752003-01-05 21:41:40 +00004887 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004888
drh1fee73e2007-08-29 04:00:57 +00004889 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004890 assert( pRes!=0 );
drhe39a7322014-02-03 14:04:11 +00004891 assert( *pRes==0 || *pRes==1 );
drh9b47ee32013-08-20 03:13:51 +00004892 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drha2c20e42008-03-29 16:01:04 +00004893 pCur->atLast = 0;
drhf66f26a2013-08-19 20:04:10 +00004894 if( pCur->eState!=CURSOR_VALID ){
4895 if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
4896 rc = btreeRestoreCursorPosition(pCur);
drh9b47ee32013-08-20 03:13:51 +00004897 if( rc!=SQLITE_OK ){
4898 *pRes = 0;
4899 return rc;
4900 }
drhf66f26a2013-08-19 20:04:10 +00004901 }
4902 if( CURSOR_INVALID==pCur->eState ){
4903 *pRes = 1;
4904 return SQLITE_OK;
4905 }
drh9b47ee32013-08-20 03:13:51 +00004906 if( pCur->skipNext ){
4907 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4908 pCur->eState = CURSOR_VALID;
4909 if( pCur->skipNext<0 ){
4910 pCur->skipNext = 0;
4911 *pRes = 0;
4912 return SQLITE_OK;
4913 }
drhf66f26a2013-08-19 20:04:10 +00004914 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004915 }
danielk1977da184232006-01-05 11:34:32 +00004916 }
danielk1977da184232006-01-05 11:34:32 +00004917
danielk197771d5d2c2008-09-29 11:49:47 +00004918 pPage = pCur->apPage[pCur->iPage];
4919 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004920 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004921 int idx = pCur->aiIdx[pCur->iPage];
4922 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004923 if( rc ){
drh9b47ee32013-08-20 03:13:51 +00004924 *pRes = 0;
drhd677b3d2007-08-20 22:48:41 +00004925 return rc;
4926 }
drh2dcc9aa2002-12-04 13:40:25 +00004927 rc = moveToRightmost(pCur);
4928 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004929 while( pCur->aiIdx[pCur->iPage]==0 ){
4930 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004931 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004932 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004933 return SQLITE_OK;
4934 }
danielk197730548662009-07-09 05:07:37 +00004935 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004936 }
drh271efa52004-05-30 19:19:05 +00004937 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004938 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004939
4940 pCur->aiIdx[pCur->iPage]--;
4941 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004942 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004943 rc = sqlite3BtreePrevious(pCur, pRes);
4944 }else{
4945 rc = SQLITE_OK;
4946 }
drh2dcc9aa2002-12-04 13:40:25 +00004947 }
drh8178a752003-01-05 21:41:40 +00004948 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004949 return rc;
4950}
4951
4952/*
drh3b7511c2001-05-26 13:15:44 +00004953** Allocate a new page from the database file.
4954**
danielk19773b8a05f2007-03-19 17:44:26 +00004955** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004956** has already been called on the new page.) The new page has also
4957** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004958** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004959**
4960** SQLITE_OK is returned on success. Any other return value indicates
4961** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004962** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004963**
drh82e647d2013-03-02 03:25:55 +00004964** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004965** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004966** attempt to keep related pages close to each other in the database file,
4967** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004968**
drh82e647d2013-03-02 03:25:55 +00004969** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4970** anywhere on the free-list, then it is guaranteed to be returned. If
4971** eMode is BTALLOC_LT then the page returned will be less than or equal
4972** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4973** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004974*/
drh4f0c5872007-03-26 22:05:01 +00004975static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00004976 BtShared *pBt, /* The btree */
4977 MemPage **ppPage, /* Store pointer to the allocated page here */
4978 Pgno *pPgno, /* Store the page number here */
4979 Pgno nearby, /* Search for a page near this one */
4980 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004981){
drh3aac2dd2004-04-26 14:10:20 +00004982 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004983 int rc;
drh35cd6432009-06-05 14:17:21 +00004984 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004985 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004986 MemPage *pTrunk = 0;
4987 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004988 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004989
drh1fee73e2007-08-29 04:00:57 +00004990 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00004991 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00004992 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004993 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004994 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004995 testcase( n==mxPage-1 );
4996 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004997 return SQLITE_CORRUPT_BKPT;
4998 }
drh3aac2dd2004-04-26 14:10:20 +00004999 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005000 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005001 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005002 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5003
drh82e647d2013-03-02 03:25:55 +00005004 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005005 ** shows that the page 'nearby' is somewhere on the free-list, then
5006 ** the entire-list will be searched for that page.
5007 */
5008#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005009 if( eMode==BTALLOC_EXACT ){
5010 if( nearby<=mxPage ){
5011 u8 eType;
5012 assert( nearby>0 );
5013 assert( pBt->autoVacuum );
5014 rc = ptrmapGet(pBt, nearby, &eType, 0);
5015 if( rc ) return rc;
5016 if( eType==PTRMAP_FREEPAGE ){
5017 searchList = 1;
5018 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005019 }
dan51f0b6d2013-02-22 20:16:34 +00005020 }else if( eMode==BTALLOC_LE ){
5021 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005022 }
5023#endif
5024
5025 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5026 ** first free-list trunk page. iPrevTrunk is initially 1.
5027 */
danielk19773b8a05f2007-03-19 17:44:26 +00005028 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005029 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005030 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005031
5032 /* The code within this loop is run only once if the 'searchList' variable
5033 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005034 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5035 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005036 */
5037 do {
5038 pPrevTrunk = pTrunk;
5039 if( pPrevTrunk ){
5040 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005041 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005042 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005043 }
drhdf35a082009-07-09 02:24:35 +00005044 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005045 if( iTrunk>mxPage ){
5046 rc = SQLITE_CORRUPT_BKPT;
5047 }else{
drhb00fc3b2013-08-21 23:42:32 +00005048 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005049 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005050 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005051 pTrunk = 0;
5052 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005053 }
drhb07028f2011-10-14 21:49:18 +00005054 assert( pTrunk!=0 );
5055 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005056
drh93b4fc72011-04-07 14:47:01 +00005057 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005058 if( k==0 && !searchList ){
5059 /* The trunk has no leaves and the list is not being searched.
5060 ** So extract the trunk page itself and use it as the newly
5061 ** allocated page */
5062 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005063 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005064 if( rc ){
5065 goto end_allocate_page;
5066 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005067 *pPgno = iTrunk;
5068 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5069 *ppPage = pTrunk;
5070 pTrunk = 0;
5071 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005072 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005073 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005074 rc = SQLITE_CORRUPT_BKPT;
5075 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005076#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005077 }else if( searchList
5078 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5079 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005080 /* The list is being searched and this trunk page is the page
5081 ** to allocate, regardless of whether it has leaves.
5082 */
dan51f0b6d2013-02-22 20:16:34 +00005083 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005084 *ppPage = pTrunk;
5085 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005086 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005087 if( rc ){
5088 goto end_allocate_page;
5089 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005090 if( k==0 ){
5091 if( !pPrevTrunk ){
5092 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5093 }else{
danf48c3552010-08-23 15:41:24 +00005094 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5095 if( rc!=SQLITE_OK ){
5096 goto end_allocate_page;
5097 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005098 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5099 }
5100 }else{
5101 /* The trunk page is required by the caller but it contains
5102 ** pointers to free-list leaves. The first leaf becomes a trunk
5103 ** page in this case.
5104 */
5105 MemPage *pNewTrunk;
5106 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005107 if( iNewTrunk>mxPage ){
5108 rc = SQLITE_CORRUPT_BKPT;
5109 goto end_allocate_page;
5110 }
drhdf35a082009-07-09 02:24:35 +00005111 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005112 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005113 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005114 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005115 }
danielk19773b8a05f2007-03-19 17:44:26 +00005116 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005117 if( rc!=SQLITE_OK ){
5118 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005119 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005120 }
5121 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5122 put4byte(&pNewTrunk->aData[4], k-1);
5123 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005124 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005125 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005126 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005127 put4byte(&pPage1->aData[32], iNewTrunk);
5128 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005129 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005130 if( rc ){
5131 goto end_allocate_page;
5132 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005133 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5134 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005135 }
5136 pTrunk = 0;
5137 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5138#endif
danielk1977e5765212009-06-17 11:13:28 +00005139 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005140 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005141 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005142 Pgno iPage;
5143 unsigned char *aData = pTrunk->aData;
5144 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005145 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005146 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005147 if( eMode==BTALLOC_LE ){
5148 for(i=0; i<k; i++){
5149 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005150 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005151 closest = i;
5152 break;
5153 }
5154 }
5155 }else{
5156 int dist;
5157 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5158 for(i=1; i<k; i++){
5159 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5160 if( d2<dist ){
5161 closest = i;
5162 dist = d2;
5163 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005164 }
5165 }
5166 }else{
5167 closest = 0;
5168 }
5169
5170 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005171 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005172 if( iPage>mxPage ){
5173 rc = SQLITE_CORRUPT_BKPT;
5174 goto end_allocate_page;
5175 }
drhdf35a082009-07-09 02:24:35 +00005176 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005177 if( !searchList
5178 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5179 ){
danielk1977bea2a942009-01-20 17:06:27 +00005180 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005181 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005182 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5183 ": %d more free pages\n",
5184 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005185 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5186 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005187 if( closest<k-1 ){
5188 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5189 }
5190 put4byte(&aData[4], k-1);
drhb00fc3b2013-08-21 23:42:32 +00005191 noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5192 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005193 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005194 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005195 if( rc!=SQLITE_OK ){
5196 releasePage(*ppPage);
5197 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005198 }
5199 searchList = 0;
5200 }
drhee696e22004-08-30 16:52:17 +00005201 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005202 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005203 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005204 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005205 }else{
danbc1a3c62013-02-23 16:40:46 +00005206 /* There are no pages on the freelist, so append a new page to the
5207 ** database image.
5208 **
5209 ** Normally, new pages allocated by this block can be requested from the
5210 ** pager layer with the 'no-content' flag set. This prevents the pager
5211 ** from trying to read the pages content from disk. However, if the
5212 ** current transaction has already run one or more incremental-vacuum
5213 ** steps, then the page we are about to allocate may contain content
5214 ** that is required in the event of a rollback. In this case, do
5215 ** not set the no-content flag. This causes the pager to load and journal
5216 ** the current page content before overwriting it.
5217 **
5218 ** Note that the pager will not actually attempt to load or journal
5219 ** content for any page that really does lie past the end of the database
5220 ** file on disk. So the effects of disabling the no-content optimization
5221 ** here are confined to those pages that lie between the end of the
5222 ** database image and the end of the database file.
5223 */
drhb00fc3b2013-08-21 23:42:32 +00005224 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
danbc1a3c62013-02-23 16:40:46 +00005225
drhdd3cd972010-03-27 17:12:36 +00005226 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5227 if( rc ) return rc;
5228 pBt->nPage++;
5229 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005230
danielk1977afcdd022004-10-31 16:25:42 +00005231#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005232 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005233 /* If *pPgno refers to a pointer-map page, allocate two new pages
5234 ** at the end of the file instead of one. The first allocated page
5235 ** becomes a new pointer-map page, the second is used by the caller.
5236 */
danielk1977ac861692009-03-28 10:54:22 +00005237 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005238 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5239 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005240 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005241 if( rc==SQLITE_OK ){
5242 rc = sqlite3PagerWrite(pPg->pDbPage);
5243 releasePage(pPg);
5244 }
5245 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005246 pBt->nPage++;
5247 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005248 }
5249#endif
drhdd3cd972010-03-27 17:12:36 +00005250 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5251 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005252
danielk1977599fcba2004-11-08 07:13:13 +00005253 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005254 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005255 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005256 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005257 if( rc!=SQLITE_OK ){
5258 releasePage(*ppPage);
5259 }
drh3a4c1412004-05-09 20:40:11 +00005260 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005261 }
danielk1977599fcba2004-11-08 07:13:13 +00005262
5263 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005264
5265end_allocate_page:
5266 releasePage(pTrunk);
5267 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005268 if( rc==SQLITE_OK ){
5269 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5270 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005271 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005272 return SQLITE_CORRUPT_BKPT;
5273 }
5274 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005275 }else{
5276 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005277 }
drh93b4fc72011-04-07 14:47:01 +00005278 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005279 return rc;
5280}
5281
5282/*
danielk1977bea2a942009-01-20 17:06:27 +00005283** This function is used to add page iPage to the database file free-list.
5284** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005285**
danielk1977bea2a942009-01-20 17:06:27 +00005286** The value passed as the second argument to this function is optional.
5287** If the caller happens to have a pointer to the MemPage object
5288** corresponding to page iPage handy, it may pass it as the second value.
5289** Otherwise, it may pass NULL.
5290**
5291** If a pointer to a MemPage object is passed as the second argument,
5292** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005293*/
danielk1977bea2a942009-01-20 17:06:27 +00005294static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5295 MemPage *pTrunk = 0; /* Free-list trunk page */
5296 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5297 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5298 MemPage *pPage; /* Page being freed. May be NULL. */
5299 int rc; /* Return Code */
5300 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005301
danielk1977bea2a942009-01-20 17:06:27 +00005302 assert( sqlite3_mutex_held(pBt->mutex) );
5303 assert( iPage>1 );
5304 assert( !pMemPage || pMemPage->pgno==iPage );
5305
5306 if( pMemPage ){
5307 pPage = pMemPage;
5308 sqlite3PagerRef(pPage->pDbPage);
5309 }else{
5310 pPage = btreePageLookup(pBt, iPage);
5311 }
drh3aac2dd2004-04-26 14:10:20 +00005312
drha34b6762004-05-07 13:30:42 +00005313 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005314 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005315 if( rc ) goto freepage_out;
5316 nFree = get4byte(&pPage1->aData[36]);
5317 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005318
drhc9166342012-01-05 23:32:06 +00005319 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005320 /* If the secure_delete option is enabled, then
5321 ** always fully overwrite deleted information with zeros.
5322 */
drhb00fc3b2013-08-21 23:42:32 +00005323 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005324 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005325 ){
5326 goto freepage_out;
5327 }
5328 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005329 }
drhfcce93f2006-02-22 03:08:32 +00005330
danielk1977687566d2004-11-02 12:56:41 +00005331 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005332 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005333 */
danielk197785d90ca2008-07-19 14:25:15 +00005334 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005335 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005336 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005337 }
danielk1977687566d2004-11-02 12:56:41 +00005338
danielk1977bea2a942009-01-20 17:06:27 +00005339 /* Now manipulate the actual database free-list structure. There are two
5340 ** possibilities. If the free-list is currently empty, or if the first
5341 ** trunk page in the free-list is full, then this page will become a
5342 ** new free-list trunk page. Otherwise, it will become a leaf of the
5343 ** first trunk page in the current free-list. This block tests if it
5344 ** is possible to add the page as a new free-list leaf.
5345 */
5346 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005347 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005348
5349 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005350 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005351 if( rc!=SQLITE_OK ){
5352 goto freepage_out;
5353 }
5354
5355 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005356 assert( pBt->usableSize>32 );
5357 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005358 rc = SQLITE_CORRUPT_BKPT;
5359 goto freepage_out;
5360 }
drheeb844a2009-08-08 18:01:07 +00005361 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005362 /* In this case there is room on the trunk page to insert the page
5363 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005364 **
5365 ** Note that the trunk page is not really full until it contains
5366 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5367 ** coded. But due to a coding error in versions of SQLite prior to
5368 ** 3.6.0, databases with freelist trunk pages holding more than
5369 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5370 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005371 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005372 ** for now. At some point in the future (once everyone has upgraded
5373 ** to 3.6.0 or later) we should consider fixing the conditional above
5374 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5375 */
danielk19773b8a05f2007-03-19 17:44:26 +00005376 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005377 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005378 put4byte(&pTrunk->aData[4], nLeaf+1);
5379 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005380 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005381 sqlite3PagerDontWrite(pPage->pDbPage);
5382 }
danielk1977bea2a942009-01-20 17:06:27 +00005383 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005384 }
drh3a4c1412004-05-09 20:40:11 +00005385 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005386 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005387 }
drh3b7511c2001-05-26 13:15:44 +00005388 }
danielk1977bea2a942009-01-20 17:06:27 +00005389
5390 /* If control flows to this point, then it was not possible to add the
5391 ** the page being freed as a leaf page of the first trunk in the free-list.
5392 ** Possibly because the free-list is empty, or possibly because the
5393 ** first trunk in the free-list is full. Either way, the page being freed
5394 ** will become the new first trunk page in the free-list.
5395 */
drhb00fc3b2013-08-21 23:42:32 +00005396 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005397 goto freepage_out;
5398 }
5399 rc = sqlite3PagerWrite(pPage->pDbPage);
5400 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005401 goto freepage_out;
5402 }
5403 put4byte(pPage->aData, iTrunk);
5404 put4byte(&pPage->aData[4], 0);
5405 put4byte(&pPage1->aData[32], iPage);
5406 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5407
5408freepage_out:
5409 if( pPage ){
5410 pPage->isInit = 0;
5411 }
5412 releasePage(pPage);
5413 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005414 return rc;
5415}
drhc314dc72009-07-21 11:52:34 +00005416static void freePage(MemPage *pPage, int *pRC){
5417 if( (*pRC)==SQLITE_OK ){
5418 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5419 }
danielk1977bea2a942009-01-20 17:06:27 +00005420}
drh3b7511c2001-05-26 13:15:44 +00005421
5422/*
drh3aac2dd2004-04-26 14:10:20 +00005423** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005424*/
drh3aac2dd2004-04-26 14:10:20 +00005425static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005426 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005427 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005428 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005429 int rc;
drh94440812007-03-06 11:42:19 +00005430 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005431 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005432
drh1fee73e2007-08-29 04:00:57 +00005433 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005434 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005435 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005436 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005437 }
drhe42a9b42011-08-31 13:27:19 +00005438 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005439 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005440 }
drh6f11bef2004-05-13 01:12:56 +00005441 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005442 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005443 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005444 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5445 assert( ovflPgno==0 || nOvfl>0 );
5446 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005447 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005448 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005449 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005450 /* 0 is not a legal page number and page 1 cannot be an
5451 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5452 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005453 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005454 }
danielk1977bea2a942009-01-20 17:06:27 +00005455 if( nOvfl ){
5456 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5457 if( rc ) return rc;
5458 }
dan887d4b22010-02-25 12:09:16 +00005459
shaneh1da207e2010-03-09 14:41:12 +00005460 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005461 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5462 ){
5463 /* There is no reason any cursor should have an outstanding reference
5464 ** to an overflow page belonging to a cell that is being deleted/updated.
5465 ** So if there exists more than one reference to this page, then it
5466 ** must not really be an overflow page and the database must be corrupt.
5467 ** It is helpful to detect this before calling freePage2(), as
5468 ** freePage2() may zero the page contents if secure-delete mode is
5469 ** enabled. If this 'overflow' page happens to be a page that the
5470 ** caller is iterating through or using in some other way, this
5471 ** can be problematic.
5472 */
5473 rc = SQLITE_CORRUPT_BKPT;
5474 }else{
5475 rc = freePage2(pBt, pOvfl, ovflPgno);
5476 }
5477
danielk1977bea2a942009-01-20 17:06:27 +00005478 if( pOvfl ){
5479 sqlite3PagerUnref(pOvfl->pDbPage);
5480 }
drh3b7511c2001-05-26 13:15:44 +00005481 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005482 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005483 }
drh5e2f8b92001-05-28 00:41:15 +00005484 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005485}
5486
5487/*
drh91025292004-05-03 19:49:32 +00005488** Create the byte sequence used to represent a cell on page pPage
5489** and write that byte sequence into pCell[]. Overflow pages are
5490** allocated and filled in as necessary. The calling procedure
5491** is responsible for making sure sufficient space has been allocated
5492** for pCell[].
5493**
5494** Note that pCell does not necessary need to point to the pPage->aData
5495** area. pCell might point to some temporary storage. The cell will
5496** be constructed in this temporary area then copied into pPage->aData
5497** later.
drh3b7511c2001-05-26 13:15:44 +00005498*/
5499static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005500 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005501 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005502 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005503 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005504 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005505 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005506){
drh3b7511c2001-05-26 13:15:44 +00005507 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005508 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005509 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005510 int spaceLeft;
5511 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005512 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005513 unsigned char *pPrior;
5514 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005515 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005516 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005517 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005518 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005519
drh1fee73e2007-08-29 04:00:57 +00005520 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005521
drhc5053fb2008-11-27 02:22:10 +00005522 /* pPage is not necessarily writeable since pCell might be auxiliary
5523 ** buffer space that is separate from the pPage buffer area */
5524 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5525 || sqlite3PagerIswriteable(pPage->pDbPage) );
5526
drh91025292004-05-03 19:49:32 +00005527 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005528 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005529 if( !pPage->leaf ){
5530 nHeader += 4;
5531 }
drh8b18dd42004-05-12 19:18:15 +00005532 if( pPage->hasData ){
drh7599d4a2013-12-09 00:47:11 +00005533 nHeader += putVarint32(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005534 }else{
drhb026e052007-05-02 01:34:31 +00005535 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005536 }
drh6f11bef2004-05-13 01:12:56 +00005537 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005538 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005539 assert( info.nHeader==nHeader );
5540 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005541 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005542
5543 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005544 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005545 if( pPage->intKey ){
5546 pSrc = pData;
5547 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005548 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005549 }else{
danielk197731d31b82009-07-13 13:18:07 +00005550 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5551 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005552 }
drhf49661a2008-12-10 16:45:50 +00005553 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005554 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005555 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005556 }
drh6f11bef2004-05-13 01:12:56 +00005557 *pnSize = info.nSize;
5558 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005559 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005560 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005561
drh3b7511c2001-05-26 13:15:44 +00005562 while( nPayload>0 ){
5563 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005564#ifndef SQLITE_OMIT_AUTOVACUUM
5565 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005566 if( pBt->autoVacuum ){
5567 do{
5568 pgnoOvfl++;
5569 } while(
5570 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5571 );
danielk1977b39f70b2007-05-17 18:28:11 +00005572 }
danielk1977afcdd022004-10-31 16:25:42 +00005573#endif
drhf49661a2008-12-10 16:45:50 +00005574 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005575#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005576 /* If the database supports auto-vacuum, and the second or subsequent
5577 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005578 ** for that page now.
5579 **
5580 ** If this is the first overflow page, then write a partial entry
5581 ** to the pointer-map. If we write nothing to this pointer-map slot,
5582 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005583 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005584 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005585 */
danielk19774ef24492007-05-23 09:52:41 +00005586 if( pBt->autoVacuum && rc==SQLITE_OK ){
5587 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005588 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005589 if( rc ){
5590 releasePage(pOvfl);
5591 }
danielk1977afcdd022004-10-31 16:25:42 +00005592 }
5593#endif
drh3b7511c2001-05-26 13:15:44 +00005594 if( rc ){
drh9b171272004-05-08 02:03:22 +00005595 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005596 return rc;
5597 }
drhc5053fb2008-11-27 02:22:10 +00005598
5599 /* If pToRelease is not zero than pPrior points into the data area
5600 ** of pToRelease. Make sure pToRelease is still writeable. */
5601 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5602
5603 /* If pPrior is part of the data area of pPage, then make sure pPage
5604 ** is still writeable */
5605 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5606 || sqlite3PagerIswriteable(pPage->pDbPage) );
5607
drh3aac2dd2004-04-26 14:10:20 +00005608 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005609 releasePage(pToRelease);
5610 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005611 pPrior = pOvfl->aData;
5612 put4byte(pPrior, 0);
5613 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005614 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005615 }
5616 n = nPayload;
5617 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005618
5619 /* If pToRelease is not zero than pPayload points into the data area
5620 ** of pToRelease. Make sure pToRelease is still writeable. */
5621 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5622
5623 /* If pPayload is part of the data area of pPage, then make sure pPage
5624 ** is still writeable */
5625 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5626 || sqlite3PagerIswriteable(pPage->pDbPage) );
5627
drhb026e052007-05-02 01:34:31 +00005628 if( nSrc>0 ){
5629 if( n>nSrc ) n = nSrc;
5630 assert( pSrc );
5631 memcpy(pPayload, pSrc, n);
5632 }else{
5633 memset(pPayload, 0, n);
5634 }
drh3b7511c2001-05-26 13:15:44 +00005635 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005636 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005637 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005638 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005639 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005640 if( nSrc==0 ){
5641 nSrc = nData;
5642 pSrc = pData;
5643 }
drhdd793422001-06-28 01:54:48 +00005644 }
drh9b171272004-05-08 02:03:22 +00005645 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005646 return SQLITE_OK;
5647}
5648
drh14acc042001-06-10 19:56:58 +00005649/*
5650** Remove the i-th cell from pPage. This routine effects pPage only.
5651** The cell content is not freed or deallocated. It is assumed that
5652** the cell content has been copied someplace else. This routine just
5653** removes the reference to the cell from pPage.
5654**
5655** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005656*/
drh98add2e2009-07-20 17:11:49 +00005657static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005658 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005659 u8 *data; /* pPage->aData */
5660 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005661 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005662 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005663
drh98add2e2009-07-20 17:11:49 +00005664 if( *pRC ) return;
5665
drh8c42ca92001-06-22 19:15:00 +00005666 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005667 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005668 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005669 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005670 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005671 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005672 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005673 hdr = pPage->hdrOffset;
5674 testcase( pc==get2byte(&data[hdr+5]) );
5675 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005676 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005677 *pRC = SQLITE_CORRUPT_BKPT;
5678 return;
shane0af3f892008-11-12 04:55:34 +00005679 }
shanedcc50b72008-11-13 18:29:50 +00005680 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005681 if( rc ){
5682 *pRC = rc;
5683 return;
shanedcc50b72008-11-13 18:29:50 +00005684 }
drh14acc042001-06-10 19:56:58 +00005685 pPage->nCell--;
drh9bb7c4f2013-12-09 01:58:11 +00005686 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
drhc314dc72009-07-21 11:52:34 +00005687 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005688 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005689}
5690
5691/*
5692** Insert a new cell on pPage at cell index "i". pCell points to the
5693** content of the cell.
5694**
5695** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005696** will not fit, then make a copy of the cell content into pTemp if
5697** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005698** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005699** in pTemp or the original pCell) and also record its index.
5700** Allocating a new entry in pPage->aCell[] implies that
5701** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005702**
5703** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5704** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005705** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005706** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005707*/
drh98add2e2009-07-20 17:11:49 +00005708static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005709 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005710 int i, /* New cell becomes the i-th cell of the page */
5711 u8 *pCell, /* Content of the new cell */
5712 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005713 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005714 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5715 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005716){
drh383d30f2010-02-26 13:07:37 +00005717 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005718 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005719 int end; /* First byte past the last cell pointer in data[] */
5720 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005721 int cellOffset; /* Address of first cell pointer in data[] */
5722 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00005723 int nSkip = (iChild ? 4 : 0);
5724
drh98add2e2009-07-20 17:11:49 +00005725 if( *pRC ) return;
5726
drh43605152004-05-29 21:46:49 +00005727 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005728 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005729 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5730 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005731 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005732 /* The cell should normally be sized correctly. However, when moving a
5733 ** malformed cell from a leaf page to an interior page, if the cell size
5734 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5735 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5736 ** the term after the || in the following assert(). */
5737 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005738 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005739 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005740 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005741 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005742 }
danielk19774dbaa892009-06-16 16:50:22 +00005743 if( iChild ){
5744 put4byte(pCell, iChild);
5745 }
drh43605152004-05-29 21:46:49 +00005746 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005747 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5748 pPage->apOvfl[j] = pCell;
5749 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005750 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005751 int rc = sqlite3PagerWrite(pPage->pDbPage);
5752 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005753 *pRC = rc;
5754 return;
danielk19776e465eb2007-08-21 13:11:00 +00005755 }
5756 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005757 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005758 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005759 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005760 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005761 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005762 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005763 /* The allocateSpace() routine guarantees the following two properties
5764 ** if it returns success */
5765 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005766 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005767 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005768 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005769 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005770 if( iChild ){
5771 put4byte(&data[idx], iChild);
5772 }
drh8f518832013-12-09 02:32:19 +00005773 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00005774 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005775 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005776#ifndef SQLITE_OMIT_AUTOVACUUM
5777 if( pPage->pBt->autoVacuum ){
5778 /* The cell may contain a pointer to an overflow page. If so, write
5779 ** the entry for the overflow page into the pointer map.
5780 */
drh98add2e2009-07-20 17:11:49 +00005781 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005782 }
5783#endif
drh14acc042001-06-10 19:56:58 +00005784 }
5785}
5786
5787/*
drhfa1a98a2004-05-14 19:08:17 +00005788** Add a list of cells to a page. The page should be initially empty.
5789** The cells are guaranteed to fit on the page.
5790*/
5791static void assemblePage(
5792 MemPage *pPage, /* The page to be assemblied */
5793 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005794 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005795 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005796){
5797 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005798 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005799 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005800 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5801 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5802 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005803
drh43605152004-05-29 21:46:49 +00005804 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005805 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005806 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5807 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005808 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005809
5810 /* Check that the page has just been zeroed by zeroPage() */
5811 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005812 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005813
drh3def2352011-11-11 00:27:15 +00005814 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005815 cellbody = nUsable;
5816 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005817 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005818 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005819 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005820 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005821 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005822 }
danielk1977fad91942009-04-29 17:49:59 +00005823 put2byte(&data[hdr+3], nCell);
5824 put2byte(&data[hdr+5], cellbody);
5825 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005826 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005827}
5828
drh14acc042001-06-10 19:56:58 +00005829/*
drhc3b70572003-01-04 19:44:07 +00005830** The following parameters determine how many adjacent pages get involved
5831** in a balancing operation. NN is the number of neighbors on either side
5832** of the page that participate in the balancing operation. NB is the
5833** total number of pages that participate, including the target page and
5834** NN neighbors on either side.
5835**
5836** The minimum value of NN is 1 (of course). Increasing NN above 1
5837** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5838** in exchange for a larger degradation in INSERT and UPDATE performance.
5839** The value of NN appears to give the best results overall.
5840*/
5841#define NN 1 /* Number of neighbors on either side of pPage */
5842#define NB (NN*2+1) /* Total pages involved in the balance */
5843
danielk1977ac245ec2005-01-14 13:50:11 +00005844
drh615ae552005-01-16 23:21:00 +00005845#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005846/*
5847** This version of balance() handles the common special case where
5848** a new entry is being inserted on the extreme right-end of the
5849** tree, in other words, when the new entry will become the largest
5850** entry in the tree.
5851**
drhc314dc72009-07-21 11:52:34 +00005852** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005853** a new page to the right-hand side and put the one new entry in
5854** that page. This leaves the right side of the tree somewhat
5855** unbalanced. But odds are that we will be inserting new entries
5856** at the end soon afterwards so the nearly empty page will quickly
5857** fill up. On average.
5858**
5859** pPage is the leaf page which is the right-most page in the tree.
5860** pParent is its parent. pPage must have a single overflow entry
5861** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005862**
5863** The pSpace buffer is used to store a temporary copy of the divider
5864** cell that will be inserted into pParent. Such a cell consists of a 4
5865** byte page number followed by a variable length integer. In other
5866** words, at most 13 bytes. Hence the pSpace buffer must be at
5867** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005868*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005869static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5870 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005871 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005872 int rc; /* Return Code */
5873 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005874
drh1fee73e2007-08-29 04:00:57 +00005875 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005876 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005877 assert( pPage->nOverflow==1 );
5878
drh5d433ce2010-08-14 16:02:52 +00005879 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005880 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005881
danielk1977a50d9aa2009-06-08 14:49:45 +00005882 /* Allocate a new page. This page will become the right-sibling of
5883 ** pPage. Make the parent page writable, so that the new divider cell
5884 ** may be inserted. If both these operations are successful, proceed.
5885 */
drh4f0c5872007-03-26 22:05:01 +00005886 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005887
danielk1977eaa06f62008-09-18 17:34:44 +00005888 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005889
5890 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005891 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005892 u16 szCell = cellSizePtr(pPage, pCell);
5893 u8 *pStop;
5894
drhc5053fb2008-11-27 02:22:10 +00005895 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005896 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5897 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005898 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005899
5900 /* If this is an auto-vacuum database, update the pointer map
5901 ** with entries for the new page, and any pointer from the
5902 ** cell on the page to an overflow page. If either of these
5903 ** operations fails, the return code is set, but the contents
5904 ** of the parent page are still manipulated by thh code below.
5905 ** That is Ok, at this point the parent page is guaranteed to
5906 ** be marked as dirty. Returning an error code will cause a
5907 ** rollback, undoing any changes made to the parent page.
5908 */
5909 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005910 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5911 if( szCell>pNew->minLocal ){
5912 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005913 }
5914 }
danielk1977eaa06f62008-09-18 17:34:44 +00005915
danielk19776f235cc2009-06-04 14:46:08 +00005916 /* Create a divider cell to insert into pParent. The divider cell
5917 ** consists of a 4-byte page number (the page number of pPage) and
5918 ** a variable length key value (which must be the same value as the
5919 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005920 **
danielk19776f235cc2009-06-04 14:46:08 +00005921 ** To find the largest key value on pPage, first find the right-most
5922 ** cell on pPage. The first two fields of this cell are the
5923 ** record-length (a variable length integer at most 32-bits in size)
5924 ** and the key value (a variable length integer, may have any value).
5925 ** The first of the while(...) loops below skips over the record-length
5926 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005927 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005928 */
danielk1977eaa06f62008-09-18 17:34:44 +00005929 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005930 pStop = &pCell[9];
5931 while( (*(pCell++)&0x80) && pCell<pStop );
5932 pStop = &pCell[9];
5933 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5934
danielk19774dbaa892009-06-16 16:50:22 +00005935 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005936 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5937 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005938
5939 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005940 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5941
danielk1977e08a3c42008-09-18 18:17:03 +00005942 /* Release the reference to the new page. */
5943 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005944 }
5945
danielk1977eaa06f62008-09-18 17:34:44 +00005946 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005947}
drh615ae552005-01-16 23:21:00 +00005948#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005949
danielk19774dbaa892009-06-16 16:50:22 +00005950#if 0
drhc3b70572003-01-04 19:44:07 +00005951/*
danielk19774dbaa892009-06-16 16:50:22 +00005952** This function does not contribute anything to the operation of SQLite.
5953** it is sometimes activated temporarily while debugging code responsible
5954** for setting pointer-map entries.
5955*/
5956static int ptrmapCheckPages(MemPage **apPage, int nPage){
5957 int i, j;
5958 for(i=0; i<nPage; i++){
5959 Pgno n;
5960 u8 e;
5961 MemPage *pPage = apPage[i];
5962 BtShared *pBt = pPage->pBt;
5963 assert( pPage->isInit );
5964
5965 for(j=0; j<pPage->nCell; j++){
5966 CellInfo info;
5967 u8 *z;
5968
5969 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005970 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005971 if( info.iOverflow ){
5972 Pgno ovfl = get4byte(&z[info.iOverflow]);
5973 ptrmapGet(pBt, ovfl, &e, &n);
5974 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5975 }
5976 if( !pPage->leaf ){
5977 Pgno child = get4byte(z);
5978 ptrmapGet(pBt, child, &e, &n);
5979 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5980 }
5981 }
5982 if( !pPage->leaf ){
5983 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5984 ptrmapGet(pBt, child, &e, &n);
5985 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5986 }
5987 }
5988 return 1;
5989}
5990#endif
5991
danielk1977cd581a72009-06-23 15:43:39 +00005992/*
5993** This function is used to copy the contents of the b-tree node stored
5994** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5995** the pointer-map entries for each child page are updated so that the
5996** parent page stored in the pointer map is page pTo. If pFrom contained
5997** any cells with overflow page pointers, then the corresponding pointer
5998** map entries are also updated so that the parent page is page pTo.
5999**
6000** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006001** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006002**
danielk197730548662009-07-09 05:07:37 +00006003** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006004**
6005** The performance of this function is not critical. It is only used by
6006** the balance_shallower() and balance_deeper() procedures, neither of
6007** which are called often under normal circumstances.
6008*/
drhc314dc72009-07-21 11:52:34 +00006009static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6010 if( (*pRC)==SQLITE_OK ){
6011 BtShared * const pBt = pFrom->pBt;
6012 u8 * const aFrom = pFrom->aData;
6013 u8 * const aTo = pTo->aData;
6014 int const iFromHdr = pFrom->hdrOffset;
6015 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006016 int rc;
drhc314dc72009-07-21 11:52:34 +00006017 int iData;
6018
6019
6020 assert( pFrom->isInit );
6021 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006022 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006023
6024 /* Copy the b-tree node content from page pFrom to page pTo. */
6025 iData = get2byte(&aFrom[iFromHdr+5]);
6026 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6027 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6028
6029 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006030 ** match the new data. The initialization of pTo can actually fail under
6031 ** fairly obscure circumstances, even though it is a copy of initialized
6032 ** page pFrom.
6033 */
drhc314dc72009-07-21 11:52:34 +00006034 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006035 rc = btreeInitPage(pTo);
6036 if( rc!=SQLITE_OK ){
6037 *pRC = rc;
6038 return;
6039 }
drhc314dc72009-07-21 11:52:34 +00006040
6041 /* If this is an auto-vacuum database, update the pointer-map entries
6042 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6043 */
6044 if( ISAUTOVACUUM ){
6045 *pRC = setChildPtrmaps(pTo);
6046 }
danielk1977cd581a72009-06-23 15:43:39 +00006047 }
danielk1977cd581a72009-06-23 15:43:39 +00006048}
6049
6050/*
danielk19774dbaa892009-06-16 16:50:22 +00006051** This routine redistributes cells on the iParentIdx'th child of pParent
6052** (hereafter "the page") and up to 2 siblings so that all pages have about the
6053** same amount of free space. Usually a single sibling on either side of the
6054** page are used in the balancing, though both siblings might come from one
6055** side if the page is the first or last child of its parent. If the page
6056** has fewer than 2 siblings (something which can only happen if the page
6057** is a root page or a child of a root page) then all available siblings
6058** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006059**
danielk19774dbaa892009-06-16 16:50:22 +00006060** The number of siblings of the page might be increased or decreased by
6061** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006062**
danielk19774dbaa892009-06-16 16:50:22 +00006063** Note that when this routine is called, some of the cells on the page
6064** might not actually be stored in MemPage.aData[]. This can happen
6065** if the page is overfull. This routine ensures that all cells allocated
6066** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006067**
danielk19774dbaa892009-06-16 16:50:22 +00006068** In the course of balancing the page and its siblings, cells may be
6069** inserted into or removed from the parent page (pParent). Doing so
6070** may cause the parent page to become overfull or underfull. If this
6071** happens, it is the responsibility of the caller to invoke the correct
6072** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006073**
drh5e00f6c2001-09-13 13:46:56 +00006074** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006075** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006076** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006077**
6078** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006079** buffer big enough to hold one page. If while inserting cells into the parent
6080** page (pParent) the parent page becomes overfull, this buffer is
6081** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006082** a maximum of four divider cells into the parent page, and the maximum
6083** size of a cell stored within an internal node is always less than 1/4
6084** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6085** enough for all overflow cells.
6086**
6087** If aOvflSpace is set to a null pointer, this function returns
6088** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006089*/
mistachkine7c54162012-10-02 22:54:27 +00006090#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6091#pragma optimize("", off)
6092#endif
danielk19774dbaa892009-06-16 16:50:22 +00006093static int balance_nonroot(
6094 MemPage *pParent, /* Parent page of siblings being balanced */
6095 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006096 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006097 int isRoot, /* True if pParent is a root-page */
6098 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006099){
drh16a9b832007-05-05 18:39:25 +00006100 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006101 int nCell = 0; /* Number of cells in apCell[] */
6102 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006103 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006104 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006105 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006106 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006107 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006108 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006109 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006110 int usableSpace; /* Bytes in pPage beyond the header */
6111 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006112 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006113 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006114 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006115 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006116 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006117 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006118 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006119 u8 *pRight; /* Location in parent of right-sibling pointer */
6120 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006121 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6122 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006123 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006124 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006125 u8 *aSpace1; /* Space for copies of dividers cells */
6126 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006127
danielk1977a50d9aa2009-06-08 14:49:45 +00006128 pBt = pParent->pBt;
6129 assert( sqlite3_mutex_held(pBt->mutex) );
6130 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006131
danielk1977e5765212009-06-17 11:13:28 +00006132#if 0
drh43605152004-05-29 21:46:49 +00006133 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006134#endif
drh2e38c322004-09-03 18:38:44 +00006135
danielk19774dbaa892009-06-16 16:50:22 +00006136 /* At this point pParent may have at most one overflow cell. And if
6137 ** this overflow cell is present, it must be the cell with
6138 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006139 ** is called (indirectly) from sqlite3BtreeDelete().
6140 */
danielk19774dbaa892009-06-16 16:50:22 +00006141 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006142 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006143
danielk197711a8a862009-06-17 11:49:52 +00006144 if( !aOvflSpace ){
6145 return SQLITE_NOMEM;
6146 }
6147
danielk1977a50d9aa2009-06-08 14:49:45 +00006148 /* Find the sibling pages to balance. Also locate the cells in pParent
6149 ** that divide the siblings. An attempt is made to find NN siblings on
6150 ** either side of pPage. More siblings are taken from one side, however,
6151 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006152 ** has NB or fewer children then all children of pParent are taken.
6153 **
6154 ** This loop also drops the divider cells from the parent page. This
6155 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006156 ** overflow cells in the parent page, since if any existed they will
6157 ** have already been removed.
6158 */
danielk19774dbaa892009-06-16 16:50:22 +00006159 i = pParent->nOverflow + pParent->nCell;
6160 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006161 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006162 }else{
dan7d6885a2012-08-08 14:04:56 +00006163 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006164 if( iParentIdx==0 ){
6165 nxDiv = 0;
6166 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006167 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006168 }else{
dan7d6885a2012-08-08 14:04:56 +00006169 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006170 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006171 }
dan7d6885a2012-08-08 14:04:56 +00006172 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006173 }
dan7d6885a2012-08-08 14:04:56 +00006174 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006175 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6176 pRight = &pParent->aData[pParent->hdrOffset+8];
6177 }else{
6178 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6179 }
6180 pgno = get4byte(pRight);
6181 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006182 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006183 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006184 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006185 goto balance_cleanup;
6186 }
danielk1977634f2982005-03-28 08:44:07 +00006187 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006188 if( (i--)==0 ) break;
6189
drh2cbd78b2012-02-02 19:37:18 +00006190 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6191 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006192 pgno = get4byte(apDiv[i]);
6193 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6194 pParent->nOverflow = 0;
6195 }else{
6196 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6197 pgno = get4byte(apDiv[i]);
6198 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6199
6200 /* Drop the cell from the parent page. apDiv[i] still points to
6201 ** the cell within the parent, even though it has been dropped.
6202 ** This is safe because dropping a cell only overwrites the first
6203 ** four bytes of it, and this function does not need the first
6204 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006205 ** later on.
6206 **
drh8a575d92011-10-12 17:00:28 +00006207 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006208 ** the dropCell() routine will overwrite the entire cell with zeroes.
6209 ** In this case, temporarily copy the cell into the aOvflSpace[]
6210 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6211 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006212 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006213 int iOff;
6214
6215 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006216 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006217 rc = SQLITE_CORRUPT_BKPT;
6218 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6219 goto balance_cleanup;
6220 }else{
6221 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6222 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6223 }
drh5b47efa2010-02-12 18:18:39 +00006224 }
drh98add2e2009-07-20 17:11:49 +00006225 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006226 }
drh8b2f49b2001-06-08 00:21:52 +00006227 }
6228
drha9121e42008-02-19 14:59:35 +00006229 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006230 ** alignment */
drha9121e42008-02-19 14:59:35 +00006231 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006232
drh8b2f49b2001-06-08 00:21:52 +00006233 /*
danielk1977634f2982005-03-28 08:44:07 +00006234 ** Allocate space for memory structures
6235 */
danielk19774dbaa892009-06-16 16:50:22 +00006236 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006237 szScratch =
drha9121e42008-02-19 14:59:35 +00006238 nMaxCells*sizeof(u8*) /* apCell */
6239 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006240 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006241 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006242 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006243 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006244 rc = SQLITE_NOMEM;
6245 goto balance_cleanup;
6246 }
drha9121e42008-02-19 14:59:35 +00006247 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006248 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006249 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006250
6251 /*
6252 ** Load pointers to all cells on sibling pages and the divider cells
6253 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006254 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006255 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006256 **
6257 ** If the siblings are on leaf pages, then the child pointers of the
6258 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006259 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006260 ** child pointers. If siblings are not leaves, then all cell in
6261 ** apCell[] include child pointers. Either way, all cells in apCell[]
6262 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006263 **
6264 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6265 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006266 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006267 leafCorrection = apOld[0]->leaf*4;
6268 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006269 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006270 int limit;
6271
6272 /* Before doing anything else, take a copy of the i'th original sibling
6273 ** The rest of this function will use data from the copies rather
6274 ** that the original pages since the original pages will be in the
6275 ** process of being overwritten. */
6276 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6277 memcpy(pOld, apOld[i], sizeof(MemPage));
6278 pOld->aData = (void*)&pOld[1];
6279 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6280
6281 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006282 if( pOld->nOverflow>0 ){
6283 for(j=0; j<limit; j++){
6284 assert( nCell<nMaxCells );
6285 apCell[nCell] = findOverflowCell(pOld, j);
6286 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6287 nCell++;
6288 }
6289 }else{
6290 u8 *aData = pOld->aData;
6291 u16 maskPage = pOld->maskPage;
6292 u16 cellOffset = pOld->cellOffset;
6293 for(j=0; j<limit; j++){
6294 assert( nCell<nMaxCells );
6295 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6296 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6297 nCell++;
6298 }
6299 }
danielk19774dbaa892009-06-16 16:50:22 +00006300 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006301 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006302 u8 *pTemp;
6303 assert( nCell<nMaxCells );
6304 szCell[nCell] = sz;
6305 pTemp = &aSpace1[iSpace1];
6306 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006307 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006308 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006309 memcpy(pTemp, apDiv[i], sz);
6310 apCell[nCell] = pTemp+leafCorrection;
6311 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006312 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006313 if( !pOld->leaf ){
6314 assert( leafCorrection==0 );
6315 assert( pOld->hdrOffset==0 );
6316 /* The right pointer of the child page pOld becomes the left
6317 ** pointer of the divider cell */
6318 memcpy(apCell[nCell], &pOld->aData[8], 4);
6319 }else{
6320 assert( leafCorrection==4 );
6321 if( szCell[nCell]<4 ){
6322 /* Do not allow any cells smaller than 4 bytes. */
6323 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006324 }
6325 }
drh14acc042001-06-10 19:56:58 +00006326 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006327 }
drh8b2f49b2001-06-08 00:21:52 +00006328 }
6329
6330 /*
drh6019e162001-07-02 17:51:45 +00006331 ** Figure out the number of pages needed to hold all nCell cells.
6332 ** Store this number in "k". Also compute szNew[] which is the total
6333 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006334 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006335 ** cntNew[k] should equal nCell.
6336 **
drh96f5b762004-05-16 16:24:36 +00006337 ** Values computed by this block:
6338 **
6339 ** k: The total number of sibling pages
6340 ** szNew[i]: Spaced used on the i-th sibling page.
6341 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6342 ** the right of the i-th sibling page.
6343 ** usableSpace: Number of bytes of space available on each sibling.
6344 **
drh8b2f49b2001-06-08 00:21:52 +00006345 */
drh43605152004-05-29 21:46:49 +00006346 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006347 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006348 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006349 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006350 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006351 szNew[k] = subtotal - szCell[i];
6352 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006353 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006354 subtotal = 0;
6355 k++;
drh9978c972010-02-23 17:36:32 +00006356 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006357 }
6358 }
6359 szNew[k] = subtotal;
6360 cntNew[k] = nCell;
6361 k++;
drh96f5b762004-05-16 16:24:36 +00006362
6363 /*
6364 ** The packing computed by the previous block is biased toward the siblings
6365 ** on the left side. The left siblings are always nearly full, while the
6366 ** right-most sibling might be nearly empty. This block of code attempts
6367 ** to adjust the packing of siblings to get a better balance.
6368 **
6369 ** This adjustment is more than an optimization. The packing above might
6370 ** be so out of balance as to be illegal. For example, the right-most
6371 ** sibling might be completely empty. This adjustment is not optional.
6372 */
drh6019e162001-07-02 17:51:45 +00006373 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006374 int szRight = szNew[i]; /* Size of sibling on the right */
6375 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6376 int r; /* Index of right-most cell in left sibling */
6377 int d; /* Index of first cell to the left of right sibling */
6378
6379 r = cntNew[i-1] - 1;
6380 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006381 assert( d<nMaxCells );
6382 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006383 while( szRight==0
6384 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6385 ){
drh43605152004-05-29 21:46:49 +00006386 szRight += szCell[d] + 2;
6387 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006388 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006389 r = cntNew[i-1] - 1;
6390 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006391 }
drh96f5b762004-05-16 16:24:36 +00006392 szNew[i] = szRight;
6393 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006394 }
drh09d0deb2005-08-02 17:13:09 +00006395
danielk19776f235cc2009-06-04 14:46:08 +00006396 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006397 ** a virtual root page. A virtual root page is when the real root
6398 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006399 **
6400 ** UPDATE: The assert() below is not necessarily true if the database
6401 ** file is corrupt. The corruption will be detected and reported later
6402 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006403 */
drh2f32fba2012-01-02 16:38:57 +00006404#if 0
drh09d0deb2005-08-02 17:13:09 +00006405 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006406#endif
drh8b2f49b2001-06-08 00:21:52 +00006407
danielk1977e5765212009-06-17 11:13:28 +00006408 TRACE(("BALANCE: old: %d %d %d ",
6409 apOld[0]->pgno,
6410 nOld>=2 ? apOld[1]->pgno : 0,
6411 nOld>=3 ? apOld[2]->pgno : 0
6412 ));
6413
drh8b2f49b2001-06-08 00:21:52 +00006414 /*
drh6b308672002-07-08 02:16:37 +00006415 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006416 */
drheac74422009-06-14 12:47:11 +00006417 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006418 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006419 goto balance_cleanup;
6420 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006421 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006422 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006423 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006424 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006425 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006426 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006427 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006428 nNew++;
danielk197728129562005-01-11 10:25:06 +00006429 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006430 }else{
drh7aa8f852006-03-28 00:24:44 +00006431 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006432 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006433 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006434 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006435 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006436
6437 /* Set the pointer-map entry for the new sibling page. */
6438 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006439 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006440 if( rc!=SQLITE_OK ){
6441 goto balance_cleanup;
6442 }
6443 }
drh6b308672002-07-08 02:16:37 +00006444 }
drh8b2f49b2001-06-08 00:21:52 +00006445 }
6446
danielk1977299b1872004-11-22 10:02:10 +00006447 /* Free any old pages that were not reused as new pages.
6448 */
6449 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006450 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006451 if( rc ) goto balance_cleanup;
6452 releasePage(apOld[i]);
6453 apOld[i] = 0;
6454 i++;
6455 }
6456
drh8b2f49b2001-06-08 00:21:52 +00006457 /*
drhf9ffac92002-03-02 19:00:31 +00006458 ** Put the new pages in accending order. This helps to
6459 ** keep entries in the disk file in order so that a scan
6460 ** of the table is a linear scan through the file. That
6461 ** in turn helps the operating system to deliver pages
6462 ** from the disk more rapidly.
6463 **
6464 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006465 ** n is never more than NB (a small constant), that should
6466 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006467 **
drhc3b70572003-01-04 19:44:07 +00006468 ** When NB==3, this one optimization makes the database
6469 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006470 */
6471 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006472 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006473 int minI = i;
6474 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006475 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006476 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006477 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006478 }
6479 }
6480 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006481 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006482 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006483 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006484 apNew[minI] = pT;
6485 }
6486 }
danielk1977e5765212009-06-17 11:13:28 +00006487 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006488 apNew[0]->pgno, szNew[0],
6489 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6490 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6491 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6492 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6493
6494 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6495 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006496
drhf9ffac92002-03-02 19:00:31 +00006497 /*
drh14acc042001-06-10 19:56:58 +00006498 ** Evenly distribute the data in apCell[] across the new pages.
6499 ** Insert divider cells into pParent as necessary.
6500 */
6501 j = 0;
6502 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006503 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006504 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006505 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006506 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006507 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006508 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006509 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006510
danielk1977ac11ee62005-01-15 12:45:51 +00006511 j = cntNew[i];
6512
6513 /* If the sibling page assembled above was not the right-most sibling,
6514 ** insert a divider cell into the parent page.
6515 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006516 assert( i<nNew-1 || j==nCell );
6517 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006518 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006519 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006520 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006521
6522 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006523 pCell = apCell[j];
6524 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006525 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006526 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006527 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006528 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006529 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006530 ** then there is no divider cell in apCell[]. Instead, the divider
6531 ** cell consists of the integer key for the right-most cell of
6532 ** the sibling-page assembled above only.
6533 */
drh6f11bef2004-05-13 01:12:56 +00006534 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006535 j--;
danielk197730548662009-07-09 05:07:37 +00006536 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006537 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006538 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006539 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006540 }else{
6541 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006542 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006543 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006544 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006545 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006546 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006547 ** insertCell(), so reparse the cell now.
6548 **
6549 ** Note that this can never happen in an SQLite data file, as all
6550 ** cells are at least 4 bytes. It only happens in b-trees used
6551 ** to evaluate "IN (SELECT ...)" and similar clauses.
6552 */
6553 if( szCell[j]==4 ){
6554 assert(leafCorrection==4);
6555 sz = cellSizePtr(pParent, pCell);
6556 }
drh4b70f112004-05-02 21:12:19 +00006557 }
danielk19776067a9b2009-06-09 09:41:00 +00006558 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006559 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006560 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006561 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006562 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006563 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006564
drh14acc042001-06-10 19:56:58 +00006565 j++;
6566 nxDiv++;
6567 }
6568 }
drh6019e162001-07-02 17:51:45 +00006569 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006570 assert( nOld>0 );
6571 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006572 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006573 u8 *zChild = &apCopy[nOld-1]->aData[8];
6574 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006575 }
6576
danielk197713bd99f2009-06-24 05:40:34 +00006577 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6578 /* The root page of the b-tree now contains no cells. The only sibling
6579 ** page is the right-child of the parent. Copy the contents of the
6580 ** child page into the parent, decreasing the overall height of the
6581 ** b-tree structure by one. This is described as the "balance-shallower"
6582 ** sub-algorithm in some documentation.
6583 **
6584 ** If this is an auto-vacuum database, the call to copyNodeContent()
6585 ** sets all pointer-map entries corresponding to database image pages
6586 ** for which the pointer is stored within the content being copied.
6587 **
6588 ** The second assert below verifies that the child page is defragmented
6589 ** (it must be, as it was just reconstructed using assemblePage()). This
6590 ** is important if the parent page happens to be page 1 of the database
6591 ** image. */
6592 assert( nNew==1 );
6593 assert( apNew[0]->nFree ==
6594 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6595 );
drhc314dc72009-07-21 11:52:34 +00006596 copyNodeContent(apNew[0], pParent, &rc);
6597 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006598 }else if( ISAUTOVACUUM ){
6599 /* Fix the pointer-map entries for all the cells that were shifted around.
6600 ** There are several different types of pointer-map entries that need to
6601 ** be dealt with by this routine. Some of these have been set already, but
6602 ** many have not. The following is a summary:
6603 **
6604 ** 1) The entries associated with new sibling pages that were not
6605 ** siblings when this function was called. These have already
6606 ** been set. We don't need to worry about old siblings that were
6607 ** moved to the free-list - the freePage() code has taken care
6608 ** of those.
6609 **
6610 ** 2) The pointer-map entries associated with the first overflow
6611 ** page in any overflow chains used by new divider cells. These
6612 ** have also already been taken care of by the insertCell() code.
6613 **
6614 ** 3) If the sibling pages are not leaves, then the child pages of
6615 ** cells stored on the sibling pages may need to be updated.
6616 **
6617 ** 4) If the sibling pages are not internal intkey nodes, then any
6618 ** overflow pages used by these cells may need to be updated
6619 ** (internal intkey nodes never contain pointers to overflow pages).
6620 **
6621 ** 5) If the sibling pages are not leaves, then the pointer-map
6622 ** entries for the right-child pages of each sibling may need
6623 ** to be updated.
6624 **
6625 ** Cases 1 and 2 are dealt with above by other code. The next
6626 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6627 ** setting a pointer map entry is a relatively expensive operation, this
6628 ** code only sets pointer map entries for child or overflow pages that have
6629 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006630 MemPage *pNew = apNew[0];
6631 MemPage *pOld = apCopy[0];
6632 int nOverflow = pOld->nOverflow;
6633 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006634 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006635 j = 0; /* Current 'old' sibling page */
6636 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006637 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006638 int isDivider = 0;
6639 while( i==iNextOld ){
6640 /* Cell i is the cell immediately following the last cell on old
6641 ** sibling page j. If the siblings are not leaf pages of an
6642 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006643 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006644 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006645 pOld = apCopy[++j];
6646 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6647 if( pOld->nOverflow ){
6648 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006649 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006650 }
6651 isDivider = !leafData;
6652 }
6653
6654 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006655 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6656 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006657 if( i==iOverflow ){
6658 isDivider = 1;
6659 if( (--nOverflow)>0 ){
6660 iOverflow++;
6661 }
6662 }
6663
6664 if( i==cntNew[k] ){
6665 /* Cell i is the cell immediately following the last cell on new
6666 ** sibling page k. If the siblings are not leaf pages of an
6667 ** intkey b-tree, then cell i is a divider cell. */
6668 pNew = apNew[++k];
6669 if( !leafData ) continue;
6670 }
danielk19774dbaa892009-06-16 16:50:22 +00006671 assert( j<nOld );
6672 assert( k<nNew );
6673
6674 /* If the cell was originally divider cell (and is not now) or
6675 ** an overflow cell, or if the cell was located on a different sibling
6676 ** page before the balancing, then the pointer map entries associated
6677 ** with any child or overflow pages need to be updated. */
6678 if( isDivider || pOld->pgno!=pNew->pgno ){
6679 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006680 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006681 }
drh98add2e2009-07-20 17:11:49 +00006682 if( szCell[i]>pNew->minLocal ){
6683 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006684 }
6685 }
6686 }
6687
6688 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006689 for(i=0; i<nNew; i++){
6690 u32 key = get4byte(&apNew[i]->aData[8]);
6691 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006692 }
6693 }
6694
6695#if 0
6696 /* The ptrmapCheckPages() contains assert() statements that verify that
6697 ** all pointer map pages are set correctly. This is helpful while
6698 ** debugging. This is usually disabled because a corrupt database may
6699 ** cause an assert() statement to fail. */
6700 ptrmapCheckPages(apNew, nNew);
6701 ptrmapCheckPages(&pParent, 1);
6702#endif
6703 }
6704
danielk197771d5d2c2008-09-29 11:49:47 +00006705 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006706 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6707 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006708
drh8b2f49b2001-06-08 00:21:52 +00006709 /*
drh14acc042001-06-10 19:56:58 +00006710 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006711 */
drh14acc042001-06-10 19:56:58 +00006712balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006713 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006714 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006715 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006716 }
drh14acc042001-06-10 19:56:58 +00006717 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006718 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006719 }
danielk1977eaa06f62008-09-18 17:34:44 +00006720
drh8b2f49b2001-06-08 00:21:52 +00006721 return rc;
6722}
mistachkine7c54162012-10-02 22:54:27 +00006723#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6724#pragma optimize("", on)
6725#endif
drh8b2f49b2001-06-08 00:21:52 +00006726
drh43605152004-05-29 21:46:49 +00006727
6728/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006729** This function is called when the root page of a b-tree structure is
6730** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006731**
danielk1977a50d9aa2009-06-08 14:49:45 +00006732** A new child page is allocated and the contents of the current root
6733** page, including overflow cells, are copied into the child. The root
6734** page is then overwritten to make it an empty page with the right-child
6735** pointer pointing to the new page.
6736**
6737** Before returning, all pointer-map entries corresponding to pages
6738** that the new child-page now contains pointers to are updated. The
6739** entry corresponding to the new right-child pointer of the root
6740** page is also updated.
6741**
6742** If successful, *ppChild is set to contain a reference to the child
6743** page and SQLITE_OK is returned. In this case the caller is required
6744** to call releasePage() on *ppChild exactly once. If an error occurs,
6745** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006746*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006747static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6748 int rc; /* Return value from subprocedures */
6749 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006750 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006751 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006752
danielk1977a50d9aa2009-06-08 14:49:45 +00006753 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006754 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006755
danielk1977a50d9aa2009-06-08 14:49:45 +00006756 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6757 ** page that will become the new right-child of pPage. Copy the contents
6758 ** of the node stored on pRoot into the new child page.
6759 */
drh98add2e2009-07-20 17:11:49 +00006760 rc = sqlite3PagerWrite(pRoot->pDbPage);
6761 if( rc==SQLITE_OK ){
6762 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006763 copyNodeContent(pRoot, pChild, &rc);
6764 if( ISAUTOVACUUM ){
6765 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006766 }
6767 }
6768 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006769 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006770 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006771 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006772 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006773 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6774 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6775 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006776
danielk1977a50d9aa2009-06-08 14:49:45 +00006777 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6778
6779 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006780 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6781 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6782 memcpy(pChild->apOvfl, pRoot->apOvfl,
6783 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006784 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006785
6786 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6787 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6788 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6789
6790 *ppChild = pChild;
6791 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006792}
6793
6794/*
danielk197771d5d2c2008-09-29 11:49:47 +00006795** The page that pCur currently points to has just been modified in
6796** some way. This function figures out if this modification means the
6797** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006798** routine. Balancing routines are:
6799**
6800** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006801** balance_deeper()
6802** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006803*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006804static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006805 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006806 const int nMin = pCur->pBt->usableSize * 2 / 3;
6807 u8 aBalanceQuickSpace[13];
6808 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006809
shane75ac1de2009-06-09 18:58:52 +00006810 TESTONLY( int balance_quick_called = 0 );
6811 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006812
6813 do {
6814 int iPage = pCur->iPage;
6815 MemPage *pPage = pCur->apPage[iPage];
6816
6817 if( iPage==0 ){
6818 if( pPage->nOverflow ){
6819 /* The root page of the b-tree is overfull. In this case call the
6820 ** balance_deeper() function to create a new child for the root-page
6821 ** and copy the current contents of the root-page to it. The
6822 ** next iteration of the do-loop will balance the child page.
6823 */
6824 assert( (balance_deeper_called++)==0 );
6825 rc = balance_deeper(pPage, &pCur->apPage[1]);
6826 if( rc==SQLITE_OK ){
6827 pCur->iPage = 1;
6828 pCur->aiIdx[0] = 0;
6829 pCur->aiIdx[1] = 0;
6830 assert( pCur->apPage[1]->nOverflow );
6831 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006832 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006833 break;
6834 }
6835 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6836 break;
6837 }else{
6838 MemPage * const pParent = pCur->apPage[iPage-1];
6839 int const iIdx = pCur->aiIdx[iPage-1];
6840
6841 rc = sqlite3PagerWrite(pParent->pDbPage);
6842 if( rc==SQLITE_OK ){
6843#ifndef SQLITE_OMIT_QUICKBALANCE
6844 if( pPage->hasData
6845 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006846 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006847 && pParent->pgno!=1
6848 && pParent->nCell==iIdx
6849 ){
6850 /* Call balance_quick() to create a new sibling of pPage on which
6851 ** to store the overflow cell. balance_quick() inserts a new cell
6852 ** into pParent, which may cause pParent overflow. If this
6853 ** happens, the next interation of the do-loop will balance pParent
6854 ** use either balance_nonroot() or balance_deeper(). Until this
6855 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6856 ** buffer.
6857 **
6858 ** The purpose of the following assert() is to check that only a
6859 ** single call to balance_quick() is made for each call to this
6860 ** function. If this were not verified, a subtle bug involving reuse
6861 ** of the aBalanceQuickSpace[] might sneak in.
6862 */
6863 assert( (balance_quick_called++)==0 );
6864 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6865 }else
6866#endif
6867 {
6868 /* In this case, call balance_nonroot() to redistribute cells
6869 ** between pPage and up to 2 of its sibling pages. This involves
6870 ** modifying the contents of pParent, which may cause pParent to
6871 ** become overfull or underfull. The next iteration of the do-loop
6872 ** will balance the parent page to correct this.
6873 **
6874 ** If the parent page becomes overfull, the overflow cell or cells
6875 ** are stored in the pSpace buffer allocated immediately below.
6876 ** A subsequent iteration of the do-loop will deal with this by
6877 ** calling balance_nonroot() (balance_deeper() may be called first,
6878 ** but it doesn't deal with overflow cells - just moves them to a
6879 ** different page). Once this subsequent call to balance_nonroot()
6880 ** has completed, it is safe to release the pSpace buffer used by
6881 ** the previous call, as the overflow cell data will have been
6882 ** copied either into the body of a database page or into the new
6883 ** pSpace buffer passed to the latter call to balance_nonroot().
6884 */
6885 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006886 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006887 if( pFree ){
6888 /* If pFree is not NULL, it points to the pSpace buffer used
6889 ** by a previous call to balance_nonroot(). Its contents are
6890 ** now stored either on real database pages or within the
6891 ** new pSpace buffer, so it may be safely freed here. */
6892 sqlite3PageFree(pFree);
6893 }
6894
danielk19774dbaa892009-06-16 16:50:22 +00006895 /* The pSpace buffer will be freed after the next call to
6896 ** balance_nonroot(), or just before this function returns, whichever
6897 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006898 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006899 }
6900 }
6901
6902 pPage->nOverflow = 0;
6903
6904 /* The next iteration of the do-loop balances the parent page. */
6905 releasePage(pPage);
6906 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006907 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006908 }while( rc==SQLITE_OK );
6909
6910 if( pFree ){
6911 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006912 }
6913 return rc;
6914}
6915
drhf74b8d92002-09-01 23:20:45 +00006916
6917/*
drh3b7511c2001-05-26 13:15:44 +00006918** Insert a new record into the BTree. The key is given by (pKey,nKey)
6919** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006920** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006921** is left pointing at a random location.
6922**
6923** For an INTKEY table, only the nKey value of the key is used. pKey is
6924** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006925**
6926** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006927** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006928** been performed. seekResult is the search result returned (a negative
6929** number if pCur points at an entry that is smaller than (pKey, nKey), or
6930** a positive value if pCur points at an etry that is larger than
6931** (pKey, nKey)).
6932**
drh3e9ca092009-09-08 01:14:48 +00006933** If the seekResult parameter is non-zero, then the caller guarantees that
6934** cursor pCur is pointing at the existing copy of a row that is to be
6935** overwritten. If the seekResult parameter is 0, then cursor pCur may
6936** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006937** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006938*/
drh3aac2dd2004-04-26 14:10:20 +00006939int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006940 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006941 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006942 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006943 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006944 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006945 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006946){
drh3b7511c2001-05-26 13:15:44 +00006947 int rc;
drh3e9ca092009-09-08 01:14:48 +00006948 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006949 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006950 int idx;
drh3b7511c2001-05-26 13:15:44 +00006951 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006952 Btree *p = pCur->pBtree;
6953 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006954 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006955 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006956
drh98add2e2009-07-20 17:11:49 +00006957 if( pCur->eState==CURSOR_FAULT ){
6958 assert( pCur->skipNext!=SQLITE_OK );
6959 return pCur->skipNext;
6960 }
6961
drh1fee73e2007-08-29 04:00:57 +00006962 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006963 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6964 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006965 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6966
danielk197731d31b82009-07-13 13:18:07 +00006967 /* Assert that the caller has been consistent. If this cursor was opened
6968 ** expecting an index b-tree, then the caller should be inserting blob
6969 ** keys with no associated data. If the cursor was opened expecting an
6970 ** intkey table, the caller should be inserting integer keys with a
6971 ** blob of associated data. */
6972 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6973
danielk19779c3acf32009-05-02 07:36:49 +00006974 /* Save the positions of any other cursors open on this table.
6975 **
danielk19773509a652009-07-06 18:56:13 +00006976 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006977 ** example, when inserting data into a table with auto-generated integer
6978 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6979 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006980 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006981 ** that the cursor is already where it needs to be and returns without
6982 ** doing any work. To avoid thwarting these optimizations, it is important
6983 ** not to clear the cursor here.
6984 */
drh4c301aa2009-07-15 17:25:45 +00006985 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6986 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006987
drhd60f4f42012-03-23 14:23:52 +00006988 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00006989 /* If this is an insert into a table b-tree, invalidate any incrblob
6990 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00006991 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00006992
6993 /* If the cursor is currently on the last row and we are appending a
6994 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
6995 ** call */
6996 if( pCur->validNKey && nKey>0 && pCur->info.nKey==nKey-1 ){
6997 loc = -1;
6998 }
drhd60f4f42012-03-23 14:23:52 +00006999 }
7000
drh4c301aa2009-07-15 17:25:45 +00007001 if( !loc ){
7002 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7003 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007004 }
danielk1977b980d2212009-06-22 18:03:51 +00007005 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007006
danielk197771d5d2c2008-09-29 11:49:47 +00007007 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007008 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007009 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007010
drh3a4c1412004-05-09 20:40:11 +00007011 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7012 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7013 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007014 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007015 allocateTempSpace(pBt);
7016 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00007017 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00007018 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007019 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007020 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007021 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007022 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007023 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007024 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007025 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007026 rc = sqlite3PagerWrite(pPage->pDbPage);
7027 if( rc ){
7028 goto end_insert;
7029 }
danielk197771d5d2c2008-09-29 11:49:47 +00007030 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007031 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007032 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007033 }
drh43605152004-05-29 21:46:49 +00007034 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007035 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007036 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007037 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007038 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007039 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007040 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007041 }else{
drh4b70f112004-05-02 21:12:19 +00007042 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007043 }
drh98add2e2009-07-20 17:11:49 +00007044 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007045 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007046
mistachkin48864df2013-03-21 21:20:32 +00007047 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007048 ** to redistribute the cells within the tree. Since balance() may move
7049 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7050 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007051 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007052 ** Previous versions of SQLite called moveToRoot() to move the cursor
7053 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007054 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7055 ** set the cursor state to "invalid". This makes common insert operations
7056 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007057 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007058 ** There is a subtle but important optimization here too. When inserting
7059 ** multiple records into an intkey b-tree using a single cursor (as can
7060 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7061 ** is advantageous to leave the cursor pointing to the last entry in
7062 ** the b-tree if possible. If the cursor is left pointing to the last
7063 ** entry in the table, and the next row inserted has an integer key
7064 ** larger than the largest existing key, it is possible to insert the
7065 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007066 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007067 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007068 if( rc==SQLITE_OK && pPage->nOverflow ){
drhe0670b62014-02-12 21:31:12 +00007069 pCur->validNKey = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007070 rc = balance(pCur);
7071
7072 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007073 ** fails. Internal data structure corruption will result otherwise.
7074 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7075 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007076 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007077 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007078 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007079 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007080
drh2e38c322004-09-03 18:38:44 +00007081end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007082 return rc;
7083}
7084
7085/*
drh4b70f112004-05-02 21:12:19 +00007086** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007087** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007088*/
drh3aac2dd2004-04-26 14:10:20 +00007089int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007090 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007091 BtShared *pBt = p->pBt;
7092 int rc; /* Return code */
7093 MemPage *pPage; /* Page to delete cell from */
7094 unsigned char *pCell; /* Pointer to cell to delete */
7095 int iCellIdx; /* Index of cell to delete */
7096 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007097
drh1fee73e2007-08-29 04:00:57 +00007098 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007099 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007100 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00007101 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007102 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7103 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7104
danielk19774dbaa892009-06-16 16:50:22 +00007105 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7106 || NEVER(pCur->eState!=CURSOR_VALID)
7107 ){
7108 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007109 }
danielk1977da184232006-01-05 11:34:32 +00007110
danielk19774dbaa892009-06-16 16:50:22 +00007111 iCellDepth = pCur->iPage;
7112 iCellIdx = pCur->aiIdx[iCellDepth];
7113 pPage = pCur->apPage[iCellDepth];
7114 pCell = findCell(pPage, iCellIdx);
7115
7116 /* If the page containing the entry to delete is not a leaf page, move
7117 ** the cursor to the largest entry in the tree that is smaller than
7118 ** the entry being deleted. This cell will replace the cell being deleted
7119 ** from the internal node. The 'previous' entry is used for this instead
7120 ** of the 'next' entry, as the previous entry is always a part of the
7121 ** sub-tree headed by the child page of the cell being deleted. This makes
7122 ** balancing the tree following the delete operation easier. */
7123 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007124 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007125 rc = sqlite3BtreePrevious(pCur, &notUsed);
7126 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007127 }
7128
7129 /* Save the positions of any other cursors open on this table before
7130 ** making any modifications. Make the page containing the entry to be
7131 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007132 ** entry and finally remove the cell itself from within the page.
7133 */
7134 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7135 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007136
7137 /* If this is a delete operation to remove a row from a table b-tree,
7138 ** invalidate any incrblob cursors open on the row being deleted. */
7139 if( pCur->pKeyInfo==0 ){
7140 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7141 }
7142
drha4ec1d42009-07-11 13:13:11 +00007143 rc = sqlite3PagerWrite(pPage->pDbPage);
7144 if( rc ) return rc;
7145 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007146 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007147 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007148
danielk19774dbaa892009-06-16 16:50:22 +00007149 /* If the cell deleted was not located on a leaf page, then the cursor
7150 ** is currently pointing to the largest entry in the sub-tree headed
7151 ** by the child-page of the cell that was just deleted from an internal
7152 ** node. The cell from the leaf node needs to be moved to the internal
7153 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007154 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007155 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7156 int nCell;
7157 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7158 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007159
danielk19774dbaa892009-06-16 16:50:22 +00007160 pCell = findCell(pLeaf, pLeaf->nCell-1);
7161 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007162 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007163
danielk19774dbaa892009-06-16 16:50:22 +00007164 allocateTempSpace(pBt);
7165 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007166
drha4ec1d42009-07-11 13:13:11 +00007167 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007168 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7169 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007170 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007171 }
danielk19774dbaa892009-06-16 16:50:22 +00007172
7173 /* Balance the tree. If the entry deleted was located on a leaf page,
7174 ** then the cursor still points to that page. In this case the first
7175 ** call to balance() repairs the tree, and the if(...) condition is
7176 ** never true.
7177 **
7178 ** Otherwise, if the entry deleted was on an internal node page, then
7179 ** pCur is pointing to the leaf page from which a cell was removed to
7180 ** replace the cell deleted from the internal node. This is slightly
7181 ** tricky as the leaf node may be underfull, and the internal node may
7182 ** be either under or overfull. In this case run the balancing algorithm
7183 ** on the leaf node first. If the balance proceeds far enough up the
7184 ** tree that we can be sure that any problem in the internal node has
7185 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7186 ** walk the cursor up the tree to the internal node and balance it as
7187 ** well. */
7188 rc = balance(pCur);
7189 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7190 while( pCur->iPage>iCellDepth ){
7191 releasePage(pCur->apPage[pCur->iPage--]);
7192 }
7193 rc = balance(pCur);
7194 }
7195
danielk19776b456a22005-03-21 04:04:02 +00007196 if( rc==SQLITE_OK ){
7197 moveToRoot(pCur);
7198 }
drh5e2f8b92001-05-28 00:41:15 +00007199 return rc;
drh3b7511c2001-05-26 13:15:44 +00007200}
drh8b2f49b2001-06-08 00:21:52 +00007201
7202/*
drhc6b52df2002-01-04 03:09:29 +00007203** Create a new BTree table. Write into *piTable the page
7204** number for the root page of the new table.
7205**
drhab01f612004-05-22 02:55:23 +00007206** The type of type is determined by the flags parameter. Only the
7207** following values of flags are currently in use. Other values for
7208** flags might not work:
7209**
7210** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7211** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007212*/
drhd4187c72010-08-30 22:15:45 +00007213static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007214 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007215 MemPage *pRoot;
7216 Pgno pgnoRoot;
7217 int rc;
drhd4187c72010-08-30 22:15:45 +00007218 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007219
drh1fee73e2007-08-29 04:00:57 +00007220 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007221 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007222 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007223
danielk1977003ba062004-11-04 02:57:33 +00007224#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007225 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007226 if( rc ){
7227 return rc;
7228 }
danielk1977003ba062004-11-04 02:57:33 +00007229#else
danielk1977687566d2004-11-02 12:56:41 +00007230 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007231 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7232 MemPage *pPageMove; /* The page to move to. */
7233
danielk197720713f32007-05-03 11:43:33 +00007234 /* Creating a new table may probably require moving an existing database
7235 ** to make room for the new tables root page. In case this page turns
7236 ** out to be an overflow page, delete all overflow page-map caches
7237 ** held by open cursors.
7238 */
danielk197792d4d7a2007-05-04 12:05:56 +00007239 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007240
danielk1977003ba062004-11-04 02:57:33 +00007241 /* Read the value of meta[3] from the database to determine where the
7242 ** root page of the new table should go. meta[3] is the largest root-page
7243 ** created so far, so the new root-page is (meta[3]+1).
7244 */
danielk1977602b4662009-07-02 07:47:33 +00007245 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007246 pgnoRoot++;
7247
danielk1977599fcba2004-11-08 07:13:13 +00007248 /* The new root-page may not be allocated on a pointer-map page, or the
7249 ** PENDING_BYTE page.
7250 */
drh72190432008-01-31 14:54:43 +00007251 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007252 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007253 pgnoRoot++;
7254 }
7255 assert( pgnoRoot>=3 );
7256
7257 /* Allocate a page. The page that currently resides at pgnoRoot will
7258 ** be moved to the allocated page (unless the allocated page happens
7259 ** to reside at pgnoRoot).
7260 */
dan51f0b6d2013-02-22 20:16:34 +00007261 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007262 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007263 return rc;
7264 }
danielk1977003ba062004-11-04 02:57:33 +00007265
7266 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007267 /* pgnoRoot is the page that will be used for the root-page of
7268 ** the new table (assuming an error did not occur). But we were
7269 ** allocated pgnoMove. If required (i.e. if it was not allocated
7270 ** by extending the file), the current page at position pgnoMove
7271 ** is already journaled.
7272 */
drheeb844a2009-08-08 18:01:07 +00007273 u8 eType = 0;
7274 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007275
danf7679ad2013-04-03 11:38:36 +00007276 /* Save the positions of any open cursors. This is required in
7277 ** case they are holding a reference to an xFetch reference
7278 ** corresponding to page pgnoRoot. */
7279 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007280 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007281 if( rc!=SQLITE_OK ){
7282 return rc;
7283 }
danielk1977f35843b2007-04-07 15:03:17 +00007284
7285 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007286 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007287 if( rc!=SQLITE_OK ){
7288 return rc;
7289 }
7290 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007291 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7292 rc = SQLITE_CORRUPT_BKPT;
7293 }
7294 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007295 releasePage(pRoot);
7296 return rc;
7297 }
drhccae6022005-02-26 17:31:26 +00007298 assert( eType!=PTRMAP_ROOTPAGE );
7299 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007300 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007301 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007302
7303 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007304 if( rc!=SQLITE_OK ){
7305 return rc;
7306 }
drhb00fc3b2013-08-21 23:42:32 +00007307 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007308 if( rc!=SQLITE_OK ){
7309 return rc;
7310 }
danielk19773b8a05f2007-03-19 17:44:26 +00007311 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007312 if( rc!=SQLITE_OK ){
7313 releasePage(pRoot);
7314 return rc;
7315 }
7316 }else{
7317 pRoot = pPageMove;
7318 }
7319
danielk197742741be2005-01-08 12:42:39 +00007320 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007321 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007322 if( rc ){
7323 releasePage(pRoot);
7324 return rc;
7325 }
drhbf592832010-03-30 15:51:12 +00007326
7327 /* When the new root page was allocated, page 1 was made writable in
7328 ** order either to increase the database filesize, or to decrement the
7329 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7330 */
7331 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007332 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007333 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007334 releasePage(pRoot);
7335 return rc;
7336 }
danielk197742741be2005-01-08 12:42:39 +00007337
danielk1977003ba062004-11-04 02:57:33 +00007338 }else{
drh4f0c5872007-03-26 22:05:01 +00007339 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007340 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007341 }
7342#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007343 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007344 if( createTabFlags & BTREE_INTKEY ){
7345 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7346 }else{
7347 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7348 }
7349 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007350 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007351 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007352 *piTable = (int)pgnoRoot;
7353 return SQLITE_OK;
7354}
drhd677b3d2007-08-20 22:48:41 +00007355int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7356 int rc;
7357 sqlite3BtreeEnter(p);
7358 rc = btreeCreateTable(p, piTable, flags);
7359 sqlite3BtreeLeave(p);
7360 return rc;
7361}
drh8b2f49b2001-06-08 00:21:52 +00007362
7363/*
7364** Erase the given database page and all its children. Return
7365** the page to the freelist.
7366*/
drh4b70f112004-05-02 21:12:19 +00007367static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007368 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007369 Pgno pgno, /* Page number to clear */
7370 int freePageFlag, /* Deallocate page if true */
7371 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007372){
danielk1977146ba992009-07-22 14:08:13 +00007373 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007374 int rc;
drh4b70f112004-05-02 21:12:19 +00007375 unsigned char *pCell;
7376 int i;
dan8ce71842014-01-14 20:14:09 +00007377 int hdr;
drh8b2f49b2001-06-08 00:21:52 +00007378
drh1fee73e2007-08-29 04:00:57 +00007379 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007380 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007381 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007382 }
7383
dan11dcd112013-03-15 18:29:18 +00007384 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007385 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007386 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007387 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007388 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007389 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007390 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007391 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007392 }
drh4b70f112004-05-02 21:12:19 +00007393 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007394 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007395 }
drha34b6762004-05-07 13:30:42 +00007396 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007397 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007398 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007399 }else if( pnChange ){
7400 assert( pPage->intKey );
7401 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007402 }
7403 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007404 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007405 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007406 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007407 }
danielk19776b456a22005-03-21 04:04:02 +00007408
7409cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007410 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007411 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007412}
7413
7414/*
drhab01f612004-05-22 02:55:23 +00007415** Delete all information from a single table in the database. iTable is
7416** the page number of the root of the table. After this routine returns,
7417** the root page is empty, but still exists.
7418**
7419** This routine will fail with SQLITE_LOCKED if there are any open
7420** read cursors on the table. Open write cursors are moved to the
7421** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007422**
7423** If pnChange is not NULL, then table iTable must be an intkey table. The
7424** integer value pointed to by pnChange is incremented by the number of
7425** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007426*/
danielk1977c7af4842008-10-27 13:59:33 +00007427int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007428 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007429 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007430 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007431 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007432
drhc046e3e2009-07-15 11:26:44 +00007433 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007434
drhc046e3e2009-07-15 11:26:44 +00007435 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007436 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7437 ** is the root of a table b-tree - if it is not, the following call is
7438 ** a no-op). */
7439 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007440 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007441 }
drhd677b3d2007-08-20 22:48:41 +00007442 sqlite3BtreeLeave(p);
7443 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007444}
7445
7446/*
drh079a3072014-03-19 14:10:55 +00007447** Delete all information from the single table that pCur is open on.
7448**
7449** This routine only work for pCur on an ephemeral table.
7450*/
7451int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7452 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7453}
7454
7455/*
drh8b2f49b2001-06-08 00:21:52 +00007456** Erase all information in a table and add the root of the table to
7457** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007458** page 1) is never added to the freelist.
7459**
7460** This routine will fail with SQLITE_LOCKED if there are any open
7461** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007462**
7463** If AUTOVACUUM is enabled and the page at iTable is not the last
7464** root page in the database file, then the last root page
7465** in the database file is moved into the slot formerly occupied by
7466** iTable and that last slot formerly occupied by the last root page
7467** is added to the freelist instead of iTable. In this say, all
7468** root pages are kept at the beginning of the database file, which
7469** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7470** page number that used to be the last root page in the file before
7471** the move. If no page gets moved, *piMoved is set to 0.
7472** The last root page is recorded in meta[3] and the value of
7473** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007474*/
danielk197789d40042008-11-17 14:20:56 +00007475static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007476 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007477 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007478 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007479
drh1fee73e2007-08-29 04:00:57 +00007480 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007481 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007482
danielk1977e6efa742004-11-10 11:55:10 +00007483 /* It is illegal to drop a table if any cursors are open on the
7484 ** database. This is because in auto-vacuum mode the backend may
7485 ** need to move another root-page to fill a gap left by the deleted
7486 ** root page. If an open cursor was using this page a problem would
7487 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007488 **
7489 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007490 */
drhc046e3e2009-07-15 11:26:44 +00007491 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007492 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7493 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007494 }
danielk1977a0bf2652004-11-04 14:30:04 +00007495
drhb00fc3b2013-08-21 23:42:32 +00007496 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007497 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007498 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007499 if( rc ){
7500 releasePage(pPage);
7501 return rc;
7502 }
danielk1977a0bf2652004-11-04 14:30:04 +00007503
drh205f48e2004-11-05 00:43:11 +00007504 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007505
drh4b70f112004-05-02 21:12:19 +00007506 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007507#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007508 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007509 releasePage(pPage);
7510#else
7511 if( pBt->autoVacuum ){
7512 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007513 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007514
7515 if( iTable==maxRootPgno ){
7516 /* If the table being dropped is the table with the largest root-page
7517 ** number in the database, put the root page on the free list.
7518 */
drhc314dc72009-07-21 11:52:34 +00007519 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007520 releasePage(pPage);
7521 if( rc!=SQLITE_OK ){
7522 return rc;
7523 }
7524 }else{
7525 /* The table being dropped does not have the largest root-page
7526 ** number in the database. So move the page that does into the
7527 ** gap left by the deleted root-page.
7528 */
7529 MemPage *pMove;
7530 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007531 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007532 if( rc!=SQLITE_OK ){
7533 return rc;
7534 }
danielk19774c999992008-07-16 18:17:55 +00007535 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007536 releasePage(pMove);
7537 if( rc!=SQLITE_OK ){
7538 return rc;
7539 }
drhfe3313f2009-07-21 19:02:20 +00007540 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007541 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007542 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007543 releasePage(pMove);
7544 if( rc!=SQLITE_OK ){
7545 return rc;
7546 }
7547 *piMoved = maxRootPgno;
7548 }
7549
danielk1977599fcba2004-11-08 07:13:13 +00007550 /* Set the new 'max-root-page' value in the database header. This
7551 ** is the old value less one, less one more if that happens to
7552 ** be a root-page number, less one again if that is the
7553 ** PENDING_BYTE_PAGE.
7554 */
danielk197787a6e732004-11-05 12:58:25 +00007555 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007556 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7557 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007558 maxRootPgno--;
7559 }
danielk1977599fcba2004-11-08 07:13:13 +00007560 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7561
danielk1977aef0bf62005-12-30 16:28:01 +00007562 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007563 }else{
drhc314dc72009-07-21 11:52:34 +00007564 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007565 releasePage(pPage);
7566 }
7567#endif
drh2aa679f2001-06-25 02:11:07 +00007568 }else{
drhc046e3e2009-07-15 11:26:44 +00007569 /* If sqlite3BtreeDropTable was called on page 1.
7570 ** This really never should happen except in a corrupt
7571 ** database.
7572 */
drha34b6762004-05-07 13:30:42 +00007573 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007574 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007575 }
drh8b2f49b2001-06-08 00:21:52 +00007576 return rc;
7577}
drhd677b3d2007-08-20 22:48:41 +00007578int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7579 int rc;
7580 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007581 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007582 sqlite3BtreeLeave(p);
7583 return rc;
7584}
drh8b2f49b2001-06-08 00:21:52 +00007585
drh001bbcb2003-03-19 03:14:00 +00007586
drh8b2f49b2001-06-08 00:21:52 +00007587/*
danielk1977602b4662009-07-02 07:47:33 +00007588** This function may only be called if the b-tree connection already
7589** has a read or write transaction open on the database.
7590**
drh23e11ca2004-05-04 17:27:28 +00007591** Read the meta-information out of a database file. Meta[0]
7592** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007593** through meta[15] are available for use by higher layers. Meta[0]
7594** is read-only, the others are read/write.
7595**
7596** The schema layer numbers meta values differently. At the schema
7597** layer (and the SetCookie and ReadCookie opcodes) the number of
7598** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007599*/
danielk1977602b4662009-07-02 07:47:33 +00007600void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007601 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007602
drhd677b3d2007-08-20 22:48:41 +00007603 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007604 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007605 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007606 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007607 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007608
danielk1977602b4662009-07-02 07:47:33 +00007609 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007610
danielk1977602b4662009-07-02 07:47:33 +00007611 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7612 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007613#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007614 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7615 pBt->btsFlags |= BTS_READ_ONLY;
7616 }
danielk1977003ba062004-11-04 02:57:33 +00007617#endif
drhae157872004-08-14 19:20:09 +00007618
drhd677b3d2007-08-20 22:48:41 +00007619 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007620}
7621
7622/*
drh23e11ca2004-05-04 17:27:28 +00007623** Write meta-information back into the database. Meta[0] is
7624** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007625*/
danielk1977aef0bf62005-12-30 16:28:01 +00007626int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7627 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007628 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007629 int rc;
drh23e11ca2004-05-04 17:27:28 +00007630 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007631 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007632 assert( p->inTrans==TRANS_WRITE );
7633 assert( pBt->pPage1!=0 );
7634 pP1 = pBt->pPage1->aData;
7635 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7636 if( rc==SQLITE_OK ){
7637 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007638#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007639 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007640 assert( pBt->autoVacuum || iMeta==0 );
7641 assert( iMeta==0 || iMeta==1 );
7642 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007643 }
drh64022502009-01-09 14:11:04 +00007644#endif
drh5df72a52002-06-06 23:16:05 +00007645 }
drhd677b3d2007-08-20 22:48:41 +00007646 sqlite3BtreeLeave(p);
7647 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007648}
drh8c42ca92001-06-22 19:15:00 +00007649
danielk1977a5533162009-02-24 10:01:51 +00007650#ifndef SQLITE_OMIT_BTREECOUNT
7651/*
7652** The first argument, pCur, is a cursor opened on some b-tree. Count the
7653** number of entries in the b-tree and write the result to *pnEntry.
7654**
7655** SQLITE_OK is returned if the operation is successfully executed.
7656** Otherwise, if an error is encountered (i.e. an IO error or database
7657** corruption) an SQLite error code is returned.
7658*/
7659int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7660 i64 nEntry = 0; /* Value to return in *pnEntry */
7661 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007662
7663 if( pCur->pgnoRoot==0 ){
7664 *pnEntry = 0;
7665 return SQLITE_OK;
7666 }
danielk1977a5533162009-02-24 10:01:51 +00007667 rc = moveToRoot(pCur);
7668
7669 /* Unless an error occurs, the following loop runs one iteration for each
7670 ** page in the B-Tree structure (not including overflow pages).
7671 */
7672 while( rc==SQLITE_OK ){
7673 int iIdx; /* Index of child node in parent */
7674 MemPage *pPage; /* Current page of the b-tree */
7675
7676 /* If this is a leaf page or the tree is not an int-key tree, then
7677 ** this page contains countable entries. Increment the entry counter
7678 ** accordingly.
7679 */
7680 pPage = pCur->apPage[pCur->iPage];
7681 if( pPage->leaf || !pPage->intKey ){
7682 nEntry += pPage->nCell;
7683 }
7684
7685 /* pPage is a leaf node. This loop navigates the cursor so that it
7686 ** points to the first interior cell that it points to the parent of
7687 ** the next page in the tree that has not yet been visited. The
7688 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7689 ** of the page, or to the number of cells in the page if the next page
7690 ** to visit is the right-child of its parent.
7691 **
7692 ** If all pages in the tree have been visited, return SQLITE_OK to the
7693 ** caller.
7694 */
7695 if( pPage->leaf ){
7696 do {
7697 if( pCur->iPage==0 ){
7698 /* All pages of the b-tree have been visited. Return successfully. */
7699 *pnEntry = nEntry;
7700 return SQLITE_OK;
7701 }
danielk197730548662009-07-09 05:07:37 +00007702 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007703 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7704
7705 pCur->aiIdx[pCur->iPage]++;
7706 pPage = pCur->apPage[pCur->iPage];
7707 }
7708
7709 /* Descend to the child node of the cell that the cursor currently
7710 ** points at. This is the right-child if (iIdx==pPage->nCell).
7711 */
7712 iIdx = pCur->aiIdx[pCur->iPage];
7713 if( iIdx==pPage->nCell ){
7714 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7715 }else{
7716 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7717 }
7718 }
7719
shanebe217792009-03-05 04:20:31 +00007720 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007721 return rc;
7722}
7723#endif
drhdd793422001-06-28 01:54:48 +00007724
drhdd793422001-06-28 01:54:48 +00007725/*
drh5eddca62001-06-30 21:53:53 +00007726** Return the pager associated with a BTree. This routine is used for
7727** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007728*/
danielk1977aef0bf62005-12-30 16:28:01 +00007729Pager *sqlite3BtreePager(Btree *p){
7730 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007731}
drh5eddca62001-06-30 21:53:53 +00007732
drhb7f91642004-10-31 02:22:47 +00007733#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007734/*
7735** Append a message to the error message string.
7736*/
drh2e38c322004-09-03 18:38:44 +00007737static void checkAppendMsg(
7738 IntegrityCk *pCheck,
7739 char *zMsg1,
7740 const char *zFormat,
7741 ...
7742){
7743 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007744 if( !pCheck->mxErr ) return;
7745 pCheck->mxErr--;
7746 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007747 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007748 if( pCheck->errMsg.nChar ){
7749 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007750 }
drhf089aa42008-07-08 19:34:06 +00007751 if( zMsg1 ){
drha6353a32013-12-09 19:03:26 +00007752 sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
drhf089aa42008-07-08 19:34:06 +00007753 }
7754 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7755 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007756 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007757 pCheck->mallocFailed = 1;
7758 }
drh5eddca62001-06-30 21:53:53 +00007759}
drhb7f91642004-10-31 02:22:47 +00007760#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007761
drhb7f91642004-10-31 02:22:47 +00007762#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007763
7764/*
7765** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7766** corresponds to page iPg is already set.
7767*/
7768static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7769 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7770 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7771}
7772
7773/*
7774** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7775*/
7776static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7777 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7778 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7779}
7780
7781
drh5eddca62001-06-30 21:53:53 +00007782/*
7783** Add 1 to the reference count for page iPage. If this is the second
7784** reference to the page, add an error message to pCheck->zErrMsg.
7785** Return 1 if there are 2 ore more references to the page and 0 if
7786** if this is the first reference to the page.
7787**
7788** Also check that the page number is in bounds.
7789*/
danielk197789d40042008-11-17 14:20:56 +00007790static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007791 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007792 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007793 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007794 return 1;
7795 }
dan1235bb12012-04-03 17:43:28 +00007796 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007797 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007798 return 1;
7799 }
dan1235bb12012-04-03 17:43:28 +00007800 setPageReferenced(pCheck, iPage);
7801 return 0;
drh5eddca62001-06-30 21:53:53 +00007802}
7803
danielk1977afcdd022004-10-31 16:25:42 +00007804#ifndef SQLITE_OMIT_AUTOVACUUM
7805/*
7806** Check that the entry in the pointer-map for page iChild maps to
7807** page iParent, pointer type ptrType. If not, append an error message
7808** to pCheck.
7809*/
7810static void checkPtrmap(
7811 IntegrityCk *pCheck, /* Integrity check context */
7812 Pgno iChild, /* Child page number */
7813 u8 eType, /* Expected pointer map type */
7814 Pgno iParent, /* Expected pointer map parent page number */
7815 char *zContext /* Context description (used for error msg) */
7816){
7817 int rc;
7818 u8 ePtrmapType;
7819 Pgno iPtrmapParent;
7820
7821 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7822 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007823 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007824 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7825 return;
7826 }
7827
7828 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7829 checkAppendMsg(pCheck, zContext,
7830 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7831 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7832 }
7833}
7834#endif
7835
drh5eddca62001-06-30 21:53:53 +00007836/*
7837** Check the integrity of the freelist or of an overflow page list.
7838** Verify that the number of pages on the list is N.
7839*/
drh30e58752002-03-02 20:41:57 +00007840static void checkList(
7841 IntegrityCk *pCheck, /* Integrity checking context */
7842 int isFreeList, /* True for a freelist. False for overflow page list */
7843 int iPage, /* Page number for first page in the list */
7844 int N, /* Expected number of pages in the list */
7845 char *zContext /* Context for error messages */
7846){
7847 int i;
drh3a4c1412004-05-09 20:40:11 +00007848 int expected = N;
7849 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007850 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007851 DbPage *pOvflPage;
7852 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007853 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007854 checkAppendMsg(pCheck, zContext,
7855 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007856 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007857 break;
7858 }
7859 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007860 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007861 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007862 break;
7863 }
danielk19773b8a05f2007-03-19 17:44:26 +00007864 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007865 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007866 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007867#ifndef SQLITE_OMIT_AUTOVACUUM
7868 if( pCheck->pBt->autoVacuum ){
7869 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7870 }
7871#endif
drh43b18e12010-08-17 19:40:08 +00007872 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007873 checkAppendMsg(pCheck, zContext,
7874 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007875 N--;
7876 }else{
7877 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007878 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007879#ifndef SQLITE_OMIT_AUTOVACUUM
7880 if( pCheck->pBt->autoVacuum ){
7881 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7882 }
7883#endif
7884 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007885 }
7886 N -= n;
drh30e58752002-03-02 20:41:57 +00007887 }
drh30e58752002-03-02 20:41:57 +00007888 }
danielk1977afcdd022004-10-31 16:25:42 +00007889#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007890 else{
7891 /* If this database supports auto-vacuum and iPage is not the last
7892 ** page in this overflow list, check that the pointer-map entry for
7893 ** the following page matches iPage.
7894 */
7895 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007896 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007897 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7898 }
danielk1977afcdd022004-10-31 16:25:42 +00007899 }
7900#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007901 iPage = get4byte(pOvflData);
7902 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007903 }
7904}
drhb7f91642004-10-31 02:22:47 +00007905#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007906
drhb7f91642004-10-31 02:22:47 +00007907#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007908/*
7909** Do various sanity checks on a single page of a tree. Return
7910** the tree depth. Root pages return 0. Parents of root pages
7911** return 1, and so forth.
7912**
7913** These checks are done:
7914**
7915** 1. Make sure that cells and freeblocks do not overlap
7916** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007917** NO 2. Make sure cell keys are in order.
7918** NO 3. Make sure no key is less than or equal to zLowerBound.
7919** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007920** 5. Check the integrity of overflow pages.
7921** 6. Recursively call checkTreePage on all children.
7922** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007923** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007924** the root of the tree.
7925*/
7926static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007927 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007928 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007929 char *zParentContext, /* Parent context */
7930 i64 *pnParentMinKey,
7931 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007932){
7933 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007934 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007935 int hdr, cellStart;
7936 int nCell;
drhda200cc2004-05-09 11:51:38 +00007937 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007938 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007939 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007940 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007941 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007942 i64 nMinKey = 0;
7943 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007944
drh5bb3eb92007-05-04 13:15:55 +00007945 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007946
drh5eddca62001-06-30 21:53:53 +00007947 /* Check that the page exists
7948 */
drhd9cb6ac2005-10-20 07:28:17 +00007949 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007950 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007951 if( iPage==0 ) return 0;
7952 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drhb00fc3b2013-08-21 23:42:32 +00007953 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007954 checkAppendMsg(pCheck, zContext,
7955 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007956 return 0;
7957 }
danielk197793caf5a2009-07-11 06:55:33 +00007958
7959 /* Clear MemPage.isInit to make sure the corruption detection code in
7960 ** btreeInitPage() is executed. */
7961 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007962 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007963 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007964 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007965 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007966 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007967 return 0;
7968 }
7969
7970 /* Check out all the cells.
7971 */
7972 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007973 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007974 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007975 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007976 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007977
7978 /* Check payload overflow pages
7979 */
drh5bb3eb92007-05-04 13:15:55 +00007980 sqlite3_snprintf(sizeof(zContext), zContext,
7981 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007982 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007983 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007984 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007985 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007986 /* For intKey pages, check that the keys are in order.
7987 */
7988 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7989 else{
7990 if( info.nKey <= nMaxKey ){
7991 checkAppendMsg(pCheck, zContext,
7992 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7993 }
7994 nMaxKey = info.nKey;
7995 }
drh72365832007-03-06 15:53:44 +00007996 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007997 if( (sz>info.nLocal)
7998 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7999 ){
drhb6f41482004-05-14 01:58:11 +00008000 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008001 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8002#ifndef SQLITE_OMIT_AUTOVACUUM
8003 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00008004 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008005 }
8006#endif
8007 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00008008 }
8009
8010 /* Check sanity of left child page.
8011 */
drhda200cc2004-05-09 11:51:38 +00008012 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008013 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008014#ifndef SQLITE_OMIT_AUTOVACUUM
8015 if( pBt->autoVacuum ){
8016 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
8017 }
8018#endif
shaneh195475d2010-02-19 04:28:08 +00008019 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008020 if( i>0 && d2!=depth ){
8021 checkAppendMsg(pCheck, zContext, "Child page depth differs");
8022 }
8023 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008024 }
drh5eddca62001-06-30 21:53:53 +00008025 }
shaneh195475d2010-02-19 04:28:08 +00008026
drhda200cc2004-05-09 11:51:38 +00008027 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008028 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00008029 sqlite3_snprintf(sizeof(zContext), zContext,
8030 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008031#ifndef SQLITE_OMIT_AUTOVACUUM
8032 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008033 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008034 }
8035#endif
shaneh195475d2010-02-19 04:28:08 +00008036 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008037 }
drh5eddca62001-06-30 21:53:53 +00008038
shaneh195475d2010-02-19 04:28:08 +00008039 /* For intKey leaf pages, check that the min/max keys are in order
8040 ** with any left/parent/right pages.
8041 */
8042 if( pPage->leaf && pPage->intKey ){
8043 /* if we are a left child page */
8044 if( pnParentMinKey ){
8045 /* if we are the left most child page */
8046 if( !pnParentMaxKey ){
8047 if( nMaxKey > *pnParentMinKey ){
8048 checkAppendMsg(pCheck, zContext,
8049 "Rowid %lld out of order (max larger than parent min of %lld)",
8050 nMaxKey, *pnParentMinKey);
8051 }
8052 }else{
8053 if( nMinKey <= *pnParentMinKey ){
8054 checkAppendMsg(pCheck, zContext,
8055 "Rowid %lld out of order (min less than parent min of %lld)",
8056 nMinKey, *pnParentMinKey);
8057 }
8058 if( nMaxKey > *pnParentMaxKey ){
8059 checkAppendMsg(pCheck, zContext,
8060 "Rowid %lld out of order (max larger than parent max of %lld)",
8061 nMaxKey, *pnParentMaxKey);
8062 }
8063 *pnParentMinKey = nMaxKey;
8064 }
8065 /* else if we're a right child page */
8066 } else if( pnParentMaxKey ){
8067 if( nMinKey <= *pnParentMaxKey ){
8068 checkAppendMsg(pCheck, zContext,
8069 "Rowid %lld out of order (min less than parent max of %lld)",
8070 nMinKey, *pnParentMaxKey);
8071 }
8072 }
8073 }
8074
drh5eddca62001-06-30 21:53:53 +00008075 /* Check for complete coverage of the page
8076 */
drhda200cc2004-05-09 11:51:38 +00008077 data = pPage->aData;
8078 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008079 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008080 if( hit==0 ){
8081 pCheck->mallocFailed = 1;
8082 }else{
drh5d433ce2010-08-14 16:02:52 +00008083 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008084 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008085 memset(hit+contentOffset, 0, usableSize-contentOffset);
8086 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008087 nCell = get2byte(&data[hdr+3]);
8088 cellStart = hdr + 12 - 4*pPage->leaf;
8089 for(i=0; i<nCell; i++){
8090 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008091 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008092 int j;
drh8c2bbb62009-07-10 02:52:20 +00008093 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008094 size = cellSizePtr(pPage, &data[pc]);
8095 }
drh43b18e12010-08-17 19:40:08 +00008096 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008097 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008098 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008099 }else{
8100 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8101 }
drh2e38c322004-09-03 18:38:44 +00008102 }
drh8c2bbb62009-07-10 02:52:20 +00008103 i = get2byte(&data[hdr+1]);
8104 while( i>0 ){
8105 int size, j;
8106 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8107 size = get2byte(&data[i+2]);
8108 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8109 for(j=i+size-1; j>=i; j--) hit[j]++;
8110 j = get2byte(&data[i]);
8111 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8112 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8113 i = j;
drh2e38c322004-09-03 18:38:44 +00008114 }
8115 for(i=cnt=0; i<usableSize; i++){
8116 if( hit[i]==0 ){
8117 cnt++;
8118 }else if( hit[i]>1 ){
8119 checkAppendMsg(pCheck, 0,
8120 "Multiple uses for byte %d of page %d", i, iPage);
8121 break;
8122 }
8123 }
8124 if( cnt!=data[hdr+7] ){
8125 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008126 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008127 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008128 }
8129 }
drh8c2bbb62009-07-10 02:52:20 +00008130 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008131 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008132 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008133}
drhb7f91642004-10-31 02:22:47 +00008134#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008135
drhb7f91642004-10-31 02:22:47 +00008136#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008137/*
8138** This routine does a complete check of the given BTree file. aRoot[] is
8139** an array of pages numbers were each page number is the root page of
8140** a table. nRoot is the number of entries in aRoot.
8141**
danielk19773509a652009-07-06 18:56:13 +00008142** A read-only or read-write transaction must be opened before calling
8143** this function.
8144**
drhc890fec2008-08-01 20:10:08 +00008145** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008146** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008147** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008148** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008149*/
drh1dcdbc02007-01-27 02:24:54 +00008150char *sqlite3BtreeIntegrityCheck(
8151 Btree *p, /* The btree to be checked */
8152 int *aRoot, /* An array of root pages numbers for individual trees */
8153 int nRoot, /* Number of entries in aRoot[] */
8154 int mxErr, /* Stop reporting errors after this many */
8155 int *pnErr /* Write number of errors seen to this variable */
8156){
danielk197789d40042008-11-17 14:20:56 +00008157 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008158 int nRef;
drhaaab5722002-02-19 13:39:21 +00008159 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008160 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008161 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008162
drhd677b3d2007-08-20 22:48:41 +00008163 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008164 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008165 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008166 sCheck.pBt = pBt;
8167 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008168 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008169 sCheck.mxErr = mxErr;
8170 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008171 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008172 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008173 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008174 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008175 return 0;
8176 }
dan1235bb12012-04-03 17:43:28 +00008177
8178 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8179 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008180 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008181 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008182 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008183 }
drh42cac6d2004-11-20 20:31:11 +00008184 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008185 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008186 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008187 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008188
8189 /* Check the integrity of the freelist
8190 */
drha34b6762004-05-07 13:30:42 +00008191 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8192 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008193
8194 /* Check all the tables.
8195 */
danielk197789d40042008-11-17 14:20:56 +00008196 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008197 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008198#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008199 if( pBt->autoVacuum && aRoot[i]>1 ){
8200 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8201 }
8202#endif
shaneh195475d2010-02-19 04:28:08 +00008203 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008204 }
8205
8206 /* Make sure every page in the file is referenced
8207 */
drh1dcdbc02007-01-27 02:24:54 +00008208 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008209#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008210 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008211 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008212 }
danielk1977afcdd022004-10-31 16:25:42 +00008213#else
8214 /* If the database supports auto-vacuum, make sure no tables contain
8215 ** references to pointer-map pages.
8216 */
dan1235bb12012-04-03 17:43:28 +00008217 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008218 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008219 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8220 }
dan1235bb12012-04-03 17:43:28 +00008221 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008222 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008223 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8224 }
8225#endif
drh5eddca62001-06-30 21:53:53 +00008226 }
8227
drh64022502009-01-09 14:11:04 +00008228 /* Make sure this analysis did not leave any unref() pages.
8229 ** This is an internal consistency check; an integrity check
8230 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008231 */
drh64022502009-01-09 14:11:04 +00008232 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008233 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008234 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008235 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008236 );
drh5eddca62001-06-30 21:53:53 +00008237 }
8238
8239 /* Clean up and report errors.
8240 */
drhd677b3d2007-08-20 22:48:41 +00008241 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008242 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008243 if( sCheck.mallocFailed ){
8244 sqlite3StrAccumReset(&sCheck.errMsg);
8245 *pnErr = sCheck.nErr+1;
8246 return 0;
8247 }
drh1dcdbc02007-01-27 02:24:54 +00008248 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008249 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8250 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008251}
drhb7f91642004-10-31 02:22:47 +00008252#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008253
drh73509ee2003-04-06 20:44:45 +00008254/*
drhd4e0bb02012-05-27 01:19:04 +00008255** Return the full pathname of the underlying database file. Return
8256** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008257**
8258** The pager filename is invariant as long as the pager is
8259** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008260*/
danielk1977aef0bf62005-12-30 16:28:01 +00008261const char *sqlite3BtreeGetFilename(Btree *p){
8262 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008263 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008264}
8265
8266/*
danielk19775865e3d2004-06-14 06:03:57 +00008267** Return the pathname of the journal file for this database. The return
8268** value of this routine is the same regardless of whether the journal file
8269** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008270**
8271** The pager journal filename is invariant as long as the pager is
8272** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008273*/
danielk1977aef0bf62005-12-30 16:28:01 +00008274const char *sqlite3BtreeGetJournalname(Btree *p){
8275 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008276 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008277}
8278
danielk19771d850a72004-05-31 08:26:49 +00008279/*
8280** Return non-zero if a transaction is active.
8281*/
danielk1977aef0bf62005-12-30 16:28:01 +00008282int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008283 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008284 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008285}
8286
dana550f2d2010-08-02 10:47:05 +00008287#ifndef SQLITE_OMIT_WAL
8288/*
8289** Run a checkpoint on the Btree passed as the first argument.
8290**
8291** Return SQLITE_LOCKED if this or any other connection has an open
8292** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008293**
dancdc1f042010-11-18 12:11:05 +00008294** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008295*/
dancdc1f042010-11-18 12:11:05 +00008296int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008297 int rc = SQLITE_OK;
8298 if( p ){
8299 BtShared *pBt = p->pBt;
8300 sqlite3BtreeEnter(p);
8301 if( pBt->inTransaction!=TRANS_NONE ){
8302 rc = SQLITE_LOCKED;
8303 }else{
dancdc1f042010-11-18 12:11:05 +00008304 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008305 }
8306 sqlite3BtreeLeave(p);
8307 }
8308 return rc;
8309}
8310#endif
8311
danielk19771d850a72004-05-31 08:26:49 +00008312/*
danielk19772372c2b2006-06-27 16:34:56 +00008313** Return non-zero if a read (or write) transaction is active.
8314*/
8315int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008316 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008317 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008318 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008319}
8320
danielk197704103022009-02-03 16:51:24 +00008321int sqlite3BtreeIsInBackup(Btree *p){
8322 assert( p );
8323 assert( sqlite3_mutex_held(p->db->mutex) );
8324 return p->nBackup!=0;
8325}
8326
danielk19772372c2b2006-06-27 16:34:56 +00008327/*
danielk1977da184232006-01-05 11:34:32 +00008328** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008329** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008330** purposes (for example, to store a high-level schema associated with
8331** the shared-btree). The btree layer manages reference counting issues.
8332**
8333** The first time this is called on a shared-btree, nBytes bytes of memory
8334** are allocated, zeroed, and returned to the caller. For each subsequent
8335** call the nBytes parameter is ignored and a pointer to the same blob
8336** of memory returned.
8337**
danielk1977171bfed2008-06-23 09:50:50 +00008338** If the nBytes parameter is 0 and the blob of memory has not yet been
8339** allocated, a null pointer is returned. If the blob has already been
8340** allocated, it is returned as normal.
8341**
danielk1977da184232006-01-05 11:34:32 +00008342** Just before the shared-btree is closed, the function passed as the
8343** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008344** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008345** on the memory, the btree layer does that.
8346*/
8347void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8348 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008349 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008350 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008351 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008352 pBt->xFreeSchema = xFree;
8353 }
drh27641702007-08-22 02:56:42 +00008354 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008355 return pBt->pSchema;
8356}
8357
danielk1977c87d34d2006-01-06 13:00:28 +00008358/*
danielk1977404ca072009-03-16 13:19:36 +00008359** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8360** btree as the argument handle holds an exclusive lock on the
8361** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008362*/
8363int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008364 int rc;
drhe5fe6902007-12-07 18:55:28 +00008365 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008366 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008367 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8368 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008369 sqlite3BtreeLeave(p);
8370 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008371}
8372
drha154dcd2006-03-22 22:10:07 +00008373
8374#ifndef SQLITE_OMIT_SHARED_CACHE
8375/*
8376** Obtain a lock on the table whose root page is iTab. The
8377** lock is a write lock if isWritelock is true or a read lock
8378** if it is false.
8379*/
danielk1977c00da102006-01-07 13:21:04 +00008380int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008381 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008382 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008383 if( p->sharable ){
8384 u8 lockType = READ_LOCK + isWriteLock;
8385 assert( READ_LOCK+1==WRITE_LOCK );
8386 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008387
drh6a9ad3d2008-04-02 16:29:30 +00008388 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008389 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008390 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008391 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008392 }
8393 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008394 }
8395 return rc;
8396}
drha154dcd2006-03-22 22:10:07 +00008397#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008398
danielk1977b4e9af92007-05-01 17:49:49 +00008399#ifndef SQLITE_OMIT_INCRBLOB
8400/*
8401** Argument pCsr must be a cursor opened for writing on an
8402** INTKEY table currently pointing at a valid table entry.
8403** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008404**
8405** Only the data content may only be modified, it is not possible to
8406** change the length of the data stored. If this function is called with
8407** parameters that attempt to write past the end of the existing data,
8408** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008409*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008410int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008411 int rc;
drh1fee73e2007-08-29 04:00:57 +00008412 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008413 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008414 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008415
danielk1977c9000e62009-07-08 13:55:28 +00008416 rc = restoreCursorPosition(pCsr);
8417 if( rc!=SQLITE_OK ){
8418 return rc;
8419 }
danielk19773588ceb2008-06-10 17:30:26 +00008420 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8421 if( pCsr->eState!=CURSOR_VALID ){
8422 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008423 }
8424
dan227a1c42013-04-03 11:17:39 +00008425 /* Save the positions of all other cursors open on this table. This is
8426 ** required in case any of them are holding references to an xFetch
8427 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008428 **
8429 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8430 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8431 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008432 */
drh370c9f42013-04-03 20:04:04 +00008433 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8434 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008435
danielk1977c9000e62009-07-08 13:55:28 +00008436 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008437 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008438 ** (b) there is a read/write transaction open,
8439 ** (c) the connection holds a write-lock on the table (if required),
8440 ** (d) there are no conflicting read-locks, and
8441 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008442 */
danielk19774f029602009-07-08 18:45:37 +00008443 if( !pCsr->wrFlag ){
8444 return SQLITE_READONLY;
8445 }
drhc9166342012-01-05 23:32:06 +00008446 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8447 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008448 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8449 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008450 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008451
drhfb192682009-07-11 18:26:28 +00008452 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008453}
danielk19772dec9702007-05-02 16:48:37 +00008454
8455/*
8456** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008457** overflow list for the current row. This is used by cursors opened
8458** for incremental blob IO only.
8459**
8460** This function sets a flag only. The actual page location cache
8461** (stored in BtCursor.aOverflow[]) is allocated and used by function
8462** accessPayload() (the worker function for sqlite3BtreeData() and
8463** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008464*/
8465void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008466 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008467 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008468 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008469 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008470}
danielk1977b4e9af92007-05-01 17:49:49 +00008471#endif
dane04dc882010-04-20 18:53:15 +00008472
8473/*
8474** Set both the "read version" (single byte at byte offset 18) and
8475** "write version" (single byte at byte offset 19) fields in the database
8476** header to iVersion.
8477*/
8478int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8479 BtShared *pBt = pBtree->pBt;
8480 int rc; /* Return code */
8481
dane04dc882010-04-20 18:53:15 +00008482 assert( iVersion==1 || iVersion==2 );
8483
danb9780022010-04-21 18:37:57 +00008484 /* If setting the version fields to 1, do not automatically open the
8485 ** WAL connection, even if the version fields are currently set to 2.
8486 */
drhc9166342012-01-05 23:32:06 +00008487 pBt->btsFlags &= ~BTS_NO_WAL;
8488 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008489
8490 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008491 if( rc==SQLITE_OK ){
8492 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008493 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008494 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008495 if( rc==SQLITE_OK ){
8496 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8497 if( rc==SQLITE_OK ){
8498 aData[18] = (u8)iVersion;
8499 aData[19] = (u8)iVersion;
8500 }
8501 }
8502 }
dane04dc882010-04-20 18:53:15 +00008503 }
8504
drhc9166342012-01-05 23:32:06 +00008505 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008506 return rc;
8507}
dan428c2182012-08-06 18:50:11 +00008508
8509/*
8510** set the mask of hint flags for cursor pCsr. Currently the only valid
8511** values are 0 and BTREE_BULKLOAD.
8512*/
8513void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8514 assert( mask==BTREE_BULKLOAD || mask==0 );
8515 pCsr->hints = mask;
8516}