drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2015-06-06 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This module contains C code that generates VDBE code used to process |
| 13 | ** the WHERE clause of SQL statements. |
| 14 | ** |
| 15 | ** This file was split off from where.c on 2015-06-06 in order to reduce the |
| 16 | ** size of where.c and make it easier to edit. This file contains the routines |
| 17 | ** that actually generate the bulk of the WHERE loop code. The original where.c |
| 18 | ** file retains the code that does query planning and analysis. |
| 19 | */ |
| 20 | #include "sqliteInt.h" |
| 21 | #include "whereInt.h" |
| 22 | |
| 23 | #ifndef SQLITE_OMIT_EXPLAIN |
dan | 1d9bc9b | 2016-08-08 18:42:08 +0000 | [diff] [blame] | 24 | |
| 25 | /* |
| 26 | ** Return the name of the i-th column of the pIdx index. |
| 27 | */ |
| 28 | static const char *explainIndexColumnName(Index *pIdx, int i){ |
| 29 | i = pIdx->aiColumn[i]; |
| 30 | if( i==XN_EXPR ) return "<expr>"; |
| 31 | if( i==XN_ROWID ) return "rowid"; |
| 32 | return pIdx->pTable->aCol[i].zName; |
| 33 | } |
| 34 | |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 35 | /* |
| 36 | ** This routine is a helper for explainIndexRange() below |
| 37 | ** |
| 38 | ** pStr holds the text of an expression that we are building up one term |
| 39 | ** at a time. This routine adds a new term to the end of the expression. |
| 40 | ** Terms are separated by AND so add the "AND" text for second and subsequent |
| 41 | ** terms only. |
| 42 | */ |
| 43 | static void explainAppendTerm( |
| 44 | StrAccum *pStr, /* The text expression being built */ |
dan | 1d9bc9b | 2016-08-08 18:42:08 +0000 | [diff] [blame] | 45 | Index *pIdx, /* Index to read column names from */ |
| 46 | int nTerm, /* Number of terms */ |
| 47 | int iTerm, /* Zero-based index of first term. */ |
| 48 | int bAnd, /* Non-zero to append " AND " */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 49 | const char *zOp /* Name of the operator */ |
| 50 | ){ |
dan | 1d9bc9b | 2016-08-08 18:42:08 +0000 | [diff] [blame] | 51 | int i; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 52 | |
dan | 1d9bc9b | 2016-08-08 18:42:08 +0000 | [diff] [blame] | 53 | assert( nTerm>=1 ); |
| 54 | if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
| 55 | |
| 56 | if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); |
| 57 | for(i=0; i<nTerm; i++){ |
| 58 | if( i ) sqlite3StrAccumAppend(pStr, ",", 1); |
| 59 | sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i)); |
| 60 | } |
| 61 | if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); |
| 62 | |
| 63 | sqlite3StrAccumAppend(pStr, zOp, 1); |
| 64 | |
| 65 | if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1); |
| 66 | for(i=0; i<nTerm; i++){ |
| 67 | if( i ) sqlite3StrAccumAppend(pStr, ",", 1); |
| 68 | sqlite3StrAccumAppend(pStr, "?", 1); |
| 69 | } |
| 70 | if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1); |
drh | c7c4680 | 2015-08-27 20:33:38 +0000 | [diff] [blame] | 71 | } |
| 72 | |
| 73 | /* |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 74 | ** Argument pLevel describes a strategy for scanning table pTab. This |
| 75 | ** function appends text to pStr that describes the subset of table |
| 76 | ** rows scanned by the strategy in the form of an SQL expression. |
| 77 | ** |
| 78 | ** For example, if the query: |
| 79 | ** |
| 80 | ** SELECT * FROM t1 WHERE a=1 AND b>2; |
| 81 | ** |
| 82 | ** is run and there is an index on (a, b), then this function returns a |
| 83 | ** string similar to: |
| 84 | ** |
| 85 | ** "a=? AND b>?" |
| 86 | */ |
drh | 8faee87 | 2015-09-19 18:08:13 +0000 | [diff] [blame] | 87 | static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 88 | Index *pIndex = pLoop->u.btree.pIndex; |
| 89 | u16 nEq = pLoop->u.btree.nEq; |
| 90 | u16 nSkip = pLoop->nSkip; |
| 91 | int i, j; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 92 | |
| 93 | if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; |
| 94 | sqlite3StrAccumAppend(pStr, " (", 2); |
| 95 | for(i=0; i<nEq; i++){ |
drh | c7c4680 | 2015-08-27 20:33:38 +0000 | [diff] [blame] | 96 | const char *z = explainIndexColumnName(pIndex, i); |
drh | 2ed0d80 | 2015-09-02 16:51:37 +0000 | [diff] [blame] | 97 | if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 98 | sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 99 | } |
| 100 | |
| 101 | j = i; |
| 102 | if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ |
dan | 1d9bc9b | 2016-08-08 18:42:08 +0000 | [diff] [blame] | 103 | explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">"); |
| 104 | i = 1; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 105 | } |
| 106 | if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ |
dan | 1d9bc9b | 2016-08-08 18:42:08 +0000 | [diff] [blame] | 107 | explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<"); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 108 | } |
| 109 | sqlite3StrAccumAppend(pStr, ")", 1); |
| 110 | } |
| 111 | |
| 112 | /* |
| 113 | ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN |
| 114 | ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was |
| 115 | ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode |
| 116 | ** is added to the output to describe the table scan strategy in pLevel. |
| 117 | ** |
| 118 | ** If an OP_Explain opcode is added to the VM, its address is returned. |
| 119 | ** Otherwise, if no OP_Explain is coded, zero is returned. |
| 120 | */ |
| 121 | int sqlite3WhereExplainOneScan( |
| 122 | Parse *pParse, /* Parse context */ |
| 123 | SrcList *pTabList, /* Table list this loop refers to */ |
| 124 | WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ |
| 125 | int iLevel, /* Value for "level" column of output */ |
| 126 | int iFrom, /* Value for "from" column of output */ |
| 127 | u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ |
| 128 | ){ |
| 129 | int ret = 0; |
| 130 | #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) |
| 131 | if( pParse->explain==2 ) |
| 132 | #endif |
| 133 | { |
| 134 | struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; |
| 135 | Vdbe *v = pParse->pVdbe; /* VM being constructed */ |
| 136 | sqlite3 *db = pParse->db; /* Database handle */ |
| 137 | int iId = pParse->iSelectId; /* Select id (left-most output column) */ |
| 138 | int isSearch; /* True for a SEARCH. False for SCAN. */ |
| 139 | WhereLoop *pLoop; /* The controlling WhereLoop object */ |
| 140 | u32 flags; /* Flags that describe this loop */ |
| 141 | char *zMsg; /* Text to add to EQP output */ |
| 142 | StrAccum str; /* EQP output string */ |
| 143 | char zBuf[100]; /* Initial space for EQP output string */ |
| 144 | |
| 145 | pLoop = pLevel->pWLoop; |
| 146 | flags = pLoop->wsFlags; |
drh | ce943bc | 2016-05-19 18:56:33 +0000 | [diff] [blame] | 147 | if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 148 | |
| 149 | isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 |
| 150 | || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) |
| 151 | || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); |
| 152 | |
| 153 | sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); |
| 154 | sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); |
| 155 | if( pItem->pSelect ){ |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 156 | sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 157 | }else{ |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 158 | sqlite3XPrintf(&str, " TABLE %s", pItem->zName); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 159 | } |
| 160 | |
| 161 | if( pItem->zAlias ){ |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 162 | sqlite3XPrintf(&str, " AS %s", pItem->zAlias); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 163 | } |
| 164 | if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ |
| 165 | const char *zFmt = 0; |
| 166 | Index *pIdx; |
| 167 | |
| 168 | assert( pLoop->u.btree.pIndex!=0 ); |
| 169 | pIdx = pLoop->u.btree.pIndex; |
| 170 | assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); |
| 171 | if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ |
| 172 | if( isSearch ){ |
| 173 | zFmt = "PRIMARY KEY"; |
| 174 | } |
| 175 | }else if( flags & WHERE_PARTIALIDX ){ |
| 176 | zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; |
| 177 | }else if( flags & WHERE_AUTO_INDEX ){ |
| 178 | zFmt = "AUTOMATIC COVERING INDEX"; |
| 179 | }else if( flags & WHERE_IDX_ONLY ){ |
| 180 | zFmt = "COVERING INDEX %s"; |
| 181 | }else{ |
| 182 | zFmt = "INDEX %s"; |
| 183 | } |
| 184 | if( zFmt ){ |
| 185 | sqlite3StrAccumAppend(&str, " USING ", 7); |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 186 | sqlite3XPrintf(&str, zFmt, pIdx->zName); |
drh | 8faee87 | 2015-09-19 18:08:13 +0000 | [diff] [blame] | 187 | explainIndexRange(&str, pLoop); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 188 | } |
| 189 | }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ |
drh | d37bea5 | 2015-09-02 15:37:50 +0000 | [diff] [blame] | 190 | const char *zRangeOp; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 191 | if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ |
drh | d37bea5 | 2015-09-02 15:37:50 +0000 | [diff] [blame] | 192 | zRangeOp = "="; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 193 | }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ |
drh | d37bea5 | 2015-09-02 15:37:50 +0000 | [diff] [blame] | 194 | zRangeOp = ">? AND rowid<"; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 195 | }else if( flags&WHERE_BTM_LIMIT ){ |
drh | d37bea5 | 2015-09-02 15:37:50 +0000 | [diff] [blame] | 196 | zRangeOp = ">"; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 197 | }else{ |
| 198 | assert( flags&WHERE_TOP_LIMIT); |
drh | d37bea5 | 2015-09-02 15:37:50 +0000 | [diff] [blame] | 199 | zRangeOp = "<"; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 200 | } |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 201 | sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 202 | } |
| 203 | #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 204 | else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 205 | sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s", |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 206 | pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); |
| 207 | } |
| 208 | #endif |
| 209 | #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS |
| 210 | if( pLoop->nOut>=10 ){ |
drh | 5f4a686 | 2016-01-30 12:50:25 +0000 | [diff] [blame] | 211 | sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 212 | }else{ |
| 213 | sqlite3StrAccumAppend(&str, " (~1 row)", 9); |
| 214 | } |
| 215 | #endif |
| 216 | zMsg = sqlite3StrAccumFinish(&str); |
| 217 | ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); |
| 218 | } |
| 219 | return ret; |
| 220 | } |
| 221 | #endif /* SQLITE_OMIT_EXPLAIN */ |
| 222 | |
| 223 | #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 224 | /* |
| 225 | ** Configure the VM passed as the first argument with an |
| 226 | ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to |
| 227 | ** implement level pLvl. Argument pSrclist is a pointer to the FROM |
| 228 | ** clause that the scan reads data from. |
| 229 | ** |
| 230 | ** If argument addrExplain is not 0, it must be the address of an |
| 231 | ** OP_Explain instruction that describes the same loop. |
| 232 | */ |
| 233 | void sqlite3WhereAddScanStatus( |
| 234 | Vdbe *v, /* Vdbe to add scanstatus entry to */ |
| 235 | SrcList *pSrclist, /* FROM clause pLvl reads data from */ |
| 236 | WhereLevel *pLvl, /* Level to add scanstatus() entry for */ |
| 237 | int addrExplain /* Address of OP_Explain (or 0) */ |
| 238 | ){ |
| 239 | const char *zObj = 0; |
| 240 | WhereLoop *pLoop = pLvl->pWLoop; |
| 241 | if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ |
| 242 | zObj = pLoop->u.btree.pIndex->zName; |
| 243 | }else{ |
| 244 | zObj = pSrclist->a[pLvl->iFrom].zName; |
| 245 | } |
| 246 | sqlite3VdbeScanStatus( |
| 247 | v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj |
| 248 | ); |
| 249 | } |
| 250 | #endif |
| 251 | |
| 252 | |
| 253 | /* |
| 254 | ** Disable a term in the WHERE clause. Except, do not disable the term |
| 255 | ** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
| 256 | ** or USING clause of that join. |
| 257 | ** |
| 258 | ** Consider the term t2.z='ok' in the following queries: |
| 259 | ** |
| 260 | ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
| 261 | ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
| 262 | ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
| 263 | ** |
| 264 | ** The t2.z='ok' is disabled in the in (2) because it originates |
| 265 | ** in the ON clause. The term is disabled in (3) because it is not part |
| 266 | ** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
| 267 | ** |
| 268 | ** Disabling a term causes that term to not be tested in the inner loop |
| 269 | ** of the join. Disabling is an optimization. When terms are satisfied |
| 270 | ** by indices, we disable them to prevent redundant tests in the inner |
| 271 | ** loop. We would get the correct results if nothing were ever disabled, |
| 272 | ** but joins might run a little slower. The trick is to disable as much |
| 273 | ** as we can without disabling too much. If we disabled in (1), we'd get |
| 274 | ** the wrong answer. See ticket #813. |
| 275 | ** |
| 276 | ** If all the children of a term are disabled, then that term is also |
| 277 | ** automatically disabled. In this way, terms get disabled if derived |
| 278 | ** virtual terms are tested first. For example: |
| 279 | ** |
| 280 | ** x GLOB 'abc*' AND x>='abc' AND x<'acd' |
| 281 | ** \___________/ \______/ \_____/ |
| 282 | ** parent child1 child2 |
| 283 | ** |
| 284 | ** Only the parent term was in the original WHERE clause. The child1 |
| 285 | ** and child2 terms were added by the LIKE optimization. If both of |
| 286 | ** the virtual child terms are valid, then testing of the parent can be |
| 287 | ** skipped. |
| 288 | ** |
| 289 | ** Usually the parent term is marked as TERM_CODED. But if the parent |
| 290 | ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. |
| 291 | ** The TERM_LIKECOND marking indicates that the term should be coded inside |
| 292 | ** a conditional such that is only evaluated on the second pass of a |
| 293 | ** LIKE-optimization loop, when scanning BLOBs instead of strings. |
| 294 | */ |
| 295 | static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ |
| 296 | int nLoop = 0; |
drh | 0c36fca | 2016-08-26 18:17:08 +0000 | [diff] [blame] | 297 | while( ALWAYS(pTerm!=0) |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 298 | && (pTerm->wtFlags & TERM_CODED)==0 |
| 299 | && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) |
| 300 | && (pLevel->notReady & pTerm->prereqAll)==0 |
| 301 | ){ |
| 302 | if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ |
| 303 | pTerm->wtFlags |= TERM_LIKECOND; |
| 304 | }else{ |
| 305 | pTerm->wtFlags |= TERM_CODED; |
| 306 | } |
| 307 | if( pTerm->iParent<0 ) break; |
| 308 | pTerm = &pTerm->pWC->a[pTerm->iParent]; |
| 309 | pTerm->nChild--; |
| 310 | if( pTerm->nChild!=0 ) break; |
| 311 | nLoop++; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | ** Code an OP_Affinity opcode to apply the column affinity string zAff |
| 317 | ** to the n registers starting at base. |
| 318 | ** |
| 319 | ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the |
| 320 | ** beginning and end of zAff are ignored. If all entries in zAff are |
| 321 | ** SQLITE_AFF_BLOB, then no code gets generated. |
| 322 | ** |
| 323 | ** This routine makes its own copy of zAff so that the caller is free |
| 324 | ** to modify zAff after this routine returns. |
| 325 | */ |
| 326 | static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ |
| 327 | Vdbe *v = pParse->pVdbe; |
| 328 | if( zAff==0 ){ |
| 329 | assert( pParse->db->mallocFailed ); |
| 330 | return; |
| 331 | } |
| 332 | assert( v!=0 ); |
| 333 | |
| 334 | /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning |
| 335 | ** and end of the affinity string. |
| 336 | */ |
| 337 | while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){ |
| 338 | n--; |
| 339 | base++; |
| 340 | zAff++; |
| 341 | } |
| 342 | while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){ |
| 343 | n--; |
| 344 | } |
| 345 | |
| 346 | /* Code the OP_Affinity opcode if there is anything left to do. */ |
| 347 | if( n>0 ){ |
drh | 9b34abe | 2016-01-16 15:12:35 +0000 | [diff] [blame] | 348 | sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 349 | sqlite3ExprCacheAffinityChange(pParse, base, n); |
| 350 | } |
| 351 | } |
| 352 | |
dan | b7ca217 | 2016-08-26 17:54:46 +0000 | [diff] [blame] | 353 | /* |
| 354 | ** Expression pRight, which is the RHS of a comparison operation, is |
| 355 | ** either a vector of n elements or, if n==1, a scalar expression. |
| 356 | ** Before the comparison operation, affinity zAff is to be applied |
| 357 | ** to the pRight values. This function modifies characters within the |
| 358 | ** affinity string to SQLITE_AFF_BLOB if either: |
| 359 | ** |
| 360 | ** * the comparison will be performed with no affinity, or |
| 361 | ** * the affinity change in zAff is guaranteed not to change the value. |
| 362 | */ |
| 363 | static void updateRangeAffinityStr( |
| 364 | Parse *pParse, /* Parse context */ |
| 365 | Expr *pRight, /* RHS of comparison */ |
| 366 | int n, /* Number of vector elements in comparison */ |
| 367 | char *zAff /* Affinity string to modify */ |
| 368 | ){ |
| 369 | int i; |
| 370 | for(i=0; i<n; i++){ |
| 371 | Expr *p = sqlite3VectorFieldSubexpr(pRight, i); |
| 372 | if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB |
| 373 | || sqlite3ExprNeedsNoAffinityChange(p, zAff[i]) |
| 374 | ){ |
| 375 | zAff[i] = SQLITE_AFF_BLOB; |
| 376 | } |
| 377 | } |
| 378 | } |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 379 | |
| 380 | /* |
| 381 | ** Generate code for a single equality term of the WHERE clause. An equality |
| 382 | ** term can be either X=expr or X IN (...). pTerm is the term to be |
| 383 | ** coded. |
| 384 | ** |
drh | 099a0f5 | 2016-09-06 15:25:53 +0000 | [diff] [blame] | 385 | ** The current value for the constraint is left in a register, the index |
| 386 | ** of which is returned. An attempt is made store the result in iTarget but |
| 387 | ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the |
| 388 | ** constraint is a TK_EQ or TK_IS, then the current value might be left in |
| 389 | ** some other register and it is the caller's responsibility to compensate. |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 390 | ** |
drh | 4602b8e | 2016-08-19 18:28:00 +0000 | [diff] [blame] | 391 | ** For a constraint of the form X=expr, the expression is evaluated in |
| 392 | ** straight-line code. For constraints of the form X IN (...) |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 393 | ** this routine sets up a loop that will iterate over all values of X. |
| 394 | */ |
| 395 | static int codeEqualityTerm( |
| 396 | Parse *pParse, /* The parsing context */ |
| 397 | WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ |
| 398 | WhereLevel *pLevel, /* The level of the FROM clause we are working on */ |
| 399 | int iEq, /* Index of the equality term within this level */ |
| 400 | int bRev, /* True for reverse-order IN operations */ |
| 401 | int iTarget /* Attempt to leave results in this register */ |
| 402 | ){ |
| 403 | Expr *pX = pTerm->pExpr; |
| 404 | Vdbe *v = pParse->pVdbe; |
| 405 | int iReg; /* Register holding results */ |
| 406 | |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 407 | assert( pLevel->pWLoop->aLTerm[iEq]==pTerm ); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 408 | assert( iTarget>0 ); |
| 409 | if( pX->op==TK_EQ || pX->op==TK_IS ){ |
drh | fc7f27b | 2016-08-20 00:07:01 +0000 | [diff] [blame] | 410 | iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 411 | }else if( pX->op==TK_ISNULL ){ |
| 412 | iReg = iTarget; |
| 413 | sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); |
| 414 | #ifndef SQLITE_OMIT_SUBQUERY |
| 415 | }else{ |
drh | ac6b47d | 2016-08-24 00:51:48 +0000 | [diff] [blame] | 416 | int eType = IN_INDEX_NOOP; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 417 | int iTab; |
| 418 | struct InLoop *pIn; |
| 419 | WhereLoop *pLoop = pLevel->pWLoop; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 420 | int i; |
| 421 | int nEq = 0; |
| 422 | int *aiMap = 0; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 423 | |
| 424 | if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 |
| 425 | && pLoop->u.btree.pIndex!=0 |
| 426 | && pLoop->u.btree.pIndex->aSortOrder[iEq] |
| 427 | ){ |
| 428 | testcase( iEq==0 ); |
| 429 | testcase( bRev ); |
| 430 | bRev = !bRev; |
| 431 | } |
| 432 | assert( pX->op==TK_IN ); |
| 433 | iReg = iTarget; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 434 | |
| 435 | for(i=0; i<iEq; i++){ |
| 436 | if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){ |
| 437 | disableTerm(pLevel, pTerm); |
| 438 | return iTarget; |
| 439 | } |
| 440 | } |
| 441 | for(i=iEq;i<pLoop->nLTerm; i++){ |
drh | 0c36fca | 2016-08-26 18:17:08 +0000 | [diff] [blame] | 442 | if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 443 | } |
| 444 | |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 445 | if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){ |
| 446 | eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0); |
| 447 | }else{ |
dan | 26c8d0c | 2016-09-07 19:37:20 +0000 | [diff] [blame] | 448 | Select *pSelect = pX->x.pSelect; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 449 | sqlite3 *db = pParse->db; |
dan | 26c8d0c | 2016-09-07 19:37:20 +0000 | [diff] [blame] | 450 | ExprList *pOrigRhs = pSelect->pEList; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 451 | ExprList *pOrigLhs = pX->pLeft->x.pList; |
| 452 | ExprList *pRhs = 0; /* New Select.pEList for RHS */ |
| 453 | ExprList *pLhs = 0; /* New pX->pLeft vector */ |
| 454 | |
| 455 | for(i=iEq;i<pLoop->nLTerm; i++){ |
| 456 | if( pLoop->aLTerm[i]->pExpr==pX ){ |
| 457 | int iField = pLoop->aLTerm[i]->iField - 1; |
| 458 | Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0); |
| 459 | Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0); |
| 460 | |
| 461 | pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs); |
| 462 | pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs); |
| 463 | } |
| 464 | } |
drh | ac6b47d | 2016-08-24 00:51:48 +0000 | [diff] [blame] | 465 | if( !db->mallocFailed ){ |
dan | 83c434e | 2016-09-06 14:58:15 +0000 | [diff] [blame] | 466 | Expr *pLeft = pX->pLeft; |
dan | 26c8d0c | 2016-09-07 19:37:20 +0000 | [diff] [blame] | 467 | |
| 468 | if( pSelect->pOrderBy ){ |
| 469 | /* If the SELECT statement has an ORDER BY clause, zero the |
| 470 | ** iOrderByCol variables. These are set to non-zero when an |
| 471 | ** ORDER BY term exactly matches one of the terms of the |
| 472 | ** result-set. Since the result-set of the SELECT statement may |
| 473 | ** have been modified or reordered, these variables are no longer |
| 474 | ** set correctly. Since setting them is just an optimization, |
| 475 | ** it's easiest just to zero them here. */ |
| 476 | ExprList *pOrderBy = pSelect->pOrderBy; |
| 477 | for(i=0; i<pOrderBy->nExpr; i++){ |
| 478 | pOrderBy->a[i].u.x.iOrderByCol = 0; |
| 479 | } |
| 480 | } |
| 481 | |
dan | 83c434e | 2016-09-06 14:58:15 +0000 | [diff] [blame] | 482 | /* Take care here not to generate a TK_VECTOR containing only a |
| 483 | ** single value. Since the parser never creates such a vector, some |
| 484 | ** of the subroutines do not handle this case. */ |
| 485 | if( pLhs->nExpr==1 ){ |
| 486 | pX->pLeft = pLhs->a[0].pExpr; |
| 487 | }else{ |
| 488 | pLeft->x.pList = pLhs; |
drh | c7a77ae | 2016-09-06 17:13:40 +0000 | [diff] [blame] | 489 | aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq); |
| 490 | testcase( aiMap==0 ); |
dan | 83c434e | 2016-09-06 14:58:15 +0000 | [diff] [blame] | 491 | } |
dan | 26c8d0c | 2016-09-07 19:37:20 +0000 | [diff] [blame] | 492 | pSelect->pEList = pRhs; |
drh | ac6b47d | 2016-08-24 00:51:48 +0000 | [diff] [blame] | 493 | eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap); |
drh | c7a77ae | 2016-09-06 17:13:40 +0000 | [diff] [blame] | 494 | testcase( aiMap!=0 && aiMap[0]!=0 ); |
dan | 26c8d0c | 2016-09-07 19:37:20 +0000 | [diff] [blame] | 495 | pSelect->pEList = pOrigRhs; |
dan | 83c434e | 2016-09-06 14:58:15 +0000 | [diff] [blame] | 496 | pLeft->x.pList = pOrigLhs; |
| 497 | pX->pLeft = pLeft; |
drh | ac6b47d | 2016-08-24 00:51:48 +0000 | [diff] [blame] | 498 | } |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 499 | sqlite3ExprListDelete(pParse->db, pLhs); |
| 500 | sqlite3ExprListDelete(pParse->db, pRhs); |
| 501 | } |
| 502 | |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 503 | if( eType==IN_INDEX_INDEX_DESC ){ |
| 504 | testcase( bRev ); |
| 505 | bRev = !bRev; |
| 506 | } |
| 507 | iTab = pX->iTable; |
| 508 | sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); |
| 509 | VdbeCoverageIf(v, bRev); |
| 510 | VdbeCoverageIf(v, !bRev); |
| 511 | assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 512 | |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 513 | pLoop->wsFlags |= WHERE_IN_ABLE; |
| 514 | if( pLevel->u.in.nIn==0 ){ |
| 515 | pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
| 516 | } |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 517 | |
| 518 | i = pLevel->u.in.nIn; |
| 519 | pLevel->u.in.nIn += nEq; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 520 | pLevel->u.in.aInLoop = |
| 521 | sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, |
| 522 | sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
| 523 | pIn = pLevel->u.in.aInLoop; |
| 524 | if( pIn ){ |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 525 | int iMap = 0; /* Index in aiMap[] */ |
| 526 | pIn += i; |
dan | 7887d7f | 2016-08-24 12:22:17 +0000 | [diff] [blame] | 527 | for(i=iEq;i<pLoop->nLTerm; i++){ |
drh | 03181c8 | 2016-08-18 19:04:57 +0000 | [diff] [blame] | 528 | int iOut = iReg; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 529 | if( pLoop->aLTerm[i]->pExpr==pX ){ |
| 530 | if( eType==IN_INDEX_ROWID ){ |
| 531 | assert( nEq==1 && i==iEq ); |
| 532 | pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); |
| 533 | }else{ |
| 534 | int iCol = aiMap ? aiMap[iMap++] : 0; |
drh | 03181c8 | 2016-08-18 19:04:57 +0000 | [diff] [blame] | 535 | iOut = iReg + i - iEq; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 536 | pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut); |
| 537 | } |
drh | 03181c8 | 2016-08-18 19:04:57 +0000 | [diff] [blame] | 538 | sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v); |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 539 | if( i==iEq ){ |
| 540 | pIn->iCur = iTab; |
| 541 | pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; |
| 542 | }else{ |
| 543 | pIn->eEndLoopOp = OP_Noop; |
| 544 | } |
dan | 7887d7f | 2016-08-24 12:22:17 +0000 | [diff] [blame] | 545 | pIn++; |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 546 | } |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 547 | } |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 548 | }else{ |
| 549 | pLevel->u.in.nIn = 0; |
| 550 | } |
dan | 8da209b | 2016-07-26 18:06:08 +0000 | [diff] [blame] | 551 | sqlite3DbFree(pParse->db, aiMap); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 552 | #endif |
| 553 | } |
| 554 | disableTerm(pLevel, pTerm); |
| 555 | return iReg; |
| 556 | } |
| 557 | |
| 558 | /* |
| 559 | ** Generate code that will evaluate all == and IN constraints for an |
| 560 | ** index scan. |
| 561 | ** |
| 562 | ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). |
| 563 | ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 |
| 564 | ** The index has as many as three equality constraints, but in this |
| 565 | ** example, the third "c" value is an inequality. So only two |
| 566 | ** constraints are coded. This routine will generate code to evaluate |
| 567 | ** a==5 and b IN (1,2,3). The current values for a and b will be stored |
| 568 | ** in consecutive registers and the index of the first register is returned. |
| 569 | ** |
| 570 | ** In the example above nEq==2. But this subroutine works for any value |
| 571 | ** of nEq including 0. If nEq==0, this routine is nearly a no-op. |
| 572 | ** The only thing it does is allocate the pLevel->iMem memory cell and |
| 573 | ** compute the affinity string. |
| 574 | ** |
| 575 | ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints |
| 576 | ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is |
| 577 | ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that |
| 578 | ** occurs after the nEq quality constraints. |
| 579 | ** |
| 580 | ** This routine allocates a range of nEq+nExtraReg memory cells and returns |
| 581 | ** the index of the first memory cell in that range. The code that |
| 582 | ** calls this routine will use that memory range to store keys for |
| 583 | ** start and termination conditions of the loop. |
| 584 | ** key value of the loop. If one or more IN operators appear, then |
| 585 | ** this routine allocates an additional nEq memory cells for internal |
| 586 | ** use. |
| 587 | ** |
| 588 | ** Before returning, *pzAff is set to point to a buffer containing a |
| 589 | ** copy of the column affinity string of the index allocated using |
| 590 | ** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
| 591 | ** with equality constraints that use BLOB or NONE affinity are set to |
| 592 | ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following: |
| 593 | ** |
| 594 | ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); |
| 595 | ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; |
| 596 | ** |
| 597 | ** In the example above, the index on t1(a) has TEXT affinity. But since |
| 598 | ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity, |
| 599 | ** no conversion should be attempted before using a t2.b value as part of |
| 600 | ** a key to search the index. Hence the first byte in the returned affinity |
| 601 | ** string in this example would be set to SQLITE_AFF_BLOB. |
| 602 | */ |
| 603 | static int codeAllEqualityTerms( |
| 604 | Parse *pParse, /* Parsing context */ |
| 605 | WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ |
| 606 | int bRev, /* Reverse the order of IN operators */ |
| 607 | int nExtraReg, /* Number of extra registers to allocate */ |
| 608 | char **pzAff /* OUT: Set to point to affinity string */ |
| 609 | ){ |
| 610 | u16 nEq; /* The number of == or IN constraints to code */ |
| 611 | u16 nSkip; /* Number of left-most columns to skip */ |
| 612 | Vdbe *v = pParse->pVdbe; /* The vm under construction */ |
| 613 | Index *pIdx; /* The index being used for this loop */ |
| 614 | WhereTerm *pTerm; /* A single constraint term */ |
| 615 | WhereLoop *pLoop; /* The WhereLoop object */ |
| 616 | int j; /* Loop counter */ |
| 617 | int regBase; /* Base register */ |
| 618 | int nReg; /* Number of registers to allocate */ |
| 619 | char *zAff; /* Affinity string to return */ |
| 620 | |
| 621 | /* This module is only called on query plans that use an index. */ |
| 622 | pLoop = pLevel->pWLoop; |
| 623 | assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); |
| 624 | nEq = pLoop->u.btree.nEq; |
| 625 | nSkip = pLoop->nSkip; |
| 626 | pIdx = pLoop->u.btree.pIndex; |
| 627 | assert( pIdx!=0 ); |
| 628 | |
| 629 | /* Figure out how many memory cells we will need then allocate them. |
| 630 | */ |
| 631 | regBase = pParse->nMem + 1; |
| 632 | nReg = pLoop->u.btree.nEq + nExtraReg; |
| 633 | pParse->nMem += nReg; |
| 634 | |
drh | e910769 | 2015-08-25 19:20:04 +0000 | [diff] [blame] | 635 | zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx)); |
drh | 4df86af | 2016-02-04 11:48:00 +0000 | [diff] [blame] | 636 | assert( zAff!=0 || pParse->db->mallocFailed ); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 637 | |
| 638 | if( nSkip ){ |
| 639 | int iIdxCur = pLevel->iIdxCur; |
| 640 | sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); |
| 641 | VdbeCoverageIf(v, bRev==0); |
| 642 | VdbeCoverageIf(v, bRev!=0); |
| 643 | VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); |
| 644 | j = sqlite3VdbeAddOp0(v, OP_Goto); |
| 645 | pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), |
| 646 | iIdxCur, 0, regBase, nSkip); |
| 647 | VdbeCoverageIf(v, bRev==0); |
| 648 | VdbeCoverageIf(v, bRev!=0); |
| 649 | sqlite3VdbeJumpHere(v, j); |
| 650 | for(j=0; j<nSkip; j++){ |
| 651 | sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); |
drh | 4b92f98 | 2015-09-29 17:20:14 +0000 | [diff] [blame] | 652 | testcase( pIdx->aiColumn[j]==XN_EXPR ); |
drh | e63e8a6 | 2015-09-18 18:09:28 +0000 | [diff] [blame] | 653 | VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 654 | } |
| 655 | } |
| 656 | |
| 657 | /* Evaluate the equality constraints |
| 658 | */ |
| 659 | assert( zAff==0 || (int)strlen(zAff)>=nEq ); |
| 660 | for(j=nSkip; j<nEq; j++){ |
| 661 | int r1; |
| 662 | pTerm = pLoop->aLTerm[j]; |
| 663 | assert( pTerm!=0 ); |
| 664 | /* The following testcase is true for indices with redundant columns. |
| 665 | ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ |
| 666 | testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); |
| 667 | testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 668 | r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); |
| 669 | if( r1!=regBase+j ){ |
| 670 | if( nReg==1 ){ |
| 671 | sqlite3ReleaseTempReg(pParse, regBase); |
| 672 | regBase = r1; |
| 673 | }else{ |
| 674 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); |
| 675 | } |
| 676 | } |
drh | c097e12 | 2016-09-07 13:30:40 +0000 | [diff] [blame] | 677 | if( pTerm->eOperator & WO_IN ){ |
| 678 | if( pTerm->pExpr->flags & EP_xIsSelect ){ |
| 679 | /* No affinity ever needs to be (or should be) applied to a value |
| 680 | ** from the RHS of an "? IN (SELECT ...)" expression. The |
| 681 | ** sqlite3FindInIndex() routine has already ensured that the |
| 682 | ** affinity of the comparison has been applied to the value. */ |
| 683 | if( zAff ) zAff[j] = SQLITE_AFF_BLOB; |
| 684 | } |
| 685 | }else if( (pTerm->eOperator & WO_ISNULL)==0 ){ |
| 686 | Expr *pRight = pTerm->pExpr->pRight; |
| 687 | if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){ |
| 688 | sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); |
| 689 | VdbeCoverage(v); |
| 690 | } |
| 691 | if( zAff ){ |
| 692 | if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){ |
| 693 | zAff[j] = SQLITE_AFF_BLOB; |
dan | 2718960 | 2016-09-03 15:31:20 +0000 | [diff] [blame] | 694 | } |
drh | c097e12 | 2016-09-07 13:30:40 +0000 | [diff] [blame] | 695 | if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ |
| 696 | zAff[j] = SQLITE_AFF_BLOB; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 697 | } |
| 698 | } |
| 699 | } |
| 700 | } |
| 701 | *pzAff = zAff; |
| 702 | return regBase; |
| 703 | } |
| 704 | |
drh | 41d2e66 | 2015-12-01 21:23:07 +0000 | [diff] [blame] | 705 | #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 706 | /* |
drh | 44aebff | 2016-05-02 10:25:42 +0000 | [diff] [blame] | 707 | ** If the most recently coded instruction is a constant range constraint |
| 708 | ** (a string literal) that originated from the LIKE optimization, then |
| 709 | ** set P3 and P5 on the OP_String opcode so that the string will be cast |
| 710 | ** to a BLOB at appropriate times. |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 711 | ** |
| 712 | ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range |
| 713 | ** expression: "x>='ABC' AND x<'abd'". But this requires that the range |
| 714 | ** scan loop run twice, once for strings and a second time for BLOBs. |
| 715 | ** The OP_String opcodes on the second pass convert the upper and lower |
mistachkin | e234cfd | 2016-07-10 19:35:10 +0000 | [diff] [blame] | 716 | ** bound string constants to blobs. This routine makes the necessary changes |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 717 | ** to the OP_String opcodes for that to happen. |
drh | 41d2e66 | 2015-12-01 21:23:07 +0000 | [diff] [blame] | 718 | ** |
| 719 | ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then |
| 720 | ** only the one pass through the string space is required, so this routine |
| 721 | ** becomes a no-op. |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 722 | */ |
| 723 | static void whereLikeOptimizationStringFixup( |
| 724 | Vdbe *v, /* prepared statement under construction */ |
| 725 | WhereLevel *pLevel, /* The loop that contains the LIKE operator */ |
| 726 | WhereTerm *pTerm /* The upper or lower bound just coded */ |
| 727 | ){ |
| 728 | if( pTerm->wtFlags & TERM_LIKEOPT ){ |
| 729 | VdbeOp *pOp; |
| 730 | assert( pLevel->iLikeRepCntr>0 ); |
| 731 | pOp = sqlite3VdbeGetOp(v, -1); |
| 732 | assert( pOp!=0 ); |
| 733 | assert( pOp->opcode==OP_String8 |
| 734 | || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); |
drh | 44aebff | 2016-05-02 10:25:42 +0000 | [diff] [blame] | 735 | pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */ |
| 736 | pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 737 | } |
| 738 | } |
drh | 41d2e66 | 2015-12-01 21:23:07 +0000 | [diff] [blame] | 739 | #else |
| 740 | # define whereLikeOptimizationStringFixup(A,B,C) |
| 741 | #endif |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 742 | |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 743 | #ifdef SQLITE_ENABLE_CURSOR_HINTS |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 744 | /* |
| 745 | ** Information is passed from codeCursorHint() down to individual nodes of |
| 746 | ** the expression tree (by sqlite3WalkExpr()) using an instance of this |
| 747 | ** structure. |
| 748 | */ |
| 749 | struct CCurHint { |
| 750 | int iTabCur; /* Cursor for the main table */ |
| 751 | int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */ |
| 752 | Index *pIdx; /* The index used to access the table */ |
| 753 | }; |
| 754 | |
| 755 | /* |
| 756 | ** This function is called for every node of an expression that is a candidate |
| 757 | ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference |
| 758 | ** the table CCurHint.iTabCur, verify that the same column can be |
| 759 | ** accessed through the index. If it cannot, then set pWalker->eCode to 1. |
| 760 | */ |
| 761 | static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){ |
| 762 | struct CCurHint *pHint = pWalker->u.pCCurHint; |
| 763 | assert( pHint->pIdx!=0 ); |
| 764 | if( pExpr->op==TK_COLUMN |
| 765 | && pExpr->iTable==pHint->iTabCur |
| 766 | && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0 |
| 767 | ){ |
| 768 | pWalker->eCode = 1; |
| 769 | } |
| 770 | return WRC_Continue; |
| 771 | } |
| 772 | |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 773 | /* |
| 774 | ** Test whether or not expression pExpr, which was part of a WHERE clause, |
| 775 | ** should be included in the cursor-hint for a table that is on the rhs |
| 776 | ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the |
| 777 | ** expression is not suitable. |
| 778 | ** |
| 779 | ** An expression is unsuitable if it might evaluate to non NULL even if |
| 780 | ** a TK_COLUMN node that does affect the value of the expression is set |
| 781 | ** to NULL. For example: |
| 782 | ** |
| 783 | ** col IS NULL |
| 784 | ** col IS NOT NULL |
| 785 | ** coalesce(col, 1) |
| 786 | ** CASE WHEN col THEN 0 ELSE 1 END |
| 787 | */ |
| 788 | static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){ |
dan | 2b693d6 | 2016-06-20 17:22:06 +0000 | [diff] [blame] | 789 | if( pExpr->op==TK_IS |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 790 | || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT |
| 791 | || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE |
| 792 | ){ |
| 793 | pWalker->eCode = 1; |
dan | 2b693d6 | 2016-06-20 17:22:06 +0000 | [diff] [blame] | 794 | }else if( pExpr->op==TK_FUNCTION ){ |
| 795 | int d1; |
| 796 | char d2[3]; |
| 797 | if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){ |
| 798 | pWalker->eCode = 1; |
| 799 | } |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 800 | } |
dan | 2b693d6 | 2016-06-20 17:22:06 +0000 | [diff] [blame] | 801 | |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 802 | return WRC_Continue; |
| 803 | } |
| 804 | |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 805 | |
| 806 | /* |
| 807 | ** This function is called on every node of an expression tree used as an |
| 808 | ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 809 | ** that accesses any table other than the one identified by |
| 810 | ** CCurHint.iTabCur, then do the following: |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 811 | ** |
| 812 | ** 1) allocate a register and code an OP_Column instruction to read |
| 813 | ** the specified column into the new register, and |
| 814 | ** |
| 815 | ** 2) transform the expression node to a TK_REGISTER node that reads |
| 816 | ** from the newly populated register. |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 817 | ** |
| 818 | ** Also, if the node is a TK_COLUMN that does access the table idenified |
| 819 | ** by pCCurHint.iTabCur, and an index is being used (which we will |
| 820 | ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into |
| 821 | ** an access of the index rather than the original table. |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 822 | */ |
| 823 | static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){ |
| 824 | int rc = WRC_Continue; |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 825 | struct CCurHint *pHint = pWalker->u.pCCurHint; |
| 826 | if( pExpr->op==TK_COLUMN ){ |
| 827 | if( pExpr->iTable!=pHint->iTabCur ){ |
| 828 | Vdbe *v = pWalker->pParse->pVdbe; |
| 829 | int reg = ++pWalker->pParse->nMem; /* Register for column value */ |
| 830 | sqlite3ExprCodeGetColumnOfTable( |
| 831 | v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg |
| 832 | ); |
| 833 | pExpr->op = TK_REGISTER; |
| 834 | pExpr->iTable = reg; |
| 835 | }else if( pHint->pIdx!=0 ){ |
| 836 | pExpr->iTable = pHint->iIdxCur; |
| 837 | pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn); |
| 838 | assert( pExpr->iColumn>=0 ); |
| 839 | } |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 840 | }else if( pExpr->op==TK_AGG_FUNCTION ){ |
| 841 | /* An aggregate function in the WHERE clause of a query means this must |
| 842 | ** be a correlated sub-query, and expression pExpr is an aggregate from |
| 843 | ** the parent context. Do not walk the function arguments in this case. |
| 844 | ** |
| 845 | ** todo: It should be possible to replace this node with a TK_REGISTER |
| 846 | ** expression, as the result of the expression must be stored in a |
| 847 | ** register at this point. The same holds for TK_AGG_COLUMN nodes. */ |
| 848 | rc = WRC_Prune; |
| 849 | } |
| 850 | return rc; |
| 851 | } |
| 852 | |
| 853 | /* |
| 854 | ** Insert an OP_CursorHint instruction if it is appropriate to do so. |
| 855 | */ |
| 856 | static void codeCursorHint( |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 857 | struct SrcList_item *pTabItem, /* FROM clause item */ |
drh | b413a54 | 2015-08-17 17:19:28 +0000 | [diff] [blame] | 858 | WhereInfo *pWInfo, /* The where clause */ |
| 859 | WhereLevel *pLevel, /* Which loop to provide hints for */ |
| 860 | WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */ |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 861 | ){ |
| 862 | Parse *pParse = pWInfo->pParse; |
| 863 | sqlite3 *db = pParse->db; |
| 864 | Vdbe *v = pParse->pVdbe; |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 865 | Expr *pExpr = 0; |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 866 | WhereLoop *pLoop = pLevel->pWLoop; |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 867 | int iCur; |
| 868 | WhereClause *pWC; |
| 869 | WhereTerm *pTerm; |
drh | b413a54 | 2015-08-17 17:19:28 +0000 | [diff] [blame] | 870 | int i, j; |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 871 | struct CCurHint sHint; |
| 872 | Walker sWalker; |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 873 | |
| 874 | if( OptimizationDisabled(db, SQLITE_CursorHints) ) return; |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 875 | iCur = pLevel->iTabCur; |
| 876 | assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor ); |
| 877 | sHint.iTabCur = iCur; |
| 878 | sHint.iIdxCur = pLevel->iIdxCur; |
| 879 | sHint.pIdx = pLoop->u.btree.pIndex; |
| 880 | memset(&sWalker, 0, sizeof(sWalker)); |
| 881 | sWalker.pParse = pParse; |
| 882 | sWalker.u.pCCurHint = &sHint; |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 883 | pWC = &pWInfo->sWC; |
| 884 | for(i=0; i<pWC->nTerm; i++){ |
| 885 | pTerm = &pWC->a[i]; |
| 886 | if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 887 | if( pTerm->prereqAll & pLevel->notReady ) continue; |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 888 | |
| 889 | /* Any terms specified as part of the ON(...) clause for any LEFT |
| 890 | ** JOIN for which the current table is not the rhs are omitted |
| 891 | ** from the cursor-hint. |
| 892 | ** |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 893 | ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms |
| 894 | ** that were specified as part of the WHERE clause must be excluded. |
| 895 | ** This is to address the following: |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 896 | ** |
| 897 | ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL; |
| 898 | ** |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 899 | ** Say there is a single row in t2 that matches (t1.a=t2.b), but its |
| 900 | ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is |
| 901 | ** pushed down to the cursor, this row is filtered out, causing |
| 902 | ** SQLite to synthesize a row of NULL values. Which does match the |
| 903 | ** WHERE clause, and so the query returns a row. Which is incorrect. |
| 904 | ** |
| 905 | ** For the same reason, WHERE terms such as: |
| 906 | ** |
| 907 | ** WHERE 1 = (t2.c IS NULL) |
| 908 | ** |
| 909 | ** are also excluded. See codeCursorHintIsOrFunction() for details. |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 910 | */ |
| 911 | if( pTabItem->fg.jointype & JT_LEFT ){ |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 912 | Expr *pExpr = pTerm->pExpr; |
| 913 | if( !ExprHasProperty(pExpr, EP_FromJoin) |
| 914 | || pExpr->iRightJoinTable!=pTabItem->iCursor |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 915 | ){ |
dan | e6912fd | 2016-06-17 19:27:13 +0000 | [diff] [blame] | 916 | sWalker.eCode = 0; |
| 917 | sWalker.xExprCallback = codeCursorHintIsOrFunction; |
| 918 | sqlite3WalkExpr(&sWalker, pTerm->pExpr); |
| 919 | if( sWalker.eCode ) continue; |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 920 | } |
| 921 | }else{ |
| 922 | if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue; |
| 923 | } |
drh | b413a54 | 2015-08-17 17:19:28 +0000 | [diff] [blame] | 924 | |
| 925 | /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize |
drh | bcf40a7 | 2015-08-18 15:58:05 +0000 | [diff] [blame] | 926 | ** the cursor. These terms are not needed as hints for a pure range |
| 927 | ** scan (that has no == terms) so omit them. */ |
| 928 | if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){ |
| 929 | for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){} |
| 930 | if( j<pLoop->nLTerm ) continue; |
drh | b413a54 | 2015-08-17 17:19:28 +0000 | [diff] [blame] | 931 | } |
| 932 | |
| 933 | /* No subqueries or non-deterministic functions allowed */ |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 934 | if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue; |
drh | b413a54 | 2015-08-17 17:19:28 +0000 | [diff] [blame] | 935 | |
| 936 | /* For an index scan, make sure referenced columns are actually in |
| 937 | ** the index. */ |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 938 | if( sHint.pIdx!=0 ){ |
| 939 | sWalker.eCode = 0; |
| 940 | sWalker.xExprCallback = codeCursorHintCheckExpr; |
| 941 | sqlite3WalkExpr(&sWalker, pTerm->pExpr); |
| 942 | if( sWalker.eCode ) continue; |
| 943 | } |
drh | b413a54 | 2015-08-17 17:19:28 +0000 | [diff] [blame] | 944 | |
| 945 | /* If we survive all prior tests, that means this term is worth hinting */ |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 946 | pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0)); |
| 947 | } |
| 948 | if( pExpr!=0 ){ |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 949 | sWalker.xExprCallback = codeCursorHintFixExpr; |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 950 | sqlite3WalkExpr(&sWalker, pExpr); |
drh | 2f2b027 | 2015-08-14 18:50:04 +0000 | [diff] [blame] | 951 | sqlite3VdbeAddOp4(v, OP_CursorHint, |
| 952 | (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0, |
| 953 | (const char*)pExpr, P4_EXPR); |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 954 | } |
| 955 | } |
| 956 | #else |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 957 | # define codeCursorHint(A,B,C,D) /* No-op */ |
drh | bec2476 | 2015-08-13 20:07:13 +0000 | [diff] [blame] | 958 | #endif /* SQLITE_ENABLE_CURSOR_HINTS */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 959 | |
| 960 | /* |
dan | de892d9 | 2016-01-29 19:29:45 +0000 | [diff] [blame] | 961 | ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains |
| 962 | ** a rowid value just read from cursor iIdxCur, open on index pIdx. This |
| 963 | ** function generates code to do a deferred seek of cursor iCur to the |
| 964 | ** rowid stored in register iRowid. |
| 965 | ** |
| 966 | ** Normally, this is just: |
| 967 | ** |
| 968 | ** OP_Seek $iCur $iRowid |
| 969 | ** |
| 970 | ** However, if the scan currently being coded is a branch of an OR-loop and |
| 971 | ** the statement currently being coded is a SELECT, then P3 of the OP_Seek |
| 972 | ** is set to iIdxCur and P4 is set to point to an array of integers |
| 973 | ** containing one entry for each column of the table cursor iCur is open |
| 974 | ** on. For each table column, if the column is the i'th column of the |
| 975 | ** index, then the corresponding array entry is set to (i+1). If the column |
| 976 | ** does not appear in the index at all, the array entry is set to 0. |
| 977 | */ |
| 978 | static void codeDeferredSeek( |
| 979 | WhereInfo *pWInfo, /* Where clause context */ |
| 980 | Index *pIdx, /* Index scan is using */ |
| 981 | int iCur, /* Cursor for IPK b-tree */ |
dan | de892d9 | 2016-01-29 19:29:45 +0000 | [diff] [blame] | 982 | int iIdxCur /* Index cursor */ |
| 983 | ){ |
| 984 | Parse *pParse = pWInfo->pParse; /* Parse context */ |
| 985 | Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ |
| 986 | |
| 987 | assert( iIdxCur>0 ); |
| 988 | assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); |
| 989 | |
drh | 784c1b9 | 2016-01-30 16:59:56 +0000 | [diff] [blame] | 990 | sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur); |
drh | ce943bc | 2016-05-19 18:56:33 +0000 | [diff] [blame] | 991 | if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) |
dan | cddb6ba | 2016-02-01 13:58:56 +0000 | [diff] [blame] | 992 | && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) |
dan | de892d9 | 2016-01-29 19:29:45 +0000 | [diff] [blame] | 993 | ){ |
| 994 | int i; |
| 995 | Table *pTab = pIdx->pTable; |
drh | b170202 | 2016-01-30 00:45:18 +0000 | [diff] [blame] | 996 | int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); |
dan | de892d9 | 2016-01-29 19:29:45 +0000 | [diff] [blame] | 997 | if( ai ){ |
drh | b170202 | 2016-01-30 00:45:18 +0000 | [diff] [blame] | 998 | ai[0] = pTab->nCol; |
dan | de892d9 | 2016-01-29 19:29:45 +0000 | [diff] [blame] | 999 | for(i=0; i<pIdx->nColumn-1; i++){ |
| 1000 | assert( pIdx->aiColumn[i]<pTab->nCol ); |
drh | b170202 | 2016-01-30 00:45:18 +0000 | [diff] [blame] | 1001 | if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1; |
dan | de892d9 | 2016-01-29 19:29:45 +0000 | [diff] [blame] | 1002 | } |
| 1003 | sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY); |
| 1004 | } |
| 1005 | } |
| 1006 | } |
| 1007 | |
dan | 553168c | 2016-08-01 20:14:31 +0000 | [diff] [blame] | 1008 | /* |
| 1009 | ** If the expression passed as the second argument is a vector, generate |
| 1010 | ** code to write the first nReg elements of the vector into an array |
| 1011 | ** of registers starting with iReg. |
| 1012 | ** |
| 1013 | ** If the expression is not a vector, then nReg must be passed 1. In |
| 1014 | ** this case, generate code to evaluate the expression and leave the |
| 1015 | ** result in register iReg. |
| 1016 | */ |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1017 | static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){ |
| 1018 | assert( nReg>0 ); |
dan | 625015e | 2016-07-30 16:39:28 +0000 | [diff] [blame] | 1019 | if( sqlite3ExprIsVector(p) ){ |
dan | f9b2e05 | 2016-08-02 17:45:00 +0000 | [diff] [blame] | 1020 | #ifndef SQLITE_OMIT_SUBQUERY |
| 1021 | if( (p->flags & EP_xIsSelect) ){ |
| 1022 | Vdbe *v = pParse->pVdbe; |
| 1023 | int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0); |
| 1024 | sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1); |
| 1025 | }else |
| 1026 | #endif |
| 1027 | { |
| 1028 | int i; |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1029 | ExprList *pList = p->x.pList; |
| 1030 | assert( nReg<=pList->nExpr ); |
| 1031 | for(i=0; i<nReg; i++){ |
| 1032 | sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i); |
| 1033 | } |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1034 | } |
| 1035 | }else{ |
| 1036 | assert( nReg==1 ); |
| 1037 | sqlite3ExprCode(pParse, p, iReg); |
| 1038 | } |
| 1039 | } |
| 1040 | |
dan | de892d9 | 2016-01-29 19:29:45 +0000 | [diff] [blame] | 1041 | /* |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1042 | ** Generate code for the start of the iLevel-th loop in the WHERE clause |
| 1043 | ** implementation described by pWInfo. |
| 1044 | */ |
| 1045 | Bitmask sqlite3WhereCodeOneLoopStart( |
| 1046 | WhereInfo *pWInfo, /* Complete information about the WHERE clause */ |
| 1047 | int iLevel, /* Which level of pWInfo->a[] should be coded */ |
| 1048 | Bitmask notReady /* Which tables are currently available */ |
| 1049 | ){ |
| 1050 | int j, k; /* Loop counters */ |
| 1051 | int iCur; /* The VDBE cursor for the table */ |
| 1052 | int addrNxt; /* Where to jump to continue with the next IN case */ |
| 1053 | int omitTable; /* True if we use the index only */ |
| 1054 | int bRev; /* True if we need to scan in reverse order */ |
| 1055 | WhereLevel *pLevel; /* The where level to be coded */ |
| 1056 | WhereLoop *pLoop; /* The WhereLoop object being coded */ |
| 1057 | WhereClause *pWC; /* Decomposition of the entire WHERE clause */ |
| 1058 | WhereTerm *pTerm; /* A WHERE clause term */ |
| 1059 | Parse *pParse; /* Parsing context */ |
| 1060 | sqlite3 *db; /* Database connection */ |
| 1061 | Vdbe *v; /* The prepared stmt under constructions */ |
| 1062 | struct SrcList_item *pTabItem; /* FROM clause term being coded */ |
| 1063 | int addrBrk; /* Jump here to break out of the loop */ |
| 1064 | int addrCont; /* Jump here to continue with next cycle */ |
| 1065 | int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ |
| 1066 | int iReleaseReg = 0; /* Temp register to free before returning */ |
| 1067 | |
| 1068 | pParse = pWInfo->pParse; |
| 1069 | v = pParse->pVdbe; |
| 1070 | pWC = &pWInfo->sWC; |
| 1071 | db = pParse->db; |
| 1072 | pLevel = &pWInfo->a[iLevel]; |
| 1073 | pLoop = pLevel->pWLoop; |
| 1074 | pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; |
| 1075 | iCur = pTabItem->iCursor; |
| 1076 | pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); |
| 1077 | bRev = (pWInfo->revMask>>iLevel)&1; |
| 1078 | omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 |
drh | ce943bc | 2016-05-19 18:56:33 +0000 | [diff] [blame] | 1079 | && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1080 | VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); |
| 1081 | |
| 1082 | /* Create labels for the "break" and "continue" instructions |
| 1083 | ** for the current loop. Jump to addrBrk to break out of a loop. |
| 1084 | ** Jump to cont to go immediately to the next iteration of the |
| 1085 | ** loop. |
| 1086 | ** |
| 1087 | ** When there is an IN operator, we also have a "addrNxt" label that |
| 1088 | ** means to continue with the next IN value combination. When |
| 1089 | ** there are no IN operators in the constraints, the "addrNxt" label |
| 1090 | ** is the same as "addrBrk". |
| 1091 | */ |
| 1092 | addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); |
| 1093 | addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); |
| 1094 | |
| 1095 | /* If this is the right table of a LEFT OUTER JOIN, allocate and |
| 1096 | ** initialize a memory cell that records if this table matches any |
| 1097 | ** row of the left table of the join. |
| 1098 | */ |
drh | 8a48b9c | 2015-08-19 15:20:00 +0000 | [diff] [blame] | 1099 | if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1100 | pLevel->iLeftJoin = ++pParse->nMem; |
| 1101 | sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); |
| 1102 | VdbeComment((v, "init LEFT JOIN no-match flag")); |
| 1103 | } |
| 1104 | |
| 1105 | /* Special case of a FROM clause subquery implemented as a co-routine */ |
drh | 8a48b9c | 2015-08-19 15:20:00 +0000 | [diff] [blame] | 1106 | if( pTabItem->fg.viaCoroutine ){ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1107 | int regYield = pTabItem->regReturn; |
| 1108 | sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); |
| 1109 | pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); |
| 1110 | VdbeCoverage(v); |
| 1111 | VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); |
| 1112 | pLevel->op = OP_Goto; |
| 1113 | }else |
| 1114 | |
| 1115 | #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1116 | if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ |
| 1117 | /* Case 1: The table is a virtual-table. Use the VFilter and VNext |
| 1118 | ** to access the data. |
| 1119 | */ |
| 1120 | int iReg; /* P3 Value for OP_VFilter */ |
| 1121 | int addrNotFound; |
| 1122 | int nConstraint = pLoop->nLTerm; |
drh | dbc4916 | 2016-03-02 03:28:07 +0000 | [diff] [blame] | 1123 | int iIn; /* Counter for IN constraints */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1124 | |
| 1125 | sqlite3ExprCachePush(pParse); |
| 1126 | iReg = sqlite3GetTempRange(pParse, nConstraint+2); |
| 1127 | addrNotFound = pLevel->addrBrk; |
| 1128 | for(j=0; j<nConstraint; j++){ |
| 1129 | int iTarget = iReg+j+2; |
| 1130 | pTerm = pLoop->aLTerm[j]; |
drh | 599d576 | 2016-03-08 01:11:51 +0000 | [diff] [blame] | 1131 | if( NEVER(pTerm==0) ) continue; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1132 | if( pTerm->eOperator & WO_IN ){ |
| 1133 | codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); |
| 1134 | addrNotFound = pLevel->addrNxt; |
| 1135 | }else{ |
dan | 6256c1c | 2016-08-08 20:15:41 +0000 | [diff] [blame] | 1136 | Expr *pRight = pTerm->pExpr->pRight; |
drh | fc7f27b | 2016-08-20 00:07:01 +0000 | [diff] [blame] | 1137 | codeExprOrVector(pParse, pRight, iTarget, 1); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1138 | } |
| 1139 | } |
| 1140 | sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); |
| 1141 | sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); |
| 1142 | sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, |
| 1143 | pLoop->u.vtab.idxStr, |
| 1144 | pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); |
| 1145 | VdbeCoverage(v); |
| 1146 | pLoop->u.vtab.needFree = 0; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1147 | pLevel->p1 = iCur; |
dan | 354474a | 2015-09-29 10:11:26 +0000 | [diff] [blame] | 1148 | pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1149 | pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
drh | dbc4916 | 2016-03-02 03:28:07 +0000 | [diff] [blame] | 1150 | iIn = pLevel->u.in.nIn; |
| 1151 | for(j=nConstraint-1; j>=0; j--){ |
| 1152 | pTerm = pLoop->aLTerm[j]; |
| 1153 | if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){ |
| 1154 | disableTerm(pLevel, pTerm); |
| 1155 | }else if( (pTerm->eOperator & WO_IN)!=0 ){ |
| 1156 | Expr *pCompare; /* The comparison operator */ |
| 1157 | Expr *pRight; /* RHS of the comparison */ |
| 1158 | VdbeOp *pOp; /* Opcode to access the value of the IN constraint */ |
| 1159 | |
| 1160 | /* Reload the constraint value into reg[iReg+j+2]. The same value |
| 1161 | ** was loaded into the same register prior to the OP_VFilter, but |
| 1162 | ** the xFilter implementation might have changed the datatype or |
| 1163 | ** encoding of the value in the register, so it *must* be reloaded. */ |
| 1164 | assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed ); |
drh | fb826b8 | 2016-03-08 00:39:58 +0000 | [diff] [blame] | 1165 | if( !db->mallocFailed ){ |
drh | dbc4916 | 2016-03-02 03:28:07 +0000 | [diff] [blame] | 1166 | assert( iIn>0 ); |
| 1167 | pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop); |
| 1168 | assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid ); |
| 1169 | assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 ); |
| 1170 | assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 ); |
| 1171 | testcase( pOp->opcode==OP_Rowid ); |
| 1172 | sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3); |
| 1173 | } |
| 1174 | |
| 1175 | /* Generate code that will continue to the next row if |
| 1176 | ** the IN constraint is not satisfied */ |
| 1177 | pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0, 0); |
| 1178 | assert( pCompare!=0 || db->mallocFailed ); |
| 1179 | if( pCompare ){ |
| 1180 | pCompare->pLeft = pTerm->pExpr->pLeft; |
| 1181 | pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0); |
drh | 237b2b7 | 2016-03-07 19:08:27 +0000 | [diff] [blame] | 1182 | if( pRight ){ |
| 1183 | pRight->iTable = iReg+j+2; |
| 1184 | sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0); |
| 1185 | } |
drh | dbc4916 | 2016-03-02 03:28:07 +0000 | [diff] [blame] | 1186 | pCompare->pLeft = 0; |
| 1187 | sqlite3ExprDelete(db, pCompare); |
| 1188 | } |
| 1189 | } |
| 1190 | } |
drh | ba26faa | 2016-04-09 18:04:28 +0000 | [diff] [blame] | 1191 | /* These registers need to be preserved in case there is an IN operator |
| 1192 | ** loop. So we could deallocate the registers here (and potentially |
| 1193 | ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems |
| 1194 | ** simpler and safer to simply not reuse the registers. |
| 1195 | ** |
| 1196 | ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); |
| 1197 | */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1198 | sqlite3ExprCachePop(pParse); |
| 1199 | }else |
| 1200 | #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
| 1201 | |
| 1202 | if( (pLoop->wsFlags & WHERE_IPK)!=0 |
| 1203 | && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 |
| 1204 | ){ |
| 1205 | /* Case 2: We can directly reference a single row using an |
| 1206 | ** equality comparison against the ROWID field. Or |
| 1207 | ** we reference multiple rows using a "rowid IN (...)" |
| 1208 | ** construct. |
| 1209 | */ |
| 1210 | assert( pLoop->u.btree.nEq==1 ); |
| 1211 | pTerm = pLoop->aLTerm[0]; |
| 1212 | assert( pTerm!=0 ); |
| 1213 | assert( pTerm->pExpr!=0 ); |
| 1214 | assert( omitTable==0 ); |
| 1215 | testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 1216 | iReleaseReg = ++pParse->nMem; |
| 1217 | iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); |
| 1218 | if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); |
| 1219 | addrNxt = pLevel->addrNxt; |
drh | eeb9565 | 2016-05-26 20:56:38 +0000 | [diff] [blame] | 1220 | sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1221 | VdbeCoverage(v); |
| 1222 | sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); |
| 1223 | sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 1224 | VdbeComment((v, "pk")); |
| 1225 | pLevel->op = OP_Noop; |
| 1226 | }else if( (pLoop->wsFlags & WHERE_IPK)!=0 |
| 1227 | && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 |
| 1228 | ){ |
| 1229 | /* Case 3: We have an inequality comparison against the ROWID field. |
| 1230 | */ |
| 1231 | int testOp = OP_Noop; |
| 1232 | int start; |
| 1233 | int memEndValue = 0; |
| 1234 | WhereTerm *pStart, *pEnd; |
| 1235 | |
| 1236 | assert( omitTable==0 ); |
| 1237 | j = 0; |
| 1238 | pStart = pEnd = 0; |
| 1239 | if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; |
| 1240 | if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; |
| 1241 | assert( pStart!=0 || pEnd!=0 ); |
| 1242 | if( bRev ){ |
| 1243 | pTerm = pStart; |
| 1244 | pStart = pEnd; |
| 1245 | pEnd = pTerm; |
| 1246 | } |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 1247 | codeCursorHint(pTabItem, pWInfo, pLevel, pEnd); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1248 | if( pStart ){ |
| 1249 | Expr *pX; /* The expression that defines the start bound */ |
| 1250 | int r1, rTemp; /* Registers for holding the start boundary */ |
dan | 19ff12d | 2016-07-29 20:58:19 +0000 | [diff] [blame] | 1251 | int op; /* Cursor seek operation */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1252 | |
| 1253 | /* The following constant maps TK_xx codes into corresponding |
| 1254 | ** seek opcodes. It depends on a particular ordering of TK_xx |
| 1255 | */ |
| 1256 | const u8 aMoveOp[] = { |
| 1257 | /* TK_GT */ OP_SeekGT, |
| 1258 | /* TK_LE */ OP_SeekLE, |
| 1259 | /* TK_LT */ OP_SeekLT, |
| 1260 | /* TK_GE */ OP_SeekGE |
| 1261 | }; |
| 1262 | assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ |
| 1263 | assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ |
| 1264 | assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ |
| 1265 | |
| 1266 | assert( (pStart->wtFlags & TERM_VNULL)==0 ); |
| 1267 | testcase( pStart->wtFlags & TERM_VIRTUAL ); |
| 1268 | pX = pStart->pExpr; |
| 1269 | assert( pX!=0 ); |
| 1270 | testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ |
dan | 625015e | 2016-07-30 16:39:28 +0000 | [diff] [blame] | 1271 | if( sqlite3ExprIsVector(pX->pRight) ){ |
dan | 19ff12d | 2016-07-29 20:58:19 +0000 | [diff] [blame] | 1272 | r1 = rTemp = sqlite3GetTempReg(pParse); |
| 1273 | codeExprOrVector(pParse, pX->pRight, r1, 1); |
| 1274 | op = aMoveOp[(pX->op - TK_GT) | 0x0001]; |
| 1275 | }else{ |
| 1276 | r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); |
| 1277 | disableTerm(pLevel, pStart); |
| 1278 | op = aMoveOp[(pX->op - TK_GT)]; |
| 1279 | } |
| 1280 | sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1281 | VdbeComment((v, "pk")); |
| 1282 | VdbeCoverageIf(v, pX->op==TK_GT); |
| 1283 | VdbeCoverageIf(v, pX->op==TK_LE); |
| 1284 | VdbeCoverageIf(v, pX->op==TK_LT); |
| 1285 | VdbeCoverageIf(v, pX->op==TK_GE); |
| 1286 | sqlite3ExprCacheAffinityChange(pParse, r1, 1); |
| 1287 | sqlite3ReleaseTempReg(pParse, rTemp); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1288 | }else{ |
| 1289 | sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); |
| 1290 | VdbeCoverageIf(v, bRev==0); |
| 1291 | VdbeCoverageIf(v, bRev!=0); |
| 1292 | } |
| 1293 | if( pEnd ){ |
| 1294 | Expr *pX; |
| 1295 | pX = pEnd->pExpr; |
| 1296 | assert( pX!=0 ); |
| 1297 | assert( (pEnd->wtFlags & TERM_VNULL)==0 ); |
| 1298 | testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ |
| 1299 | testcase( pEnd->wtFlags & TERM_VIRTUAL ); |
| 1300 | memEndValue = ++pParse->nMem; |
dan | 19ff12d | 2016-07-29 20:58:19 +0000 | [diff] [blame] | 1301 | codeExprOrVector(pParse, pX->pRight, memEndValue, 1); |
dan | 625015e | 2016-07-30 16:39:28 +0000 | [diff] [blame] | 1302 | if( 0==sqlite3ExprIsVector(pX->pRight) |
| 1303 | && (pX->op==TK_LT || pX->op==TK_GT) |
| 1304 | ){ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1305 | testOp = bRev ? OP_Le : OP_Ge; |
| 1306 | }else{ |
| 1307 | testOp = bRev ? OP_Lt : OP_Gt; |
| 1308 | } |
dan | 553168c | 2016-08-01 20:14:31 +0000 | [diff] [blame] | 1309 | if( 0==sqlite3ExprIsVector(pX->pRight) ){ |
| 1310 | disableTerm(pLevel, pEnd); |
| 1311 | } |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1312 | } |
| 1313 | start = sqlite3VdbeCurrentAddr(v); |
| 1314 | pLevel->op = bRev ? OP_Prev : OP_Next; |
| 1315 | pLevel->p1 = iCur; |
| 1316 | pLevel->p2 = start; |
| 1317 | assert( pLevel->p5==0 ); |
| 1318 | if( testOp!=OP_Noop ){ |
| 1319 | iRowidReg = ++pParse->nMem; |
| 1320 | sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); |
| 1321 | sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
| 1322 | sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); |
| 1323 | VdbeCoverageIf(v, testOp==OP_Le); |
| 1324 | VdbeCoverageIf(v, testOp==OP_Lt); |
| 1325 | VdbeCoverageIf(v, testOp==OP_Ge); |
| 1326 | VdbeCoverageIf(v, testOp==OP_Gt); |
| 1327 | sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); |
| 1328 | } |
| 1329 | }else if( pLoop->wsFlags & WHERE_INDEXED ){ |
| 1330 | /* Case 4: A scan using an index. |
| 1331 | ** |
| 1332 | ** The WHERE clause may contain zero or more equality |
| 1333 | ** terms ("==" or "IN" operators) that refer to the N |
| 1334 | ** left-most columns of the index. It may also contain |
| 1335 | ** inequality constraints (>, <, >= or <=) on the indexed |
| 1336 | ** column that immediately follows the N equalities. Only |
| 1337 | ** the right-most column can be an inequality - the rest must |
| 1338 | ** use the "==" and "IN" operators. For example, if the |
| 1339 | ** index is on (x,y,z), then the following clauses are all |
| 1340 | ** optimized: |
| 1341 | ** |
| 1342 | ** x=5 |
| 1343 | ** x=5 AND y=10 |
| 1344 | ** x=5 AND y<10 |
| 1345 | ** x=5 AND y>5 AND y<10 |
| 1346 | ** x=5 AND y=5 AND z<=10 |
| 1347 | ** |
| 1348 | ** The z<10 term of the following cannot be used, only |
| 1349 | ** the x=5 term: |
| 1350 | ** |
| 1351 | ** x=5 AND z<10 |
| 1352 | ** |
| 1353 | ** N may be zero if there are inequality constraints. |
| 1354 | ** If there are no inequality constraints, then N is at |
| 1355 | ** least one. |
| 1356 | ** |
| 1357 | ** This case is also used when there are no WHERE clause |
| 1358 | ** constraints but an index is selected anyway, in order |
| 1359 | ** to force the output order to conform to an ORDER BY. |
| 1360 | */ |
| 1361 | static const u8 aStartOp[] = { |
| 1362 | 0, |
| 1363 | 0, |
| 1364 | OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ |
| 1365 | OP_Last, /* 3: (!start_constraints && startEq && bRev) */ |
| 1366 | OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ |
| 1367 | OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ |
| 1368 | OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ |
| 1369 | OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ |
| 1370 | }; |
| 1371 | static const u8 aEndOp[] = { |
| 1372 | OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ |
| 1373 | OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ |
| 1374 | OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ |
| 1375 | OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ |
| 1376 | }; |
| 1377 | u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1378 | u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */ |
| 1379 | u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1380 | int regBase; /* Base register holding constraint values */ |
| 1381 | WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ |
| 1382 | WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ |
| 1383 | int startEq; /* True if range start uses ==, >= or <= */ |
| 1384 | int endEq; /* True if range end uses ==, >= or <= */ |
| 1385 | int start_constraints; /* Start of range is constrained */ |
| 1386 | int nConstraint; /* Number of constraint terms */ |
| 1387 | Index *pIdx; /* The index we will be using */ |
| 1388 | int iIdxCur; /* The VDBE cursor for the index */ |
| 1389 | int nExtraReg = 0; /* Number of extra registers needed */ |
| 1390 | int op; /* Instruction opcode */ |
| 1391 | char *zStartAff; /* Affinity for start of range constraint */ |
dan | b7ca217 | 2016-08-26 17:54:46 +0000 | [diff] [blame] | 1392 | char *zEndAff = 0; /* Affinity for end of range constraint */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1393 | u8 bSeekPastNull = 0; /* True to seek past initial nulls */ |
| 1394 | u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ |
| 1395 | |
| 1396 | pIdx = pLoop->u.btree.pIndex; |
| 1397 | iIdxCur = pLevel->iIdxCur; |
| 1398 | assert( nEq>=pLoop->nSkip ); |
| 1399 | |
| 1400 | /* If this loop satisfies a sort order (pOrderBy) request that |
| 1401 | ** was passed to this function to implement a "SELECT min(x) ..." |
| 1402 | ** query, then the caller will only allow the loop to run for |
| 1403 | ** a single iteration. This means that the first row returned |
| 1404 | ** should not have a NULL value stored in 'x'. If column 'x' is |
| 1405 | ** the first one after the nEq equality constraints in the index, |
| 1406 | ** this requires some special handling. |
| 1407 | */ |
| 1408 | assert( pWInfo->pOrderBy==0 |
| 1409 | || pWInfo->pOrderBy->nExpr==1 |
| 1410 | || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); |
| 1411 | if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 |
| 1412 | && pWInfo->nOBSat>0 |
| 1413 | && (pIdx->nKeyCol>nEq) |
| 1414 | ){ |
| 1415 | assert( pLoop->nSkip==0 ); |
| 1416 | bSeekPastNull = 1; |
| 1417 | nExtraReg = 1; |
| 1418 | } |
| 1419 | |
| 1420 | /* Find any inequality constraint terms for the start and end |
| 1421 | ** of the range. |
| 1422 | */ |
| 1423 | j = nEq; |
| 1424 | if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ |
| 1425 | pRangeStart = pLoop->aLTerm[j++]; |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1426 | nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1427 | /* Like optimization range constraints always occur in pairs */ |
| 1428 | assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || |
| 1429 | (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); |
| 1430 | } |
| 1431 | if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ |
| 1432 | pRangeEnd = pLoop->aLTerm[j++]; |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1433 | nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop); |
drh | 41d2e66 | 2015-12-01 21:23:07 +0000 | [diff] [blame] | 1434 | #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1435 | if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ |
| 1436 | assert( pRangeStart!=0 ); /* LIKE opt constraints */ |
| 1437 | assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ |
drh | 44aebff | 2016-05-02 10:25:42 +0000 | [diff] [blame] | 1438 | pLevel->iLikeRepCntr = (u32)++pParse->nMem; |
| 1439 | sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1440 | VdbeComment((v, "LIKE loop counter")); |
| 1441 | pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); |
drh | 44aebff | 2016-05-02 10:25:42 +0000 | [diff] [blame] | 1442 | /* iLikeRepCntr actually stores 2x the counter register number. The |
| 1443 | ** bottom bit indicates whether the search order is ASC or DESC. */ |
| 1444 | testcase( bRev ); |
| 1445 | testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); |
| 1446 | assert( (bRev & ~1)==0 ); |
| 1447 | pLevel->iLikeRepCntr <<=1; |
| 1448 | pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1449 | } |
drh | 41d2e66 | 2015-12-01 21:23:07 +0000 | [diff] [blame] | 1450 | #endif |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1451 | if( pRangeStart==0 |
| 1452 | && (j = pIdx->aiColumn[nEq])>=0 |
| 1453 | && pIdx->pTable->aCol[j].notNull==0 |
| 1454 | ){ |
| 1455 | bSeekPastNull = 1; |
| 1456 | } |
| 1457 | } |
| 1458 | assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); |
| 1459 | |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1460 | /* If we are doing a reverse order scan on an ascending index, or |
| 1461 | ** a forward order scan on a descending index, interchange the |
| 1462 | ** start and end terms (pRangeStart and pRangeEnd). |
| 1463 | */ |
| 1464 | if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) |
| 1465 | || (bRev && pIdx->nKeyCol==nEq) |
| 1466 | ){ |
| 1467 | SWAP(WhereTerm *, pRangeEnd, pRangeStart); |
| 1468 | SWAP(u8, bSeekPastNull, bStopAtNull); |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1469 | SWAP(u8, nBtm, nTop); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1470 | } |
| 1471 | |
drh | bcf40a7 | 2015-08-18 15:58:05 +0000 | [diff] [blame] | 1472 | /* Generate code to evaluate all constraint terms using == or IN |
| 1473 | ** and store the values of those terms in an array of registers |
| 1474 | ** starting at regBase. |
| 1475 | */ |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 1476 | codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd); |
drh | bcf40a7 | 2015-08-18 15:58:05 +0000 | [diff] [blame] | 1477 | regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); |
| 1478 | assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
dan | b7ca217 | 2016-08-26 17:54:46 +0000 | [diff] [blame] | 1479 | if( zStartAff && nTop ){ |
| 1480 | zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]); |
| 1481 | } |
drh | bcf40a7 | 2015-08-18 15:58:05 +0000 | [diff] [blame] | 1482 | addrNxt = pLevel->addrNxt; |
| 1483 | |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1484 | testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); |
| 1485 | testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); |
| 1486 | testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); |
| 1487 | testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); |
| 1488 | startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); |
| 1489 | endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); |
| 1490 | start_constraints = pRangeStart || nEq>0; |
| 1491 | |
| 1492 | /* Seek the index cursor to the start of the range. */ |
| 1493 | nConstraint = nEq; |
| 1494 | if( pRangeStart ){ |
| 1495 | Expr *pRight = pRangeStart->pExpr->pRight; |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1496 | codeExprOrVector(pParse, pRight, regBase+nEq, nBtm); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1497 | whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); |
| 1498 | if( (pRangeStart->wtFlags & TERM_VNULL)==0 |
| 1499 | && sqlite3ExprCanBeNull(pRight) |
| 1500 | ){ |
| 1501 | sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
| 1502 | VdbeCoverage(v); |
| 1503 | } |
| 1504 | if( zStartAff ){ |
dan | b7ca217 | 2016-08-26 17:54:46 +0000 | [diff] [blame] | 1505 | updateRangeAffinityStr(pParse, pRight, nBtm, &zStartAff[nEq]); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1506 | } |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1507 | nConstraint += nBtm; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1508 | testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); |
dan | 625015e | 2016-07-30 16:39:28 +0000 | [diff] [blame] | 1509 | if( sqlite3ExprIsVector(pRight)==0 ){ |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1510 | disableTerm(pLevel, pRangeStart); |
| 1511 | }else{ |
| 1512 | startEq = 1; |
| 1513 | } |
drh | 426f4ab | 2016-07-26 04:31:14 +0000 | [diff] [blame] | 1514 | bSeekPastNull = 0; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1515 | }else if( bSeekPastNull ){ |
| 1516 | sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
| 1517 | nConstraint++; |
| 1518 | startEq = 0; |
| 1519 | start_constraints = 1; |
| 1520 | } |
| 1521 | codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); |
drh | 0bf2ad6 | 2016-02-22 21:19:54 +0000 | [diff] [blame] | 1522 | if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){ |
| 1523 | /* The skip-scan logic inside the call to codeAllEqualityConstraints() |
| 1524 | ** above has already left the cursor sitting on the correct row, |
| 1525 | ** so no further seeking is needed */ |
| 1526 | }else{ |
drh | a6d2f8e | 2016-02-22 20:52:26 +0000 | [diff] [blame] | 1527 | op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; |
| 1528 | assert( op!=0 ); |
| 1529 | sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
| 1530 | VdbeCoverage(v); |
| 1531 | VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); |
| 1532 | VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); |
| 1533 | VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); |
| 1534 | VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); |
| 1535 | VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); |
| 1536 | VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); |
| 1537 | } |
drh | 0bf2ad6 | 2016-02-22 21:19:54 +0000 | [diff] [blame] | 1538 | |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1539 | /* Load the value for the inequality constraint at the end of the |
| 1540 | ** range (if any). |
| 1541 | */ |
| 1542 | nConstraint = nEq; |
| 1543 | if( pRangeEnd ){ |
| 1544 | Expr *pRight = pRangeEnd->pExpr->pRight; |
| 1545 | sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1546 | codeExprOrVector(pParse, pRight, regBase+nEq, nTop); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1547 | whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); |
| 1548 | if( (pRangeEnd->wtFlags & TERM_VNULL)==0 |
| 1549 | && sqlite3ExprCanBeNull(pRight) |
| 1550 | ){ |
| 1551 | sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); |
| 1552 | VdbeCoverage(v); |
| 1553 | } |
drh | 0c36fca | 2016-08-26 18:17:08 +0000 | [diff] [blame] | 1554 | if( zEndAff ){ |
| 1555 | updateRangeAffinityStr(pParse, pRight, nTop, zEndAff); |
| 1556 | codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff); |
| 1557 | }else{ |
| 1558 | assert( pParse->db->mallocFailed ); |
| 1559 | } |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1560 | nConstraint += nTop; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1561 | testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1562 | |
dan | 625015e | 2016-07-30 16:39:28 +0000 | [diff] [blame] | 1563 | if( sqlite3ExprIsVector(pRight)==0 ){ |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1564 | disableTerm(pLevel, pRangeEnd); |
| 1565 | }else{ |
| 1566 | endEq = 1; |
| 1567 | } |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1568 | }else if( bStopAtNull ){ |
| 1569 | sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); |
| 1570 | endEq = 0; |
| 1571 | nConstraint++; |
| 1572 | } |
| 1573 | sqlite3DbFree(db, zStartAff); |
dan | b7ca217 | 2016-08-26 17:54:46 +0000 | [diff] [blame] | 1574 | sqlite3DbFree(db, zEndAff); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1575 | |
| 1576 | /* Top of the loop body */ |
| 1577 | pLevel->p2 = sqlite3VdbeCurrentAddr(v); |
| 1578 | |
| 1579 | /* Check if the index cursor is past the end of the range. */ |
| 1580 | if( nConstraint ){ |
| 1581 | op = aEndOp[bRev*2 + endEq]; |
| 1582 | sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); |
| 1583 | testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); |
| 1584 | testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); |
| 1585 | testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); |
| 1586 | testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); |
| 1587 | } |
| 1588 | |
| 1589 | /* Seek the table cursor, if required */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1590 | if( omitTable ){ |
| 1591 | /* pIdx is a covering index. No need to access the main table. */ |
| 1592 | }else if( HasRowid(pIdx->pTable) ){ |
drh | f09c482 | 2016-05-06 20:23:12 +0000 | [diff] [blame] | 1593 | if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){ |
drh | 784c1b9 | 2016-01-30 16:59:56 +0000 | [diff] [blame] | 1594 | iRowidReg = ++pParse->nMem; |
| 1595 | sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); |
| 1596 | sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); |
dan | c6157e1 | 2015-09-14 09:23:47 +0000 | [diff] [blame] | 1597 | sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg); |
drh | 66336f3 | 2015-09-14 14:08:25 +0000 | [diff] [blame] | 1598 | VdbeCoverage(v); |
dan | c6157e1 | 2015-09-14 09:23:47 +0000 | [diff] [blame] | 1599 | }else{ |
drh | 784c1b9 | 2016-01-30 16:59:56 +0000 | [diff] [blame] | 1600 | codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur); |
dan | c6157e1 | 2015-09-14 09:23:47 +0000 | [diff] [blame] | 1601 | } |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1602 | }else if( iCur!=iIdxCur ){ |
| 1603 | Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
| 1604 | iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
| 1605 | for(j=0; j<pPk->nKeyCol; j++){ |
| 1606 | k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
| 1607 | sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); |
| 1608 | } |
| 1609 | sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, |
| 1610 | iRowidReg, pPk->nKeyCol); VdbeCoverage(v); |
| 1611 | } |
| 1612 | |
dan | 71c57db | 2016-07-09 20:23:55 +0000 | [diff] [blame] | 1613 | /* Record the instruction used to terminate the loop. */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1614 | if( pLoop->wsFlags & WHERE_ONEROW ){ |
| 1615 | pLevel->op = OP_Noop; |
| 1616 | }else if( bRev ){ |
| 1617 | pLevel->op = OP_Prev; |
| 1618 | }else{ |
| 1619 | pLevel->op = OP_Next; |
| 1620 | } |
| 1621 | pLevel->p1 = iIdxCur; |
| 1622 | pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; |
| 1623 | if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ |
| 1624 | pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
| 1625 | }else{ |
| 1626 | assert( pLevel->p5==0 ); |
| 1627 | } |
| 1628 | }else |
| 1629 | |
| 1630 | #ifndef SQLITE_OMIT_OR_OPTIMIZATION |
| 1631 | if( pLoop->wsFlags & WHERE_MULTI_OR ){ |
| 1632 | /* Case 5: Two or more separately indexed terms connected by OR |
| 1633 | ** |
| 1634 | ** Example: |
| 1635 | ** |
| 1636 | ** CREATE TABLE t1(a,b,c,d); |
| 1637 | ** CREATE INDEX i1 ON t1(a); |
| 1638 | ** CREATE INDEX i2 ON t1(b); |
| 1639 | ** CREATE INDEX i3 ON t1(c); |
| 1640 | ** |
| 1641 | ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) |
| 1642 | ** |
| 1643 | ** In the example, there are three indexed terms connected by OR. |
| 1644 | ** The top of the loop looks like this: |
| 1645 | ** |
| 1646 | ** Null 1 # Zero the rowset in reg 1 |
| 1647 | ** |
| 1648 | ** Then, for each indexed term, the following. The arguments to |
| 1649 | ** RowSetTest are such that the rowid of the current row is inserted |
| 1650 | ** into the RowSet. If it is already present, control skips the |
| 1651 | ** Gosub opcode and jumps straight to the code generated by WhereEnd(). |
| 1652 | ** |
| 1653 | ** sqlite3WhereBegin(<term>) |
| 1654 | ** RowSetTest # Insert rowid into rowset |
| 1655 | ** Gosub 2 A |
| 1656 | ** sqlite3WhereEnd() |
| 1657 | ** |
| 1658 | ** Following the above, code to terminate the loop. Label A, the target |
| 1659 | ** of the Gosub above, jumps to the instruction right after the Goto. |
| 1660 | ** |
| 1661 | ** Null 1 # Zero the rowset in reg 1 |
| 1662 | ** Goto B # The loop is finished. |
| 1663 | ** |
| 1664 | ** A: <loop body> # Return data, whatever. |
| 1665 | ** |
| 1666 | ** Return 2 # Jump back to the Gosub |
| 1667 | ** |
| 1668 | ** B: <after the loop> |
| 1669 | ** |
| 1670 | ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then |
| 1671 | ** use an ephemeral index instead of a RowSet to record the primary |
| 1672 | ** keys of the rows we have already seen. |
| 1673 | ** |
| 1674 | */ |
| 1675 | WhereClause *pOrWc; /* The OR-clause broken out into subterms */ |
| 1676 | SrcList *pOrTab; /* Shortened table list or OR-clause generation */ |
| 1677 | Index *pCov = 0; /* Potential covering index (or NULL) */ |
| 1678 | int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ |
| 1679 | |
| 1680 | int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ |
| 1681 | int regRowset = 0; /* Register for RowSet object */ |
| 1682 | int regRowid = 0; /* Register holding rowid */ |
| 1683 | int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ |
| 1684 | int iRetInit; /* Address of regReturn init */ |
| 1685 | int untestedTerms = 0; /* Some terms not completely tested */ |
| 1686 | int ii; /* Loop counter */ |
| 1687 | u16 wctrlFlags; /* Flags for sub-WHERE clause */ |
| 1688 | Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ |
| 1689 | Table *pTab = pTabItem->pTab; |
dan | 145b4ea | 2016-07-29 18:12:12 +0000 | [diff] [blame] | 1690 | |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1691 | pTerm = pLoop->aLTerm[0]; |
| 1692 | assert( pTerm!=0 ); |
| 1693 | assert( pTerm->eOperator & WO_OR ); |
| 1694 | assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); |
| 1695 | pOrWc = &pTerm->u.pOrInfo->wc; |
| 1696 | pLevel->op = OP_Return; |
| 1697 | pLevel->p1 = regReturn; |
| 1698 | |
| 1699 | /* Set up a new SrcList in pOrTab containing the table being scanned |
| 1700 | ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. |
| 1701 | ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). |
| 1702 | */ |
| 1703 | if( pWInfo->nLevel>1 ){ |
| 1704 | int nNotReady; /* The number of notReady tables */ |
| 1705 | struct SrcList_item *origSrc; /* Original list of tables */ |
| 1706 | nNotReady = pWInfo->nLevel - iLevel - 1; |
| 1707 | pOrTab = sqlite3StackAllocRaw(db, |
| 1708 | sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); |
| 1709 | if( pOrTab==0 ) return notReady; |
| 1710 | pOrTab->nAlloc = (u8)(nNotReady + 1); |
| 1711 | pOrTab->nSrc = pOrTab->nAlloc; |
| 1712 | memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); |
| 1713 | origSrc = pWInfo->pTabList->a; |
| 1714 | for(k=1; k<=nNotReady; k++){ |
| 1715 | memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); |
| 1716 | } |
| 1717 | }else{ |
| 1718 | pOrTab = pWInfo->pTabList; |
| 1719 | } |
| 1720 | |
| 1721 | /* Initialize the rowset register to contain NULL. An SQL NULL is |
| 1722 | ** equivalent to an empty rowset. Or, create an ephemeral index |
| 1723 | ** capable of holding primary keys in the case of a WITHOUT ROWID. |
| 1724 | ** |
| 1725 | ** Also initialize regReturn to contain the address of the instruction |
| 1726 | ** immediately following the OP_Return at the bottom of the loop. This |
| 1727 | ** is required in a few obscure LEFT JOIN cases where control jumps |
| 1728 | ** over the top of the loop into the body of it. In this case the |
| 1729 | ** correct response for the end-of-loop code (the OP_Return) is to |
| 1730 | ** fall through to the next instruction, just as an OP_Next does if |
| 1731 | ** called on an uninitialized cursor. |
| 1732 | */ |
| 1733 | if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
| 1734 | if( HasRowid(pTab) ){ |
| 1735 | regRowset = ++pParse->nMem; |
| 1736 | sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); |
| 1737 | }else{ |
| 1738 | Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1739 | regRowset = pParse->nTab++; |
| 1740 | sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); |
| 1741 | sqlite3VdbeSetP4KeyInfo(pParse, pPk); |
| 1742 | } |
| 1743 | regRowid = ++pParse->nMem; |
| 1744 | } |
| 1745 | iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); |
| 1746 | |
| 1747 | /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y |
| 1748 | ** Then for every term xN, evaluate as the subexpression: xN AND z |
| 1749 | ** That way, terms in y that are factored into the disjunction will |
| 1750 | ** be picked up by the recursive calls to sqlite3WhereBegin() below. |
| 1751 | ** |
| 1752 | ** Actually, each subexpression is converted to "xN AND w" where w is |
| 1753 | ** the "interesting" terms of z - terms that did not originate in the |
| 1754 | ** ON or USING clause of a LEFT JOIN, and terms that are usable as |
| 1755 | ** indices. |
| 1756 | ** |
| 1757 | ** This optimization also only applies if the (x1 OR x2 OR ...) term |
| 1758 | ** is not contained in the ON clause of a LEFT JOIN. |
| 1759 | ** See ticket http://www.sqlite.org/src/info/f2369304e4 |
| 1760 | */ |
| 1761 | if( pWC->nTerm>1 ){ |
| 1762 | int iTerm; |
| 1763 | for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ |
| 1764 | Expr *pExpr = pWC->a[iTerm].pExpr; |
| 1765 | if( &pWC->a[iTerm] == pTerm ) continue; |
| 1766 | if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; |
drh | 3b83f0c | 2016-01-29 16:57:06 +0000 | [diff] [blame] | 1767 | testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL ); |
| 1768 | testcase( pWC->a[iTerm].wtFlags & TERM_CODED ); |
| 1769 | if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1770 | if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; |
| 1771 | testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); |
| 1772 | pExpr = sqlite3ExprDup(db, pExpr, 0); |
| 1773 | pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); |
| 1774 | } |
| 1775 | if( pAndExpr ){ |
drh | 1167d32 | 2015-10-28 20:01:45 +0000 | [diff] [blame] | 1776 | pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | /* Run a separate WHERE clause for each term of the OR clause. After |
| 1781 | ** eliminating duplicates from other WHERE clauses, the action for each |
| 1782 | ** sub-WHERE clause is to to invoke the main loop body as a subroutine. |
| 1783 | */ |
drh | ce943bc | 2016-05-19 18:56:33 +0000 | [diff] [blame] | 1784 | wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1785 | for(ii=0; ii<pOrWc->nTerm; ii++){ |
| 1786 | WhereTerm *pOrTerm = &pOrWc->a[ii]; |
| 1787 | if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ |
| 1788 | WhereInfo *pSubWInfo; /* Info for single OR-term scan */ |
| 1789 | Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ |
drh | 728e0f9 | 2015-10-10 14:41:28 +0000 | [diff] [blame] | 1790 | int jmp1 = 0; /* Address of jump operation */ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1791 | if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ |
| 1792 | pAndExpr->pLeft = pOrExpr; |
| 1793 | pOrExpr = pAndExpr; |
| 1794 | } |
| 1795 | /* Loop through table entries that match term pOrTerm. */ |
| 1796 | WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); |
| 1797 | pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, |
| 1798 | wctrlFlags, iCovCur); |
| 1799 | assert( pSubWInfo || pParse->nErr || db->mallocFailed ); |
| 1800 | if( pSubWInfo ){ |
| 1801 | WhereLoop *pSubLoop; |
| 1802 | int addrExplain = sqlite3WhereExplainOneScan( |
| 1803 | pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 |
| 1804 | ); |
| 1805 | sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); |
| 1806 | |
| 1807 | /* This is the sub-WHERE clause body. First skip over |
| 1808 | ** duplicate rows from prior sub-WHERE clauses, and record the |
| 1809 | ** rowid (or PRIMARY KEY) for the current row so that the same |
| 1810 | ** row will be skipped in subsequent sub-WHERE clauses. |
| 1811 | */ |
| 1812 | if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ |
| 1813 | int r; |
| 1814 | int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); |
| 1815 | if( HasRowid(pTab) ){ |
| 1816 | r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); |
drh | 728e0f9 | 2015-10-10 14:41:28 +0000 | [diff] [blame] | 1817 | jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, |
| 1818 | r,iSet); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1819 | VdbeCoverage(v); |
| 1820 | }else{ |
| 1821 | Index *pPk = sqlite3PrimaryKeyIndex(pTab); |
| 1822 | int nPk = pPk->nKeyCol; |
| 1823 | int iPk; |
| 1824 | |
| 1825 | /* Read the PK into an array of temp registers. */ |
| 1826 | r = sqlite3GetTempRange(pParse, nPk); |
| 1827 | for(iPk=0; iPk<nPk; iPk++){ |
| 1828 | int iCol = pPk->aiColumn[iPk]; |
drh | ce78bc6 | 2015-10-15 19:21:51 +0000 | [diff] [blame] | 1829 | sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1830 | } |
| 1831 | |
| 1832 | /* Check if the temp table already contains this key. If so, |
| 1833 | ** the row has already been included in the result set and |
| 1834 | ** can be ignored (by jumping past the Gosub below). Otherwise, |
| 1835 | ** insert the key into the temp table and proceed with processing |
| 1836 | ** the row. |
| 1837 | ** |
| 1838 | ** Use some of the same optimizations as OP_RowSetTest: If iSet |
| 1839 | ** is zero, assume that the key cannot already be present in |
| 1840 | ** the temp table. And if iSet is -1, assume that there is no |
| 1841 | ** need to insert the key into the temp table, as it will never |
| 1842 | ** be tested for. */ |
| 1843 | if( iSet ){ |
drh | 728e0f9 | 2015-10-10 14:41:28 +0000 | [diff] [blame] | 1844 | jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1845 | VdbeCoverage(v); |
| 1846 | } |
| 1847 | if( iSet>=0 ){ |
| 1848 | sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); |
| 1849 | sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); |
| 1850 | if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 1851 | } |
| 1852 | |
| 1853 | /* Release the array of temp registers */ |
| 1854 | sqlite3ReleaseTempRange(pParse, r, nPk); |
| 1855 | } |
| 1856 | } |
| 1857 | |
| 1858 | /* Invoke the main loop body as a subroutine */ |
| 1859 | sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); |
| 1860 | |
| 1861 | /* Jump here (skipping the main loop body subroutine) if the |
| 1862 | ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ |
drh | 728e0f9 | 2015-10-10 14:41:28 +0000 | [diff] [blame] | 1863 | if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1864 | |
| 1865 | /* The pSubWInfo->untestedTerms flag means that this OR term |
| 1866 | ** contained one or more AND term from a notReady table. The |
| 1867 | ** terms from the notReady table could not be tested and will |
| 1868 | ** need to be tested later. |
| 1869 | */ |
| 1870 | if( pSubWInfo->untestedTerms ) untestedTerms = 1; |
| 1871 | |
| 1872 | /* If all of the OR-connected terms are optimized using the same |
| 1873 | ** index, and the index is opened using the same cursor number |
| 1874 | ** by each call to sqlite3WhereBegin() made by this loop, it may |
| 1875 | ** be possible to use that index as a covering index. |
| 1876 | ** |
| 1877 | ** If the call to sqlite3WhereBegin() above resulted in a scan that |
| 1878 | ** uses an index, and this is either the first OR-connected term |
| 1879 | ** processed or the index is the same as that used by all previous |
| 1880 | ** terms, set pCov to the candidate covering index. Otherwise, set |
| 1881 | ** pCov to NULL to indicate that no candidate covering index will |
| 1882 | ** be available. |
| 1883 | */ |
| 1884 | pSubLoop = pSubWInfo->a[0].pWLoop; |
| 1885 | assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); |
| 1886 | if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 |
| 1887 | && (ii==0 || pSubLoop->u.btree.pIndex==pCov) |
| 1888 | && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) |
| 1889 | ){ |
| 1890 | assert( pSubWInfo->a[0].iIdxCur==iCovCur ); |
| 1891 | pCov = pSubLoop->u.btree.pIndex; |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1892 | }else{ |
| 1893 | pCov = 0; |
| 1894 | } |
| 1895 | |
| 1896 | /* Finish the loop through table entries that match term pOrTerm. */ |
| 1897 | sqlite3WhereEnd(pSubWInfo); |
| 1898 | } |
| 1899 | } |
| 1900 | } |
| 1901 | pLevel->u.pCovidx = pCov; |
| 1902 | if( pCov ) pLevel->iIdxCur = iCovCur; |
| 1903 | if( pAndExpr ){ |
| 1904 | pAndExpr->pLeft = 0; |
| 1905 | sqlite3ExprDelete(db, pAndExpr); |
| 1906 | } |
| 1907 | sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); |
drh | 076e85f | 2015-09-03 13:46:12 +0000 | [diff] [blame] | 1908 | sqlite3VdbeGoto(v, pLevel->addrBrk); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1909 | sqlite3VdbeResolveLabel(v, iLoopBody); |
| 1910 | |
| 1911 | if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); |
| 1912 | if( !untestedTerms ) disableTerm(pLevel, pTerm); |
| 1913 | }else |
| 1914 | #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ |
| 1915 | |
| 1916 | { |
| 1917 | /* Case 6: There is no usable index. We must do a complete |
| 1918 | ** scan of the entire table. |
| 1919 | */ |
| 1920 | static const u8 aStep[] = { OP_Next, OP_Prev }; |
| 1921 | static const u8 aStart[] = { OP_Rewind, OP_Last }; |
| 1922 | assert( bRev==0 || bRev==1 ); |
drh | 8a48b9c | 2015-08-19 15:20:00 +0000 | [diff] [blame] | 1923 | if( pTabItem->fg.isRecursive ){ |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1924 | /* Tables marked isRecursive have only a single row that is stored in |
| 1925 | ** a pseudo-cursor. No need to Rewind or Next such cursors. */ |
| 1926 | pLevel->op = OP_Noop; |
| 1927 | }else{ |
dan | b324cf7 | 2016-06-17 14:33:32 +0000 | [diff] [blame] | 1928 | codeCursorHint(pTabItem, pWInfo, pLevel, 0); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1929 | pLevel->op = aStep[bRev]; |
| 1930 | pLevel->p1 = iCur; |
| 1931 | pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); |
| 1932 | VdbeCoverageIf(v, bRev==0); |
| 1933 | VdbeCoverageIf(v, bRev!=0); |
| 1934 | pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; |
| 1935 | } |
| 1936 | } |
| 1937 | |
| 1938 | #ifdef SQLITE_ENABLE_STMT_SCANSTATUS |
| 1939 | pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); |
| 1940 | #endif |
| 1941 | |
| 1942 | /* Insert code to test every subexpression that can be completely |
| 1943 | ** computed using the current set of tables. |
| 1944 | */ |
| 1945 | for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
| 1946 | Expr *pE; |
| 1947 | int skipLikeAddr = 0; |
| 1948 | testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 1949 | testcase( pTerm->wtFlags & TERM_CODED ); |
| 1950 | if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 1951 | if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
| 1952 | testcase( pWInfo->untestedTerms==0 |
drh | ce943bc | 2016-05-19 18:56:33 +0000 | [diff] [blame] | 1953 | && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1954 | pWInfo->untestedTerms = 1; |
| 1955 | continue; |
| 1956 | } |
| 1957 | pE = pTerm->pExpr; |
| 1958 | assert( pE!=0 ); |
| 1959 | if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ |
| 1960 | continue; |
| 1961 | } |
| 1962 | if( pTerm->wtFlags & TERM_LIKECOND ){ |
drh | 44aebff | 2016-05-02 10:25:42 +0000 | [diff] [blame] | 1963 | /* If the TERM_LIKECOND flag is set, that means that the range search |
| 1964 | ** is sufficient to guarantee that the LIKE operator is true, so we |
| 1965 | ** can skip the call to the like(A,B) function. But this only works |
| 1966 | ** for strings. So do not skip the call to the function on the pass |
| 1967 | ** that compares BLOBs. */ |
drh | 41d2e66 | 2015-12-01 21:23:07 +0000 | [diff] [blame] | 1968 | #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS |
| 1969 | continue; |
| 1970 | #else |
drh | 44aebff | 2016-05-02 10:25:42 +0000 | [diff] [blame] | 1971 | u32 x = pLevel->iLikeRepCntr; |
| 1972 | assert( x>0 ); |
| 1973 | skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1)); |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1974 | VdbeCoverage(v); |
drh | 41d2e66 | 2015-12-01 21:23:07 +0000 | [diff] [blame] | 1975 | #endif |
drh | 6f82e85 | 2015-06-06 20:12:09 +0000 | [diff] [blame] | 1976 | } |
| 1977 | sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); |
| 1978 | if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); |
| 1979 | pTerm->wtFlags |= TERM_CODED; |
| 1980 | } |
| 1981 | |
| 1982 | /* Insert code to test for implied constraints based on transitivity |
| 1983 | ** of the "==" operator. |
| 1984 | ** |
| 1985 | ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" |
| 1986 | ** and we are coding the t1 loop and the t2 loop has not yet coded, |
| 1987 | ** then we cannot use the "t1.a=t2.b" constraint, but we can code |
| 1988 | ** the implied "t1.a=123" constraint. |
| 1989 | */ |
| 1990 | for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ |
| 1991 | Expr *pE, *pEAlt; |
| 1992 | WhereTerm *pAlt; |
| 1993 | if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 1994 | if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue; |
| 1995 | if( (pTerm->eOperator & WO_EQUIV)==0 ) continue; |
| 1996 | if( pTerm->leftCursor!=iCur ) continue; |
| 1997 | if( pLevel->iLeftJoin ) continue; |
| 1998 | pE = pTerm->pExpr; |
| 1999 | assert( !ExprHasProperty(pE, EP_FromJoin) ); |
| 2000 | assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); |
| 2001 | pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady, |
| 2002 | WO_EQ|WO_IN|WO_IS, 0); |
| 2003 | if( pAlt==0 ) continue; |
| 2004 | if( pAlt->wtFlags & (TERM_CODED) ) continue; |
| 2005 | testcase( pAlt->eOperator & WO_EQ ); |
| 2006 | testcase( pAlt->eOperator & WO_IS ); |
| 2007 | testcase( pAlt->eOperator & WO_IN ); |
| 2008 | VdbeModuleComment((v, "begin transitive constraint")); |
| 2009 | pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); |
| 2010 | if( pEAlt ){ |
| 2011 | *pEAlt = *pAlt->pExpr; |
| 2012 | pEAlt->pLeft = pE->pLeft; |
| 2013 | sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); |
| 2014 | sqlite3StackFree(db, pEAlt); |
| 2015 | } |
| 2016 | } |
| 2017 | |
| 2018 | /* For a LEFT OUTER JOIN, generate code that will record the fact that |
| 2019 | ** at least one row of the right table has matched the left table. |
| 2020 | */ |
| 2021 | if( pLevel->iLeftJoin ){ |
| 2022 | pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); |
| 2023 | sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); |
| 2024 | VdbeComment((v, "record LEFT JOIN hit")); |
| 2025 | sqlite3ExprCacheClear(pParse); |
| 2026 | for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ |
| 2027 | testcase( pTerm->wtFlags & TERM_VIRTUAL ); |
| 2028 | testcase( pTerm->wtFlags & TERM_CODED ); |
| 2029 | if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; |
| 2030 | if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ |
| 2031 | assert( pWInfo->untestedTerms ); |
| 2032 | continue; |
| 2033 | } |
| 2034 | assert( pTerm->pExpr ); |
| 2035 | sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); |
| 2036 | pTerm->wtFlags |= TERM_CODED; |
| 2037 | } |
| 2038 | } |
| 2039 | |
| 2040 | return pLevel->notReady; |
| 2041 | } |