blob: 5e707a6232fae42ec8fa6eb09aba5db7cd9a3afb [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh9b1c62d2011-03-30 21:04:43 +000090** This macro evaluates to true if either the update hook or the preupdate
91** hook are enabled for database connect DB.
92*/
93#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
drh74c33022016-03-30 12:56:55 +000094# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000095#else
drh74c33022016-03-30 12:56:55 +000096# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000097#endif
98
99/*
drh0fd61352014-02-07 02:29:45 +0000100** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +0000101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drhd12602a2016-12-07 15:49:02 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh5655c542014-02-19 19:14:34 +0000121** Invoke the VDBE coverage callback, if that callback is defined. This
122** feature is used for test suite validation only and does not appear an
123** production builds.
124**
125** M is an integer, 2 or 3, that indices how many different ways the
126** branch can go. It is usually 2. "I" is the direction the branch
127** goes. 0 means falls through. 1 means branch is taken. 2 means the
128** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000129**
130** iSrcLine is the source code line (from the __LINE__ macro) that
131** generated the VDBE instruction. This instrumentation assumes that all
132** source code is in a single file (the amalgamation). Special values 1
133** and 2 for the iSrcLine parameter mean that this particular branch is
134** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000135*/
136#if !defined(SQLITE_VDBE_COVERAGE)
137# define VdbeBranchTaken(I,M)
138#else
drh5655c542014-02-19 19:14:34 +0000139# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
150 }
151 }
drh688852a2014-02-17 22:40:43 +0000152#endif
153
154/*
drh9cbf3422008-01-17 16:22:13 +0000155** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000156** already. Return non-zero if a malloc() fails.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000160 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000161
162/*
danielk1977bd7e4602004-05-24 07:34:48 +0000163** An ephemeral string value (signified by the MEM_Ephem flag) contains
164** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000165** is responsible for deallocating that string. Because the register
166** does not control the string, it might be deleted without the register
167** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000168**
169** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000170** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000171** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000172*/
drhb21c8cd2007-08-21 19:33:56 +0000173#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000174 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000176
dan689ab892011-08-12 15:02:00 +0000177/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drhc960dcb2015-11-20 19:22:01 +0000178#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
danielk19778a6b5412004-05-24 07:04:25 +0000179
180/*
drhdfe88ec2008-11-03 20:55:06 +0000181** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000182** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000183*/
drhdfe88ec2008-11-03 20:55:06 +0000184static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000187 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000188 int iDb, /* Database the cursor belongs to, or -1 */
drhc960dcb2015-11-20 19:22:01 +0000189 u8 eCurType /* Type of the new cursor */
danielk1977cd3e8f72008-03-25 09:47:35 +0000190){
191 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000192 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000193 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000194 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000195 **
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
200 **
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
204 **
drh3cdce922016-03-21 00:30:40 +0000205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
drh9f6168b2016-03-19 23:32:58 +0000206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 */
drh9f6168b2016-03-19 23:32:58 +0000209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
danielk1977cd3e8f72008-03-25 09:47:35 +0000210
danielk19775f096132008-03-28 15:44:09 +0000211 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000212 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000213 nByte =
drh5cc10232013-11-21 01:04:02 +0000214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
drhc960dcb2015-11-20 19:22:01 +0000215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000216
drh9f6168b2016-03-19 23:32:58 +0000217 assert( iCur>=0 && iCur<p->nCursor );
drha3fa1402016-04-29 02:55:05 +0000218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977be718892006-06-23 08:05:19 +0000219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000221 }
drh322f2852014-09-19 00:43:39 +0000222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhfbd8cbd2016-12-10 12:58:15 +0000224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
drhc960dcb2015-11-20 19:22:01 +0000225 pCx->eCurType = eCurType;
danielk197794eb6a12005-12-15 15:22:08 +0000226 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000227 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000228 pCx->aOffset = &pCx->aType[nField];
drhc960dcb2015-11-20 19:22:01 +0000229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhc960dcb2015-11-20 19:22:01 +0000232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000233 }
danielk197794eb6a12005-12-15 15:22:08 +0000234 }
drh4774b132004-06-12 20:12:51 +0000235 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000236}
237
danielk19773d1bfea2004-05-14 11:00:53 +0000238/*
drh29d72102006-02-09 22:13:41 +0000239** Try to convert a value into a numeric representation if we can
240** do so without loss of information. In other words, if the string
241** looks like a number, convert it into a number. If it does not
242** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000243**
244** If the bTryForInt flag is true, then extra effort is made to give
245** an integer representation. Strings that look like floating point
246** values but which have no fractional component (example: '48.00')
247** will have a MEM_Int representation when bTryForInt is true.
248**
249** If bTryForInt is false, then if the input string contains a decimal
250** point or exponential notation, the result is only MEM_Real, even
251** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000252*/
drhbd9507c2014-08-23 17:21:37 +0000253static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
drh74eaba42014-09-18 17:52:15 +0000263 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000264 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000266 }
267}
268
269/*
drh8a512562005-11-14 22:29:05 +0000270** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000271**
drh8a512562005-11-14 22:29:05 +0000272** SQLITE_AFF_INTEGER:
273** SQLITE_AFF_REAL:
274** SQLITE_AFF_NUMERIC:
275** Try to convert pRec to an integer representation or a
276** floating-point representation if an integer representation
277** is not possible. Note that the integer representation is
278** always preferred, even if the affinity is REAL, because
279** an integer representation is more space efficient on disk.
280**
281** SQLITE_AFF_TEXT:
282** Convert pRec to a text representation.
283**
drh05883a32015-06-02 15:32:08 +0000284** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000285** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000286*/
drh17435752007-08-16 04:30:38 +0000287static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000288 Mem *pRec, /* The value to apply affinity to */
289 char affinity, /* The affinity to be applied */
290 u8 enc /* Use this text encoding */
291){
drh7ea31cc2014-09-18 14:36:00 +0000292 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000293 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
294 || affinity==SQLITE_AFF_NUMERIC );
drha3fa1402016-04-29 02:55:05 +0000295 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
drhbd9507c2014-08-23 17:21:37 +0000296 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000297 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000298 }else{
299 sqlite3VdbeIntegerAffinity(pRec);
300 }
drh17c40292004-07-21 02:53:29 +0000301 }
drh7ea31cc2014-09-18 14:36:00 +0000302 }else if( affinity==SQLITE_AFF_TEXT ){
danielk19773d1bfea2004-05-14 11:00:53 +0000303 /* Only attempt the conversion to TEXT if there is an integer or real
drhf4479502004-05-27 03:12:53 +0000304 ** representation (blob and NULL do not get converted) but no string
drha3fa1402016-04-29 02:55:05 +0000305 ** representation. It would be harmless to repeat the conversion if
306 ** there is already a string rep, but it is pointless to waste those
307 ** CPU cycles. */
308 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
309 if( (pRec->flags&(MEM_Real|MEM_Int)) ){
310 sqlite3VdbeMemStringify(pRec, enc, 1);
311 }
danielk19773d1bfea2004-05-14 11:00:53 +0000312 }
dandde548c2015-05-19 19:44:25 +0000313 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000314 }
315}
316
danielk1977aee18ef2005-03-09 12:26:50 +0000317/*
drh29d72102006-02-09 22:13:41 +0000318** Try to convert the type of a function argument or a result column
319** into a numeric representation. Use either INTEGER or REAL whichever
320** is appropriate. But only do the conversion if it is possible without
321** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000322*/
323int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000324 int eType = sqlite3_value_type(pVal);
325 if( eType==SQLITE_TEXT ){
326 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000327 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000328 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000329 }
drh1b27b8c2014-02-10 03:21:57 +0000330 return eType;
drh29d72102006-02-09 22:13:41 +0000331}
332
333/*
danielk1977aee18ef2005-03-09 12:26:50 +0000334** Exported version of applyAffinity(). This one works on sqlite3_value*,
335** not the internal Mem* type.
336*/
danielk19771e536952007-08-16 10:09:01 +0000337void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000338 sqlite3_value *pVal,
339 u8 affinity,
340 u8 enc
341){
drhb21c8cd2007-08-21 19:33:56 +0000342 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000343}
344
drh3d1d90a2014-03-24 15:00:15 +0000345/*
drhf1a89ed2014-08-23 17:41:15 +0000346** pMem currently only holds a string type (or maybe a BLOB that we can
347** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000348** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000349** accordingly.
350*/
351static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
352 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
353 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000354 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000355 return 0;
356 }
357 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
358 return MEM_Int;
359 }
360 return MEM_Real;
361}
362
363/*
drh3d1d90a2014-03-24 15:00:15 +0000364** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
365** none.
366**
367** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000368** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000369*/
370static u16 numericType(Mem *pMem){
371 if( pMem->flags & (MEM_Int|MEM_Real) ){
372 return pMem->flags & (MEM_Int|MEM_Real);
373 }
374 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000375 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000376 }
377 return 0;
378}
379
danielk1977b5402fb2005-01-12 07:15:04 +0000380#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000381/*
danielk1977ca6b2912004-05-21 10:49:47 +0000382** Write a nice string representation of the contents of cell pMem
383** into buffer zBuf, length nBuf.
384*/
drh74161702006-02-24 02:53:49 +0000385void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000386 char *zCsr = zBuf;
387 int f = pMem->flags;
388
drh57196282004-10-06 15:41:16 +0000389 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000390
danielk1977ca6b2912004-05-21 10:49:47 +0000391 if( f&MEM_Blob ){
392 int i;
393 char c;
394 if( f & MEM_Dyn ){
395 c = 'z';
396 assert( (f & (MEM_Static|MEM_Ephem))==0 );
397 }else if( f & MEM_Static ){
398 c = 't';
399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400 }else if( f & MEM_Ephem ){
401 c = 'e';
402 assert( (f & (MEM_Static|MEM_Dyn))==0 );
403 }else{
404 c = 's';
405 }
406
drh5bb3eb92007-05-04 13:15:55 +0000407 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000408 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000409 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000410 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000411 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000412 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000413 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000414 }
415 for(i=0; i<16 && i<pMem->n; i++){
416 char z = pMem->z[i];
417 if( z<32 || z>126 ) *zCsr++ = '.';
418 else *zCsr++ = z;
419 }
420
drhe718efe2007-05-10 21:14:03 +0000421 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000422 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000423 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000424 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000425 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000426 }
danielk1977b1bc9532004-05-22 03:05:33 +0000427 *zCsr = '\0';
428 }else if( f & MEM_Str ){
429 int j, k;
430 zBuf[0] = ' ';
431 if( f & MEM_Dyn ){
432 zBuf[1] = 'z';
433 assert( (f & (MEM_Static|MEM_Ephem))==0 );
434 }else if( f & MEM_Static ){
435 zBuf[1] = 't';
436 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
437 }else if( f & MEM_Ephem ){
438 zBuf[1] = 'e';
439 assert( (f & (MEM_Static|MEM_Dyn))==0 );
440 }else{
441 zBuf[1] = 's';
442 }
443 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000444 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000445 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000446 zBuf[k++] = '[';
447 for(j=0; j<15 && j<pMem->n; j++){
448 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000449 if( c>=0x20 && c<0x7f ){
450 zBuf[k++] = c;
451 }else{
452 zBuf[k++] = '.';
453 }
454 }
455 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000456 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000457 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000458 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000459 }
danielk1977ca6b2912004-05-21 10:49:47 +0000460}
461#endif
462
drh5b6afba2008-01-05 16:29:28 +0000463#ifdef SQLITE_DEBUG
464/*
465** Print the value of a register for tracing purposes:
466*/
drh84e55a82013-11-13 17:58:23 +0000467static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000468 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000469 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000470 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000471 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000472 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000473 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000474 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000475 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000476#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000477 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000478 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000479#endif
drh733bf1b2009-04-22 00:47:00 +0000480 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000481 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000482 }else{
483 char zBuf[200];
484 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000485 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000486 }
dan5b6c8e42016-01-30 15:46:03 +0000487 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
drh5b6afba2008-01-05 16:29:28 +0000488}
drh84e55a82013-11-13 17:58:23 +0000489static void registerTrace(int iReg, Mem *p){
490 printf("REG[%d] = ", iReg);
491 memTracePrint(p);
492 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000493}
494#endif
495
496#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000497# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000498#else
499# define REGISTER_TRACE(R,M)
500#endif
501
danielk197784ac9d02004-05-18 09:58:06 +0000502
drh7b396862003-01-01 23:06:20 +0000503#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000504
505/*
506** hwtime.h contains inline assembler code for implementing
507** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000508*/
shane9bcbdad2008-05-29 20:22:37 +0000509#include "hwtime.h"
510
drh7b396862003-01-01 23:06:20 +0000511#endif
512
danielk1977fd7f0452008-12-17 17:30:26 +0000513#ifndef NDEBUG
514/*
515** This function is only called from within an assert() expression. It
516** checks that the sqlite3.nTransaction variable is correctly set to
517** the number of non-transaction savepoints currently in the
518** linked list starting at sqlite3.pSavepoint.
519**
520** Usage:
521**
522** assert( checkSavepointCount(db) );
523*/
524static int checkSavepointCount(sqlite3 *db){
525 int n = 0;
526 Savepoint *p;
527 for(p=db->pSavepoint; p; p=p->pNext) n++;
528 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
529 return 1;
530}
531#endif
532
drh27a348c2015-04-13 19:14:06 +0000533/*
534** Return the register of pOp->p2 after first preparing it to be
535** overwritten with an integer value.
drh9eef8c62015-10-15 17:31:41 +0000536*/
537static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
538 sqlite3VdbeMemSetNull(pOut);
539 pOut->flags = MEM_Int;
540 return pOut;
541}
drh27a348c2015-04-13 19:14:06 +0000542static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
543 Mem *pOut;
544 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000545 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh27a348c2015-04-13 19:14:06 +0000546 pOut = &p->aMem[pOp->p2];
547 memAboutToChange(p, pOut);
drha3fa1402016-04-29 02:55:05 +0000548 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
drh9eef8c62015-10-15 17:31:41 +0000549 return out2PrereleaseWithClear(pOut);
550 }else{
551 pOut->flags = MEM_Int;
552 return pOut;
553 }
drh27a348c2015-04-13 19:14:06 +0000554}
555
drhb9755982010-07-24 16:34:37 +0000556
557/*
drh0fd61352014-02-07 02:29:45 +0000558** Execute as much of a VDBE program as we can.
559** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000560*/
danielk19774adee202004-05-08 08:23:19 +0000561int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000562 Vdbe *p /* The VDBE */
563){
drhbbe879d2009-11-14 18:04:35 +0000564 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000565 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000566#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
567 Op *pOrigOp; /* Value of pOp at the top of the loop */
568#endif
drhb89aeb62016-01-27 15:49:32 +0000569#ifdef SQLITE_DEBUG
drhdef19e32016-01-27 16:26:25 +0000570 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
drhb89aeb62016-01-27 15:49:32 +0000571#endif
drhb86ccfb2003-01-28 23:13:10 +0000572 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000573 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000574 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000575 u8 encoding = ENC(db); /* The database encoding */
drh0f825a72016-08-13 14:17:02 +0000576 int iCompare = 0; /* Result of last comparison */
drhbf159fa2013-06-25 22:01:22 +0000577 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000578#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000579 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000580#endif
drha6c2ed92009-11-14 23:22:23 +0000581 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000582 Mem *pIn1 = 0; /* 1st input operand */
583 Mem *pIn2 = 0; /* 2nd input operand */
584 Mem *pIn3 = 0; /* 3rd input operand */
585 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000586 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000587 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000588#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000589 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000590#endif
drh856c1032009-06-02 15:21:42 +0000591 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000592
drhca48c902008-01-18 14:08:24 +0000593 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000594 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000595 if( p->rc==SQLITE_NOMEM ){
596 /* This happens if a malloc() inside a call to sqlite3_column_text() or
597 ** sqlite3_column_text16() failed. */
598 goto no_mem;
599 }
drhcbd8db32015-08-20 17:18:32 +0000600 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000601 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000602 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000603 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000604 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000605 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000606 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000607 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000608 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000609#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
610 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000611 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000612 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000613 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh0d1961e2013-07-25 16:27:51 +0000614 }
615#endif
drh3c23a882007-01-09 14:01:13 +0000616#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000617 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000618 if( p->pc==0
619 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
620 ){
drh3c23a882007-01-09 14:01:13 +0000621 int i;
drh84e55a82013-11-13 17:58:23 +0000622 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000623 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000624 if( p->db->flags & SQLITE_VdbeListing ){
625 printf("VDBE Program Listing:\n");
626 for(i=0; i<p->nOp; i++){
627 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
628 }
drh3c23a882007-01-09 14:01:13 +0000629 }
drh84e55a82013-11-13 17:58:23 +0000630 if( p->db->flags & SQLITE_VdbeEQP ){
631 for(i=0; i<p->nOp; i++){
632 if( aOp[i].opcode==OP_Explain ){
633 if( once ) printf("VDBE Query Plan:\n");
634 printf("%s\n", aOp[i].p4.z);
635 once = 0;
636 }
637 }
638 }
639 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000640 }
danielk19772d1d86f2008-06-20 14:59:51 +0000641 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000642#endif
drh9467abf2016-02-17 18:44:11 +0000643 for(pOp=&aOp[p->pc]; 1; pOp++){
644 /* Errors are detected by individual opcodes, with an immediate
645 ** jumps to abort_due_to_error. */
646 assert( rc==SQLITE_OK );
647
drhf56fa462015-04-13 21:39:54 +0000648 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh7b396862003-01-01 23:06:20 +0000649#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000650 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000651#endif
drhbf159fa2013-06-25 22:01:22 +0000652 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000653#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000654 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000655#endif
drh6e142f52000-06-08 13:36:40 +0000656
danielk19778b60e0f2005-01-12 09:10:39 +0000657 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000658 */
danielk19778b60e0f2005-01-12 09:10:39 +0000659#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000660 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000661 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000662 }
drh3f7d4e42004-07-24 14:35:58 +0000663#endif
664
drh6e142f52000-06-08 13:36:40 +0000665
drhf6038712004-02-08 18:07:34 +0000666 /* Check to see if we need to simulate an interrupt. This only happens
667 ** if we have a special test build.
668 */
669#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000670 if( sqlite3_interrupt_count>0 ){
671 sqlite3_interrupt_count--;
672 if( sqlite3_interrupt_count==0 ){
673 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000674 }
675 }
676#endif
677
drh3c657212009-11-17 23:59:58 +0000678 /* Sanity checking on other operands */
679#ifdef SQLITE_DEBUG
drh7cc84c22016-04-11 13:36:42 +0000680 {
681 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
682 if( (opProperty & OPFLG_IN1)!=0 ){
683 assert( pOp->p1>0 );
684 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
685 assert( memIsValid(&aMem[pOp->p1]) );
686 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
687 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
688 }
689 if( (opProperty & OPFLG_IN2)!=0 ){
690 assert( pOp->p2>0 );
691 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
692 assert( memIsValid(&aMem[pOp->p2]) );
693 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
694 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
695 }
696 if( (opProperty & OPFLG_IN3)!=0 ){
697 assert( pOp->p3>0 );
698 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
699 assert( memIsValid(&aMem[pOp->p3]) );
700 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
701 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
702 }
703 if( (opProperty & OPFLG_OUT2)!=0 ){
704 assert( pOp->p2>0 );
705 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
706 memAboutToChange(p, &aMem[pOp->p2]);
707 }
708 if( (opProperty & OPFLG_OUT3)!=0 ){
709 assert( pOp->p3>0 );
710 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
711 memAboutToChange(p, &aMem[pOp->p3]);
712 }
drh3c657212009-11-17 23:59:58 +0000713 }
714#endif
drh6dc41482015-04-16 17:31:02 +0000715#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
716 pOrigOp = pOp;
717#endif
drh93952eb2009-11-13 19:43:43 +0000718
drh75897232000-05-29 14:26:00 +0000719 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000720
drh5e00f6c2001-09-13 13:46:56 +0000721/*****************************************************************************
722** What follows is a massive switch statement where each case implements a
723** separate instruction in the virtual machine. If we follow the usual
724** indentation conventions, each case should be indented by 6 spaces. But
725** that is a lot of wasted space on the left margin. So the code within
726** the switch statement will break with convention and be flush-left. Another
727** big comment (similar to this one) will mark the point in the code where
728** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000729**
730** The formatting of each case is important. The makefile for SQLite
731** generates two C files "opcodes.h" and "opcodes.c" by scanning this
732** file looking for lines that begin with "case OP_". The opcodes.h files
733** will be filled with #defines that give unique integer values to each
734** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000735** each string is the symbolic name for the corresponding opcode. If the
736** case statement is followed by a comment of the form "/# same as ... #/"
737** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000738**
drh9cbf3422008-01-17 16:22:13 +0000739** Other keywords in the comment that follows each case are used to
740** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000741** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000742** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000743**
drhac82fcf2002-09-08 17:23:41 +0000744** Documentation about VDBE opcodes is generated by scanning this file
745** for lines of that contain "Opcode:". That line and all subsequent
746** comment lines are used in the generation of the opcode.html documentation
747** file.
748**
749** SUMMARY:
750**
751** Formatting is important to scripts that scan this file.
752** Do not deviate from the formatting style currently in use.
753**
drh5e00f6c2001-09-13 13:46:56 +0000754*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000755
drh9cbf3422008-01-17 16:22:13 +0000756/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000757**
758** An unconditional jump to address P2.
759** The next instruction executed will be
760** the one at index P2 from the beginning of
761** the program.
drhfe705102014-03-06 13:38:37 +0000762**
763** The P1 parameter is not actually used by this opcode. However, it
764** is sometimes set to 1 instead of 0 as a hint to the command-line shell
765** that this Goto is the bottom of a loop and that the lines from P2 down
766** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000767*/
drh9cbf3422008-01-17 16:22:13 +0000768case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000769jump_to_p2_and_check_for_interrupt:
770 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000771
772 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
773 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
774 ** completion. Check to see if sqlite3_interrupt() has been called
775 ** or if the progress callback needs to be invoked.
776 **
777 ** This code uses unstructured "goto" statements and does not look clean.
778 ** But that is not due to sloppy coding habits. The code is written this
779 ** way for performance, to avoid having to run the interrupt and progress
780 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
781 ** faster according to "valgrind --tool=cachegrind" */
782check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000783 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000784#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
785 /* Call the progress callback if it is configured and the required number
786 ** of VDBE ops have been executed (either since this invocation of
787 ** sqlite3VdbeExec() or since last time the progress callback was called).
788 ** If the progress callback returns non-zero, exit the virtual machine with
789 ** a return code SQLITE_ABORT.
790 */
drh0d1961e2013-07-25 16:27:51 +0000791 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000792 assert( db->nProgressOps!=0 );
793 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
794 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000795 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +0000796 goto abort_due_to_error;
drh49afe3a2013-07-10 03:05:14 +0000797 }
drh49afe3a2013-07-10 03:05:14 +0000798 }
799#endif
800
drh5e00f6c2001-09-13 13:46:56 +0000801 break;
802}
drh75897232000-05-29 14:26:00 +0000803
drh2eb95372008-06-06 15:04:36 +0000804/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000805**
drh2eb95372008-06-06 15:04:36 +0000806** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000807** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000808*/
drhb8475df2011-12-09 16:21:19 +0000809case OP_Gosub: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000810 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000811 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000812 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000813 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000814 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000815 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000816 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000817
818 /* Most jump operations do a goto to this spot in order to update
819 ** the pOp pointer. */
820jump_to_p2:
821 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000822 break;
823}
824
drh2eb95372008-06-06 15:04:36 +0000825/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000826**
drh81cf13e2014-02-07 18:27:53 +0000827** Jump to the next instruction after the address in register P1. After
828** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000829*/
drh2eb95372008-06-06 15:04:36 +0000830case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000831 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000832 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000833 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000834 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000835 break;
836}
837
drhed71a832014-02-07 19:18:10 +0000838/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000839**
drh5dad9a32014-07-25 18:37:42 +0000840** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000841** located at address P3.
842**
drh5dad9a32014-07-25 18:37:42 +0000843** If P2!=0 then the coroutine implementation immediately follows
844** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000845** address P2.
drh5dad9a32014-07-25 18:37:42 +0000846**
847** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000848*/
849case OP_InitCoroutine: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000850 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drhed71a832014-02-07 19:18:10 +0000851 assert( pOp->p2>=0 && pOp->p2<p->nOp );
852 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000853 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000854 assert( !VdbeMemDynamic(pOut) );
855 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000856 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000857 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000858 break;
859}
860
861/* Opcode: EndCoroutine P1 * * * *
862**
drhbc5cf382014-08-06 01:08:07 +0000863** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000864** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000865** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000866**
867** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000868*/
869case OP_EndCoroutine: { /* in1 */
870 VdbeOp *pCaller;
871 pIn1 = &aMem[pOp->p1];
872 assert( pIn1->flags==MEM_Int );
873 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
874 pCaller = &aOp[pIn1->u.i];
875 assert( pCaller->opcode==OP_Yield );
876 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000877 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000878 pIn1->flags = MEM_Undefined;
879 break;
880}
881
882/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000883**
drh5dad9a32014-07-25 18:37:42 +0000884** Swap the program counter with the value in register P1. This
885** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000886**
drh5dad9a32014-07-25 18:37:42 +0000887** If the coroutine that is launched by this instruction ends with
888** Yield or Return then continue to the next instruction. But if
889** the coroutine launched by this instruction ends with
890** EndCoroutine, then jump to P2 rather than continuing with the
891** next instruction.
892**
893** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000894*/
drh81cf13e2014-02-07 18:27:53 +0000895case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000896 int pcDest;
drh3c657212009-11-17 23:59:58 +0000897 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000898 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000899 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000900 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000901 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000902 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000903 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000904 break;
905}
906
drhf9c8ce32013-11-05 13:33:55 +0000907/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +0000908** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000909**
drhef8662b2011-06-20 21:47:58 +0000910** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000911** parameter P1, P2, and P4 as if this were a Halt instruction. If the
912** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000913** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000914*/
915case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000916 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000917 if( (pIn3->flags & MEM_Null)==0 ) break;
918 /* Fall through into OP_Halt */
919}
drhe00ee6e2008-06-20 15:24:01 +0000920
drhf9c8ce32013-11-05 13:33:55 +0000921/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000922**
drh3d4501e2008-12-04 20:40:10 +0000923** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000924** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000925**
drh92f02c32004-09-02 14:57:08 +0000926** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
927** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
928** For errors, it can be some other value. If P1!=0 then P2 will determine
929** whether or not to rollback the current transaction. Do not rollback
930** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
931** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000932** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000933**
drh66a51672008-01-03 00:01:23 +0000934** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000935**
drhf9c8ce32013-11-05 13:33:55 +0000936** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
937**
938** 0: (no change)
939** 1: NOT NULL contraint failed: P4
940** 2: UNIQUE constraint failed: P4
941** 3: CHECK constraint failed: P4
942** 4: FOREIGN KEY constraint failed: P4
943**
944** If P5 is not zero and P4 is NULL, then everything after the ":" is
945** omitted.
946**
drh9cfcf5d2002-01-29 18:41:24 +0000947** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000948** every program. So a jump past the last instruction of the program
949** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000950*/
drh9cbf3422008-01-17 16:22:13 +0000951case OP_Halt: {
drhf56fa462015-04-13 21:39:54 +0000952 VdbeFrame *pFrame;
953 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000954
drhf56fa462015-04-13 21:39:54 +0000955 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000956 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000957 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000958 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000959 p->pFrame = pFrame->pParent;
960 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000961 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000962 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000963 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000964 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000965 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000966 ** currently being halted. If the p2 instruction of this OP_Halt
967 ** instruction is set to OE_Ignore, then the sub-program is throwing
968 ** an IGNORE exception. In this case jump to the address specified
969 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000970 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000971 }
drhbbe879d2009-11-14 18:04:35 +0000972 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000973 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000974 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000975 break;
976 }
drh92f02c32004-09-02 14:57:08 +0000977 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000978 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000979 p->pc = pcx;
drhfb4e3a32016-12-30 00:09:14 +0000980 assert( pOp->p5<=4 );
drhf9c8ce32013-11-05 13:33:55 +0000981 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000982 if( pOp->p5 ){
983 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
984 "FOREIGN KEY" };
drhd9b7ec92013-11-06 14:05:21 +0000985 testcase( pOp->p5==1 );
986 testcase( pOp->p5==2 );
987 testcase( pOp->p5==3 );
988 testcase( pOp->p5==4 );
drh99f5de72016-04-30 02:59:15 +0000989 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
990 if( pOp->p4.z ){
991 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
992 }
drhd9b7ec92013-11-06 14:05:21 +0000993 }else{
drh22c17b82015-05-15 04:13:15 +0000994 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000995 }
drh99f5de72016-04-30 02:59:15 +0000996 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000997 }
drh92f02c32004-09-02 14:57:08 +0000998 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000999 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +00001000 if( rc==SQLITE_BUSY ){
drh99f5de72016-04-30 02:59:15 +00001001 p->rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00001002 }else{
drhd91c1a12013-02-09 13:58:25 +00001003 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dancb3e4b72013-07-03 19:53:05 +00001004 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +00001005 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +00001006 }
drh900b31e2007-08-28 02:27:51 +00001007 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +00001008}
drhc61053b2000-06-04 12:58:36 +00001009
drh4c583122008-01-04 22:01:03 +00001010/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001011** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +00001012**
drh9cbf3422008-01-17 16:22:13 +00001013** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +00001014*/
drh27a348c2015-04-13 19:14:06 +00001015case OP_Integer: { /* out2 */
1016 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001017 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +00001018 break;
1019}
1020
drh4c583122008-01-04 22:01:03 +00001021/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001022** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001023**
drh66a51672008-01-03 00:01:23 +00001024** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001025** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001026*/
drh27a348c2015-04-13 19:14:06 +00001027case OP_Int64: { /* out2 */
1028 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001029 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001030 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001031 break;
1032}
drh4f26d6c2004-05-26 23:25:30 +00001033
drh13573c72010-01-12 17:04:07 +00001034#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001035/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001036** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001037**
drh4c583122008-01-04 22:01:03 +00001038** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001039** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001040*/
drh27a348c2015-04-13 19:14:06 +00001041case OP_Real: { /* same as TK_FLOAT, out2 */
1042 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001043 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001044 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001045 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001046 break;
1047}
drh13573c72010-01-12 17:04:07 +00001048#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001049
drh3c84ddf2008-01-09 02:15:38 +00001050/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001051** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001052**
drh66a51672008-01-03 00:01:23 +00001053** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001054** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001055** this transformation, the length of string P4 is computed and stored
1056** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001057*/
drh27a348c2015-04-13 19:14:06 +00001058case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001059 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001060 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001061 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001062 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001063
1064#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001065 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001066 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
drh2f555112016-04-30 18:10:34 +00001067 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
drh4c583122008-01-04 22:01:03 +00001068 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001069 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001070 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001071 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001072 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001073 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001074 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001075 }
drh66a51672008-01-03 00:01:23 +00001076 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001077 pOp->p4.z = pOut->z;
1078 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001079 }
drh2f555112016-04-30 18:10:34 +00001080 testcase( rc==SQLITE_TOOBIG );
danielk197793758c82005-01-21 08:13:14 +00001081#endif
drhbb4957f2008-03-20 14:03:29 +00001082 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001083 goto too_big;
1084 }
drh2f555112016-04-30 18:10:34 +00001085 assert( rc==SQLITE_OK );
drhcbd2da92007-12-17 16:20:06 +00001086 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001087}
drhf4479502004-05-27 03:12:53 +00001088
drhf07cf6e2015-03-06 16:45:16 +00001089/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001090** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001091**
drh9cbf3422008-01-17 16:22:13 +00001092** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001093**
drh44aebff2016-05-02 10:25:42 +00001094** If P3 is not zero and the content of register P3 is equal to P5, then
drha9c18a92015-03-06 20:49:52 +00001095** the datatype of the register P2 is converted to BLOB. The content is
1096** the same sequence of bytes, it is merely interpreted as a BLOB instead
drh44aebff2016-05-02 10:25:42 +00001097** of a string, as if it had been CAST. In other words:
1098**
1099** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
drhf4479502004-05-27 03:12:53 +00001100*/
drh27a348c2015-04-13 19:14:06 +00001101case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001102 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001103 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001104 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1105 pOut->z = pOp->p4.z;
1106 pOut->n = pOp->p1;
1107 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001108 UPDATE_MAX_BLOBSIZE(pOut);
drh41d2e662015-12-01 21:23:07 +00001109#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh44aebff2016-05-02 10:25:42 +00001110 if( pOp->p3>0 ){
drh9f6168b2016-03-19 23:32:58 +00001111 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhf07cf6e2015-03-06 16:45:16 +00001112 pIn3 = &aMem[pOp->p3];
1113 assert( pIn3->flags & MEM_Int );
drh44aebff2016-05-02 10:25:42 +00001114 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
drhf07cf6e2015-03-06 16:45:16 +00001115 }
drh41d2e662015-12-01 21:23:07 +00001116#endif
danielk1977c572ef72004-05-27 09:28:41 +00001117 break;
1118}
1119
drh053a1282012-09-19 21:15:46 +00001120/* Opcode: Null P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001121** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001122**
drhb8475df2011-12-09 16:21:19 +00001123** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001124** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001125** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001126** set to NULL.
1127**
1128** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1129** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1130** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001131*/
drh27a348c2015-04-13 19:14:06 +00001132case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001133 int cnt;
drh053a1282012-09-19 21:15:46 +00001134 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001135 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001136 cnt = pOp->p3-pOp->p2;
drh9f6168b2016-03-19 23:32:58 +00001137 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001138 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drh2a1df932016-09-30 17:46:44 +00001139 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001140 while( cnt>0 ){
1141 pOut++;
1142 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001143 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001144 pOut->flags = nullFlag;
drh2a1df932016-09-30 17:46:44 +00001145 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001146 cnt--;
1147 }
drhf0863fe2005-06-12 21:35:51 +00001148 break;
1149}
1150
drh05a86c52014-02-16 01:55:49 +00001151/* Opcode: SoftNull P1 * * * *
drh72e26de2016-08-24 21:24:04 +00001152** Synopsis: r[P1]=NULL
drh05a86c52014-02-16 01:55:49 +00001153**
1154** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1155** instruction, but do not free any string or blob memory associated with
1156** the register, so that if the value was a string or blob that was
1157** previously copied using OP_SCopy, the copies will continue to be valid.
1158*/
1159case OP_SoftNull: {
drh9f6168b2016-03-19 23:32:58 +00001160 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh05a86c52014-02-16 01:55:49 +00001161 pOut = &aMem[pOp->p1];
1162 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1163 break;
1164}
drhf0863fe2005-06-12 21:35:51 +00001165
drha5750cf2014-02-07 13:20:31 +00001166/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001167** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001168**
drh9de221d2008-01-05 06:51:30 +00001169** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001170** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001171*/
drh27a348c2015-04-13 19:14:06 +00001172case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001173 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001174 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001175 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001176 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001177 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001178 break;
1179}
1180
drheaf52d82010-05-12 13:50:23 +00001181/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001182** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001183**
drheaf52d82010-05-12 13:50:23 +00001184** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001185**
drh0fd61352014-02-07 02:29:45 +00001186** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001187** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001188*/
drh27a348c2015-04-13 19:14:06 +00001189case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001190 Mem *pVar; /* Value being transferred */
1191
drheaf52d82010-05-12 13:50:23 +00001192 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh9bf755c2016-12-23 03:59:31 +00001193 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
drheaf52d82010-05-12 13:50:23 +00001194 pVar = &p->aVar[pOp->p1 - 1];
1195 if( sqlite3VdbeMemTooBig(pVar) ){
1196 goto too_big;
drh023ae032007-05-08 12:12:16 +00001197 }
drh27a348c2015-04-13 19:14:06 +00001198 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001199 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1200 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001201 break;
1202}
danielk1977295ba552004-05-19 10:34:51 +00001203
drhb21e7c72008-06-22 12:37:57 +00001204/* Opcode: Move P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001205** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001206**
drh079a3072014-03-19 14:10:55 +00001207** Move the P3 values in register P1..P1+P3-1 over into
1208** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001209** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001210** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1211** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001212*/
drhe1349cb2008-04-01 00:36:10 +00001213case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001214 int n; /* Number of registers left to copy */
1215 int p1; /* Register to copy from */
1216 int p2; /* Register to copy to */
1217
drhe09f43f2013-11-21 04:18:31 +00001218 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001219 p1 = pOp->p1;
1220 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001221 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001222 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001223
drha6c2ed92009-11-14 23:22:23 +00001224 pIn1 = &aMem[p1];
1225 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001226 do{
drh9f6168b2016-03-19 23:32:58 +00001227 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1228 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001229 assert( memIsValid(pIn1) );
1230 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001231 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001232#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001233 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001234 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001235 }
1236#endif
drhbd6789e2015-04-28 14:00:02 +00001237 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001238 REGISTER_TRACE(p2++, pOut);
1239 pIn1++;
1240 pOut++;
drh079a3072014-03-19 14:10:55 +00001241 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001242 break;
1243}
1244
drhe8e4af72012-09-21 00:04:28 +00001245/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001246** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001247**
drhe8e4af72012-09-21 00:04:28 +00001248** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001249**
1250** This instruction makes a deep copy of the value. A duplicate
1251** is made of any string or blob constant. See also OP_SCopy.
1252*/
drhe8e4af72012-09-21 00:04:28 +00001253case OP_Copy: {
1254 int n;
1255
1256 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001257 pIn1 = &aMem[pOp->p1];
1258 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001259 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001260 while( 1 ){
1261 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1262 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001263#ifdef SQLITE_DEBUG
1264 pOut->pScopyFrom = 0;
1265#endif
drhe8e4af72012-09-21 00:04:28 +00001266 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1267 if( (n--)==0 ) break;
1268 pOut++;
1269 pIn1++;
1270 }
drhe1349cb2008-04-01 00:36:10 +00001271 break;
1272}
1273
drhb1fdb2a2008-01-05 04:06:03 +00001274/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001275** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001276**
drh9cbf3422008-01-17 16:22:13 +00001277** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001278**
1279** This instruction makes a shallow copy of the value. If the value
1280** is a string or blob, then the copy is only a pointer to the
1281** original and hence if the original changes so will the copy.
1282** Worse, if the original is deallocated, the copy becomes invalid.
1283** Thus the program must guarantee that the original will not change
1284** during the lifetime of the copy. Use OP_Copy to make a complete
1285** copy.
1286*/
drh26198bb2013-10-31 11:15:09 +00001287case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001288 pIn1 = &aMem[pOp->p1];
1289 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001290 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001291 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001292#ifdef SQLITE_DEBUG
1293 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1294#endif
drh5e00f6c2001-09-13 13:46:56 +00001295 break;
1296}
drh75897232000-05-29 14:26:00 +00001297
drhfed7ac62015-10-15 18:04:59 +00001298/* Opcode: IntCopy P1 P2 * * *
1299** Synopsis: r[P2]=r[P1]
1300**
1301** Transfer the integer value held in register P1 into register P2.
1302**
1303** This is an optimized version of SCopy that works only for integer
1304** values.
1305*/
1306case OP_IntCopy: { /* out2 */
1307 pIn1 = &aMem[pOp->p1];
1308 assert( (pIn1->flags & MEM_Int)!=0 );
1309 pOut = &aMem[pOp->p2];
1310 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1311 break;
1312}
1313
drh9cbf3422008-01-17 16:22:13 +00001314/* Opcode: ResultRow P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001315** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001316**
shane21e7feb2008-05-30 15:59:49 +00001317** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001318** results. This opcode causes the sqlite3_step() call to terminate
1319** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001320** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001321** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001322*/
drh9cbf3422008-01-17 16:22:13 +00001323case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001324 Mem *pMem;
1325 int i;
1326 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001327 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +00001328 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001329
drhe6400b92013-11-13 23:48:46 +00001330#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1331 /* Run the progress counter just before returning.
1332 */
1333 if( db->xProgress!=0
1334 && nVmStep>=nProgressLimit
1335 && db->xProgress(db->pProgressArg)!=0
1336 ){
1337 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +00001338 goto abort_due_to_error;
drhe6400b92013-11-13 23:48:46 +00001339 }
1340#endif
1341
dan32b09f22009-09-23 17:29:59 +00001342 /* If this statement has violated immediate foreign key constraints, do
1343 ** not return the number of rows modified. And do not RELEASE the statement
1344 ** transaction. It needs to be rolled back. */
1345 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1346 assert( db->flags&SQLITE_CountRows );
1347 assert( p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00001348 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00001349 }
1350
danielk1977bd434552009-03-18 10:33:00 +00001351 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1352 ** DML statements invoke this opcode to return the number of rows
1353 ** modified to the user. This is the only way that a VM that
1354 ** opens a statement transaction may invoke this opcode.
1355 **
1356 ** In case this is such a statement, close any statement transaction
1357 ** opened by this VM before returning control to the user. This is to
1358 ** ensure that statement-transactions are always nested, not overlapping.
1359 ** If the open statement-transaction is not closed here, then the user
1360 ** may step another VM that opens its own statement transaction. This
1361 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001362 **
1363 ** The statement transaction is never a top-level transaction. Hence
1364 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001365 */
1366 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001367 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
drh9467abf2016-02-17 18:44:11 +00001368 assert( rc==SQLITE_OK );
danielk1977bd434552009-03-18 10:33:00 +00001369
drhd4e70eb2008-01-02 00:34:36 +00001370 /* Invalidate all ephemeral cursor row caches */
1371 p->cacheCtr = (p->cacheCtr + 2)|1;
1372
1373 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001374 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001375 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001376 */
drha6c2ed92009-11-14 23:22:23 +00001377 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001378 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001379 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001380 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001381 assert( (pMem[i].flags & MEM_Ephem)==0
1382 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001383 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001384 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001385 }
drh28039692008-03-17 16:54:01 +00001386 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001387
drh3d2a5292016-07-13 22:55:01 +00001388 if( db->mTrace & SQLITE_TRACE_ROW ){
1389 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1390 }
1391
drhd4e70eb2008-01-02 00:34:36 +00001392 /* Return SQLITE_ROW
1393 */
drhf56fa462015-04-13 21:39:54 +00001394 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001395 rc = SQLITE_ROW;
1396 goto vdbe_return;
1397}
1398
drh5b6afba2008-01-05 16:29:28 +00001399/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001400** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001401**
drh5b6afba2008-01-05 16:29:28 +00001402** Add the text in register P1 onto the end of the text in
1403** register P2 and store the result in register P3.
1404** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001405**
1406** P3 = P2 || P1
1407**
1408** It is illegal for P1 and P3 to be the same register. Sometimes,
1409** if P3 is the same register as P2, the implementation is able
1410** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001411*/
drh5b6afba2008-01-05 16:29:28 +00001412case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001413 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001414
drh3c657212009-11-17 23:59:58 +00001415 pIn1 = &aMem[pOp->p1];
1416 pIn2 = &aMem[pOp->p2];
1417 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001418 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001419 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001420 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001421 break;
drh5e00f6c2001-09-13 13:46:56 +00001422 }
drha0c06522009-06-17 22:50:41 +00001423 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001424 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001425 Stringify(pIn2, encoding);
1426 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001427 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001428 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001429 }
drh9c1905f2008-12-10 22:32:56 +00001430 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001431 goto no_mem;
1432 }
drhc91b2fd2014-03-01 18:13:23 +00001433 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001434 if( pOut!=pIn2 ){
1435 memcpy(pOut->z, pIn2->z, pIn2->n);
1436 }
1437 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001438 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001439 pOut->z[nByte+1] = 0;
1440 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001441 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001442 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001443 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001444 break;
1445}
drh75897232000-05-29 14:26:00 +00001446
drh3c84ddf2008-01-09 02:15:38 +00001447/* Opcode: Add P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001448** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001449**
drh60a713c2008-01-21 16:22:45 +00001450** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001451** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001452** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001453*/
drh3c84ddf2008-01-09 02:15:38 +00001454/* Opcode: Multiply P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001455** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001456**
drh3c84ddf2008-01-09 02:15:38 +00001457**
shane21e7feb2008-05-30 15:59:49 +00001458** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001459** and store the result in register P3.
1460** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001461*/
drh3c84ddf2008-01-09 02:15:38 +00001462/* Opcode: Subtract P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001463** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001464**
drh60a713c2008-01-21 16:22:45 +00001465** Subtract the value in register P1 from the value in register P2
1466** and store the result in register P3.
1467** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001468*/
drh9cbf3422008-01-17 16:22:13 +00001469/* Opcode: Divide P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001470** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001471**
drh60a713c2008-01-21 16:22:45 +00001472** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001473** and store the result in register P3 (P3=P2/P1). If the value in
1474** register P1 is zero, then the result is NULL. If either input is
1475** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001476*/
drh9cbf3422008-01-17 16:22:13 +00001477/* Opcode: Remainder P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001478** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001479**
drh40864a12013-11-15 18:58:37 +00001480** Compute the remainder after integer register P2 is divided by
1481** register P1 and store the result in register P3.
1482** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001483** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001484*/
drh5b6afba2008-01-05 16:29:28 +00001485case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1486case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1487case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1488case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1489case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001490 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001491 u16 flags; /* Combined MEM_* flags from both inputs */
1492 u16 type1; /* Numeric type of left operand */
1493 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001494 i64 iA; /* Integer value of left operand */
1495 i64 iB; /* Integer value of right operand */
1496 double rA; /* Real value of left operand */
1497 double rB; /* Real value of right operand */
1498
drh3c657212009-11-17 23:59:58 +00001499 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001500 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001501 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001502 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001503 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001504 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001505 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001506 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001507 iA = pIn1->u.i;
1508 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001509 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001510 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001511 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1512 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1513 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001514 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001515 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001516 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001517 iB /= iA;
drh75897232000-05-29 14:26:00 +00001518 break;
1519 }
drhbf4133c2001-10-13 02:59:08 +00001520 default: {
drh856c1032009-06-02 15:21:42 +00001521 if( iA==0 ) goto arithmetic_result_is_null;
1522 if( iA==-1 ) iA = 1;
1523 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001524 break;
1525 }
drh75897232000-05-29 14:26:00 +00001526 }
drh856c1032009-06-02 15:21:42 +00001527 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001528 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001529 }else{
drhbe707b32012-12-10 22:19:14 +00001530 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001531fp_math:
drh856c1032009-06-02 15:21:42 +00001532 rA = sqlite3VdbeRealValue(pIn1);
1533 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001534 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001535 case OP_Add: rB += rA; break;
1536 case OP_Subtract: rB -= rA; break;
1537 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001538 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001539 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001540 if( rA==(double)0 ) goto arithmetic_result_is_null;
1541 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001542 break;
1543 }
drhbf4133c2001-10-13 02:59:08 +00001544 default: {
shane75ac1de2009-06-09 18:58:52 +00001545 iA = (i64)rA;
1546 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001547 if( iA==0 ) goto arithmetic_result_is_null;
1548 if( iA==-1 ) iA = 1;
1549 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001550 break;
1551 }
drh5e00f6c2001-09-13 13:46:56 +00001552 }
drhc5a7b512010-01-13 16:25:42 +00001553#ifdef SQLITE_OMIT_FLOATING_POINT
1554 pOut->u.i = rB;
1555 MemSetTypeFlag(pOut, MEM_Int);
1556#else
drh856c1032009-06-02 15:21:42 +00001557 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001558 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001559 }
drh74eaba42014-09-18 17:52:15 +00001560 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001561 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001562 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001563 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001564 }
drhc5a7b512010-01-13 16:25:42 +00001565#endif
drh5e00f6c2001-09-13 13:46:56 +00001566 }
1567 break;
1568
drha05a7222008-01-19 03:35:58 +00001569arithmetic_result_is_null:
1570 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001571 break;
1572}
1573
drh7a957892012-02-02 17:35:43 +00001574/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001575**
drh66a51672008-01-03 00:01:23 +00001576** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001577** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1578** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001579** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001580**
drh7a957892012-02-02 17:35:43 +00001581** If P1 is not zero, then it is a register that a subsequent min() or
1582** max() aggregate will set to 1 if the current row is not the minimum or
1583** maximum. The P1 register is initialized to 0 by this instruction.
1584**
danielk1977dc1bdc42004-06-11 10:51:27 +00001585** The interface used by the implementation of the aforementioned functions
1586** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001587** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001588*/
drh9cbf3422008-01-17 16:22:13 +00001589case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001590 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001591 if( pOp->p1 ){
1592 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1593 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001594 break;
1595}
1596
drh9c7c9132015-06-26 18:16:52 +00001597/* Opcode: Function0 P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001598** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001599**
drhe2d9e7c2015-06-26 18:47:53 +00001600** Invoke a user function (P4 is a pointer to a FuncDef object that
drh98757152008-01-09 23:04:12 +00001601** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001602** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001603** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001604**
drh13449892005-09-07 21:22:45 +00001605** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001606** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001607** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001608** whether meta data associated with a user function argument using the
1609** sqlite3_set_auxdata() API may be safely retained until the next
1610** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001611**
drh9c7c9132015-06-26 18:16:52 +00001612** See also: Function, AggStep, AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001613*/
drh9c7c9132015-06-26 18:16:52 +00001614/* Opcode: Function P1 P2 P3 P4 P5
1615** Synopsis: r[P3]=func(r[P2@P5])
1616**
1617** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1618** contains a pointer to the function to be run) with P5 arguments taken
1619** from register P2 and successors. The result of the function is stored
1620** in register P3. Register P3 must not be one of the function inputs.
1621**
1622** P1 is a 32-bit bitmask indicating whether or not each argument to the
1623** function was determined to be constant at compile time. If the first
1624** argument was constant then bit 0 of P1 is set. This is used to determine
1625** whether meta data associated with a user function argument using the
1626** sqlite3_set_auxdata() API may be safely retained until the next
1627** invocation of this opcode.
1628**
1629** SQL functions are initially coded as OP_Function0 with P4 pointing
drhe2d9e7c2015-06-26 18:47:53 +00001630** to a FuncDef object. But on first evaluation, the P4 operand is
drh9c7c9132015-06-26 18:16:52 +00001631** automatically converted into an sqlite3_context object and the operation
1632** changed to this OP_Function opcode. In this way, the initialization of
1633** the sqlite3_context object occurs only once, rather than once for each
1634** evaluation of the function.
1635**
1636** See also: Function0, AggStep, AggFinal
1637*/
1638case OP_Function0: {
drh856c1032009-06-02 15:21:42 +00001639 int n;
drh9c7c9132015-06-26 18:16:52 +00001640 sqlite3_context *pCtx;
danielk197751ad0ec2004-05-24 12:39:02 +00001641
dan0c547792013-07-18 17:12:08 +00001642 assert( pOp->p4type==P4_FUNCDEF );
drh9c7c9132015-06-26 18:16:52 +00001643 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00001644 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
1645 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00001646 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00001647 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00001648 if( pCtx==0 ) goto no_mem;
1649 pCtx->pOut = 0;
1650 pCtx->pFunc = pOp->p4.pFunc;
1651 pCtx->iOp = (int)(pOp - aOp);
1652 pCtx->pVdbe = p;
1653 pCtx->argc = n;
1654 pOp->p4type = P4_FUNCCTX;
1655 pOp->p4.pCtx = pCtx;
1656 pOp->opcode = OP_Function;
1657 /* Fall through into OP_Function */
1658}
1659case OP_Function: {
1660 int i;
1661 sqlite3_context *pCtx;
1662
1663 assert( pOp->p4type==P4_FUNCCTX );
1664 pCtx = pOp->p4.pCtx;
1665
1666 /* If this function is inside of a trigger, the register array in aMem[]
1667 ** might change from one evaluation to the next. The next block of code
1668 ** checks to see if the register array has changed, and if so it
1669 ** reinitializes the relavant parts of the sqlite3_context object */
drhe2d9e7c2015-06-26 18:47:53 +00001670 pOut = &aMem[pOp->p3];
1671 if( pCtx->pOut != pOut ){
1672 pCtx->pOut = pOut;
drh9c7c9132015-06-26 18:16:52 +00001673 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1674 }
1675
1676 memAboutToChange(p, pCtx->pOut);
1677#ifdef SQLITE_DEBUG
1678 for(i=0; i<pCtx->argc; i++){
1679 assert( memIsValid(pCtx->argv[i]) );
1680 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1681 }
1682#endif
1683 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1684 pCtx->fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001685 db->lastRowid = lastRowid;
drh2d801512016-01-14 22:19:58 +00001686 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
1687 lastRowid = db->lastRowid; /* Remember rowid changes made by xSFunc */
danielk19777e18c252004-05-25 11:47:24 +00001688
drh90669c12006-01-20 15:45:36 +00001689 /* If the function returned an error, throw an exception */
drh9c7c9132015-06-26 18:16:52 +00001690 if( pCtx->fErrorOrAux ){
1691 if( pCtx->isError ){
1692 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1693 rc = pCtx->isError;
drh9b47ee32013-08-20 03:13:51 +00001694 }
drhb9626cf2016-02-22 16:04:31 +00001695 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00001696 if( rc ) goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00001697 }
1698
drh9cbf3422008-01-17 16:22:13 +00001699 /* Copy the result of the function into register P3 */
drhe2d9e7c2015-06-26 18:47:53 +00001700 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1701 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1702 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
drh023ae032007-05-08 12:12:16 +00001703 }
drh7b94e7f2011-04-04 12:29:20 +00001704
drh9c7c9132015-06-26 18:16:52 +00001705 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1706 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
drh8e0a2f92002-02-23 23:45:45 +00001707 break;
1708}
1709
drh98757152008-01-09 23:04:12 +00001710/* Opcode: BitAnd P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001711** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001712**
drh98757152008-01-09 23:04:12 +00001713** Take the bit-wise AND of the values in register P1 and P2 and
1714** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001715** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001716*/
drh98757152008-01-09 23:04:12 +00001717/* Opcode: BitOr P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001718** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001719**
drh98757152008-01-09 23:04:12 +00001720** Take the bit-wise OR of the values in register P1 and P2 and
1721** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001722** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001723*/
drh98757152008-01-09 23:04:12 +00001724/* Opcode: ShiftLeft P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001725** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001726**
drh98757152008-01-09 23:04:12 +00001727** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001728** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001729** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001730** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001731*/
drh98757152008-01-09 23:04:12 +00001732/* Opcode: ShiftRight P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001733** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001734**
drh98757152008-01-09 23:04:12 +00001735** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001736** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001737** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001738** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001739*/
drh5b6afba2008-01-05 16:29:28 +00001740case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1741case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1742case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1743case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001744 i64 iA;
1745 u64 uA;
1746 i64 iB;
1747 u8 op;
drh6810ce62004-01-31 19:22:56 +00001748
drh3c657212009-11-17 23:59:58 +00001749 pIn1 = &aMem[pOp->p1];
1750 pIn2 = &aMem[pOp->p2];
1751 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001752 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001753 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001754 break;
1755 }
drh158b9cb2011-03-05 20:59:46 +00001756 iA = sqlite3VdbeIntValue(pIn2);
1757 iB = sqlite3VdbeIntValue(pIn1);
1758 op = pOp->opcode;
1759 if( op==OP_BitAnd ){
1760 iA &= iB;
1761 }else if( op==OP_BitOr ){
1762 iA |= iB;
1763 }else if( iB!=0 ){
1764 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1765
1766 /* If shifting by a negative amount, shift in the other direction */
1767 if( iB<0 ){
1768 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1769 op = 2*OP_ShiftLeft + 1 - op;
1770 iB = iB>(-64) ? -iB : 64;
1771 }
1772
1773 if( iB>=64 ){
1774 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1775 }else{
1776 memcpy(&uA, &iA, sizeof(uA));
1777 if( op==OP_ShiftLeft ){
1778 uA <<= iB;
1779 }else{
1780 uA >>= iB;
1781 /* Sign-extend on a right shift of a negative number */
1782 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1783 }
1784 memcpy(&iA, &uA, sizeof(iA));
1785 }
drhbf4133c2001-10-13 02:59:08 +00001786 }
drh158b9cb2011-03-05 20:59:46 +00001787 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001788 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001789 break;
1790}
1791
drh8558cde2008-01-05 05:20:10 +00001792/* Opcode: AddImm P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001793** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001794**
danielk19770cdc0222008-06-26 18:04:03 +00001795** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001796** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001797**
drh8558cde2008-01-05 05:20:10 +00001798** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001799*/
drh9cbf3422008-01-17 16:22:13 +00001800case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001801 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001802 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001803 sqlite3VdbeMemIntegerify(pIn1);
1804 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001805 break;
1806}
1807
drh9cbf3422008-01-17 16:22:13 +00001808/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001809**
drh9cbf3422008-01-17 16:22:13 +00001810** Force the value in register P1 to be an integer. If the value
1811** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001812** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001813** raise an SQLITE_MISMATCH exception.
1814*/
drh9cbf3422008-01-17 16:22:13 +00001815case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001816 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001817 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001818 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001819 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001820 if( (pIn1->flags & MEM_Int)==0 ){
1821 if( pOp->p2==0 ){
1822 rc = SQLITE_MISMATCH;
1823 goto abort_due_to_error;
1824 }else{
drhf56fa462015-04-13 21:39:54 +00001825 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001826 }
drh8aff1012001-12-22 14:49:24 +00001827 }
drh8aff1012001-12-22 14:49:24 +00001828 }
drh83b301b2013-11-20 00:59:02 +00001829 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001830 break;
1831}
1832
drh13573c72010-01-12 17:04:07 +00001833#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001834/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001835**
drh2133d822008-01-03 18:44:59 +00001836** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001837**
drh8a512562005-11-14 22:29:05 +00001838** This opcode is used when extracting information from a column that
1839** has REAL affinity. Such column values may still be stored as
1840** integers, for space efficiency, but after extraction we want them
1841** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001842*/
drh9cbf3422008-01-17 16:22:13 +00001843case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001844 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001845 if( pIn1->flags & MEM_Int ){
1846 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001847 }
drh487e2622005-06-25 18:42:14 +00001848 break;
1849}
drh13573c72010-01-12 17:04:07 +00001850#endif
drh487e2622005-06-25 18:42:14 +00001851
drh8df447f2005-11-01 15:48:24 +00001852#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001853/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001854** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001855**
drh4169e432014-08-25 20:11:52 +00001856** Force the value in register P1 to be the type defined by P2.
1857**
1858** <ul>
1859** <li value="97"> TEXT
1860** <li value="98"> BLOB
1861** <li value="99"> NUMERIC
1862** <li value="100"> INTEGER
1863** <li value="101"> REAL
1864** </ul>
drh487e2622005-06-25 18:42:14 +00001865**
1866** A NULL value is not changed by this routine. It remains NULL.
1867*/
drh4169e432014-08-25 20:11:52 +00001868case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001869 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001870 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001871 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001872 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1873 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1874 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001875 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001876 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001877 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001878 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001879 UPDATE_MAX_BLOBSIZE(pIn1);
drh9467abf2016-02-17 18:44:11 +00001880 if( rc ) goto abort_due_to_error;
drh487e2622005-06-25 18:42:14 +00001881 break;
1882}
drh8a512562005-11-14 22:29:05 +00001883#endif /* SQLITE_OMIT_CAST */
1884
drh79752b62016-08-13 10:02:17 +00001885/* Opcode: Eq P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001886** Synopsis: IF r[P3]==r[P1]
drh79752b62016-08-13 10:02:17 +00001887**
1888** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
1889** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
1890** store the result of comparison in register P2.
1891**
1892** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1893** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1894** to coerce both inputs according to this affinity before the
1895** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1896** affinity is used. Note that the affinity conversions are stored
1897** back into the input registers P1 and P3. So this opcode can cause
1898** persistent changes to registers P1 and P3.
1899**
1900** Once any conversions have taken place, and neither value is NULL,
1901** the values are compared. If both values are blobs then memcmp() is
1902** used to determine the results of the comparison. If both values
1903** are text, then the appropriate collating function specified in
1904** P4 is used to do the comparison. If P4 is not specified then
1905** memcmp() is used to compare text string. If both values are
1906** numeric, then a numeric comparison is used. If the two values
1907** are of different types, then numbers are considered less than
1908** strings and strings are considered less than blobs.
1909**
1910** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1911** true or false and is never NULL. If both operands are NULL then the result
1912** of comparison is true. If either operand is NULL then the result is false.
1913** If neither operand is NULL the result is the same as it would be if
1914** the SQLITE_NULLEQ flag were omitted from P5.
1915**
1916** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001917** content of r[P2] is only changed if the new value is NULL or 0 (false).
1918** In other words, a prior r[P2] value will not be overwritten by 1 (true).
drh79752b62016-08-13 10:02:17 +00001919*/
1920/* Opcode: Ne P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001921** Synopsis: IF r[P3]!=r[P1]
drh79752b62016-08-13 10:02:17 +00001922**
1923** This works just like the Eq opcode except that the jump is taken if
1924** the operands in registers P1 and P3 are not equal. See the Eq opcode for
1925** additional information.
1926**
1927** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001928** content of r[P2] is only changed if the new value is NULL or 1 (true).
1929** In other words, a prior r[P2] value will not be overwritten by 0 (false).
drh79752b62016-08-13 10:02:17 +00001930*/
drh35573352008-01-08 23:54:25 +00001931/* Opcode: Lt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001932** Synopsis: IF r[P3]<r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001933**
drh35573352008-01-08 23:54:25 +00001934** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
drh79752b62016-08-13 10:02:17 +00001935** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
1936** the result of comparison (0 or 1 or NULL) into register P2.
drhf5905aa2002-05-26 20:54:33 +00001937**
drh35573352008-01-08 23:54:25 +00001938** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
drh79752b62016-08-13 10:02:17 +00001939** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001940** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001941**
drh35573352008-01-08 23:54:25 +00001942** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001943** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001944** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001945** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001946** affinity is used. Note that the affinity conversions are stored
1947** back into the input registers P1 and P3. So this opcode can cause
1948** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001949**
1950** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001951** the values are compared. If both values are blobs then memcmp() is
1952** used to determine the results of the comparison. If both values
1953** are text, then the appropriate collating function specified in
1954** P4 is used to do the comparison. If P4 is not specified then
1955** memcmp() is used to compare text string. If both values are
1956** numeric, then a numeric comparison is used. If the two values
1957** are of different types, then numbers are considered less than
1958** strings and strings are considered less than blobs.
drh5e00f6c2001-09-13 13:46:56 +00001959*/
drh9cbf3422008-01-17 16:22:13 +00001960/* Opcode: Le P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001961** Synopsis: IF r[P3]<=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001962**
drh35573352008-01-08 23:54:25 +00001963** This works just like the Lt opcode except that the jump is taken if
1964** the content of register P3 is less than or equal to the content of
1965** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001966*/
drh9cbf3422008-01-17 16:22:13 +00001967/* Opcode: Gt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001968** Synopsis: IF r[P3]>r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001969**
drh35573352008-01-08 23:54:25 +00001970** This works just like the Lt opcode except that the jump is taken if
1971** the content of register P3 is greater than the content of
1972** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001973*/
drh9cbf3422008-01-17 16:22:13 +00001974/* Opcode: Ge P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001975** Synopsis: IF r[P3]>=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001976**
drh35573352008-01-08 23:54:25 +00001977** This works just like the Lt opcode except that the jump is taken if
1978** the content of register P3 is greater than or equal to the content of
1979** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001980*/
drh9cbf3422008-01-17 16:22:13 +00001981case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1982case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1983case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1984case OP_Le: /* same as TK_LE, jump, in1, in3 */
1985case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1986case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh4910a762016-09-03 01:46:15 +00001987 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
drh6a2fe092009-09-23 02:29:36 +00001988 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001989 u16 flags1; /* Copy of initial value of pIn1->flags */
1990 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001991
drh3c657212009-11-17 23:59:58 +00001992 pIn1 = &aMem[pOp->p1];
1993 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001994 flags1 = pIn1->flags;
1995 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001996 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001997 /* One or both operands are NULL */
1998 if( pOp->p5 & SQLITE_NULLEQ ){
1999 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2000 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2001 ** or not both operands are null.
2002 */
2003 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00002004 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00002005 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drhc3191d22016-10-18 16:36:15 +00002006 if( (flags1&flags3&MEM_Null)!=0
drh053a1282012-09-19 21:15:46 +00002007 && (flags3&MEM_Cleared)==0
2008 ){
drh4910a762016-09-03 01:46:15 +00002009 res = 0; /* Operands are equal */
drh053a1282012-09-19 21:15:46 +00002010 }else{
drh4910a762016-09-03 01:46:15 +00002011 res = 1; /* Operands are not equal */
drh053a1282012-09-19 21:15:46 +00002012 }
drh6a2fe092009-09-23 02:29:36 +00002013 }else{
2014 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2015 ** then the result is always NULL.
2016 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2017 */
drh688852a2014-02-17 22:40:43 +00002018 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002019 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00002020 iCompare = 1; /* Operands are not equal */
danb1d6b532015-12-14 19:42:19 +00002021 memAboutToChange(p, pOut);
drh6a2fe092009-09-23 02:29:36 +00002022 MemSetTypeFlag(pOut, MEM_Null);
2023 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002024 }else{
drhf4345e42014-02-18 11:31:59 +00002025 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00002026 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00002027 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002028 }
drh6a2fe092009-09-23 02:29:36 +00002029 }
2030 break;
danielk1977a37cdde2004-05-16 11:15:36 +00002031 }
drh6a2fe092009-09-23 02:29:36 +00002032 }else{
2033 /* Neither operand is NULL. Do a comparison. */
2034 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00002035 if( affinity>=SQLITE_AFF_NUMERIC ){
drh5fd0c122016-04-04 13:46:24 +00002036 if( (flags1 | flags3)&MEM_Str ){
2037 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2038 applyNumericAffinity(pIn1,0);
drh64caee42016-09-09 19:33:00 +00002039 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
drh4b37cd42016-06-25 11:43:47 +00002040 flags3 = pIn3->flags;
drh5fd0c122016-04-04 13:46:24 +00002041 }
2042 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2043 applyNumericAffinity(pIn3,0);
2044 }
drh24a09622014-09-18 16:28:59 +00002045 }
drh64caee42016-09-09 19:33:00 +00002046 /* Handle the common case of integer comparison here, as an
2047 ** optimization, to avoid a call to sqlite3MemCompare() */
2048 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
2049 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
2050 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
2051 res = 0;
2052 goto compare_op;
2053 }
drh24a09622014-09-18 16:28:59 +00002054 }else if( affinity==SQLITE_AFF_TEXT ){
drhe5520e22015-12-31 04:34:26 +00002055 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002056 testcase( pIn1->flags & MEM_Int );
2057 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002058 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002059 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2060 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh21e19b42016-09-15 14:54:51 +00002061 assert( pIn1!=pIn3 );
drh24a09622014-09-18 16:28:59 +00002062 }
drhe5520e22015-12-31 04:34:26 +00002063 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00002064 testcase( pIn3->flags & MEM_Int );
2065 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00002066 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00002067 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2068 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00002069 }
drh6a2fe092009-09-23 02:29:36 +00002070 }
drh6a2fe092009-09-23 02:29:36 +00002071 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drh4910a762016-09-03 01:46:15 +00002072 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00002073 }
drh64caee42016-09-09 19:33:00 +00002074compare_op:
danielk1977a37cdde2004-05-16 11:15:36 +00002075 switch( pOp->opcode ){
drh4910a762016-09-03 01:46:15 +00002076 case OP_Eq: res2 = res==0; break;
2077 case OP_Ne: res2 = res; break;
2078 case OP_Lt: res2 = res<0; break;
2079 case OP_Le: res2 = res<=0; break;
2080 case OP_Gt: res2 = res>0; break;
2081 default: res2 = res>=0; break;
danielk1977a37cdde2004-05-16 11:15:36 +00002082 }
2083
drhf56fa462015-04-13 21:39:54 +00002084 /* Undo any changes made by applyAffinity() to the input registers. */
2085 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2086 pIn1->flags = flags1;
2087 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2088 pIn3->flags = flags3;
2089
drh35573352008-01-08 23:54:25 +00002090 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00002091 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00002092 iCompare = res;
2093 res2 = res2!=0; /* For this path res2 must be exactly 0 or 1 */
drh3fffbf92016-09-05 15:02:41 +00002094 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
drh79752b62016-08-13 10:02:17 +00002095 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
drh3fffbf92016-09-05 15:02:41 +00002096 ** and prevents OP_Ne from overwriting NULL with 0. This flag
2097 ** is only used in contexts where either:
2098 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2099 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2100 ** Therefore it is not necessary to check the content of r[P2] for
2101 ** NULL. */
drh79752b62016-08-13 10:02:17 +00002102 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
drh4910a762016-09-03 01:46:15 +00002103 assert( res2==0 || res2==1 );
drh3fffbf92016-09-05 15:02:41 +00002104 testcase( res2==0 && pOp->opcode==OP_Eq );
2105 testcase( res2==1 && pOp->opcode==OP_Eq );
2106 testcase( res2==0 && pOp->opcode==OP_Ne );
2107 testcase( res2==1 && pOp->opcode==OP_Ne );
drh4910a762016-09-03 01:46:15 +00002108 if( (pOp->opcode==OP_Eq)==res2 ) break;
drh79752b62016-08-13 10:02:17 +00002109 }
drh2b4ded92010-09-27 21:09:31 +00002110 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002111 MemSetTypeFlag(pOut, MEM_Int);
drh4910a762016-09-03 01:46:15 +00002112 pOut->u.i = res2;
drh35573352008-01-08 23:54:25 +00002113 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002114 }else{
drhf4345e42014-02-18 11:31:59 +00002115 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh4910a762016-09-03 01:46:15 +00002116 if( res2 ){
drhf56fa462015-04-13 21:39:54 +00002117 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002118 }
danielk1977a37cdde2004-05-16 11:15:36 +00002119 }
2120 break;
2121}
drhc9b84a12002-06-20 11:36:48 +00002122
drh79752b62016-08-13 10:02:17 +00002123/* Opcode: ElseNotEq * P2 * * *
2124**
drhfd7459e2016-09-17 17:39:01 +00002125** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2126** If result of an OP_Eq comparison on the same two operands
2127** would have be NULL or false (0), then then jump to P2.
2128** If the result of an OP_Eq comparison on the two previous operands
2129** would have been true (1), then fall through.
drh79752b62016-08-13 10:02:17 +00002130*/
2131case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */
2132 assert( pOp>aOp );
2133 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
drh4910a762016-09-03 01:46:15 +00002134 assert( pOp[-1].p5 & SQLITE_STOREP2 );
drh0f825a72016-08-13 14:17:02 +00002135 VdbeBranchTaken(iCompare!=0, 2);
2136 if( iCompare!=0 ) goto jump_to_p2;
drh79752b62016-08-13 10:02:17 +00002137 break;
2138}
2139
2140
drh0acb7e42008-06-25 00:12:41 +00002141/* Opcode: Permutation * * * P4 *
2142**
shanebe217792009-03-05 04:20:31 +00002143** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00002144** of integers in P4.
2145**
drh953f7612012-12-07 22:18:54 +00002146** The permutation is only valid until the next OP_Compare that has
2147** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2148** occur immediately prior to the OP_Compare.
drhb1702022016-01-30 00:45:18 +00002149**
2150** The first integer in the P4 integer array is the length of the array
2151** and does not become part of the permutation.
drh0acb7e42008-06-25 00:12:41 +00002152*/
2153case OP_Permutation: {
2154 assert( pOp->p4type==P4_INTARRAY );
2155 assert( pOp->p4.ai );
drhb1702022016-01-30 00:45:18 +00002156 aPermute = pOp->p4.ai + 1;
drh0acb7e42008-06-25 00:12:41 +00002157 break;
2158}
2159
drh953f7612012-12-07 22:18:54 +00002160/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002161** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002162**
drh710c4842010-08-30 01:17:20 +00002163** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2164** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002165** the comparison for use by the next OP_Jump instruct.
2166**
drh0ca10df2012-12-08 13:26:23 +00002167** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2168** determined by the most recent OP_Permutation operator. If the
2169** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2170** order.
2171**
drh0acb7e42008-06-25 00:12:41 +00002172** P4 is a KeyInfo structure that defines collating sequences and sort
2173** orders for the comparison. The permutation applies to registers
2174** only. The KeyInfo elements are used sequentially.
2175**
2176** The comparison is a sort comparison, so NULLs compare equal,
2177** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002178** and strings are less than blobs.
2179*/
2180case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002181 int n;
2182 int i;
2183 int p1;
2184 int p2;
2185 const KeyInfo *pKeyInfo;
2186 int idx;
2187 CollSeq *pColl; /* Collating sequence to use on this term */
2188 int bRev; /* True for DESCENDING sort order */
2189
drh953f7612012-12-07 22:18:54 +00002190 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002191 n = pOp->p3;
2192 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002193 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002194 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002195 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002196 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002197#if SQLITE_DEBUG
2198 if( aPermute ){
2199 int k, mx = 0;
2200 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
drh9f6168b2016-03-19 23:32:58 +00002201 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2202 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002203 }else{
drh9f6168b2016-03-19 23:32:58 +00002204 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2205 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002206 }
2207#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002208 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002209 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002210 assert( memIsValid(&aMem[p1+idx]) );
2211 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002212 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2213 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002214 assert( i<pKeyInfo->nField );
2215 pColl = pKeyInfo->aColl[i];
2216 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002217 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002218 if( iCompare ){
2219 if( bRev ) iCompare = -iCompare;
2220 break;
2221 }
drh16ee60f2008-06-20 18:13:25 +00002222 }
drh0acb7e42008-06-25 00:12:41 +00002223 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002224 break;
2225}
2226
2227/* Opcode: Jump P1 P2 P3 * *
2228**
2229** Jump to the instruction at address P1, P2, or P3 depending on whether
2230** in the most recent OP_Compare instruction the P1 vector was less than
2231** equal to, or greater than the P2 vector, respectively.
2232*/
drh0acb7e42008-06-25 00:12:41 +00002233case OP_Jump: { /* jump */
2234 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002235 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002236 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002237 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002238 }else{
drhf56fa462015-04-13 21:39:54 +00002239 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002240 }
2241 break;
2242}
2243
drh5b6afba2008-01-05 16:29:28 +00002244/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002245** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002246**
drh5b6afba2008-01-05 16:29:28 +00002247** Take the logical AND of the values in registers P1 and P2 and
2248** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002249**
drh5b6afba2008-01-05 16:29:28 +00002250** If either P1 or P2 is 0 (false) then the result is 0 even if
2251** the other input is NULL. A NULL and true or two NULLs give
2252** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002253*/
drh5b6afba2008-01-05 16:29:28 +00002254/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002255** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002256**
2257** Take the logical OR of the values in register P1 and P2 and
2258** store the answer in register P3.
2259**
2260** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2261** even if the other input is NULL. A NULL and false or two NULLs
2262** give a NULL output.
2263*/
2264case OP_And: /* same as TK_AND, in1, in2, out3 */
2265case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002266 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2267 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002268
drh3c657212009-11-17 23:59:58 +00002269 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002270 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002271 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002272 }else{
drh5b6afba2008-01-05 16:29:28 +00002273 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002274 }
drh3c657212009-11-17 23:59:58 +00002275 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002276 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002277 v2 = 2;
2278 }else{
drh5b6afba2008-01-05 16:29:28 +00002279 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002280 }
2281 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002282 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002283 v1 = and_logic[v1*3+v2];
2284 }else{
drh5b6afba2008-01-05 16:29:28 +00002285 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002286 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002287 }
drh3c657212009-11-17 23:59:58 +00002288 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002289 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002290 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002291 }else{
drh5b6afba2008-01-05 16:29:28 +00002292 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002293 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002294 }
drh5e00f6c2001-09-13 13:46:56 +00002295 break;
2296}
2297
drhe99fa2a2008-12-15 15:27:51 +00002298/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002299** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002300**
drhe99fa2a2008-12-15 15:27:51 +00002301** Interpret the value in register P1 as a boolean value. Store the
2302** boolean complement in register P2. If the value in register P1 is
2303** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002304*/
drh93952eb2009-11-13 19:43:43 +00002305case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002306 pIn1 = &aMem[pOp->p1];
2307 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002308 sqlite3VdbeMemSetNull(pOut);
2309 if( (pIn1->flags & MEM_Null)==0 ){
2310 pOut->flags = MEM_Int;
2311 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002312 }
drh5e00f6c2001-09-13 13:46:56 +00002313 break;
2314}
2315
drhe99fa2a2008-12-15 15:27:51 +00002316/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002317** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002318**
drhe99fa2a2008-12-15 15:27:51 +00002319** Interpret the content of register P1 as an integer. Store the
2320** ones-complement of the P1 value into register P2. If P1 holds
2321** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002322*/
drh93952eb2009-11-13 19:43:43 +00002323case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002324 pIn1 = &aMem[pOp->p1];
2325 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002326 sqlite3VdbeMemSetNull(pOut);
2327 if( (pIn1->flags & MEM_Null)==0 ){
2328 pOut->flags = MEM_Int;
2329 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002330 }
drhbf4133c2001-10-13 02:59:08 +00002331 break;
2332}
2333
drh48f2d3b2011-09-16 01:34:43 +00002334/* Opcode: Once P1 P2 * * *
2335**
drh9e5eb9c2016-09-18 16:08:10 +00002336** If the P1 value is equal to the P1 value on the OP_Init opcode at
2337** instruction 0, then jump to P2. If the two P1 values differ, then
2338** set the P1 value on this opcode to equal the P1 value on the OP_Init
2339** and fall through.
drh48f2d3b2011-09-16 01:34:43 +00002340*/
dan1d8cb212011-12-09 13:24:16 +00002341case OP_Once: { /* jump */
drh9e5eb9c2016-09-18 16:08:10 +00002342 assert( p->aOp[0].opcode==OP_Init );
2343 VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2);
2344 if( p->aOp[0].p1==pOp->p1 ){
drhf56fa462015-04-13 21:39:54 +00002345 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002346 }else{
drh9e5eb9c2016-09-18 16:08:10 +00002347 pOp->p1 = p->aOp[0].p1;
dan1d8cb212011-12-09 13:24:16 +00002348 }
2349 break;
2350}
2351
drh3c84ddf2008-01-09 02:15:38 +00002352/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002353**
drhef8662b2011-06-20 21:47:58 +00002354** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002355** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002356** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002357*/
drh3c84ddf2008-01-09 02:15:38 +00002358/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002359**
drhef8662b2011-06-20 21:47:58 +00002360** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002361** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002362** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002363*/
drh9cbf3422008-01-17 16:22:13 +00002364case OP_If: /* jump, in1 */
2365case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002366 int c;
drh3c657212009-11-17 23:59:58 +00002367 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002368 if( pIn1->flags & MEM_Null ){
2369 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002370 }else{
drhba0232a2005-06-06 17:27:19 +00002371#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002372 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002373#else
drh3c84ddf2008-01-09 02:15:38 +00002374 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002375#endif
drhf5905aa2002-05-26 20:54:33 +00002376 if( pOp->opcode==OP_IfNot ) c = !c;
2377 }
drh688852a2014-02-17 22:40:43 +00002378 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002379 if( c ){
drhf56fa462015-04-13 21:39:54 +00002380 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002381 }
drh5e00f6c2001-09-13 13:46:56 +00002382 break;
2383}
2384
drh830ecf92009-06-18 00:41:55 +00002385/* Opcode: IsNull P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00002386** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002387**
drh830ecf92009-06-18 00:41:55 +00002388** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002389*/
drh9cbf3422008-01-17 16:22:13 +00002390case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002391 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002392 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002393 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002394 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002395 }
drh477df4b2008-01-05 18:48:24 +00002396 break;
2397}
2398
drh98757152008-01-09 23:04:12 +00002399/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002400** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002401**
drh6a288a32008-01-07 19:20:24 +00002402** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002403*/
drh9cbf3422008-01-17 16:22:13 +00002404case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002405 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002406 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002407 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002408 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002409 }
drh5e00f6c2001-09-13 13:46:56 +00002410 break;
2411}
2412
drh3e9ca092009-09-08 01:14:48 +00002413/* Opcode: Column P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00002414** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002415**
danielk1977cfcdaef2004-05-12 07:33:33 +00002416** Interpret the data that cursor P1 points to as a structure built using
2417** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002418** information about the format of the data.) Extract the P2-th column
2419** from this record. If there are less that (P2+1)
2420** values in the record, extract a NULL.
2421**
drh9cbf3422008-01-17 16:22:13 +00002422** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002423**
danielk19771f4aa332008-01-03 09:51:55 +00002424** If the column contains fewer than P2 fields, then extract a NULL. Or,
2425** if the P4 argument is a P4_MEM use the value of the P4 argument as
2426** the result.
drh3e9ca092009-09-08 01:14:48 +00002427**
2428** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2429** then the cache of the cursor is reset prior to extracting the column.
2430** The first OP_Column against a pseudo-table after the value of the content
2431** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002432**
drhdda5c082012-03-28 13:41:10 +00002433** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2434** the result is guaranteed to only be used as the argument of a length()
2435** or typeof() function, respectively. The loading of large blobs can be
2436** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002437*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002438case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002439 int p2; /* column number to retrieve */
2440 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002441 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002442 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002443 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002444 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002445 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002446 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002447 const u8 *zData; /* Part of the record being decoded */
2448 const u8 *zHdr; /* Next unparsed byte of the header */
2449 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002450 u32 offset; /* Offset into the data */
drhc6ce38832015-10-15 21:30:24 +00002451 u64 offset64; /* 64-bit offset */
drh501932c2013-11-21 21:59:53 +00002452 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002453 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002454 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002455
dande892d92016-01-29 19:29:45 +00002456 pC = p->apCsr[pOp->p1];
drh856c1032009-06-02 15:21:42 +00002457 p2 = pOp->p2;
dande892d92016-01-29 19:29:45 +00002458
2459 /* If the cursor cache is stale, bring it up-to-date */
2460 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
drh4ca239f2016-05-19 11:12:43 +00002461 if( rc ) goto abort_due_to_error;
dande892d92016-01-29 19:29:45 +00002462
drh9f6168b2016-03-19 23:32:58 +00002463 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002464 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002465 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002466 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
danielk19776c924092007-11-12 08:09:34 +00002467 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002468 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002469 aOffset = pC->aOffset;
drh62aaa6c2015-11-21 17:27:42 +00002470 assert( pC->eCurType!=CURTYPE_VTAB );
drhc960dcb2015-11-20 19:22:01 +00002471 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2472 assert( pC->eCurType!=CURTYPE_SORTER );
drh399af1d2013-11-20 17:25:55 +00002473
drha43a02e2016-05-19 17:51:19 +00002474 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977192ac1d2004-05-10 07:17:30 +00002475 if( pC->nullRow ){
drhc960dcb2015-11-20 19:22:01 +00002476 if( pC->eCurType==CURTYPE_PSEUDO ){
2477 assert( pC->uc.pseudoTableReg>0 );
2478 pReg = &aMem[pC->uc.pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002479 assert( pReg->flags & MEM_Blob );
2480 assert( memIsValid(pReg) );
2481 pC->payloadSize = pC->szRow = avail = pReg->n;
2482 pC->aRow = (u8*)pReg->z;
2483 }else{
drh6b5631e2014-11-05 15:57:39 +00002484 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002485 goto op_column_out;
2486 }
danielk1977192ac1d2004-05-10 07:17:30 +00002487 }else{
drh06a09a82016-11-25 17:03:03 +00002488 pCrsr = pC->uc.pCursor;
drhc960dcb2015-11-20 19:22:01 +00002489 assert( pC->eCurType==CURTYPE_BTREE );
drhc8606e42013-11-20 19:28:03 +00002490 assert( pCrsr );
drha7c90c42016-06-04 20:37:10 +00002491 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2492 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2493 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail);
drh399af1d2013-11-20 17:25:55 +00002494 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2495 if( pC->payloadSize <= (u32)avail ){
2496 pC->szRow = pC->payloadSize;
drh5f7dacb2015-11-20 13:33:56 +00002497 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2498 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002499 }else{
drh399af1d2013-11-20 17:25:55 +00002500 pC->szRow = avail;
2501 }
danielk1977192ac1d2004-05-10 07:17:30 +00002502 }
drhd3194f52004-05-27 19:59:32 +00002503 pC->cacheStatus = p->cacheCtr;
drh399af1d2013-11-20 17:25:55 +00002504 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2505 pC->nHdrParsed = 0;
2506 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002507
drhc81aa2e2014-10-11 23:31:52 +00002508
drha43a02e2016-05-19 17:51:19 +00002509 if( avail<offset ){ /*OPTIMIZATION-IF-FALSE*/
drhc81aa2e2014-10-11 23:31:52 +00002510 /* pC->aRow does not have to hold the entire row, but it does at least
2511 ** need to cover the header of the record. If pC->aRow does not contain
2512 ** the complete header, then set it to zero, forcing the header to be
2513 ** dynamically allocated. */
2514 pC->aRow = 0;
2515 pC->szRow = 0;
drh848a3322015-10-16 12:53:47 +00002516
2517 /* Make sure a corrupt database has not given us an oversize header.
2518 ** Do this now to avoid an oversize memory allocation.
2519 **
2520 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2521 ** types use so much data space that there can only be 4096 and 32 of
2522 ** them, respectively. So the maximum header length results from a
2523 ** 3-byte type for each of the maximum of 32768 columns plus three
2524 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2525 */
2526 if( offset > 98307 || offset > pC->payloadSize ){
2527 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002528 goto abort_due_to_error;
drh848a3322015-10-16 12:53:47 +00002529 }
drh0eda6cd2016-05-19 16:58:42 +00002530 }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/
2531 /* The following goto is an optimization. It can be omitted and
2532 ** everything will still work. But OP_Column is measurably faster
2533 ** by skipping the subsequent conditional, which is always true.
2534 */
2535 zData = pC->aRow;
2536 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2537 goto op_column_read_header;
drhc81aa2e2014-10-11 23:31:52 +00002538 }
drh399af1d2013-11-20 17:25:55 +00002539 }
drh35cd6432009-06-05 14:17:21 +00002540
drh399af1d2013-11-20 17:25:55 +00002541 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002542 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002543 */
drhc8606e42013-11-20 19:28:03 +00002544 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002545 /* If there is more header available for parsing in the record, try
2546 ** to extract additional fields up through the p2+1-th field
drh35cd6432009-06-05 14:17:21 +00002547 */
drhc8606e42013-11-20 19:28:03 +00002548 if( pC->iHdrOffset<aOffset[0] ){
2549 /* Make sure zData points to enough of the record to cover the header. */
2550 if( pC->aRow==0 ){
2551 memset(&sMem, 0, sizeof(sMem));
drhcb3cabd2016-11-25 19:18:28 +00002552 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
drh9467abf2016-02-17 18:44:11 +00002553 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhc8606e42013-11-20 19:28:03 +00002554 zData = (u8*)sMem.z;
2555 }else{
2556 zData = pC->aRow;
drh9188b382004-05-14 21:12:22 +00002557 }
drhc8606e42013-11-20 19:28:03 +00002558
drh0c8f7602014-09-19 16:56:45 +00002559 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drh0eda6cd2016-05-19 16:58:42 +00002560 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002561 i = pC->nHdrParsed;
drhc6ce38832015-10-15 21:30:24 +00002562 offset64 = aOffset[i];
drhc8606e42013-11-20 19:28:03 +00002563 zHdr = zData + pC->iHdrOffset;
2564 zEndHdr = zData + aOffset[0];
drhc8606e42013-11-20 19:28:03 +00002565 do{
drh95fa6062015-10-16 13:50:08 +00002566 if( (t = zHdr[0])<0x80 ){
drhc8606e42013-11-20 19:28:03 +00002567 zHdr++;
drhfaf37272015-10-16 14:23:42 +00002568 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002569 }else{
drhc8606e42013-11-20 19:28:03 +00002570 zHdr += sqlite3GetVarint32(zHdr, &t);
drhfaf37272015-10-16 14:23:42 +00002571 offset64 += sqlite3VdbeSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002572 }
drhfaf37272015-10-16 14:23:42 +00002573 pC->aType[i++] = t;
drhc6ce38832015-10-15 21:30:24 +00002574 aOffset[i] = (u32)(offset64 & 0xffffffff);
drhc8606e42013-11-20 19:28:03 +00002575 }while( i<=p2 && zHdr<zEndHdr );
drh170c2762016-05-20 21:40:11 +00002576
drh8dd83622014-10-13 23:39:02 +00002577 /* The record is corrupt if any of the following are true:
2578 ** (1) the bytes of the header extend past the declared header size
drh8dd83622014-10-13 23:39:02 +00002579 ** (2) the entire header was used but not all data was used
drh8dd83622014-10-13 23:39:02 +00002580 ** (3) the end of the data extends beyond the end of the record.
drhc8606e42013-11-20 19:28:03 +00002581 */
drhc6ce38832015-10-15 21:30:24 +00002582 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2583 || (offset64 > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002584 ){
drhddb2b4a2016-03-25 12:10:32 +00002585 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
drhc8606e42013-11-20 19:28:03 +00002586 rc = SQLITE_CORRUPT_BKPT;
drh9467abf2016-02-17 18:44:11 +00002587 goto abort_due_to_error;
danielk1977dedf45b2006-01-13 17:12:01 +00002588 }
drhddb2b4a2016-03-25 12:10:32 +00002589
drh170c2762016-05-20 21:40:11 +00002590 pC->nHdrParsed = i;
2591 pC->iHdrOffset = (u32)(zHdr - zData);
2592 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
mistachkin8c7cd6a2015-12-16 21:09:53 +00002593 }else{
drh9fbc8852016-01-04 03:48:46 +00002594 t = 0;
drh9188b382004-05-14 21:12:22 +00002595 }
drhd3194f52004-05-27 19:59:32 +00002596
drhf2db3382015-04-30 20:33:25 +00002597 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002598 ** still not up to p2, that means that the record has fewer than p2
2599 ** columns. So the result will be either the default value or a NULL.
drhd3194f52004-05-27 19:59:32 +00002600 */
drhc8606e42013-11-20 19:28:03 +00002601 if( pC->nHdrParsed<=p2 ){
2602 if( pOp->p4type==P4_MEM ){
2603 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2604 }else{
drh22e8d832014-10-29 00:58:38 +00002605 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002606 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002607 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002608 }
drh95fa6062015-10-16 13:50:08 +00002609 }else{
2610 t = pC->aType[p2];
danielk1977cfcdaef2004-05-12 07:33:33 +00002611 }
danielk1977192ac1d2004-05-10 07:17:30 +00002612
drh380d6852013-11-20 20:58:00 +00002613 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002614 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002615 ** all valid.
drh9188b382004-05-14 21:12:22 +00002616 */
drhc8606e42013-11-20 19:28:03 +00002617 assert( p2<pC->nHdrParsed );
2618 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002619 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drha1851ef2016-05-20 19:51:28 +00002620 if( VdbeMemDynamic(pDest) ){
2621 sqlite3VdbeMemSetNull(pDest);
2622 }
drh95fa6062015-10-16 13:50:08 +00002623 assert( t==pC->aType[p2] );
drhc8606e42013-11-20 19:28:03 +00002624 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002625 /* This is the common case where the desired content fits on the original
2626 ** page - where the content is not on an overflow page */
drh69f6e252016-01-11 18:05:00 +00002627 zData = pC->aRow + aOffset[p2];
2628 if( t<12 ){
2629 sqlite3VdbeSerialGet(zData, t, pDest);
2630 }else{
2631 /* If the column value is a string, we need a persistent value, not
2632 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2633 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2634 */
2635 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2636 pDest->n = len = (t-12)/2;
drha1851ef2016-05-20 19:51:28 +00002637 pDest->enc = encoding;
drh69f6e252016-01-11 18:05:00 +00002638 if( pDest->szMalloc < len+2 ){
2639 pDest->flags = MEM_Null;
2640 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2641 }else{
2642 pDest->z = pDest->zMalloc;
2643 }
2644 memcpy(pDest->z, zData, len);
2645 pDest->z[len] = 0;
2646 pDest->z[len+1] = 0;
2647 pDest->flags = aFlag[t&1];
2648 }
danielk197736963fd2005-02-19 08:18:05 +00002649 }else{
drha1851ef2016-05-20 19:51:28 +00002650 pDest->enc = encoding;
drh58c96082013-12-23 11:33:32 +00002651 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002652 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2653 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2654 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002655 ){
drh2a2a6962014-09-16 18:22:44 +00002656 /* Content is irrelevant for
2657 ** 1. the typeof() function,
2658 ** 2. the length(X) function if X is a blob, and
2659 ** 3. if the content length is zero.
2660 ** So we might as well use bogus content rather than reading
drh69f6e252016-01-11 18:05:00 +00002661 ** content from disk. */
2662 static u8 aZero[8]; /* This is the bogus content */
2663 sqlite3VdbeSerialGet(aZero, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002664 }else{
drhcb3cabd2016-11-25 19:18:28 +00002665 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
drh9467abf2016-02-17 18:44:11 +00002666 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2667 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2668 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002669 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002670 }
drhd3194f52004-05-27 19:59:32 +00002671
danielk19773c9cc8d2005-01-17 03:40:08 +00002672op_column_out:
drhb7654112008-01-12 12:48:07 +00002673 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002674 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002675 break;
2676}
2677
danielk1977751de562008-04-18 09:01:15 +00002678/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002679** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002680**
2681** Apply affinities to a range of P2 registers starting with P1.
2682**
2683** P4 is a string that is P2 characters long. The nth character of the
2684** string indicates the column affinity that should be used for the nth
2685** memory cell in the range.
2686*/
2687case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002688 const char *zAffinity; /* The affinity to be applied */
2689 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002690
drh856c1032009-06-02 15:21:42 +00002691 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002692 assert( zAffinity!=0 );
2693 assert( zAffinity[pOp->p2]==0 );
2694 pIn1 = &aMem[pOp->p1];
2695 while( (cAff = *(zAffinity++))!=0 ){
drh9f6168b2016-03-19 23:32:58 +00002696 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002697 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002698 applyAffinity(pIn1, cAff, encoding);
2699 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002700 }
2701 break;
2702}
2703
drh1db639c2008-01-17 02:36:28 +00002704/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002705** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002706**
drh710c4842010-08-30 01:17:20 +00002707** Convert P2 registers beginning with P1 into the [record format]
2708** use as a data record in a database table or as a key
2709** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002710**
danielk1977751de562008-04-18 09:01:15 +00002711** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002712** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002713** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002714**
drh8a512562005-11-14 22:29:05 +00002715** The mapping from character to affinity is given by the SQLITE_AFF_
2716** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002717**
drh05883a32015-06-02 15:32:08 +00002718** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002719*/
drh1db639c2008-01-17 02:36:28 +00002720case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002721 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2722 Mem *pRec; /* The new record */
2723 u64 nData; /* Number of bytes of data space */
2724 int nHdr; /* Number of bytes of header space */
2725 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002726 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002727 int nVarint; /* Number of bytes in a varint */
2728 u32 serial_type; /* Type field */
2729 Mem *pData0; /* First field to be combined into the record */
2730 Mem *pLast; /* Last field of the record */
2731 int nField; /* Number of fields in the record */
2732 char *zAffinity; /* The affinity string for the record */
2733 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002734 int i; /* Space used in zNewRecord[] header */
2735 int j; /* Space used in zNewRecord[] content */
drhbe37c122015-10-16 14:54:17 +00002736 u32 len; /* Length of a field */
drh856c1032009-06-02 15:21:42 +00002737
drhf3218fe2004-05-28 08:21:02 +00002738 /* Assuming the record contains N fields, the record format looks
2739 ** like this:
2740 **
drh7a224de2004-06-02 01:22:02 +00002741 ** ------------------------------------------------------------------------
2742 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2743 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002744 **
drh9cbf3422008-01-17 16:22:13 +00002745 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002746 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002747 **
2748 ** Each type field is a varint representing the serial type of the
2749 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002750 ** hdr-size field is also a varint which is the offset from the beginning
2751 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002752 */
drh856c1032009-06-02 15:21:42 +00002753 nData = 0; /* Number of bytes of data space */
2754 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002755 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002756 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002757 zAffinity = pOp->p4.z;
drh9f6168b2016-03-19 23:32:58 +00002758 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002759 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002760 nField = pOp->p2;
2761 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002762 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002763
drh2b4ded92010-09-27 21:09:31 +00002764 /* Identify the output register */
2765 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2766 pOut = &aMem[pOp->p3];
2767 memAboutToChange(p, pOut);
2768
drh3e6c0602013-12-10 20:53:01 +00002769 /* Apply the requested affinity to all inputs
2770 */
2771 assert( pData0<=pLast );
2772 if( zAffinity ){
2773 pRec = pData0;
2774 do{
drh57bf4a82014-02-17 14:59:22 +00002775 applyAffinity(pRec++, *(zAffinity++), encoding);
2776 assert( zAffinity[0]==0 || pRec<=pLast );
2777 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002778 }
2779
drhf3218fe2004-05-28 08:21:02 +00002780 /* Loop through the elements that will make up the record to figure
2781 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002782 */
drh038b7bc2013-12-09 23:17:22 +00002783 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002784 do{
drh2b4ded92010-09-27 21:09:31 +00002785 assert( memIsValid(pRec) );
drhbe37c122015-10-16 14:54:17 +00002786 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
drhfdf972a2007-05-02 13:30:27 +00002787 if( pRec->flags & MEM_Zero ){
drh038b7bc2013-12-09 23:17:22 +00002788 if( nData ){
drh53e66c32015-07-24 15:49:23 +00002789 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
drh038b7bc2013-12-09 23:17:22 +00002790 }else{
2791 nZero += pRec->u.nZero;
2792 len -= pRec->u.nZero;
2793 }
drhfdf972a2007-05-02 13:30:27 +00002794 }
drh8079a0d2006-01-12 17:20:50 +00002795 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002796 testcase( serial_type==127 );
2797 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002798 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh45c3c662016-04-07 14:16:16 +00002799 if( pRec==pData0 ) break;
2800 pRec--;
2801 }while(1);
danielk19773d1bfea2004-05-14 11:00:53 +00002802
drh654858d2014-11-20 02:18:14 +00002803 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2804 ** which determines the total number of bytes in the header. The varint
2805 ** value is the size of the header in bytes including the size varint
2806 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002807 testcase( nHdr==126 );
2808 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002809 if( nHdr<=126 ){
2810 /* The common case */
2811 nHdr += 1;
2812 }else{
2813 /* Rare case of a really large header */
2814 nVarint = sqlite3VarintLen(nHdr);
2815 nHdr += nVarint;
2816 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002817 }
drh038b7bc2013-12-09 23:17:22 +00002818 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002819 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002820 goto too_big;
2821 }
drhf3218fe2004-05-28 08:21:02 +00002822
danielk1977a7a8e142008-02-13 18:25:27 +00002823 /* Make sure the output register has a buffer large enough to store
2824 ** the new record. The output register (pOp->p3) is not allowed to
2825 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002826 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002827 */
drh322f2852014-09-19 00:43:39 +00002828 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002829 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002830 }
danielk1977a7a8e142008-02-13 18:25:27 +00002831 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002832
2833 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002834 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002835 j = nHdr;
2836 assert( pData0<=pLast );
2837 pRec = pData0;
2838 do{
drhfacf47a2014-10-13 20:12:47 +00002839 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002840 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2841 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002842 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002843 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2844 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002845 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002846 }while( (++pRec)<=pLast );
2847 assert( i==nHdr );
2848 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002849
drh9f6168b2016-03-19 23:32:58 +00002850 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002851 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002852 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002853 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002854 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002855 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002856 }
drh477df4b2008-01-05 18:48:24 +00002857 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002858 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002859 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002860 break;
2861}
2862
danielk1977a5533162009-02-24 10:01:51 +00002863/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002864** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002865**
2866** Store the number of entries (an integer value) in the table or index
2867** opened by cursor P1 in register P2
2868*/
2869#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002870case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002871 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002872 BtCursor *pCrsr;
2873
drhc960dcb2015-11-20 19:22:01 +00002874 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2875 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00002876 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002877 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002878 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh9467abf2016-02-17 18:44:11 +00002879 if( rc ) goto abort_due_to_error;
drh27a348c2015-04-13 19:14:06 +00002880 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002881 pOut->u.i = nEntry;
2882 break;
2883}
2884#endif
2885
danielk1977fd7f0452008-12-17 17:30:26 +00002886/* Opcode: Savepoint P1 * * P4 *
2887**
2888** Open, release or rollback the savepoint named by parameter P4, depending
2889** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2890** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2891*/
2892case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002893 int p1; /* Value of P1 operand */
2894 char *zName; /* Name of savepoint */
2895 int nName;
2896 Savepoint *pNew;
2897 Savepoint *pSavepoint;
2898 Savepoint *pTmp;
2899 int iSavepoint;
2900 int ii;
2901
2902 p1 = pOp->p1;
2903 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002904
2905 /* Assert that the p1 parameter is valid. Also that if there is no open
2906 ** transaction, then there cannot be any savepoints.
2907 */
2908 assert( db->pSavepoint==0 || db->autoCommit==0 );
2909 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2910 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2911 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002912 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002913
2914 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002915 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002916 /* A new savepoint cannot be created if there are active write
2917 ** statements (i.e. open read/write incremental blob handles).
2918 */
drh22c17b82015-05-15 04:13:15 +00002919 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002920 rc = SQLITE_BUSY;
2921 }else{
drh856c1032009-06-02 15:21:42 +00002922 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002923
drhbe07ec52011-06-03 12:15:26 +00002924#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002925 /* This call is Ok even if this savepoint is actually a transaction
2926 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2927 ** If this is a transaction savepoint being opened, it is guaranteed
2928 ** that the db->aVTrans[] array is empty. */
2929 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002930 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2931 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002932 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002933#endif
dand9495cd2011-04-27 12:08:04 +00002934
danielk1977fd7f0452008-12-17 17:30:26 +00002935 /* Create a new savepoint structure. */
drh575fad62016-02-05 13:38:36 +00002936 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
danielk1977fd7f0452008-12-17 17:30:26 +00002937 if( pNew ){
2938 pNew->zName = (char *)&pNew[1];
2939 memcpy(pNew->zName, zName, nName+1);
2940
2941 /* If there is no open transaction, then mark this as a special
2942 ** "transaction savepoint". */
2943 if( db->autoCommit ){
2944 db->autoCommit = 0;
2945 db->isTransactionSavepoint = 1;
2946 }else{
2947 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002948 }
dan21e8d012011-03-03 20:05:59 +00002949
danielk1977fd7f0452008-12-17 17:30:26 +00002950 /* Link the new savepoint into the database handle's list. */
2951 pNew->pNext = db->pSavepoint;
2952 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002953 pNew->nDeferredCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00002954 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002955 }
2956 }
2957 }else{
drh856c1032009-06-02 15:21:42 +00002958 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002959
2960 /* Find the named savepoint. If there is no such savepoint, then an
2961 ** an error is returned to the user. */
2962 for(
drh856c1032009-06-02 15:21:42 +00002963 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002964 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002965 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002966 ){
2967 iSavepoint++;
2968 }
2969 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00002970 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002971 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002972 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002973 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002974 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002975 */
drh22c17b82015-05-15 04:13:15 +00002976 sqlite3VdbeError(p, "cannot release savepoint - "
2977 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002978 rc = SQLITE_BUSY;
2979 }else{
2980
2981 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002982 ** and this is a RELEASE command, then the current transaction
2983 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002984 */
2985 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2986 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002987 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002988 goto vdbe_return;
2989 }
danielk1977fd7f0452008-12-17 17:30:26 +00002990 db->autoCommit = 1;
2991 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002992 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002993 db->autoCommit = 0;
2994 p->rc = rc = SQLITE_BUSY;
2995 goto vdbe_return;
2996 }
danielk197734cf35d2008-12-18 18:31:38 +00002997 db->isTransactionSavepoint = 0;
2998 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002999 }else{
drh47b7fc72014-11-11 01:33:57 +00003000 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003001 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00003002 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00003003 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00003004 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00003005 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3006 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00003007 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00003008 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00003009 }
drh47b7fc72014-11-11 01:33:57 +00003010 }else{
3011 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00003012 }
3013 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00003014 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3015 if( rc!=SQLITE_OK ){
3016 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00003017 }
danielk1977fd7f0452008-12-17 17:30:26 +00003018 }
drh47b7fc72014-11-11 01:33:57 +00003019 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00003020 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00003021 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00003022 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00003023 }
3024 }
3025
3026 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3027 ** savepoints nested inside of the savepoint being operated on. */
3028 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00003029 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003030 db->pSavepoint = pTmp->pNext;
3031 sqlite3DbFree(db, pTmp);
3032 db->nSavepoint--;
3033 }
3034
dan1da40a32009-09-19 17:00:31 +00003035 /* If it is a RELEASE, then destroy the savepoint being operated on
3036 ** too. If it is a ROLLBACK TO, then set the number of deferred
3037 ** constraint violations present in the database to the value stored
3038 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00003039 if( p1==SAVEPOINT_RELEASE ){
3040 assert( pSavepoint==db->pSavepoint );
3041 db->pSavepoint = pSavepoint->pNext;
3042 sqlite3DbFree(db, pSavepoint);
3043 if( !isTransaction ){
3044 db->nSavepoint--;
3045 }
dan1da40a32009-09-19 17:00:31 +00003046 }else{
3047 db->nDeferredCons = pSavepoint->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003048 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003049 }
dand9495cd2011-04-27 12:08:04 +00003050
danea8562e2015-04-18 16:25:54 +00003051 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00003052 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3053 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3054 }
danielk1977fd7f0452008-12-17 17:30:26 +00003055 }
3056 }
drh9467abf2016-02-17 18:44:11 +00003057 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003058
3059 break;
3060}
3061
drh98757152008-01-09 23:04:12 +00003062/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00003063**
3064** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00003065** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00003066** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3067** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00003068**
3069** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00003070*/
drh9cbf3422008-01-17 16:22:13 +00003071case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00003072 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00003073 int iRollback;
danielk19771d850a72004-05-31 08:26:49 +00003074
drh856c1032009-06-02 15:21:42 +00003075 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00003076 iRollback = pOp->p2;
drhad4a4b82008-11-05 16:37:34 +00003077 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00003078 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00003079 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00003080 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00003081
drhb0c88652016-02-01 13:21:13 +00003082 if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003083 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003084 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003085 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003086 db->autoCommit = 1;
drhb0c88652016-02-01 13:21:13 +00003087 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3088 /* If this instruction implements a COMMIT and other VMs are writing
3089 ** return an error indicating that the other VMs must complete first.
3090 */
3091 sqlite3VdbeError(p, "cannot commit transaction - "
3092 "SQL statements in progress");
3093 rc = SQLITE_BUSY;
drh9467abf2016-02-17 18:44:11 +00003094 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00003095 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003096 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003097 }else{
shane7d3846a2008-12-11 02:58:26 +00003098 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003099 }
3100 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3101 p->pc = (int)(pOp - aOp);
3102 db->autoCommit = (u8)(1-desiredAutoCommit);
3103 p->rc = rc = SQLITE_BUSY;
3104 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003105 }
danielk1977bd434552009-03-18 10:33:00 +00003106 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00003107 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003108 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003109 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003110 }else{
drh900b31e2007-08-28 02:27:51 +00003111 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003112 }
drh900b31e2007-08-28 02:27:51 +00003113 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003114 }else{
drh22c17b82015-05-15 04:13:15 +00003115 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003116 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003117 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003118 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003119
3120 rc = SQLITE_ERROR;
drh9467abf2016-02-17 18:44:11 +00003121 goto abort_due_to_error;
drh663fc632002-02-02 18:49:19 +00003122 }
3123 break;
3124}
3125
drhb22f7c82014-02-06 23:56:27 +00003126/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003127**
drh05a86c52014-02-16 01:55:49 +00003128** Begin a transaction on database P1 if a transaction is not already
3129** active.
3130** If P2 is non-zero, then a write-transaction is started, or if a
3131** read-transaction is already active, it is upgraded to a write-transaction.
3132** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003133**
drh001bbcb2003-03-19 03:14:00 +00003134** P1 is the index of the database file on which the transaction is
3135** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003136** file used for temporary tables. Indices of 2 or more are used for
3137** attached databases.
drhcabb0812002-09-14 13:47:32 +00003138**
dane0af83a2009-09-08 19:15:01 +00003139** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3140** true (this flag is set if the Vdbe may modify more than one row and may
3141** throw an ABORT exception), a statement transaction may also be opened.
3142** More specifically, a statement transaction is opened iff the database
3143** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003144** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003145** VDBE to be rolled back after an error without having to roll back the
3146** entire transaction. If no error is encountered, the statement transaction
3147** will automatically commit when the VDBE halts.
3148**
drhb22f7c82014-02-06 23:56:27 +00003149** If P5!=0 then this opcode also checks the schema cookie against P3
3150** and the schema generation counter against P4.
3151** The cookie changes its value whenever the database schema changes.
3152** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003153** and that the current process needs to reread the schema. If the schema
3154** cookie in P3 differs from the schema cookie in the database header or
3155** if the schema generation counter in P4 differs from the current
3156** generation counter, then an SQLITE_SCHEMA error is raised and execution
3157** halts. The sqlite3_step() wrapper function might then reprepare the
3158** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003159*/
drh9cbf3422008-01-17 16:22:13 +00003160case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003161 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003162 int iMeta;
3163 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003164
drh1713afb2013-06-28 01:24:57 +00003165 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003166 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003167 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003168 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003169 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3170 rc = SQLITE_READONLY;
3171 goto abort_due_to_error;
3172 }
drh653b82a2009-06-22 11:10:47 +00003173 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003174
danielk197724162fe2004-06-04 06:22:00 +00003175 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003176 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
drhcbd8db32015-08-20 17:18:32 +00003177 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3178 testcase( rc==SQLITE_BUSY_RECOVERY );
drh9e9f1bd2009-10-13 15:36:51 +00003179 if( rc!=SQLITE_OK ){
drhfadd2b12016-09-19 23:39:34 +00003180 if( (rc&0xff)==SQLITE_BUSY ){
3181 p->pc = (int)(pOp - aOp);
3182 p->rc = rc;
3183 goto vdbe_return;
3184 }
danielk197724162fe2004-06-04 06:22:00 +00003185 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003186 }
dane0af83a2009-09-08 19:15:01 +00003187
3188 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003189 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003190 ){
3191 assert( sqlite3BtreeIsInTrans(pBt) );
3192 if( p->iStatement==0 ){
3193 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3194 db->nStatement++;
3195 p->iStatement = db->nSavepoint + db->nStatement;
3196 }
dana311b802011-04-26 19:21:34 +00003197
drh346506f2011-05-25 01:16:42 +00003198 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003199 if( rc==SQLITE_OK ){
3200 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3201 }
dan1da40a32009-09-19 17:00:31 +00003202
3203 /* Store the current value of the database handles deferred constraint
3204 ** counter. If the statement transaction needs to be rolled back,
3205 ** the value of this counter needs to be restored too. */
3206 p->nStmtDefCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003207 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003208 }
drhb22f7c82014-02-06 23:56:27 +00003209
drh51a74d42015-02-28 01:04:27 +00003210 /* Gather the schema version number for checking:
drh96fdcb42016-09-27 00:09:33 +00003211 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3212 ** version is checked to ensure that the schema has not changed since the
3213 ** SQL statement was prepared.
drh51a74d42015-02-28 01:04:27 +00003214 */
drhb22f7c82014-02-06 23:56:27 +00003215 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3216 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3217 }else{
3218 iGen = iMeta = 0;
3219 }
3220 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3221 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3222 sqlite3DbFree(db, p->zErrMsg);
3223 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3224 /* If the schema-cookie from the database file matches the cookie
3225 ** stored with the in-memory representation of the schema, do
3226 ** not reload the schema from the database file.
3227 **
3228 ** If virtual-tables are in use, this is not just an optimization.
3229 ** Often, v-tables store their data in other SQLite tables, which
3230 ** are queried from within xNext() and other v-table methods using
3231 ** prepared queries. If such a query is out-of-date, we do not want to
3232 ** discard the database schema, as the user code implementing the
3233 ** v-table would have to be ready for the sqlite3_vtab structure itself
3234 ** to be invalidated whenever sqlite3_step() is called from within
3235 ** a v-table method.
3236 */
3237 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3238 sqlite3ResetOneSchema(db, pOp->p1);
3239 }
3240 p->expired = 1;
3241 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003242 }
drh9467abf2016-02-17 18:44:11 +00003243 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003244 break;
3245}
3246
drhb1fdb2a2008-01-05 04:06:03 +00003247/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003248**
drh9cbf3422008-01-17 16:22:13 +00003249** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003250** P3==1 is the schema version. P3==2 is the database format.
3251** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003252** the main database file and P1==1 is the database file used to store
3253** temporary tables.
drh4a324312001-12-21 14:30:42 +00003254**
drh50e5dad2001-09-15 00:57:28 +00003255** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003256** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003257** executing this instruction.
3258*/
drh27a348c2015-04-13 19:14:06 +00003259case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003260 int iMeta;
drh856c1032009-06-02 15:21:42 +00003261 int iDb;
3262 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003263
drh1713afb2013-06-28 01:24:57 +00003264 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003265 iDb = pOp->p1;
3266 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003267 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003268 assert( iDb>=0 && iDb<db->nDb );
3269 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003270 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003271
danielk1977602b4662009-07-02 07:47:33 +00003272 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003273 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003274 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003275 break;
3276}
3277
drh98757152008-01-09 23:04:12 +00003278/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003279**
drh1861afc2016-02-01 21:48:34 +00003280** Write the integer value P3 into cookie number P2 of database P1.
3281** P2==1 is the schema version. P2==2 is the database format.
3282** P2==3 is the recommended pager cache
danielk19770d19f7a2009-06-03 11:25:07 +00003283** size, and so forth. P1==0 is the main database file and P1==1 is the
3284** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003285**
3286** A transaction must be started before executing this opcode.
3287*/
drh1861afc2016-02-01 21:48:34 +00003288case OP_SetCookie: {
drh3f7d4e42004-07-24 14:35:58 +00003289 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003290 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003291 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003292 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003293 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003294 pDb = &db->aDb[pOp->p1];
3295 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003296 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drha3b321d2004-05-11 09:31:31 +00003297 /* See note about index shifting on OP_ReadCookie */
drh1861afc2016-02-01 21:48:34 +00003298 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
danielk19770d19f7a2009-06-03 11:25:07 +00003299 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003300 /* When the schema cookie changes, record the new cookie internally */
drh1861afc2016-02-01 21:48:34 +00003301 pDb->pSchema->schema_cookie = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003302 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003303 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003304 /* Record changes in the file format */
drh1861afc2016-02-01 21:48:34 +00003305 pDb->pSchema->file_format = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003306 }
drhfd426c62006-01-30 15:34:22 +00003307 if( pOp->p1==1 ){
3308 /* Invalidate all prepared statements whenever the TEMP database
3309 ** schema is changed. Ticket #1644 */
3310 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003311 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003312 }
drh9467abf2016-02-17 18:44:11 +00003313 if( rc ) goto abort_due_to_error;
drh50e5dad2001-09-15 00:57:28 +00003314 break;
3315}
3316
drh98757152008-01-09 23:04:12 +00003317/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003318** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003319**
drhecdc7532001-09-23 02:35:53 +00003320** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003321** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003322** P3==0 means the main database, P3==1 means the database used for
3323** temporary tables, and P3>1 means used the corresponding attached
3324** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003325** values need not be contiguous but all P1 values should be small integers.
3326** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003327**
drh98757152008-01-09 23:04:12 +00003328** If P5!=0 then use the content of register P2 as the root page, not
3329** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003330**
drhb19a2bc2001-09-16 00:13:26 +00003331** There will be a read lock on the database whenever there is an
3332** open cursor. If the database was unlocked prior to this instruction
3333** then a read lock is acquired as part of this instruction. A read
3334** lock allows other processes to read the database but prohibits
3335** any other process from modifying the database. The read lock is
3336** released when all cursors are closed. If this instruction attempts
3337** to get a read lock but fails, the script terminates with an
3338** SQLITE_BUSY error code.
3339**
danielk1977d336e222009-02-20 10:58:41 +00003340** The P4 value may be either an integer (P4_INT32) or a pointer to
3341** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3342** structure, then said structure defines the content and collating
3343** sequence of the index being opened. Otherwise, if P4 is an integer
3344** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003345**
drh35263192014-07-22 20:02:19 +00003346** See also: OpenWrite, ReopenIdx
3347*/
3348/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3349** Synopsis: root=P2 iDb=P3
3350**
3351** The ReopenIdx opcode works exactly like ReadOpen except that it first
3352** checks to see if the cursor on P1 is already open with a root page
3353** number of P2 and if it is this opcode becomes a no-op. In other words,
3354** if the cursor is already open, do not reopen it.
3355**
3356** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3357** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3358** every other ReopenIdx or OpenRead for the same cursor number.
3359**
3360** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003361*/
drh98757152008-01-09 23:04:12 +00003362/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003363** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003364**
3365** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003366** page is P2. Or if P5!=0 use the content of register P2 to find the
3367** root page.
drhecdc7532001-09-23 02:35:53 +00003368**
danielk1977d336e222009-02-20 10:58:41 +00003369** The P4 value may be either an integer (P4_INT32) or a pointer to
3370** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3371** structure, then said structure defines the content and collating
3372** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003373** value, it is set to the number of columns in the table, or to the
3374** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003375**
drh001bbcb2003-03-19 03:14:00 +00003376** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003377** in read/write mode. For a given table, there can be one or more read-only
3378** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003379**
drh001bbcb2003-03-19 03:14:00 +00003380** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003381*/
drh35263192014-07-22 20:02:19 +00003382case OP_ReopenIdx: {
drh856c1032009-06-02 15:21:42 +00003383 int nField;
3384 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003385 int p2;
3386 int iDb;
drhf57b3392001-10-08 13:22:32 +00003387 int wrFlag;
3388 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003389 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003390 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003391
drhe0997b32015-03-20 14:57:50 +00003392 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003393 assert( pOp->p4type==P4_KEYINFO );
3394 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003395 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003396 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003397 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003398 }
3399 /* If the cursor is not currently open or is open on a different
3400 ** index, then fall through into OP_OpenRead to force a reopen */
drh5e00f6c2001-09-13 13:46:56 +00003401case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003402case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003403
drhe0997b32015-03-20 14:57:50 +00003404 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003405 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003406 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3407 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003408
danfa401de2009-10-16 14:55:03 +00003409 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003410 rc = SQLITE_ABORT_ROLLBACK;
drh9467abf2016-02-17 18:44:11 +00003411 goto abort_due_to_error;
danfa401de2009-10-16 14:55:03 +00003412 }
3413
drh856c1032009-06-02 15:21:42 +00003414 nField = 0;
3415 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003416 p2 = pOp->p2;
3417 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003418 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003419 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003420 pDb = &db->aDb[iDb];
3421 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003422 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003423 if( pOp->opcode==OP_OpenWrite ){
danfd261ec2015-10-22 20:54:33 +00003424 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3425 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
drh21206082011-04-04 18:22:02 +00003426 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003427 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3428 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003429 }
3430 }else{
3431 wrFlag = 0;
3432 }
dan428c2182012-08-06 18:50:11 +00003433 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003434 assert( p2>0 );
drh9f6168b2016-03-19 23:32:58 +00003435 assert( p2<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003436 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003437 assert( memIsValid(pIn2) );
3438 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003439 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003440 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003441 /* The p2 value always comes from a prior OP_CreateTable opcode and
3442 ** that opcode will always set the p2 value to 2 or more or else fail.
3443 ** If there were a failure, the prepared statement would have halted
3444 ** before reaching this instruction. */
drh9467abf2016-02-17 18:44:11 +00003445 assert( p2>=2 );
drh5edc3122001-09-13 21:53:09 +00003446 }
danielk1977d336e222009-02-20 10:58:41 +00003447 if( pOp->p4type==P4_KEYINFO ){
3448 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003449 assert( pKeyInfo->enc==ENC(db) );
3450 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003451 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003452 }else if( pOp->p4type==P4_INT32 ){
3453 nField = pOp->p4.i;
3454 }
drh653b82a2009-06-22 11:10:47 +00003455 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003456 assert( nField>=0 );
3457 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drhc960dcb2015-11-20 19:22:01 +00003458 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003459 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003460 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003461 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003462 pCur->pgnoRoot = p2;
drhb89aeb62016-01-27 15:49:32 +00003463#ifdef SQLITE_DEBUG
3464 pCur->wrFlag = wrFlag;
3465#endif
drhc960dcb2015-11-20 19:22:01 +00003466 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
danielk1977d336e222009-02-20 10:58:41 +00003467 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003468 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003469 ** SQLite used to check if the root-page flags were sane at this point
3470 ** and report database corruption if they were not, but this check has
3471 ** since moved into the btree layer. */
3472 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003473
3474open_cursor_set_hints:
3475 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3476 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
drh0403cb32015-08-14 23:57:04 +00003477 testcase( pOp->p5 & OPFLAG_BULKCSR );
drh9abe8412016-01-02 05:00:31 +00003478#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0403cb32015-08-14 23:57:04 +00003479 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3480#endif
drhc960dcb2015-11-20 19:22:01 +00003481 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
drhf7854c72015-10-27 13:24:37 +00003482 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh9467abf2016-02-17 18:44:11 +00003483 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003484 break;
3485}
3486
drh2a5d9902011-08-26 00:34:45 +00003487/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003488** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003489**
drhb9bb7c12006-06-11 23:41:55 +00003490** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003491** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003492** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003493** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003494**
drh25d3adb2010-04-05 15:11:08 +00003495** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003496** The cursor points to a BTree table if P4==0 and to a BTree index
3497** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003498** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003499**
drh2a5d9902011-08-26 00:34:45 +00003500** The P5 parameter can be a mask of the BTREE_* flags defined
3501** in btree.h. These flags control aspects of the operation of
3502** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3503** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003504*/
drha21a64d2010-04-06 22:33:55 +00003505/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003506** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003507**
3508** This opcode works the same as OP_OpenEphemeral. It has a
3509** different name to distinguish its use. Tables created using
3510** by this opcode will be used for automatically created transient
3511** indices in joins.
3512*/
3513case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003514case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003515 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003516 KeyInfo *pKeyInfo;
3517
drhd4187c72010-08-30 22:15:45 +00003518 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003519 SQLITE_OPEN_READWRITE |
3520 SQLITE_OPEN_CREATE |
3521 SQLITE_OPEN_EXCLUSIVE |
3522 SQLITE_OPEN_DELETEONCLOSE |
3523 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003524 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003525 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003526 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003527 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003528 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003529 pCx->isEphemeral = 1;
drhfbd8cbd2016-12-10 12:58:15 +00003530 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
drhd4187c72010-08-30 22:15:45 +00003531 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003532 if( rc==SQLITE_OK ){
drhfbd8cbd2016-12-10 12:58:15 +00003533 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
drh5e00f6c2001-09-13 13:46:56 +00003534 }
3535 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003536 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003537 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003538 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003539 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003540 */
drhfbd8cbd2016-12-10 12:58:15 +00003541 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003542 int pgno;
drh66a51672008-01-03 00:01:23 +00003543 assert( pOp->p4type==P4_KEYINFO );
drhfbd8cbd2016-12-10 12:58:15 +00003544 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003545 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003546 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003547 assert( pKeyInfo->db==db );
3548 assert( pKeyInfo->enc==ENC(db) );
drhfbd8cbd2016-12-10 12:58:15 +00003549 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
drh62aaa6c2015-11-21 17:27:42 +00003550 pKeyInfo, pCx->uc.pCursor);
drhc6b52df2002-01-04 03:09:29 +00003551 }
drhf0863fe2005-06-12 21:35:51 +00003552 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003553 }else{
drhfbd8cbd2016-12-10 12:58:15 +00003554 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
drh62aaa6c2015-11-21 17:27:42 +00003555 0, pCx->uc.pCursor);
drhf0863fe2005-06-12 21:35:51 +00003556 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003557 }
drh5e00f6c2001-09-13 13:46:56 +00003558 }
drh9467abf2016-02-17 18:44:11 +00003559 if( rc ) goto abort_due_to_error;
drhd4187c72010-08-30 22:15:45 +00003560 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003561 break;
3562}
3563
danfad9f9a2014-04-01 18:41:51 +00003564/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003565**
3566** This opcode works like OP_OpenEphemeral except that it opens
3567** a transient index that is specifically designed to sort large
3568** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003569**
3570** If argument P3 is non-zero, then it indicates that the sorter may
3571** assume that a stable sort considering the first P3 fields of each
3572** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003573*/
drhca892a72011-09-03 00:17:51 +00003574case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003575 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003576
drh399af1d2013-11-20 17:25:55 +00003577 assert( pOp->p1>=0 );
3578 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003579 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
dan5134d132011-09-02 10:31:11 +00003580 if( pCx==0 ) goto no_mem;
3581 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003582 assert( pCx->pKeyInfo->db==db );
3583 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003584 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh9467abf2016-02-17 18:44:11 +00003585 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003586 break;
3587}
3588
dan78d58432014-03-25 15:04:07 +00003589/* Opcode: SequenceTest P1 P2 * * *
3590** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3591**
3592** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3593** to P2. Regardless of whether or not the jump is taken, increment the
3594** the sequence value.
3595*/
3596case OP_SequenceTest: {
3597 VdbeCursor *pC;
3598 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3599 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003600 assert( isSorter(pC) );
dan78d58432014-03-25 15:04:07 +00003601 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003602 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003603 }
drh5e00f6c2001-09-13 13:46:56 +00003604 break;
3605}
3606
drh5f612292014-02-08 23:20:32 +00003607/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003608** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003609**
3610** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003611** row of data. The content of that one row is the content of memory
3612** register P2. In other words, cursor P1 becomes an alias for the
3613** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003614**
drh2d8d7ce2010-02-15 15:17:05 +00003615** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003616** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003617** individual columns using the OP_Column opcode. The OP_Column opcode
3618** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003619**
3620** P3 is the number of fields in the records that will be stored by
3621** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003622*/
drh9cbf3422008-01-17 16:22:13 +00003623case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003624 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003625
drh653b82a2009-06-22 11:10:47 +00003626 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003627 assert( pOp->p3>=0 );
drhc960dcb2015-11-20 19:22:01 +00003628 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
drh4774b132004-06-12 20:12:51 +00003629 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003630 pCx->nullRow = 1;
drhc960dcb2015-11-20 19:22:01 +00003631 pCx->uc.pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003632 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003633 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003634 break;
3635}
3636
drh98757152008-01-09 23:04:12 +00003637/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003638**
3639** Close a cursor previously opened as P1. If P1 is not
3640** currently open, this instruction is a no-op.
3641*/
drh9cbf3422008-01-17 16:22:13 +00003642case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003643 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3644 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3645 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003646 break;
3647}
3648
drh97bae792015-06-05 15:59:57 +00003649#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3650/* Opcode: ColumnsUsed P1 * * P4 *
3651**
3652** This opcode (which only exists if SQLite was compiled with
3653** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3654** table or index for cursor P1 are used. P4 is a 64-bit integer
3655** (P4_INT64) in which the first 63 bits are one for each of the
3656** first 63 columns of the table or index that are actually used
3657** by the cursor. The high-order bit is set if any column after
3658** the 64th is used.
3659*/
3660case OP_ColumnsUsed: {
3661 VdbeCursor *pC;
3662 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003663 assert( pC->eCurType==CURTYPE_BTREE );
drh97bae792015-06-05 15:59:57 +00003664 pC->maskUsed = *(u64*)pOp->p4.pI64;
3665 break;
3666}
3667#endif
3668
drh8af3f772014-07-25 18:01:06 +00003669/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003670** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003671**
danielk1977b790c6c2008-04-18 10:25:24 +00003672** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003673** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003674** to an SQL index, then P3 is the first in an array of P4 registers
3675** that are used as an unpacked index key.
3676**
3677** Reposition cursor P1 so that it points to the smallest entry that
3678** is greater than or equal to the key value. If there are no records
3679** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003680**
drhb1d607d2015-11-05 22:30:54 +00003681** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3682** opcode will always land on a record that equally equals the key, or
3683** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3684** opcode must be followed by an IdxLE opcode with the same arguments.
3685** The IdxLE opcode will be skipped if this opcode succeeds, but the
3686** IdxLE opcode will be used on subsequent loop iterations.
3687**
drh8af3f772014-07-25 18:01:06 +00003688** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003689** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003690** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003691**
drh935850e2014-05-24 17:15:15 +00003692** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003693*/
drh8af3f772014-07-25 18:01:06 +00003694/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003695** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003696**
danielk1977b790c6c2008-04-18 10:25:24 +00003697** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003698** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003699** to an SQL index, then P3 is the first in an array of P4 registers
3700** that are used as an unpacked index key.
3701**
3702** Reposition cursor P1 so that it points to the smallest entry that
3703** is greater than the key value. If there are no records greater than
3704** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003705**
drh8af3f772014-07-25 18:01:06 +00003706** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003707** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003708** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003709**
drh935850e2014-05-24 17:15:15 +00003710** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003711*/
drh8af3f772014-07-25 18:01:06 +00003712/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003713** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003714**
danielk1977b790c6c2008-04-18 10:25:24 +00003715** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003716** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003717** to an SQL index, then P3 is the first in an array of P4 registers
3718** that are used as an unpacked index key.
3719**
3720** Reposition cursor P1 so that it points to the largest entry that
3721** is less than the key value. If there are no records less than
3722** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003723**
drh8af3f772014-07-25 18:01:06 +00003724** This opcode leaves the cursor configured to move in reverse order,
3725** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003726** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003727**
drh935850e2014-05-24 17:15:15 +00003728** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003729*/
drh8af3f772014-07-25 18:01:06 +00003730/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003731** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003732**
danielk1977b790c6c2008-04-18 10:25:24 +00003733** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003734** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003735** to an SQL index, then P3 is the first in an array of P4 registers
3736** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003737**
danielk1977b790c6c2008-04-18 10:25:24 +00003738** Reposition cursor P1 so that it points to the largest entry that
3739** is less than or equal to the key value. If there are no records
3740** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003741**
drh8af3f772014-07-25 18:01:06 +00003742** This opcode leaves the cursor configured to move in reverse order,
3743** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003744** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003745**
drhb1d607d2015-11-05 22:30:54 +00003746** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3747** opcode will always land on a record that equally equals the key, or
3748** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3749** opcode must be followed by an IdxGE opcode with the same arguments.
3750** The IdxGE opcode will be skipped if this opcode succeeds, but the
3751** IdxGE opcode will be used on subsequent loop iterations.
3752**
drh935850e2014-05-24 17:15:15 +00003753** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003754*/
drh4a1d3652014-02-14 15:13:36 +00003755case OP_SeekLT: /* jump, in3 */
3756case OP_SeekLE: /* jump, in3 */
3757case OP_SeekGE: /* jump, in3 */
3758case OP_SeekGT: { /* jump, in3 */
drhb1d607d2015-11-05 22:30:54 +00003759 int res; /* Comparison result */
3760 int oc; /* Opcode */
3761 VdbeCursor *pC; /* The cursor to seek */
3762 UnpackedRecord r; /* The key to seek for */
3763 int nField; /* Number of columns or fields in the key */
3764 i64 iKey; /* The rowid we are to seek to */
drhd6b79462015-11-07 01:19:00 +00003765 int eqOnly; /* Only interested in == results */
drh80ff32f2001-11-04 18:32:46 +00003766
drh653b82a2009-06-22 11:10:47 +00003767 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003768 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003769 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003770 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00003771 assert( pC->eCurType==CURTYPE_BTREE );
drh4a1d3652014-02-14 15:13:36 +00003772 assert( OP_SeekLE == OP_SeekLT+1 );
3773 assert( OP_SeekGE == OP_SeekLT+2 );
3774 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003775 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00003776 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003777 oc = pOp->opcode;
drhd6b79462015-11-07 01:19:00 +00003778 eqOnly = 0;
drh3da046d2013-11-11 03:24:11 +00003779 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003780#ifdef SQLITE_DEBUG
3781 pC->seekOp = pOp->opcode;
3782#endif
drhe0997b32015-03-20 14:57:50 +00003783
drh3da046d2013-11-11 03:24:11 +00003784 if( pC->isTable ){
drhd6b79462015-11-07 01:19:00 +00003785 /* The BTREE_SEEK_EQ flag is only set on index cursors */
drh218c66e2016-12-27 12:35:36 +00003786 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3787 || CORRUPT_DB );
drhd6b79462015-11-07 01:19:00 +00003788
drh3da046d2013-11-11 03:24:11 +00003789 /* The input value in P3 might be of any type: integer, real, string,
3790 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003791 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003792 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003793 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003794 applyNumericAffinity(pIn3, 0);
3795 }
drh3da046d2013-11-11 03:24:11 +00003796 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003797
drh3da046d2013-11-11 03:24:11 +00003798 /* If the P3 value could not be converted into an integer without
3799 ** loss of information, then special processing is required... */
3800 if( (pIn3->flags & MEM_Int)==0 ){
3801 if( (pIn3->flags & MEM_Real)==0 ){
3802 /* If the P3 value cannot be converted into any kind of a number,
3803 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003804 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003805 break;
3806 }
drh959403f2008-12-12 17:56:16 +00003807
danaa1776f2013-11-26 18:22:59 +00003808 /* If the approximation iKey is larger than the actual real search
3809 ** term, substitute >= for > and < for <=. e.g. if the search term
3810 ** is 4.9 and the integer approximation 5:
3811 **
3812 ** (x > 4.9) -> (x >= 5)
3813 ** (x <= 4.9) -> (x < 5)
3814 */
drh74eaba42014-09-18 17:52:15 +00003815 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003816 assert( OP_SeekGE==(OP_SeekGT-1) );
3817 assert( OP_SeekLT==(OP_SeekLE-1) );
3818 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3819 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003820 }
3821
3822 /* If the approximation iKey is smaller than the actual real search
3823 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003824 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003825 assert( OP_SeekLE==(OP_SeekLT+1) );
3826 assert( OP_SeekGT==(OP_SeekGE+1) );
3827 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3828 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003829 }
drh3da046d2013-11-11 03:24:11 +00003830 }
drhc960dcb2015-11-20 19:22:01 +00003831 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003832 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003833 if( rc!=SQLITE_OK ){
3834 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003835 }
drhaa736092009-06-22 00:55:30 +00003836 }else{
drhd6b79462015-11-07 01:19:00 +00003837 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3838 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3839 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3840 */
drhc960dcb2015-11-20 19:22:01 +00003841 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
drhd6b79462015-11-07 01:19:00 +00003842 eqOnly = 1;
3843 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3844 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3845 assert( pOp[1].p1==pOp[0].p1 );
3846 assert( pOp[1].p2==pOp[0].p2 );
3847 assert( pOp[1].p3==pOp[0].p3 );
3848 assert( pOp[1].p4.i==pOp[0].p4.i );
3849 }
3850
drh3da046d2013-11-11 03:24:11 +00003851 nField = pOp->p4.i;
3852 assert( pOp->p4type==P4_INT32 );
3853 assert( nField>0 );
3854 r.pKeyInfo = pC->pKeyInfo;
3855 r.nField = (u16)nField;
3856
3857 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003858 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003859 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003860 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003861 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003862 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003863 */
dan1fed5da2014-02-25 21:01:25 +00003864 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3865 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3866 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3867 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3868 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003869
3870 r.aMem = &aMem[pOp->p3];
3871#ifdef SQLITE_DEBUG
3872 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3873#endif
drh70528d72015-11-05 20:25:09 +00003874 r.eqSeen = 0;
drhc960dcb2015-11-20 19:22:01 +00003875 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
drh3da046d2013-11-11 03:24:11 +00003876 if( rc!=SQLITE_OK ){
3877 goto abort_due_to_error;
3878 }
drhb1d607d2015-11-05 22:30:54 +00003879 if( eqOnly && r.eqSeen==0 ){
3880 assert( res!=0 );
3881 goto seek_not_found;
drh70528d72015-11-05 20:25:09 +00003882 }
drh3da046d2013-11-11 03:24:11 +00003883 }
3884 pC->deferredMoveto = 0;
3885 pC->cacheStatus = CACHE_STALE;
3886#ifdef SQLITE_TEST
3887 sqlite3_search_count++;
3888#endif
drh4a1d3652014-02-14 15:13:36 +00003889 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3890 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003891 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003892 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003893 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003894 }else{
3895 res = 0;
3896 }
3897 }else{
drh4a1d3652014-02-14 15:13:36 +00003898 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3899 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003900 res = 0;
drhc960dcb2015-11-20 19:22:01 +00003901 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
drh3da046d2013-11-11 03:24:11 +00003902 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003903 }else{
3904 /* res might be negative because the table is empty. Check to
3905 ** see if this is the case.
3906 */
drhc960dcb2015-11-20 19:22:01 +00003907 res = sqlite3BtreeEof(pC->uc.pCursor);
drh3da046d2013-11-11 03:24:11 +00003908 }
3909 }
drhb1d607d2015-11-05 22:30:54 +00003910seek_not_found:
drh3da046d2013-11-11 03:24:11 +00003911 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003912 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003913 if( res ){
drhf56fa462015-04-13 21:39:54 +00003914 goto jump_to_p2;
drhb1d607d2015-11-05 22:30:54 +00003915 }else if( eqOnly ){
3916 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3917 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
drh5e00f6c2001-09-13 13:46:56 +00003918 }
drh5e00f6c2001-09-13 13:46:56 +00003919 break;
3920}
dan71c57db2016-07-09 20:23:55 +00003921
drh8cff69d2009-11-12 19:59:44 +00003922/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003923** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003924**
drh8cff69d2009-11-12 19:59:44 +00003925** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3926** P4>0 then register P3 is the first of P4 registers that form an unpacked
3927** record.
3928**
3929** Cursor P1 is on an index btree. If the record identified by P3 and P4
3930** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003931** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003932**
drhcefc87f2014-08-01 01:40:33 +00003933** This operation leaves the cursor in a state where it can be
3934** advanced in the forward direction. The Next instruction will work,
3935** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003936**
drh6f225d02013-10-26 13:36:51 +00003937** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003938*/
drh8cff69d2009-11-12 19:59:44 +00003939/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003940** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003941**
drh8cff69d2009-11-12 19:59:44 +00003942** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3943** P4>0 then register P3 is the first of P4 registers that form an unpacked
3944** record.
3945**
3946** Cursor P1 is on an index btree. If the record identified by P3 and P4
3947** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3948** does contain an entry whose prefix matches the P3/P4 record then control
3949** falls through to the next instruction and P1 is left pointing at the
3950** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003951**
drh8af3f772014-07-25 18:01:06 +00003952** This operation leaves the cursor in a state where it cannot be
3953** advanced in either direction. In other words, the Next and Prev
3954** opcodes do not work after this operation.
3955**
drh6f225d02013-10-26 13:36:51 +00003956** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003957*/
drh6f225d02013-10-26 13:36:51 +00003958/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003959** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003960**
3961** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3962** P4>0 then register P3 is the first of P4 registers that form an unpacked
3963** record.
3964**
3965** Cursor P1 is on an index btree. If the record identified by P3 and P4
3966** contains any NULL value, jump immediately to P2. If all terms of the
3967** record are not-NULL then a check is done to determine if any row in the
3968** P1 index btree has a matching key prefix. If there are no matches, jump
3969** immediately to P2. If there is a match, fall through and leave the P1
3970** cursor pointing to the matching row.
3971**
3972** This opcode is similar to OP_NotFound with the exceptions that the
3973** branch is always taken if any part of the search key input is NULL.
3974**
drh8af3f772014-07-25 18:01:06 +00003975** This operation leaves the cursor in a state where it cannot be
3976** advanced in either direction. In other words, the Next and Prev
3977** opcodes do not work after this operation.
3978**
drh6f225d02013-10-26 13:36:51 +00003979** See also: NotFound, Found, NotExists
3980*/
3981case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003982case OP_NotFound: /* jump, in3 */
3983case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003984 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003985 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003986 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003987 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003988 int res;
drha582b012016-12-21 19:45:54 +00003989 UnpackedRecord *pFree;
drh856c1032009-06-02 15:21:42 +00003990 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003991 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003992
dan0ff297e2009-09-25 17:03:14 +00003993#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003994 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003995#endif
3996
drhaa736092009-06-22 00:55:30 +00003997 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003998 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003999 pC = p->apCsr[pOp->p1];
4000 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004001#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00004002 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00004003#endif
drh3c657212009-11-17 23:59:58 +00004004 pIn3 = &aMem[pOp->p3];
drhc960dcb2015-11-20 19:22:01 +00004005 assert( pC->eCurType==CURTYPE_BTREE );
4006 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00004007 assert( pC->isTable==0 );
4008 if( pOp->p4.i>0 ){
4009 r.pKeyInfo = pC->pKeyInfo;
4010 r.nField = (u16)pOp->p4.i;
4011 r.aMem = pIn3;
drh8aaf7bc2016-09-20 01:19:18 +00004012#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00004013 for(ii=0; ii<r.nField; ii++){
4014 assert( memIsValid(&r.aMem[ii]) );
drh8aaf7bc2016-09-20 01:19:18 +00004015 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
drh826af372014-02-08 19:12:21 +00004016 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh826af372014-02-08 19:12:21 +00004017 }
drh8aaf7bc2016-09-20 01:19:18 +00004018#endif
drh3da046d2013-11-11 03:24:11 +00004019 pIdxKey = &r;
drha582b012016-12-21 19:45:54 +00004020 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00004021 }else{
drha582b012016-12-21 19:45:54 +00004022 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
drh3da046d2013-11-11 03:24:11 +00004023 if( pIdxKey==0 ) goto no_mem;
4024 assert( pIn3->flags & MEM_Blob );
drh2eb22af2016-09-10 19:51:40 +00004025 (void)ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00004026 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh5e00f6c2001-09-13 13:46:56 +00004027 }
dan1fed5da2014-02-25 21:01:25 +00004028 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00004029 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00004030 if( pOp->opcode==OP_NoConflict ){
4031 /* For the OP_NoConflict opcode, take the jump if any of the
4032 ** input fields are NULL, since any key with a NULL will not
4033 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00004034 for(ii=0; ii<pIdxKey->nField; ii++){
4035 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00004036 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00004037 break;
drh6f225d02013-10-26 13:36:51 +00004038 }
4039 }
drh5e00f6c2001-09-13 13:46:56 +00004040 }
drhc960dcb2015-11-20 19:22:01 +00004041 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
drha582b012016-12-21 19:45:54 +00004042 if( pFree ) sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00004043 if( rc!=SQLITE_OK ){
drh9467abf2016-02-17 18:44:11 +00004044 goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00004045 }
4046 pC->seekResult = res;
4047 alreadyExists = (res==0);
4048 pC->nullRow = 1-alreadyExists;
4049 pC->deferredMoveto = 0;
4050 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004051 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00004052 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00004053 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004054 }else{
drhf56fa462015-04-13 21:39:54 +00004055 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4056 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004057 }
drh5e00f6c2001-09-13 13:46:56 +00004058 break;
4059}
4060
drheeb95652016-05-26 20:56:38 +00004061/* Opcode: SeekRowid P1 P2 P3 * *
4062** Synopsis: intkey=r[P3]
4063**
4064** P1 is the index of a cursor open on an SQL table btree (with integer
4065** keys). If register P3 does not contain an integer or if P1 does not
4066** contain a record with rowid P3 then jump immediately to P2.
4067** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4068** a record with rowid P3 then
4069** leave the cursor pointing at that record and fall through to the next
4070** instruction.
4071**
4072** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4073** the P3 register must be guaranteed to contain an integer value. With this
4074** opcode, register P3 might not contain an integer.
4075**
4076** The OP_NotFound opcode performs the same operation on index btrees
4077** (with arbitrary multi-value keys).
4078**
4079** This opcode leaves the cursor in a state where it cannot be advanced
4080** in either direction. In other words, the Next and Prev opcodes will
4081** not work following this opcode.
4082**
4083** See also: Found, NotFound, NoConflict, SeekRowid
4084*/
drh9cbf3422008-01-17 16:22:13 +00004085/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004086** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00004087**
drh261c02d2013-10-25 14:46:15 +00004088** P1 is the index of a cursor open on an SQL table btree (with integer
4089** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00004090** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4091** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4092** leave the cursor pointing at that record and fall through to the next
4093** instruction.
drh6b125452002-01-28 15:53:03 +00004094**
drheeb95652016-05-26 20:56:38 +00004095** The OP_SeekRowid opcode performs the same operation but also allows the
4096** P3 register to contain a non-integer value, in which case the jump is
4097** always taken. This opcode requires that P3 always contain an integer.
4098**
drh261c02d2013-10-25 14:46:15 +00004099** The OP_NotFound opcode performs the same operation on index btrees
4100** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00004101**
drh8af3f772014-07-25 18:01:06 +00004102** This opcode leaves the cursor in a state where it cannot be advanced
4103** in either direction. In other words, the Next and Prev opcodes will
4104** not work following this opcode.
4105**
drheeb95652016-05-26 20:56:38 +00004106** See also: Found, NotFound, NoConflict, SeekRowid
drh6b125452002-01-28 15:53:03 +00004107*/
drheeb95652016-05-26 20:56:38 +00004108case OP_SeekRowid: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00004109 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00004110 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004111 int res;
4112 u64 iKey;
4113
drh3c657212009-11-17 23:59:58 +00004114 pIn3 = &aMem[pOp->p3];
drheeb95652016-05-26 20:56:38 +00004115 if( (pIn3->flags & MEM_Int)==0 ){
4116 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4117 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4118 }
4119 /* Fall through into OP_NotExists */
4120case OP_NotExists: /* jump, in3 */
4121 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00004122 assert( pIn3->flags & MEM_Int );
4123 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4124 pC = p->apCsr[pOp->p1];
4125 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004126#ifdef SQLITE_DEBUG
4127 pC->seekOp = 0;
4128#endif
drhaa736092009-06-22 00:55:30 +00004129 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004130 assert( pC->eCurType==CURTYPE_BTREE );
4131 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00004132 assert( pCrsr!=0 );
4133 res = 0;
4134 iKey = pIn3->u.i;
4135 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004136 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004137 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004138 pC->nullRow = 0;
4139 pC->cacheStatus = CACHE_STALE;
4140 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004141 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004142 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004143 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004144 assert( rc==SQLITE_OK );
4145 if( pOp->p2==0 ){
4146 rc = SQLITE_CORRUPT_BKPT;
4147 }else{
4148 goto jump_to_p2;
4149 }
danc6157e12015-09-14 09:23:47 +00004150 }
drh9467abf2016-02-17 18:44:11 +00004151 if( rc ) goto abort_due_to_error;
drh6b125452002-01-28 15:53:03 +00004152 break;
4153}
4154
drh4c583122008-01-04 22:01:03 +00004155/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004156** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004157**
drh4c583122008-01-04 22:01:03 +00004158** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004159** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004160** The sequence number on the cursor is incremented after this
4161** instruction.
drh4db38a72005-09-01 12:16:28 +00004162*/
drh27a348c2015-04-13 19:14:06 +00004163case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004164 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4165 assert( p->apCsr[pOp->p1]!=0 );
drhc960dcb2015-11-20 19:22:01 +00004166 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
drh27a348c2015-04-13 19:14:06 +00004167 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004168 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004169 break;
4170}
4171
4172
drh98757152008-01-09 23:04:12 +00004173/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004174** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004175**
drhf0863fe2005-06-12 21:35:51 +00004176** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004177** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004178** table that cursor P1 points to. The new record number is written
4179** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004180**
dan76d462e2009-08-30 11:42:51 +00004181** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4182** the largest previously generated record number. No new record numbers are
4183** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004184** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004185** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004186** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004187*/
drh27a348c2015-04-13 19:14:06 +00004188case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004189 i64 v; /* The new rowid */
4190 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4191 int res; /* Result of an sqlite3BtreeLast() */
4192 int cnt; /* Counter to limit the number of searches */
4193 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004194 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004195
drh856c1032009-06-02 15:21:42 +00004196 v = 0;
4197 res = 0;
drh27a348c2015-04-13 19:14:06 +00004198 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004199 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4200 pC = p->apCsr[pOp->p1];
4201 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004202 assert( pC->eCurType==CURTYPE_BTREE );
4203 assert( pC->uc.pCursor!=0 );
drh98ef0f62015-06-30 01:25:52 +00004204 {
drh5cf8e8c2002-02-19 22:42:05 +00004205 /* The next rowid or record number (different terms for the same
4206 ** thing) is obtained in a two-step algorithm.
4207 **
4208 ** First we attempt to find the largest existing rowid and add one
4209 ** to that. But if the largest existing rowid is already the maximum
4210 ** positive integer, we have to fall through to the second
4211 ** probabilistic algorithm
4212 **
4213 ** The second algorithm is to select a rowid at random and see if
4214 ** it already exists in the table. If it does not exist, we have
4215 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004216 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004217 */
drhaa736092009-06-22 00:55:30 +00004218 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004219
drh75f86a42005-02-17 00:03:06 +00004220#ifdef SQLITE_32BIT_ROWID
4221# define MAX_ROWID 0x7fffffff
4222#else
drhfe2093d2005-01-20 22:48:47 +00004223 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4224 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4225 ** to provide the constant while making all compilers happy.
4226 */
danielk197764202cf2008-11-17 15:31:47 +00004227# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004228#endif
drhfe2093d2005-01-20 22:48:47 +00004229
drh5cf8e8c2002-02-19 22:42:05 +00004230 if( !pC->useRandomRowid ){
drhc960dcb2015-11-20 19:22:01 +00004231 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
drhe0670b62014-02-12 21:31:12 +00004232 if( rc!=SQLITE_OK ){
4233 goto abort_due_to_error;
4234 }
4235 if( res ){
4236 v = 1; /* IMP: R-61914-48074 */
4237 }else{
drhc960dcb2015-11-20 19:22:01 +00004238 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
drha7c90c42016-06-04 20:37:10 +00004239 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drhe0670b62014-02-12 21:31:12 +00004240 if( v>=MAX_ROWID ){
4241 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004242 }else{
drhe0670b62014-02-12 21:31:12 +00004243 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004244 }
drh3fc190c2001-09-14 03:24:23 +00004245 }
drhe0670b62014-02-12 21:31:12 +00004246 }
drh205f48e2004-11-05 00:43:11 +00004247
4248#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004249 if( pOp->p3 ){
4250 /* Assert that P3 is a valid memory cell. */
4251 assert( pOp->p3>0 );
4252 if( p->pFrame ){
4253 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004254 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004255 assert( pOp->p3<=pFrame->nMem );
4256 pMem = &pFrame->aMem[pOp->p3];
4257 }else{
4258 /* Assert that P3 is a valid memory cell. */
drh9f6168b2016-03-19 23:32:58 +00004259 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhe0670b62014-02-12 21:31:12 +00004260 pMem = &aMem[pOp->p3];
4261 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004262 }
drhe0670b62014-02-12 21:31:12 +00004263 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004264
drhe0670b62014-02-12 21:31:12 +00004265 REGISTER_TRACE(pOp->p3, pMem);
4266 sqlite3VdbeMemIntegerify(pMem);
4267 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4268 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhe77caa12016-11-02 13:18:46 +00004269 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
drhe0670b62014-02-12 21:31:12 +00004270 goto abort_due_to_error;
4271 }
4272 if( v<pMem->u.i+1 ){
4273 v = pMem->u.i + 1;
4274 }
4275 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004276 }
drhe0670b62014-02-12 21:31:12 +00004277#endif
drh5cf8e8c2002-02-19 22:42:05 +00004278 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004279 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004280 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004281 ** engine starts picking positive candidate ROWIDs at random until
4282 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004283 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4284 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004285 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004286 do{
4287 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004288 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drhc960dcb2015-11-20 19:22:01 +00004289 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004290 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004291 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004292 && (++cnt<100));
drh9467abf2016-02-17 18:44:11 +00004293 if( rc ) goto abort_due_to_error;
4294 if( res==0 ){
drhc79c7612010-01-01 18:57:48 +00004295 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004296 goto abort_due_to_error;
4297 }
drh748a52c2010-09-01 11:50:08 +00004298 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004299 }
drha11846b2004-01-07 18:52:56 +00004300 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004301 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004302 }
drh4c583122008-01-04 22:01:03 +00004303 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004304 break;
4305}
4306
danielk19771f4aa332008-01-03 09:51:55 +00004307/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004308** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004309**
jplyon5a564222003-06-02 06:15:58 +00004310** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004311** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004312** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004313** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004314** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004315**
danielk19771f4aa332008-01-03 09:51:55 +00004316** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4317** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004318** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004319** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004320**
drheaf6ae22016-11-09 20:14:34 +00004321** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4322** run faster by avoiding an unnecessary seek on cursor P1. However,
4323** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4324** seeks on the cursor or if the most recent seek used a key equal to P3.
drh3e9ca092009-09-08 01:14:48 +00004325**
4326** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4327** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4328** is part of an INSERT operation. The difference is only important to
4329** the update hook.
4330**
dan319eeb72011-03-19 08:38:50 +00004331** Parameter P4 may point to a Table structure, or may be NULL. If it is
4332** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4333** following a successful insert.
danielk19771f6eec52006-06-16 06:17:47 +00004334**
drh93aed5a2008-01-16 17:46:38 +00004335** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4336** allocated, then ownership of P2 is transferred to the pseudo-cursor
4337** and register P2 becomes ephemeral. If the cursor is changed, the
4338** value of register P2 will then change. Make sure this does not
4339** cause any problems.)
4340**
drhf0863fe2005-06-12 21:35:51 +00004341** This instruction only works on tables. The equivalent instruction
4342** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004343*/
drhe05c9292009-10-29 13:48:10 +00004344/* Opcode: InsertInt P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00004345** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004346**
4347** This works exactly like OP_Insert except that the key is the
4348** integer value P3, not the value of the integer stored in register P3.
4349*/
4350case OP_Insert:
4351case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004352 Mem *pData; /* MEM cell holding data for the record to be inserted */
4353 Mem *pKey; /* MEM cell holding key for the record */
drh3e9ca092009-09-08 01:14:48 +00004354 VdbeCursor *pC; /* Cursor to table into which insert is written */
drh3e9ca092009-09-08 01:14:48 +00004355 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4356 const char *zDb; /* database name - used by the update hook */
dan319eeb72011-03-19 08:38:50 +00004357 Table *pTab; /* Table structure - used by update and pre-update hooks */
drh74c33022016-03-30 12:56:55 +00004358 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh8eeb4462016-05-21 20:03:42 +00004359 BtreePayload x; /* Payload to be inserted */
drh856c1032009-06-02 15:21:42 +00004360
drh74c33022016-03-30 12:56:55 +00004361 op = 0;
drha6c2ed92009-11-14 23:22:23 +00004362 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004363 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004364 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004365 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004366 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004367 assert( pC->eCurType==CURTYPE_BTREE );
4368 assert( pC->uc.pCursor!=0 );
drha05a7222008-01-19 03:35:58 +00004369 assert( pC->isTable );
drhcbf1b8e2013-11-11 22:55:26 +00004370 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
drh5b6afba2008-01-05 16:29:28 +00004371 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004372
drhe05c9292009-10-29 13:48:10 +00004373 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004374 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004375 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004376 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004377 REGISTER_TRACE(pOp->p3, pKey);
drh8eeb4462016-05-21 20:03:42 +00004378 x.nKey = pKey->u.i;
drhe05c9292009-10-29 13:48:10 +00004379 }else{
4380 assert( pOp->opcode==OP_InsertInt );
drh8eeb4462016-05-21 20:03:42 +00004381 x.nKey = pOp->p3;
drhe05c9292009-10-29 13:48:10 +00004382 }
4383
drh9b1c62d2011-03-30 21:04:43 +00004384 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004385 assert( pC->isTable );
4386 assert( pC->iDb>=0 );
drh69c33822016-08-18 14:33:11 +00004387 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004388 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004389 assert( HasRowid(pTab) );
dan46c47d42011-03-01 18:42:07 +00004390 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drh74c33022016-03-30 12:56:55 +00004391 }else{
4392 pTab = 0; /* Not needed. Silence a comiler warning. */
4393 zDb = 0; /* Not needed. Silence a compiler warning. */
dan46c47d42011-03-01 18:42:07 +00004394 }
4395
drh9b1c62d2011-03-30 21:04:43 +00004396#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004397 /* Invoke the pre-update hook, if any */
4398 if( db->xPreUpdateCallback
dan319eeb72011-03-19 08:38:50 +00004399 && pOp->p4type==P4_TABLE
drh92fe38e2014-10-14 13:41:32 +00004400 && !(pOp->p5 & OPFLAG_ISUPDATE)
dan46c47d42011-03-01 18:42:07 +00004401 ){
drh8eeb4462016-05-21 20:03:42 +00004402 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
dan46c47d42011-03-01 18:42:07 +00004403 }
drh9b1c62d2011-03-30 21:04:43 +00004404#endif
dan46c47d42011-03-01 18:42:07 +00004405
drha05a7222008-01-19 03:35:58 +00004406 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh8eeb4462016-05-21 20:03:42 +00004407 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey;
drha05a7222008-01-19 03:35:58 +00004408 if( pData->flags & MEM_Null ){
drh8eeb4462016-05-21 20:03:42 +00004409 x.pData = 0;
4410 x.nData = 0;
drha05a7222008-01-19 03:35:58 +00004411 }else{
4412 assert( pData->flags & (MEM_Blob|MEM_Str) );
drh8eeb4462016-05-21 20:03:42 +00004413 x.pData = pData->z;
4414 x.nData = pData->n;
drha05a7222008-01-19 03:35:58 +00004415 }
drh3e9ca092009-09-08 01:14:48 +00004416 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4417 if( pData->flags & MEM_Zero ){
drh8eeb4462016-05-21 20:03:42 +00004418 x.nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004419 }else{
drh8eeb4462016-05-21 20:03:42 +00004420 x.nZero = 0;
drha05a7222008-01-19 03:35:58 +00004421 }
drh8eeb4462016-05-21 20:03:42 +00004422 x.pKey = 0;
4423 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
drhebf10b12013-11-25 17:38:26 +00004424 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004425 );
drha05a7222008-01-19 03:35:58 +00004426 pC->deferredMoveto = 0;
4427 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004428
drha05a7222008-01-19 03:35:58 +00004429 /* Invoke the update-hook if required. */
drh9467abf2016-02-17 18:44:11 +00004430 if( rc ) goto abort_due_to_error;
drhc556f3c2016-03-30 15:30:07 +00004431 if( db->xUpdateCallback && op ){
drh8eeb4462016-05-21 20:03:42 +00004432 db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
drha05a7222008-01-19 03:35:58 +00004433 }
drh5e00f6c2001-09-13 13:46:56 +00004434 break;
4435}
4436
dan438b8812015-09-15 15:55:15 +00004437/* Opcode: Delete P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004438**
drh5edc3122001-09-13 21:53:09 +00004439** Delete the record at which the P1 cursor is currently pointing.
4440**
drhe807bdb2016-01-21 17:06:33 +00004441** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4442** the cursor will be left pointing at either the next or the previous
4443** record in the table. If it is left pointing at the next record, then
4444** the next Next instruction will be a no-op. As a result, in this case
4445** it is ok to delete a record from within a Next loop. If
4446** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4447** left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004448**
drhdef19e32016-01-27 16:26:25 +00004449** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4450** delete one of several associated with deleting a table row and all its
4451** associated index entries. Exactly one of those deletes is the "primary"
4452** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4453** marked with the AUXDELETE flag.
drhe807bdb2016-01-21 17:06:33 +00004454**
4455** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4456** change count is incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004457**
drh91fd4d42008-01-19 20:11:25 +00004458** P1 must not be pseudo-table. It has to be a real table with
4459** multiple rows.
4460**
drh5e769a52016-09-28 16:05:53 +00004461** If P4 is not NULL then it points to a Table object. In this case either
dan319eeb72011-03-19 08:38:50 +00004462** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4463** have been positioned using OP_NotFound prior to invoking this opcode in
4464** this case. Specifically, if one is configured, the pre-update hook is
4465** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4466** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
dan46c47d42011-03-01 18:42:07 +00004467**
4468** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4469** of the memory cell that contains the value that the rowid of the row will
4470** be set to by the update.
drh5e00f6c2001-09-13 13:46:56 +00004471*/
drh9cbf3422008-01-17 16:22:13 +00004472case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004473 VdbeCursor *pC;
dan46c47d42011-03-01 18:42:07 +00004474 const char *zDb;
dan319eeb72011-03-19 08:38:50 +00004475 Table *pTab;
dan46c47d42011-03-01 18:42:07 +00004476 int opflags;
drh91fd4d42008-01-19 20:11:25 +00004477
dan46c47d42011-03-01 18:42:07 +00004478 opflags = pOp->p2;
drh653b82a2009-06-22 11:10:47 +00004479 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4480 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004481 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004482 assert( pC->eCurType==CURTYPE_BTREE );
4483 assert( pC->uc.pCursor!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004484 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004485
drhb53a5a92014-10-12 22:37:22 +00004486#ifdef SQLITE_DEBUG
dan438b8812015-09-15 15:55:15 +00004487 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4488 /* If p5 is zero, the seek operation that positioned the cursor prior to
4489 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4490 ** the row that is being deleted */
drha7c90c42016-06-04 20:37:10 +00004491 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh92fe38e2014-10-14 13:41:32 +00004492 assert( pC->movetoTarget==iKey );
drhb53a5a92014-10-12 22:37:22 +00004493 }
4494#endif
drh91fd4d42008-01-19 20:11:25 +00004495
dan438b8812015-09-15 15:55:15 +00004496 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4497 ** the name of the db to pass as to it. Also set local pTab to a copy
4498 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4499 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4500 ** VdbeCursor.movetoTarget to the current rowid. */
drhc556f3c2016-03-30 15:30:07 +00004501 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004502 assert( pC->iDb>=0 );
drhc556f3c2016-03-30 15:30:07 +00004503 assert( pOp->p4.pTab!=0 );
drh69c33822016-08-18 14:33:11 +00004504 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004505 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004506 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
drha7c90c42016-06-04 20:37:10 +00004507 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
dan438b8812015-09-15 15:55:15 +00004508 }
drh74c33022016-03-30 12:56:55 +00004509 }else{
4510 zDb = 0; /* Not needed. Silence a compiler warning. */
4511 pTab = 0; /* Not needed. Silence a compiler warning. */
drh92fe38e2014-10-14 13:41:32 +00004512 }
dan46c47d42011-03-01 18:42:07 +00004513
drh9b1c62d2011-03-30 21:04:43 +00004514#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004515 /* Invoke the pre-update-hook if required. */
dan438b8812015-09-15 15:55:15 +00004516 if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
dan46c47d42011-03-01 18:42:07 +00004517 assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );
4518 sqlite3VdbePreUpdateHook(p, pC,
4519 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
drh92fe38e2014-10-14 13:41:32 +00004520 zDb, pTab, pC->movetoTarget,
dan37db03b2011-03-16 19:59:18 +00004521 pOp->p3
dan46c47d42011-03-01 18:42:07 +00004522 );
4523 }
dan46c47d42011-03-01 18:42:07 +00004524 if( opflags & OPFLAG_ISNOOP ) break;
drhc556f3c2016-03-30 15:30:07 +00004525#endif
drhb53a5a92014-10-12 22:37:22 +00004526
drhdef19e32016-01-27 16:26:25 +00004527 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4528 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
drhe807bdb2016-01-21 17:06:33 +00004529 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
drhdef19e32016-01-27 16:26:25 +00004530 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
drhb89aeb62016-01-27 15:49:32 +00004531
4532#ifdef SQLITE_DEBUG
dane61bbf42016-01-28 17:06:17 +00004533 if( p->pFrame==0 ){
4534 if( pC->isEphemeral==0
4535 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4536 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4537 ){
4538 nExtraDelete++;
4539 }
4540 if( pOp->p2 & OPFLAG_NCHANGE ){
4541 nExtraDelete--;
4542 }
drhb89aeb62016-01-27 15:49:32 +00004543 }
4544#endif
4545
drhc960dcb2015-11-20 19:22:01 +00004546 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00004547 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00004548 pC->seekResult = 0;
drhd3e1af42016-02-25 18:54:30 +00004549 if( rc ) goto abort_due_to_error;
danielk197794eb6a12005-12-15 15:22:08 +00004550
drh91fd4d42008-01-19 20:11:25 +00004551 /* Invoke the update-hook if required. */
dan46c47d42011-03-01 18:42:07 +00004552 if( opflags & OPFLAG_NCHANGE ){
4553 p->nChange++;
drhc556f3c2016-03-30 15:30:07 +00004554 if( db->xUpdateCallback && HasRowid(pTab) ){
drh92fe38e2014-10-14 13:41:32 +00004555 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
dan438b8812015-09-15 15:55:15 +00004556 pC->movetoTarget);
4557 assert( pC->iDb>=0 );
dan46c47d42011-03-01 18:42:07 +00004558 }
drh5e00f6c2001-09-13 13:46:56 +00004559 }
dan438b8812015-09-15 15:55:15 +00004560
rdcb0c374f2004-02-20 22:53:38 +00004561 break;
4562}
drhb7f1d9a2009-09-08 02:27:58 +00004563/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004564**
drhb7f1d9a2009-09-08 02:27:58 +00004565** The value of the change counter is copied to the database handle
4566** change counter (returned by subsequent calls to sqlite3_changes()).
4567** Then the VMs internal change counter resets to 0.
4568** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004569*/
drh9cbf3422008-01-17 16:22:13 +00004570case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004571 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004572 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004573 break;
4574}
4575
drh1153c7b2013-11-01 22:02:56 +00004576/* Opcode: SorterCompare P1 P2 P3 P4
drh72e26de2016-08-24 21:24:04 +00004577** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004578**
drh1153c7b2013-11-01 22:02:56 +00004579** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004580** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004581** the sorter cursor currently points to. Only the first P4 fields
4582** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004583**
4584** If either P3 or the sorter contains a NULL in one of their significant
4585** fields (not counting the P4 fields at the end which are ignored) then
4586** the comparison is assumed to be equal.
4587**
4588** Fall through to next instruction if the two records compare equal to
4589** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004590*/
4591case OP_SorterCompare: {
4592 VdbeCursor *pC;
4593 int res;
drhac502322014-07-30 13:56:48 +00004594 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004595
4596 pC = p->apCsr[pOp->p1];
4597 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004598 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004599 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004600 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004601 res = 0;
drhac502322014-07-30 13:56:48 +00004602 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004603 VdbeBranchTaken(res!=0,2);
drh9467abf2016-02-17 18:44:11 +00004604 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00004605 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004606 break;
4607};
4608
drh6cf4a7d2014-10-13 13:00:58 +00004609/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004610** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004611**
4612** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004613** Then clear the column header cache on cursor P3.
4614**
4615** This opcode is normally use to move a record out of the sorter and into
4616** a register that is the source for a pseudo-table cursor created using
4617** OpenPseudo. That pseudo-table cursor is the one that is identified by
4618** parameter P3. Clearing the P3 column cache as part of this opcode saves
4619** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004620*/
4621case OP_SorterData: {
4622 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004623
dan5134d132011-09-02 10:31:11 +00004624 pOut = &aMem[pOp->p2];
4625 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004626 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004627 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004628 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004629 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9467abf2016-02-17 18:44:11 +00004630 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00004631 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004632 break;
4633}
4634
drh98757152008-01-09 23:04:12 +00004635/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004636** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004637**
drh9057fc72016-11-25 19:32:32 +00004638** Write into register P2 the complete row content for the row at
4639** which cursor P1 is currently pointing.
drh98757152008-01-09 23:04:12 +00004640** There is no interpretation of the data.
4641** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004642** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004643**
drh9057fc72016-11-25 19:32:32 +00004644** If cursor P1 is an index, then the content is the key of the row.
4645** If cursor P2 is a table, then the content extracted is the data.
drh143f3c42004-01-07 20:37:52 +00004646**
drhde4fcfd2008-01-19 23:50:26 +00004647** If the P1 cursor must be pointing to a valid row (not a NULL row)
4648** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004649*/
danielk1977a7a8e142008-02-13 18:25:27 +00004650case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004651 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004652 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004653 u32 n;
drh70ce3f02003-04-15 19:22:22 +00004654
drha6c2ed92009-11-14 23:22:23 +00004655 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004656 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004657
drh653b82a2009-06-22 11:10:47 +00004658 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4659 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004660 assert( pC!=0 );
4661 assert( pC->eCurType==CURTYPE_BTREE );
drh14da87f2013-11-20 21:51:33 +00004662 assert( isSorter(pC)==0 );
drhde4fcfd2008-01-19 23:50:26 +00004663 assert( pC->nullRow==0 );
drhc960dcb2015-11-20 19:22:01 +00004664 assert( pC->uc.pCursor!=0 );
4665 pCrsr = pC->uc.pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004666
drh9057fc72016-11-25 19:32:32 +00004667 /* The OP_RowData opcodes always follow OP_NotExists or
drheeb95652016-05-26 20:56:38 +00004668 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4669 ** that might invalidate the cursor.
4670 ** If this where not the case, on of the following assert()s
drhc22284f2014-10-13 16:02:20 +00004671 ** would fail. Should this ever change (because of changes in the code
4672 ** generator) then the fix would be to insert a call to
4673 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004674 */
4675 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004676 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4677#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004678 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004679 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4680#endif
drh9a65f2c2009-06-22 19:05:40 +00004681
drha7c90c42016-06-04 20:37:10 +00004682 n = sqlite3BtreePayloadSize(pCrsr);
drhd66c4f82016-06-04 20:58:35 +00004683 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drha7c90c42016-06-04 20:37:10 +00004684 goto too_big;
drhde4fcfd2008-01-19 23:50:26 +00004685 }
drh722246e2014-10-07 23:02:24 +00004686 testcase( n==0 );
4687 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004688 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004689 }
danielk1977a7a8e142008-02-13 18:25:27 +00004690 pOut->n = n;
4691 MemSetTypeFlag(pOut, MEM_Blob);
drhcb3cabd2016-11-25 19:18:28 +00004692 rc = sqlite3BtreePayload(pCrsr, 0, n, pOut->z);
drh9467abf2016-02-17 18:44:11 +00004693 if( rc ) goto abort_due_to_error;
danielk197796cb76f2008-01-04 13:24:28 +00004694 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004695 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004696 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004697 break;
4698}
4699
drh2133d822008-01-03 18:44:59 +00004700/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004701** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004702**
drh2133d822008-01-03 18:44:59 +00004703** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004704** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004705**
4706** P1 can be either an ordinary table or a virtual table. There used to
4707** be a separate OP_VRowid opcode for use with virtual tables, but this
4708** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004709*/
drh27a348c2015-04-13 19:14:06 +00004710case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004711 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004712 i64 v;
drh856c1032009-06-02 15:21:42 +00004713 sqlite3_vtab *pVtab;
4714 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004715
drh27a348c2015-04-13 19:14:06 +00004716 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004717 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4718 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004719 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004720 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004721 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004722 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004723 break;
4724 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004725 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004726#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00004727 }else if( pC->eCurType==CURTYPE_VTAB ){
4728 assert( pC->uc.pVCur!=0 );
4729 pVtab = pC->uc.pVCur->pVtab;
drh044925b2009-04-22 17:15:02 +00004730 pModule = pVtab->pModule;
4731 assert( pModule->xRowid );
drhc960dcb2015-11-20 19:22:01 +00004732 rc = pModule->xRowid(pC->uc.pVCur, &v);
dan016f7812013-08-21 17:35:48 +00004733 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00004734 if( rc ) goto abort_due_to_error;
drh044925b2009-04-22 17:15:02 +00004735#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004736 }else{
drhc960dcb2015-11-20 19:22:01 +00004737 assert( pC->eCurType==CURTYPE_BTREE );
4738 assert( pC->uc.pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004739 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004740 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004741 if( pC->nullRow ){
4742 pOut->flags = MEM_Null;
4743 break;
4744 }
drha7c90c42016-06-04 20:37:10 +00004745 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh5e00f6c2001-09-13 13:46:56 +00004746 }
drh4c583122008-01-04 22:01:03 +00004747 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004748 break;
4749}
4750
drh9cbf3422008-01-17 16:22:13 +00004751/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004752**
4753** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004754** that occur while the cursor is on the null row will always
4755** write a NULL.
drh17f71932002-02-21 12:01:27 +00004756*/
drh9cbf3422008-01-17 16:22:13 +00004757case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004758 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004759
drh653b82a2009-06-22 11:10:47 +00004760 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4761 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004762 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004763 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004764 pC->cacheStatus = CACHE_STALE;
drhc960dcb2015-11-20 19:22:01 +00004765 if( pC->eCurType==CURTYPE_BTREE ){
4766 assert( pC->uc.pCursor!=0 );
4767 sqlite3BtreeClearCursor(pC->uc.pCursor);
danielk1977be51a652008-10-08 17:58:48 +00004768 }
drh17f71932002-02-21 12:01:27 +00004769 break;
4770}
4771
danb18e60b2015-04-01 16:18:00 +00004772/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004773**
drh8af3f772014-07-25 18:01:06 +00004774** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004775** will refer to the last entry in the database table or index.
4776** If the table or index is empty and P2>0, then jump immediately to P2.
4777** If P2 is 0 or if the table or index is not empty, fall through
4778** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004779**
4780** This opcode leaves the cursor configured to move in reverse order,
4781** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004782** configured to use Prev, not Next.
drhd6ef5af2016-11-15 04:00:24 +00004783**
4784** If P3 is -1, then the cursor is positioned at the end of the btree
4785** for the purpose of appending a new entry onto the btree. In that
4786** case P2 must be 0. It is assumed that the cursor is used only for
4787** appending and so if the cursor is valid, then the cursor must already
4788** be pointing at the end of the btree and so no changes are made to
4789** the cursor.
drh9562b552002-02-19 15:00:07 +00004790*/
drh9cbf3422008-01-17 16:22:13 +00004791case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004792 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004793 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004794 int res;
drh9562b552002-02-19 15:00:07 +00004795
drh653b82a2009-06-22 11:10:47 +00004796 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4797 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004798 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004799 assert( pC->eCurType==CURTYPE_BTREE );
4800 pCrsr = pC->uc.pCursor;
drh7abc5402011-10-22 21:00:46 +00004801 res = 0;
drh3da046d2013-11-11 03:24:11 +00004802 assert( pCrsr!=0 );
danb18e60b2015-04-01 16:18:00 +00004803 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004804#ifdef SQLITE_DEBUG
4805 pC->seekOp = OP_Last;
4806#endif
drhd6ef5af2016-11-15 04:00:24 +00004807 if( pOp->p3==0 || !sqlite3BtreeCursorIsValidNN(pCrsr) ){
4808 rc = sqlite3BtreeLast(pCrsr, &res);
4809 pC->nullRow = (u8)res;
4810 pC->deferredMoveto = 0;
4811 pC->cacheStatus = CACHE_STALE;
4812 if( rc ) goto abort_due_to_error;
4813 if( pOp->p2>0 ){
4814 VdbeBranchTaken(res!=0,2);
4815 if( res ) goto jump_to_p2;
4816 }
4817 }else{
4818 assert( pOp->p2==0 );
drh9562b552002-02-19 15:00:07 +00004819 }
4820 break;
4821}
4822
drh0342b1f2005-09-01 03:07:44 +00004823
drh6bd4dc62016-12-23 16:05:22 +00004824/* Opcode: SorterSort P1 P2 * * *
4825**
4826** After all records have been inserted into the Sorter object
4827** identified by P1, invoke this opcode to actually do the sorting.
4828** Jump to P2 if there are no records to be sorted.
4829**
4830** This opcode is an alias for OP_Sort and OP_Rewind that is used
4831** for Sorter objects.
4832*/
drh9cbf3422008-01-17 16:22:13 +00004833/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004834**
4835** This opcode does exactly the same thing as OP_Rewind except that
4836** it increments an undocumented global variable used for testing.
4837**
4838** Sorting is accomplished by writing records into a sorting index,
4839** then rewinding that index and playing it back from beginning to
4840** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4841** rewinding so that the global variable will be incremented and
4842** regression tests can determine whether or not the optimizer is
4843** correctly optimizing out sorts.
4844*/
drhc6aff302011-09-01 15:32:47 +00004845case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004846case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004847#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004848 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004849 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004850#endif
drh9b47ee32013-08-20 03:13:51 +00004851 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004852 /* Fall through into OP_Rewind */
4853}
drh9cbf3422008-01-17 16:22:13 +00004854/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004855**
drhf0863fe2005-06-12 21:35:51 +00004856** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004857** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004858** If the table or index is empty, jump immediately to P2.
4859** If the table or index is not empty, fall through to the following
4860** instruction.
drh8af3f772014-07-25 18:01:06 +00004861**
4862** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004863** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004864** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004865*/
drh9cbf3422008-01-17 16:22:13 +00004866case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004867 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004868 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004869 int res;
drh5e00f6c2001-09-13 13:46:56 +00004870
drh653b82a2009-06-22 11:10:47 +00004871 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4872 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004873 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004874 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004875 res = 1;
drh8af3f772014-07-25 18:01:06 +00004876#ifdef SQLITE_DEBUG
4877 pC->seekOp = OP_Rewind;
4878#endif
dan689ab892011-08-12 15:02:00 +00004879 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004880 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004881 }else{
drhc960dcb2015-11-20 19:22:01 +00004882 assert( pC->eCurType==CURTYPE_BTREE );
4883 pCrsr = pC->uc.pCursor;
dana205a482011-08-27 18:48:57 +00004884 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004885 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004886 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004887 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004888 }
drh9467abf2016-02-17 18:44:11 +00004889 if( rc ) goto abort_due_to_error;
drh9c1905f2008-12-10 22:32:56 +00004890 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004891 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004892 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004893 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004894 break;
4895}
4896
drh0fd61352014-02-07 02:29:45 +00004897/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004898**
4899** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004900** table or index. If there are no more key/value pairs then fall through
4901** to the following instruction. But if the cursor advance was successful,
4902** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004903**
drh5dad9a32014-07-25 18:37:42 +00004904** The Next opcode is only valid following an SeekGT, SeekGE, or
4905** OP_Rewind opcode used to position the cursor. Next is not allowed
4906** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004907**
drhf93cd942013-11-21 03:12:25 +00004908** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4909** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004910**
drhe39a7322014-02-03 14:04:11 +00004911** The P3 value is a hint to the btree implementation. If P3==1, that
4912** means P1 is an SQL index and that this instruction could have been
4913** omitted if that index had been unique. P3 is usually 0. P3 is
4914** always either 0 or 1.
4915**
dana205a482011-08-27 18:48:57 +00004916** P4 is always of type P4_ADVANCE. The function pointer points to
4917** sqlite3BtreeNext().
4918**
drhafc266a2010-03-31 17:47:44 +00004919** If P5 is positive and the jump is taken, then event counter
4920** number P5-1 in the prepared statement is incremented.
4921**
drhf93cd942013-11-21 03:12:25 +00004922** See also: Prev, NextIfOpen
4923*/
drh0fd61352014-02-07 02:29:45 +00004924/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004925**
drh5dad9a32014-07-25 18:37:42 +00004926** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004927** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004928*/
drh0fd61352014-02-07 02:29:45 +00004929/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004930**
4931** Back up cursor P1 so that it points to the previous key/data pair in its
4932** table or index. If there is no previous key/value pairs then fall through
4933** to the following instruction. But if the cursor backup was successful,
4934** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004935**
drh8af3f772014-07-25 18:01:06 +00004936**
drh5dad9a32014-07-25 18:37:42 +00004937** The Prev opcode is only valid following an SeekLT, SeekLE, or
4938** OP_Last opcode used to position the cursor. Prev is not allowed
4939** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004940**
drhf93cd942013-11-21 03:12:25 +00004941** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4942** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004943**
drhe39a7322014-02-03 14:04:11 +00004944** The P3 value is a hint to the btree implementation. If P3==1, that
4945** means P1 is an SQL index and that this instruction could have been
4946** omitted if that index had been unique. P3 is usually 0. P3 is
4947** always either 0 or 1.
4948**
dana205a482011-08-27 18:48:57 +00004949** P4 is always of type P4_ADVANCE. The function pointer points to
4950** sqlite3BtreePrevious().
4951**
drhafc266a2010-03-31 17:47:44 +00004952** If P5 is positive and the jump is taken, then event counter
4953** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004954*/
drh0fd61352014-02-07 02:29:45 +00004955/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004956**
drh5dad9a32014-07-25 18:37:42 +00004957** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004958** open it behaves a no-op.
4959*/
drh6bd4dc62016-12-23 16:05:22 +00004960/* Opcode: SorterNext P1 P2 * * P5
4961**
4962** This opcode works just like OP_Next except that P1 must be a
4963** sorter object for which the OP_SorterSort opcode has been
4964** invoked. This opcode advances the cursor to the next sorted
4965** record, or jumps to P2 if there are no more sorted records.
4966*/
drhf93cd942013-11-21 03:12:25 +00004967case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004968 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004969 int res;
drh8721ce42001-11-07 14:22:00 +00004970
drhf93cd942013-11-21 03:12:25 +00004971 pC = p->apCsr[pOp->p1];
4972 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004973 res = 0;
drhf93cd942013-11-21 03:12:25 +00004974 rc = sqlite3VdbeSorterNext(db, pC, &res);
4975 goto next_tail;
4976case OP_PrevIfOpen: /* jump */
4977case OP_NextIfOpen: /* jump */
4978 if( p->apCsr[pOp->p1]==0 ) break;
4979 /* Fall through */
4980case OP_Prev: /* jump */
4981case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004982 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004983 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004984 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004985 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004986 assert( pC!=0 );
4987 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00004988 assert( pC->eCurType==CURTYPE_BTREE );
drhe39a7322014-02-03 14:04:11 +00004989 assert( res==0 || (res==1 && pC->isTable==0) );
4990 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004991 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4992 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4993 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4994 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004995
4996 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4997 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4998 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4999 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00005000 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00005001 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
5002 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5003 || pC->seekOp==OP_Last );
5004
drhc960dcb2015-11-20 19:22:01 +00005005 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
drhf93cd942013-11-21 03:12:25 +00005006next_tail:
drha3460582008-07-11 21:02:53 +00005007 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00005008 VdbeBranchTaken(res==0,2);
drh9467abf2016-02-17 18:44:11 +00005009 if( rc ) goto abort_due_to_error;
drha3460582008-07-11 21:02:53 +00005010 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00005011 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00005012 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00005013#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00005014 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00005015#endif
drhf56fa462015-04-13 21:39:54 +00005016 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00005017 }else{
5018 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00005019 }
drh49afe3a2013-07-10 03:05:14 +00005020 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005021}
5022
drh9b4eaeb2016-11-09 00:10:33 +00005023/* Opcode: IdxInsert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00005024** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005025**
drhef8662b2011-06-20 21:47:58 +00005026** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00005027** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00005028** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00005029**
drhfb8c56f2016-11-09 01:19:25 +00005030** If P4 is not zero, then it is the number of values in the unpacked
drh9b4eaeb2016-11-09 00:10:33 +00005031** key of reg(P2). In that case, P3 is the index of the first register
5032** for the unpacked key. The availability of the unpacked key can sometimes
5033** be an optimization.
5034**
5035** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5036** that this insert is likely to be an append.
drhe4d90812007-03-29 05:51:49 +00005037**
mistachkin21a919f2014-02-07 03:28:02 +00005038** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5039** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
5040** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00005041**
drheaf6ae22016-11-09 20:14:34 +00005042** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5043** run faster by avoiding an unnecessary seek on cursor P1. However,
5044** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5045** seeks on the cursor or if the most recent seek used a key equivalent
5046** to P2.
drh0fd61352014-02-07 02:29:45 +00005047**
drhf0863fe2005-06-12 21:35:51 +00005048** This instruction only works for indices. The equivalent instruction
5049** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00005050*/
drhf013e202016-10-15 18:37:05 +00005051/* Opcode: SorterInsert P1 P2 * * *
5052** Synopsis: key=r[P2]
5053**
5054** Register P2 holds an SQL index key made using the
5055** MakeRecord instructions. This opcode writes that key
5056** into the sorter P1. Data for the entry is nil.
5057*/
drhca892a72011-09-03 00:17:51 +00005058case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00005059case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00005060 VdbeCursor *pC;
drh8eeb4462016-05-21 20:03:42 +00005061 BtreePayload x;
drh856c1032009-06-02 15:21:42 +00005062
drh653b82a2009-06-22 11:10:47 +00005063 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5064 pC = p->apCsr[pOp->p1];
5065 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00005066 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00005067 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00005068 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00005069 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhc960dcb2015-11-20 19:22:01 +00005070 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
drh3da046d2013-11-11 03:24:11 +00005071 assert( pC->isTable==0 );
5072 rc = ExpandBlob(pIn2);
drh9467abf2016-02-17 18:44:11 +00005073 if( rc ) goto abort_due_to_error;
5074 if( pOp->opcode==OP_SorterInsert ){
5075 rc = sqlite3VdbeSorterWrite(pC, pIn2);
5076 }else{
drh8eeb4462016-05-21 20:03:42 +00005077 x.nKey = pIn2->n;
5078 x.pKey = pIn2->z;
drh9b4eaeb2016-11-09 00:10:33 +00005079 x.aMem = aMem + pOp->p3;
5080 x.nMem = (u16)pOp->p4.i;
5081 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5082 (pOp->p5 & OPFLAG_APPEND)!=0,
drh9467abf2016-02-17 18:44:11 +00005083 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5084 );
5085 assert( pC->deferredMoveto==0 );
5086 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005087 }
drh9467abf2016-02-17 18:44:11 +00005088 if( rc) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005089 break;
5090}
5091
drhd1d38482008-10-07 23:46:38 +00005092/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00005093** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00005094**
drhe14006d2008-03-25 17:23:32 +00005095** The content of P3 registers starting at register P2 form
5096** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00005097** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00005098*/
drhe14006d2008-03-25 17:23:32 +00005099case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00005100 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005101 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00005102 int res;
5103 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00005104
drhe14006d2008-03-25 17:23:32 +00005105 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00005106 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00005107 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5108 pC = p->apCsr[pOp->p1];
5109 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005110 assert( pC->eCurType==CURTYPE_BTREE );
5111 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00005112 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00005113 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00005114 r.pKeyInfo = pC->pKeyInfo;
5115 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00005116 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005117 r.aMem = &aMem[pOp->p2];
drh3da046d2013-11-11 03:24:11 +00005118 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
drh9467abf2016-02-17 18:44:11 +00005119 if( rc ) goto abort_due_to_error;
5120 if( res==0 ){
dane61bbf42016-01-28 17:06:17 +00005121 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
drh9467abf2016-02-17 18:44:11 +00005122 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005123 }
drh3da046d2013-11-11 03:24:11 +00005124 assert( pC->deferredMoveto==0 );
5125 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00005126 pC->seekResult = 0;
drh5e00f6c2001-09-13 13:46:56 +00005127 break;
5128}
5129
drh784c1b92016-01-30 16:59:56 +00005130/* Opcode: Seek P1 * P3 P4 *
drh72e26de2016-08-24 21:24:04 +00005131** Synopsis: Move P3 to P1.rowid
drh784c1b92016-01-30 16:59:56 +00005132**
5133** P1 is an open index cursor and P3 is a cursor on the corresponding
5134** table. This opcode does a deferred seek of the P3 table cursor
5135** to the row that corresponds to the current row of P1.
5136**
5137** This is a deferred seek. Nothing actually happens until
5138** the cursor is used to read a record. That way, if no reads
5139** occur, no unnecessary I/O happens.
5140**
5141** P4 may be an array of integers (type P4_INTARRAY) containing
drh19d720d2016-02-03 19:52:06 +00005142** one entry for each column in the P3 table. If array entry a(i)
5143** is non-zero, then reading column a(i)-1 from cursor P3 is
drh784c1b92016-01-30 16:59:56 +00005144** equivalent to performing the deferred seek and then reading column i
5145** from P1. This information is stored in P3 and used to redirect
5146** reads against P3 over to P1, thus possibly avoiding the need to
5147** seek and read cursor P3.
5148*/
drh2133d822008-01-03 18:44:59 +00005149/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005150** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00005151**
drh2133d822008-01-03 18:44:59 +00005152** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00005153** the end of the index key pointed to by cursor P1. This integer should be
5154** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00005155**
drh9437bd22009-02-01 00:29:56 +00005156** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00005157*/
drh784c1b92016-01-30 16:59:56 +00005158case OP_Seek:
drh27a348c2015-04-13 19:14:06 +00005159case OP_IdxRowid: { /* out2 */
drh784c1b92016-01-30 16:59:56 +00005160 VdbeCursor *pC; /* The P1 index cursor */
5161 VdbeCursor *pTabCur; /* The P2 table cursor (OP_Seek only) */
5162 i64 rowid; /* Rowid that P1 current points to */
drh8721ce42001-11-07 14:22:00 +00005163
drh653b82a2009-06-22 11:10:47 +00005164 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5165 pC = p->apCsr[pOp->p1];
5166 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005167 assert( pC->eCurType==CURTYPE_BTREE );
drh784c1b92016-01-30 16:59:56 +00005168 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00005169 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00005170 assert( pC->deferredMoveto==0 );
drh784c1b92016-01-30 16:59:56 +00005171 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5172
5173 /* The IdxRowid and Seek opcodes are combined because of the commonality
5174 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5175 rc = sqlite3VdbeCursorRestore(pC);
drhc22284f2014-10-13 16:02:20 +00005176
5177 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
drh784c1b92016-01-30 16:59:56 +00005178 ** out from under the cursor. That will never happens for an IdxRowid
5179 ** or Seek opcode */
drhc22284f2014-10-13 16:02:20 +00005180 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5181
drh3da046d2013-11-11 03:24:11 +00005182 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00005183 rowid = 0; /* Not needed. Only used to silence a warning. */
drh784c1b92016-01-30 16:59:56 +00005184 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
drh3da046d2013-11-11 03:24:11 +00005185 if( rc!=SQLITE_OK ){
5186 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00005187 }
drh784c1b92016-01-30 16:59:56 +00005188 if( pOp->opcode==OP_Seek ){
5189 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5190 pTabCur = p->apCsr[pOp->p3];
5191 assert( pTabCur!=0 );
5192 assert( pTabCur->eCurType==CURTYPE_BTREE );
5193 assert( pTabCur->uc.pCursor!=0 );
5194 assert( pTabCur->isTable );
5195 pTabCur->nullRow = 0;
5196 pTabCur->movetoTarget = rowid;
5197 pTabCur->deferredMoveto = 1;
5198 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5199 pTabCur->aAltMap = pOp->p4.ai;
5200 pTabCur->pAltCursor = pC;
5201 }else{
5202 pOut = out2Prerelease(p, pOp);
5203 pOut->u.i = rowid;
5204 pOut->flags = MEM_Int;
5205 }
5206 }else{
5207 assert( pOp->opcode==OP_IdxRowid );
5208 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
drh8721ce42001-11-07 14:22:00 +00005209 }
5210 break;
5211}
5212
danielk197761dd5832008-04-18 11:31:12 +00005213/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005214** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00005215**
danielk197761dd5832008-04-18 11:31:12 +00005216** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005217** key that omits the PRIMARY KEY. Compare this key value against the index
5218** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5219** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00005220**
danielk197761dd5832008-04-18 11:31:12 +00005221** If the P1 index entry is greater than or equal to the key value
5222** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00005223*/
5224/* Opcode: IdxGT P1 P2 P3 P4 P5
5225** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00005226**
drh4a1d3652014-02-14 15:13:36 +00005227** The P4 register values beginning with P3 form an unpacked index
5228** key that omits the PRIMARY KEY. Compare this key value against the index
5229** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5230** fields at the end.
5231**
5232** If the P1 index entry is greater than the key value
5233** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00005234*/
drh3bb9b932010-08-06 02:10:00 +00005235/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005236** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00005237**
danielk197761dd5832008-04-18 11:31:12 +00005238** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005239** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5240** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5241** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00005242**
danielk197761dd5832008-04-18 11:31:12 +00005243** If the P1 index entry is less than the key value then jump to P2.
5244** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00005245*/
drh4a1d3652014-02-14 15:13:36 +00005246/* Opcode: IdxLE P1 P2 P3 P4 P5
5247** Synopsis: key=r[P3@P4]
5248**
5249** The P4 register values beginning with P3 form an unpacked index
5250** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5251** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5252** ROWID on the P1 index.
5253**
5254** If the P1 index entry is less than or equal to the key value then jump
5255** to P2. Otherwise fall through to the next instruction.
5256*/
5257case OP_IdxLE: /* jump */
5258case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00005259case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00005260case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005261 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00005262 int res;
5263 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00005264
drh653b82a2009-06-22 11:10:47 +00005265 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5266 pC = p->apCsr[pOp->p1];
5267 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00005268 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00005269 assert( pC->eCurType==CURTYPE_BTREE );
5270 assert( pC->uc.pCursor!=0);
drh3da046d2013-11-11 03:24:11 +00005271 assert( pC->deferredMoveto==0 );
5272 assert( pOp->p5==0 || pOp->p5==1 );
5273 assert( pOp->p4type==P4_INT32 );
5274 r.pKeyInfo = pC->pKeyInfo;
5275 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00005276 if( pOp->opcode<OP_IdxLT ){
5277 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00005278 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00005279 }else{
drh4a1d3652014-02-14 15:13:36 +00005280 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00005281 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005282 }
5283 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005284#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00005285 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00005286#endif
drh2dc06482013-12-11 00:59:10 +00005287 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005288 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005289 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5290 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5291 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005292 res = -res;
5293 }else{
drh4a1d3652014-02-14 15:13:36 +00005294 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005295 res++;
5296 }
drh688852a2014-02-17 22:40:43 +00005297 VdbeBranchTaken(res>0,2);
drh9467abf2016-02-17 18:44:11 +00005298 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005299 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005300 break;
5301}
5302
drh98757152008-01-09 23:04:12 +00005303/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005304**
5305** Delete an entire database table or index whose root page in the database
5306** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005307**
drh98757152008-01-09 23:04:12 +00005308** The table being destroyed is in the main database file if P3==0. If
5309** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005310** that is used to store tables create using CREATE TEMPORARY TABLE.
5311**
drh205f48e2004-11-05 00:43:11 +00005312** If AUTOVACUUM is enabled then it is possible that another root page
5313** might be moved into the newly deleted root page in order to keep all
5314** root pages contiguous at the beginning of the database. The former
5315** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00005316** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00005317** movement was required (because the table being dropped was already
5318** the last one in the database) then a zero is stored in register P2.
5319** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00005320**
drhb19a2bc2001-09-16 00:13:26 +00005321** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005322*/
drh27a348c2015-04-13 19:14:06 +00005323case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005324 int iMoved;
drh856c1032009-06-02 15:21:42 +00005325 int iDb;
drh3a949872012-09-18 13:20:13 +00005326
drh9e92a472013-06-27 17:40:30 +00005327 assert( p->readOnly==0 );
drh055f2982016-01-15 15:06:41 +00005328 assert( pOp->p1>1 );
drh27a348c2015-04-13 19:14:06 +00005329 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005330 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005331 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005332 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005333 p->errorAction = OE_Abort;
drh9467abf2016-02-17 18:44:11 +00005334 goto abort_due_to_error;
danielk1977e6efa742004-11-10 11:55:10 +00005335 }else{
drh856c1032009-06-02 15:21:42 +00005336 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005337 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005338 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005339 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005340 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005341 pOut->u.i = iMoved;
drh9467abf2016-02-17 18:44:11 +00005342 if( rc ) goto abort_due_to_error;
drh3765df42006-06-28 18:18:09 +00005343#ifndef SQLITE_OMIT_AUTOVACUUM
drh9467abf2016-02-17 18:44:11 +00005344 if( iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005345 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5346 /* All OP_Destroy operations occur on the same btree */
5347 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5348 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005349 }
drh3765df42006-06-28 18:18:09 +00005350#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005351 }
drh5e00f6c2001-09-13 13:46:56 +00005352 break;
5353}
5354
danielk1977c7af4842008-10-27 13:59:33 +00005355/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005356**
5357** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005358** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005359** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005360**
drhf57b3392001-10-08 13:22:32 +00005361** The table being clear is in the main database file if P2==0. If
5362** P2==1 then the table to be clear is in the auxiliary database file
5363** that is used to store tables create using CREATE TEMPORARY TABLE.
5364**
shanebe217792009-03-05 04:20:31 +00005365** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005366** intkey table (an SQL table, not an index). In this case the row change
5367** count is incremented by the number of rows in the table being cleared.
5368** If P3 is greater than zero, then the value stored in register P3 is
5369** also incremented by the number of rows in the table being cleared.
5370**
drhb19a2bc2001-09-16 00:13:26 +00005371** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005372*/
drh9cbf3422008-01-17 16:22:13 +00005373case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005374 int nChange;
5375
5376 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005377 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005378 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005379 rc = sqlite3BtreeClearTable(
5380 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5381 );
5382 if( pOp->p3 ){
5383 p->nChange += nChange;
5384 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005385 assert( memIsValid(&aMem[pOp->p3]) );
5386 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005387 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005388 }
5389 }
drh9467abf2016-02-17 18:44:11 +00005390 if( rc ) goto abort_due_to_error;
drh5edc3122001-09-13 21:53:09 +00005391 break;
5392}
5393
drh65ea12c2014-03-19 17:41:36 +00005394/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005395**
drh65ea12c2014-03-19 17:41:36 +00005396** Delete all contents from the ephemeral table or sorter
5397** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005398**
drh65ea12c2014-03-19 17:41:36 +00005399** This opcode only works for cursors used for sorting and
5400** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005401*/
drh65ea12c2014-03-19 17:41:36 +00005402case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005403 VdbeCursor *pC;
5404
5405 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5406 pC = p->apCsr[pOp->p1];
5407 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005408 if( isSorter(pC) ){
5409 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
drh65ea12c2014-03-19 17:41:36 +00005410 }else{
drhc960dcb2015-11-20 19:22:01 +00005411 assert( pC->eCurType==CURTYPE_BTREE );
drh65ea12c2014-03-19 17:41:36 +00005412 assert( pC->isEphemeral );
drhc960dcb2015-11-20 19:22:01 +00005413 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
drh9467abf2016-02-17 18:44:11 +00005414 if( rc ) goto abort_due_to_error;
drh65ea12c2014-03-19 17:41:36 +00005415 }
drh079a3072014-03-19 14:10:55 +00005416 break;
5417}
5418
drh4c583122008-01-04 22:01:03 +00005419/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005420** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005421**
drh4c583122008-01-04 22:01:03 +00005422** Allocate a new table in the main database file if P1==0 or in the
5423** auxiliary database file if P1==1 or in an attached database if
5424** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005425** register P2
drh5b2fd562001-09-13 15:21:31 +00005426**
drhc6b52df2002-01-04 03:09:29 +00005427** The difference between a table and an index is this: A table must
5428** have a 4-byte integer key and can have arbitrary data. An index
5429** has an arbitrary key but no data.
5430**
drhb19a2bc2001-09-16 00:13:26 +00005431** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005432*/
drh4c583122008-01-04 22:01:03 +00005433/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005434** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005435**
drh4c583122008-01-04 22:01:03 +00005436** Allocate a new index in the main database file if P1==0 or in the
5437** auxiliary database file if P1==1 or in an attached database if
5438** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005439** register P2.
drhf57b3392001-10-08 13:22:32 +00005440**
drhc6b52df2002-01-04 03:09:29 +00005441** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005442*/
drh27a348c2015-04-13 19:14:06 +00005443case OP_CreateIndex: /* out2 */
5444case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005445 int pgno;
drhf328bc82004-05-10 23:29:49 +00005446 int flags;
drh234c39d2004-07-24 03:30:47 +00005447 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005448
drh27a348c2015-04-13 19:14:06 +00005449 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005450 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005451 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005452 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005453 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005454 pDb = &db->aDb[pOp->p1];
5455 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005456 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005457 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005458 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005459 }else{
drhd4187c72010-08-30 22:15:45 +00005460 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005461 }
drh234c39d2004-07-24 03:30:47 +00005462 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh9467abf2016-02-17 18:44:11 +00005463 if( rc ) goto abort_due_to_error;
drh88a003e2008-12-11 16:17:03 +00005464 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005465 break;
5466}
5467
drh22645842011-03-24 01:34:03 +00005468/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005469**
5470** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005471** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005472**
5473** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005474** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005475*/
drh9cbf3422008-01-17 16:22:13 +00005476case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005477 int iDb;
5478 const char *zMaster;
5479 char *zSql;
5480 InitData initData;
5481
drhbdaec522011-04-04 00:14:43 +00005482 /* Any prepared statement that invokes this opcode will hold mutexes
5483 ** on every btree. This is a prerequisite for invoking
5484 ** sqlite3InitCallback().
5485 */
5486#ifdef SQLITE_DEBUG
5487 for(iDb=0; iDb<db->nDb; iDb++){
5488 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5489 }
5490#endif
drhbdaec522011-04-04 00:14:43 +00005491
drh856c1032009-06-02 15:21:42 +00005492 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005493 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005494 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005495 /* Used to be a conditional */ {
drhe0a04a32016-12-16 01:00:21 +00005496 zMaster = MASTER_NAME;
danielk1977a8bbef82009-03-23 17:11:26 +00005497 initData.db = db;
5498 initData.iDb = pOp->p1;
5499 initData.pzErrMsg = &p->zErrMsg;
5500 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005501 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
drh69c33822016-08-18 14:33:11 +00005502 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
danielk1977a8bbef82009-03-23 17:11:26 +00005503 if( zSql==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005504 rc = SQLITE_NOMEM_BKPT;
danielk1977a8bbef82009-03-23 17:11:26 +00005505 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005506 assert( db->init.busy==0 );
5507 db->init.busy = 1;
5508 initData.rc = SQLITE_OK;
5509 assert( !db->mallocFailed );
5510 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5511 if( rc==SQLITE_OK ) rc = initData.rc;
5512 sqlite3DbFree(db, zSql);
5513 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005514 }
drh3c23a882007-01-09 14:01:13 +00005515 }
drh9467abf2016-02-17 18:44:11 +00005516 if( rc ){
5517 sqlite3ResetAllSchemasOfConnection(db);
5518 if( rc==SQLITE_NOMEM ){
5519 goto no_mem;
5520 }
5521 goto abort_due_to_error;
danielk1977261919c2005-12-06 12:52:59 +00005522 }
drh234c39d2004-07-24 03:30:47 +00005523 break;
5524}
5525
drh8bfdf722009-06-19 14:06:03 +00005526#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005527/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005528**
5529** Read the sqlite_stat1 table for database P1 and load the content
5530** of that table into the internal index hash table. This will cause
5531** the analysis to be used when preparing all subsequent queries.
5532*/
drh9cbf3422008-01-17 16:22:13 +00005533case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005534 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5535 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00005536 if( rc ) goto abort_due_to_error;
drh497e4462005-07-23 03:18:40 +00005537 break;
5538}
drh8bfdf722009-06-19 14:06:03 +00005539#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005540
drh98757152008-01-09 23:04:12 +00005541/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005542**
5543** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005544** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005545** is dropped from disk (using the Destroy opcode) in order to keep
5546** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005547** schema consistent with what is on disk.
5548*/
drh9cbf3422008-01-17 16:22:13 +00005549case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005550 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005551 break;
5552}
5553
drh98757152008-01-09 23:04:12 +00005554/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005555**
5556** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005557** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005558** is dropped from disk (using the Destroy opcode)
5559** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005560** schema consistent with what is on disk.
5561*/
drh9cbf3422008-01-17 16:22:13 +00005562case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005563 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005564 break;
5565}
5566
drh98757152008-01-09 23:04:12 +00005567/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005568**
5569** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005570** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005571** is dropped from disk (using the Destroy opcode) in order to keep
5572** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005573** schema consistent with what is on disk.
5574*/
drh9cbf3422008-01-17 16:22:13 +00005575case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005576 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005577 break;
5578}
5579
drh234c39d2004-07-24 03:30:47 +00005580
drhb7f91642004-10-31 02:22:47 +00005581#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98968b22016-03-15 22:00:39 +00005582/* Opcode: IntegrityCk P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005583**
drh98757152008-01-09 23:04:12 +00005584** Do an analysis of the currently open database. Store in
5585** register P1 the text of an error message describing any problems.
5586** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005587**
drh98757152008-01-09 23:04:12 +00005588** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005589** At most reg(P3) errors will be reported.
5590** In other words, the analysis stops as soon as reg(P1) errors are
5591** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005592**
drh98968b22016-03-15 22:00:39 +00005593** The root page numbers of all tables in the database are integers
5594** stored in P4_INTARRAY argument.
drh21504322002-06-25 13:16:02 +00005595**
drh98757152008-01-09 23:04:12 +00005596** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005597** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005598**
drh1dcdbc02007-01-27 02:24:54 +00005599** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005600*/
drhaaab5722002-02-19 13:39:21 +00005601case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005602 int nRoot; /* Number of tables to check. (Number of root pages.) */
5603 int *aRoot; /* Array of rootpage numbers for tables to be checked */
drh98757152008-01-09 23:04:12 +00005604 int nErr; /* Number of errors reported */
5605 char *z; /* Text of the error report */
5606 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005607
drh1713afb2013-06-28 01:24:57 +00005608 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005609 nRoot = pOp->p2;
drh98968b22016-03-15 22:00:39 +00005610 aRoot = pOp->p4.ai;
drh79069752004-05-22 21:30:40 +00005611 assert( nRoot>0 );
drh98968b22016-03-15 22:00:39 +00005612 assert( aRoot[nRoot]==0 );
drh9f6168b2016-03-19 23:32:58 +00005613 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005614 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005615 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005616 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005617 pIn1 = &aMem[pOp->p1];
drh98757152008-01-09 23:04:12 +00005618 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005619 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005620 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005621 (int)pnErr->u.i, &nErr);
drh3c024d62007-03-30 11:23:45 +00005622 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005623 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005624 if( nErr==0 ){
5625 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005626 }else if( z==0 ){
5627 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005628 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005629 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005630 }
drhb7654112008-01-12 12:48:07 +00005631 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005632 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005633 break;
5634}
drhb7f91642004-10-31 02:22:47 +00005635#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005636
drh3d4501e2008-12-04 20:40:10 +00005637/* Opcode: RowSetAdd P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00005638** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005639**
drh3d4501e2008-12-04 20:40:10 +00005640** Insert the integer value held by register P2 into a boolean index
5641** held in register P1.
5642**
5643** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005644*/
drh93952eb2009-11-13 19:43:43 +00005645case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005646 pIn1 = &aMem[pOp->p1];
5647 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005648 assert( (pIn2->flags & MEM_Int)!=0 );
5649 if( (pIn1->flags & MEM_RowSet)==0 ){
5650 sqlite3VdbeMemSetRowSet(pIn1);
5651 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005652 }
drh93952eb2009-11-13 19:43:43 +00005653 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005654 break;
5655}
5656
5657/* Opcode: RowSetRead P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00005658** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005659**
5660** Extract the smallest value from boolean index P1 and put that value into
5661** register P3. Or, if boolean index P1 is initially empty, leave P3
5662** unchanged and jump to instruction P2.
5663*/
drh93952eb2009-11-13 19:43:43 +00005664case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005665 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005666
drh3c657212009-11-17 23:59:58 +00005667 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005668 if( (pIn1->flags & MEM_RowSet)==0
5669 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005670 ){
5671 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005672 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005673 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005674 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005675 }else{
5676 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005677 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005678 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005679 }
drh49afe3a2013-07-10 03:05:14 +00005680 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005681}
5682
drh1b26c7c2009-04-22 02:15:47 +00005683/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005684** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005685**
drhade97602009-04-21 15:05:18 +00005686** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005687** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005688** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005689** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005690** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005691**
drh1b26c7c2009-04-22 02:15:47 +00005692** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005693** of integers, where each set contains no duplicates. Each set
5694** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005695** must have P4==0, the final set P4=-1. P4 must be either -1 or
5696** non-negative. For non-negative values of P4 only the lower 4
5697** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005698**
5699** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005700** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005701** (b) when P4==-1 there is no need to insert the value, as it will
5702** never be tested for, and (c) when a value that is part of set X is
5703** inserted, there is no need to search to see if the same value was
5704** previously inserted as part of set X (only if it was previously
5705** inserted as part of some other set).
5706*/
drh1b26c7c2009-04-22 02:15:47 +00005707case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005708 int iSet;
5709 int exists;
5710
drh3c657212009-11-17 23:59:58 +00005711 pIn1 = &aMem[pOp->p1];
5712 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005713 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005714 assert( pIn3->flags&MEM_Int );
5715
drh1b26c7c2009-04-22 02:15:47 +00005716 /* If there is anything other than a rowset object in memory cell P1,
5717 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005718 */
drh733bf1b2009-04-22 00:47:00 +00005719 if( (pIn1->flags & MEM_RowSet)==0 ){
5720 sqlite3VdbeMemSetRowSet(pIn1);
5721 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005722 }
5723
5724 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005725 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005726 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005727 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005728 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005729 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005730 }
5731 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005732 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005733 }
5734 break;
5735}
5736
drh5e00f6c2001-09-13 13:46:56 +00005737
danielk197793758c82005-01-21 08:13:14 +00005738#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005739
drh0fd61352014-02-07 02:29:45 +00005740/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005741**
dan76d462e2009-08-30 11:42:51 +00005742** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005743**
dan76d462e2009-08-30 11:42:51 +00005744** P1 contains the address of the memory cell that contains the first memory
5745** cell in an array of values used as arguments to the sub-program. P2
5746** contains the address to jump to if the sub-program throws an IGNORE
5747** exception using the RAISE() function. Register P3 contains the address
5748** of a memory cell in this (the parent) VM that is used to allocate the
5749** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005750**
5751** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005752**
5753** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005754*/
dan76d462e2009-08-30 11:42:51 +00005755case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005756 int nMem; /* Number of memory registers for sub-program */
5757 int nByte; /* Bytes of runtime space required for sub-program */
5758 Mem *pRt; /* Register to allocate runtime space */
5759 Mem *pMem; /* Used to iterate through memory cells */
5760 Mem *pEnd; /* Last memory cell in new array */
5761 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5762 SubProgram *pProgram; /* Sub-program to execute */
5763 void *t; /* Token identifying trigger */
5764
5765 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005766 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005767 assert( pProgram->nOp>0 );
5768
dan1da40a32009-09-19 17:00:31 +00005769 /* If the p5 flag is clear, then recursive invocation of triggers is
5770 ** disabled for backwards compatibility (p5 is set if this sub-program
5771 ** is really a trigger, not a foreign key action, and the flag set
5772 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005773 **
5774 ** It is recursive invocation of triggers, at the SQL level, that is
5775 ** disabled. In some cases a single trigger may generate more than one
5776 ** SubProgram (if the trigger may be executed with more than one different
5777 ** ON CONFLICT algorithm). SubProgram structures associated with a
5778 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005779 ** variable. */
5780 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005781 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005782 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5783 if( pFrame ) break;
5784 }
5785
danf5894502009-10-07 18:41:19 +00005786 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005787 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005788 sqlite3VdbeError(p, "too many levels of trigger recursion");
drh9467abf2016-02-17 18:44:11 +00005789 goto abort_due_to_error;
dan165921a2009-08-28 18:53:45 +00005790 }
5791
5792 /* Register pRt is used to store the memory required to save the state
5793 ** of the current program, and the memory required at runtime to execute
5794 ** the trigger program. If this trigger has been fired before, then pRt
5795 ** is already allocated. Otherwise, it must be initialized. */
5796 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005797 /* SubProgram.nMem is set to the number of memory cells used by the
5798 ** program stored in SubProgram.aOp. As well as these, one memory
5799 ** cell is required for each cursor used by the program. Set local
5800 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5801 */
dan65a7cd12009-09-01 12:16:01 +00005802 nMem = pProgram->nMem + pProgram->nCsr;
drh3cdce922016-03-21 00:30:40 +00005803 assert( nMem>0 );
5804 if( pProgram->nCsr==0 ) nMem++;
dan65a7cd12009-09-01 12:16:01 +00005805 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005806 + nMem * sizeof(Mem)
drh9e5eb9c2016-09-18 16:08:10 +00005807 + pProgram->nCsr * sizeof(VdbeCursor *);
dan165921a2009-08-28 18:53:45 +00005808 pFrame = sqlite3DbMallocZero(db, nByte);
5809 if( !pFrame ){
5810 goto no_mem;
5811 }
5812 sqlite3VdbeMemRelease(pRt);
5813 pRt->flags = MEM_Frame;
5814 pRt->u.pFrame = pFrame;
5815
5816 pFrame->v = p;
5817 pFrame->nChildMem = nMem;
5818 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005819 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005820 pFrame->aMem = p->aMem;
5821 pFrame->nMem = p->nMem;
5822 pFrame->apCsr = p->apCsr;
5823 pFrame->nCursor = p->nCursor;
5824 pFrame->aOp = p->aOp;
5825 pFrame->nOp = p->nOp;
5826 pFrame->token = pProgram->token;
dane2f771b2014-11-03 15:33:17 +00005827#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005828 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005829#endif
dan165921a2009-08-28 18:53:45 +00005830
5831 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5832 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005833 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005834 pMem->db = db;
5835 }
5836 }else{
5837 pFrame = pRt->u.pFrame;
drh9f6168b2016-03-19 23:32:58 +00005838 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
5839 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
dan165921a2009-08-28 18:53:45 +00005840 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005841 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005842 }
5843
5844 p->nFrame++;
5845 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005846 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005847 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005848 pFrame->nDbChange = p->db->nChange;
dan32001322016-02-19 18:54:29 +00005849 assert( pFrame->pAuxData==0 );
5850 pFrame->pAuxData = p->pAuxData;
5851 p->pAuxData = 0;
dan2832ad42009-08-31 15:27:27 +00005852 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005853 p->pFrame = pFrame;
drh9f6168b2016-03-19 23:32:58 +00005854 p->aMem = aMem = VdbeFrameMem(pFrame);
dan165921a2009-08-28 18:53:45 +00005855 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005856 p->nCursor = (u16)pFrame->nChildCsr;
drh9f6168b2016-03-19 23:32:58 +00005857 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
drhbbe879d2009-11-14 18:04:35 +00005858 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005859 p->nOp = pProgram->nOp;
dane2f771b2014-11-03 15:33:17 +00005860#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005861 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005862#endif
drhf56fa462015-04-13 21:39:54 +00005863 pOp = &aOp[-1];
dan165921a2009-08-28 18:53:45 +00005864
5865 break;
5866}
5867
dan76d462e2009-08-30 11:42:51 +00005868/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005869**
dan76d462e2009-08-30 11:42:51 +00005870** This opcode is only ever present in sub-programs called via the
5871** OP_Program instruction. Copy a value currently stored in a memory
5872** cell of the calling (parent) frame to cell P2 in the current frames
5873** address space. This is used by trigger programs to access the new.*
5874** and old.* values.
dan165921a2009-08-28 18:53:45 +00005875**
dan76d462e2009-08-30 11:42:51 +00005876** The address of the cell in the parent frame is determined by adding
5877** the value of the P1 argument to the value of the P1 argument to the
5878** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005879*/
drh27a348c2015-04-13 19:14:06 +00005880case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005881 VdbeFrame *pFrame;
5882 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005883 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005884 pFrame = p->pFrame;
5885 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005886 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5887 break;
5888}
5889
danielk197793758c82005-01-21 08:13:14 +00005890#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005891
dan1da40a32009-09-19 17:00:31 +00005892#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005893/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005894** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005895**
dan0ff297e2009-09-25 17:03:14 +00005896** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5897** If P1 is non-zero, the database constraint counter is incremented
5898** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005899** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005900*/
dan32b09f22009-09-23 17:29:59 +00005901case OP_FkCounter: {
drh963c74d2013-07-11 12:19:12 +00005902 if( db->flags & SQLITE_DeferFKs ){
dancb3e4b72013-07-03 19:53:05 +00005903 db->nDeferredImmCons += pOp->p2;
5904 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005905 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005906 }else{
dan0ff297e2009-09-25 17:03:14 +00005907 p->nFkConstraint += pOp->p2;
5908 }
5909 break;
5910}
5911
5912/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005913** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005914**
5915** This opcode tests if a foreign key constraint-counter is currently zero.
5916** If so, jump to instruction P2. Otherwise, fall through to the next
5917** instruction.
5918**
5919** If P1 is non-zero, then the jump is taken if the database constraint-counter
5920** is zero (the one that counts deferred constraint violations). If P1 is
5921** zero, the jump is taken if the statement constraint-counter is zero
5922** (immediate foreign key constraint violations).
5923*/
5924case OP_FkIfZero: { /* jump */
5925 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005926 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005927 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005928 }else{
drh688852a2014-02-17 22:40:43 +00005929 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005930 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005931 }
dan1da40a32009-09-19 17:00:31 +00005932 break;
5933}
5934#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5935
drh205f48e2004-11-05 00:43:11 +00005936#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005937/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005938** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005939**
dan76d462e2009-08-30 11:42:51 +00005940** P1 is a register in the root frame of this VM (the root frame is
5941** different from the current frame if this instruction is being executed
5942** within a sub-program). Set the value of register P1 to the maximum of
5943** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005944**
5945** This instruction throws an error if the memory cell is not initially
5946** an integer.
5947*/
dan76d462e2009-08-30 11:42:51 +00005948case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005949 VdbeFrame *pFrame;
5950 if( p->pFrame ){
5951 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5952 pIn1 = &pFrame->aMem[pOp->p1];
5953 }else{
drha6c2ed92009-11-14 23:22:23 +00005954 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005955 }
drh2b4ded92010-09-27 21:09:31 +00005956 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005957 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005958 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005959 sqlite3VdbeMemIntegerify(pIn2);
5960 if( pIn1->u.i<pIn2->u.i){
5961 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005962 }
5963 break;
5964}
5965#endif /* SQLITE_OMIT_AUTOINCREMENT */
5966
drh8b0cf382015-10-06 21:07:06 +00005967/* Opcode: IfPos P1 P2 P3 * *
5968** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005969**
drh16897072015-03-07 00:57:37 +00005970** Register P1 must contain an integer.
mistachkin91a3ecb2015-10-06 21:49:55 +00005971** If the value of register P1 is 1 or greater, subtract P3 from the
drh8b0cf382015-10-06 21:07:06 +00005972** value in P1 and jump to P2.
drh6f58f702006-01-08 05:26:41 +00005973**
drh16897072015-03-07 00:57:37 +00005974** If the initial value of register P1 is less than 1, then the
5975** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005976*/
drh9cbf3422008-01-17 16:22:13 +00005977case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005978 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005979 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005980 VdbeBranchTaken( pIn1->u.i>0, 2);
drh8b0cf382015-10-06 21:07:06 +00005981 if( pIn1->u.i>0 ){
5982 pIn1->u.i -= pOp->p3;
5983 goto jump_to_p2;
5984 }
drhec7429a2005-10-06 16:53:14 +00005985 break;
5986}
5987
drhcc2fa4c2016-01-25 15:57:29 +00005988/* Opcode: OffsetLimit P1 P2 P3 * *
5989** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
drh15007a92006-01-08 18:10:17 +00005990**
drhcc2fa4c2016-01-25 15:57:29 +00005991** This opcode performs a commonly used computation associated with
5992** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
5993** holds the offset counter. The opcode computes the combined value
5994** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
5995** value computed is the total number of rows that will need to be
5996** visited in order to complete the query.
5997**
5998** If r[P3] is zero or negative, that means there is no OFFSET
5999** and r[P2] is set to be the value of the LIMIT, r[P1].
6000**
6001** if r[P1] is zero or negative, that means there is no LIMIT
6002** and r[P2] is set to -1.
6003**
6004** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
drh15007a92006-01-08 18:10:17 +00006005*/
drhcc2fa4c2016-01-25 15:57:29 +00006006case OP_OffsetLimit: { /* in1, out2, in3 */
drh719da302016-12-10 04:06:49 +00006007 i64 x;
drh3c657212009-11-17 23:59:58 +00006008 pIn1 = &aMem[pOp->p1];
drhcc2fa4c2016-01-25 15:57:29 +00006009 pIn3 = &aMem[pOp->p3];
6010 pOut = out2Prerelease(p, pOp);
6011 assert( pIn1->flags & MEM_Int );
6012 assert( pIn3->flags & MEM_Int );
drh719da302016-12-10 04:06:49 +00006013 x = pIn1->u.i;
6014 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6015 /* If the LIMIT is less than or equal to zero, loop forever. This
6016 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
6017 ** also loop forever. This is undocumented. In fact, one could argue
6018 ** that the loop should terminate. But assuming 1 billion iterations
6019 ** per second (far exceeding the capabilities of any current hardware)
6020 ** it would take nearly 300 years to actually reach the limit. So
6021 ** looping forever is a reasonable approximation. */
6022 pOut->u.i = -1;
6023 }else{
6024 pOut->u.i = x;
6025 }
drh15007a92006-01-08 18:10:17 +00006026 break;
6027}
6028
drhf99dd352016-12-18 17:42:00 +00006029/* Opcode: IfNotZero P1 P2 * * *
6030** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
drhec7429a2005-10-06 16:53:14 +00006031**
drh16897072015-03-07 00:57:37 +00006032** Register P1 must contain an integer. If the content of register P1 is
drhf99dd352016-12-18 17:42:00 +00006033** initially greater than zero, then decrement the value in register P1.
6034** If it is non-zero (negative or positive) and then also jump to P2.
6035** If register P1 is initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00006036*/
drh16897072015-03-07 00:57:37 +00006037case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006038 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006039 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00006040 VdbeBranchTaken(pIn1->u.i<0, 2);
6041 if( pIn1->u.i ){
drhf99dd352016-12-18 17:42:00 +00006042 if( pIn1->u.i>0 ) pIn1->u.i--;
drhf56fa462015-04-13 21:39:54 +00006043 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00006044 }
6045 break;
6046}
6047
6048/* Opcode: DecrJumpZero P1 P2 * * *
6049** Synopsis: if (--r[P1])==0 goto P2
6050**
drhab5be2e2016-11-30 05:08:59 +00006051** Register P1 must hold an integer. Decrement the value in P1
6052** and jump to P2 if the new value is exactly zero.
drh16897072015-03-07 00:57:37 +00006053*/
6054case OP_DecrJumpZero: { /* jump, in1 */
6055 pIn1 = &aMem[pOp->p1];
6056 assert( pIn1->flags&MEM_Int );
drhab5be2e2016-11-30 05:08:59 +00006057 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6058 VdbeBranchTaken(pIn1->u.i==0, 2);
6059 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00006060 break;
6061}
6062
drh16897072015-03-07 00:57:37 +00006063
drhe2d9e7c2015-06-26 18:47:53 +00006064/* Opcode: AggStep0 * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006065** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00006066**
drh0bce8352002-02-28 00:41:10 +00006067** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00006068** function has P5 arguments. P4 is a pointer to the FuncDef
drhe2d9e7c2015-06-26 18:47:53 +00006069** structure that specifies the function. Register P3 is the
6070** accumulator.
drhe5095352002-02-24 03:25:14 +00006071**
drh98757152008-01-09 23:04:12 +00006072** The P5 arguments are taken from register P2 and its
6073** successors.
drhe5095352002-02-24 03:25:14 +00006074*/
drhe2d9e7c2015-06-26 18:47:53 +00006075/* Opcode: AggStep * P2 P3 P4 P5
6076** Synopsis: accum=r[P3] step(r[P2@P5])
6077**
6078** Execute the step function for an aggregate. The
6079** function has P5 arguments. P4 is a pointer to an sqlite3_context
6080** object that is used to run the function. Register P3 is
6081** as the accumulator.
6082**
6083** The P5 arguments are taken from register P2 and its
6084** successors.
6085**
6086** This opcode is initially coded as OP_AggStep0. On first evaluation,
6087** the FuncDef stored in P4 is converted into an sqlite3_context and
6088** the opcode is changed. In this way, the initialization of the
6089** sqlite3_context only happens once, instead of on each call to the
6090** step function.
6091*/
drh9c7c9132015-06-26 18:16:52 +00006092case OP_AggStep0: {
drh856c1032009-06-02 15:21:42 +00006093 int n;
drh9c7c9132015-06-26 18:16:52 +00006094 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00006095
drh9c7c9132015-06-26 18:16:52 +00006096 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00006097 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00006098 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6099 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00006100 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drh575fad62016-02-05 13:38:36 +00006101 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
drh9c7c9132015-06-26 18:16:52 +00006102 if( pCtx==0 ) goto no_mem;
6103 pCtx->pMem = 0;
6104 pCtx->pFunc = pOp->p4.pFunc;
6105 pCtx->iOp = (int)(pOp - aOp);
6106 pCtx->pVdbe = p;
6107 pCtx->argc = n;
6108 pOp->p4type = P4_FUNCCTX;
6109 pOp->p4.pCtx = pCtx;
6110 pOp->opcode = OP_AggStep;
6111 /* Fall through into OP_AggStep */
6112}
6113case OP_AggStep: {
6114 int i;
6115 sqlite3_context *pCtx;
6116 Mem *pMem;
6117 Mem t;
6118
6119 assert( pOp->p4type==P4_FUNCCTX );
6120 pCtx = pOp->p4.pCtx;
6121 pMem = &aMem[pOp->p3];
6122
6123 /* If this function is inside of a trigger, the register array in aMem[]
6124 ** might change from one evaluation to the next. The next block of code
6125 ** checks to see if the register array has changed, and if so it
6126 ** reinitializes the relavant parts of the sqlite3_context object */
6127 if( pCtx->pMem != pMem ){
6128 pCtx->pMem = pMem;
6129 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6130 }
6131
6132#ifdef SQLITE_DEBUG
6133 for(i=0; i<pCtx->argc; i++){
6134 assert( memIsValid(pCtx->argv[i]) );
6135 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6136 }
6137#endif
6138
drhabfcea22005-09-06 20:36:48 +00006139 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00006140 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00006141 pCtx->pOut = &t;
6142 pCtx->fErrorOrAux = 0;
6143 pCtx->skipFlag = 0;
drh2d801512016-01-14 22:19:58 +00006144 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
drh9c7c9132015-06-26 18:16:52 +00006145 if( pCtx->fErrorOrAux ){
6146 if( pCtx->isError ){
6147 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
6148 rc = pCtx->isError;
6149 }
6150 sqlite3VdbeMemRelease(&t);
drh9467abf2016-02-17 18:44:11 +00006151 if( rc ) goto abort_due_to_error;
drh9c7c9132015-06-26 18:16:52 +00006152 }else{
6153 assert( t.flags==MEM_Null );
drh1350b032002-02-27 19:00:20 +00006154 }
drh9c7c9132015-06-26 18:16:52 +00006155 if( pCtx->skipFlag ){
drh7a957892012-02-02 17:35:43 +00006156 assert( pOp[-1].opcode==OP_CollSeq );
6157 i = pOp[-1].p1;
6158 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6159 }
drh5e00f6c2001-09-13 13:46:56 +00006160 break;
6161}
6162
drh98757152008-01-09 23:04:12 +00006163/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00006164** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00006165**
drh13449892005-09-07 21:22:45 +00006166** Execute the finalizer function for an aggregate. P1 is
6167** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00006168**
6169** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00006170** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00006171** argument is not used by this opcode. It is only there to disambiguate
6172** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00006173** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00006174** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00006175*/
drh9cbf3422008-01-17 16:22:13 +00006176case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00006177 Mem *pMem;
drh9f6168b2016-03-19 23:32:58 +00006178 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006179 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00006180 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00006181 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00006182 if( rc ){
drh22c17b82015-05-15 04:13:15 +00006183 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh9467abf2016-02-17 18:44:11 +00006184 goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00006185 }
drh2dca8682008-03-21 17:13:13 +00006186 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00006187 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00006188 if( sqlite3VdbeMemTooBig(pMem) ){
6189 goto too_big;
6190 }
drh5e00f6c2001-09-13 13:46:56 +00006191 break;
6192}
6193
dan5cf53532010-05-01 16:40:20 +00006194#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00006195/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006196**
6197** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00006198** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6199** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00006200** SQLITE_BUSY or not, respectively. Write the number of pages in the
6201** WAL after the checkpoint into mem[P3+1] and the number of pages
6202** in the WAL that have been checkpointed after the checkpoint
6203** completes into mem[P3+2]. However on an error, mem[P3+1] and
6204** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00006205*/
6206case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00006207 int i; /* Loop counter */
6208 int aRes[3]; /* Results */
6209 Mem *pMem; /* Write results here */
6210
drh9e92a472013-06-27 17:40:30 +00006211 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00006212 aRes[0] = 0;
6213 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00006214 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6215 || pOp->p2==SQLITE_CHECKPOINT_FULL
6216 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00006217 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00006218 );
drh30aa3b92011-02-07 23:56:01 +00006219 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
drh9467abf2016-02-17 18:44:11 +00006220 if( rc ){
6221 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
dancdc1f042010-11-18 12:11:05 +00006222 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00006223 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00006224 }
drh30aa3b92011-02-07 23:56:01 +00006225 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6226 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6227 }
dan7c246102010-04-12 19:00:29 +00006228 break;
6229};
dan5cf53532010-05-01 16:40:20 +00006230#endif
drh5e00f6c2001-09-13 13:46:56 +00006231
drhcac29a62010-07-02 19:36:52 +00006232#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00006233/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006234**
6235** Change the journal mode of database P1 to P3. P3 must be one of the
6236** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6237** modes (delete, truncate, persist, off and memory), this is a simple
6238** operation. No IO is required.
6239**
6240** If changing into or out of WAL mode the procedure is more complicated.
6241**
6242** Write a string containing the final journal-mode to register P2.
6243*/
drh27a348c2015-04-13 19:14:06 +00006244case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00006245 Btree *pBt; /* Btree to change journal mode of */
6246 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00006247 int eNew; /* New journal mode */
6248 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00006249#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00006250 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00006251#endif
dane04dc882010-04-20 18:53:15 +00006252
drh27a348c2015-04-13 19:14:06 +00006253 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00006254 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00006255 assert( eNew==PAGER_JOURNALMODE_DELETE
6256 || eNew==PAGER_JOURNALMODE_TRUNCATE
6257 || eNew==PAGER_JOURNALMODE_PERSIST
6258 || eNew==PAGER_JOURNALMODE_OFF
6259 || eNew==PAGER_JOURNALMODE_MEMORY
6260 || eNew==PAGER_JOURNALMODE_WAL
6261 || eNew==PAGER_JOURNALMODE_QUERY
6262 );
6263 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00006264 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00006265
dane04dc882010-04-20 18:53:15 +00006266 pBt = db->aDb[pOp->p1].pBt;
6267 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00006268 eOld = sqlite3PagerGetJournalMode(pPager);
6269 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6270 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00006271
6272#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00006273 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00006274
drhd80b2332010-05-01 00:59:37 +00006275 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00006276 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00006277 */
6278 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00006279 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00006280 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00006281 ){
drh0b9b4302010-06-11 17:01:24 +00006282 eNew = eOld;
dane180c292010-04-26 17:42:56 +00006283 }
6284
drh0b9b4302010-06-11 17:01:24 +00006285 if( (eNew!=eOld)
6286 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6287 ){
danc0537fe2013-06-28 19:41:43 +00006288 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00006289 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006290 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00006291 "cannot change %s wal mode from within a transaction",
6292 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6293 );
drh9467abf2016-02-17 18:44:11 +00006294 goto abort_due_to_error;
drh0b9b4302010-06-11 17:01:24 +00006295 }else{
6296
6297 if( eOld==PAGER_JOURNALMODE_WAL ){
6298 /* If leaving WAL mode, close the log file. If successful, the call
6299 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6300 ** file. An EXCLUSIVE lock may still be held on the database file
6301 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00006302 */
dan7fb89902016-08-12 16:21:15 +00006303 rc = sqlite3PagerCloseWal(pPager, db);
drhab9b7442010-05-10 11:20:05 +00006304 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00006305 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00006306 }
drh242c4f72010-06-22 14:49:39 +00006307 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6308 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6309 ** as an intermediate */
6310 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00006311 }
6312
6313 /* Open a transaction on the database file. Regardless of the journal
6314 ** mode, this transaction always uses a rollback journal.
6315 */
6316 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6317 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00006318 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00006319 }
6320 }
6321 }
dan5cf53532010-05-01 16:40:20 +00006322#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00006323
drh9467abf2016-02-17 18:44:11 +00006324 if( rc ) eNew = eOld;
drh0b9b4302010-06-11 17:01:24 +00006325 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00006326
dane04dc882010-04-20 18:53:15 +00006327 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00006328 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00006329 pOut->n = sqlite3Strlen30(pOut->z);
6330 pOut->enc = SQLITE_UTF8;
6331 sqlite3VdbeChangeEncoding(pOut, encoding);
drh9467abf2016-02-17 18:44:11 +00006332 if( rc ) goto abort_due_to_error;
dane04dc882010-04-20 18:53:15 +00006333 break;
drhcac29a62010-07-02 19:36:52 +00006334};
6335#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00006336
drhfdbcdee2007-03-27 14:44:50 +00006337#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh9ef5e772016-08-19 14:20:56 +00006338/* Opcode: Vacuum P1 * * * *
drh6f8c91c2003-12-07 00:24:35 +00006339**
drh9ef5e772016-08-19 14:20:56 +00006340** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
6341** for an attached database. The "temp" database may not be vacuumed.
drh6f8c91c2003-12-07 00:24:35 +00006342*/
drh9cbf3422008-01-17 16:22:13 +00006343case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00006344 assert( p->readOnly==0 );
drh9ef5e772016-08-19 14:20:56 +00006345 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00006346 if( rc ) goto abort_due_to_error;
drh6f8c91c2003-12-07 00:24:35 +00006347 break;
6348}
drh154d4b22006-09-21 11:02:16 +00006349#endif
drh6f8c91c2003-12-07 00:24:35 +00006350
danielk1977dddbcdc2007-04-26 14:42:34 +00006351#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00006352/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00006353**
6354** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00006355** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00006356** P2. Otherwise, fall through to the next instruction.
6357*/
drh9cbf3422008-01-17 16:22:13 +00006358case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00006359 Btree *pBt;
6360
6361 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006362 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006363 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00006364 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00006365 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00006366 VdbeBranchTaken(rc==SQLITE_DONE,2);
drh9467abf2016-02-17 18:44:11 +00006367 if( rc ){
6368 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
danielk1977dddbcdc2007-04-26 14:42:34 +00006369 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00006370 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00006371 }
6372 break;
6373}
6374#endif
6375
drh98757152008-01-09 23:04:12 +00006376/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00006377**
drh25df48d2014-07-22 14:58:12 +00006378** Cause precompiled statements to expire. When an expired statement
6379** is executed using sqlite3_step() it will either automatically
6380** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6381** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00006382**
6383** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00006384** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00006385*/
drh9cbf3422008-01-17 16:22:13 +00006386case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00006387 if( !pOp->p1 ){
6388 sqlite3ExpirePreparedStatements(db);
6389 }else{
6390 p->expired = 1;
6391 }
6392 break;
6393}
6394
danielk1977c00da102006-01-07 13:21:04 +00006395#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00006396/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00006397** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00006398**
6399** Obtain a lock on a particular table. This instruction is only used when
6400** the shared-cache feature is enabled.
6401**
danielk197796d48e92009-06-29 06:00:37 +00006402** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00006403** on which the lock is acquired. A readlock is obtained if P3==0 or
6404** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00006405**
6406** P2 contains the root-page of the table to lock.
6407**
drh66a51672008-01-03 00:01:23 +00006408** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00006409** used to generate an error message if the lock cannot be obtained.
6410*/
drh9cbf3422008-01-17 16:22:13 +00006411case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006412 u8 isWriteLock = (u8)pOp->p3;
6413 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6414 int p1 = pOp->p1;
6415 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006416 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006417 assert( isWriteLock==0 || isWriteLock==1 );
6418 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
drh9467abf2016-02-17 18:44:11 +00006419 if( rc ){
6420 if( (rc&0xFF)==SQLITE_LOCKED ){
6421 const char *z = pOp->p4.z;
6422 sqlite3VdbeError(p, "database table is locked: %s", z);
6423 }
6424 goto abort_due_to_error;
danielk1977e0d9e6f2009-07-03 16:25:06 +00006425 }
danielk1977c00da102006-01-07 13:21:04 +00006426 }
6427 break;
6428}
drhb9bb7c12006-06-11 23:41:55 +00006429#endif /* SQLITE_OMIT_SHARED_CACHE */
6430
6431#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006432/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006433**
danielk19773e3a84d2008-08-01 17:37:40 +00006434** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6435** xBegin method for that table.
6436**
6437** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006438** within a callback to a virtual table xSync() method. If it is, the error
6439** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006440*/
drh9cbf3422008-01-17 16:22:13 +00006441case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006442 VTable *pVTab;
6443 pVTab = pOp->p4.pVtab;
6444 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006445 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
drh9467abf2016-02-17 18:44:11 +00006446 if( rc ) goto abort_due_to_error;
danielk1977f9e7dda2006-06-16 16:08:53 +00006447 break;
6448}
6449#endif /* SQLITE_OMIT_VIRTUALTABLE */
6450
6451#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006452/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006453**
dan73779452015-03-19 18:56:17 +00006454** P2 is a register that holds the name of a virtual table in database
6455** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006456*/
drh9cbf3422008-01-17 16:22:13 +00006457case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006458 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006459 const char *zTab; /* Name of the virtual table */
6460
dan73779452015-03-19 18:56:17 +00006461 memset(&sMem, 0, sizeof(sMem));
6462 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006463 /* Because P2 is always a static string, it is impossible for the
6464 ** sqlite3VdbeMemCopy() to fail */
6465 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6466 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006467 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006468 assert( rc==SQLITE_OK );
6469 zTab = (const char*)sqlite3_value_text(&sMem);
6470 assert( zTab || db->mallocFailed );
6471 if( zTab ){
6472 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006473 }
6474 sqlite3VdbeMemRelease(&sMem);
drh9467abf2016-02-17 18:44:11 +00006475 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006476 break;
6477}
6478#endif /* SQLITE_OMIT_VIRTUALTABLE */
6479
6480#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006481/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006482**
drh66a51672008-01-03 00:01:23 +00006483** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006484** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006485*/
drh9cbf3422008-01-17 16:22:13 +00006486case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006487 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006488 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006489 db->nVDestroy--;
drh9467abf2016-02-17 18:44:11 +00006490 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006491 break;
6492}
6493#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006494
drh9eff6162006-06-12 21:59:13 +00006495#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006496/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006497**
drh66a51672008-01-03 00:01:23 +00006498** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006499** P1 is a cursor number. This opcode opens a cursor to the virtual
6500** table and stores that cursor in P1.
6501*/
drh9cbf3422008-01-17 16:22:13 +00006502case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006503 VdbeCursor *pCur;
drhc960dcb2015-11-20 19:22:01 +00006504 sqlite3_vtab_cursor *pVCur;
drh856c1032009-06-02 15:21:42 +00006505 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006506 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006507
drh1713afb2013-06-28 01:24:57 +00006508 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006509 pCur = 0;
drhc960dcb2015-11-20 19:22:01 +00006510 pVCur = 0;
danielk1977595a5232009-07-24 17:58:53 +00006511 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006512 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6513 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006514 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006515 }
6516 pModule = pVtab->pModule;
drhc960dcb2015-11-20 19:22:01 +00006517 rc = pModule->xOpen(pVtab, &pVCur);
dan016f7812013-08-21 17:35:48 +00006518 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006519 if( rc ) goto abort_due_to_error;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006520
drh9467abf2016-02-17 18:44:11 +00006521 /* Initialize sqlite3_vtab_cursor base class */
6522 pVCur->pVtab = pVtab;
6523
6524 /* Initialize vdbe cursor object */
6525 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6526 if( pCur ){
6527 pCur->uc.pVCur = pVCur;
6528 pVtab->nRef++;
6529 }else{
6530 assert( db->mallocFailed );
6531 pModule->xClose(pVCur);
6532 goto no_mem;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006533 }
drh9eff6162006-06-12 21:59:13 +00006534 break;
6535}
6536#endif /* SQLITE_OMIT_VIRTUALTABLE */
6537
6538#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006539/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006540** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006541**
6542** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6543** the filtered result set is empty.
6544**
drh66a51672008-01-03 00:01:23 +00006545** P4 is either NULL or a string that was generated by the xBestIndex
6546** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006547** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006548**
drh9eff6162006-06-12 21:59:13 +00006549** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006550** by P1. The integer query plan parameter to xFilter is stored in register
6551** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006552** xFilter method. Registers P3+2..P3+1+argc are the argc
6553** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006554** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006555**
danielk19776dbee812008-01-03 18:39:41 +00006556** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006557*/
drh9cbf3422008-01-17 16:22:13 +00006558case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006559 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006560 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006561 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006562 Mem *pQuery;
6563 Mem *pArgc;
drhc960dcb2015-11-20 19:22:01 +00006564 sqlite3_vtab_cursor *pVCur;
drh4dc754d2008-07-23 18:17:32 +00006565 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006566 VdbeCursor *pCur;
6567 int res;
6568 int i;
6569 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006570
drha6c2ed92009-11-14 23:22:23 +00006571 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006572 pArgc = &pQuery[1];
6573 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006574 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006575 REGISTER_TRACE(pOp->p3, pQuery);
drhc960dcb2015-11-20 19:22:01 +00006576 assert( pCur->eCurType==CURTYPE_VTAB );
6577 pVCur = pCur->uc.pVCur;
6578 pVtab = pVCur->pVtab;
drh4dc754d2008-07-23 18:17:32 +00006579 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006580
drh9cbf3422008-01-17 16:22:13 +00006581 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006582 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006583 nArg = (int)pArgc->u.i;
6584 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006585
drh644a5292006-12-20 14:53:38 +00006586 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006587 res = 0;
6588 apArg = p->apArg;
6589 for(i = 0; i<nArg; i++){
6590 apArg[i] = &pArgc[i+1];
6591 }
drhc960dcb2015-11-20 19:22:01 +00006592 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
drhf56fa462015-04-13 21:39:54 +00006593 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006594 if( rc ) goto abort_due_to_error;
6595 res = pModule->xEof(pVCur);
drh1d454a32008-01-31 19:34:51 +00006596 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006597 VdbeBranchTaken(res!=0,2);
6598 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006599 break;
6600}
6601#endif /* SQLITE_OMIT_VIRTUALTABLE */
6602
6603#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006604/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006605** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006606**
drh2133d822008-01-03 18:44:59 +00006607** Store the value of the P2-th column of
6608** the row of the virtual-table that the
6609** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006610*/
6611case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006612 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006613 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006614 Mem *pDest;
6615 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006616
drhdfe88ec2008-11-03 20:55:06 +00006617 VdbeCursor *pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006618 assert( pCur->eCurType==CURTYPE_VTAB );
drh9f6168b2016-03-19 23:32:58 +00006619 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006620 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006621 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006622 if( pCur->nullRow ){
6623 sqlite3VdbeMemSetNull(pDest);
6624 break;
6625 }
drhc960dcb2015-11-20 19:22:01 +00006626 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006627 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006628 assert( pModule->xColumn );
6629 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006630 sContext.pOut = pDest;
6631 MemSetTypeFlag(pDest, MEM_Null);
drhc960dcb2015-11-20 19:22:01 +00006632 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006633 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006634 if( sContext.isError ){
6635 rc = sContext.isError;
6636 }
drh9bd038f2014-08-27 14:14:06 +00006637 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006638 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006639 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006640
drhde4fcfd2008-01-19 23:50:26 +00006641 if( sqlite3VdbeMemTooBig(pDest) ){
6642 goto too_big;
6643 }
drh9467abf2016-02-17 18:44:11 +00006644 if( rc ) goto abort_due_to_error;
drh9eff6162006-06-12 21:59:13 +00006645 break;
6646}
6647#endif /* SQLITE_OMIT_VIRTUALTABLE */
6648
6649#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006650/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006651**
6652** Advance virtual table P1 to the next row in its result set and
6653** jump to instruction P2. Or, if the virtual table has reached
6654** the end of its result set, then fall through to the next instruction.
6655*/
drh9cbf3422008-01-17 16:22:13 +00006656case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006657 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006658 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006659 int res;
drh856c1032009-06-02 15:21:42 +00006660 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006661
drhc54a6172009-06-02 16:06:03 +00006662 res = 0;
drh856c1032009-06-02 15:21:42 +00006663 pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006664 assert( pCur->eCurType==CURTYPE_VTAB );
drh2945b4a2008-01-31 15:53:45 +00006665 if( pCur->nullRow ){
6666 break;
6667 }
drhc960dcb2015-11-20 19:22:01 +00006668 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006669 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006670 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006671
drhde4fcfd2008-01-19 23:50:26 +00006672 /* Invoke the xNext() method of the module. There is no way for the
6673 ** underlying implementation to return an error if one occurs during
6674 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6675 ** data is available) and the error code returned when xColumn or
6676 ** some other method is next invoked on the save virtual table cursor.
6677 */
drhc960dcb2015-11-20 19:22:01 +00006678 rc = pModule->xNext(pCur->uc.pVCur);
dan016f7812013-08-21 17:35:48 +00006679 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006680 if( rc ) goto abort_due_to_error;
6681 res = pModule->xEof(pCur->uc.pVCur);
drh688852a2014-02-17 22:40:43 +00006682 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006683 if( !res ){
6684 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006685 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006686 }
drh49afe3a2013-07-10 03:05:14 +00006687 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006688}
6689#endif /* SQLITE_OMIT_VIRTUALTABLE */
6690
danielk1977182c4ba2007-06-27 15:53:34 +00006691#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006692/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006693**
drh66a51672008-01-03 00:01:23 +00006694** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006695** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006696** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006697*/
drh9cbf3422008-01-17 16:22:13 +00006698case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006699 sqlite3_vtab *pVtab;
6700 Mem *pName;
6701
danielk1977595a5232009-07-24 17:58:53 +00006702 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006703 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006704 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006705 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006706 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006707 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006708 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006709 testcase( pName->enc==SQLITE_UTF8 );
6710 testcase( pName->enc==SQLITE_UTF16BE );
6711 testcase( pName->enc==SQLITE_UTF16LE );
6712 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
drh9467abf2016-02-17 18:44:11 +00006713 if( rc ) goto abort_due_to_error;
6714 rc = pVtab->pModule->xRename(pVtab, pName->z);
6715 sqlite3VtabImportErrmsg(p, pVtab);
6716 p->expired = 0;
6717 if( rc ) goto abort_due_to_error;
danielk1977182c4ba2007-06-27 15:53:34 +00006718 break;
6719}
6720#endif
drh4cbdda92006-06-14 19:00:20 +00006721
6722#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006723/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006724** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006725**
drh66a51672008-01-03 00:01:23 +00006726** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006727** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006728** are contiguous memory cells starting at P3 to pass to the xUpdate
6729** invocation. The value in register (P3+P2-1) corresponds to the
6730** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006731**
6732** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006733** The argv[0] element (which corresponds to memory cell P3)
6734** is the rowid of a row to delete. If argv[0] is NULL then no
6735** deletion occurs. The argv[1] element is the rowid of the new
6736** row. This can be NULL to have the virtual table select the new
6737** rowid for itself. The subsequent elements in the array are
6738** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006739**
6740** If P2==1 then no insert is performed. argv[0] is the rowid of
6741** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006742**
6743** P1 is a boolean flag. If it is set to true and the xUpdate call
6744** is successful, then the value returned by sqlite3_last_insert_rowid()
6745** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006746**
6747** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6748** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006749*/
drh9cbf3422008-01-17 16:22:13 +00006750case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006751 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006752 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006753 int nArg;
6754 int i;
6755 sqlite_int64 rowid;
6756 Mem **apArg;
6757 Mem *pX;
6758
danb061d052011-04-25 18:49:57 +00006759 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6760 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6761 );
drh9e92a472013-06-27 17:40:30 +00006762 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006763 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006764 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6765 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006766 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006767 }
6768 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006769 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006770 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006771 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006772 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006773 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006774 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006775 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006776 assert( memIsValid(pX) );
6777 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006778 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006779 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006780 }
danb061d052011-04-25 18:49:57 +00006781 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006782 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006783 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006784 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006785 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006786 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006787 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006788 }
drhd91c1a12013-02-09 13:58:25 +00006789 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006790 if( pOp->p5==OE_Ignore ){
6791 rc = SQLITE_OK;
6792 }else{
6793 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6794 }
6795 }else{
6796 p->nChange++;
6797 }
drh9467abf2016-02-17 18:44:11 +00006798 if( rc ) goto abort_due_to_error;
danielk1977399918f2006-06-14 13:03:23 +00006799 }
drh4cbdda92006-06-14 19:00:20 +00006800 break;
danielk1977399918f2006-06-14 13:03:23 +00006801}
6802#endif /* SQLITE_OMIT_VIRTUALTABLE */
6803
danielk197759a93792008-05-15 17:48:20 +00006804#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6805/* Opcode: Pagecount P1 P2 * * *
6806**
6807** Write the current number of pages in database P1 to memory cell P2.
6808*/
drh27a348c2015-04-13 19:14:06 +00006809case OP_Pagecount: { /* out2 */
6810 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006811 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006812 break;
6813}
6814#endif
6815
drh60ac3f42010-11-23 18:59:27 +00006816
6817#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6818/* Opcode: MaxPgcnt P1 P2 P3 * *
6819**
6820** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006821** Do not let the maximum page count fall below the current page count and
6822** do not change the maximum page count value if P3==0.
6823**
drh60ac3f42010-11-23 18:59:27 +00006824** Store the maximum page count after the change in register P2.
6825*/
drh27a348c2015-04-13 19:14:06 +00006826case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006827 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006828 Btree *pBt;
6829
drh27a348c2015-04-13 19:14:06 +00006830 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006831 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006832 newMax = 0;
6833 if( pOp->p3 ){
6834 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006835 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006836 }
6837 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006838 break;
6839}
6840#endif
6841
6842
drh9e5eb9c2016-09-18 16:08:10 +00006843/* Opcode: Init P1 P2 * P4 *
drh72e26de2016-08-24 21:24:04 +00006844** Synopsis: Start at P2
drhaceb31b2014-02-08 01:40:27 +00006845**
6846** Programs contain a single instance of this opcode as the very first
6847** opcode.
drh949f9cd2008-01-12 21:35:57 +00006848**
6849** If tracing is enabled (by the sqlite3_trace()) interface, then
6850** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006851** Or if P4 is blank, use the string returned by sqlite3_sql().
6852**
6853** If P2 is not zero, jump to instruction P2.
drh9e5eb9c2016-09-18 16:08:10 +00006854**
6855** Increment the value of P1 so that OP_Once opcodes will jump the
6856** first time they are evaluated for this run.
drh949f9cd2008-01-12 21:35:57 +00006857*/
drhaceb31b2014-02-08 01:40:27 +00006858case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006859 char *zTrace;
drh9e5eb9c2016-09-18 16:08:10 +00006860 int i;
drh5fe63bf2016-07-25 02:42:22 +00006861
6862 /* If the P4 argument is not NULL, then it must be an SQL comment string.
6863 ** The "--" string is broken up to prevent false-positives with srcck1.c.
6864 **
6865 ** This assert() provides evidence for:
6866 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
6867 ** would have been returned by the legacy sqlite3_trace() interface by
6868 ** using the X argument when X begins with "--" and invoking
6869 ** sqlite3_expanded_sql(P) otherwise.
6870 */
6871 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
drh9e5eb9c2016-09-18 16:08:10 +00006872 assert( pOp==p->aOp ); /* Always instruction 0 */
drh856c1032009-06-02 15:21:42 +00006873
drhaceb31b2014-02-08 01:40:27 +00006874#ifndef SQLITE_OMIT_TRACE
drhfca760c2016-07-14 01:09:08 +00006875 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
drh37f58e92012-09-04 21:34:26 +00006876 && !p->doingRerun
6877 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6878 ){
drh3d2a5292016-07-13 22:55:01 +00006879#ifndef SQLITE_OMIT_DEPRECATED
drhfca760c2016-07-14 01:09:08 +00006880 if( db->mTrace & SQLITE_TRACE_LEGACY ){
6881 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
drh5fe63bf2016-07-25 02:42:22 +00006882 char *z = sqlite3VdbeExpandSql(p, zTrace);
drhfca760c2016-07-14 01:09:08 +00006883 x(db->pTraceArg, z);
drhbd441f72016-07-25 02:31:48 +00006884 sqlite3_free(z);
drhfca760c2016-07-14 01:09:08 +00006885 }else
drh3d2a5292016-07-13 22:55:01 +00006886#endif
drhfca760c2016-07-14 01:09:08 +00006887 {
drhbd441f72016-07-25 02:31:48 +00006888 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
drh3d2a5292016-07-13 22:55:01 +00006889 }
drh949f9cd2008-01-12 21:35:57 +00006890 }
drh8f8b2312013-10-18 20:03:43 +00006891#ifdef SQLITE_USE_FCNTL_TRACE
6892 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6893 if( zTrace ){
mistachkind8992ce2016-09-20 17:49:01 +00006894 int j;
6895 for(j=0; j<db->nDb; j++){
6896 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
6897 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
drh8f8b2312013-10-18 20:03:43 +00006898 }
6899 }
6900#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006901#ifdef SQLITE_DEBUG
6902 if( (db->flags & SQLITE_SqlTrace)!=0
6903 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6904 ){
6905 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6906 }
6907#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006908#endif /* SQLITE_OMIT_TRACE */
drh4910a762016-09-03 01:46:15 +00006909 assert( pOp->p2>0 );
drh9e5eb9c2016-09-18 16:08:10 +00006910 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
6911 for(i=1; i<p->nOp; i++){
6912 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
6913 }
6914 pOp->p1 = 0;
6915 }
6916 pOp->p1++;
drh4910a762016-09-03 01:46:15 +00006917 goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006918}
drh949f9cd2008-01-12 21:35:57 +00006919
drh28935362013-12-07 20:39:19 +00006920#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0df57012015-08-14 15:05:55 +00006921/* Opcode: CursorHint P1 * * P4 *
drh28935362013-12-07 20:39:19 +00006922**
6923** Provide a hint to cursor P1 that it only needs to return rows that
drh0df57012015-08-14 15:05:55 +00006924** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6925** to values currently held in registers. TK_COLUMN terms in the P4
6926** expression refer to columns in the b-tree to which cursor P1 is pointing.
drh28935362013-12-07 20:39:19 +00006927*/
6928case OP_CursorHint: {
6929 VdbeCursor *pC;
6930
6931 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6932 assert( pOp->p4type==P4_EXPR );
6933 pC = p->apCsr[pOp->p1];
dan91d3a612014-07-15 11:59:44 +00006934 if( pC ){
drhc960dcb2015-11-20 19:22:01 +00006935 assert( pC->eCurType==CURTYPE_BTREE );
drh62aaa6c2015-11-21 17:27:42 +00006936 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6937 pOp->p4.pExpr, aMem);
dan91d3a612014-07-15 11:59:44 +00006938 }
drh28935362013-12-07 20:39:19 +00006939 break;
6940}
6941#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh91fd4d42008-01-19 20:11:25 +00006942
6943/* Opcode: Noop * * * * *
6944**
6945** Do nothing. This instruction is often useful as a jump
6946** destination.
drh5e00f6c2001-09-13 13:46:56 +00006947*/
drh91fd4d42008-01-19 20:11:25 +00006948/*
6949** The magic Explain opcode are only inserted when explain==2 (which
6950** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6951** This opcode records information from the optimizer. It is the
6952** the same as a no-op. This opcodesnever appears in a real VM program.
6953*/
6954default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006955 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006956 break;
6957}
6958
6959/*****************************************************************************
6960** The cases of the switch statement above this line should all be indented
6961** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6962** readability. From this point on down, the normal indentation rules are
6963** restored.
6964*****************************************************************************/
6965 }
drh6e142f52000-06-08 13:36:40 +00006966
drh7b396862003-01-01 23:06:20 +00006967#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006968 {
drha01c7c72014-04-25 12:35:31 +00006969 u64 endTime = sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00006970 if( endTime>start ) pOrigOp->cycles += endTime - start;
6971 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006972 }
drh7b396862003-01-01 23:06:20 +00006973#endif
6974
drh6e142f52000-06-08 13:36:40 +00006975 /* The following code adds nothing to the actual functionality
6976 ** of the program. It is only here for testing and debugging.
6977 ** On the other hand, it does burn CPU cycles every time through
6978 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6979 */
6980#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00006981 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00006982
drhcf1023c2007-05-08 20:59:49 +00006983#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006984 if( db->flags & SQLITE_VdbeTrace ){
drh7cc84c22016-04-11 13:36:42 +00006985 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
drh84e55a82013-11-13 17:58:23 +00006986 if( rc!=0 ) printf("rc=%d\n",rc);
drh7cc84c22016-04-11 13:36:42 +00006987 if( opProperty & (OPFLG_OUT2) ){
drh6dc41482015-04-16 17:31:02 +00006988 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00006989 }
drh7cc84c22016-04-11 13:36:42 +00006990 if( opProperty & OPFLG_OUT3 ){
drh6dc41482015-04-16 17:31:02 +00006991 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006992 }
drh75897232000-05-29 14:26:00 +00006993 }
danielk1977b5402fb2005-01-12 07:15:04 +00006994#endif /* SQLITE_DEBUG */
6995#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006996 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006997
drha05a7222008-01-19 03:35:58 +00006998 /* If we reach this point, it means that execution is finished with
6999 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00007000 */
drh9467abf2016-02-17 18:44:11 +00007001abort_due_to_error:
7002 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
drha05a7222008-01-19 03:35:58 +00007003 assert( rc );
drh9467abf2016-02-17 18:44:11 +00007004 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7005 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7006 }
drha05a7222008-01-19 03:35:58 +00007007 p->rc = rc;
drhf68521c2016-03-21 12:28:02 +00007008 sqlite3SystemError(db, rc);
drha64fa912010-03-04 00:53:32 +00007009 testcase( sqlite3GlobalConfig.xLog!=0 );
7010 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00007011 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00007012 sqlite3VdbeHalt(p);
drh4a642b62016-02-05 01:55:27 +00007013 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
danielk19777eaabcd2008-07-07 14:56:56 +00007014 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00007015 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00007016 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00007017 }
drh900b31e2007-08-28 02:27:51 +00007018
7019 /* This is the only way out of this procedure. We have to
7020 ** release the mutexes on btrees that were acquired at the
7021 ** top. */
7022vdbe_return:
drh99a66922011-05-13 18:51:42 +00007023 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00007024 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00007025 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00007026 sqlite3VdbeLeave(p);
dan83f0ab82016-01-29 18:04:31 +00007027 assert( rc!=SQLITE_OK || nExtraDelete==0
7028 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7029 );
drhb86ccfb2003-01-28 23:13:10 +00007030 return rc;
7031
drh023ae032007-05-08 12:12:16 +00007032 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7033 ** is encountered.
7034 */
7035too_big:
drh22c17b82015-05-15 04:13:15 +00007036 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00007037 rc = SQLITE_TOOBIG;
drh9467abf2016-02-17 18:44:11 +00007038 goto abort_due_to_error;
drh023ae032007-05-08 12:12:16 +00007039
drh98640a32007-06-07 19:08:32 +00007040 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00007041 */
7042no_mem:
drh4a642b62016-02-05 01:55:27 +00007043 sqlite3OomFault(db);
drh22c17b82015-05-15 04:13:15 +00007044 sqlite3VdbeError(p, "out of memory");
mistachkinfad30392016-02-13 23:43:46 +00007045 rc = SQLITE_NOMEM_BKPT;
drh9467abf2016-02-17 18:44:11 +00007046 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007047
danielk19776f8a5032004-05-10 10:34:51 +00007048 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00007049 ** flag.
7050 */
7051abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00007052 assert( db->u1.isInterrupted );
mistachkinfad30392016-02-13 23:43:46 +00007053 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00007054 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00007055 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drh9467abf2016-02-17 18:44:11 +00007056 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007057}