blob: 3e58f68cb53f1eeee5b48b3d099ae90a89f22c6d [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
danielk1977404ca072009-03-16 13:19:36 +0000246 if( pBt->pWriter!=p && pBt->isExclusive ){
247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
267 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000355** transaction. If it does not, then the BtShared.isPending variable
356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000368 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
danielk1977404ca072009-03-16 13:19:36 +0000381 assert( pBt->isPending==0 || pBt->pWriter );
382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
384 pBt->isExclusive = 0;
385 pBt->isPending = 0;
386 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000387 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000388 ** transaction. If there currently exists a writer, and p is not
389 ** that writer, then the number of locks held by connections other
390 ** than the writer must be about to drop to zero. In this case
391 ** set the isPending flag to 0.
392 **
393 ** If there is not currently a writer, then BtShared.isPending must
394 ** be zero already. So this next line is harmless in that case.
395 */
396 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000397 }
danielk1977aef0bf62005-12-30 16:28:01 +0000398}
danielk197794b30732009-07-02 17:21:57 +0000399
danielk1977e0d9e6f2009-07-03 16:25:06 +0000400/*
drh0ee3dbe2009-10-16 15:05:18 +0000401** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000402*/
danielk197794b30732009-07-02 17:21:57 +0000403static void downgradeAllSharedCacheTableLocks(Btree *p){
404 BtShared *pBt = p->pBt;
405 if( pBt->pWriter==p ){
406 BtLock *pLock;
407 pBt->pWriter = 0;
408 pBt->isExclusive = 0;
409 pBt->isPending = 0;
410 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
411 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
412 pLock->eLock = READ_LOCK;
413 }
414 }
415}
416
danielk1977aef0bf62005-12-30 16:28:01 +0000417#endif /* SQLITE_OMIT_SHARED_CACHE */
418
drh980b1a72006-08-16 16:42:48 +0000419static void releasePage(MemPage *pPage); /* Forward reference */
420
drh1fee73e2007-08-29 04:00:57 +0000421/*
drh0ee3dbe2009-10-16 15:05:18 +0000422***** This routine is used inside of assert() only ****
423**
424** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000425*/
drh0ee3dbe2009-10-16 15:05:18 +0000426#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000427static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000428 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000429}
430#endif
431
432
danielk197792d4d7a2007-05-04 12:05:56 +0000433#ifndef SQLITE_OMIT_INCRBLOB
434/*
435** Invalidate the overflow page-list cache for cursor pCur, if any.
436*/
437static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000438 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000439 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000440 pCur->aOverflow = 0;
441}
442
443/*
444** Invalidate the overflow page-list cache for all cursors opened
445** on the shared btree structure pBt.
446*/
447static void invalidateAllOverflowCache(BtShared *pBt){
448 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000449 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000450 for(p=pBt->pCursor; p; p=p->pNext){
451 invalidateOverflowCache(p);
452 }
453}
danielk197796d48e92009-06-29 06:00:37 +0000454
455/*
456** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000457** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000458** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000459**
460** If argument isClearTable is true, then the entire contents of the
461** table is about to be deleted. In this case invalidate all incrblob
462** cursors open on any row within the table with root-page pgnoRoot.
463**
464** Otherwise, if argument isClearTable is false, then the row with
465** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000466** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000467*/
468static void invalidateIncrblobCursors(
469 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000470 i64 iRow, /* The rowid that might be changing */
471 int isClearTable /* True if all rows are being deleted */
472){
473 BtCursor *p;
474 BtShared *pBt = pBtree->pBt;
475 assert( sqlite3BtreeHoldsMutex(pBtree) );
476 for(p=pBt->pCursor; p; p=p->pNext){
477 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
478 p->eState = CURSOR_INVALID;
479 }
480 }
481}
482
danielk197792d4d7a2007-05-04 12:05:56 +0000483#else
drh0ee3dbe2009-10-16 15:05:18 +0000484 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000485 #define invalidateOverflowCache(x)
486 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000487 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000488#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000489
drh980b1a72006-08-16 16:42:48 +0000490/*
danielk1977bea2a942009-01-20 17:06:27 +0000491** Set bit pgno of the BtShared.pHasContent bitvec. This is called
492** when a page that previously contained data becomes a free-list leaf
493** page.
494**
495** The BtShared.pHasContent bitvec exists to work around an obscure
496** bug caused by the interaction of two useful IO optimizations surrounding
497** free-list leaf pages:
498**
499** 1) When all data is deleted from a page and the page becomes
500** a free-list leaf page, the page is not written to the database
501** (as free-list leaf pages contain no meaningful data). Sometimes
502** such a page is not even journalled (as it will not be modified,
503** why bother journalling it?).
504**
505** 2) When a free-list leaf page is reused, its content is not read
506** from the database or written to the journal file (why should it
507** be, if it is not at all meaningful?).
508**
509** By themselves, these optimizations work fine and provide a handy
510** performance boost to bulk delete or insert operations. However, if
511** a page is moved to the free-list and then reused within the same
512** transaction, a problem comes up. If the page is not journalled when
513** it is moved to the free-list and it is also not journalled when it
514** is extracted from the free-list and reused, then the original data
515** may be lost. In the event of a rollback, it may not be possible
516** to restore the database to its original configuration.
517**
518** The solution is the BtShared.pHasContent bitvec. Whenever a page is
519** moved to become a free-list leaf page, the corresponding bit is
520** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000521** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000522** set in BtShared.pHasContent. The contents of the bitvec are cleared
523** at the end of every transaction.
524*/
525static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
526 int rc = SQLITE_OK;
527 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000528 assert( pgno<=pBt->nPage );
529 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000530 if( !pBt->pHasContent ){
531 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000532 }
533 }
534 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
535 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
536 }
537 return rc;
538}
539
540/*
541** Query the BtShared.pHasContent vector.
542**
543** This function is called when a free-list leaf page is removed from the
544** free-list for reuse. It returns false if it is safe to retrieve the
545** page from the pager layer with the 'no-content' flag set. True otherwise.
546*/
547static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
548 Bitvec *p = pBt->pHasContent;
549 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
550}
551
552/*
553** Clear (destroy) the BtShared.pHasContent bitvec. This should be
554** invoked at the conclusion of each write-transaction.
555*/
556static void btreeClearHasContent(BtShared *pBt){
557 sqlite3BitvecDestroy(pBt->pHasContent);
558 pBt->pHasContent = 0;
559}
560
561/*
drh980b1a72006-08-16 16:42:48 +0000562** Save the current cursor position in the variables BtCursor.nKey
563** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000564**
565** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
566** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000567*/
568static int saveCursorPosition(BtCursor *pCur){
569 int rc;
570
571 assert( CURSOR_VALID==pCur->eState );
572 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000573 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000574
575 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000576 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000577
578 /* If this is an intKey table, then the above call to BtreeKeySize()
579 ** stores the integer key in pCur->nKey. In this case this value is
580 ** all that is required. Otherwise, if pCur is not open on an intKey
581 ** table, then malloc space for and store the pCur->nKey bytes of key
582 ** data.
583 */
drh4c301aa2009-07-15 17:25:45 +0000584 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000585 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000586 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000587 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000588 if( rc==SQLITE_OK ){
589 pCur->pKey = pKey;
590 }else{
drh17435752007-08-16 04:30:38 +0000591 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000592 }
593 }else{
594 rc = SQLITE_NOMEM;
595 }
596 }
danielk197771d5d2c2008-09-29 11:49:47 +0000597 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000598
599 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000606 pCur->eState = CURSOR_REQUIRESEEK;
607 }
608
danielk197792d4d7a2007-05-04 12:05:56 +0000609 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000610 return rc;
611}
612
613/*
drh0ee3dbe2009-10-16 15:05:18 +0000614** Save the positions of all cursors (except pExcept) that are open on
615** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000616** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
617*/
618static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
619 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000620 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000621 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000622 for(p=pBt->pCursor; p; p=p->pNext){
623 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
624 p->eState==CURSOR_VALID ){
625 int rc = saveCursorPosition(p);
626 if( SQLITE_OK!=rc ){
627 return rc;
628 }
629 }
630 }
631 return SQLITE_OK;
632}
633
634/*
drhbf700f32007-03-31 02:36:44 +0000635** Clear the current cursor position.
636*/
danielk1977be51a652008-10-08 17:58:48 +0000637void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000638 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000639 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000640 pCur->pKey = 0;
641 pCur->eState = CURSOR_INVALID;
642}
643
644/*
danielk19773509a652009-07-06 18:56:13 +0000645** In this version of BtreeMoveto, pKey is a packed index record
646** such as is generated by the OP_MakeRecord opcode. Unpack the
647** record and then call BtreeMovetoUnpacked() to do the work.
648*/
649static int btreeMoveto(
650 BtCursor *pCur, /* Cursor open on the btree to be searched */
651 const void *pKey, /* Packed key if the btree is an index */
652 i64 nKey, /* Integer key for tables. Size of pKey for indices */
653 int bias, /* Bias search to the high end */
654 int *pRes /* Write search results here */
655){
656 int rc; /* Status code */
657 UnpackedRecord *pIdxKey; /* Unpacked index key */
658 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
659
660 if( pKey ){
661 assert( nKey==(i64)(int)nKey );
662 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
663 aSpace, sizeof(aSpace));
664 if( pIdxKey==0 ) return SQLITE_NOMEM;
665 }else{
666 pIdxKey = 0;
667 }
668 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
669 if( pKey ){
670 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
671 }
672 return rc;
673}
674
675/*
drh980b1a72006-08-16 16:42:48 +0000676** Restore the cursor to the position it was in (or as close to as possible)
677** when saveCursorPosition() was called. Note that this call deletes the
678** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000679** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000680** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000681*/
danielk197730548662009-07-09 05:07:37 +0000682static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000683 int rc;
drh1fee73e2007-08-29 04:00:57 +0000684 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000685 assert( pCur->eState>=CURSOR_REQUIRESEEK );
686 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000687 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000688 }
drh980b1a72006-08-16 16:42:48 +0000689 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000690 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000691 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000692 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000693 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000694 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000695 }
696 return rc;
697}
698
drha3460582008-07-11 21:02:53 +0000699#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000700 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000701 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000702 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000703
drha3460582008-07-11 21:02:53 +0000704/*
705** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000706** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000707** at is deleted out from under them.
708**
709** This routine returns an error code if something goes wrong. The
710** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
711*/
712int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
713 int rc;
714
715 rc = restoreCursorPosition(pCur);
716 if( rc ){
717 *pHasMoved = 1;
718 return rc;
719 }
drh4c301aa2009-07-15 17:25:45 +0000720 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000721 *pHasMoved = 1;
722 }else{
723 *pHasMoved = 0;
724 }
725 return SQLITE_OK;
726}
727
danielk1977599fcba2004-11-08 07:13:13 +0000728#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000729/*
drha3152892007-05-05 11:48:52 +0000730** Given a page number of a regular database page, return the page
731** number for the pointer-map page that contains the entry for the
732** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000733**
734** Return 0 (not a valid page) for pgno==1 since there is
735** no pointer map associated with page 1. The integrity_check logic
736** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000737*/
danielk1977266664d2006-02-10 08:24:21 +0000738static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000739 int nPagesPerMapPage;
740 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000741 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000742 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000743 nPagesPerMapPage = (pBt->usableSize/5)+1;
744 iPtrMap = (pgno-2)/nPagesPerMapPage;
745 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000746 if( ret==PENDING_BYTE_PAGE(pBt) ){
747 ret++;
748 }
749 return ret;
750}
danielk1977a19df672004-11-03 11:37:07 +0000751
danielk1977afcdd022004-10-31 16:25:42 +0000752/*
danielk1977afcdd022004-10-31 16:25:42 +0000753** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000754**
755** This routine updates the pointer map entry for page number 'key'
756** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000757**
758** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
759** a no-op. If an error occurs, the appropriate error code is written
760** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000761*/
drh98add2e2009-07-20 17:11:49 +0000762static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000763 DbPage *pDbPage; /* The pointer map page */
764 u8 *pPtrmap; /* The pointer map data */
765 Pgno iPtrmap; /* The pointer map page number */
766 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000767 int rc; /* Return code from subfunctions */
768
769 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000770
drh1fee73e2007-08-29 04:00:57 +0000771 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000772 /* The master-journal page number must never be used as a pointer map page */
773 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
774
danielk1977ac11ee62005-01-15 12:45:51 +0000775 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000776 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000777 *pRC = SQLITE_CORRUPT_BKPT;
778 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000779 }
danielk1977266664d2006-02-10 08:24:21 +0000780 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000781 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000782 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000783 *pRC = rc;
784 return;
danielk1977afcdd022004-10-31 16:25:42 +0000785 }
danielk19778c666b12008-07-18 09:34:57 +0000786 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000787 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000788 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000789 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000790 }
drhfc243732011-05-17 15:21:56 +0000791 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000792 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000793
drh615ae552005-01-16 23:21:00 +0000794 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
795 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000796 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000797 if( rc==SQLITE_OK ){
798 pPtrmap[offset] = eType;
799 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000800 }
danielk1977afcdd022004-10-31 16:25:42 +0000801 }
802
drh4925a552009-07-07 11:39:58 +0000803ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000804 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000805}
806
807/*
808** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000809**
810** This routine retrieves the pointer map entry for page 'key', writing
811** the type and parent page number to *pEType and *pPgno respectively.
812** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000813*/
danielk1977aef0bf62005-12-30 16:28:01 +0000814static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000815 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000816 int iPtrmap; /* Pointer map page index */
817 u8 *pPtrmap; /* Pointer map page data */
818 int offset; /* Offset of entry in pointer map */
819 int rc;
820
drh1fee73e2007-08-29 04:00:57 +0000821 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000822
danielk1977266664d2006-02-10 08:24:21 +0000823 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000824 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000825 if( rc!=0 ){
826 return rc;
827 }
danielk19773b8a05f2007-03-19 17:44:26 +0000828 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000829
danielk19778c666b12008-07-18 09:34:57 +0000830 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000831 if( offset<0 ){
832 sqlite3PagerUnref(pDbPage);
833 return SQLITE_CORRUPT_BKPT;
834 }
835 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000836 assert( pEType!=0 );
837 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000838 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000839
danielk19773b8a05f2007-03-19 17:44:26 +0000840 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000841 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000842 return SQLITE_OK;
843}
844
danielk197785d90ca2008-07-19 14:25:15 +0000845#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000846 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000847 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000848 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000849#endif
danielk1977afcdd022004-10-31 16:25:42 +0000850
drh0d316a42002-08-11 20:10:47 +0000851/*
drh271efa52004-05-30 19:19:05 +0000852** Given a btree page and a cell index (0 means the first cell on
853** the page, 1 means the second cell, and so forth) return a pointer
854** to the cell content.
855**
856** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000857*/
drh1688c862008-07-18 02:44:17 +0000858#define findCell(P,I) \
859 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000860#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
861
drh43605152004-05-29 21:46:49 +0000862
863/*
drh93a960a2008-07-10 00:32:42 +0000864** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000865** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000866*/
867static u8 *findOverflowCell(MemPage *pPage, int iCell){
868 int i;
drh1fee73e2007-08-29 04:00:57 +0000869 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000870 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000871 int k;
872 struct _OvflCell *pOvfl;
873 pOvfl = &pPage->aOvfl[i];
874 k = pOvfl->idx;
875 if( k<=iCell ){
876 if( k==iCell ){
877 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000878 }
879 iCell--;
880 }
881 }
danielk19771cc5ed82007-05-16 17:28:43 +0000882 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000883}
884
885/*
886** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000887** are two versions of this function. btreeParseCell() takes a
888** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000889** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000890**
891** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000892** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000893*/
danielk197730548662009-07-09 05:07:37 +0000894static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000895 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000896 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000897 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000898){
drhf49661a2008-12-10 16:45:50 +0000899 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000900 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000901
drh1fee73e2007-08-29 04:00:57 +0000902 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000903
drh43605152004-05-29 21:46:49 +0000904 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000905 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000906 n = pPage->childPtrSize;
907 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000908 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000909 if( pPage->hasData ){
910 n += getVarint32(&pCell[n], nPayload);
911 }else{
912 nPayload = 0;
913 }
drh1bd10f82008-12-10 21:19:56 +0000914 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000915 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000916 }else{
drh79df1f42008-07-18 00:57:33 +0000917 pInfo->nData = 0;
918 n += getVarint32(&pCell[n], nPayload);
919 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000920 }
drh72365832007-03-06 15:53:44 +0000921 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000922 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000923 testcase( nPayload==pPage->maxLocal );
924 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000925 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000926 /* This is the (easy) common case where the entire payload fits
927 ** on the local page. No overflow is required.
928 */
drh41692e92011-01-25 04:34:51 +0000929 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000930 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000931 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000932 }else{
drh271efa52004-05-30 19:19:05 +0000933 /* If the payload will not fit completely on the local page, we have
934 ** to decide how much to store locally and how much to spill onto
935 ** overflow pages. The strategy is to minimize the amount of unused
936 ** space on overflow pages while keeping the amount of local storage
937 ** in between minLocal and maxLocal.
938 **
939 ** Warning: changing the way overflow payload is distributed in any
940 ** way will result in an incompatible file format.
941 */
942 int minLocal; /* Minimum amount of payload held locally */
943 int maxLocal; /* Maximum amount of payload held locally */
944 int surplus; /* Overflow payload available for local storage */
945
946 minLocal = pPage->minLocal;
947 maxLocal = pPage->maxLocal;
948 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000949 testcase( surplus==maxLocal );
950 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000951 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000952 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000953 }else{
drhf49661a2008-12-10 16:45:50 +0000954 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000955 }
drhf49661a2008-12-10 16:45:50 +0000956 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000957 pInfo->nSize = pInfo->iOverflow + 4;
958 }
drh3aac2dd2004-04-26 14:10:20 +0000959}
danielk19771cc5ed82007-05-16 17:28:43 +0000960#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000961 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
962static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000963 MemPage *pPage, /* Page containing the cell */
964 int iCell, /* The cell index. First cell is 0 */
965 CellInfo *pInfo /* Fill in this structure */
966){
danielk19771cc5ed82007-05-16 17:28:43 +0000967 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000968}
drh3aac2dd2004-04-26 14:10:20 +0000969
970/*
drh43605152004-05-29 21:46:49 +0000971** Compute the total number of bytes that a Cell needs in the cell
972** data area of the btree-page. The return number includes the cell
973** data header and the local payload, but not any overflow page or
974** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000975*/
danielk1977ae5558b2009-04-29 11:31:47 +0000976static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
977 u8 *pIter = &pCell[pPage->childPtrSize];
978 u32 nSize;
979
980#ifdef SQLITE_DEBUG
981 /* The value returned by this function should always be the same as
982 ** the (CellInfo.nSize) value found by doing a full parse of the
983 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
984 ** this function verifies that this invariant is not violated. */
985 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000986 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000987#endif
988
989 if( pPage->intKey ){
990 u8 *pEnd;
991 if( pPage->hasData ){
992 pIter += getVarint32(pIter, nSize);
993 }else{
994 nSize = 0;
995 }
996
997 /* pIter now points at the 64-bit integer key value, a variable length
998 ** integer. The following block moves pIter to point at the first byte
999 ** past the end of the key value. */
1000 pEnd = &pIter[9];
1001 while( (*pIter++)&0x80 && pIter<pEnd );
1002 }else{
1003 pIter += getVarint32(pIter, nSize);
1004 }
1005
drh0a45c272009-07-08 01:49:11 +00001006 testcase( nSize==pPage->maxLocal );
1007 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001008 if( nSize>pPage->maxLocal ){
1009 int minLocal = pPage->minLocal;
1010 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001011 testcase( nSize==pPage->maxLocal );
1012 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001013 if( nSize>pPage->maxLocal ){
1014 nSize = minLocal;
1015 }
1016 nSize += 4;
1017 }
shane75ac1de2009-06-09 18:58:52 +00001018 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001019
1020 /* The minimum size of any cell is 4 bytes. */
1021 if( nSize<4 ){
1022 nSize = 4;
1023 }
1024
1025 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001026 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001027}
drh0ee3dbe2009-10-16 15:05:18 +00001028
1029#ifdef SQLITE_DEBUG
1030/* This variation on cellSizePtr() is used inside of assert() statements
1031** only. */
drha9121e42008-02-19 14:59:35 +00001032static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001033 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001034}
danielk1977bc6ada42004-06-30 08:20:16 +00001035#endif
drh3b7511c2001-05-26 13:15:44 +00001036
danielk197779a40da2005-01-16 08:00:01 +00001037#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001038/*
danielk197726836652005-01-17 01:33:13 +00001039** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001040** to an overflow page, insert an entry into the pointer-map
1041** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001042*/
drh98add2e2009-07-20 17:11:49 +00001043static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001044 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001045 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001046 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001047 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001048 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001049 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001050 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001051 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001052 }
danielk1977ac11ee62005-01-15 12:45:51 +00001053}
danielk197779a40da2005-01-16 08:00:01 +00001054#endif
1055
danielk1977ac11ee62005-01-15 12:45:51 +00001056
drhda200cc2004-05-09 11:51:38 +00001057/*
drh72f82862001-05-24 21:06:34 +00001058** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001059** end of the page and all free space is collected into one
1060** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001061** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001062*/
shane0af3f892008-11-12 04:55:34 +00001063static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001064 int i; /* Loop counter */
1065 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001066 int hdr; /* Offset to the page header */
1067 int size; /* Size of a cell */
1068 int usableSize; /* Number of usable bytes on a page */
1069 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001070 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001071 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001072 unsigned char *data; /* The page data */
1073 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001074 int iCellFirst; /* First allowable cell index */
1075 int iCellLast; /* Last possible cell index */
1076
drh2af926b2001-05-15 00:39:25 +00001077
danielk19773b8a05f2007-03-19 17:44:26 +00001078 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001079 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001080 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001081 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001082 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001083 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001084 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001085 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001086 cellOffset = pPage->cellOffset;
1087 nCell = pPage->nCell;
1088 assert( nCell==get2byte(&data[hdr+3]) );
1089 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001090 cbrk = get2byte(&data[hdr+5]);
1091 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1092 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001093 iCellFirst = cellOffset + 2*nCell;
1094 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001095 for(i=0; i<nCell; i++){
1096 u8 *pAddr; /* The i-th cell pointer */
1097 pAddr = &data[cellOffset + i*2];
1098 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001099 testcase( pc==iCellFirst );
1100 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001101#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001102 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001103 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1104 */
1105 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001106 return SQLITE_CORRUPT_BKPT;
1107 }
drh17146622009-07-07 17:38:38 +00001108#endif
1109 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001110 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001111 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001112#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1113 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001114 return SQLITE_CORRUPT_BKPT;
1115 }
drh17146622009-07-07 17:38:38 +00001116#else
1117 if( cbrk<iCellFirst || pc+size>usableSize ){
1118 return SQLITE_CORRUPT_BKPT;
1119 }
1120#endif
drh7157e1d2009-07-09 13:25:32 +00001121 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001122 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001123 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001124 memcpy(&data[cbrk], &temp[pc], size);
1125 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001126 }
drh17146622009-07-07 17:38:38 +00001127 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001128 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001129 data[hdr+1] = 0;
1130 data[hdr+2] = 0;
1131 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001132 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001133 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001134 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001135 return SQLITE_CORRUPT_BKPT;
1136 }
shane0af3f892008-11-12 04:55:34 +00001137 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001138}
1139
drha059ad02001-04-17 20:09:11 +00001140/*
danielk19776011a752009-04-01 16:25:32 +00001141** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001142** as the first argument. Write into *pIdx the index into pPage->aData[]
1143** of the first byte of allocated space. Return either SQLITE_OK or
1144** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001145**
drh0a45c272009-07-08 01:49:11 +00001146** The caller guarantees that there is sufficient space to make the
1147** allocation. This routine might need to defragment in order to bring
1148** all the space together, however. This routine will avoid using
1149** the first two bytes past the cell pointer area since presumably this
1150** allocation is being made in order to insert a new cell, so we will
1151** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001152*/
drh0a45c272009-07-08 01:49:11 +00001153static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001154 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1155 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1156 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001157 int top; /* First byte of cell content area */
1158 int gap; /* First byte of gap between cell pointers and cell content */
1159 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001160 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001161
danielk19773b8a05f2007-03-19 17:44:26 +00001162 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001163 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001164 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001165 assert( nByte>=0 ); /* Minimum cell size is 4 */
1166 assert( pPage->nFree>=nByte );
1167 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001168 usableSize = pPage->pBt->usableSize;
1169 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001170
1171 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001172 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1173 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001174 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001175 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001176 testcase( gap+2==top );
1177 testcase( gap+1==top );
1178 testcase( gap==top );
1179
danielk19776011a752009-04-01 16:25:32 +00001180 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001181 /* Always defragment highly fragmented pages */
1182 rc = defragmentPage(pPage);
1183 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001184 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001185 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001186 /* Search the freelist looking for a free slot big enough to satisfy
1187 ** the request. The allocation is made from the first free slot in
1188 ** the list that is large enough to accomadate it.
1189 */
1190 int pc, addr;
1191 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001192 int size; /* Size of the free slot */
1193 if( pc>usableSize-4 || pc<addr+4 ){
1194 return SQLITE_CORRUPT_BKPT;
1195 }
1196 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001197 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001198 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001199 testcase( x==4 );
1200 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001201 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001202 /* Remove the slot from the free-list. Update the number of
1203 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001204 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001205 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001206 }else if( size+pc > usableSize ){
1207 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001208 }else{
danielk1977fad91942009-04-29 17:49:59 +00001209 /* The slot remains on the free-list. Reduce its size to account
1210 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001211 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001212 }
drh0a45c272009-07-08 01:49:11 +00001213 *pIdx = pc + x;
1214 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001215 }
drh9e572e62004-04-23 23:43:10 +00001216 }
1217 }
drh43605152004-05-29 21:46:49 +00001218
drh0a45c272009-07-08 01:49:11 +00001219 /* Check to make sure there is enough space in the gap to satisfy
1220 ** the allocation. If not, defragment.
1221 */
1222 testcase( gap+2+nByte==top );
1223 if( gap+2+nByte>top ){
1224 rc = defragmentPage(pPage);
1225 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001226 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001227 assert( gap+nByte<=top );
1228 }
1229
1230
drh43605152004-05-29 21:46:49 +00001231 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001232 ** and the cell content area. The btreeInitPage() call has already
1233 ** validated the freelist. Given that the freelist is valid, there
1234 ** is no way that the allocation can extend off the end of the page.
1235 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001236 */
drh0a45c272009-07-08 01:49:11 +00001237 top -= nByte;
drh43605152004-05-29 21:46:49 +00001238 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001239 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001240 *pIdx = top;
1241 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001242}
1243
1244/*
drh9e572e62004-04-23 23:43:10 +00001245** Return a section of the pPage->aData to the freelist.
1246** The first byte of the new free block is pPage->aDisk[start]
1247** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001248**
1249** Most of the effort here is involved in coalesing adjacent
1250** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001251*/
shanedcc50b72008-11-13 18:29:50 +00001252static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001253 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001254 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001255 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001256
drh9e572e62004-04-23 23:43:10 +00001257 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001258 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001259 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001260 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001261 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001262 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001263
drh5b47efa2010-02-12 18:18:39 +00001264 if( pPage->pBt->secureDelete ){
1265 /* Overwrite deleted information with zeros when the secure_delete
1266 ** option is enabled */
1267 memset(&data[start], 0, size);
1268 }
drhfcce93f2006-02-22 03:08:32 +00001269
drh0a45c272009-07-08 01:49:11 +00001270 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001271 ** even though the freeblock list was checked by btreeInitPage(),
1272 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001273 ** freeblocks that overlapped cells. Nor does it detect when the
1274 ** cell content area exceeds the value in the page header. If these
1275 ** situations arise, then subsequent insert operations might corrupt
1276 ** the freelist. So we do need to check for corruption while scanning
1277 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001278 */
drh43605152004-05-29 21:46:49 +00001279 hdr = pPage->hdrOffset;
1280 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001281 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001282 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001283 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001284 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001285 return SQLITE_CORRUPT_BKPT;
1286 }
drh3aac2dd2004-04-26 14:10:20 +00001287 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001288 }
drh0a45c272009-07-08 01:49:11 +00001289 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001290 return SQLITE_CORRUPT_BKPT;
1291 }
drh3aac2dd2004-04-26 14:10:20 +00001292 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001293 put2byte(&data[addr], start);
1294 put2byte(&data[start], pbegin);
1295 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001296 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001297
1298 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001299 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001300 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001301 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001302 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001303 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001304 pnext = get2byte(&data[pbegin]);
1305 psize = get2byte(&data[pbegin+2]);
1306 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1307 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001308 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001309 return SQLITE_CORRUPT_BKPT;
1310 }
drh0a45c272009-07-08 01:49:11 +00001311 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001312 x = get2byte(&data[pnext]);
1313 put2byte(&data[pbegin], x);
1314 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1315 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001316 }else{
drh3aac2dd2004-04-26 14:10:20 +00001317 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001318 }
1319 }
drh7e3b0a02001-04-28 16:52:40 +00001320
drh43605152004-05-29 21:46:49 +00001321 /* If the cell content area begins with a freeblock, remove it. */
1322 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1323 int top;
1324 pbegin = get2byte(&data[hdr+1]);
1325 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001326 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1327 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001328 }
drhc5053fb2008-11-27 02:22:10 +00001329 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001330 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001331}
1332
1333/*
drh271efa52004-05-30 19:19:05 +00001334** Decode the flags byte (the first byte of the header) for a page
1335** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001336**
1337** Only the following combinations are supported. Anything different
1338** indicates a corrupt database files:
1339**
1340** PTF_ZERODATA
1341** PTF_ZERODATA | PTF_LEAF
1342** PTF_LEAFDATA | PTF_INTKEY
1343** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001344*/
drh44845222008-07-17 18:39:57 +00001345static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001346 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001347
1348 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001349 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001350 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001351 flagByte &= ~PTF_LEAF;
1352 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001353 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001354 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1355 pPage->intKey = 1;
1356 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001357 pPage->maxLocal = pBt->maxLeaf;
1358 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001359 }else if( flagByte==PTF_ZERODATA ){
1360 pPage->intKey = 0;
1361 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001362 pPage->maxLocal = pBt->maxLocal;
1363 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001364 }else{
1365 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001366 }
drh44845222008-07-17 18:39:57 +00001367 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001368}
1369
1370/*
drh7e3b0a02001-04-28 16:52:40 +00001371** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001372**
1373** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001374** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001375** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1376** guarantee that the page is well-formed. It only shows that
1377** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001378*/
danielk197730548662009-07-09 05:07:37 +00001379static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001380
danielk197771d5d2c2008-09-29 11:49:47 +00001381 assert( pPage->pBt!=0 );
1382 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001383 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001384 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1385 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001386
1387 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001388 u16 pc; /* Address of a freeblock within pPage->aData[] */
1389 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001390 u8 *data; /* Equal to pPage->aData */
1391 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001392 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001393 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001394 int nFree; /* Number of unused bytes on the page */
1395 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001396 int iCellFirst; /* First allowable cell or freeblock offset */
1397 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001398
1399 pBt = pPage->pBt;
1400
danielk1977eaa06f62008-09-18 17:34:44 +00001401 hdr = pPage->hdrOffset;
1402 data = pPage->aData;
1403 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001404 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1405 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001406 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001407 usableSize = pBt->usableSize;
1408 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh5d433ce2010-08-14 16:02:52 +00001409 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001410 pPage->nCell = get2byte(&data[hdr+3]);
1411 if( pPage->nCell>MX_CELL(pBt) ){
1412 /* To many cells for a single page. The page must be corrupt */
1413 return SQLITE_CORRUPT_BKPT;
1414 }
drhb908d762009-07-08 16:54:40 +00001415 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001416
shane5eff7cf2009-08-10 03:57:58 +00001417 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001418 ** of page when parsing a cell.
1419 **
1420 ** The following block of code checks early to see if a cell extends
1421 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1422 ** returned if it does.
1423 */
drh0a45c272009-07-08 01:49:11 +00001424 iCellFirst = cellOffset + 2*pPage->nCell;
1425 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001426#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001427 {
drh69e931e2009-06-03 21:04:35 +00001428 int i; /* Index into the cell pointer array */
1429 int sz; /* Size of a cell */
1430
drh69e931e2009-06-03 21:04:35 +00001431 if( !pPage->leaf ) iCellLast--;
1432 for(i=0; i<pPage->nCell; i++){
1433 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001434 testcase( pc==iCellFirst );
1435 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001436 if( pc<iCellFirst || pc>iCellLast ){
1437 return SQLITE_CORRUPT_BKPT;
1438 }
1439 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001440 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001441 if( pc+sz>usableSize ){
1442 return SQLITE_CORRUPT_BKPT;
1443 }
1444 }
drh0a45c272009-07-08 01:49:11 +00001445 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001446 }
1447#endif
1448
danielk1977eaa06f62008-09-18 17:34:44 +00001449 /* Compute the total free space on the page */
1450 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001451 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001452 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001453 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001454 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001455 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001456 return SQLITE_CORRUPT_BKPT;
1457 }
1458 next = get2byte(&data[pc]);
1459 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001460 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1461 /* Free blocks must be in ascending order. And the last byte of
1462 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001463 return SQLITE_CORRUPT_BKPT;
1464 }
shane85095702009-06-15 16:27:08 +00001465 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001466 pc = next;
1467 }
danielk197793c829c2009-06-03 17:26:17 +00001468
1469 /* At this point, nFree contains the sum of the offset to the start
1470 ** of the cell-content area plus the number of free bytes within
1471 ** the cell-content area. If this is greater than the usable-size
1472 ** of the page, then the page must be corrupted. This check also
1473 ** serves to verify that the offset to the start of the cell-content
1474 ** area, according to the page header, lies within the page.
1475 */
1476 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001477 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001478 }
shane5eff7cf2009-08-10 03:57:58 +00001479 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001480 pPage->isInit = 1;
1481 }
drh9e572e62004-04-23 23:43:10 +00001482 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001483}
1484
1485/*
drh8b2f49b2001-06-08 00:21:52 +00001486** Set up a raw page so that it looks like a database page holding
1487** no entries.
drhbd03cae2001-06-02 02:40:57 +00001488*/
drh9e572e62004-04-23 23:43:10 +00001489static void zeroPage(MemPage *pPage, int flags){
1490 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001491 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001492 u8 hdr = pPage->hdrOffset;
1493 u16 first;
drh9e572e62004-04-23 23:43:10 +00001494
danielk19773b8a05f2007-03-19 17:44:26 +00001495 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001496 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1497 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001498 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001499 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001500 if( pBt->secureDelete ){
1501 memset(&data[hdr], 0, pBt->usableSize - hdr);
1502 }
drh1bd10f82008-12-10 21:19:56 +00001503 data[hdr] = (char)flags;
1504 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001505 memset(&data[hdr+1], 0, 4);
1506 data[hdr+7] = 0;
1507 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001508 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001509 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001510 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001511 pPage->cellOffset = first;
1512 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001513 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1514 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001515 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001516 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001517}
1518
drh897a8202008-09-18 01:08:15 +00001519
1520/*
1521** Convert a DbPage obtained from the pager into a MemPage used by
1522** the btree layer.
1523*/
1524static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1525 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1526 pPage->aData = sqlite3PagerGetData(pDbPage);
1527 pPage->pDbPage = pDbPage;
1528 pPage->pBt = pBt;
1529 pPage->pgno = pgno;
1530 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1531 return pPage;
1532}
1533
drhbd03cae2001-06-02 02:40:57 +00001534/*
drh3aac2dd2004-04-26 14:10:20 +00001535** Get a page from the pager. Initialize the MemPage.pBt and
1536** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001537**
1538** If the noContent flag is set, it means that we do not care about
1539** the content of the page at this time. So do not go to the disk
1540** to fetch the content. Just fill in the content with zeros for now.
1541** If in the future we call sqlite3PagerWrite() on this page, that
1542** means we have started to be concerned about content and the disk
1543** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001544*/
danielk197730548662009-07-09 05:07:37 +00001545static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001546 BtShared *pBt, /* The btree */
1547 Pgno pgno, /* Number of the page to fetch */
1548 MemPage **ppPage, /* Return the page in this parameter */
1549 int noContent /* Do not load page content if true */
1550){
drh3aac2dd2004-04-26 14:10:20 +00001551 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001552 DbPage *pDbPage;
1553
drh1fee73e2007-08-29 04:00:57 +00001554 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001555 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001556 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001557 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001558 return SQLITE_OK;
1559}
1560
1561/*
danielk1977bea2a942009-01-20 17:06:27 +00001562** Retrieve a page from the pager cache. If the requested page is not
1563** already in the pager cache return NULL. Initialize the MemPage.pBt and
1564** MemPage.aData elements if needed.
1565*/
1566static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1567 DbPage *pDbPage;
1568 assert( sqlite3_mutex_held(pBt->mutex) );
1569 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1570 if( pDbPage ){
1571 return btreePageFromDbPage(pDbPage, pgno, pBt);
1572 }
1573 return 0;
1574}
1575
1576/*
danielk197789d40042008-11-17 14:20:56 +00001577** Return the size of the database file in pages. If there is any kind of
1578** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001579*/
drhb1299152010-03-30 22:58:33 +00001580static Pgno btreePagecount(BtShared *pBt){
1581 return pBt->nPage;
1582}
1583u32 sqlite3BtreeLastPage(Btree *p){
1584 assert( sqlite3BtreeHoldsMutex(p) );
1585 assert( ((p->pBt->nPage)&0x8000000)==0 );
1586 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001587}
1588
1589/*
danielk197789bc4bc2009-07-21 19:25:24 +00001590** Get a page from the pager and initialize it. This routine is just a
1591** convenience wrapper around separate calls to btreeGetPage() and
1592** btreeInitPage().
1593**
1594** If an error occurs, then the value *ppPage is set to is undefined. It
1595** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001596*/
1597static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001598 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001599 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001600 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001601){
1602 int rc;
drh1fee73e2007-08-29 04:00:57 +00001603 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001604
danba3cbf32010-06-30 04:29:03 +00001605 if( pgno>btreePagecount(pBt) ){
1606 rc = SQLITE_CORRUPT_BKPT;
1607 }else{
1608 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1609 if( rc==SQLITE_OK ){
1610 rc = btreeInitPage(*ppPage);
1611 if( rc!=SQLITE_OK ){
1612 releasePage(*ppPage);
1613 }
danielk197789bc4bc2009-07-21 19:25:24 +00001614 }
drhee696e22004-08-30 16:52:17 +00001615 }
danba3cbf32010-06-30 04:29:03 +00001616
1617 testcase( pgno==0 );
1618 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001619 return rc;
1620}
1621
1622/*
drh3aac2dd2004-04-26 14:10:20 +00001623** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001624** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001625*/
drh4b70f112004-05-02 21:12:19 +00001626static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001627 if( pPage ){
1628 assert( pPage->aData );
1629 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001630 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1631 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001632 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001633 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001634 }
1635}
1636
1637/*
drha6abd042004-06-09 17:37:22 +00001638** During a rollback, when the pager reloads information into the cache
1639** so that the cache is restored to its original state at the start of
1640** the transaction, for each page restored this routine is called.
1641**
1642** This routine needs to reset the extra data section at the end of the
1643** page to agree with the restored data.
1644*/
danielk1977eaa06f62008-09-18 17:34:44 +00001645static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001646 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001647 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001648 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001649 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001650 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001651 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001652 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001653 /* pPage might not be a btree page; it might be an overflow page
1654 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001655 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001656 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001657 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001658 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001659 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001660 }
drha6abd042004-06-09 17:37:22 +00001661 }
1662}
1663
1664/*
drhe5fe6902007-12-07 18:55:28 +00001665** Invoke the busy handler for a btree.
1666*/
danielk19771ceedd32008-11-19 10:22:33 +00001667static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001668 BtShared *pBt = (BtShared*)pArg;
1669 assert( pBt->db );
1670 assert( sqlite3_mutex_held(pBt->db->mutex) );
1671 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1672}
1673
1674/*
drhad3e0102004-09-03 23:32:18 +00001675** Open a database file.
1676**
drh382c0242001-10-06 16:33:02 +00001677** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001678** then an ephemeral database is created. The ephemeral database might
1679** be exclusively in memory, or it might use a disk-based memory cache.
1680** Either way, the ephemeral database will be automatically deleted
1681** when sqlite3BtreeClose() is called.
1682**
drhe53831d2007-08-17 01:14:38 +00001683** If zFilename is ":memory:" then an in-memory database is created
1684** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001685**
drh75c014c2010-08-30 15:02:28 +00001686** The "flags" parameter is a bitmask that might contain bits
1687** BTREE_OMIT_JOURNAL and/or BTREE_NO_READLOCK. The BTREE_NO_READLOCK
1688** bit is also set if the SQLITE_NoReadlock flags is set in db->flags.
1689** These flags are passed through into sqlite3PagerOpen() and must
1690** be the same values as PAGER_OMIT_JOURNAL and PAGER_NO_READLOCK.
1691**
drhc47fd8e2009-04-30 13:30:32 +00001692** If the database is already opened in the same database connection
1693** and we are in shared cache mode, then the open will fail with an
1694** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1695** objects in the same database connection since doing so will lead
1696** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001697*/
drh23e11ca2004-05-04 17:27:28 +00001698int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001699 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001700 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001701 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001702 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001703 int flags, /* Options */
1704 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001705){
drh7555d8e2009-03-20 13:15:30 +00001706 BtShared *pBt = 0; /* Shared part of btree structure */
1707 Btree *p; /* Handle to return */
1708 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1709 int rc = SQLITE_OK; /* Result code from this function */
1710 u8 nReserve; /* Byte of unused space on each page */
1711 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001712
drh75c014c2010-08-30 15:02:28 +00001713 /* True if opening an ephemeral, temporary database */
1714 const int isTempDb = zFilename==0 || zFilename[0]==0;
1715
danielk1977aef0bf62005-12-30 16:28:01 +00001716 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001717 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001718 */
drhb0a7c9c2010-12-06 21:09:59 +00001719#ifdef SQLITE_OMIT_MEMORYDB
1720 const int isMemdb = 0;
1721#else
1722 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1723 || (isTempDb && sqlite3TempInMemory(db));
danielk1977aef0bf62005-12-30 16:28:01 +00001724#endif
1725
drhe5fe6902007-12-07 18:55:28 +00001726 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001727 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001728 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001729 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1730
1731 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1732 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1733
1734 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1735 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001736
drh75c014c2010-08-30 15:02:28 +00001737 if( db->flags & SQLITE_NoReadlock ){
1738 flags |= BTREE_NO_READLOCK;
1739 }
1740 if( isMemdb ){
1741 flags |= BTREE_MEMORY;
1742 }
1743 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1744 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1745 }
drh17435752007-08-16 04:30:38 +00001746 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001747 if( !p ){
1748 return SQLITE_NOMEM;
1749 }
1750 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001751 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001752#ifndef SQLITE_OMIT_SHARED_CACHE
1753 p->lock.pBtree = p;
1754 p->lock.iTable = 1;
1755#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001756
drh198bf392006-01-06 21:52:49 +00001757#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001758 /*
1759 ** If this Btree is a candidate for shared cache, try to find an
1760 ** existing BtShared object that we can share with
1761 */
drh75c014c2010-08-30 15:02:28 +00001762 if( isMemdb==0 && isTempDb==0 ){
drhf1f12682009-09-09 14:17:52 +00001763 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001764 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001765 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001766 sqlite3_mutex *mutexShared;
1767 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001768 if( !zFullPathname ){
1769 sqlite3_free(p);
1770 return SQLITE_NOMEM;
1771 }
danielk1977adfb9b02007-09-17 07:02:56 +00001772 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001773 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1774 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001775 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001776 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001777 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001778 assert( pBt->nRef>0 );
1779 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1780 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001781 int iDb;
1782 for(iDb=db->nDb-1; iDb>=0; iDb--){
1783 Btree *pExisting = db->aDb[iDb].pBt;
1784 if( pExisting && pExisting->pBt==pBt ){
1785 sqlite3_mutex_leave(mutexShared);
1786 sqlite3_mutex_leave(mutexOpen);
1787 sqlite3_free(zFullPathname);
1788 sqlite3_free(p);
1789 return SQLITE_CONSTRAINT;
1790 }
1791 }
drhff0587c2007-08-29 17:43:19 +00001792 p->pBt = pBt;
1793 pBt->nRef++;
1794 break;
1795 }
1796 }
1797 sqlite3_mutex_leave(mutexShared);
1798 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001799 }
drhff0587c2007-08-29 17:43:19 +00001800#ifdef SQLITE_DEBUG
1801 else{
1802 /* In debug mode, we mark all persistent databases as sharable
1803 ** even when they are not. This exercises the locking code and
1804 ** gives more opportunity for asserts(sqlite3_mutex_held())
1805 ** statements to find locking problems.
1806 */
1807 p->sharable = 1;
1808 }
1809#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001810 }
1811#endif
drha059ad02001-04-17 20:09:11 +00001812 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001813 /*
1814 ** The following asserts make sure that structures used by the btree are
1815 ** the right size. This is to guard against size changes that result
1816 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001817 */
drhe53831d2007-08-17 01:14:38 +00001818 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1819 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1820 assert( sizeof(u32)==4 );
1821 assert( sizeof(u16)==2 );
1822 assert( sizeof(Pgno)==4 );
1823
1824 pBt = sqlite3MallocZero( sizeof(*pBt) );
1825 if( pBt==0 ){
1826 rc = SQLITE_NOMEM;
1827 goto btree_open_out;
1828 }
danielk197771d5d2c2008-09-29 11:49:47 +00001829 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001830 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001831 if( rc==SQLITE_OK ){
1832 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1833 }
1834 if( rc!=SQLITE_OK ){
1835 goto btree_open_out;
1836 }
shanehbd2aaf92010-09-01 02:38:21 +00001837 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001838 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001839 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001840 p->pBt = pBt;
1841
drhe53831d2007-08-17 01:14:38 +00001842 pBt->pCursor = 0;
1843 pBt->pPage1 = 0;
1844 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001845#ifdef SQLITE_SECURE_DELETE
1846 pBt->secureDelete = 1;
1847#endif
drhb2eced52010-08-12 02:41:12 +00001848 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001849 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1850 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001851 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001852#ifndef SQLITE_OMIT_AUTOVACUUM
1853 /* If the magic name ":memory:" will create an in-memory database, then
1854 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1855 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1856 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1857 ** regular file-name. In this case the auto-vacuum applies as per normal.
1858 */
1859 if( zFilename && !isMemdb ){
1860 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1861 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1862 }
1863#endif
1864 nReserve = 0;
1865 }else{
1866 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001867 pBt->pageSizeFixed = 1;
1868#ifndef SQLITE_OMIT_AUTOVACUUM
1869 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1870 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1871#endif
1872 }
drhfa9601a2009-06-18 17:22:39 +00001873 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001874 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001875 pBt->usableSize = pBt->pageSize - nReserve;
1876 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001877
1878#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1879 /* Add the new BtShared object to the linked list sharable BtShareds.
1880 */
1881 if( p->sharable ){
1882 sqlite3_mutex *mutexShared;
1883 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001884 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001885 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001886 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001887 if( pBt->mutex==0 ){
1888 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001889 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001890 goto btree_open_out;
1891 }
drhff0587c2007-08-29 17:43:19 +00001892 }
drhe53831d2007-08-17 01:14:38 +00001893 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001894 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1895 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001896 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001897 }
drheee46cf2004-11-06 00:02:48 +00001898#endif
drh90f5ecb2004-07-22 01:19:35 +00001899 }
danielk1977aef0bf62005-12-30 16:28:01 +00001900
drhcfed7bc2006-03-13 14:28:05 +00001901#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001902 /* If the new Btree uses a sharable pBtShared, then link the new
1903 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001904 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001905 */
drhe53831d2007-08-17 01:14:38 +00001906 if( p->sharable ){
1907 int i;
1908 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001909 for(i=0; i<db->nDb; i++){
1910 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001911 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1912 if( p->pBt<pSib->pBt ){
1913 p->pNext = pSib;
1914 p->pPrev = 0;
1915 pSib->pPrev = p;
1916 }else{
drhabddb0c2007-08-20 13:14:28 +00001917 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001918 pSib = pSib->pNext;
1919 }
1920 p->pNext = pSib->pNext;
1921 p->pPrev = pSib;
1922 if( p->pNext ){
1923 p->pNext->pPrev = p;
1924 }
1925 pSib->pNext = p;
1926 }
1927 break;
1928 }
1929 }
danielk1977aef0bf62005-12-30 16:28:01 +00001930 }
danielk1977aef0bf62005-12-30 16:28:01 +00001931#endif
1932 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001933
1934btree_open_out:
1935 if( rc!=SQLITE_OK ){
1936 if( pBt && pBt->pPager ){
1937 sqlite3PagerClose(pBt->pPager);
1938 }
drh17435752007-08-16 04:30:38 +00001939 sqlite3_free(pBt);
1940 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001941 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001942 }else{
1943 /* If the B-Tree was successfully opened, set the pager-cache size to the
1944 ** default value. Except, when opening on an existing shared pager-cache,
1945 ** do not change the pager-cache size.
1946 */
1947 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1948 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1949 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001950 }
drh7555d8e2009-03-20 13:15:30 +00001951 if( mutexOpen ){
1952 assert( sqlite3_mutex_held(mutexOpen) );
1953 sqlite3_mutex_leave(mutexOpen);
1954 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001955 return rc;
drha059ad02001-04-17 20:09:11 +00001956}
1957
1958/*
drhe53831d2007-08-17 01:14:38 +00001959** Decrement the BtShared.nRef counter. When it reaches zero,
1960** remove the BtShared structure from the sharing list. Return
1961** true if the BtShared.nRef counter reaches zero and return
1962** false if it is still positive.
1963*/
1964static int removeFromSharingList(BtShared *pBt){
1965#ifndef SQLITE_OMIT_SHARED_CACHE
1966 sqlite3_mutex *pMaster;
1967 BtShared *pList;
1968 int removed = 0;
1969
drhd677b3d2007-08-20 22:48:41 +00001970 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001971 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001972 sqlite3_mutex_enter(pMaster);
1973 pBt->nRef--;
1974 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001975 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1976 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001977 }else{
drh78f82d12008-09-02 00:52:52 +00001978 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001979 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001980 pList=pList->pNext;
1981 }
drh34004ce2008-07-11 16:15:17 +00001982 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001983 pList->pNext = pBt->pNext;
1984 }
1985 }
drh3285db22007-09-03 22:00:39 +00001986 if( SQLITE_THREADSAFE ){
1987 sqlite3_mutex_free(pBt->mutex);
1988 }
drhe53831d2007-08-17 01:14:38 +00001989 removed = 1;
1990 }
1991 sqlite3_mutex_leave(pMaster);
1992 return removed;
1993#else
1994 return 1;
1995#endif
1996}
1997
1998/*
drhf7141992008-06-19 00:16:08 +00001999** Make sure pBt->pTmpSpace points to an allocation of
2000** MX_CELL_SIZE(pBt) bytes.
2001*/
2002static void allocateTempSpace(BtShared *pBt){
2003 if( !pBt->pTmpSpace ){
2004 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2005 }
2006}
2007
2008/*
2009** Free the pBt->pTmpSpace allocation
2010*/
2011static void freeTempSpace(BtShared *pBt){
2012 sqlite3PageFree( pBt->pTmpSpace);
2013 pBt->pTmpSpace = 0;
2014}
2015
2016/*
drha059ad02001-04-17 20:09:11 +00002017** Close an open database and invalidate all cursors.
2018*/
danielk1977aef0bf62005-12-30 16:28:01 +00002019int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002020 BtShared *pBt = p->pBt;
2021 BtCursor *pCur;
2022
danielk1977aef0bf62005-12-30 16:28:01 +00002023 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002024 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002025 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002026 pCur = pBt->pCursor;
2027 while( pCur ){
2028 BtCursor *pTmp = pCur;
2029 pCur = pCur->pNext;
2030 if( pTmp->pBtree==p ){
2031 sqlite3BtreeCloseCursor(pTmp);
2032 }
drha059ad02001-04-17 20:09:11 +00002033 }
danielk1977aef0bf62005-12-30 16:28:01 +00002034
danielk19778d34dfd2006-01-24 16:37:57 +00002035 /* Rollback any active transaction and free the handle structure.
2036 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2037 ** this handle.
2038 */
danielk1977b597f742006-01-15 11:39:18 +00002039 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00002040 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002041
danielk1977aef0bf62005-12-30 16:28:01 +00002042 /* If there are still other outstanding references to the shared-btree
2043 ** structure, return now. The remainder of this procedure cleans
2044 ** up the shared-btree.
2045 */
drhe53831d2007-08-17 01:14:38 +00002046 assert( p->wantToLock==0 && p->locked==0 );
2047 if( !p->sharable || removeFromSharingList(pBt) ){
2048 /* The pBt is no longer on the sharing list, so we can access
2049 ** it without having to hold the mutex.
2050 **
2051 ** Clean out and delete the BtShared object.
2052 */
2053 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002054 sqlite3PagerClose(pBt->pPager);
2055 if( pBt->xFreeSchema && pBt->pSchema ){
2056 pBt->xFreeSchema(pBt->pSchema);
2057 }
drhb9755982010-07-24 16:34:37 +00002058 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002059 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002060 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002061 }
2062
drhe53831d2007-08-17 01:14:38 +00002063#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002064 assert( p->wantToLock==0 );
2065 assert( p->locked==0 );
2066 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2067 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002068#endif
2069
drhe53831d2007-08-17 01:14:38 +00002070 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002071 return SQLITE_OK;
2072}
2073
2074/*
drhda47d772002-12-02 04:25:19 +00002075** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002076**
2077** The maximum number of cache pages is set to the absolute
2078** value of mxPage. If mxPage is negative, the pager will
2079** operate asynchronously - it will not stop to do fsync()s
2080** to insure data is written to the disk surface before
2081** continuing. Transactions still work if synchronous is off,
2082** and the database cannot be corrupted if this program
2083** crashes. But if the operating system crashes or there is
2084** an abrupt power failure when synchronous is off, the database
2085** could be left in an inconsistent and unrecoverable state.
2086** Synchronous is on by default so database corruption is not
2087** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002088*/
danielk1977aef0bf62005-12-30 16:28:01 +00002089int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2090 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002091 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002092 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002093 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002094 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002095 return SQLITE_OK;
2096}
2097
2098/*
drh973b6e32003-02-12 14:09:42 +00002099** Change the way data is synced to disk in order to increase or decrease
2100** how well the database resists damage due to OS crashes and power
2101** failures. Level 1 is the same as asynchronous (no syncs() occur and
2102** there is a high probability of damage) Level 2 is the default. There
2103** is a very low but non-zero probability of damage. Level 3 reduces the
2104** probability of damage to near zero but with a write performance reduction.
2105*/
danielk197793758c82005-01-21 08:13:14 +00002106#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002107int sqlite3BtreeSetSafetyLevel(
2108 Btree *p, /* The btree to set the safety level on */
2109 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2110 int fullSync, /* PRAGMA fullfsync. */
2111 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2112){
danielk1977aef0bf62005-12-30 16:28:01 +00002113 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002114 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002115 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002116 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002117 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002118 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002119 return SQLITE_OK;
2120}
danielk197793758c82005-01-21 08:13:14 +00002121#endif
drh973b6e32003-02-12 14:09:42 +00002122
drh2c8997b2005-08-27 16:36:48 +00002123/*
2124** Return TRUE if the given btree is set to safety level 1. In other
2125** words, return TRUE if no sync() occurs on the disk files.
2126*/
danielk1977aef0bf62005-12-30 16:28:01 +00002127int sqlite3BtreeSyncDisabled(Btree *p){
2128 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002129 int rc;
drhe5fe6902007-12-07 18:55:28 +00002130 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002131 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002132 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002133 rc = sqlite3PagerNosync(pBt->pPager);
2134 sqlite3BtreeLeave(p);
2135 return rc;
drh2c8997b2005-08-27 16:36:48 +00002136}
2137
drh973b6e32003-02-12 14:09:42 +00002138/*
drh90f5ecb2004-07-22 01:19:35 +00002139** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002140** Or, if the page size has already been fixed, return SQLITE_READONLY
2141** without changing anything.
drh06f50212004-11-02 14:24:33 +00002142**
2143** The page size must be a power of 2 between 512 and 65536. If the page
2144** size supplied does not meet this constraint then the page size is not
2145** changed.
2146**
2147** Page sizes are constrained to be a power of two so that the region
2148** of the database file used for locking (beginning at PENDING_BYTE,
2149** the first byte past the 1GB boundary, 0x40000000) needs to occur
2150** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002151**
2152** If parameter nReserve is less than zero, then the number of reserved
2153** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002154**
2155** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2156** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002157*/
drhce4869f2009-04-02 20:16:58 +00002158int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002159 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002160 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002161 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002162 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002163 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002164 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002165 return SQLITE_READONLY;
2166 }
2167 if( nReserve<0 ){
2168 nReserve = pBt->pageSize - pBt->usableSize;
2169 }
drhf49661a2008-12-10 16:45:50 +00002170 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002171 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2172 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002173 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002174 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002175 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002176 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002177 }
drhfa9601a2009-06-18 17:22:39 +00002178 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002179 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002180 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002181 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002182 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002183}
2184
2185/*
2186** Return the currently defined page size
2187*/
danielk1977aef0bf62005-12-30 16:28:01 +00002188int sqlite3BtreeGetPageSize(Btree *p){
2189 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002190}
drh7f751222009-03-17 22:33:00 +00002191
danbb2b4412011-04-06 17:54:31 +00002192#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002193/*
2194** Return the number of bytes of space at the end of every page that
2195** are intentually left unused. This is the "reserved" space that is
2196** sometimes used by extensions.
2197*/
danielk1977aef0bf62005-12-30 16:28:01 +00002198int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002199 int n;
2200 sqlite3BtreeEnter(p);
2201 n = p->pBt->pageSize - p->pBt->usableSize;
2202 sqlite3BtreeLeave(p);
2203 return n;
drh2011d5f2004-07-22 02:40:37 +00002204}
drhf8e632b2007-05-08 14:51:36 +00002205
2206/*
2207** Set the maximum page count for a database if mxPage is positive.
2208** No changes are made if mxPage is 0 or negative.
2209** Regardless of the value of mxPage, return the maximum page count.
2210*/
2211int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002212 int n;
2213 sqlite3BtreeEnter(p);
2214 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2215 sqlite3BtreeLeave(p);
2216 return n;
drhf8e632b2007-05-08 14:51:36 +00002217}
drh5b47efa2010-02-12 18:18:39 +00002218
2219/*
2220** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2221** then make no changes. Always return the value of the secureDelete
2222** setting after the change.
2223*/
2224int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2225 int b;
drhaf034ed2010-02-12 19:46:26 +00002226 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002227 sqlite3BtreeEnter(p);
2228 if( newFlag>=0 ){
2229 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2230 }
2231 b = p->pBt->secureDelete;
2232 sqlite3BtreeLeave(p);
2233 return b;
2234}
danielk1977576ec6b2005-01-21 11:55:25 +00002235#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002236
2237/*
danielk1977951af802004-11-05 15:45:09 +00002238** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2239** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2240** is disabled. The default value for the auto-vacuum property is
2241** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2242*/
danielk1977aef0bf62005-12-30 16:28:01 +00002243int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002244#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002245 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002246#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002247 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002248 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002249 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002250
2251 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002252 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002253 rc = SQLITE_READONLY;
2254 }else{
drh076d4662009-02-18 20:31:18 +00002255 pBt->autoVacuum = av ?1:0;
2256 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002257 }
drhd677b3d2007-08-20 22:48:41 +00002258 sqlite3BtreeLeave(p);
2259 return rc;
danielk1977951af802004-11-05 15:45:09 +00002260#endif
2261}
2262
2263/*
2264** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2265** enabled 1 is returned. Otherwise 0.
2266*/
danielk1977aef0bf62005-12-30 16:28:01 +00002267int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002268#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002269 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002270#else
drhd677b3d2007-08-20 22:48:41 +00002271 int rc;
2272 sqlite3BtreeEnter(p);
2273 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002274 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2275 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2276 BTREE_AUTOVACUUM_INCR
2277 );
drhd677b3d2007-08-20 22:48:41 +00002278 sqlite3BtreeLeave(p);
2279 return rc;
danielk1977951af802004-11-05 15:45:09 +00002280#endif
2281}
2282
2283
2284/*
drha34b6762004-05-07 13:30:42 +00002285** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002286** also acquire a readlock on that file.
2287**
2288** SQLITE_OK is returned on success. If the file is not a
2289** well-formed database file, then SQLITE_CORRUPT is returned.
2290** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002291** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002292*/
danielk1977aef0bf62005-12-30 16:28:01 +00002293static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002294 int rc; /* Result code from subfunctions */
2295 MemPage *pPage1; /* Page 1 of the database file */
2296 int nPage; /* Number of pages in the database */
2297 int nPageFile = 0; /* Number of pages in the database file */
2298 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002299
drh1fee73e2007-08-29 04:00:57 +00002300 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002301 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002302 rc = sqlite3PagerSharedLock(pBt->pPager);
2303 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002304 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002305 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002306
2307 /* Do some checking to help insure the file we opened really is
2308 ** a valid database file.
2309 */
drhc2a4bab2010-04-02 12:46:45 +00002310 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002311 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002312 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002313 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002314 }
2315 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002316 u32 pageSize;
2317 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002318 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002319 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002320 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002321 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002322 }
dan5cf53532010-05-01 16:40:20 +00002323
2324#ifdef SQLITE_OMIT_WAL
2325 if( page1[18]>1 ){
2326 pBt->readOnly = 1;
2327 }
2328 if( page1[19]>1 ){
2329 goto page1_init_failed;
2330 }
2331#else
dane04dc882010-04-20 18:53:15 +00002332 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002333 pBt->readOnly = 1;
2334 }
dane04dc882010-04-20 18:53:15 +00002335 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002336 goto page1_init_failed;
2337 }
drhe5ae5732008-06-15 02:51:47 +00002338
dana470aeb2010-04-21 11:43:38 +00002339 /* If the write version is set to 2, this database should be accessed
2340 ** in WAL mode. If the log is not already open, open it now. Then
2341 ** return SQLITE_OK and return without populating BtShared.pPage1.
2342 ** The caller detects this and calls this function again. This is
2343 ** required as the version of page 1 currently in the page1 buffer
2344 ** may not be the latest version - there may be a newer one in the log
2345 ** file.
2346 */
danb9780022010-04-21 18:37:57 +00002347 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002348 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002349 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002350 if( rc!=SQLITE_OK ){
2351 goto page1_init_failed;
2352 }else if( isOpen==0 ){
2353 releasePage(pPage1);
2354 return SQLITE_OK;
2355 }
dan8b5444b2010-04-27 14:37:47 +00002356 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002357 }
dan5cf53532010-05-01 16:40:20 +00002358#endif
dane04dc882010-04-20 18:53:15 +00002359
drhe5ae5732008-06-15 02:51:47 +00002360 /* The maximum embedded fraction must be exactly 25%. And the minimum
2361 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2362 ** The original design allowed these amounts to vary, but as of
2363 ** version 3.6.0, we require them to be fixed.
2364 */
2365 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2366 goto page1_init_failed;
2367 }
drhb2eced52010-08-12 02:41:12 +00002368 pageSize = (page1[16]<<8) | (page1[17]<<16);
2369 if( ((pageSize-1)&pageSize)!=0
2370 || pageSize>SQLITE_MAX_PAGE_SIZE
2371 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002372 ){
drh07d183d2005-05-01 22:52:42 +00002373 goto page1_init_failed;
2374 }
2375 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002376 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002377 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002378 /* After reading the first page of the database assuming a page size
2379 ** of BtShared.pageSize, we have discovered that the page-size is
2380 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2381 ** zero and return SQLITE_OK. The caller will call this function
2382 ** again with the correct page-size.
2383 */
2384 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002385 pBt->usableSize = usableSize;
2386 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002387 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002388 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2389 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002390 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002391 }
danecac6702011-02-09 18:19:20 +00002392 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002393 rc = SQLITE_CORRUPT_BKPT;
2394 goto page1_init_failed;
2395 }
drhb33e1b92009-06-18 11:29:20 +00002396 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002397 goto page1_init_failed;
2398 }
drh43b18e12010-08-17 19:40:08 +00002399 pBt->pageSize = pageSize;
2400 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002401#ifndef SQLITE_OMIT_AUTOVACUUM
2402 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002403 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002404#endif
drh306dc212001-05-21 13:45:10 +00002405 }
drhb6f41482004-05-14 01:58:11 +00002406
2407 /* maxLocal is the maximum amount of payload to store locally for
2408 ** a cell. Make sure it is small enough so that at least minFanout
2409 ** cells can will fit on one page. We assume a 10-byte page header.
2410 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002411 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002412 ** 4-byte child pointer
2413 ** 9-byte nKey value
2414 ** 4-byte nData value
2415 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002416 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002417 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2418 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002419 */
shaneh1df2db72010-08-18 02:28:48 +00002420 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2421 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2422 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2423 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drh2e38c322004-09-03 18:38:44 +00002424 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002425 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002426 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002427 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002428
drh72f82862001-05-24 21:06:34 +00002429page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002430 releasePage(pPage1);
2431 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002432 return rc;
drh306dc212001-05-21 13:45:10 +00002433}
2434
2435/*
drhb8ca3072001-12-05 00:21:20 +00002436** If there are no outstanding cursors and we are not in the middle
2437** of a transaction but there is a read lock on the database, then
2438** this routine unrefs the first page of the database file which
2439** has the effect of releasing the read lock.
2440**
drhb8ca3072001-12-05 00:21:20 +00002441** If there is a transaction in progress, this routine is a no-op.
2442*/
danielk1977aef0bf62005-12-30 16:28:01 +00002443static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002444 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002445 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2446 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002447 assert( pBt->pPage1->aData );
2448 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2449 assert( pBt->pPage1->aData );
2450 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002451 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002452 }
2453}
2454
2455/*
drhe39f2f92009-07-23 01:43:59 +00002456** If pBt points to an empty file then convert that empty file
2457** into a new empty database by initializing the first page of
2458** the database.
drh8b2f49b2001-06-08 00:21:52 +00002459*/
danielk1977aef0bf62005-12-30 16:28:01 +00002460static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002461 MemPage *pP1;
2462 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002463 int rc;
drhd677b3d2007-08-20 22:48:41 +00002464
drh1fee73e2007-08-29 04:00:57 +00002465 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002466 if( pBt->nPage>0 ){
2467 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002468 }
drh3aac2dd2004-04-26 14:10:20 +00002469 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002470 assert( pP1!=0 );
2471 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002472 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002473 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002474 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2475 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002476 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2477 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002478 data[18] = 1;
2479 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002480 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2481 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002482 data[21] = 64;
2483 data[22] = 32;
2484 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002485 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002486 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002487 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002488#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002489 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002490 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002491 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002492 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002493#endif
drhdd3cd972010-03-27 17:12:36 +00002494 pBt->nPage = 1;
2495 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002496 return SQLITE_OK;
2497}
2498
2499/*
danielk1977ee5741e2004-05-31 10:01:34 +00002500** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002501** is started if the second argument is nonzero, otherwise a read-
2502** transaction. If the second argument is 2 or more and exclusive
2503** transaction is started, meaning that no other process is allowed
2504** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002505** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002506** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002507**
danielk1977ee5741e2004-05-31 10:01:34 +00002508** A write-transaction must be started before attempting any
2509** changes to the database. None of the following routines
2510** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002511**
drh23e11ca2004-05-04 17:27:28 +00002512** sqlite3BtreeCreateTable()
2513** sqlite3BtreeCreateIndex()
2514** sqlite3BtreeClearTable()
2515** sqlite3BtreeDropTable()
2516** sqlite3BtreeInsert()
2517** sqlite3BtreeDelete()
2518** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002519**
drhb8ef32c2005-03-14 02:01:49 +00002520** If an initial attempt to acquire the lock fails because of lock contention
2521** and the database was previously unlocked, then invoke the busy handler
2522** if there is one. But if there was previously a read-lock, do not
2523** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2524** returned when there is already a read-lock in order to avoid a deadlock.
2525**
2526** Suppose there are two processes A and B. A has a read lock and B has
2527** a reserved lock. B tries to promote to exclusive but is blocked because
2528** of A's read lock. A tries to promote to reserved but is blocked by B.
2529** One or the other of the two processes must give way or there can be
2530** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2531** when A already has a read lock, we encourage A to give up and let B
2532** proceed.
drha059ad02001-04-17 20:09:11 +00002533*/
danielk1977aef0bf62005-12-30 16:28:01 +00002534int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002535 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002536 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002537 int rc = SQLITE_OK;
2538
drhd677b3d2007-08-20 22:48:41 +00002539 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002540 btreeIntegrity(p);
2541
danielk1977ee5741e2004-05-31 10:01:34 +00002542 /* If the btree is already in a write-transaction, or it
2543 ** is already in a read-transaction and a read-transaction
2544 ** is requested, this is a no-op.
2545 */
danielk1977aef0bf62005-12-30 16:28:01 +00002546 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002547 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002548 }
drhb8ef32c2005-03-14 02:01:49 +00002549
2550 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002551 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002552 rc = SQLITE_READONLY;
2553 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002554 }
2555
danielk1977404ca072009-03-16 13:19:36 +00002556#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002557 /* If another database handle has already opened a write transaction
2558 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002559 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002560 */
danielk1977404ca072009-03-16 13:19:36 +00002561 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2562 pBlock = pBt->pWriter->db;
2563 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002564 BtLock *pIter;
2565 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2566 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002567 pBlock = pIter->pBtree->db;
2568 break;
danielk1977641b0f42007-12-21 04:47:25 +00002569 }
2570 }
2571 }
danielk1977404ca072009-03-16 13:19:36 +00002572 if( pBlock ){
2573 sqlite3ConnectionBlocked(p->db, pBlock);
2574 rc = SQLITE_LOCKED_SHAREDCACHE;
2575 goto trans_begun;
2576 }
danielk1977641b0f42007-12-21 04:47:25 +00002577#endif
2578
danielk1977602b4662009-07-02 07:47:33 +00002579 /* Any read-only or read-write transaction implies a read-lock on
2580 ** page 1. So if some other shared-cache client already has a write-lock
2581 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002582 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2583 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002584
shaneh5eba1f62010-07-02 17:05:03 +00002585 pBt->initiallyEmpty = (u8)(pBt->nPage==0);
drhb8ef32c2005-03-14 02:01:49 +00002586 do {
danielk1977295dc102009-04-01 19:07:03 +00002587 /* Call lockBtree() until either pBt->pPage1 is populated or
2588 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2589 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2590 ** reading page 1 it discovers that the page-size of the database
2591 ** file is not pBt->pageSize. In this case lockBtree() will update
2592 ** pBt->pageSize to the page-size of the file on disk.
2593 */
2594 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002595
drhb8ef32c2005-03-14 02:01:49 +00002596 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002597 if( pBt->readOnly ){
2598 rc = SQLITE_READONLY;
2599 }else{
danielk1977d8293352009-04-30 09:10:37 +00002600 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002601 if( rc==SQLITE_OK ){
2602 rc = newDatabase(pBt);
2603 }
drhb8ef32c2005-03-14 02:01:49 +00002604 }
2605 }
2606
danielk1977bd434552009-03-18 10:33:00 +00002607 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002608 unlockBtreeIfUnused(pBt);
2609 }
danf9b76712010-06-01 14:12:45 +00002610 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002611 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002612
2613 if( rc==SQLITE_OK ){
2614 if( p->inTrans==TRANS_NONE ){
2615 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002616#ifndef SQLITE_OMIT_SHARED_CACHE
2617 if( p->sharable ){
2618 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2619 p->lock.eLock = READ_LOCK;
2620 p->lock.pNext = pBt->pLock;
2621 pBt->pLock = &p->lock;
2622 }
2623#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002624 }
2625 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2626 if( p->inTrans>pBt->inTransaction ){
2627 pBt->inTransaction = p->inTrans;
2628 }
danielk1977404ca072009-03-16 13:19:36 +00002629 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002630 MemPage *pPage1 = pBt->pPage1;
2631#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002632 assert( !pBt->pWriter );
2633 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002634 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002635#endif
dan59257dc2010-08-04 11:34:31 +00002636
2637 /* If the db-size header field is incorrect (as it may be if an old
2638 ** client has been writing the database file), update it now. Doing
2639 ** this sooner rather than later means the database size can safely
2640 ** re-read the database size from page 1 if a savepoint or transaction
2641 ** rollback occurs within the transaction.
2642 */
2643 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2644 rc = sqlite3PagerWrite(pPage1->pDbPage);
2645 if( rc==SQLITE_OK ){
2646 put4byte(&pPage1->aData[28], pBt->nPage);
2647 }
2648 }
2649 }
danielk1977aef0bf62005-12-30 16:28:01 +00002650 }
2651
drhd677b3d2007-08-20 22:48:41 +00002652
2653trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002654 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002655 /* This call makes sure that the pager has the correct number of
2656 ** open savepoints. If the second parameter is greater than 0 and
2657 ** the sub-journal is not already open, then it will be opened here.
2658 */
danielk1977fd7f0452008-12-17 17:30:26 +00002659 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2660 }
danielk197712dd5492008-12-18 15:45:07 +00002661
danielk1977aef0bf62005-12-30 16:28:01 +00002662 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002663 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002664 return rc;
drha059ad02001-04-17 20:09:11 +00002665}
2666
danielk1977687566d2004-11-02 12:56:41 +00002667#ifndef SQLITE_OMIT_AUTOVACUUM
2668
2669/*
2670** Set the pointer-map entries for all children of page pPage. Also, if
2671** pPage contains cells that point to overflow pages, set the pointer
2672** map entries for the overflow pages as well.
2673*/
2674static int setChildPtrmaps(MemPage *pPage){
2675 int i; /* Counter variable */
2676 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002677 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002678 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002679 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002680 Pgno pgno = pPage->pgno;
2681
drh1fee73e2007-08-29 04:00:57 +00002682 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002683 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002684 if( rc!=SQLITE_OK ){
2685 goto set_child_ptrmaps_out;
2686 }
danielk1977687566d2004-11-02 12:56:41 +00002687 nCell = pPage->nCell;
2688
2689 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002690 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002691
drh98add2e2009-07-20 17:11:49 +00002692 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002693
danielk1977687566d2004-11-02 12:56:41 +00002694 if( !pPage->leaf ){
2695 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002696 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002697 }
2698 }
2699
2700 if( !pPage->leaf ){
2701 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002702 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002703 }
2704
2705set_child_ptrmaps_out:
2706 pPage->isInit = isInitOrig;
2707 return rc;
2708}
2709
2710/*
drhf3aed592009-07-08 18:12:49 +00002711** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2712** that it points to iTo. Parameter eType describes the type of pointer to
2713** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002714**
2715** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2716** page of pPage.
2717**
2718** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2719** page pointed to by one of the cells on pPage.
2720**
2721** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2722** overflow page in the list.
2723*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002724static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002725 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002726 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002727 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002728 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002729 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002730 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002731 }
danielk1977f78fc082004-11-02 14:40:32 +00002732 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002733 }else{
drhf49661a2008-12-10 16:45:50 +00002734 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002735 int i;
2736 int nCell;
2737
danielk197730548662009-07-09 05:07:37 +00002738 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002739 nCell = pPage->nCell;
2740
danielk1977687566d2004-11-02 12:56:41 +00002741 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002742 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002743 if( eType==PTRMAP_OVERFLOW1 ){
2744 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002745 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002746 if( info.iOverflow ){
2747 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2748 put4byte(&pCell[info.iOverflow], iTo);
2749 break;
2750 }
2751 }
2752 }else{
2753 if( get4byte(pCell)==iFrom ){
2754 put4byte(pCell, iTo);
2755 break;
2756 }
2757 }
2758 }
2759
2760 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002761 if( eType!=PTRMAP_BTREE ||
2762 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002763 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002764 }
danielk1977687566d2004-11-02 12:56:41 +00002765 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2766 }
2767
2768 pPage->isInit = isInitOrig;
2769 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002770 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002771}
2772
danielk1977003ba062004-11-04 02:57:33 +00002773
danielk19777701e812005-01-10 12:59:51 +00002774/*
2775** Move the open database page pDbPage to location iFreePage in the
2776** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002777**
2778** The isCommit flag indicates that there is no need to remember that
2779** the journal needs to be sync()ed before database page pDbPage->pgno
2780** can be written to. The caller has already promised not to write to that
2781** page.
danielk19777701e812005-01-10 12:59:51 +00002782*/
danielk1977003ba062004-11-04 02:57:33 +00002783static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002784 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002785 MemPage *pDbPage, /* Open page to move */
2786 u8 eType, /* Pointer map 'type' entry for pDbPage */
2787 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002788 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002789 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002790){
2791 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2792 Pgno iDbPage = pDbPage->pgno;
2793 Pager *pPager = pBt->pPager;
2794 int rc;
2795
danielk1977a0bf2652004-11-04 14:30:04 +00002796 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2797 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002798 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002799 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002800
drh85b623f2007-12-13 21:54:09 +00002801 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002802 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2803 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002804 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002805 if( rc!=SQLITE_OK ){
2806 return rc;
2807 }
2808 pDbPage->pgno = iFreePage;
2809
2810 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2811 ** that point to overflow pages. The pointer map entries for all these
2812 ** pages need to be changed.
2813 **
2814 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2815 ** pointer to a subsequent overflow page. If this is the case, then
2816 ** the pointer map needs to be updated for the subsequent overflow page.
2817 */
danielk1977a0bf2652004-11-04 14:30:04 +00002818 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002819 rc = setChildPtrmaps(pDbPage);
2820 if( rc!=SQLITE_OK ){
2821 return rc;
2822 }
2823 }else{
2824 Pgno nextOvfl = get4byte(pDbPage->aData);
2825 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002826 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002827 if( rc!=SQLITE_OK ){
2828 return rc;
2829 }
2830 }
2831 }
2832
2833 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2834 ** that it points at iFreePage. Also fix the pointer map entry for
2835 ** iPtrPage.
2836 */
danielk1977a0bf2652004-11-04 14:30:04 +00002837 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002838 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002839 if( rc!=SQLITE_OK ){
2840 return rc;
2841 }
danielk19773b8a05f2007-03-19 17:44:26 +00002842 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002843 if( rc!=SQLITE_OK ){
2844 releasePage(pPtrPage);
2845 return rc;
2846 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002847 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002848 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002849 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002850 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002851 }
danielk1977003ba062004-11-04 02:57:33 +00002852 }
danielk1977003ba062004-11-04 02:57:33 +00002853 return rc;
2854}
2855
danielk1977dddbcdc2007-04-26 14:42:34 +00002856/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002857static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002858
2859/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002860** Perform a single step of an incremental-vacuum. If successful,
2861** return SQLITE_OK. If there is no work to do (and therefore no
2862** point in calling this function again), return SQLITE_DONE.
2863**
2864** More specificly, this function attempts to re-organize the
2865** database so that the last page of the file currently in use
2866** is no longer in use.
2867**
drhea8ffdf2009-07-22 00:35:23 +00002868** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002869** that the caller will keep calling incrVacuumStep() until
2870** it returns SQLITE_DONE or an error, and that nFin is the
2871** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002872** process is complete. If nFin is zero, it is assumed that
2873** incrVacuumStep() will be called a finite amount of times
2874** which may or may not empty the freelist. A full autovacuum
2875** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002876*/
danielk19773460d192008-12-27 15:23:13 +00002877static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002878 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002879 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002880
drh1fee73e2007-08-29 04:00:57 +00002881 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002882 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002883
2884 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002885 u8 eType;
2886 Pgno iPtrPage;
2887
2888 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002889 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002890 return SQLITE_DONE;
2891 }
2892
2893 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2894 if( rc!=SQLITE_OK ){
2895 return rc;
2896 }
2897 if( eType==PTRMAP_ROOTPAGE ){
2898 return SQLITE_CORRUPT_BKPT;
2899 }
2900
2901 if( eType==PTRMAP_FREEPAGE ){
2902 if( nFin==0 ){
2903 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002904 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002905 ** truncated to zero after this function returns, so it doesn't
2906 ** matter if it still contains some garbage entries.
2907 */
2908 Pgno iFreePg;
2909 MemPage *pFreePg;
2910 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2911 if( rc!=SQLITE_OK ){
2912 return rc;
2913 }
2914 assert( iFreePg==iLastPg );
2915 releasePage(pFreePg);
2916 }
2917 } else {
2918 Pgno iFreePg; /* Index of free page to move pLastPg to */
2919 MemPage *pLastPg;
2920
danielk197730548662009-07-09 05:07:37 +00002921 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002922 if( rc!=SQLITE_OK ){
2923 return rc;
2924 }
2925
danielk1977b4626a32007-04-28 15:47:43 +00002926 /* If nFin is zero, this loop runs exactly once and page pLastPg
2927 ** is swapped with the first free page pulled off the free list.
2928 **
2929 ** On the other hand, if nFin is greater than zero, then keep
2930 ** looping until a free-page located within the first nFin pages
2931 ** of the file is found.
2932 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002933 do {
2934 MemPage *pFreePg;
2935 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2936 if( rc!=SQLITE_OK ){
2937 releasePage(pLastPg);
2938 return rc;
2939 }
2940 releasePage(pFreePg);
2941 }while( nFin!=0 && iFreePg>nFin );
2942 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002943
2944 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002945 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002946 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002947 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002948 releasePage(pLastPg);
2949 if( rc!=SQLITE_OK ){
2950 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002951 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002952 }
2953 }
2954
danielk19773460d192008-12-27 15:23:13 +00002955 if( nFin==0 ){
2956 iLastPg--;
2957 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002958 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2959 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002960 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002961 if( rc!=SQLITE_OK ){
2962 return rc;
2963 }
2964 rc = sqlite3PagerWrite(pPg->pDbPage);
2965 releasePage(pPg);
2966 if( rc!=SQLITE_OK ){
2967 return rc;
2968 }
2969 }
danielk19773460d192008-12-27 15:23:13 +00002970 iLastPg--;
2971 }
2972 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002973 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002974 }
2975 return SQLITE_OK;
2976}
2977
2978/*
2979** A write-transaction must be opened before calling this function.
2980** It performs a single unit of work towards an incremental vacuum.
2981**
2982** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002983** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002984** SQLITE_OK is returned. Otherwise an SQLite error code.
2985*/
2986int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002987 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002988 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002989
2990 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002991 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2992 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002993 rc = SQLITE_DONE;
2994 }else{
2995 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00002996 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00002997 if( rc==SQLITE_OK ){
2998 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2999 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3000 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003001 }
drhd677b3d2007-08-20 22:48:41 +00003002 sqlite3BtreeLeave(p);
3003 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003004}
3005
3006/*
danielk19773b8a05f2007-03-19 17:44:26 +00003007** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003008** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003009**
3010** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3011** the database file should be truncated to during the commit process.
3012** i.e. the database has been reorganized so that only the first *pnTrunc
3013** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003014*/
danielk19773460d192008-12-27 15:23:13 +00003015static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003016 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003017 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003018 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003019
drh1fee73e2007-08-29 04:00:57 +00003020 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003021 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003022 assert(pBt->autoVacuum);
3023 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003024 Pgno nFin; /* Number of pages in database after autovacuuming */
3025 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003026 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3027 Pgno iFree; /* The next page to be freed */
3028 int nEntry; /* Number of entries on one ptrmap page */
3029 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003030
drhb1299152010-03-30 22:58:33 +00003031 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003032 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3033 /* It is not possible to create a database for which the final page
3034 ** is either a pointer-map page or the pending-byte page. If one
3035 ** is encountered, this indicates corruption.
3036 */
danielk19773460d192008-12-27 15:23:13 +00003037 return SQLITE_CORRUPT_BKPT;
3038 }
danielk1977ef165ce2009-04-06 17:50:03 +00003039
danielk19773460d192008-12-27 15:23:13 +00003040 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00003041 nEntry = pBt->usableSize/5;
3042 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00003043 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00003044 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00003045 nFin--;
3046 }
3047 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3048 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00003049 }
drhc5e47ac2009-06-04 00:11:56 +00003050 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003051
danielk19773460d192008-12-27 15:23:13 +00003052 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3053 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00003054 }
danielk19773460d192008-12-27 15:23:13 +00003055 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003056 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3057 put4byte(&pBt->pPage1->aData[32], 0);
3058 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003059 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003060 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003061 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003062 }
3063 if( rc!=SQLITE_OK ){
3064 sqlite3PagerRollback(pPager);
3065 }
danielk1977687566d2004-11-02 12:56:41 +00003066 }
3067
danielk19773b8a05f2007-03-19 17:44:26 +00003068 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003069 return rc;
3070}
danielk1977dddbcdc2007-04-26 14:42:34 +00003071
danielk1977a50d9aa2009-06-08 14:49:45 +00003072#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3073# define setChildPtrmaps(x) SQLITE_OK
3074#endif
danielk1977687566d2004-11-02 12:56:41 +00003075
3076/*
drh80e35f42007-03-30 14:06:34 +00003077** This routine does the first phase of a two-phase commit. This routine
3078** causes a rollback journal to be created (if it does not already exist)
3079** and populated with enough information so that if a power loss occurs
3080** the database can be restored to its original state by playing back
3081** the journal. Then the contents of the journal are flushed out to
3082** the disk. After the journal is safely on oxide, the changes to the
3083** database are written into the database file and flushed to oxide.
3084** At the end of this call, the rollback journal still exists on the
3085** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003086** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003087** commit process.
3088**
3089** This call is a no-op if no write-transaction is currently active on pBt.
3090**
3091** Otherwise, sync the database file for the btree pBt. zMaster points to
3092** the name of a master journal file that should be written into the
3093** individual journal file, or is NULL, indicating no master journal file
3094** (single database transaction).
3095**
3096** When this is called, the master journal should already have been
3097** created, populated with this journal pointer and synced to disk.
3098**
3099** Once this is routine has returned, the only thing required to commit
3100** the write-transaction for this database file is to delete the journal.
3101*/
3102int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3103 int rc = SQLITE_OK;
3104 if( p->inTrans==TRANS_WRITE ){
3105 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003106 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003107#ifndef SQLITE_OMIT_AUTOVACUUM
3108 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003109 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003110 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003111 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003112 return rc;
3113 }
3114 }
3115#endif
drh49b9d332009-01-02 18:10:42 +00003116 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003117 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003118 }
3119 return rc;
3120}
3121
3122/*
danielk197794b30732009-07-02 17:21:57 +00003123** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3124** at the conclusion of a transaction.
3125*/
3126static void btreeEndTransaction(Btree *p){
3127 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003128 assert( sqlite3BtreeHoldsMutex(p) );
3129
danielk197794b30732009-07-02 17:21:57 +00003130 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003131 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3132 /* If there are other active statements that belong to this database
3133 ** handle, downgrade to a read-only transaction. The other statements
3134 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003135 downgradeAllSharedCacheTableLocks(p);
3136 p->inTrans = TRANS_READ;
3137 }else{
3138 /* If the handle had any kind of transaction open, decrement the
3139 ** transaction count of the shared btree. If the transaction count
3140 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3141 ** call below will unlock the pager. */
3142 if( p->inTrans!=TRANS_NONE ){
3143 clearAllSharedCacheTableLocks(p);
3144 pBt->nTransaction--;
3145 if( 0==pBt->nTransaction ){
3146 pBt->inTransaction = TRANS_NONE;
3147 }
3148 }
3149
3150 /* Set the current transaction state to TRANS_NONE and unlock the
3151 ** pager if this call closed the only read or write transaction. */
3152 p->inTrans = TRANS_NONE;
3153 unlockBtreeIfUnused(pBt);
3154 }
3155
3156 btreeIntegrity(p);
3157}
3158
3159/*
drh2aa679f2001-06-25 02:11:07 +00003160** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003161**
drh6e345992007-03-30 11:12:08 +00003162** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003163** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3164** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3165** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003166** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003167** routine has to do is delete or truncate or zero the header in the
3168** the rollback journal (which causes the transaction to commit) and
3169** drop locks.
drh6e345992007-03-30 11:12:08 +00003170**
dan60939d02011-03-29 15:40:55 +00003171** Normally, if an error occurs while the pager layer is attempting to
3172** finalize the underlying journal file, this function returns an error and
3173** the upper layer will attempt a rollback. However, if the second argument
3174** is non-zero then this b-tree transaction is part of a multi-file
3175** transaction. In this case, the transaction has already been committed
3176** (by deleting a master journal file) and the caller will ignore this
3177** functions return code. So, even if an error occurs in the pager layer,
3178** reset the b-tree objects internal state to indicate that the write
3179** transaction has been closed. This is quite safe, as the pager will have
3180** transitioned to the error state.
3181**
drh5e00f6c2001-09-13 13:46:56 +00003182** This will release the write lock on the database file. If there
3183** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003184*/
dan60939d02011-03-29 15:40:55 +00003185int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003186
drh075ed302010-10-14 01:17:30 +00003187 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003188 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003189 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003190
3191 /* If the handle has a write-transaction open, commit the shared-btrees
3192 ** transaction and set the shared state to TRANS_READ.
3193 */
3194 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003195 int rc;
drh075ed302010-10-14 01:17:30 +00003196 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003197 assert( pBt->inTransaction==TRANS_WRITE );
3198 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003199 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003200 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003201 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003202 return rc;
3203 }
danielk1977aef0bf62005-12-30 16:28:01 +00003204 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003205 }
danielk1977aef0bf62005-12-30 16:28:01 +00003206
danielk197794b30732009-07-02 17:21:57 +00003207 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003208 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003209 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003210}
3211
drh80e35f42007-03-30 14:06:34 +00003212/*
3213** Do both phases of a commit.
3214*/
3215int sqlite3BtreeCommit(Btree *p){
3216 int rc;
drhd677b3d2007-08-20 22:48:41 +00003217 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003218 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3219 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003220 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003221 }
drhd677b3d2007-08-20 22:48:41 +00003222 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003223 return rc;
3224}
3225
danielk1977fbcd5852004-06-15 02:44:18 +00003226#ifndef NDEBUG
3227/*
3228** Return the number of write-cursors open on this handle. This is for use
3229** in assert() expressions, so it is only compiled if NDEBUG is not
3230** defined.
drhfb982642007-08-30 01:19:59 +00003231**
3232** For the purposes of this routine, a write-cursor is any cursor that
3233** is capable of writing to the databse. That means the cursor was
3234** originally opened for writing and the cursor has not be disabled
3235** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003236*/
danielk1977aef0bf62005-12-30 16:28:01 +00003237static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003238 BtCursor *pCur;
3239 int r = 0;
3240 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003241 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003242 }
3243 return r;
3244}
3245#endif
3246
drhc39e0002004-05-07 23:50:57 +00003247/*
drhfb982642007-08-30 01:19:59 +00003248** This routine sets the state to CURSOR_FAULT and the error
3249** code to errCode for every cursor on BtShared that pBtree
3250** references.
3251**
3252** Every cursor is tripped, including cursors that belong
3253** to other database connections that happen to be sharing
3254** the cache with pBtree.
3255**
3256** This routine gets called when a rollback occurs.
3257** All cursors using the same cache must be tripped
3258** to prevent them from trying to use the btree after
3259** the rollback. The rollback may have deleted tables
3260** or moved root pages, so it is not sufficient to
3261** save the state of the cursor. The cursor must be
3262** invalidated.
3263*/
3264void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3265 BtCursor *p;
3266 sqlite3BtreeEnter(pBtree);
3267 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003268 int i;
danielk1977be51a652008-10-08 17:58:48 +00003269 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003270 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003271 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003272 for(i=0; i<=p->iPage; i++){
3273 releasePage(p->apPage[i]);
3274 p->apPage[i] = 0;
3275 }
drhfb982642007-08-30 01:19:59 +00003276 }
3277 sqlite3BtreeLeave(pBtree);
3278}
3279
3280/*
drhecdc7532001-09-23 02:35:53 +00003281** Rollback the transaction in progress. All cursors will be
3282** invalided by this operation. Any attempt to use a cursor
3283** that was open at the beginning of this operation will result
3284** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003285**
3286** This will release the write lock on the database file. If there
3287** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003288*/
danielk1977aef0bf62005-12-30 16:28:01 +00003289int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003290 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003291 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003292 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003293
drhd677b3d2007-08-20 22:48:41 +00003294 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003295 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003296#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003297 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003298 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003299 ** trying to save cursor positions. If this is an automatic rollback (as
3300 ** the result of a constraint, malloc() failure or IO error) then
3301 ** the cache may be internally inconsistent (not contain valid trees) so
3302 ** we cannot simply return the error to the caller. Instead, abort
3303 ** all queries that may be using any of the cursors that failed to save.
3304 */
drhfb982642007-08-30 01:19:59 +00003305 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003306 }
danielk19778d34dfd2006-01-24 16:37:57 +00003307#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003308 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003309
3310 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003311 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003312
danielk19778d34dfd2006-01-24 16:37:57 +00003313 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003314 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003315 if( rc2!=SQLITE_OK ){
3316 rc = rc2;
3317 }
3318
drh24cd67e2004-05-10 16:18:47 +00003319 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003320 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003321 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003322 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003323 int nPage = get4byte(28+(u8*)pPage1->aData);
3324 testcase( nPage==0 );
3325 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3326 testcase( pBt->nPage!=nPage );
3327 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003328 releasePage(pPage1);
3329 }
danielk1977fbcd5852004-06-15 02:44:18 +00003330 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003331 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003332 }
danielk1977aef0bf62005-12-30 16:28:01 +00003333
danielk197794b30732009-07-02 17:21:57 +00003334 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003335 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003336 return rc;
3337}
3338
3339/*
danielk1977bd434552009-03-18 10:33:00 +00003340** Start a statement subtransaction. The subtransaction can can be rolled
3341** back independently of the main transaction. You must start a transaction
3342** before starting a subtransaction. The subtransaction is ended automatically
3343** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003344**
3345** Statement subtransactions are used around individual SQL statements
3346** that are contained within a BEGIN...COMMIT block. If a constraint
3347** error occurs within the statement, the effect of that one statement
3348** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003349**
3350** A statement sub-transaction is implemented as an anonymous savepoint. The
3351** value passed as the second parameter is the total number of savepoints,
3352** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3353** are no active savepoints and no other statement-transactions open,
3354** iStatement is 1. This anonymous savepoint can be released or rolled back
3355** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003356*/
danielk1977bd434552009-03-18 10:33:00 +00003357int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003358 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003359 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003360 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003361 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003362 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003363 assert( iStatement>0 );
3364 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003365 assert( pBt->inTransaction==TRANS_WRITE );
3366 /* At the pager level, a statement transaction is a savepoint with
3367 ** an index greater than all savepoints created explicitly using
3368 ** SQL statements. It is illegal to open, release or rollback any
3369 ** such savepoints while the statement transaction savepoint is active.
3370 */
3371 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003372 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003373 return rc;
3374}
3375
3376/*
danielk1977fd7f0452008-12-17 17:30:26 +00003377** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3378** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003379** savepoint identified by parameter iSavepoint, depending on the value
3380** of op.
3381**
3382** Normally, iSavepoint is greater than or equal to zero. However, if op is
3383** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3384** contents of the entire transaction are rolled back. This is different
3385** from a normal transaction rollback, as no locks are released and the
3386** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003387*/
3388int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3389 int rc = SQLITE_OK;
3390 if( p && p->inTrans==TRANS_WRITE ){
3391 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003392 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3393 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3394 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003395 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003396 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003397 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003398 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003399 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003400
3401 /* The database size was written into the offset 28 of the header
3402 ** when the transaction started, so we know that the value at offset
3403 ** 28 is nonzero. */
3404 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003405 }
danielk1977fd7f0452008-12-17 17:30:26 +00003406 sqlite3BtreeLeave(p);
3407 }
3408 return rc;
3409}
3410
3411/*
drh8b2f49b2001-06-08 00:21:52 +00003412** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003413** iTable. If a read-only cursor is requested, it is assumed that
3414** the caller already has at least a read-only transaction open
3415** on the database already. If a write-cursor is requested, then
3416** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003417**
3418** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003419** If wrFlag==1, then the cursor can be used for reading or for
3420** writing if other conditions for writing are also met. These
3421** are the conditions that must be met in order for writing to
3422** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003423**
drhf74b8d92002-09-01 23:20:45 +00003424** 1: The cursor must have been opened with wrFlag==1
3425**
drhfe5d71d2007-03-19 11:54:10 +00003426** 2: Other database connections that share the same pager cache
3427** but which are not in the READ_UNCOMMITTED state may not have
3428** cursors open with wrFlag==0 on the same table. Otherwise
3429** the changes made by this write cursor would be visible to
3430** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003431**
3432** 3: The database must be writable (not on read-only media)
3433**
3434** 4: There must be an active transaction.
3435**
drh6446c4d2001-12-15 14:22:18 +00003436** No checking is done to make sure that page iTable really is the
3437** root page of a b-tree. If it is not, then the cursor acquired
3438** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003439**
drhf25a5072009-11-18 23:01:25 +00003440** It is assumed that the sqlite3BtreeCursorZero() has been called
3441** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003442*/
drhd677b3d2007-08-20 22:48:41 +00003443static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003444 Btree *p, /* The btree */
3445 int iTable, /* Root page of table to open */
3446 int wrFlag, /* 1 to write. 0 read-only */
3447 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3448 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003449){
danielk19773e8add92009-07-04 17:16:00 +00003450 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003451
drh1fee73e2007-08-29 04:00:57 +00003452 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003453 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003454
danielk1977602b4662009-07-02 07:47:33 +00003455 /* The following assert statements verify that if this is a sharable
3456 ** b-tree database, the connection is holding the required table locks,
3457 ** and that no other connection has any open cursor that conflicts with
3458 ** this lock. */
3459 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003460 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3461
danielk19773e8add92009-07-04 17:16:00 +00003462 /* Assert that the caller has opened the required transaction. */
3463 assert( p->inTrans>TRANS_NONE );
3464 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3465 assert( pBt->pPage1 && pBt->pPage1->aData );
3466
danielk197796d48e92009-06-29 06:00:37 +00003467 if( NEVER(wrFlag && pBt->readOnly) ){
3468 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003469 }
drhb1299152010-03-30 22:58:33 +00003470 if( iTable==1 && btreePagecount(pBt)==0 ){
danielk19773e8add92009-07-04 17:16:00 +00003471 return SQLITE_EMPTY;
3472 }
danielk1977aef0bf62005-12-30 16:28:01 +00003473
danielk1977aef0bf62005-12-30 16:28:01 +00003474 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003475 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003476 pCur->pgnoRoot = (Pgno)iTable;
3477 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003478 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003479 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003480 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003481 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003482 pCur->pNext = pBt->pCursor;
3483 if( pCur->pNext ){
3484 pCur->pNext->pPrev = pCur;
3485 }
3486 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003487 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003488 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003489 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003490}
drhd677b3d2007-08-20 22:48:41 +00003491int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003492 Btree *p, /* The btree */
3493 int iTable, /* Root page of table to open */
3494 int wrFlag, /* 1 to write. 0 read-only */
3495 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3496 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003497){
3498 int rc;
3499 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003500 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003501 sqlite3BtreeLeave(p);
3502 return rc;
3503}
drh7f751222009-03-17 22:33:00 +00003504
3505/*
3506** Return the size of a BtCursor object in bytes.
3507**
3508** This interfaces is needed so that users of cursors can preallocate
3509** sufficient storage to hold a cursor. The BtCursor object is opaque
3510** to users so they cannot do the sizeof() themselves - they must call
3511** this routine.
3512*/
3513int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003514 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003515}
3516
drh7f751222009-03-17 22:33:00 +00003517/*
drhf25a5072009-11-18 23:01:25 +00003518** Initialize memory that will be converted into a BtCursor object.
3519**
3520** The simple approach here would be to memset() the entire object
3521** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3522** do not need to be zeroed and they are large, so we can save a lot
3523** of run-time by skipping the initialization of those elements.
3524*/
3525void sqlite3BtreeCursorZero(BtCursor *p){
3526 memset(p, 0, offsetof(BtCursor, iPage));
3527}
3528
3529/*
drh7f751222009-03-17 22:33:00 +00003530** Set the cached rowid value of every cursor in the same database file
3531** as pCur and having the same root page number as pCur. The value is
3532** set to iRowid.
3533**
3534** Only positive rowid values are considered valid for this cache.
3535** The cache is initialized to zero, indicating an invalid cache.
3536** A btree will work fine with zero or negative rowids. We just cannot
3537** cache zero or negative rowids, which means tables that use zero or
3538** negative rowids might run a little slower. But in practice, zero
3539** or negative rowids are very uncommon so this should not be a problem.
3540*/
3541void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3542 BtCursor *p;
3543 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3544 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3545 }
3546 assert( pCur->cachedRowid==iRowid );
3547}
drhd677b3d2007-08-20 22:48:41 +00003548
drh7f751222009-03-17 22:33:00 +00003549/*
3550** Return the cached rowid for the given cursor. A negative or zero
3551** return value indicates that the rowid cache is invalid and should be
3552** ignored. If the rowid cache has never before been set, then a
3553** zero is returned.
3554*/
3555sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3556 return pCur->cachedRowid;
3557}
drha059ad02001-04-17 20:09:11 +00003558
3559/*
drh5e00f6c2001-09-13 13:46:56 +00003560** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003561** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003562*/
drh3aac2dd2004-04-26 14:10:20 +00003563int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003564 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003565 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003566 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003567 BtShared *pBt = pCur->pBt;
3568 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003569 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003570 if( pCur->pPrev ){
3571 pCur->pPrev->pNext = pCur->pNext;
3572 }else{
3573 pBt->pCursor = pCur->pNext;
3574 }
3575 if( pCur->pNext ){
3576 pCur->pNext->pPrev = pCur->pPrev;
3577 }
danielk197771d5d2c2008-09-29 11:49:47 +00003578 for(i=0; i<=pCur->iPage; i++){
3579 releasePage(pCur->apPage[i]);
3580 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003581 unlockBtreeIfUnused(pBt);
3582 invalidateOverflowCache(pCur);
3583 /* sqlite3_free(pCur); */
3584 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003585 }
drh8c42ca92001-06-22 19:15:00 +00003586 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003587}
3588
drh5e2f8b92001-05-28 00:41:15 +00003589/*
drh86057612007-06-26 01:04:48 +00003590** Make sure the BtCursor* given in the argument has a valid
3591** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003592** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003593**
3594** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003595** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003596**
3597** 2007-06-25: There is a bug in some versions of MSVC that cause the
3598** compiler to crash when getCellInfo() is implemented as a macro.
3599** But there is a measureable speed advantage to using the macro on gcc
3600** (when less compiler optimizations like -Os or -O0 are used and the
3601** compiler is not doing agressive inlining.) So we use a real function
3602** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003603*/
drh9188b382004-05-14 21:12:22 +00003604#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003605 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003606 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003607 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003608 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003609 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003610 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003611 }
danielk19771cc5ed82007-05-16 17:28:43 +00003612#else
3613 #define assertCellInfo(x)
3614#endif
drh86057612007-06-26 01:04:48 +00003615#ifdef _MSC_VER
3616 /* Use a real function in MSVC to work around bugs in that compiler. */
3617 static void getCellInfo(BtCursor *pCur){
3618 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003619 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003620 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003621 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003622 }else{
3623 assertCellInfo(pCur);
3624 }
3625 }
3626#else /* if not _MSC_VER */
3627 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003628#define getCellInfo(pCur) \
3629 if( pCur->info.nSize==0 ){ \
3630 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003631 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003632 pCur->validNKey = 1; \
3633 }else{ \
3634 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003635 }
3636#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003637
drhea8ffdf2009-07-22 00:35:23 +00003638#ifndef NDEBUG /* The next routine used only within assert() statements */
3639/*
3640** Return true if the given BtCursor is valid. A valid cursor is one
3641** that is currently pointing to a row in a (non-empty) table.
3642** This is a verification routine is used only within assert() statements.
3643*/
3644int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3645 return pCur && pCur->eState==CURSOR_VALID;
3646}
3647#endif /* NDEBUG */
3648
drh9188b382004-05-14 21:12:22 +00003649/*
drh3aac2dd2004-04-26 14:10:20 +00003650** Set *pSize to the size of the buffer needed to hold the value of
3651** the key for the current entry. If the cursor is not pointing
3652** to a valid entry, *pSize is set to 0.
3653**
drh4b70f112004-05-02 21:12:19 +00003654** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003655** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003656**
3657** The caller must position the cursor prior to invoking this routine.
3658**
3659** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003660*/
drh4a1c3802004-05-12 15:15:47 +00003661int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003662 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003663 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3664 if( pCur->eState!=CURSOR_VALID ){
3665 *pSize = 0;
3666 }else{
3667 getCellInfo(pCur);
3668 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003669 }
drhea8ffdf2009-07-22 00:35:23 +00003670 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003671}
drh2af926b2001-05-15 00:39:25 +00003672
drh72f82862001-05-24 21:06:34 +00003673/*
drh0e1c19e2004-05-11 00:58:56 +00003674** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003675** cursor currently points to.
3676**
3677** The caller must guarantee that the cursor is pointing to a non-NULL
3678** valid entry. In other words, the calling procedure must guarantee
3679** that the cursor has Cursor.eState==CURSOR_VALID.
3680**
3681** Failure is not possible. This function always returns SQLITE_OK.
3682** It might just as well be a procedure (returning void) but we continue
3683** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003684*/
3685int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003686 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003687 assert( pCur->eState==CURSOR_VALID );
3688 getCellInfo(pCur);
3689 *pSize = pCur->info.nData;
3690 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003691}
3692
3693/*
danielk1977d04417962007-05-02 13:16:30 +00003694** Given the page number of an overflow page in the database (parameter
3695** ovfl), this function finds the page number of the next page in the
3696** linked list of overflow pages. If possible, it uses the auto-vacuum
3697** pointer-map data instead of reading the content of page ovfl to do so.
3698**
3699** If an error occurs an SQLite error code is returned. Otherwise:
3700**
danielk1977bea2a942009-01-20 17:06:27 +00003701** The page number of the next overflow page in the linked list is
3702** written to *pPgnoNext. If page ovfl is the last page in its linked
3703** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003704**
danielk1977bea2a942009-01-20 17:06:27 +00003705** If ppPage is not NULL, and a reference to the MemPage object corresponding
3706** to page number pOvfl was obtained, then *ppPage is set to point to that
3707** reference. It is the responsibility of the caller to call releasePage()
3708** on *ppPage to free the reference. In no reference was obtained (because
3709** the pointer-map was used to obtain the value for *pPgnoNext), then
3710** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003711*/
3712static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003713 BtShared *pBt, /* The database file */
3714 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003715 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003716 Pgno *pPgnoNext /* OUT: Next overflow page number */
3717){
3718 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003719 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003720 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003721
drh1fee73e2007-08-29 04:00:57 +00003722 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003723 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003724
3725#ifndef SQLITE_OMIT_AUTOVACUUM
3726 /* Try to find the next page in the overflow list using the
3727 ** autovacuum pointer-map pages. Guess that the next page in
3728 ** the overflow list is page number (ovfl+1). If that guess turns
3729 ** out to be wrong, fall back to loading the data of page
3730 ** number ovfl to determine the next page number.
3731 */
3732 if( pBt->autoVacuum ){
3733 Pgno pgno;
3734 Pgno iGuess = ovfl+1;
3735 u8 eType;
3736
3737 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3738 iGuess++;
3739 }
3740
drhb1299152010-03-30 22:58:33 +00003741 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003742 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003743 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003744 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003745 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003746 }
3747 }
3748 }
3749#endif
3750
danielk1977d8a3f3d2009-07-11 11:45:23 +00003751 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003752 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003753 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003754 assert( rc==SQLITE_OK || pPage==0 );
3755 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003756 next = get4byte(pPage->aData);
3757 }
danielk1977443c0592009-01-16 15:21:05 +00003758 }
danielk197745d68822009-01-16 16:23:38 +00003759
danielk1977bea2a942009-01-20 17:06:27 +00003760 *pPgnoNext = next;
3761 if( ppPage ){
3762 *ppPage = pPage;
3763 }else{
3764 releasePage(pPage);
3765 }
3766 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003767}
3768
danielk1977da107192007-05-04 08:32:13 +00003769/*
3770** Copy data from a buffer to a page, or from a page to a buffer.
3771**
3772** pPayload is a pointer to data stored on database page pDbPage.
3773** If argument eOp is false, then nByte bytes of data are copied
3774** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3775** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3776** of data are copied from the buffer pBuf to pPayload.
3777**
3778** SQLITE_OK is returned on success, otherwise an error code.
3779*/
3780static int copyPayload(
3781 void *pPayload, /* Pointer to page data */
3782 void *pBuf, /* Pointer to buffer */
3783 int nByte, /* Number of bytes to copy */
3784 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3785 DbPage *pDbPage /* Page containing pPayload */
3786){
3787 if( eOp ){
3788 /* Copy data from buffer to page (a write operation) */
3789 int rc = sqlite3PagerWrite(pDbPage);
3790 if( rc!=SQLITE_OK ){
3791 return rc;
3792 }
3793 memcpy(pPayload, pBuf, nByte);
3794 }else{
3795 /* Copy data from page to buffer (a read operation) */
3796 memcpy(pBuf, pPayload, nByte);
3797 }
3798 return SQLITE_OK;
3799}
danielk1977d04417962007-05-02 13:16:30 +00003800
3801/*
danielk19779f8d6402007-05-02 17:48:45 +00003802** This function is used to read or overwrite payload information
3803** for the entry that the pCur cursor is pointing to. If the eOp
3804** parameter is 0, this is a read operation (data copied into
3805** buffer pBuf). If it is non-zero, a write (data copied from
3806** buffer pBuf).
3807**
3808** A total of "amt" bytes are read or written beginning at "offset".
3809** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003810**
drh3bcdfd22009-07-12 02:32:21 +00003811** The content being read or written might appear on the main page
3812** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003813**
danielk1977dcbb5d32007-05-04 18:36:44 +00003814** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003815** cursor entry uses one or more overflow pages, this function
3816** allocates space for and lazily popluates the overflow page-list
3817** cache array (BtCursor.aOverflow). Subsequent calls use this
3818** cache to make seeking to the supplied offset more efficient.
3819**
3820** Once an overflow page-list cache has been allocated, it may be
3821** invalidated if some other cursor writes to the same table, or if
3822** the cursor is moved to a different row. Additionally, in auto-vacuum
3823** mode, the following events may invalidate an overflow page-list cache.
3824**
3825** * An incremental vacuum,
3826** * A commit in auto_vacuum="full" mode,
3827** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003828*/
danielk19779f8d6402007-05-02 17:48:45 +00003829static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003830 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003831 u32 offset, /* Begin reading this far into payload */
3832 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003833 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003834 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003835){
3836 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003837 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003838 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003839 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003840 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003841 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003842
danielk1977da107192007-05-04 08:32:13 +00003843 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003844 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003845 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003846 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003847
drh86057612007-06-26 01:04:48 +00003848 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003849 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003850 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003851
drh3bcdfd22009-07-12 02:32:21 +00003852 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003853 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3854 ){
danielk1977da107192007-05-04 08:32:13 +00003855 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003856 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003857 }
danielk1977da107192007-05-04 08:32:13 +00003858
3859 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003860 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003861 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003862 if( a+offset>pCur->info.nLocal ){
3863 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003864 }
danielk1977da107192007-05-04 08:32:13 +00003865 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003866 offset = 0;
drha34b6762004-05-07 13:30:42 +00003867 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003868 amt -= a;
drhdd793422001-06-28 01:54:48 +00003869 }else{
drhfa1a98a2004-05-14 19:08:17 +00003870 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003871 }
danielk1977da107192007-05-04 08:32:13 +00003872
3873 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003874 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003875 Pgno nextPage;
3876
drhfa1a98a2004-05-14 19:08:17 +00003877 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003878
danielk19772dec9702007-05-02 16:48:37 +00003879#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003880 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003881 ** has not been allocated, allocate it now. The array is sized at
3882 ** one entry for each overflow page in the overflow chain. The
3883 ** page number of the first overflow page is stored in aOverflow[0],
3884 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3885 ** (the cache is lazily populated).
3886 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003887 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003888 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003889 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003890 /* nOvfl is always positive. If it were zero, fetchPayload would have
3891 ** been used instead of this routine. */
3892 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003893 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003894 }
3895 }
danielk1977da107192007-05-04 08:32:13 +00003896
3897 /* If the overflow page-list cache has been allocated and the
3898 ** entry for the first required overflow page is valid, skip
3899 ** directly to it.
3900 */
danielk19772dec9702007-05-02 16:48:37 +00003901 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3902 iIdx = (offset/ovflSize);
3903 nextPage = pCur->aOverflow[iIdx];
3904 offset = (offset%ovflSize);
3905 }
3906#endif
danielk1977da107192007-05-04 08:32:13 +00003907
3908 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3909
3910#ifndef SQLITE_OMIT_INCRBLOB
3911 /* If required, populate the overflow page-list cache. */
3912 if( pCur->aOverflow ){
3913 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3914 pCur->aOverflow[iIdx] = nextPage;
3915 }
3916#endif
3917
danielk1977d04417962007-05-02 13:16:30 +00003918 if( offset>=ovflSize ){
3919 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003920 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003921 ** data is not required. So first try to lookup the overflow
3922 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003923 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003924 */
danielk19772dec9702007-05-02 16:48:37 +00003925#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003926 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3927 nextPage = pCur->aOverflow[iIdx+1];
3928 } else
danielk19772dec9702007-05-02 16:48:37 +00003929#endif
danielk1977da107192007-05-04 08:32:13 +00003930 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003931 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003932 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003933 /* Need to read this page properly. It contains some of the
3934 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003935 */
3936 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003937 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003938 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003939 if( rc==SQLITE_OK ){
3940 aPayload = sqlite3PagerGetData(pDbPage);
3941 nextPage = get4byte(aPayload);
3942 if( a + offset > ovflSize ){
3943 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003944 }
danielk1977da107192007-05-04 08:32:13 +00003945 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3946 sqlite3PagerUnref(pDbPage);
3947 offset = 0;
3948 amt -= a;
3949 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003950 }
danielk1977cfe9a692004-06-16 12:00:29 +00003951 }
drh2af926b2001-05-15 00:39:25 +00003952 }
drh2af926b2001-05-15 00:39:25 +00003953 }
danielk1977cfe9a692004-06-16 12:00:29 +00003954
danielk1977da107192007-05-04 08:32:13 +00003955 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003956 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003957 }
danielk1977da107192007-05-04 08:32:13 +00003958 return rc;
drh2af926b2001-05-15 00:39:25 +00003959}
3960
drh72f82862001-05-24 21:06:34 +00003961/*
drh3aac2dd2004-04-26 14:10:20 +00003962** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003963** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003964** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003965**
drh5d1a8722009-07-22 18:07:40 +00003966** The caller must ensure that pCur is pointing to a valid row
3967** in the table.
3968**
drh3aac2dd2004-04-26 14:10:20 +00003969** Return SQLITE_OK on success or an error code if anything goes
3970** wrong. An error is returned if "offset+amt" is larger than
3971** the available payload.
drh72f82862001-05-24 21:06:34 +00003972*/
drha34b6762004-05-07 13:30:42 +00003973int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003974 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003975 assert( pCur->eState==CURSOR_VALID );
3976 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3977 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3978 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003979}
3980
3981/*
drh3aac2dd2004-04-26 14:10:20 +00003982** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003983** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003984** begins at "offset".
3985**
3986** Return SQLITE_OK on success or an error code if anything goes
3987** wrong. An error is returned if "offset+amt" is larger than
3988** the available payload.
drh72f82862001-05-24 21:06:34 +00003989*/
drh3aac2dd2004-04-26 14:10:20 +00003990int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003991 int rc;
3992
danielk19773588ceb2008-06-10 17:30:26 +00003993#ifndef SQLITE_OMIT_INCRBLOB
3994 if ( pCur->eState==CURSOR_INVALID ){
3995 return SQLITE_ABORT;
3996 }
3997#endif
3998
drh1fee73e2007-08-29 04:00:57 +00003999 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004000 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004001 if( rc==SQLITE_OK ){
4002 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004003 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4004 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004005 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004006 }
4007 return rc;
drh2af926b2001-05-15 00:39:25 +00004008}
4009
drh72f82862001-05-24 21:06:34 +00004010/*
drh0e1c19e2004-05-11 00:58:56 +00004011** Return a pointer to payload information from the entry that the
4012** pCur cursor is pointing to. The pointer is to the beginning of
4013** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004014** skipKey==1. The number of bytes of available key/data is written
4015** into *pAmt. If *pAmt==0, then the value returned will not be
4016** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004017**
4018** This routine is an optimization. It is common for the entire key
4019** and data to fit on the local page and for there to be no overflow
4020** pages. When that is so, this routine can be used to access the
4021** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004022** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004023** the key/data and copy it into a preallocated buffer.
4024**
4025** The pointer returned by this routine looks directly into the cached
4026** page of the database. The data might change or move the next time
4027** any btree routine is called.
4028*/
4029static const unsigned char *fetchPayload(
4030 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004031 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004032 int skipKey /* read beginning at data if this is true */
4033){
4034 unsigned char *aPayload;
4035 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004036 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004037 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004038
danielk197771d5d2c2008-09-29 11:49:47 +00004039 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004040 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004041 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004042 pPage = pCur->apPage[pCur->iPage];
4043 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004044 if( NEVER(pCur->info.nSize==0) ){
4045 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4046 &pCur->info);
4047 }
drh43605152004-05-29 21:46:49 +00004048 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004049 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004050 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004051 nKey = 0;
4052 }else{
drhf49661a2008-12-10 16:45:50 +00004053 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004054 }
drh0e1c19e2004-05-11 00:58:56 +00004055 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004056 aPayload += nKey;
4057 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004058 }else{
drhfa1a98a2004-05-14 19:08:17 +00004059 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004060 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004061 }
drhe51c44f2004-05-30 20:46:09 +00004062 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004063 return aPayload;
4064}
4065
4066
4067/*
drhe51c44f2004-05-30 20:46:09 +00004068** For the entry that cursor pCur is point to, return as
4069** many bytes of the key or data as are available on the local
4070** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004071**
4072** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004073** or be destroyed on the next call to any Btree routine,
4074** including calls from other threads against the same cache.
4075** Hence, a mutex on the BtShared should be held prior to calling
4076** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004077**
4078** These routines is used to get quick access to key and data
4079** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004080*/
drhe51c44f2004-05-30 20:46:09 +00004081const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004082 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004083 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004084 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004085 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4086 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004087 }
drhfe3313f2009-07-21 19:02:20 +00004088 return p;
drh0e1c19e2004-05-11 00:58:56 +00004089}
drhe51c44f2004-05-30 20:46:09 +00004090const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004091 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004092 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004093 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004094 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4095 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004096 }
drhfe3313f2009-07-21 19:02:20 +00004097 return p;
drh0e1c19e2004-05-11 00:58:56 +00004098}
4099
4100
4101/*
drh8178a752003-01-05 21:41:40 +00004102** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004103** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004104**
4105** This function returns SQLITE_CORRUPT if the page-header flags field of
4106** the new child page does not match the flags field of the parent (i.e.
4107** if an intkey page appears to be the parent of a non-intkey page, or
4108** vice-versa).
drh72f82862001-05-24 21:06:34 +00004109*/
drh3aac2dd2004-04-26 14:10:20 +00004110static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004111 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004112 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004113 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004114 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004115
drh1fee73e2007-08-29 04:00:57 +00004116 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004117 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004118 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4119 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4120 return SQLITE_CORRUPT_BKPT;
4121 }
4122 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004123 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004124 pCur->apPage[i+1] = pNewPage;
4125 pCur->aiIdx[i+1] = 0;
4126 pCur->iPage++;
4127
drh271efa52004-05-30 19:19:05 +00004128 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004129 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004130 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004131 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004132 }
drh72f82862001-05-24 21:06:34 +00004133 return SQLITE_OK;
4134}
4135
danielk1977bf93c562008-09-29 15:53:25 +00004136#ifndef NDEBUG
4137/*
4138** Page pParent is an internal (non-leaf) tree page. This function
4139** asserts that page number iChild is the left-child if the iIdx'th
4140** cell in page pParent. Or, if iIdx is equal to the total number of
4141** cells in pParent, that page number iChild is the right-child of
4142** the page.
4143*/
4144static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4145 assert( iIdx<=pParent->nCell );
4146 if( iIdx==pParent->nCell ){
4147 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4148 }else{
4149 assert( get4byte(findCell(pParent, iIdx))==iChild );
4150 }
4151}
4152#else
4153# define assertParentIndex(x,y,z)
4154#endif
4155
drh72f82862001-05-24 21:06:34 +00004156/*
drh5e2f8b92001-05-28 00:41:15 +00004157** Move the cursor up to the parent page.
4158**
4159** pCur->idx is set to the cell index that contains the pointer
4160** to the page we are coming from. If we are coming from the
4161** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004162** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004163*/
danielk197730548662009-07-09 05:07:37 +00004164static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004165 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004166 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004167 assert( pCur->iPage>0 );
4168 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004169 assertParentIndex(
4170 pCur->apPage[pCur->iPage-1],
4171 pCur->aiIdx[pCur->iPage-1],
4172 pCur->apPage[pCur->iPage]->pgno
4173 );
danielk197771d5d2c2008-09-29 11:49:47 +00004174 releasePage(pCur->apPage[pCur->iPage]);
4175 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004176 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004177 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004178}
4179
4180/*
danielk19778f880a82009-07-13 09:41:45 +00004181** Move the cursor to point to the root page of its b-tree structure.
4182**
4183** If the table has a virtual root page, then the cursor is moved to point
4184** to the virtual root page instead of the actual root page. A table has a
4185** virtual root page when the actual root page contains no cells and a
4186** single child page. This can only happen with the table rooted at page 1.
4187**
4188** If the b-tree structure is empty, the cursor state is set to
4189** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4190** cell located on the root (or virtual root) page and the cursor state
4191** is set to CURSOR_VALID.
4192**
4193** If this function returns successfully, it may be assumed that the
4194** page-header flags indicate that the [virtual] root-page is the expected
4195** kind of b-tree page (i.e. if when opening the cursor the caller did not
4196** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4197** indicating a table b-tree, or if the caller did specify a KeyInfo
4198** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4199** b-tree).
drh72f82862001-05-24 21:06:34 +00004200*/
drh5e2f8b92001-05-28 00:41:15 +00004201static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004202 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004203 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004204 Btree *p = pCur->pBtree;
4205 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004206
drh1fee73e2007-08-29 04:00:57 +00004207 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004208 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4209 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4210 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4211 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4212 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004213 assert( pCur->skipNext!=SQLITE_OK );
4214 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004215 }
danielk1977be51a652008-10-08 17:58:48 +00004216 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004217 }
danielk197771d5d2c2008-09-29 11:49:47 +00004218
4219 if( pCur->iPage>=0 ){
4220 int i;
4221 for(i=1; i<=pCur->iPage; i++){
4222 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004223 }
danielk1977172114a2009-07-07 15:47:12 +00004224 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004225 }else{
drh4c301aa2009-07-15 17:25:45 +00004226 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4227 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004228 pCur->eState = CURSOR_INVALID;
4229 return rc;
4230 }
danielk1977172114a2009-07-07 15:47:12 +00004231 pCur->iPage = 0;
4232
4233 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4234 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4235 ** NULL, the caller expects a table b-tree. If this is not the case,
4236 ** return an SQLITE_CORRUPT error. */
4237 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4238 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4239 return SQLITE_CORRUPT_BKPT;
4240 }
drhc39e0002004-05-07 23:50:57 +00004241 }
danielk197771d5d2c2008-09-29 11:49:47 +00004242
danielk19778f880a82009-07-13 09:41:45 +00004243 /* Assert that the root page is of the correct type. This must be the
4244 ** case as the call to this function that loaded the root-page (either
4245 ** this call or a previous invocation) would have detected corruption
4246 ** if the assumption were not true, and it is not possible for the flags
4247 ** byte to have been modified while this cursor is holding a reference
4248 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004249 pRoot = pCur->apPage[0];
4250 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004251 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4252
danielk197771d5d2c2008-09-29 11:49:47 +00004253 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004254 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004255 pCur->atLast = 0;
4256 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004257
drh8856d6a2004-04-29 14:42:46 +00004258 if( pRoot->nCell==0 && !pRoot->leaf ){
4259 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004260 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004261 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004262 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004263 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004264 }else{
4265 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004266 }
4267 return rc;
drh72f82862001-05-24 21:06:34 +00004268}
drh2af926b2001-05-15 00:39:25 +00004269
drh5e2f8b92001-05-28 00:41:15 +00004270/*
4271** Move the cursor down to the left-most leaf entry beneath the
4272** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004273**
4274** The left-most leaf is the one with the smallest key - the first
4275** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004276*/
4277static int moveToLeftmost(BtCursor *pCur){
4278 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004279 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004280 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004281
drh1fee73e2007-08-29 04:00:57 +00004282 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004283 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004284 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4285 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4286 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004287 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004288 }
drhd677b3d2007-08-20 22:48:41 +00004289 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004290}
4291
drh2dcc9aa2002-12-04 13:40:25 +00004292/*
4293** Move the cursor down to the right-most leaf entry beneath the
4294** page to which it is currently pointing. Notice the difference
4295** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4296** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4297** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004298**
4299** The right-most entry is the one with the largest key - the last
4300** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004301*/
4302static int moveToRightmost(BtCursor *pCur){
4303 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004304 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004305 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004306
drh1fee73e2007-08-29 04:00:57 +00004307 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004308 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004309 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004310 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004311 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004312 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004313 }
drhd677b3d2007-08-20 22:48:41 +00004314 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004315 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004316 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004317 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004318 }
danielk1977518002e2008-09-05 05:02:46 +00004319 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004320}
4321
drh5e00f6c2001-09-13 13:46:56 +00004322/* Move the cursor to the first entry in the table. Return SQLITE_OK
4323** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004324** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004325*/
drh3aac2dd2004-04-26 14:10:20 +00004326int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004327 int rc;
drhd677b3d2007-08-20 22:48:41 +00004328
drh1fee73e2007-08-29 04:00:57 +00004329 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004330 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004331 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004332 if( rc==SQLITE_OK ){
4333 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004334 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004335 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004336 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004337 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004338 *pRes = 0;
4339 rc = moveToLeftmost(pCur);
4340 }
drh5e00f6c2001-09-13 13:46:56 +00004341 }
drh5e00f6c2001-09-13 13:46:56 +00004342 return rc;
4343}
drh5e2f8b92001-05-28 00:41:15 +00004344
drh9562b552002-02-19 15:00:07 +00004345/* Move the cursor to the last entry in the table. Return SQLITE_OK
4346** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004347** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004348*/
drh3aac2dd2004-04-26 14:10:20 +00004349int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004350 int rc;
drhd677b3d2007-08-20 22:48:41 +00004351
drh1fee73e2007-08-29 04:00:57 +00004352 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004353 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004354
4355 /* If the cursor already points to the last entry, this is a no-op. */
4356 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4357#ifdef SQLITE_DEBUG
4358 /* This block serves to assert() that the cursor really does point
4359 ** to the last entry in the b-tree. */
4360 int ii;
4361 for(ii=0; ii<pCur->iPage; ii++){
4362 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4363 }
4364 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4365 assert( pCur->apPage[pCur->iPage]->leaf );
4366#endif
4367 return SQLITE_OK;
4368 }
4369
drh9562b552002-02-19 15:00:07 +00004370 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004371 if( rc==SQLITE_OK ){
4372 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004373 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004374 *pRes = 1;
4375 }else{
4376 assert( pCur->eState==CURSOR_VALID );
4377 *pRes = 0;
4378 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004379 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004380 }
drh9562b552002-02-19 15:00:07 +00004381 }
drh9562b552002-02-19 15:00:07 +00004382 return rc;
4383}
4384
drhe14006d2008-03-25 17:23:32 +00004385/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004386** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004387**
drhe63d9992008-08-13 19:11:48 +00004388** For INTKEY tables, the intKey parameter is used. pIdxKey
4389** must be NULL. For index tables, pIdxKey is used and intKey
4390** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004391**
drh5e2f8b92001-05-28 00:41:15 +00004392** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004393** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004394** were present. The cursor might point to an entry that comes
4395** before or after the key.
4396**
drh64022502009-01-09 14:11:04 +00004397** An integer is written into *pRes which is the result of
4398** comparing the key with the entry to which the cursor is
4399** pointing. The meaning of the integer written into
4400** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004401**
4402** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004403** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004404** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004405**
4406** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004407** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004408**
4409** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004410** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004411**
drha059ad02001-04-17 20:09:11 +00004412*/
drhe63d9992008-08-13 19:11:48 +00004413int sqlite3BtreeMovetoUnpacked(
4414 BtCursor *pCur, /* The cursor to be moved */
4415 UnpackedRecord *pIdxKey, /* Unpacked index key */
4416 i64 intKey, /* The table key */
4417 int biasRight, /* If true, bias the search to the high end */
4418 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004419){
drh72f82862001-05-24 21:06:34 +00004420 int rc;
drhd677b3d2007-08-20 22:48:41 +00004421
drh1fee73e2007-08-29 04:00:57 +00004422 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004423 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004424 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004425 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004426
4427 /* If the cursor is already positioned at the point we are trying
4428 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004429 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4430 && pCur->apPage[0]->intKey
4431 ){
drhe63d9992008-08-13 19:11:48 +00004432 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004433 *pRes = 0;
4434 return SQLITE_OK;
4435 }
drhe63d9992008-08-13 19:11:48 +00004436 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004437 *pRes = -1;
4438 return SQLITE_OK;
4439 }
4440 }
4441
drh5e2f8b92001-05-28 00:41:15 +00004442 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004443 if( rc ){
4444 return rc;
4445 }
danielk197771d5d2c2008-09-29 11:49:47 +00004446 assert( pCur->apPage[pCur->iPage] );
4447 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004448 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004449 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004450 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004451 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004452 return SQLITE_OK;
4453 }
danielk197771d5d2c2008-09-29 11:49:47 +00004454 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004455 for(;;){
drhafb98172011-06-04 01:43:53 +00004456 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004457 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004458 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004459 int c;
4460
4461 /* pPage->nCell must be greater than zero. If this is the root-page
4462 ** the cursor would have been INVALID above and this for(;;) loop
4463 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004464 ** would have already detected db corruption. Similarly, pPage must
4465 ** be the right kind (index or table) of b-tree page. Otherwise
4466 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004467 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004468 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004469 lwr = 0;
4470 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004471 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004472 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004473 }else{
drhafb98172011-06-04 01:43:53 +00004474 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004475 }
drh64022502009-01-09 14:11:04 +00004476 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004477 u8 *pCell; /* Pointer to current cell in pPage */
4478
drhafb98172011-06-04 01:43:53 +00004479 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004480 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004481 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004482 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004483 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004484 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004485 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004486 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004487 }
drha2c20e42008-03-29 16:01:04 +00004488 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004489 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004490 c = 0;
drhe63d9992008-08-13 19:11:48 +00004491 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004492 c = -1;
4493 }else{
drhe63d9992008-08-13 19:11:48 +00004494 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004495 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004496 }
danielk197711c327a2009-05-04 19:01:26 +00004497 pCur->validNKey = 1;
4498 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004499 }else{
drhb2eced52010-08-12 02:41:12 +00004500 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004501 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004502 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004503 ** varint. This information is used to attempt to avoid parsing
4504 ** the entire cell by checking for the cases where the record is
4505 ** stored entirely within the b-tree page by inspecting the first
4506 ** 2 bytes of the cell.
4507 */
4508 int nCell = pCell[0];
4509 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4510 /* This branch runs if the record-size field of the cell is a
4511 ** single byte varint and the record fits entirely on the main
4512 ** b-tree page. */
4513 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4514 }else if( !(pCell[1] & 0x80)
4515 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4516 ){
4517 /* The record-size field is a 2 byte varint and the record
4518 ** fits entirely on the main b-tree page. */
4519 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004520 }else{
danielk197711c327a2009-05-04 19:01:26 +00004521 /* The record flows over onto one or more overflow pages. In
4522 ** this case the whole cell needs to be parsed, a buffer allocated
4523 ** and accessPayload() used to retrieve the record into the
4524 ** buffer before VdbeRecordCompare() can be called. */
4525 void *pCellKey;
4526 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004527 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004528 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004529 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004530 if( pCellKey==0 ){
4531 rc = SQLITE_NOMEM;
4532 goto moveto_finish;
4533 }
drhfb192682009-07-11 18:26:28 +00004534 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004535 if( rc ){
4536 sqlite3_free(pCellKey);
4537 goto moveto_finish;
4538 }
danielk197711c327a2009-05-04 19:01:26 +00004539 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004540 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004541 }
drh3aac2dd2004-04-26 14:10:20 +00004542 }
drh72f82862001-05-24 21:06:34 +00004543 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004544 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004545 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004546 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004547 break;
4548 }else{
drh64022502009-01-09 14:11:04 +00004549 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004550 rc = SQLITE_OK;
4551 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004552 }
drh72f82862001-05-24 21:06:34 +00004553 }
4554 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004555 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004556 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004557 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004558 }
drhf1d68b32007-03-29 04:43:26 +00004559 if( lwr>upr ){
4560 break;
4561 }
drhafb98172011-06-04 01:43:53 +00004562 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004563 }
4564 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004565 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004566 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004567 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004568 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004569 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004570 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004571 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004572 }
4573 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004574 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004575 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004576 rc = SQLITE_OK;
4577 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004578 }
drhf49661a2008-12-10 16:45:50 +00004579 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004580 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004581 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004582 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004583 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004584 }
drh1e968a02008-03-25 00:22:21 +00004585moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004586 return rc;
4587}
4588
drhd677b3d2007-08-20 22:48:41 +00004589
drh72f82862001-05-24 21:06:34 +00004590/*
drhc39e0002004-05-07 23:50:57 +00004591** Return TRUE if the cursor is not pointing at an entry of the table.
4592**
4593** TRUE will be returned after a call to sqlite3BtreeNext() moves
4594** past the last entry in the table or sqlite3BtreePrev() moves past
4595** the first entry. TRUE is also returned if the table is empty.
4596*/
4597int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004598 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4599 ** have been deleted? This API will need to change to return an error code
4600 ** as well as the boolean result value.
4601 */
4602 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004603}
4604
4605/*
drhbd03cae2001-06-02 02:40:57 +00004606** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004607** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004608** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004609** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004610*/
drhd094db12008-04-03 21:46:57 +00004611int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004612 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004613 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004614 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004615
drh1fee73e2007-08-29 04:00:57 +00004616 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004617 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004618 if( rc!=SQLITE_OK ){
4619 return rc;
4620 }
drh8c4d3a62007-04-06 01:03:32 +00004621 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004622 if( CURSOR_INVALID==pCur->eState ){
4623 *pRes = 1;
4624 return SQLITE_OK;
4625 }
drh4c301aa2009-07-15 17:25:45 +00004626 if( pCur->skipNext>0 ){
4627 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004628 *pRes = 0;
4629 return SQLITE_OK;
4630 }
drh4c301aa2009-07-15 17:25:45 +00004631 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004632
danielk197771d5d2c2008-09-29 11:49:47 +00004633 pPage = pCur->apPage[pCur->iPage];
4634 idx = ++pCur->aiIdx[pCur->iPage];
4635 assert( pPage->isInit );
4636 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004637
drh271efa52004-05-30 19:19:05 +00004638 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004639 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004640 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004641 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004642 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004643 if( rc ) return rc;
4644 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004645 *pRes = 0;
4646 return rc;
drh72f82862001-05-24 21:06:34 +00004647 }
drh5e2f8b92001-05-28 00:41:15 +00004648 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004649 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004650 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004651 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004652 return SQLITE_OK;
4653 }
danielk197730548662009-07-09 05:07:37 +00004654 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004655 pPage = pCur->apPage[pCur->iPage];
4656 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004657 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004658 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004659 rc = sqlite3BtreeNext(pCur, pRes);
4660 }else{
4661 rc = SQLITE_OK;
4662 }
4663 return rc;
drh8178a752003-01-05 21:41:40 +00004664 }
4665 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004666 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004667 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004668 }
drh5e2f8b92001-05-28 00:41:15 +00004669 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004670 return rc;
drh72f82862001-05-24 21:06:34 +00004671}
drhd677b3d2007-08-20 22:48:41 +00004672
drh72f82862001-05-24 21:06:34 +00004673
drh3b7511c2001-05-26 13:15:44 +00004674/*
drh2dcc9aa2002-12-04 13:40:25 +00004675** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004676** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004677** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004678** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004679*/
drhd094db12008-04-03 21:46:57 +00004680int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004681 int rc;
drh8178a752003-01-05 21:41:40 +00004682 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004683
drh1fee73e2007-08-29 04:00:57 +00004684 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004685 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004686 if( rc!=SQLITE_OK ){
4687 return rc;
4688 }
drha2c20e42008-03-29 16:01:04 +00004689 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004690 if( CURSOR_INVALID==pCur->eState ){
4691 *pRes = 1;
4692 return SQLITE_OK;
4693 }
drh4c301aa2009-07-15 17:25:45 +00004694 if( pCur->skipNext<0 ){
4695 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004696 *pRes = 0;
4697 return SQLITE_OK;
4698 }
drh4c301aa2009-07-15 17:25:45 +00004699 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004700
danielk197771d5d2c2008-09-29 11:49:47 +00004701 pPage = pCur->apPage[pCur->iPage];
4702 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004703 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004704 int idx = pCur->aiIdx[pCur->iPage];
4705 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004706 if( rc ){
4707 return rc;
4708 }
drh2dcc9aa2002-12-04 13:40:25 +00004709 rc = moveToRightmost(pCur);
4710 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004711 while( pCur->aiIdx[pCur->iPage]==0 ){
4712 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004713 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004714 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004715 return SQLITE_OK;
4716 }
danielk197730548662009-07-09 05:07:37 +00004717 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004718 }
drh271efa52004-05-30 19:19:05 +00004719 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004720 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004721
4722 pCur->aiIdx[pCur->iPage]--;
4723 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004724 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004725 rc = sqlite3BtreePrevious(pCur, pRes);
4726 }else{
4727 rc = SQLITE_OK;
4728 }
drh2dcc9aa2002-12-04 13:40:25 +00004729 }
drh8178a752003-01-05 21:41:40 +00004730 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004731 return rc;
4732}
4733
4734/*
drh3b7511c2001-05-26 13:15:44 +00004735** Allocate a new page from the database file.
4736**
danielk19773b8a05f2007-03-19 17:44:26 +00004737** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004738** has already been called on the new page.) The new page has also
4739** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004740** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004741**
4742** SQLITE_OK is returned on success. Any other return value indicates
4743** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004744** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004745**
drh199e3cf2002-07-18 11:01:47 +00004746** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4747** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004748** attempt to keep related pages close to each other in the database file,
4749** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004750**
4751** If the "exact" parameter is not 0, and the page-number nearby exists
4752** anywhere on the free-list, then it is guarenteed to be returned. This
4753** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004754*/
drh4f0c5872007-03-26 22:05:01 +00004755static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004756 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004757 MemPage **ppPage,
4758 Pgno *pPgno,
4759 Pgno nearby,
4760 u8 exact
4761){
drh3aac2dd2004-04-26 14:10:20 +00004762 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004763 int rc;
drh35cd6432009-06-05 14:17:21 +00004764 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004765 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004766 MemPage *pTrunk = 0;
4767 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004768 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004769
drh1fee73e2007-08-29 04:00:57 +00004770 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004771 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004772 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004773 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004774 testcase( n==mxPage-1 );
4775 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004776 return SQLITE_CORRUPT_BKPT;
4777 }
drh3aac2dd2004-04-26 14:10:20 +00004778 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004779 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004780 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004781 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4782
4783 /* If the 'exact' parameter was true and a query of the pointer-map
4784 ** shows that the page 'nearby' is somewhere on the free-list, then
4785 ** the entire-list will be searched for that page.
4786 */
4787#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004788 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004789 u8 eType;
4790 assert( nearby>0 );
4791 assert( pBt->autoVacuum );
4792 rc = ptrmapGet(pBt, nearby, &eType, 0);
4793 if( rc ) return rc;
4794 if( eType==PTRMAP_FREEPAGE ){
4795 searchList = 1;
4796 }
4797 *pPgno = nearby;
4798 }
4799#endif
4800
4801 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4802 ** first free-list trunk page. iPrevTrunk is initially 1.
4803 */
danielk19773b8a05f2007-03-19 17:44:26 +00004804 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004805 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004806 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004807
4808 /* The code within this loop is run only once if the 'searchList' variable
4809 ** is not true. Otherwise, it runs once for each trunk-page on the
4810 ** free-list until the page 'nearby' is located.
4811 */
4812 do {
4813 pPrevTrunk = pTrunk;
4814 if( pPrevTrunk ){
4815 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004816 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004817 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004818 }
drhdf35a082009-07-09 02:24:35 +00004819 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004820 if( iTrunk>mxPage ){
4821 rc = SQLITE_CORRUPT_BKPT;
4822 }else{
danielk197730548662009-07-09 05:07:37 +00004823 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004824 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004825 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004826 pTrunk = 0;
4827 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004828 }
4829
drh93b4fc72011-04-07 14:47:01 +00004830 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004831 if( k==0 && !searchList ){
4832 /* The trunk has no leaves and the list is not being searched.
4833 ** So extract the trunk page itself and use it as the newly
4834 ** allocated page */
4835 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004836 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004837 if( rc ){
4838 goto end_allocate_page;
4839 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004840 *pPgno = iTrunk;
4841 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4842 *ppPage = pTrunk;
4843 pTrunk = 0;
4844 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004845 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004846 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004847 rc = SQLITE_CORRUPT_BKPT;
4848 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004849#ifndef SQLITE_OMIT_AUTOVACUUM
4850 }else if( searchList && nearby==iTrunk ){
4851 /* The list is being searched and this trunk page is the page
4852 ** to allocate, regardless of whether it has leaves.
4853 */
4854 assert( *pPgno==iTrunk );
4855 *ppPage = pTrunk;
4856 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004857 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004858 if( rc ){
4859 goto end_allocate_page;
4860 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004861 if( k==0 ){
4862 if( !pPrevTrunk ){
4863 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4864 }else{
danf48c3552010-08-23 15:41:24 +00004865 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
4866 if( rc!=SQLITE_OK ){
4867 goto end_allocate_page;
4868 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004869 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4870 }
4871 }else{
4872 /* The trunk page is required by the caller but it contains
4873 ** pointers to free-list leaves. The first leaf becomes a trunk
4874 ** page in this case.
4875 */
4876 MemPage *pNewTrunk;
4877 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004878 if( iNewTrunk>mxPage ){
4879 rc = SQLITE_CORRUPT_BKPT;
4880 goto end_allocate_page;
4881 }
drhdf35a082009-07-09 02:24:35 +00004882 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004883 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004884 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004885 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004886 }
danielk19773b8a05f2007-03-19 17:44:26 +00004887 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004888 if( rc!=SQLITE_OK ){
4889 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004890 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004891 }
4892 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4893 put4byte(&pNewTrunk->aData[4], k-1);
4894 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004895 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004896 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004897 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004898 put4byte(&pPage1->aData[32], iNewTrunk);
4899 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004900 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004901 if( rc ){
4902 goto end_allocate_page;
4903 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004904 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4905 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004906 }
4907 pTrunk = 0;
4908 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4909#endif
danielk1977e5765212009-06-17 11:13:28 +00004910 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004911 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004912 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004913 Pgno iPage;
4914 unsigned char *aData = pTrunk->aData;
4915 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004916 u32 i;
4917 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004918 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00004919 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004920 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00004921 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004922 if( d2<dist ){
4923 closest = i;
4924 dist = d2;
4925 }
4926 }
4927 }else{
4928 closest = 0;
4929 }
4930
4931 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004932 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004933 if( iPage>mxPage ){
4934 rc = SQLITE_CORRUPT_BKPT;
4935 goto end_allocate_page;
4936 }
drhdf35a082009-07-09 02:24:35 +00004937 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004938 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004939 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004940 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004941 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4942 ": %d more free pages\n",
4943 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00004944 rc = sqlite3PagerWrite(pTrunk->pDbPage);
4945 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004946 if( closest<k-1 ){
4947 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4948 }
4949 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00004950 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004951 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004952 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004953 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004954 if( rc!=SQLITE_OK ){
4955 releasePage(*ppPage);
4956 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004957 }
4958 searchList = 0;
4959 }
drhee696e22004-08-30 16:52:17 +00004960 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004961 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004962 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004963 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004964 }else{
drh3aac2dd2004-04-26 14:10:20 +00004965 /* There are no pages on the freelist, so create a new page at the
4966 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00004967 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4968 if( rc ) return rc;
4969 pBt->nPage++;
4970 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00004971
danielk1977afcdd022004-10-31 16:25:42 +00004972#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00004973 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00004974 /* If *pPgno refers to a pointer-map page, allocate two new pages
4975 ** at the end of the file instead of one. The first allocated page
4976 ** becomes a new pointer-map page, the second is used by the caller.
4977 */
danielk1977ac861692009-03-28 10:54:22 +00004978 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00004979 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4980 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004981 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00004982 if( rc==SQLITE_OK ){
4983 rc = sqlite3PagerWrite(pPg->pDbPage);
4984 releasePage(pPg);
4985 }
4986 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00004987 pBt->nPage++;
4988 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00004989 }
4990#endif
drhdd3cd972010-03-27 17:12:36 +00004991 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4992 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00004993
danielk1977599fcba2004-11-08 07:13:13 +00004994 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004995 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00004996 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004997 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004998 if( rc!=SQLITE_OK ){
4999 releasePage(*ppPage);
5000 }
drh3a4c1412004-05-09 20:40:11 +00005001 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005002 }
danielk1977599fcba2004-11-08 07:13:13 +00005003
5004 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005005
5006end_allocate_page:
5007 releasePage(pTrunk);
5008 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005009 if( rc==SQLITE_OK ){
5010 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5011 releasePage(*ppPage);
5012 return SQLITE_CORRUPT_BKPT;
5013 }
5014 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005015 }else{
5016 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005017 }
drh93b4fc72011-04-07 14:47:01 +00005018 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005019 return rc;
5020}
5021
5022/*
danielk1977bea2a942009-01-20 17:06:27 +00005023** This function is used to add page iPage to the database file free-list.
5024** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005025**
danielk1977bea2a942009-01-20 17:06:27 +00005026** The value passed as the second argument to this function is optional.
5027** If the caller happens to have a pointer to the MemPage object
5028** corresponding to page iPage handy, it may pass it as the second value.
5029** Otherwise, it may pass NULL.
5030**
5031** If a pointer to a MemPage object is passed as the second argument,
5032** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005033*/
danielk1977bea2a942009-01-20 17:06:27 +00005034static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5035 MemPage *pTrunk = 0; /* Free-list trunk page */
5036 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5037 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5038 MemPage *pPage; /* Page being freed. May be NULL. */
5039 int rc; /* Return Code */
5040 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005041
danielk1977bea2a942009-01-20 17:06:27 +00005042 assert( sqlite3_mutex_held(pBt->mutex) );
5043 assert( iPage>1 );
5044 assert( !pMemPage || pMemPage->pgno==iPage );
5045
5046 if( pMemPage ){
5047 pPage = pMemPage;
5048 sqlite3PagerRef(pPage->pDbPage);
5049 }else{
5050 pPage = btreePageLookup(pBt, iPage);
5051 }
drh3aac2dd2004-04-26 14:10:20 +00005052
drha34b6762004-05-07 13:30:42 +00005053 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005054 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005055 if( rc ) goto freepage_out;
5056 nFree = get4byte(&pPage1->aData[36]);
5057 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005058
drh5b47efa2010-02-12 18:18:39 +00005059 if( pBt->secureDelete ){
5060 /* If the secure_delete option is enabled, then
5061 ** always fully overwrite deleted information with zeros.
5062 */
shaneh84f4b2f2010-02-26 01:46:54 +00005063 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5064 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005065 ){
5066 goto freepage_out;
5067 }
5068 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005069 }
drhfcce93f2006-02-22 03:08:32 +00005070
danielk1977687566d2004-11-02 12:56:41 +00005071 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005072 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005073 */
danielk197785d90ca2008-07-19 14:25:15 +00005074 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005075 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005076 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005077 }
danielk1977687566d2004-11-02 12:56:41 +00005078
danielk1977bea2a942009-01-20 17:06:27 +00005079 /* Now manipulate the actual database free-list structure. There are two
5080 ** possibilities. If the free-list is currently empty, or if the first
5081 ** trunk page in the free-list is full, then this page will become a
5082 ** new free-list trunk page. Otherwise, it will become a leaf of the
5083 ** first trunk page in the current free-list. This block tests if it
5084 ** is possible to add the page as a new free-list leaf.
5085 */
5086 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005087 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005088
5089 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005090 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005091 if( rc!=SQLITE_OK ){
5092 goto freepage_out;
5093 }
5094
5095 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005096 assert( pBt->usableSize>32 );
5097 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005098 rc = SQLITE_CORRUPT_BKPT;
5099 goto freepage_out;
5100 }
drheeb844a2009-08-08 18:01:07 +00005101 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005102 /* In this case there is room on the trunk page to insert the page
5103 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005104 **
5105 ** Note that the trunk page is not really full until it contains
5106 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5107 ** coded. But due to a coding error in versions of SQLite prior to
5108 ** 3.6.0, databases with freelist trunk pages holding more than
5109 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5110 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005111 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005112 ** for now. At some point in the future (once everyone has upgraded
5113 ** to 3.6.0 or later) we should consider fixing the conditional above
5114 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5115 */
danielk19773b8a05f2007-03-19 17:44:26 +00005116 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005117 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005118 put4byte(&pTrunk->aData[4], nLeaf+1);
5119 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005120 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005121 sqlite3PagerDontWrite(pPage->pDbPage);
5122 }
danielk1977bea2a942009-01-20 17:06:27 +00005123 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005124 }
drh3a4c1412004-05-09 20:40:11 +00005125 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005126 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005127 }
drh3b7511c2001-05-26 13:15:44 +00005128 }
danielk1977bea2a942009-01-20 17:06:27 +00005129
5130 /* If control flows to this point, then it was not possible to add the
5131 ** the page being freed as a leaf page of the first trunk in the free-list.
5132 ** Possibly because the free-list is empty, or possibly because the
5133 ** first trunk in the free-list is full. Either way, the page being freed
5134 ** will become the new first trunk page in the free-list.
5135 */
drhc046e3e2009-07-15 11:26:44 +00005136 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5137 goto freepage_out;
5138 }
5139 rc = sqlite3PagerWrite(pPage->pDbPage);
5140 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005141 goto freepage_out;
5142 }
5143 put4byte(pPage->aData, iTrunk);
5144 put4byte(&pPage->aData[4], 0);
5145 put4byte(&pPage1->aData[32], iPage);
5146 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5147
5148freepage_out:
5149 if( pPage ){
5150 pPage->isInit = 0;
5151 }
5152 releasePage(pPage);
5153 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005154 return rc;
5155}
drhc314dc72009-07-21 11:52:34 +00005156static void freePage(MemPage *pPage, int *pRC){
5157 if( (*pRC)==SQLITE_OK ){
5158 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5159 }
danielk1977bea2a942009-01-20 17:06:27 +00005160}
drh3b7511c2001-05-26 13:15:44 +00005161
5162/*
drh3aac2dd2004-04-26 14:10:20 +00005163** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005164*/
drh3aac2dd2004-04-26 14:10:20 +00005165static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005166 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005167 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005168 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005169 int rc;
drh94440812007-03-06 11:42:19 +00005170 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005171 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005172
drh1fee73e2007-08-29 04:00:57 +00005173 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005174 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005175 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005176 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005177 }
drh6f11bef2004-05-13 01:12:56 +00005178 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005179 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005180 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005181 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5182 assert( ovflPgno==0 || nOvfl>0 );
5183 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005184 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005185 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005186 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005187 /* 0 is not a legal page number and page 1 cannot be an
5188 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5189 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005190 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005191 }
danielk1977bea2a942009-01-20 17:06:27 +00005192 if( nOvfl ){
5193 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5194 if( rc ) return rc;
5195 }
dan887d4b22010-02-25 12:09:16 +00005196
shaneh1da207e2010-03-09 14:41:12 +00005197 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005198 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5199 ){
5200 /* There is no reason any cursor should have an outstanding reference
5201 ** to an overflow page belonging to a cell that is being deleted/updated.
5202 ** So if there exists more than one reference to this page, then it
5203 ** must not really be an overflow page and the database must be corrupt.
5204 ** It is helpful to detect this before calling freePage2(), as
5205 ** freePage2() may zero the page contents if secure-delete mode is
5206 ** enabled. If this 'overflow' page happens to be a page that the
5207 ** caller is iterating through or using in some other way, this
5208 ** can be problematic.
5209 */
5210 rc = SQLITE_CORRUPT_BKPT;
5211 }else{
5212 rc = freePage2(pBt, pOvfl, ovflPgno);
5213 }
5214
danielk1977bea2a942009-01-20 17:06:27 +00005215 if( pOvfl ){
5216 sqlite3PagerUnref(pOvfl->pDbPage);
5217 }
drh3b7511c2001-05-26 13:15:44 +00005218 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005219 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005220 }
drh5e2f8b92001-05-28 00:41:15 +00005221 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005222}
5223
5224/*
drh91025292004-05-03 19:49:32 +00005225** Create the byte sequence used to represent a cell on page pPage
5226** and write that byte sequence into pCell[]. Overflow pages are
5227** allocated and filled in as necessary. The calling procedure
5228** is responsible for making sure sufficient space has been allocated
5229** for pCell[].
5230**
5231** Note that pCell does not necessary need to point to the pPage->aData
5232** area. pCell might point to some temporary storage. The cell will
5233** be constructed in this temporary area then copied into pPage->aData
5234** later.
drh3b7511c2001-05-26 13:15:44 +00005235*/
5236static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005237 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005238 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005239 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005240 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005241 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005242 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005243){
drh3b7511c2001-05-26 13:15:44 +00005244 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005245 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005246 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005247 int spaceLeft;
5248 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005249 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005250 unsigned char *pPrior;
5251 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005252 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005253 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005254 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005255 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005256
drh1fee73e2007-08-29 04:00:57 +00005257 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005258
drhc5053fb2008-11-27 02:22:10 +00005259 /* pPage is not necessarily writeable since pCell might be auxiliary
5260 ** buffer space that is separate from the pPage buffer area */
5261 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5262 || sqlite3PagerIswriteable(pPage->pDbPage) );
5263
drh91025292004-05-03 19:49:32 +00005264 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005265 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005266 if( !pPage->leaf ){
5267 nHeader += 4;
5268 }
drh8b18dd42004-05-12 19:18:15 +00005269 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005270 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005271 }else{
drhb026e052007-05-02 01:34:31 +00005272 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005273 }
drh6f11bef2004-05-13 01:12:56 +00005274 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005275 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005276 assert( info.nHeader==nHeader );
5277 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005278 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005279
5280 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005281 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005282 if( pPage->intKey ){
5283 pSrc = pData;
5284 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005285 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005286 }else{
danielk197731d31b82009-07-13 13:18:07 +00005287 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5288 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005289 }
drhf49661a2008-12-10 16:45:50 +00005290 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005291 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005292 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005293 }
drh6f11bef2004-05-13 01:12:56 +00005294 *pnSize = info.nSize;
5295 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005296 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005297 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005298
drh3b7511c2001-05-26 13:15:44 +00005299 while( nPayload>0 ){
5300 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005301#ifndef SQLITE_OMIT_AUTOVACUUM
5302 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005303 if( pBt->autoVacuum ){
5304 do{
5305 pgnoOvfl++;
5306 } while(
5307 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5308 );
danielk1977b39f70b2007-05-17 18:28:11 +00005309 }
danielk1977afcdd022004-10-31 16:25:42 +00005310#endif
drhf49661a2008-12-10 16:45:50 +00005311 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005312#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005313 /* If the database supports auto-vacuum, and the second or subsequent
5314 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005315 ** for that page now.
5316 **
5317 ** If this is the first overflow page, then write a partial entry
5318 ** to the pointer-map. If we write nothing to this pointer-map slot,
5319 ** then the optimistic overflow chain processing in clearCell()
5320 ** may misinterpret the uninitialised values and delete the
5321 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005322 */
danielk19774ef24492007-05-23 09:52:41 +00005323 if( pBt->autoVacuum && rc==SQLITE_OK ){
5324 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005325 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005326 if( rc ){
5327 releasePage(pOvfl);
5328 }
danielk1977afcdd022004-10-31 16:25:42 +00005329 }
5330#endif
drh3b7511c2001-05-26 13:15:44 +00005331 if( rc ){
drh9b171272004-05-08 02:03:22 +00005332 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005333 return rc;
5334 }
drhc5053fb2008-11-27 02:22:10 +00005335
5336 /* If pToRelease is not zero than pPrior points into the data area
5337 ** of pToRelease. Make sure pToRelease is still writeable. */
5338 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5339
5340 /* If pPrior is part of the data area of pPage, then make sure pPage
5341 ** is still writeable */
5342 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5343 || sqlite3PagerIswriteable(pPage->pDbPage) );
5344
drh3aac2dd2004-04-26 14:10:20 +00005345 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005346 releasePage(pToRelease);
5347 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005348 pPrior = pOvfl->aData;
5349 put4byte(pPrior, 0);
5350 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005351 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005352 }
5353 n = nPayload;
5354 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005355
5356 /* If pToRelease is not zero than pPayload points into the data area
5357 ** of pToRelease. Make sure pToRelease is still writeable. */
5358 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5359
5360 /* If pPayload is part of the data area of pPage, then make sure pPage
5361 ** is still writeable */
5362 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5363 || sqlite3PagerIswriteable(pPage->pDbPage) );
5364
drhb026e052007-05-02 01:34:31 +00005365 if( nSrc>0 ){
5366 if( n>nSrc ) n = nSrc;
5367 assert( pSrc );
5368 memcpy(pPayload, pSrc, n);
5369 }else{
5370 memset(pPayload, 0, n);
5371 }
drh3b7511c2001-05-26 13:15:44 +00005372 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005373 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005374 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005375 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005376 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005377 if( nSrc==0 ){
5378 nSrc = nData;
5379 pSrc = pData;
5380 }
drhdd793422001-06-28 01:54:48 +00005381 }
drh9b171272004-05-08 02:03:22 +00005382 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005383 return SQLITE_OK;
5384}
5385
drh14acc042001-06-10 19:56:58 +00005386/*
5387** Remove the i-th cell from pPage. This routine effects pPage only.
5388** The cell content is not freed or deallocated. It is assumed that
5389** the cell content has been copied someplace else. This routine just
5390** removes the reference to the cell from pPage.
5391**
5392** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005393*/
drh98add2e2009-07-20 17:11:49 +00005394static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005395 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005396 u8 *data; /* pPage->aData */
5397 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005398 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005399 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005400 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005401
drh98add2e2009-07-20 17:11:49 +00005402 if( *pRC ) return;
5403
drh8c42ca92001-06-22 19:15:00 +00005404 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005405 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005406 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005407 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005408 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005409 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005410 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005411 hdr = pPage->hdrOffset;
5412 testcase( pc==get2byte(&data[hdr+5]) );
5413 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005414 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005415 *pRC = SQLITE_CORRUPT_BKPT;
5416 return;
shane0af3f892008-11-12 04:55:34 +00005417 }
shanedcc50b72008-11-13 18:29:50 +00005418 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005419 if( rc ){
5420 *pRC = rc;
5421 return;
shanedcc50b72008-11-13 18:29:50 +00005422 }
drhc3f1d5f2011-05-30 23:42:16 +00005423 endPtr = &data[pPage->cellOffset + 2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005424 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005425 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005426 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005427 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005428 }
5429 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005430 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005431 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005432}
5433
5434/*
5435** Insert a new cell on pPage at cell index "i". pCell points to the
5436** content of the cell.
5437**
5438** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005439** will not fit, then make a copy of the cell content into pTemp if
5440** pTemp is not null. Regardless of pTemp, allocate a new entry
5441** in pPage->aOvfl[] and make it point to the cell content (either
5442** in pTemp or the original pCell) and also record its index.
5443** Allocating a new entry in pPage->aCell[] implies that
5444** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005445**
5446** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5447** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005448** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005449** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005450*/
drh98add2e2009-07-20 17:11:49 +00005451static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005452 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005453 int i, /* New cell becomes the i-th cell of the page */
5454 u8 *pCell, /* Content of the new cell */
5455 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005456 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005457 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5458 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005459){
drh383d30f2010-02-26 13:07:37 +00005460 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005461 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005462 int end; /* First byte past the last cell pointer in data[] */
5463 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005464 int cellOffset; /* Address of first cell pointer in data[] */
5465 u8 *data; /* The content of the whole page */
5466 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005467 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005468
danielk19774dbaa892009-06-16 16:50:22 +00005469 int nSkip = (iChild ? 4 : 0);
5470
drh98add2e2009-07-20 17:11:49 +00005471 if( *pRC ) return;
5472
drh43605152004-05-29 21:46:49 +00005473 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005474 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drhf49661a2008-12-10 16:45:50 +00005475 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005476 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005477 /* The cell should normally be sized correctly. However, when moving a
5478 ** malformed cell from a leaf page to an interior page, if the cell size
5479 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5480 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5481 ** the term after the || in the following assert(). */
5482 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005483 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005484 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005485 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005486 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005487 }
danielk19774dbaa892009-06-16 16:50:22 +00005488 if( iChild ){
5489 put4byte(pCell, iChild);
5490 }
drh43605152004-05-29 21:46:49 +00005491 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005492 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005493 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005494 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005495 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005496 int rc = sqlite3PagerWrite(pPage->pDbPage);
5497 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005498 *pRC = rc;
5499 return;
danielk19776e465eb2007-08-21 13:11:00 +00005500 }
5501 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005502 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005503 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005504 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005505 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005506 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005507 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005508 /* The allocateSpace() routine guarantees the following two properties
5509 ** if it returns success */
5510 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005511 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005512 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005513 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005514 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005515 if( iChild ){
5516 put4byte(&data[idx], iChild);
5517 }
drh61d2fe92011-06-03 23:28:33 +00005518 ptr = &data[end];
5519 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005520 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005521 while( ptr>endPtr ){
5522 *(u16*)ptr = *(u16*)&ptr[-2];
5523 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005524 }
drh43605152004-05-29 21:46:49 +00005525 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005526 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005527#ifndef SQLITE_OMIT_AUTOVACUUM
5528 if( pPage->pBt->autoVacuum ){
5529 /* The cell may contain a pointer to an overflow page. If so, write
5530 ** the entry for the overflow page into the pointer map.
5531 */
drh98add2e2009-07-20 17:11:49 +00005532 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005533 }
5534#endif
drh14acc042001-06-10 19:56:58 +00005535 }
5536}
5537
5538/*
drhfa1a98a2004-05-14 19:08:17 +00005539** Add a list of cells to a page. The page should be initially empty.
5540** The cells are guaranteed to fit on the page.
5541*/
5542static void assemblePage(
5543 MemPage *pPage, /* The page to be assemblied */
5544 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005545 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005546 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005547){
5548 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005549 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005550 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005551 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5552 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5553 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005554
drh43605152004-05-29 21:46:49 +00005555 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005556 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005557 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5558 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005559 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005560
5561 /* Check that the page has just been zeroed by zeroPage() */
5562 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005563 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005564
5565 pCellptr = &data[pPage->cellOffset + nCell*2];
5566 cellbody = nUsable;
5567 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005568 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005569 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005570 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005571 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005572 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005573 }
danielk1977fad91942009-04-29 17:49:59 +00005574 put2byte(&data[hdr+3], nCell);
5575 put2byte(&data[hdr+5], cellbody);
5576 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005577 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005578}
5579
drh14acc042001-06-10 19:56:58 +00005580/*
drhc3b70572003-01-04 19:44:07 +00005581** The following parameters determine how many adjacent pages get involved
5582** in a balancing operation. NN is the number of neighbors on either side
5583** of the page that participate in the balancing operation. NB is the
5584** total number of pages that participate, including the target page and
5585** NN neighbors on either side.
5586**
5587** The minimum value of NN is 1 (of course). Increasing NN above 1
5588** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5589** in exchange for a larger degradation in INSERT and UPDATE performance.
5590** The value of NN appears to give the best results overall.
5591*/
5592#define NN 1 /* Number of neighbors on either side of pPage */
5593#define NB (NN*2+1) /* Total pages involved in the balance */
5594
danielk1977ac245ec2005-01-14 13:50:11 +00005595
drh615ae552005-01-16 23:21:00 +00005596#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005597/*
5598** This version of balance() handles the common special case where
5599** a new entry is being inserted on the extreme right-end of the
5600** tree, in other words, when the new entry will become the largest
5601** entry in the tree.
5602**
drhc314dc72009-07-21 11:52:34 +00005603** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005604** a new page to the right-hand side and put the one new entry in
5605** that page. This leaves the right side of the tree somewhat
5606** unbalanced. But odds are that we will be inserting new entries
5607** at the end soon afterwards so the nearly empty page will quickly
5608** fill up. On average.
5609**
5610** pPage is the leaf page which is the right-most page in the tree.
5611** pParent is its parent. pPage must have a single overflow entry
5612** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005613**
5614** The pSpace buffer is used to store a temporary copy of the divider
5615** cell that will be inserted into pParent. Such a cell consists of a 4
5616** byte page number followed by a variable length integer. In other
5617** words, at most 13 bytes. Hence the pSpace buffer must be at
5618** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005619*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005620static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5621 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005622 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005623 int rc; /* Return Code */
5624 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005625
drh1fee73e2007-08-29 04:00:57 +00005626 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005627 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005628 assert( pPage->nOverflow==1 );
5629
drh5d433ce2010-08-14 16:02:52 +00005630 /* This error condition is now caught prior to reaching this function */
drh6b47fca2010-08-19 14:22:42 +00005631 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005632
danielk1977a50d9aa2009-06-08 14:49:45 +00005633 /* Allocate a new page. This page will become the right-sibling of
5634 ** pPage. Make the parent page writable, so that the new divider cell
5635 ** may be inserted. If both these operations are successful, proceed.
5636 */
drh4f0c5872007-03-26 22:05:01 +00005637 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005638
danielk1977eaa06f62008-09-18 17:34:44 +00005639 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005640
5641 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005642 u8 *pCell = pPage->aOvfl[0].pCell;
5643 u16 szCell = cellSizePtr(pPage, pCell);
5644 u8 *pStop;
5645
drhc5053fb2008-11-27 02:22:10 +00005646 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005647 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5648 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005649 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005650
5651 /* If this is an auto-vacuum database, update the pointer map
5652 ** with entries for the new page, and any pointer from the
5653 ** cell on the page to an overflow page. If either of these
5654 ** operations fails, the return code is set, but the contents
5655 ** of the parent page are still manipulated by thh code below.
5656 ** That is Ok, at this point the parent page is guaranteed to
5657 ** be marked as dirty. Returning an error code will cause a
5658 ** rollback, undoing any changes made to the parent page.
5659 */
5660 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005661 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5662 if( szCell>pNew->minLocal ){
5663 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005664 }
5665 }
danielk1977eaa06f62008-09-18 17:34:44 +00005666
danielk19776f235cc2009-06-04 14:46:08 +00005667 /* Create a divider cell to insert into pParent. The divider cell
5668 ** consists of a 4-byte page number (the page number of pPage) and
5669 ** a variable length key value (which must be the same value as the
5670 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005671 **
danielk19776f235cc2009-06-04 14:46:08 +00005672 ** To find the largest key value on pPage, first find the right-most
5673 ** cell on pPage. The first two fields of this cell are the
5674 ** record-length (a variable length integer at most 32-bits in size)
5675 ** and the key value (a variable length integer, may have any value).
5676 ** The first of the while(...) loops below skips over the record-length
5677 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005678 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005679 */
danielk1977eaa06f62008-09-18 17:34:44 +00005680 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005681 pStop = &pCell[9];
5682 while( (*(pCell++)&0x80) && pCell<pStop );
5683 pStop = &pCell[9];
5684 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5685
danielk19774dbaa892009-06-16 16:50:22 +00005686 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005687 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5688 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005689
5690 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005691 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5692
danielk1977e08a3c42008-09-18 18:17:03 +00005693 /* Release the reference to the new page. */
5694 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005695 }
5696
danielk1977eaa06f62008-09-18 17:34:44 +00005697 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005698}
drh615ae552005-01-16 23:21:00 +00005699#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005700
danielk19774dbaa892009-06-16 16:50:22 +00005701#if 0
drhc3b70572003-01-04 19:44:07 +00005702/*
danielk19774dbaa892009-06-16 16:50:22 +00005703** This function does not contribute anything to the operation of SQLite.
5704** it is sometimes activated temporarily while debugging code responsible
5705** for setting pointer-map entries.
5706*/
5707static int ptrmapCheckPages(MemPage **apPage, int nPage){
5708 int i, j;
5709 for(i=0; i<nPage; i++){
5710 Pgno n;
5711 u8 e;
5712 MemPage *pPage = apPage[i];
5713 BtShared *pBt = pPage->pBt;
5714 assert( pPage->isInit );
5715
5716 for(j=0; j<pPage->nCell; j++){
5717 CellInfo info;
5718 u8 *z;
5719
5720 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005721 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005722 if( info.iOverflow ){
5723 Pgno ovfl = get4byte(&z[info.iOverflow]);
5724 ptrmapGet(pBt, ovfl, &e, &n);
5725 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5726 }
5727 if( !pPage->leaf ){
5728 Pgno child = get4byte(z);
5729 ptrmapGet(pBt, child, &e, &n);
5730 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5731 }
5732 }
5733 if( !pPage->leaf ){
5734 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5735 ptrmapGet(pBt, child, &e, &n);
5736 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5737 }
5738 }
5739 return 1;
5740}
5741#endif
5742
danielk1977cd581a72009-06-23 15:43:39 +00005743/*
5744** This function is used to copy the contents of the b-tree node stored
5745** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5746** the pointer-map entries for each child page are updated so that the
5747** parent page stored in the pointer map is page pTo. If pFrom contained
5748** any cells with overflow page pointers, then the corresponding pointer
5749** map entries are also updated so that the parent page is page pTo.
5750**
5751** If pFrom is currently carrying any overflow cells (entries in the
5752** MemPage.aOvfl[] array), they are not copied to pTo.
5753**
danielk197730548662009-07-09 05:07:37 +00005754** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005755**
5756** The performance of this function is not critical. It is only used by
5757** the balance_shallower() and balance_deeper() procedures, neither of
5758** which are called often under normal circumstances.
5759*/
drhc314dc72009-07-21 11:52:34 +00005760static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5761 if( (*pRC)==SQLITE_OK ){
5762 BtShared * const pBt = pFrom->pBt;
5763 u8 * const aFrom = pFrom->aData;
5764 u8 * const aTo = pTo->aData;
5765 int const iFromHdr = pFrom->hdrOffset;
5766 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005767 int rc;
drhc314dc72009-07-21 11:52:34 +00005768 int iData;
5769
5770
5771 assert( pFrom->isInit );
5772 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005773 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005774
5775 /* Copy the b-tree node content from page pFrom to page pTo. */
5776 iData = get2byte(&aFrom[iFromHdr+5]);
5777 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5778 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5779
5780 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005781 ** match the new data. The initialization of pTo can actually fail under
5782 ** fairly obscure circumstances, even though it is a copy of initialized
5783 ** page pFrom.
5784 */
drhc314dc72009-07-21 11:52:34 +00005785 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005786 rc = btreeInitPage(pTo);
5787 if( rc!=SQLITE_OK ){
5788 *pRC = rc;
5789 return;
5790 }
drhc314dc72009-07-21 11:52:34 +00005791
5792 /* If this is an auto-vacuum database, update the pointer-map entries
5793 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5794 */
5795 if( ISAUTOVACUUM ){
5796 *pRC = setChildPtrmaps(pTo);
5797 }
danielk1977cd581a72009-06-23 15:43:39 +00005798 }
danielk1977cd581a72009-06-23 15:43:39 +00005799}
5800
5801/*
danielk19774dbaa892009-06-16 16:50:22 +00005802** This routine redistributes cells on the iParentIdx'th child of pParent
5803** (hereafter "the page") and up to 2 siblings so that all pages have about the
5804** same amount of free space. Usually a single sibling on either side of the
5805** page are used in the balancing, though both siblings might come from one
5806** side if the page is the first or last child of its parent. If the page
5807** has fewer than 2 siblings (something which can only happen if the page
5808** is a root page or a child of a root page) then all available siblings
5809** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005810**
danielk19774dbaa892009-06-16 16:50:22 +00005811** The number of siblings of the page might be increased or decreased by
5812** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005813**
danielk19774dbaa892009-06-16 16:50:22 +00005814** Note that when this routine is called, some of the cells on the page
5815** might not actually be stored in MemPage.aData[]. This can happen
5816** if the page is overfull. This routine ensures that all cells allocated
5817** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005818**
danielk19774dbaa892009-06-16 16:50:22 +00005819** In the course of balancing the page and its siblings, cells may be
5820** inserted into or removed from the parent page (pParent). Doing so
5821** may cause the parent page to become overfull or underfull. If this
5822** happens, it is the responsibility of the caller to invoke the correct
5823** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005824**
drh5e00f6c2001-09-13 13:46:56 +00005825** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005826** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005827** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005828**
5829** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005830** buffer big enough to hold one page. If while inserting cells into the parent
5831** page (pParent) the parent page becomes overfull, this buffer is
5832** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005833** a maximum of four divider cells into the parent page, and the maximum
5834** size of a cell stored within an internal node is always less than 1/4
5835** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5836** enough for all overflow cells.
5837**
5838** If aOvflSpace is set to a null pointer, this function returns
5839** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005840*/
danielk19774dbaa892009-06-16 16:50:22 +00005841static int balance_nonroot(
5842 MemPage *pParent, /* Parent page of siblings being balanced */
5843 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005844 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5845 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005846){
drh16a9b832007-05-05 18:39:25 +00005847 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005848 int nCell = 0; /* Number of cells in apCell[] */
5849 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005850 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005851 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005852 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005853 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005854 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005855 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005856 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005857 int usableSpace; /* Bytes in pPage beyond the header */
5858 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005859 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005860 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005861 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005862 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005863 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005864 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005865 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005866 u8 *pRight; /* Location in parent of right-sibling pointer */
5867 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005868 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5869 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005870 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005871 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005872 u8 *aSpace1; /* Space for copies of dividers cells */
5873 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005874
danielk1977a50d9aa2009-06-08 14:49:45 +00005875 pBt = pParent->pBt;
5876 assert( sqlite3_mutex_held(pBt->mutex) );
5877 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005878
danielk1977e5765212009-06-17 11:13:28 +00005879#if 0
drh43605152004-05-29 21:46:49 +00005880 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005881#endif
drh2e38c322004-09-03 18:38:44 +00005882
danielk19774dbaa892009-06-16 16:50:22 +00005883 /* At this point pParent may have at most one overflow cell. And if
5884 ** this overflow cell is present, it must be the cell with
5885 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005886 ** is called (indirectly) from sqlite3BtreeDelete().
5887 */
danielk19774dbaa892009-06-16 16:50:22 +00005888 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5889 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5890
danielk197711a8a862009-06-17 11:49:52 +00005891 if( !aOvflSpace ){
5892 return SQLITE_NOMEM;
5893 }
5894
danielk1977a50d9aa2009-06-08 14:49:45 +00005895 /* Find the sibling pages to balance. Also locate the cells in pParent
5896 ** that divide the siblings. An attempt is made to find NN siblings on
5897 ** either side of pPage. More siblings are taken from one side, however,
5898 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005899 ** has NB or fewer children then all children of pParent are taken.
5900 **
5901 ** This loop also drops the divider cells from the parent page. This
5902 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005903 ** overflow cells in the parent page, since if any existed they will
5904 ** have already been removed.
5905 */
danielk19774dbaa892009-06-16 16:50:22 +00005906 i = pParent->nOverflow + pParent->nCell;
5907 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005908 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005909 nOld = i+1;
5910 }else{
5911 nOld = 3;
5912 if( iParentIdx==0 ){
5913 nxDiv = 0;
5914 }else if( iParentIdx==i ){
5915 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005916 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005917 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005918 }
danielk19774dbaa892009-06-16 16:50:22 +00005919 i = 2;
5920 }
5921 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5922 pRight = &pParent->aData[pParent->hdrOffset+8];
5923 }else{
5924 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5925 }
5926 pgno = get4byte(pRight);
5927 while( 1 ){
5928 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5929 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005930 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005931 goto balance_cleanup;
5932 }
danielk1977634f2982005-03-28 08:44:07 +00005933 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005934 if( (i--)==0 ) break;
5935
drhcd09c532009-07-20 19:30:00 +00005936 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005937 apDiv[i] = pParent->aOvfl[0].pCell;
5938 pgno = get4byte(apDiv[i]);
5939 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5940 pParent->nOverflow = 0;
5941 }else{
5942 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5943 pgno = get4byte(apDiv[i]);
5944 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5945
5946 /* Drop the cell from the parent page. apDiv[i] still points to
5947 ** the cell within the parent, even though it has been dropped.
5948 ** This is safe because dropping a cell only overwrites the first
5949 ** four bytes of it, and this function does not need the first
5950 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005951 ** later on.
5952 **
5953 ** Unless SQLite is compiled in secure-delete mode. In this case,
5954 ** the dropCell() routine will overwrite the entire cell with zeroes.
5955 ** In this case, temporarily copy the cell into the aOvflSpace[]
5956 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5957 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005958 if( pBt->secureDelete ){
shaneh1da207e2010-03-09 14:41:12 +00005959 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00005960 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00005961 rc = SQLITE_CORRUPT_BKPT;
5962 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5963 goto balance_cleanup;
5964 }else{
5965 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5966 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5967 }
drh5b47efa2010-02-12 18:18:39 +00005968 }
drh98add2e2009-07-20 17:11:49 +00005969 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005970 }
drh8b2f49b2001-06-08 00:21:52 +00005971 }
5972
drha9121e42008-02-19 14:59:35 +00005973 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005974 ** alignment */
drha9121e42008-02-19 14:59:35 +00005975 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005976
drh8b2f49b2001-06-08 00:21:52 +00005977 /*
danielk1977634f2982005-03-28 08:44:07 +00005978 ** Allocate space for memory structures
5979 */
danielk19774dbaa892009-06-16 16:50:22 +00005980 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005981 szScratch =
drha9121e42008-02-19 14:59:35 +00005982 nMaxCells*sizeof(u8*) /* apCell */
5983 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005984 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005985 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005986 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005987 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005988 rc = SQLITE_NOMEM;
5989 goto balance_cleanup;
5990 }
drha9121e42008-02-19 14:59:35 +00005991 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005992 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005993 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005994
5995 /*
5996 ** Load pointers to all cells on sibling pages and the divider cells
5997 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005998 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005999 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006000 **
6001 ** If the siblings are on leaf pages, then the child pointers of the
6002 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006003 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006004 ** child pointers. If siblings are not leaves, then all cell in
6005 ** apCell[] include child pointers. Either way, all cells in apCell[]
6006 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006007 **
6008 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6009 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006010 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006011 leafCorrection = apOld[0]->leaf*4;
6012 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006013 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006014 int limit;
6015
6016 /* Before doing anything else, take a copy of the i'th original sibling
6017 ** The rest of this function will use data from the copies rather
6018 ** that the original pages since the original pages will be in the
6019 ** process of being overwritten. */
6020 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6021 memcpy(pOld, apOld[i], sizeof(MemPage));
6022 pOld->aData = (void*)&pOld[1];
6023 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6024
6025 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006026 if( pOld->nOverflow>0 ){
6027 for(j=0; j<limit; j++){
6028 assert( nCell<nMaxCells );
6029 apCell[nCell] = findOverflowCell(pOld, j);
6030 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6031 nCell++;
6032 }
6033 }else{
6034 u8 *aData = pOld->aData;
6035 u16 maskPage = pOld->maskPage;
6036 u16 cellOffset = pOld->cellOffset;
6037 for(j=0; j<limit; j++){
6038 assert( nCell<nMaxCells );
6039 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6040 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6041 nCell++;
6042 }
6043 }
danielk19774dbaa892009-06-16 16:50:22 +00006044 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006045 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006046 u8 *pTemp;
6047 assert( nCell<nMaxCells );
6048 szCell[nCell] = sz;
6049 pTemp = &aSpace1[iSpace1];
6050 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006051 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006052 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006053 memcpy(pTemp, apDiv[i], sz);
6054 apCell[nCell] = pTemp+leafCorrection;
6055 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006056 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006057 if( !pOld->leaf ){
6058 assert( leafCorrection==0 );
6059 assert( pOld->hdrOffset==0 );
6060 /* The right pointer of the child page pOld becomes the left
6061 ** pointer of the divider cell */
6062 memcpy(apCell[nCell], &pOld->aData[8], 4);
6063 }else{
6064 assert( leafCorrection==4 );
6065 if( szCell[nCell]<4 ){
6066 /* Do not allow any cells smaller than 4 bytes. */
6067 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006068 }
6069 }
drh14acc042001-06-10 19:56:58 +00006070 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006071 }
drh8b2f49b2001-06-08 00:21:52 +00006072 }
6073
6074 /*
drh6019e162001-07-02 17:51:45 +00006075 ** Figure out the number of pages needed to hold all nCell cells.
6076 ** Store this number in "k". Also compute szNew[] which is the total
6077 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006078 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006079 ** cntNew[k] should equal nCell.
6080 **
drh96f5b762004-05-16 16:24:36 +00006081 ** Values computed by this block:
6082 **
6083 ** k: The total number of sibling pages
6084 ** szNew[i]: Spaced used on the i-th sibling page.
6085 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6086 ** the right of the i-th sibling page.
6087 ** usableSpace: Number of bytes of space available on each sibling.
6088 **
drh8b2f49b2001-06-08 00:21:52 +00006089 */
drh43605152004-05-29 21:46:49 +00006090 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006091 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006092 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006093 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006094 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006095 szNew[k] = subtotal - szCell[i];
6096 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006097 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006098 subtotal = 0;
6099 k++;
drh9978c972010-02-23 17:36:32 +00006100 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006101 }
6102 }
6103 szNew[k] = subtotal;
6104 cntNew[k] = nCell;
6105 k++;
drh96f5b762004-05-16 16:24:36 +00006106
6107 /*
6108 ** The packing computed by the previous block is biased toward the siblings
6109 ** on the left side. The left siblings are always nearly full, while the
6110 ** right-most sibling might be nearly empty. This block of code attempts
6111 ** to adjust the packing of siblings to get a better balance.
6112 **
6113 ** This adjustment is more than an optimization. The packing above might
6114 ** be so out of balance as to be illegal. For example, the right-most
6115 ** sibling might be completely empty. This adjustment is not optional.
6116 */
drh6019e162001-07-02 17:51:45 +00006117 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006118 int szRight = szNew[i]; /* Size of sibling on the right */
6119 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6120 int r; /* Index of right-most cell in left sibling */
6121 int d; /* Index of first cell to the left of right sibling */
6122
6123 r = cntNew[i-1] - 1;
6124 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006125 assert( d<nMaxCells );
6126 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006127 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6128 szRight += szCell[d] + 2;
6129 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006130 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006131 r = cntNew[i-1] - 1;
6132 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006133 }
drh96f5b762004-05-16 16:24:36 +00006134 szNew[i] = szRight;
6135 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006136 }
drh09d0deb2005-08-02 17:13:09 +00006137
danielk19776f235cc2009-06-04 14:46:08 +00006138 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006139 ** a virtual root page. A virtual root page is when the real root
6140 ** page is page 1 and we are the only child of that page.
6141 */
6142 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006143
danielk1977e5765212009-06-17 11:13:28 +00006144 TRACE(("BALANCE: old: %d %d %d ",
6145 apOld[0]->pgno,
6146 nOld>=2 ? apOld[1]->pgno : 0,
6147 nOld>=3 ? apOld[2]->pgno : 0
6148 ));
6149
drh8b2f49b2001-06-08 00:21:52 +00006150 /*
drh6b308672002-07-08 02:16:37 +00006151 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006152 */
drheac74422009-06-14 12:47:11 +00006153 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006154 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006155 goto balance_cleanup;
6156 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006157 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006158 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006159 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006160 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006161 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006162 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006163 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006164 nNew++;
danielk197728129562005-01-11 10:25:06 +00006165 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006166 }else{
drh7aa8f852006-03-28 00:24:44 +00006167 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006168 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006169 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006170 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006171 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006172
6173 /* Set the pointer-map entry for the new sibling page. */
6174 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006175 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006176 if( rc!=SQLITE_OK ){
6177 goto balance_cleanup;
6178 }
6179 }
drh6b308672002-07-08 02:16:37 +00006180 }
drh8b2f49b2001-06-08 00:21:52 +00006181 }
6182
danielk1977299b1872004-11-22 10:02:10 +00006183 /* Free any old pages that were not reused as new pages.
6184 */
6185 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006186 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006187 if( rc ) goto balance_cleanup;
6188 releasePage(apOld[i]);
6189 apOld[i] = 0;
6190 i++;
6191 }
6192
drh8b2f49b2001-06-08 00:21:52 +00006193 /*
drhf9ffac92002-03-02 19:00:31 +00006194 ** Put the new pages in accending order. This helps to
6195 ** keep entries in the disk file in order so that a scan
6196 ** of the table is a linear scan through the file. That
6197 ** in turn helps the operating system to deliver pages
6198 ** from the disk more rapidly.
6199 **
6200 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006201 ** n is never more than NB (a small constant), that should
6202 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006203 **
drhc3b70572003-01-04 19:44:07 +00006204 ** When NB==3, this one optimization makes the database
6205 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006206 */
6207 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006208 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006209 int minI = i;
6210 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006211 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006212 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006213 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006214 }
6215 }
6216 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006217 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006218 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006219 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006220 apNew[minI] = pT;
6221 }
6222 }
danielk1977e5765212009-06-17 11:13:28 +00006223 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006224 apNew[0]->pgno, szNew[0],
6225 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6226 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6227 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6228 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6229
6230 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6231 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006232
drhf9ffac92002-03-02 19:00:31 +00006233 /*
drh14acc042001-06-10 19:56:58 +00006234 ** Evenly distribute the data in apCell[] across the new pages.
6235 ** Insert divider cells into pParent as necessary.
6236 */
6237 j = 0;
6238 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006239 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006240 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006241 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006242 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006243 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006244 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006245 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006246
danielk1977ac11ee62005-01-15 12:45:51 +00006247 j = cntNew[i];
6248
6249 /* If the sibling page assembled above was not the right-most sibling,
6250 ** insert a divider cell into the parent page.
6251 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006252 assert( i<nNew-1 || j==nCell );
6253 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006254 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006255 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006256 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006257
6258 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006259 pCell = apCell[j];
6260 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006261 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006262 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006263 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006264 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006265 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006266 ** then there is no divider cell in apCell[]. Instead, the divider
6267 ** cell consists of the integer key for the right-most cell of
6268 ** the sibling-page assembled above only.
6269 */
drh6f11bef2004-05-13 01:12:56 +00006270 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006271 j--;
danielk197730548662009-07-09 05:07:37 +00006272 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006273 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006274 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006275 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006276 }else{
6277 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006278 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006279 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006280 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006281 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006282 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006283 ** insertCell(), so reparse the cell now.
6284 **
6285 ** Note that this can never happen in an SQLite data file, as all
6286 ** cells are at least 4 bytes. It only happens in b-trees used
6287 ** to evaluate "IN (SELECT ...)" and similar clauses.
6288 */
6289 if( szCell[j]==4 ){
6290 assert(leafCorrection==4);
6291 sz = cellSizePtr(pParent, pCell);
6292 }
drh4b70f112004-05-02 21:12:19 +00006293 }
danielk19776067a9b2009-06-09 09:41:00 +00006294 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006295 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006296 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006297 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006298 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006299 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006300
drh14acc042001-06-10 19:56:58 +00006301 j++;
6302 nxDiv++;
6303 }
6304 }
drh6019e162001-07-02 17:51:45 +00006305 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006306 assert( nOld>0 );
6307 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006308 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006309 u8 *zChild = &apCopy[nOld-1]->aData[8];
6310 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006311 }
6312
danielk197713bd99f2009-06-24 05:40:34 +00006313 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6314 /* The root page of the b-tree now contains no cells. The only sibling
6315 ** page is the right-child of the parent. Copy the contents of the
6316 ** child page into the parent, decreasing the overall height of the
6317 ** b-tree structure by one. This is described as the "balance-shallower"
6318 ** sub-algorithm in some documentation.
6319 **
6320 ** If this is an auto-vacuum database, the call to copyNodeContent()
6321 ** sets all pointer-map entries corresponding to database image pages
6322 ** for which the pointer is stored within the content being copied.
6323 **
6324 ** The second assert below verifies that the child page is defragmented
6325 ** (it must be, as it was just reconstructed using assemblePage()). This
6326 ** is important if the parent page happens to be page 1 of the database
6327 ** image. */
6328 assert( nNew==1 );
6329 assert( apNew[0]->nFree ==
6330 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6331 );
drhc314dc72009-07-21 11:52:34 +00006332 copyNodeContent(apNew[0], pParent, &rc);
6333 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006334 }else if( ISAUTOVACUUM ){
6335 /* Fix the pointer-map entries for all the cells that were shifted around.
6336 ** There are several different types of pointer-map entries that need to
6337 ** be dealt with by this routine. Some of these have been set already, but
6338 ** many have not. The following is a summary:
6339 **
6340 ** 1) The entries associated with new sibling pages that were not
6341 ** siblings when this function was called. These have already
6342 ** been set. We don't need to worry about old siblings that were
6343 ** moved to the free-list - the freePage() code has taken care
6344 ** of those.
6345 **
6346 ** 2) The pointer-map entries associated with the first overflow
6347 ** page in any overflow chains used by new divider cells. These
6348 ** have also already been taken care of by the insertCell() code.
6349 **
6350 ** 3) If the sibling pages are not leaves, then the child pages of
6351 ** cells stored on the sibling pages may need to be updated.
6352 **
6353 ** 4) If the sibling pages are not internal intkey nodes, then any
6354 ** overflow pages used by these cells may need to be updated
6355 ** (internal intkey nodes never contain pointers to overflow pages).
6356 **
6357 ** 5) If the sibling pages are not leaves, then the pointer-map
6358 ** entries for the right-child pages of each sibling may need
6359 ** to be updated.
6360 **
6361 ** Cases 1 and 2 are dealt with above by other code. The next
6362 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6363 ** setting a pointer map entry is a relatively expensive operation, this
6364 ** code only sets pointer map entries for child or overflow pages that have
6365 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006366 MemPage *pNew = apNew[0];
6367 MemPage *pOld = apCopy[0];
6368 int nOverflow = pOld->nOverflow;
6369 int iNextOld = pOld->nCell + nOverflow;
6370 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6371 j = 0; /* Current 'old' sibling page */
6372 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006373 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006374 int isDivider = 0;
6375 while( i==iNextOld ){
6376 /* Cell i is the cell immediately following the last cell on old
6377 ** sibling page j. If the siblings are not leaf pages of an
6378 ** intkey b-tree, then cell i was a divider cell. */
6379 pOld = apCopy[++j];
6380 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6381 if( pOld->nOverflow ){
6382 nOverflow = pOld->nOverflow;
6383 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6384 }
6385 isDivider = !leafData;
6386 }
6387
6388 assert(nOverflow>0 || iOverflow<i );
6389 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6390 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6391 if( i==iOverflow ){
6392 isDivider = 1;
6393 if( (--nOverflow)>0 ){
6394 iOverflow++;
6395 }
6396 }
6397
6398 if( i==cntNew[k] ){
6399 /* Cell i is the cell immediately following the last cell on new
6400 ** sibling page k. If the siblings are not leaf pages of an
6401 ** intkey b-tree, then cell i is a divider cell. */
6402 pNew = apNew[++k];
6403 if( !leafData ) continue;
6404 }
danielk19774dbaa892009-06-16 16:50:22 +00006405 assert( j<nOld );
6406 assert( k<nNew );
6407
6408 /* If the cell was originally divider cell (and is not now) or
6409 ** an overflow cell, or if the cell was located on a different sibling
6410 ** page before the balancing, then the pointer map entries associated
6411 ** with any child or overflow pages need to be updated. */
6412 if( isDivider || pOld->pgno!=pNew->pgno ){
6413 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006414 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006415 }
drh98add2e2009-07-20 17:11:49 +00006416 if( szCell[i]>pNew->minLocal ){
6417 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006418 }
6419 }
6420 }
6421
6422 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006423 for(i=0; i<nNew; i++){
6424 u32 key = get4byte(&apNew[i]->aData[8]);
6425 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006426 }
6427 }
6428
6429#if 0
6430 /* The ptrmapCheckPages() contains assert() statements that verify that
6431 ** all pointer map pages are set correctly. This is helpful while
6432 ** debugging. This is usually disabled because a corrupt database may
6433 ** cause an assert() statement to fail. */
6434 ptrmapCheckPages(apNew, nNew);
6435 ptrmapCheckPages(&pParent, 1);
6436#endif
6437 }
6438
danielk197771d5d2c2008-09-29 11:49:47 +00006439 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006440 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6441 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006442
drh8b2f49b2001-06-08 00:21:52 +00006443 /*
drh14acc042001-06-10 19:56:58 +00006444 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006445 */
drh14acc042001-06-10 19:56:58 +00006446balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006447 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006448 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006449 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006450 }
drh14acc042001-06-10 19:56:58 +00006451 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006452 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006453 }
danielk1977eaa06f62008-09-18 17:34:44 +00006454
drh8b2f49b2001-06-08 00:21:52 +00006455 return rc;
6456}
6457
drh43605152004-05-29 21:46:49 +00006458
6459/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006460** This function is called when the root page of a b-tree structure is
6461** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006462**
danielk1977a50d9aa2009-06-08 14:49:45 +00006463** A new child page is allocated and the contents of the current root
6464** page, including overflow cells, are copied into the child. The root
6465** page is then overwritten to make it an empty page with the right-child
6466** pointer pointing to the new page.
6467**
6468** Before returning, all pointer-map entries corresponding to pages
6469** that the new child-page now contains pointers to are updated. The
6470** entry corresponding to the new right-child pointer of the root
6471** page is also updated.
6472**
6473** If successful, *ppChild is set to contain a reference to the child
6474** page and SQLITE_OK is returned. In this case the caller is required
6475** to call releasePage() on *ppChild exactly once. If an error occurs,
6476** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006477*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006478static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6479 int rc; /* Return value from subprocedures */
6480 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006481 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006482 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006483
danielk1977a50d9aa2009-06-08 14:49:45 +00006484 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006485 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006486
danielk1977a50d9aa2009-06-08 14:49:45 +00006487 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6488 ** page that will become the new right-child of pPage. Copy the contents
6489 ** of the node stored on pRoot into the new child page.
6490 */
drh98add2e2009-07-20 17:11:49 +00006491 rc = sqlite3PagerWrite(pRoot->pDbPage);
6492 if( rc==SQLITE_OK ){
6493 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006494 copyNodeContent(pRoot, pChild, &rc);
6495 if( ISAUTOVACUUM ){
6496 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006497 }
6498 }
6499 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006500 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006501 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006502 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006503 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006504 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6505 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6506 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006507
danielk1977a50d9aa2009-06-08 14:49:45 +00006508 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6509
6510 /* Copy the overflow cells from pRoot to pChild */
6511 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6512 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006513
6514 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6515 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6516 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6517
6518 *ppChild = pChild;
6519 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006520}
6521
6522/*
danielk197771d5d2c2008-09-29 11:49:47 +00006523** The page that pCur currently points to has just been modified in
6524** some way. This function figures out if this modification means the
6525** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006526** routine. Balancing routines are:
6527**
6528** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006529** balance_deeper()
6530** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006531*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006532static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006533 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006534 const int nMin = pCur->pBt->usableSize * 2 / 3;
6535 u8 aBalanceQuickSpace[13];
6536 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006537
shane75ac1de2009-06-09 18:58:52 +00006538 TESTONLY( int balance_quick_called = 0 );
6539 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006540
6541 do {
6542 int iPage = pCur->iPage;
6543 MemPage *pPage = pCur->apPage[iPage];
6544
6545 if( iPage==0 ){
6546 if( pPage->nOverflow ){
6547 /* The root page of the b-tree is overfull. In this case call the
6548 ** balance_deeper() function to create a new child for the root-page
6549 ** and copy the current contents of the root-page to it. The
6550 ** next iteration of the do-loop will balance the child page.
6551 */
6552 assert( (balance_deeper_called++)==0 );
6553 rc = balance_deeper(pPage, &pCur->apPage[1]);
6554 if( rc==SQLITE_OK ){
6555 pCur->iPage = 1;
6556 pCur->aiIdx[0] = 0;
6557 pCur->aiIdx[1] = 0;
6558 assert( pCur->apPage[1]->nOverflow );
6559 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006560 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006561 break;
6562 }
6563 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6564 break;
6565 }else{
6566 MemPage * const pParent = pCur->apPage[iPage-1];
6567 int const iIdx = pCur->aiIdx[iPage-1];
6568
6569 rc = sqlite3PagerWrite(pParent->pDbPage);
6570 if( rc==SQLITE_OK ){
6571#ifndef SQLITE_OMIT_QUICKBALANCE
6572 if( pPage->hasData
6573 && pPage->nOverflow==1
6574 && pPage->aOvfl[0].idx==pPage->nCell
6575 && pParent->pgno!=1
6576 && pParent->nCell==iIdx
6577 ){
6578 /* Call balance_quick() to create a new sibling of pPage on which
6579 ** to store the overflow cell. balance_quick() inserts a new cell
6580 ** into pParent, which may cause pParent overflow. If this
6581 ** happens, the next interation of the do-loop will balance pParent
6582 ** use either balance_nonroot() or balance_deeper(). Until this
6583 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6584 ** buffer.
6585 **
6586 ** The purpose of the following assert() is to check that only a
6587 ** single call to balance_quick() is made for each call to this
6588 ** function. If this were not verified, a subtle bug involving reuse
6589 ** of the aBalanceQuickSpace[] might sneak in.
6590 */
6591 assert( (balance_quick_called++)==0 );
6592 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6593 }else
6594#endif
6595 {
6596 /* In this case, call balance_nonroot() to redistribute cells
6597 ** between pPage and up to 2 of its sibling pages. This involves
6598 ** modifying the contents of pParent, which may cause pParent to
6599 ** become overfull or underfull. The next iteration of the do-loop
6600 ** will balance the parent page to correct this.
6601 **
6602 ** If the parent page becomes overfull, the overflow cell or cells
6603 ** are stored in the pSpace buffer allocated immediately below.
6604 ** A subsequent iteration of the do-loop will deal with this by
6605 ** calling balance_nonroot() (balance_deeper() may be called first,
6606 ** but it doesn't deal with overflow cells - just moves them to a
6607 ** different page). Once this subsequent call to balance_nonroot()
6608 ** has completed, it is safe to release the pSpace buffer used by
6609 ** the previous call, as the overflow cell data will have been
6610 ** copied either into the body of a database page or into the new
6611 ** pSpace buffer passed to the latter call to balance_nonroot().
6612 */
6613 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006614 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006615 if( pFree ){
6616 /* If pFree is not NULL, it points to the pSpace buffer used
6617 ** by a previous call to balance_nonroot(). Its contents are
6618 ** now stored either on real database pages or within the
6619 ** new pSpace buffer, so it may be safely freed here. */
6620 sqlite3PageFree(pFree);
6621 }
6622
danielk19774dbaa892009-06-16 16:50:22 +00006623 /* The pSpace buffer will be freed after the next call to
6624 ** balance_nonroot(), or just before this function returns, whichever
6625 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006626 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006627 }
6628 }
6629
6630 pPage->nOverflow = 0;
6631
6632 /* The next iteration of the do-loop balances the parent page. */
6633 releasePage(pPage);
6634 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006635 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006636 }while( rc==SQLITE_OK );
6637
6638 if( pFree ){
6639 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006640 }
6641 return rc;
6642}
6643
drhf74b8d92002-09-01 23:20:45 +00006644
6645/*
drh3b7511c2001-05-26 13:15:44 +00006646** Insert a new record into the BTree. The key is given by (pKey,nKey)
6647** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006648** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006649** is left pointing at a random location.
6650**
6651** For an INTKEY table, only the nKey value of the key is used. pKey is
6652** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006653**
6654** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006655** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006656** been performed. seekResult is the search result returned (a negative
6657** number if pCur points at an entry that is smaller than (pKey, nKey), or
6658** a positive value if pCur points at an etry that is larger than
6659** (pKey, nKey)).
6660**
drh3e9ca092009-09-08 01:14:48 +00006661** If the seekResult parameter is non-zero, then the caller guarantees that
6662** cursor pCur is pointing at the existing copy of a row that is to be
6663** overwritten. If the seekResult parameter is 0, then cursor pCur may
6664** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006665** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006666*/
drh3aac2dd2004-04-26 14:10:20 +00006667int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006668 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006669 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006670 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006671 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006672 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006673 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006674){
drh3b7511c2001-05-26 13:15:44 +00006675 int rc;
drh3e9ca092009-09-08 01:14:48 +00006676 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006677 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006678 int idx;
drh3b7511c2001-05-26 13:15:44 +00006679 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006680 Btree *p = pCur->pBtree;
6681 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006682 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006683 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006684
drh98add2e2009-07-20 17:11:49 +00006685 if( pCur->eState==CURSOR_FAULT ){
6686 assert( pCur->skipNext!=SQLITE_OK );
6687 return pCur->skipNext;
6688 }
6689
drh1fee73e2007-08-29 04:00:57 +00006690 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006691 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006692 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6693
danielk197731d31b82009-07-13 13:18:07 +00006694 /* Assert that the caller has been consistent. If this cursor was opened
6695 ** expecting an index b-tree, then the caller should be inserting blob
6696 ** keys with no associated data. If the cursor was opened expecting an
6697 ** intkey table, the caller should be inserting integer keys with a
6698 ** blob of associated data. */
6699 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6700
danielk197796d48e92009-06-29 06:00:37 +00006701 /* If this is an insert into a table b-tree, invalidate any incrblob
6702 ** cursors open on the row being replaced (assuming this is a replace
6703 ** operation - if it is not, the following is a no-op). */
6704 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006705 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006706 }
danielk197796d48e92009-06-29 06:00:37 +00006707
danielk19779c3acf32009-05-02 07:36:49 +00006708 /* Save the positions of any other cursors open on this table.
6709 **
danielk19773509a652009-07-06 18:56:13 +00006710 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006711 ** example, when inserting data into a table with auto-generated integer
6712 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6713 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006714 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006715 ** that the cursor is already where it needs to be and returns without
6716 ** doing any work. To avoid thwarting these optimizations, it is important
6717 ** not to clear the cursor here.
6718 */
drh4c301aa2009-07-15 17:25:45 +00006719 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6720 if( rc ) return rc;
6721 if( !loc ){
6722 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6723 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006724 }
danielk1977b980d2212009-06-22 18:03:51 +00006725 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006726
danielk197771d5d2c2008-09-29 11:49:47 +00006727 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006728 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006729 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006730
drh3a4c1412004-05-09 20:40:11 +00006731 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6732 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6733 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006734 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006735 allocateTempSpace(pBt);
6736 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006737 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006738 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006739 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006740 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006741 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006742 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006743 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006744 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006745 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006746 rc = sqlite3PagerWrite(pPage->pDbPage);
6747 if( rc ){
6748 goto end_insert;
6749 }
danielk197771d5d2c2008-09-29 11:49:47 +00006750 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006751 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006752 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006753 }
drh43605152004-05-29 21:46:49 +00006754 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006755 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006756 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006757 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006758 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006759 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006760 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006761 }else{
drh4b70f112004-05-02 21:12:19 +00006762 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006763 }
drh98add2e2009-07-20 17:11:49 +00006764 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006765 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006766
danielk1977a50d9aa2009-06-08 14:49:45 +00006767 /* If no error has occured and pPage has an overflow cell, call balance()
6768 ** to redistribute the cells within the tree. Since balance() may move
6769 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6770 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006771 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006772 ** Previous versions of SQLite called moveToRoot() to move the cursor
6773 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006774 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6775 ** set the cursor state to "invalid". This makes common insert operations
6776 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006777 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006778 ** There is a subtle but important optimization here too. When inserting
6779 ** multiple records into an intkey b-tree using a single cursor (as can
6780 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6781 ** is advantageous to leave the cursor pointing to the last entry in
6782 ** the b-tree if possible. If the cursor is left pointing to the last
6783 ** entry in the table, and the next row inserted has an integer key
6784 ** larger than the largest existing key, it is possible to insert the
6785 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006786 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006787 pCur->info.nSize = 0;
6788 pCur->validNKey = 0;
6789 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006790 rc = balance(pCur);
6791
6792 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006793 ** fails. Internal data structure corruption will result otherwise.
6794 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6795 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006796 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006797 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006798 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006799 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006800
drh2e38c322004-09-03 18:38:44 +00006801end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006802 return rc;
6803}
6804
6805/*
drh4b70f112004-05-02 21:12:19 +00006806** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006807** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006808*/
drh3aac2dd2004-04-26 14:10:20 +00006809int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006810 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006811 BtShared *pBt = p->pBt;
6812 int rc; /* Return code */
6813 MemPage *pPage; /* Page to delete cell from */
6814 unsigned char *pCell; /* Pointer to cell to delete */
6815 int iCellIdx; /* Index of cell to delete */
6816 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006817
drh1fee73e2007-08-29 04:00:57 +00006818 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006819 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006820 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006821 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006822 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6823 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6824
danielk19774dbaa892009-06-16 16:50:22 +00006825 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6826 || NEVER(pCur->eState!=CURSOR_VALID)
6827 ){
6828 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006829 }
danielk1977da184232006-01-05 11:34:32 +00006830
danielk197796d48e92009-06-29 06:00:37 +00006831 /* If this is a delete operation to remove a row from a table b-tree,
6832 ** invalidate any incrblob cursors open on the row being deleted. */
6833 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006834 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006835 }
6836
6837 iCellDepth = pCur->iPage;
6838 iCellIdx = pCur->aiIdx[iCellDepth];
6839 pPage = pCur->apPage[iCellDepth];
6840 pCell = findCell(pPage, iCellIdx);
6841
6842 /* If the page containing the entry to delete is not a leaf page, move
6843 ** the cursor to the largest entry in the tree that is smaller than
6844 ** the entry being deleted. This cell will replace the cell being deleted
6845 ** from the internal node. The 'previous' entry is used for this instead
6846 ** of the 'next' entry, as the previous entry is always a part of the
6847 ** sub-tree headed by the child page of the cell being deleted. This makes
6848 ** balancing the tree following the delete operation easier. */
6849 if( !pPage->leaf ){
6850 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006851 rc = sqlite3BtreePrevious(pCur, &notUsed);
6852 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006853 }
6854
6855 /* Save the positions of any other cursors open on this table before
6856 ** making any modifications. Make the page containing the entry to be
6857 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006858 ** entry and finally remove the cell itself from within the page.
6859 */
6860 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6861 if( rc ) return rc;
6862 rc = sqlite3PagerWrite(pPage->pDbPage);
6863 if( rc ) return rc;
6864 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006865 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006866 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006867
danielk19774dbaa892009-06-16 16:50:22 +00006868 /* If the cell deleted was not located on a leaf page, then the cursor
6869 ** is currently pointing to the largest entry in the sub-tree headed
6870 ** by the child-page of the cell that was just deleted from an internal
6871 ** node. The cell from the leaf node needs to be moved to the internal
6872 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006873 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006874 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6875 int nCell;
6876 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6877 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006878
danielk19774dbaa892009-06-16 16:50:22 +00006879 pCell = findCell(pLeaf, pLeaf->nCell-1);
6880 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00006881 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006882
danielk19774dbaa892009-06-16 16:50:22 +00006883 allocateTempSpace(pBt);
6884 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006885
drha4ec1d42009-07-11 13:13:11 +00006886 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006887 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6888 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006889 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006890 }
danielk19774dbaa892009-06-16 16:50:22 +00006891
6892 /* Balance the tree. If the entry deleted was located on a leaf page,
6893 ** then the cursor still points to that page. In this case the first
6894 ** call to balance() repairs the tree, and the if(...) condition is
6895 ** never true.
6896 **
6897 ** Otherwise, if the entry deleted was on an internal node page, then
6898 ** pCur is pointing to the leaf page from which a cell was removed to
6899 ** replace the cell deleted from the internal node. This is slightly
6900 ** tricky as the leaf node may be underfull, and the internal node may
6901 ** be either under or overfull. In this case run the balancing algorithm
6902 ** on the leaf node first. If the balance proceeds far enough up the
6903 ** tree that we can be sure that any problem in the internal node has
6904 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6905 ** walk the cursor up the tree to the internal node and balance it as
6906 ** well. */
6907 rc = balance(pCur);
6908 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6909 while( pCur->iPage>iCellDepth ){
6910 releasePage(pCur->apPage[pCur->iPage--]);
6911 }
6912 rc = balance(pCur);
6913 }
6914
danielk19776b456a22005-03-21 04:04:02 +00006915 if( rc==SQLITE_OK ){
6916 moveToRoot(pCur);
6917 }
drh5e2f8b92001-05-28 00:41:15 +00006918 return rc;
drh3b7511c2001-05-26 13:15:44 +00006919}
drh8b2f49b2001-06-08 00:21:52 +00006920
6921/*
drhc6b52df2002-01-04 03:09:29 +00006922** Create a new BTree table. Write into *piTable the page
6923** number for the root page of the new table.
6924**
drhab01f612004-05-22 02:55:23 +00006925** The type of type is determined by the flags parameter. Only the
6926** following values of flags are currently in use. Other values for
6927** flags might not work:
6928**
6929** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6930** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006931*/
drhd4187c72010-08-30 22:15:45 +00006932static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00006933 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006934 MemPage *pRoot;
6935 Pgno pgnoRoot;
6936 int rc;
drhd4187c72010-08-30 22:15:45 +00006937 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00006938
drh1fee73e2007-08-29 04:00:57 +00006939 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006940 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006941 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006942
danielk1977003ba062004-11-04 02:57:33 +00006943#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006944 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006945 if( rc ){
6946 return rc;
6947 }
danielk1977003ba062004-11-04 02:57:33 +00006948#else
danielk1977687566d2004-11-02 12:56:41 +00006949 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006950 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6951 MemPage *pPageMove; /* The page to move to. */
6952
danielk197720713f32007-05-03 11:43:33 +00006953 /* Creating a new table may probably require moving an existing database
6954 ** to make room for the new tables root page. In case this page turns
6955 ** out to be an overflow page, delete all overflow page-map caches
6956 ** held by open cursors.
6957 */
danielk197792d4d7a2007-05-04 12:05:56 +00006958 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006959
danielk1977003ba062004-11-04 02:57:33 +00006960 /* Read the value of meta[3] from the database to determine where the
6961 ** root page of the new table should go. meta[3] is the largest root-page
6962 ** created so far, so the new root-page is (meta[3]+1).
6963 */
danielk1977602b4662009-07-02 07:47:33 +00006964 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006965 pgnoRoot++;
6966
danielk1977599fcba2004-11-08 07:13:13 +00006967 /* The new root-page may not be allocated on a pointer-map page, or the
6968 ** PENDING_BYTE page.
6969 */
drh72190432008-01-31 14:54:43 +00006970 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006971 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006972 pgnoRoot++;
6973 }
6974 assert( pgnoRoot>=3 );
6975
6976 /* Allocate a page. The page that currently resides at pgnoRoot will
6977 ** be moved to the allocated page (unless the allocated page happens
6978 ** to reside at pgnoRoot).
6979 */
drh4f0c5872007-03-26 22:05:01 +00006980 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006981 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006982 return rc;
6983 }
danielk1977003ba062004-11-04 02:57:33 +00006984
6985 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006986 /* pgnoRoot is the page that will be used for the root-page of
6987 ** the new table (assuming an error did not occur). But we were
6988 ** allocated pgnoMove. If required (i.e. if it was not allocated
6989 ** by extending the file), the current page at position pgnoMove
6990 ** is already journaled.
6991 */
drheeb844a2009-08-08 18:01:07 +00006992 u8 eType = 0;
6993 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006994
6995 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006996
6997 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006998 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006999 if( rc!=SQLITE_OK ){
7000 return rc;
7001 }
7002 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007003 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7004 rc = SQLITE_CORRUPT_BKPT;
7005 }
7006 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007007 releasePage(pRoot);
7008 return rc;
7009 }
drhccae6022005-02-26 17:31:26 +00007010 assert( eType!=PTRMAP_ROOTPAGE );
7011 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007012 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007013 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007014
7015 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007016 if( rc!=SQLITE_OK ){
7017 return rc;
7018 }
danielk197730548662009-07-09 05:07:37 +00007019 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007020 if( rc!=SQLITE_OK ){
7021 return rc;
7022 }
danielk19773b8a05f2007-03-19 17:44:26 +00007023 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007024 if( rc!=SQLITE_OK ){
7025 releasePage(pRoot);
7026 return rc;
7027 }
7028 }else{
7029 pRoot = pPageMove;
7030 }
7031
danielk197742741be2005-01-08 12:42:39 +00007032 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007033 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007034 if( rc ){
7035 releasePage(pRoot);
7036 return rc;
7037 }
drhbf592832010-03-30 15:51:12 +00007038
7039 /* When the new root page was allocated, page 1 was made writable in
7040 ** order either to increase the database filesize, or to decrement the
7041 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7042 */
7043 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007044 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007045 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007046 releasePage(pRoot);
7047 return rc;
7048 }
danielk197742741be2005-01-08 12:42:39 +00007049
danielk1977003ba062004-11-04 02:57:33 +00007050 }else{
drh4f0c5872007-03-26 22:05:01 +00007051 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007052 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007053 }
7054#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007055 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007056 if( createTabFlags & BTREE_INTKEY ){
7057 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7058 }else{
7059 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7060 }
7061 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007062 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007063 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007064 *piTable = (int)pgnoRoot;
7065 return SQLITE_OK;
7066}
drhd677b3d2007-08-20 22:48:41 +00007067int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7068 int rc;
7069 sqlite3BtreeEnter(p);
7070 rc = btreeCreateTable(p, piTable, flags);
7071 sqlite3BtreeLeave(p);
7072 return rc;
7073}
drh8b2f49b2001-06-08 00:21:52 +00007074
7075/*
7076** Erase the given database page and all its children. Return
7077** the page to the freelist.
7078*/
drh4b70f112004-05-02 21:12:19 +00007079static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007080 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007081 Pgno pgno, /* Page number to clear */
7082 int freePageFlag, /* Deallocate page if true */
7083 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007084){
danielk1977146ba992009-07-22 14:08:13 +00007085 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007086 int rc;
drh4b70f112004-05-02 21:12:19 +00007087 unsigned char *pCell;
7088 int i;
drh8b2f49b2001-06-08 00:21:52 +00007089
drh1fee73e2007-08-29 04:00:57 +00007090 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007091 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007092 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007093 }
7094
danielk197771d5d2c2008-09-29 11:49:47 +00007095 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007096 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007097 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007098 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007099 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007100 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007101 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007102 }
drh4b70f112004-05-02 21:12:19 +00007103 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007104 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007105 }
drha34b6762004-05-07 13:30:42 +00007106 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007107 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007108 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007109 }else if( pnChange ){
7110 assert( pPage->intKey );
7111 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007112 }
7113 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007114 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007115 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007116 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007117 }
danielk19776b456a22005-03-21 04:04:02 +00007118
7119cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007120 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007121 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007122}
7123
7124/*
drhab01f612004-05-22 02:55:23 +00007125** Delete all information from a single table in the database. iTable is
7126** the page number of the root of the table. After this routine returns,
7127** the root page is empty, but still exists.
7128**
7129** This routine will fail with SQLITE_LOCKED if there are any open
7130** read cursors on the table. Open write cursors are moved to the
7131** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007132**
7133** If pnChange is not NULL, then table iTable must be an intkey table. The
7134** integer value pointed to by pnChange is incremented by the number of
7135** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007136*/
danielk1977c7af4842008-10-27 13:59:33 +00007137int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007138 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007139 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007140 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007141 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007142
7143 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7144 ** is the root of a table b-tree - if it is not, the following call is
7145 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007146 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007147
drhc046e3e2009-07-15 11:26:44 +00007148 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7149 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007150 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007151 }
drhd677b3d2007-08-20 22:48:41 +00007152 sqlite3BtreeLeave(p);
7153 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007154}
7155
7156/*
7157** Erase all information in a table and add the root of the table to
7158** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007159** page 1) is never added to the freelist.
7160**
7161** This routine will fail with SQLITE_LOCKED if there are any open
7162** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007163**
7164** If AUTOVACUUM is enabled and the page at iTable is not the last
7165** root page in the database file, then the last root page
7166** in the database file is moved into the slot formerly occupied by
7167** iTable and that last slot formerly occupied by the last root page
7168** is added to the freelist instead of iTable. In this say, all
7169** root pages are kept at the beginning of the database file, which
7170** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7171** page number that used to be the last root page in the file before
7172** the move. If no page gets moved, *piMoved is set to 0.
7173** The last root page is recorded in meta[3] and the value of
7174** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007175*/
danielk197789d40042008-11-17 14:20:56 +00007176static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007177 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007178 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007179 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007180
drh1fee73e2007-08-29 04:00:57 +00007181 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007182 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007183
danielk1977e6efa742004-11-10 11:55:10 +00007184 /* It is illegal to drop a table if any cursors are open on the
7185 ** database. This is because in auto-vacuum mode the backend may
7186 ** need to move another root-page to fill a gap left by the deleted
7187 ** root page. If an open cursor was using this page a problem would
7188 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007189 **
7190 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007191 */
drhc046e3e2009-07-15 11:26:44 +00007192 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007193 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7194 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007195 }
danielk1977a0bf2652004-11-04 14:30:04 +00007196
danielk197730548662009-07-09 05:07:37 +00007197 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007198 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007199 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007200 if( rc ){
7201 releasePage(pPage);
7202 return rc;
7203 }
danielk1977a0bf2652004-11-04 14:30:04 +00007204
drh205f48e2004-11-05 00:43:11 +00007205 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007206
drh4b70f112004-05-02 21:12:19 +00007207 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007208#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007209 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007210 releasePage(pPage);
7211#else
7212 if( pBt->autoVacuum ){
7213 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007214 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007215
7216 if( iTable==maxRootPgno ){
7217 /* If the table being dropped is the table with the largest root-page
7218 ** number in the database, put the root page on the free list.
7219 */
drhc314dc72009-07-21 11:52:34 +00007220 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007221 releasePage(pPage);
7222 if( rc!=SQLITE_OK ){
7223 return rc;
7224 }
7225 }else{
7226 /* The table being dropped does not have the largest root-page
7227 ** number in the database. So move the page that does into the
7228 ** gap left by the deleted root-page.
7229 */
7230 MemPage *pMove;
7231 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007232 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007233 if( rc!=SQLITE_OK ){
7234 return rc;
7235 }
danielk19774c999992008-07-16 18:17:55 +00007236 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007237 releasePage(pMove);
7238 if( rc!=SQLITE_OK ){
7239 return rc;
7240 }
drhfe3313f2009-07-21 19:02:20 +00007241 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007242 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007243 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007244 releasePage(pMove);
7245 if( rc!=SQLITE_OK ){
7246 return rc;
7247 }
7248 *piMoved = maxRootPgno;
7249 }
7250
danielk1977599fcba2004-11-08 07:13:13 +00007251 /* Set the new 'max-root-page' value in the database header. This
7252 ** is the old value less one, less one more if that happens to
7253 ** be a root-page number, less one again if that is the
7254 ** PENDING_BYTE_PAGE.
7255 */
danielk197787a6e732004-11-05 12:58:25 +00007256 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007257 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7258 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007259 maxRootPgno--;
7260 }
danielk1977599fcba2004-11-08 07:13:13 +00007261 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7262
danielk1977aef0bf62005-12-30 16:28:01 +00007263 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007264 }else{
drhc314dc72009-07-21 11:52:34 +00007265 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007266 releasePage(pPage);
7267 }
7268#endif
drh2aa679f2001-06-25 02:11:07 +00007269 }else{
drhc046e3e2009-07-15 11:26:44 +00007270 /* If sqlite3BtreeDropTable was called on page 1.
7271 ** This really never should happen except in a corrupt
7272 ** database.
7273 */
drha34b6762004-05-07 13:30:42 +00007274 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007275 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007276 }
drh8b2f49b2001-06-08 00:21:52 +00007277 return rc;
7278}
drhd677b3d2007-08-20 22:48:41 +00007279int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
danc6e73452011-08-04 12:14:04 +00007280 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007281 int rc;
7282 sqlite3BtreeEnter(p);
danc6e73452011-08-04 12:14:04 +00007283 if( (pBt->openFlags&BTREE_SINGLE) ){
7284 pBt->nPage = 0;
7285 sqlite3PagerTruncateImage(pBt->pPager, 1);
7286 rc = newDatabase(pBt);
7287 }else{
7288 rc = btreeDropTable(p, iTable, piMoved);
7289 }
drhd677b3d2007-08-20 22:48:41 +00007290 sqlite3BtreeLeave(p);
7291 return rc;
7292}
drh8b2f49b2001-06-08 00:21:52 +00007293
drh001bbcb2003-03-19 03:14:00 +00007294
drh8b2f49b2001-06-08 00:21:52 +00007295/*
danielk1977602b4662009-07-02 07:47:33 +00007296** This function may only be called if the b-tree connection already
7297** has a read or write transaction open on the database.
7298**
drh23e11ca2004-05-04 17:27:28 +00007299** Read the meta-information out of a database file. Meta[0]
7300** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007301** through meta[15] are available for use by higher layers. Meta[0]
7302** is read-only, the others are read/write.
7303**
7304** The schema layer numbers meta values differently. At the schema
7305** layer (and the SetCookie and ReadCookie opcodes) the number of
7306** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007307*/
danielk1977602b4662009-07-02 07:47:33 +00007308void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007309 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007310
drhd677b3d2007-08-20 22:48:41 +00007311 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007312 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007313 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007314 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007315 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007316
danielk1977602b4662009-07-02 07:47:33 +00007317 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007318
danielk1977602b4662009-07-02 07:47:33 +00007319 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7320 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007321#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007322 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007323#endif
drhae157872004-08-14 19:20:09 +00007324
drhd677b3d2007-08-20 22:48:41 +00007325 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007326}
7327
7328/*
drh23e11ca2004-05-04 17:27:28 +00007329** Write meta-information back into the database. Meta[0] is
7330** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007331*/
danielk1977aef0bf62005-12-30 16:28:01 +00007332int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7333 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007334 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007335 int rc;
drh23e11ca2004-05-04 17:27:28 +00007336 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007337 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007338 assert( p->inTrans==TRANS_WRITE );
7339 assert( pBt->pPage1!=0 );
7340 pP1 = pBt->pPage1->aData;
7341 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7342 if( rc==SQLITE_OK ){
7343 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007344#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007345 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007346 assert( pBt->autoVacuum || iMeta==0 );
7347 assert( iMeta==0 || iMeta==1 );
7348 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007349 }
drh64022502009-01-09 14:11:04 +00007350#endif
drh5df72a52002-06-06 23:16:05 +00007351 }
drhd677b3d2007-08-20 22:48:41 +00007352 sqlite3BtreeLeave(p);
7353 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007354}
drh8c42ca92001-06-22 19:15:00 +00007355
danielk1977a5533162009-02-24 10:01:51 +00007356#ifndef SQLITE_OMIT_BTREECOUNT
7357/*
7358** The first argument, pCur, is a cursor opened on some b-tree. Count the
7359** number of entries in the b-tree and write the result to *pnEntry.
7360**
7361** SQLITE_OK is returned if the operation is successfully executed.
7362** Otherwise, if an error is encountered (i.e. an IO error or database
7363** corruption) an SQLite error code is returned.
7364*/
7365int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7366 i64 nEntry = 0; /* Value to return in *pnEntry */
7367 int rc; /* Return code */
7368 rc = moveToRoot(pCur);
7369
7370 /* Unless an error occurs, the following loop runs one iteration for each
7371 ** page in the B-Tree structure (not including overflow pages).
7372 */
7373 while( rc==SQLITE_OK ){
7374 int iIdx; /* Index of child node in parent */
7375 MemPage *pPage; /* Current page of the b-tree */
7376
7377 /* If this is a leaf page or the tree is not an int-key tree, then
7378 ** this page contains countable entries. Increment the entry counter
7379 ** accordingly.
7380 */
7381 pPage = pCur->apPage[pCur->iPage];
7382 if( pPage->leaf || !pPage->intKey ){
7383 nEntry += pPage->nCell;
7384 }
7385
7386 /* pPage is a leaf node. This loop navigates the cursor so that it
7387 ** points to the first interior cell that it points to the parent of
7388 ** the next page in the tree that has not yet been visited. The
7389 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7390 ** of the page, or to the number of cells in the page if the next page
7391 ** to visit is the right-child of its parent.
7392 **
7393 ** If all pages in the tree have been visited, return SQLITE_OK to the
7394 ** caller.
7395 */
7396 if( pPage->leaf ){
7397 do {
7398 if( pCur->iPage==0 ){
7399 /* All pages of the b-tree have been visited. Return successfully. */
7400 *pnEntry = nEntry;
7401 return SQLITE_OK;
7402 }
danielk197730548662009-07-09 05:07:37 +00007403 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007404 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7405
7406 pCur->aiIdx[pCur->iPage]++;
7407 pPage = pCur->apPage[pCur->iPage];
7408 }
7409
7410 /* Descend to the child node of the cell that the cursor currently
7411 ** points at. This is the right-child if (iIdx==pPage->nCell).
7412 */
7413 iIdx = pCur->aiIdx[pCur->iPage];
7414 if( iIdx==pPage->nCell ){
7415 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7416 }else{
7417 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7418 }
7419 }
7420
shanebe217792009-03-05 04:20:31 +00007421 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007422 return rc;
7423}
7424#endif
drhdd793422001-06-28 01:54:48 +00007425
drhdd793422001-06-28 01:54:48 +00007426/*
drh5eddca62001-06-30 21:53:53 +00007427** Return the pager associated with a BTree. This routine is used for
7428** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007429*/
danielk1977aef0bf62005-12-30 16:28:01 +00007430Pager *sqlite3BtreePager(Btree *p){
7431 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007432}
drh5eddca62001-06-30 21:53:53 +00007433
drhb7f91642004-10-31 02:22:47 +00007434#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007435/*
7436** Append a message to the error message string.
7437*/
drh2e38c322004-09-03 18:38:44 +00007438static void checkAppendMsg(
7439 IntegrityCk *pCheck,
7440 char *zMsg1,
7441 const char *zFormat,
7442 ...
7443){
7444 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007445 if( !pCheck->mxErr ) return;
7446 pCheck->mxErr--;
7447 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007448 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007449 if( pCheck->errMsg.nChar ){
7450 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007451 }
drhf089aa42008-07-08 19:34:06 +00007452 if( zMsg1 ){
7453 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7454 }
7455 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7456 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007457 if( pCheck->errMsg.mallocFailed ){
7458 pCheck->mallocFailed = 1;
7459 }
drh5eddca62001-06-30 21:53:53 +00007460}
drhb7f91642004-10-31 02:22:47 +00007461#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007462
drhb7f91642004-10-31 02:22:47 +00007463#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007464/*
7465** Add 1 to the reference count for page iPage. If this is the second
7466** reference to the page, add an error message to pCheck->zErrMsg.
7467** Return 1 if there are 2 ore more references to the page and 0 if
7468** if this is the first reference to the page.
7469**
7470** Also check that the page number is in bounds.
7471*/
danielk197789d40042008-11-17 14:20:56 +00007472static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007473 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007474 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007475 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007476 return 1;
7477 }
7478 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007479 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007480 return 1;
7481 }
7482 return (pCheck->anRef[iPage]++)>1;
7483}
7484
danielk1977afcdd022004-10-31 16:25:42 +00007485#ifndef SQLITE_OMIT_AUTOVACUUM
7486/*
7487** Check that the entry in the pointer-map for page iChild maps to
7488** page iParent, pointer type ptrType. If not, append an error message
7489** to pCheck.
7490*/
7491static void checkPtrmap(
7492 IntegrityCk *pCheck, /* Integrity check context */
7493 Pgno iChild, /* Child page number */
7494 u8 eType, /* Expected pointer map type */
7495 Pgno iParent, /* Expected pointer map parent page number */
7496 char *zContext /* Context description (used for error msg) */
7497){
7498 int rc;
7499 u8 ePtrmapType;
7500 Pgno iPtrmapParent;
7501
7502 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7503 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007504 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007505 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7506 return;
7507 }
7508
7509 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7510 checkAppendMsg(pCheck, zContext,
7511 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7512 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7513 }
7514}
7515#endif
7516
drh5eddca62001-06-30 21:53:53 +00007517/*
7518** Check the integrity of the freelist or of an overflow page list.
7519** Verify that the number of pages on the list is N.
7520*/
drh30e58752002-03-02 20:41:57 +00007521static void checkList(
7522 IntegrityCk *pCheck, /* Integrity checking context */
7523 int isFreeList, /* True for a freelist. False for overflow page list */
7524 int iPage, /* Page number for first page in the list */
7525 int N, /* Expected number of pages in the list */
7526 char *zContext /* Context for error messages */
7527){
7528 int i;
drh3a4c1412004-05-09 20:40:11 +00007529 int expected = N;
7530 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007531 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007532 DbPage *pOvflPage;
7533 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007534 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007535 checkAppendMsg(pCheck, zContext,
7536 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007537 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007538 break;
7539 }
7540 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007541 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007542 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007543 break;
7544 }
danielk19773b8a05f2007-03-19 17:44:26 +00007545 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007546 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007547 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007548#ifndef SQLITE_OMIT_AUTOVACUUM
7549 if( pCheck->pBt->autoVacuum ){
7550 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7551 }
7552#endif
drh43b18e12010-08-17 19:40:08 +00007553 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007554 checkAppendMsg(pCheck, zContext,
7555 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007556 N--;
7557 }else{
7558 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007559 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007560#ifndef SQLITE_OMIT_AUTOVACUUM
7561 if( pCheck->pBt->autoVacuum ){
7562 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7563 }
7564#endif
7565 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007566 }
7567 N -= n;
drh30e58752002-03-02 20:41:57 +00007568 }
drh30e58752002-03-02 20:41:57 +00007569 }
danielk1977afcdd022004-10-31 16:25:42 +00007570#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007571 else{
7572 /* If this database supports auto-vacuum and iPage is not the last
7573 ** page in this overflow list, check that the pointer-map entry for
7574 ** the following page matches iPage.
7575 */
7576 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007577 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007578 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7579 }
danielk1977afcdd022004-10-31 16:25:42 +00007580 }
7581#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007582 iPage = get4byte(pOvflData);
7583 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007584 }
7585}
drhb7f91642004-10-31 02:22:47 +00007586#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007587
drhb7f91642004-10-31 02:22:47 +00007588#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007589/*
7590** Do various sanity checks on a single page of a tree. Return
7591** the tree depth. Root pages return 0. Parents of root pages
7592** return 1, and so forth.
7593**
7594** These checks are done:
7595**
7596** 1. Make sure that cells and freeblocks do not overlap
7597** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007598** NO 2. Make sure cell keys are in order.
7599** NO 3. Make sure no key is less than or equal to zLowerBound.
7600** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007601** 5. Check the integrity of overflow pages.
7602** 6. Recursively call checkTreePage on all children.
7603** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007604** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007605** the root of the tree.
7606*/
7607static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007608 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007609 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007610 char *zParentContext, /* Parent context */
7611 i64 *pnParentMinKey,
7612 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007613){
7614 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007615 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007616 int hdr, cellStart;
7617 int nCell;
drhda200cc2004-05-09 11:51:38 +00007618 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007619 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007620 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007621 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007622 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007623 i64 nMinKey = 0;
7624 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007625
drh5bb3eb92007-05-04 13:15:55 +00007626 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007627
drh5eddca62001-06-30 21:53:53 +00007628 /* Check that the page exists
7629 */
drhd9cb6ac2005-10-20 07:28:17 +00007630 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007631 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007632 if( iPage==0 ) return 0;
7633 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007634 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007635 checkAppendMsg(pCheck, zContext,
7636 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007637 return 0;
7638 }
danielk197793caf5a2009-07-11 06:55:33 +00007639
7640 /* Clear MemPage.isInit to make sure the corruption detection code in
7641 ** btreeInitPage() is executed. */
7642 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007643 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007644 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007645 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007646 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007647 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007648 return 0;
7649 }
7650
7651 /* Check out all the cells.
7652 */
7653 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007654 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007655 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007656 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007657 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007658
7659 /* Check payload overflow pages
7660 */
drh5bb3eb92007-05-04 13:15:55 +00007661 sqlite3_snprintf(sizeof(zContext), zContext,
7662 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007663 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007664 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007665 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007666 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007667 /* For intKey pages, check that the keys are in order.
7668 */
7669 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7670 else{
7671 if( info.nKey <= nMaxKey ){
7672 checkAppendMsg(pCheck, zContext,
7673 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7674 }
7675 nMaxKey = info.nKey;
7676 }
drh72365832007-03-06 15:53:44 +00007677 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007678 if( (sz>info.nLocal)
7679 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7680 ){
drhb6f41482004-05-14 01:58:11 +00007681 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007682 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7683#ifndef SQLITE_OMIT_AUTOVACUUM
7684 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007685 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007686 }
7687#endif
7688 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007689 }
7690
7691 /* Check sanity of left child page.
7692 */
drhda200cc2004-05-09 11:51:38 +00007693 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007694 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007695#ifndef SQLITE_OMIT_AUTOVACUUM
7696 if( pBt->autoVacuum ){
7697 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7698 }
7699#endif
shaneh195475d2010-02-19 04:28:08 +00007700 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007701 if( i>0 && d2!=depth ){
7702 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7703 }
7704 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007705 }
drh5eddca62001-06-30 21:53:53 +00007706 }
shaneh195475d2010-02-19 04:28:08 +00007707
drhda200cc2004-05-09 11:51:38 +00007708 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007709 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007710 sqlite3_snprintf(sizeof(zContext), zContext,
7711 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007712#ifndef SQLITE_OMIT_AUTOVACUUM
7713 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007714 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007715 }
7716#endif
shaneh195475d2010-02-19 04:28:08 +00007717 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007718 }
drh5eddca62001-06-30 21:53:53 +00007719
shaneh195475d2010-02-19 04:28:08 +00007720 /* For intKey leaf pages, check that the min/max keys are in order
7721 ** with any left/parent/right pages.
7722 */
7723 if( pPage->leaf && pPage->intKey ){
7724 /* if we are a left child page */
7725 if( pnParentMinKey ){
7726 /* if we are the left most child page */
7727 if( !pnParentMaxKey ){
7728 if( nMaxKey > *pnParentMinKey ){
7729 checkAppendMsg(pCheck, zContext,
7730 "Rowid %lld out of order (max larger than parent min of %lld)",
7731 nMaxKey, *pnParentMinKey);
7732 }
7733 }else{
7734 if( nMinKey <= *pnParentMinKey ){
7735 checkAppendMsg(pCheck, zContext,
7736 "Rowid %lld out of order (min less than parent min of %lld)",
7737 nMinKey, *pnParentMinKey);
7738 }
7739 if( nMaxKey > *pnParentMaxKey ){
7740 checkAppendMsg(pCheck, zContext,
7741 "Rowid %lld out of order (max larger than parent max of %lld)",
7742 nMaxKey, *pnParentMaxKey);
7743 }
7744 *pnParentMinKey = nMaxKey;
7745 }
7746 /* else if we're a right child page */
7747 } else if( pnParentMaxKey ){
7748 if( nMinKey <= *pnParentMaxKey ){
7749 checkAppendMsg(pCheck, zContext,
7750 "Rowid %lld out of order (min less than parent max of %lld)",
7751 nMinKey, *pnParentMaxKey);
7752 }
7753 }
7754 }
7755
drh5eddca62001-06-30 21:53:53 +00007756 /* Check for complete coverage of the page
7757 */
drhda200cc2004-05-09 11:51:38 +00007758 data = pPage->aData;
7759 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007760 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007761 if( hit==0 ){
7762 pCheck->mallocFailed = 1;
7763 }else{
drh5d433ce2010-08-14 16:02:52 +00007764 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007765 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007766 memset(hit+contentOffset, 0, usableSize-contentOffset);
7767 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007768 nCell = get2byte(&data[hdr+3]);
7769 cellStart = hdr + 12 - 4*pPage->leaf;
7770 for(i=0; i<nCell; i++){
7771 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007772 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007773 int j;
drh8c2bbb62009-07-10 02:52:20 +00007774 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007775 size = cellSizePtr(pPage, &data[pc]);
7776 }
drh43b18e12010-08-17 19:40:08 +00007777 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007778 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007779 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007780 }else{
7781 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7782 }
drh2e38c322004-09-03 18:38:44 +00007783 }
drh8c2bbb62009-07-10 02:52:20 +00007784 i = get2byte(&data[hdr+1]);
7785 while( i>0 ){
7786 int size, j;
7787 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7788 size = get2byte(&data[i+2]);
7789 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7790 for(j=i+size-1; j>=i; j--) hit[j]++;
7791 j = get2byte(&data[i]);
7792 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7793 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7794 i = j;
drh2e38c322004-09-03 18:38:44 +00007795 }
7796 for(i=cnt=0; i<usableSize; i++){
7797 if( hit[i]==0 ){
7798 cnt++;
7799 }else if( hit[i]>1 ){
7800 checkAppendMsg(pCheck, 0,
7801 "Multiple uses for byte %d of page %d", i, iPage);
7802 break;
7803 }
7804 }
7805 if( cnt!=data[hdr+7] ){
7806 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007807 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007808 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007809 }
7810 }
drh8c2bbb62009-07-10 02:52:20 +00007811 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007812 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007813 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007814}
drhb7f91642004-10-31 02:22:47 +00007815#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007816
drhb7f91642004-10-31 02:22:47 +00007817#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007818/*
7819** This routine does a complete check of the given BTree file. aRoot[] is
7820** an array of pages numbers were each page number is the root page of
7821** a table. nRoot is the number of entries in aRoot.
7822**
danielk19773509a652009-07-06 18:56:13 +00007823** A read-only or read-write transaction must be opened before calling
7824** this function.
7825**
drhc890fec2008-08-01 20:10:08 +00007826** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007827** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007828** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007829** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007830*/
drh1dcdbc02007-01-27 02:24:54 +00007831char *sqlite3BtreeIntegrityCheck(
7832 Btree *p, /* The btree to be checked */
7833 int *aRoot, /* An array of root pages numbers for individual trees */
7834 int nRoot, /* Number of entries in aRoot[] */
7835 int mxErr, /* Stop reporting errors after this many */
7836 int *pnErr /* Write number of errors seen to this variable */
7837){
danielk197789d40042008-11-17 14:20:56 +00007838 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007839 int nRef;
drhaaab5722002-02-19 13:39:21 +00007840 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007841 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007842 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007843
drhd677b3d2007-08-20 22:48:41 +00007844 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007845 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007846 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007847 sCheck.pBt = pBt;
7848 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007849 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007850 sCheck.mxErr = mxErr;
7851 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007852 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007853 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007854 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007855 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007856 return 0;
7857 }
drhe5ae5732008-06-15 02:51:47 +00007858 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007859 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007860 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007861 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007862 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007863 }
drhda200cc2004-05-09 11:51:38 +00007864 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007865 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007866 if( i<=sCheck.nPage ){
7867 sCheck.anRef[i] = 1;
7868 }
drhf089aa42008-07-08 19:34:06 +00007869 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drhb9755982010-07-24 16:34:37 +00007870 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00007871
7872 /* Check the integrity of the freelist
7873 */
drha34b6762004-05-07 13:30:42 +00007874 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7875 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007876
7877 /* Check all the tables.
7878 */
danielk197789d40042008-11-17 14:20:56 +00007879 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007880 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007881#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007882 if( pBt->autoVacuum && aRoot[i]>1 ){
7883 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7884 }
7885#endif
shaneh195475d2010-02-19 04:28:08 +00007886 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007887 }
7888
7889 /* Make sure every page in the file is referenced
7890 */
drh1dcdbc02007-01-27 02:24:54 +00007891 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007892#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007893 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007894 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007895 }
danielk1977afcdd022004-10-31 16:25:42 +00007896#else
7897 /* If the database supports auto-vacuum, make sure no tables contain
7898 ** references to pointer-map pages.
7899 */
7900 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007901 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007902 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7903 }
7904 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007905 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007906 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7907 }
7908#endif
drh5eddca62001-06-30 21:53:53 +00007909 }
7910
drh64022502009-01-09 14:11:04 +00007911 /* Make sure this analysis did not leave any unref() pages.
7912 ** This is an internal consistency check; an integrity check
7913 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007914 */
drh64022502009-01-09 14:11:04 +00007915 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007916 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007917 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007918 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007919 );
drh5eddca62001-06-30 21:53:53 +00007920 }
7921
7922 /* Clean up and report errors.
7923 */
drhd677b3d2007-08-20 22:48:41 +00007924 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007925 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007926 if( sCheck.mallocFailed ){
7927 sqlite3StrAccumReset(&sCheck.errMsg);
7928 *pnErr = sCheck.nErr+1;
7929 return 0;
7930 }
drh1dcdbc02007-01-27 02:24:54 +00007931 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007932 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7933 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007934}
drhb7f91642004-10-31 02:22:47 +00007935#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007936
drh73509ee2003-04-06 20:44:45 +00007937/*
7938** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007939**
7940** The pager filename is invariant as long as the pager is
7941** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007942*/
danielk1977aef0bf62005-12-30 16:28:01 +00007943const char *sqlite3BtreeGetFilename(Btree *p){
7944 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007945 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007946}
7947
7948/*
danielk19775865e3d2004-06-14 06:03:57 +00007949** Return the pathname of the journal file for this database. The return
7950** value of this routine is the same regardless of whether the journal file
7951** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007952**
7953** The pager journal filename is invariant as long as the pager is
7954** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007955*/
danielk1977aef0bf62005-12-30 16:28:01 +00007956const char *sqlite3BtreeGetJournalname(Btree *p){
7957 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007958 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007959}
7960
danielk19771d850a72004-05-31 08:26:49 +00007961/*
7962** Return non-zero if a transaction is active.
7963*/
danielk1977aef0bf62005-12-30 16:28:01 +00007964int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007965 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007966 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007967}
7968
dana550f2d2010-08-02 10:47:05 +00007969#ifndef SQLITE_OMIT_WAL
7970/*
7971** Run a checkpoint on the Btree passed as the first argument.
7972**
7973** Return SQLITE_LOCKED if this or any other connection has an open
7974** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00007975**
dancdc1f042010-11-18 12:11:05 +00007976** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00007977*/
dancdc1f042010-11-18 12:11:05 +00007978int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00007979 int rc = SQLITE_OK;
7980 if( p ){
7981 BtShared *pBt = p->pBt;
7982 sqlite3BtreeEnter(p);
7983 if( pBt->inTransaction!=TRANS_NONE ){
7984 rc = SQLITE_LOCKED;
7985 }else{
dancdc1f042010-11-18 12:11:05 +00007986 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00007987 }
7988 sqlite3BtreeLeave(p);
7989 }
7990 return rc;
7991}
7992#endif
7993
danielk19771d850a72004-05-31 08:26:49 +00007994/*
danielk19772372c2b2006-06-27 16:34:56 +00007995** Return non-zero if a read (or write) transaction is active.
7996*/
7997int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007998 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007999 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008000 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008001}
8002
danielk197704103022009-02-03 16:51:24 +00008003int sqlite3BtreeIsInBackup(Btree *p){
8004 assert( p );
8005 assert( sqlite3_mutex_held(p->db->mutex) );
8006 return p->nBackup!=0;
8007}
8008
danielk19772372c2b2006-06-27 16:34:56 +00008009/*
danielk1977da184232006-01-05 11:34:32 +00008010** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008011** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008012** purposes (for example, to store a high-level schema associated with
8013** the shared-btree). The btree layer manages reference counting issues.
8014**
8015** The first time this is called on a shared-btree, nBytes bytes of memory
8016** are allocated, zeroed, and returned to the caller. For each subsequent
8017** call the nBytes parameter is ignored and a pointer to the same blob
8018** of memory returned.
8019**
danielk1977171bfed2008-06-23 09:50:50 +00008020** If the nBytes parameter is 0 and the blob of memory has not yet been
8021** allocated, a null pointer is returned. If the blob has already been
8022** allocated, it is returned as normal.
8023**
danielk1977da184232006-01-05 11:34:32 +00008024** Just before the shared-btree is closed, the function passed as the
8025** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008026** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008027** on the memory, the btree layer does that.
8028*/
8029void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8030 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008031 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008032 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008033 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008034 pBt->xFreeSchema = xFree;
8035 }
drh27641702007-08-22 02:56:42 +00008036 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008037 return pBt->pSchema;
8038}
8039
danielk1977c87d34d2006-01-06 13:00:28 +00008040/*
danielk1977404ca072009-03-16 13:19:36 +00008041** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8042** btree as the argument handle holds an exclusive lock on the
8043** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008044*/
8045int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008046 int rc;
drhe5fe6902007-12-07 18:55:28 +00008047 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008048 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008049 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8050 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008051 sqlite3BtreeLeave(p);
8052 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008053}
8054
drha154dcd2006-03-22 22:10:07 +00008055
8056#ifndef SQLITE_OMIT_SHARED_CACHE
8057/*
8058** Obtain a lock on the table whose root page is iTab. The
8059** lock is a write lock if isWritelock is true or a read lock
8060** if it is false.
8061*/
danielk1977c00da102006-01-07 13:21:04 +00008062int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008063 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008064 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008065 if( p->sharable ){
8066 u8 lockType = READ_LOCK + isWriteLock;
8067 assert( READ_LOCK+1==WRITE_LOCK );
8068 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008069
drh6a9ad3d2008-04-02 16:29:30 +00008070 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008071 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008072 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008073 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008074 }
8075 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008076 }
8077 return rc;
8078}
drha154dcd2006-03-22 22:10:07 +00008079#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008080
danielk1977b4e9af92007-05-01 17:49:49 +00008081#ifndef SQLITE_OMIT_INCRBLOB
8082/*
8083** Argument pCsr must be a cursor opened for writing on an
8084** INTKEY table currently pointing at a valid table entry.
8085** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008086**
8087** Only the data content may only be modified, it is not possible to
8088** change the length of the data stored. If this function is called with
8089** parameters that attempt to write past the end of the existing data,
8090** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008091*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008092int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008093 int rc;
drh1fee73e2007-08-29 04:00:57 +00008094 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008095 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008096 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008097
danielk1977c9000e62009-07-08 13:55:28 +00008098 rc = restoreCursorPosition(pCsr);
8099 if( rc!=SQLITE_OK ){
8100 return rc;
8101 }
danielk19773588ceb2008-06-10 17:30:26 +00008102 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8103 if( pCsr->eState!=CURSOR_VALID ){
8104 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008105 }
8106
danielk1977c9000e62009-07-08 13:55:28 +00008107 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008108 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008109 ** (b) there is a read/write transaction open,
8110 ** (c) the connection holds a write-lock on the table (if required),
8111 ** (d) there are no conflicting read-locks, and
8112 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008113 */
danielk19774f029602009-07-08 18:45:37 +00008114 if( !pCsr->wrFlag ){
8115 return SQLITE_READONLY;
8116 }
danielk197796d48e92009-06-29 06:00:37 +00008117 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
8118 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8119 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008120 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008121
drhfb192682009-07-11 18:26:28 +00008122 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008123}
danielk19772dec9702007-05-02 16:48:37 +00008124
8125/*
8126** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008127** overflow list for the current row. This is used by cursors opened
8128** for incremental blob IO only.
8129**
8130** This function sets a flag only. The actual page location cache
8131** (stored in BtCursor.aOverflow[]) is allocated and used by function
8132** accessPayload() (the worker function for sqlite3BtreeData() and
8133** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008134*/
8135void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008136 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008137 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008138 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008139 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008140}
danielk1977b4e9af92007-05-01 17:49:49 +00008141#endif
dane04dc882010-04-20 18:53:15 +00008142
8143/*
8144** Set both the "read version" (single byte at byte offset 18) and
8145** "write version" (single byte at byte offset 19) fields in the database
8146** header to iVersion.
8147*/
8148int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8149 BtShared *pBt = pBtree->pBt;
8150 int rc; /* Return code */
8151
danb9780022010-04-21 18:37:57 +00008152 assert( pBtree->inTrans==TRANS_NONE );
dane04dc882010-04-20 18:53:15 +00008153 assert( iVersion==1 || iVersion==2 );
8154
danb9780022010-04-21 18:37:57 +00008155 /* If setting the version fields to 1, do not automatically open the
8156 ** WAL connection, even if the version fields are currently set to 2.
8157 */
shaneh5eba1f62010-07-02 17:05:03 +00008158 pBt->doNotUseWAL = (u8)(iVersion==1);
danb9780022010-04-21 18:37:57 +00008159
8160 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008161 if( rc==SQLITE_OK ){
8162 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008163 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008164 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008165 if( rc==SQLITE_OK ){
8166 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8167 if( rc==SQLITE_OK ){
8168 aData[18] = (u8)iVersion;
8169 aData[19] = (u8)iVersion;
8170 }
8171 }
8172 }
dane04dc882010-04-20 18:53:15 +00008173 }
8174
danb9780022010-04-21 18:37:57 +00008175 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008176 return rc;
8177}
danc6e73452011-08-04 12:14:04 +00008178
8179